xref: /linux/io_uring/io_uring.c (revision 591beb0e3a03258ef9c01893a5209845799a7c33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/errno.h>
44 #include <linux/syscalls.h>
45 #include <linux/refcount.h>
46 #include <linux/bits.h>
47 
48 #include <linux/sched/signal.h>
49 #include <linux/fs.h>
50 #include <linux/mm.h>
51 #include <linux/percpu.h>
52 #include <linux/slab.h>
53 #include <linux/anon_inodes.h>
54 #include <linux/uaccess.h>
55 #include <linux/nospec.h>
56 #include <linux/task_work.h>
57 #include <linux/io_uring.h>
58 #include <linux/io_uring/cmd.h>
59 #include <linux/audit.h>
60 #include <linux/security.h>
61 #include <linux/jump_label.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/io_uring.h>
65 
66 #include <uapi/linux/io_uring.h>
67 
68 #include "io-wq.h"
69 
70 #include "filetable.h"
71 #include "io_uring.h"
72 #include "opdef.h"
73 #include "refs.h"
74 #include "tctx.h"
75 #include "register.h"
76 #include "sqpoll.h"
77 #include "fdinfo.h"
78 #include "kbuf.h"
79 #include "rsrc.h"
80 #include "cancel.h"
81 #include "net.h"
82 #include "notif.h"
83 #include "waitid.h"
84 #include "futex.h"
85 #include "napi.h"
86 #include "uring_cmd.h"
87 #include "msg_ring.h"
88 #include "memmap.h"
89 #include "zcrx.h"
90 
91 #include "timeout.h"
92 #include "poll.h"
93 #include "rw.h"
94 #include "alloc_cache.h"
95 #include "eventfd.h"
96 #include "wait.h"
97 #include "bpf_filter.h"
98 
99 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
100 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
101 
102 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
103 
104 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
105 				REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
106 
107 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
108 				 REQ_F_REISSUE | REQ_F_POLLED | \
109 				 IO_REQ_CLEAN_FLAGS)
110 
111 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
112 
113 #define IO_COMPL_BATCH			32
114 #define IO_REQ_ALLOC_BATCH		8
115 
116 /* requests with any of those set should undergo io_disarm_next() */
117 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
118 
119 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
120 static void __io_req_caches_free(struct io_ring_ctx *ctx);
121 
122 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
123 
124 struct kmem_cache *req_cachep;
125 static struct workqueue_struct *iou_wq __ro_after_init;
126 
127 static int __read_mostly sysctl_io_uring_disabled;
128 static int __read_mostly sysctl_io_uring_group = -1;
129 
130 #ifdef CONFIG_SYSCTL
131 static const struct ctl_table kernel_io_uring_disabled_table[] = {
132 	{
133 		.procname	= "io_uring_disabled",
134 		.data		= &sysctl_io_uring_disabled,
135 		.maxlen		= sizeof(sysctl_io_uring_disabled),
136 		.mode		= 0644,
137 		.proc_handler	= proc_dointvec_minmax,
138 		.extra1		= SYSCTL_ZERO,
139 		.extra2		= SYSCTL_TWO,
140 	},
141 	{
142 		.procname	= "io_uring_group",
143 		.data		= &sysctl_io_uring_group,
144 		.maxlen		= sizeof(gid_t),
145 		.mode		= 0644,
146 		.proc_handler	= proc_dointvec,
147 	},
148 };
149 #endif
150 
151 static void io_poison_cached_req(struct io_kiocb *req)
152 {
153 	req->ctx = IO_URING_PTR_POISON;
154 	req->tctx = IO_URING_PTR_POISON;
155 	req->file = IO_URING_PTR_POISON;
156 	req->creds = IO_URING_PTR_POISON;
157 	req->io_task_work.func = IO_URING_PTR_POISON;
158 	req->apoll = IO_URING_PTR_POISON;
159 }
160 
161 static void io_poison_req(struct io_kiocb *req)
162 {
163 	io_poison_cached_req(req);
164 	req->async_data = IO_URING_PTR_POISON;
165 	req->kbuf = IO_URING_PTR_POISON;
166 	req->comp_list.next = IO_URING_PTR_POISON;
167 	req->file_node = IO_URING_PTR_POISON;
168 	req->link = IO_URING_PTR_POISON;
169 }
170 
171 static inline void req_fail_link_node(struct io_kiocb *req, int res)
172 {
173 	req_set_fail(req);
174 	io_req_set_res(req, res, 0);
175 }
176 
177 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
178 {
179 	if (IS_ENABLED(CONFIG_KASAN))
180 		io_poison_cached_req(req);
181 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
182 }
183 
184 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
185 {
186 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
187 
188 	complete(&ctx->ref_comp);
189 }
190 
191 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
192 {
193 	unsigned int hash_buckets;
194 	int i;
195 
196 	do {
197 		hash_buckets = 1U << bits;
198 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
199 						GFP_KERNEL_ACCOUNT);
200 		if (table->hbs)
201 			break;
202 		if (bits == 1)
203 			return -ENOMEM;
204 		bits--;
205 	} while (1);
206 
207 	table->hash_bits = bits;
208 	for (i = 0; i < hash_buckets; i++)
209 		INIT_HLIST_HEAD(&table->hbs[i].list);
210 	return 0;
211 }
212 
213 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
214 {
215 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
216 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
217 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
218 	io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
219 	io_futex_cache_free(ctx);
220 	io_rsrc_cache_free(ctx);
221 }
222 
223 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
224 {
225 	struct io_ring_ctx *ctx;
226 	int hash_bits;
227 	bool ret;
228 
229 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
230 	if (!ctx)
231 		return NULL;
232 
233 	xa_init(&ctx->io_bl_xa);
234 
235 	/*
236 	 * Use 5 bits less than the max cq entries, that should give us around
237 	 * 32 entries per hash list if totally full and uniformly spread, but
238 	 * don't keep too many buckets to not overconsume memory.
239 	 */
240 	hash_bits = ilog2(p->cq_entries) - 5;
241 	hash_bits = clamp(hash_bits, 1, 8);
242 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
243 		goto err;
244 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
245 			    0, GFP_KERNEL))
246 		goto err;
247 
248 	ctx->flags = p->flags;
249 	ctx->hybrid_poll_time = LLONG_MAX;
250 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
251 	init_waitqueue_head(&ctx->sqo_sq_wait);
252 	INIT_LIST_HEAD(&ctx->sqd_list);
253 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
254 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
255 			    sizeof(struct async_poll), 0);
256 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
257 			    sizeof(struct io_async_msghdr),
258 			    offsetof(struct io_async_msghdr, clear));
259 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
260 			    sizeof(struct io_async_rw),
261 			    offsetof(struct io_async_rw, clear));
262 	ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
263 			    sizeof(struct io_async_cmd),
264 			    sizeof(struct io_async_cmd));
265 	ret |= io_futex_cache_init(ctx);
266 	ret |= io_rsrc_cache_init(ctx);
267 	if (ret)
268 		goto free_ref;
269 	init_completion(&ctx->ref_comp);
270 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
271 	mutex_init(&ctx->uring_lock);
272 	init_waitqueue_head(&ctx->cq_wait);
273 	init_waitqueue_head(&ctx->poll_wq);
274 	spin_lock_init(&ctx->completion_lock);
275 	raw_spin_lock_init(&ctx->timeout_lock);
276 	INIT_LIST_HEAD(&ctx->iopoll_list);
277 	INIT_LIST_HEAD(&ctx->defer_list);
278 	INIT_LIST_HEAD(&ctx->timeout_list);
279 	INIT_LIST_HEAD(&ctx->ltimeout_list);
280 	init_llist_head(&ctx->work_llist);
281 	INIT_LIST_HEAD(&ctx->tctx_list);
282 	mutex_init(&ctx->tctx_lock);
283 	ctx->submit_state.free_list.next = NULL;
284 	INIT_HLIST_HEAD(&ctx->waitid_list);
285 	xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
286 #ifdef CONFIG_FUTEX
287 	INIT_HLIST_HEAD(&ctx->futex_list);
288 #endif
289 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
290 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
291 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
292 	io_napi_init(ctx);
293 	mutex_init(&ctx->mmap_lock);
294 
295 	return ctx;
296 
297 free_ref:
298 	percpu_ref_exit(&ctx->refs);
299 err:
300 	io_free_alloc_caches(ctx);
301 	kvfree(ctx->cancel_table.hbs);
302 	xa_destroy(&ctx->io_bl_xa);
303 	kfree(ctx);
304 	return NULL;
305 }
306 
307 static void io_clean_op(struct io_kiocb *req)
308 {
309 	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
310 		io_kbuf_drop_legacy(req);
311 
312 	if (req->flags & REQ_F_NEED_CLEANUP) {
313 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
314 
315 		if (def->cleanup)
316 			def->cleanup(req);
317 	}
318 	if (req->flags & REQ_F_INFLIGHT)
319 		atomic_dec(&req->tctx->inflight_tracked);
320 	if (req->flags & REQ_F_CREDS)
321 		put_cred(req->creds);
322 	if (req->flags & REQ_F_ASYNC_DATA) {
323 		kfree(req->async_data);
324 		req->async_data = NULL;
325 	}
326 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
327 }
328 
329 /*
330  * Mark the request as inflight, so that file cancelation will find it.
331  * Can be used if the file is an io_uring instance, or if the request itself
332  * relies on ->mm being alive for the duration of the request.
333  */
334 inline void io_req_track_inflight(struct io_kiocb *req)
335 {
336 	if (!(req->flags & REQ_F_INFLIGHT)) {
337 		req->flags |= REQ_F_INFLIGHT;
338 		atomic_inc(&req->tctx->inflight_tracked);
339 	}
340 }
341 
342 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
343 {
344 	if (WARN_ON_ONCE(!req->link))
345 		return NULL;
346 
347 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
348 	req->flags |= REQ_F_LINK_TIMEOUT;
349 
350 	/* linked timeouts should have two refs once prep'ed */
351 	io_req_set_refcount(req);
352 	__io_req_set_refcount(req->link, 2);
353 	return req->link;
354 }
355 
356 static void io_prep_async_work(struct io_kiocb *req)
357 {
358 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
359 	struct io_ring_ctx *ctx = req->ctx;
360 
361 	if (!(req->flags & REQ_F_CREDS)) {
362 		req->flags |= REQ_F_CREDS;
363 		req->creds = get_current_cred();
364 	}
365 
366 	req->work.list.next = NULL;
367 	atomic_set(&req->work.flags, 0);
368 	if (req->flags & REQ_F_FORCE_ASYNC)
369 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
370 
371 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
372 		req->flags |= io_file_get_flags(req->file);
373 
374 	if (req->file && (req->flags & REQ_F_ISREG)) {
375 		bool should_hash = def->hash_reg_file;
376 
377 		/* don't serialize this request if the fs doesn't need it */
378 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
379 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
380 			should_hash = false;
381 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
382 			io_wq_hash_work(&req->work, file_inode(req->file));
383 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
384 		if (def->unbound_nonreg_file)
385 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
386 	}
387 }
388 
389 static void io_prep_async_link(struct io_kiocb *req)
390 {
391 	struct io_kiocb *cur;
392 
393 	if (req->flags & REQ_F_LINK_TIMEOUT) {
394 		struct io_ring_ctx *ctx = req->ctx;
395 
396 		raw_spin_lock_irq(&ctx->timeout_lock);
397 		io_for_each_link(cur, req)
398 			io_prep_async_work(cur);
399 		raw_spin_unlock_irq(&ctx->timeout_lock);
400 	} else {
401 		io_for_each_link(cur, req)
402 			io_prep_async_work(cur);
403 	}
404 }
405 
406 static void io_queue_iowq(struct io_kiocb *req)
407 {
408 	struct io_uring_task *tctx = req->tctx;
409 
410 	BUG_ON(!tctx);
411 
412 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
413 		io_req_task_queue_fail(req, -ECANCELED);
414 		return;
415 	}
416 
417 	/* init ->work of the whole link before punting */
418 	io_prep_async_link(req);
419 
420 	/*
421 	 * Not expected to happen, but if we do have a bug where this _can_
422 	 * happen, catch it here and ensure the request is marked as
423 	 * canceled. That will make io-wq go through the usual work cancel
424 	 * procedure rather than attempt to run this request (or create a new
425 	 * worker for it).
426 	 */
427 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
428 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
429 
430 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
431 	io_wq_enqueue(tctx->io_wq, &req->work);
432 }
433 
434 static void io_req_queue_iowq_tw(struct io_tw_req tw_req, io_tw_token_t tw)
435 {
436 	io_queue_iowq(tw_req.req);
437 }
438 
439 void io_req_queue_iowq(struct io_kiocb *req)
440 {
441 	req->io_task_work.func = io_req_queue_iowq_tw;
442 	io_req_task_work_add(req);
443 }
444 
445 unsigned io_linked_nr(struct io_kiocb *req)
446 {
447 	struct io_kiocb *tmp;
448 	unsigned nr = 0;
449 
450 	io_for_each_link(tmp, req)
451 		nr++;
452 	return nr;
453 }
454 
455 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
456 {
457 	bool drain_seen = false, first = true;
458 
459 	lockdep_assert_held(&ctx->uring_lock);
460 	__io_req_caches_free(ctx);
461 
462 	while (!list_empty(&ctx->defer_list)) {
463 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
464 						struct io_defer_entry, list);
465 
466 		drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
467 		if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
468 			return;
469 
470 		list_del_init(&de->list);
471 		ctx->nr_drained -= io_linked_nr(de->req);
472 		io_req_task_queue(de->req);
473 		kfree(de);
474 		first = false;
475 	}
476 }
477 
478 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
479 {
480 	if (ctx->poll_activated)
481 		io_poll_wq_wake(ctx);
482 	if (ctx->off_timeout_used)
483 		io_flush_timeouts(ctx);
484 	if (ctx->has_evfd)
485 		io_eventfd_signal(ctx, true);
486 }
487 
488 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
489 {
490 	if (!ctx->lockless_cq)
491 		spin_lock(&ctx->completion_lock);
492 }
493 
494 static inline void io_cq_lock(struct io_ring_ctx *ctx)
495 	__acquires(ctx->completion_lock)
496 {
497 	spin_lock(&ctx->completion_lock);
498 }
499 
500 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
501 {
502 	io_commit_cqring(ctx);
503 	if (!ctx->task_complete) {
504 		if (!ctx->lockless_cq)
505 			spin_unlock(&ctx->completion_lock);
506 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
507 		if (!ctx->syscall_iopoll)
508 			io_cqring_wake(ctx);
509 	}
510 	io_commit_cqring_flush(ctx);
511 }
512 
513 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
514 	__releases(ctx->completion_lock)
515 {
516 	io_commit_cqring(ctx);
517 	spin_unlock(&ctx->completion_lock);
518 	io_cqring_wake(ctx);
519 	io_commit_cqring_flush(ctx);
520 }
521 
522 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
523 {
524 	lockdep_assert_held(&ctx->uring_lock);
525 
526 	/* don't abort if we're dying, entries must get freed */
527 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
528 		return;
529 
530 	io_cq_lock(ctx);
531 	while (!list_empty(&ctx->cq_overflow_list)) {
532 		size_t cqe_size = sizeof(struct io_uring_cqe);
533 		struct io_uring_cqe *cqe;
534 		struct io_overflow_cqe *ocqe;
535 		bool is_cqe32 = false;
536 
537 		ocqe = list_first_entry(&ctx->cq_overflow_list,
538 					struct io_overflow_cqe, list);
539 		if (ocqe->cqe.flags & IORING_CQE_F_32 ||
540 		    ctx->flags & IORING_SETUP_CQE32) {
541 			is_cqe32 = true;
542 			cqe_size <<= 1;
543 		}
544 		if (ctx->flags & IORING_SETUP_CQE32)
545 			is_cqe32 = false;
546 
547 		if (!dying) {
548 			if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
549 				break;
550 			memcpy(cqe, &ocqe->cqe, cqe_size);
551 		}
552 		list_del(&ocqe->list);
553 		kfree(ocqe);
554 
555 		/*
556 		 * For silly syzbot cases that deliberately overflow by huge
557 		 * amounts, check if we need to resched and drop and
558 		 * reacquire the locks if so. Nothing real would ever hit this.
559 		 * Ideally we'd have a non-posting unlock for this, but hard
560 		 * to care for a non-real case.
561 		 */
562 		if (need_resched()) {
563 			ctx->cqe_sentinel = ctx->cqe_cached;
564 			io_cq_unlock_post(ctx);
565 			mutex_unlock(&ctx->uring_lock);
566 			cond_resched();
567 			mutex_lock(&ctx->uring_lock);
568 			io_cq_lock(ctx);
569 		}
570 	}
571 
572 	if (list_empty(&ctx->cq_overflow_list)) {
573 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
574 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
575 	}
576 	io_cq_unlock_post(ctx);
577 }
578 
579 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
580 {
581 	if (ctx->rings)
582 		__io_cqring_overflow_flush(ctx, true);
583 }
584 
585 void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
586 {
587 	mutex_lock(&ctx->uring_lock);
588 	__io_cqring_overflow_flush(ctx, false);
589 	mutex_unlock(&ctx->uring_lock);
590 }
591 
592 /* must to be called somewhat shortly after putting a request */
593 static inline void io_put_task(struct io_kiocb *req)
594 {
595 	struct io_uring_task *tctx = req->tctx;
596 
597 	if (likely(tctx->task == current)) {
598 		tctx->cached_refs++;
599 	} else {
600 		percpu_counter_sub(&tctx->inflight, 1);
601 		if (unlikely(atomic_read(&tctx->in_cancel)))
602 			wake_up(&tctx->wait);
603 		put_task_struct(tctx->task);
604 	}
605 }
606 
607 void io_task_refs_refill(struct io_uring_task *tctx)
608 {
609 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
610 
611 	percpu_counter_add(&tctx->inflight, refill);
612 	refcount_add(refill, &current->usage);
613 	tctx->cached_refs += refill;
614 }
615 
616 __cold void io_uring_drop_tctx_refs(struct task_struct *task)
617 {
618 	struct io_uring_task *tctx = task->io_uring;
619 	unsigned int refs = tctx->cached_refs;
620 
621 	if (refs) {
622 		tctx->cached_refs = 0;
623 		percpu_counter_sub(&tctx->inflight, refs);
624 		put_task_struct_many(task, refs);
625 	}
626 }
627 
628 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
629 					  struct io_overflow_cqe *ocqe)
630 {
631 	lockdep_assert_held(&ctx->completion_lock);
632 
633 	if (!ocqe) {
634 		struct io_rings *r = ctx->rings;
635 
636 		/*
637 		 * If we're in ring overflow flush mode, or in task cancel mode,
638 		 * or cannot allocate an overflow entry, then we need to drop it
639 		 * on the floor.
640 		 */
641 		WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
642 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
643 		return false;
644 	}
645 	if (list_empty(&ctx->cq_overflow_list)) {
646 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
647 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
648 
649 	}
650 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
651 	return true;
652 }
653 
654 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
655 					     struct io_cqe *cqe,
656 					     struct io_big_cqe *big_cqe, gfp_t gfp)
657 {
658 	struct io_overflow_cqe *ocqe;
659 	size_t ocq_size = sizeof(struct io_overflow_cqe);
660 	bool is_cqe32 = false;
661 
662 	if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
663 		is_cqe32 = true;
664 		ocq_size += sizeof(struct io_uring_cqe);
665 	}
666 
667 	ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
668 	trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
669 	if (ocqe) {
670 		ocqe->cqe.user_data = cqe->user_data;
671 		ocqe->cqe.res = cqe->res;
672 		ocqe->cqe.flags = cqe->flags;
673 		if (is_cqe32 && big_cqe) {
674 			ocqe->cqe.big_cqe[0] = big_cqe->extra1;
675 			ocqe->cqe.big_cqe[1] = big_cqe->extra2;
676 		}
677 	}
678 	if (big_cqe)
679 		big_cqe->extra1 = big_cqe->extra2 = 0;
680 	return ocqe;
681 }
682 
683 /*
684  * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
685  * because the ring is a single 16b entry away from wrapping.
686  */
687 static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
688 {
689 	if (__io_cqring_events(ctx) < ctx->cq_entries) {
690 		struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
691 
692 		cqe->user_data = 0;
693 		cqe->res = 0;
694 		cqe->flags = IORING_CQE_F_SKIP;
695 		ctx->cached_cq_tail++;
696 		return true;
697 	}
698 	return false;
699 }
700 
701 /*
702  * writes to the cq entry need to come after reading head; the
703  * control dependency is enough as we're using WRITE_ONCE to
704  * fill the cq entry
705  */
706 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
707 {
708 	struct io_rings *rings = ctx->rings;
709 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
710 	unsigned int free, queued, len;
711 
712 	/*
713 	 * Posting into the CQ when there are pending overflowed CQEs may break
714 	 * ordering guarantees, which will affect links, F_MORE users and more.
715 	 * Force overflow the completion.
716 	 */
717 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
718 		return false;
719 
720 	/*
721 	 * Post dummy CQE if a 32b CQE is needed and there's only room for a
722 	 * 16b CQE before the ring wraps.
723 	 */
724 	if (cqe32 && off + 1 == ctx->cq_entries) {
725 		if (!io_fill_nop_cqe(ctx, off))
726 			return false;
727 		off = 0;
728 	}
729 
730 	/* userspace may cheat modifying the tail, be safe and do min */
731 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
732 	free = ctx->cq_entries - queued;
733 	/* we need a contiguous range, limit based on the current array offset */
734 	len = min(free, ctx->cq_entries - off);
735 	if (len < (cqe32 + 1))
736 		return false;
737 
738 	if (ctx->flags & IORING_SETUP_CQE32) {
739 		off <<= 1;
740 		len <<= 1;
741 	}
742 
743 	ctx->cqe_cached = &rings->cqes[off];
744 	ctx->cqe_sentinel = ctx->cqe_cached + len;
745 	return true;
746 }
747 
748 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
749 			      struct io_uring_cqe src_cqe[2])
750 {
751 	struct io_uring_cqe *cqe;
752 
753 	if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
754 		return false;
755 	if (unlikely(!io_get_cqe(ctx, &cqe, true)))
756 		return false;
757 
758 	memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
759 	trace_io_uring_complete(ctx, NULL, cqe);
760 	return true;
761 }
762 
763 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
764 			      u32 cflags)
765 {
766 	bool cqe32 = cflags & IORING_CQE_F_32;
767 	struct io_uring_cqe *cqe;
768 
769 	if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
770 		WRITE_ONCE(cqe->user_data, user_data);
771 		WRITE_ONCE(cqe->res, res);
772 		WRITE_ONCE(cqe->flags, cflags);
773 
774 		if (cqe32) {
775 			WRITE_ONCE(cqe->big_cqe[0], 0);
776 			WRITE_ONCE(cqe->big_cqe[1], 0);
777 		}
778 
779 		trace_io_uring_complete(ctx, NULL, cqe);
780 		return true;
781 	}
782 	return false;
783 }
784 
785 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
786 {
787 	return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
788 }
789 
790 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
791 				   struct io_big_cqe *big_cqe)
792 {
793 	struct io_overflow_cqe *ocqe;
794 
795 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
796 	spin_lock(&ctx->completion_lock);
797 	io_cqring_add_overflow(ctx, ocqe);
798 	spin_unlock(&ctx->completion_lock);
799 }
800 
801 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
802 					  struct io_cqe *cqe,
803 					  struct io_big_cqe *big_cqe)
804 {
805 	struct io_overflow_cqe *ocqe;
806 
807 	ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_NOWAIT);
808 	return io_cqring_add_overflow(ctx, ocqe);
809 }
810 
811 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
812 {
813 	bool filled;
814 
815 	io_cq_lock(ctx);
816 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
817 	if (unlikely(!filled)) {
818 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
819 
820 		filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
821 	}
822 	io_cq_unlock_post(ctx);
823 	return filled;
824 }
825 
826 /*
827  * Must be called from inline task_work so we know a flush will happen later,
828  * and obviously with ctx->uring_lock held (tw always has that).
829  */
830 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
831 {
832 	lockdep_assert_held(&ctx->uring_lock);
833 	lockdep_assert(ctx->lockless_cq);
834 
835 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
836 		struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
837 
838 		io_cqe_overflow(ctx, &cqe, NULL);
839 	}
840 	ctx->submit_state.cq_flush = true;
841 }
842 
843 /*
844  * A helper for multishot requests posting additional CQEs.
845  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
846  */
847 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
848 {
849 	struct io_ring_ctx *ctx = req->ctx;
850 	bool posted;
851 
852 	/*
853 	 * If multishot has already posted deferred completions, ensure that
854 	 * those are flushed first before posting this one. If not, CQEs
855 	 * could get reordered.
856 	 */
857 	if (!wq_list_empty(&ctx->submit_state.compl_reqs))
858 		__io_submit_flush_completions(ctx);
859 
860 	lockdep_assert(!io_wq_current_is_worker());
861 	lockdep_assert_held(&ctx->uring_lock);
862 
863 	if (!ctx->lockless_cq) {
864 		spin_lock(&ctx->completion_lock);
865 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
866 		spin_unlock(&ctx->completion_lock);
867 	} else {
868 		posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
869 	}
870 
871 	ctx->submit_state.cq_flush = true;
872 	return posted;
873 }
874 
875 /*
876  * A helper for multishot requests posting additional CQEs.
877  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
878  */
879 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
880 {
881 	struct io_ring_ctx *ctx = req->ctx;
882 	bool posted;
883 
884 	lockdep_assert(!io_wq_current_is_worker());
885 	lockdep_assert_held(&ctx->uring_lock);
886 
887 	cqe[0].user_data = req->cqe.user_data;
888 	if (!ctx->lockless_cq) {
889 		spin_lock(&ctx->completion_lock);
890 		posted = io_fill_cqe_aux32(ctx, cqe);
891 		spin_unlock(&ctx->completion_lock);
892 	} else {
893 		posted = io_fill_cqe_aux32(ctx, cqe);
894 	}
895 
896 	ctx->submit_state.cq_flush = true;
897 	return posted;
898 }
899 
900 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
901 {
902 	struct io_ring_ctx *ctx = req->ctx;
903 	bool completed = true;
904 
905 	/*
906 	 * All execution paths but io-wq use the deferred completions by
907 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
908 	 */
909 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
910 		return;
911 
912 	/*
913 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
914 	 * the submitter task context, IOPOLL protects with uring_lock.
915 	 */
916 	if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
917 defer_complete:
918 		req->io_task_work.func = io_req_task_complete;
919 		io_req_task_work_add(req);
920 		return;
921 	}
922 
923 	io_cq_lock(ctx);
924 	if (!(req->flags & REQ_F_CQE_SKIP))
925 		completed = io_fill_cqe_req(ctx, req);
926 	io_cq_unlock_post(ctx);
927 
928 	if (!completed)
929 		goto defer_complete;
930 
931 	/*
932 	 * We don't free the request here because we know it's called from
933 	 * io-wq only, which holds a reference, so it cannot be the last put.
934 	 */
935 	req_ref_put(req);
936 }
937 
938 void io_req_defer_failed(struct io_kiocb *req, s32 res)
939 	__must_hold(&ctx->uring_lock)
940 {
941 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
942 
943 	lockdep_assert_held(&req->ctx->uring_lock);
944 
945 	req_set_fail(req);
946 	io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
947 	if (def->fail)
948 		def->fail(req);
949 	io_req_complete_defer(req);
950 }
951 
952 /*
953  * A request might get retired back into the request caches even before opcode
954  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955  * Because of that, io_alloc_req() should be called only under ->uring_lock
956  * and with extra caution to not get a request that is still worked on.
957  */
958 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
959 	__must_hold(&ctx->uring_lock)
960 {
961 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
962 	void *reqs[IO_REQ_ALLOC_BATCH];
963 	int ret;
964 
965 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966 
967 	/*
968 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
969 	 * retry single alloc to be on the safe side.
970 	 */
971 	if (unlikely(ret <= 0)) {
972 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
973 		if (!reqs[0])
974 			return false;
975 		ret = 1;
976 	}
977 
978 	percpu_ref_get_many(&ctx->refs, ret);
979 	ctx->nr_req_allocated += ret;
980 
981 	while (ret--) {
982 		struct io_kiocb *req = reqs[ret];
983 
984 		io_req_add_to_cache(req, ctx);
985 	}
986 	return true;
987 }
988 
989 __cold void io_free_req(struct io_kiocb *req)
990 {
991 	/* refs were already put, restore them for io_req_task_complete() */
992 	req->flags &= ~REQ_F_REFCOUNT;
993 	/* we only want to free it, don't post CQEs */
994 	req->flags |= REQ_F_CQE_SKIP;
995 	req->io_task_work.func = io_req_task_complete;
996 	io_req_task_work_add(req);
997 }
998 
999 static void __io_req_find_next_prep(struct io_kiocb *req)
1000 {
1001 	struct io_ring_ctx *ctx = req->ctx;
1002 
1003 	spin_lock(&ctx->completion_lock);
1004 	io_disarm_next(req);
1005 	spin_unlock(&ctx->completion_lock);
1006 }
1007 
1008 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1009 {
1010 	struct io_kiocb *nxt;
1011 
1012 	/*
1013 	 * If LINK is set, we have dependent requests in this chain. If we
1014 	 * didn't fail this request, queue the first one up, moving any other
1015 	 * dependencies to the next request. In case of failure, fail the rest
1016 	 * of the chain.
1017 	 */
1018 	if (unlikely(req->flags & IO_DISARM_MASK))
1019 		__io_req_find_next_prep(req);
1020 	nxt = req->link;
1021 	req->link = NULL;
1022 	return nxt;
1023 }
1024 
1025 static void io_req_task_cancel(struct io_tw_req tw_req, io_tw_token_t tw)
1026 {
1027 	struct io_kiocb *req = tw_req.req;
1028 
1029 	io_tw_lock(req->ctx, tw);
1030 	io_req_defer_failed(req, req->cqe.res);
1031 }
1032 
1033 void io_req_task_submit(struct io_tw_req tw_req, io_tw_token_t tw)
1034 {
1035 	struct io_kiocb *req = tw_req.req;
1036 	struct io_ring_ctx *ctx = req->ctx;
1037 
1038 	io_tw_lock(ctx, tw);
1039 	if (unlikely(tw.cancel))
1040 		io_req_defer_failed(req, -EFAULT);
1041 	else if (req->flags & REQ_F_FORCE_ASYNC)
1042 		io_queue_iowq(req);
1043 	else
1044 		io_queue_sqe(req, 0);
1045 }
1046 
1047 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1048 {
1049 	io_req_set_res(req, ret, 0);
1050 	req->io_task_work.func = io_req_task_cancel;
1051 	io_req_task_work_add(req);
1052 }
1053 
1054 void io_req_task_queue(struct io_kiocb *req)
1055 {
1056 	req->io_task_work.func = io_req_task_submit;
1057 	io_req_task_work_add(req);
1058 }
1059 
1060 void io_queue_next(struct io_kiocb *req)
1061 {
1062 	struct io_kiocb *nxt = io_req_find_next(req);
1063 
1064 	if (nxt)
1065 		io_req_task_queue(nxt);
1066 }
1067 
1068 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1069 {
1070 	if (req->file_node) {
1071 		io_put_rsrc_node(req->ctx, req->file_node);
1072 		req->file_node = NULL;
1073 	}
1074 	if (req->flags & REQ_F_BUF_NODE)
1075 		io_put_rsrc_node(req->ctx, req->buf_node);
1076 }
1077 
1078 static void io_free_batch_list(struct io_ring_ctx *ctx,
1079 			       struct io_wq_work_node *node)
1080 	__must_hold(&ctx->uring_lock)
1081 {
1082 	do {
1083 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1084 						    comp_list);
1085 
1086 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1087 			if (req->flags & REQ_F_REISSUE) {
1088 				node = req->comp_list.next;
1089 				req->flags &= ~REQ_F_REISSUE;
1090 				io_queue_iowq(req);
1091 				continue;
1092 			}
1093 			if (req->flags & REQ_F_REFCOUNT) {
1094 				node = req->comp_list.next;
1095 				if (!req_ref_put_and_test(req))
1096 					continue;
1097 			}
1098 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1099 				struct async_poll *apoll = req->apoll;
1100 
1101 				if (apoll->double_poll)
1102 					kfree(apoll->double_poll);
1103 				io_cache_free(&ctx->apoll_cache, apoll);
1104 				req->flags &= ~REQ_F_POLLED;
1105 			}
1106 			if (req->flags & IO_REQ_LINK_FLAGS)
1107 				io_queue_next(req);
1108 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1109 				io_clean_op(req);
1110 		}
1111 		io_put_file(req);
1112 		io_req_put_rsrc_nodes(req);
1113 		io_put_task(req);
1114 
1115 		node = req->comp_list.next;
1116 		io_req_add_to_cache(req, ctx);
1117 	} while (node);
1118 }
1119 
1120 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1121 	__must_hold(&ctx->uring_lock)
1122 {
1123 	struct io_submit_state *state = &ctx->submit_state;
1124 	struct io_wq_work_node *node;
1125 
1126 	__io_cq_lock(ctx);
1127 	__wq_list_for_each(node, &state->compl_reqs) {
1128 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1129 					    comp_list);
1130 
1131 		/*
1132 		 * Requests marked with REQUEUE should not post a CQE, they
1133 		 * will go through the io-wq retry machinery and post one
1134 		 * later.
1135 		 */
1136 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1137 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1138 			if (ctx->lockless_cq)
1139 				io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1140 			else
1141 				io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1142 		}
1143 	}
1144 	__io_cq_unlock_post(ctx);
1145 
1146 	if (!wq_list_empty(&state->compl_reqs)) {
1147 		io_free_batch_list(ctx, state->compl_reqs.first);
1148 		INIT_WQ_LIST(&state->compl_reqs);
1149 	}
1150 
1151 	if (unlikely(ctx->drain_active))
1152 		io_queue_deferred(ctx);
1153 
1154 	ctx->submit_state.cq_flush = false;
1155 }
1156 
1157 /*
1158  * We can't just wait for polled events to come to us, we have to actively
1159  * find and complete them.
1160  */
1161 __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1162 {
1163 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1164 		return;
1165 
1166 	mutex_lock(&ctx->uring_lock);
1167 	while (!list_empty(&ctx->iopoll_list)) {
1168 		/* let it sleep and repeat later if can't complete a request */
1169 		if (io_do_iopoll(ctx, true) == 0)
1170 			break;
1171 		/*
1172 		 * Ensure we allow local-to-the-cpu processing to take place,
1173 		 * in this case we need to ensure that we reap all events.
1174 		 * Also let task_work, etc. to progress by releasing the mutex
1175 		 */
1176 		if (need_resched()) {
1177 			mutex_unlock(&ctx->uring_lock);
1178 			cond_resched();
1179 			mutex_lock(&ctx->uring_lock);
1180 		}
1181 	}
1182 	mutex_unlock(&ctx->uring_lock);
1183 
1184 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1185 		io_move_task_work_from_local(ctx);
1186 }
1187 
1188 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1189 {
1190 	unsigned int nr_events = 0;
1191 	unsigned long check_cq;
1192 
1193 	min_events = min(min_events, ctx->cq_entries);
1194 
1195 	lockdep_assert_held(&ctx->uring_lock);
1196 
1197 	if (!io_allowed_run_tw(ctx))
1198 		return -EEXIST;
1199 
1200 	check_cq = READ_ONCE(ctx->check_cq);
1201 	if (unlikely(check_cq)) {
1202 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1203 			__io_cqring_overflow_flush(ctx, false);
1204 		/*
1205 		 * Similarly do not spin if we have not informed the user of any
1206 		 * dropped CQE.
1207 		 */
1208 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1209 			return -EBADR;
1210 	}
1211 	/*
1212 	 * Don't enter poll loop if we already have events pending.
1213 	 * If we do, we can potentially be spinning for commands that
1214 	 * already triggered a CQE (eg in error).
1215 	 */
1216 	if (io_cqring_events(ctx))
1217 		return 0;
1218 
1219 	do {
1220 		int ret = 0;
1221 
1222 		/*
1223 		 * If a submit got punted to a workqueue, we can have the
1224 		 * application entering polling for a command before it gets
1225 		 * issued. That app will hold the uring_lock for the duration
1226 		 * of the poll right here, so we need to take a breather every
1227 		 * now and then to ensure that the issue has a chance to add
1228 		 * the poll to the issued list. Otherwise we can spin here
1229 		 * forever, while the workqueue is stuck trying to acquire the
1230 		 * very same mutex.
1231 		 */
1232 		if (list_empty(&ctx->iopoll_list) || io_task_work_pending(ctx)) {
1233 			u32 tail = ctx->cached_cq_tail;
1234 
1235 			(void) io_run_local_work_locked(ctx, min_events);
1236 
1237 			if (task_work_pending(current) || list_empty(&ctx->iopoll_list)) {
1238 				mutex_unlock(&ctx->uring_lock);
1239 				io_run_task_work();
1240 				mutex_lock(&ctx->uring_lock);
1241 			}
1242 			/* some requests don't go through iopoll_list */
1243 			if (tail != ctx->cached_cq_tail || list_empty(&ctx->iopoll_list))
1244 				break;
1245 		}
1246 		ret = io_do_iopoll(ctx, !min_events);
1247 		if (unlikely(ret < 0))
1248 			return ret;
1249 
1250 		if (task_sigpending(current))
1251 			return -EINTR;
1252 		if (need_resched())
1253 			break;
1254 
1255 		nr_events += ret;
1256 	} while (nr_events < min_events);
1257 
1258 	return 0;
1259 }
1260 
1261 void io_req_task_complete(struct io_tw_req tw_req, io_tw_token_t tw)
1262 {
1263 	io_req_complete_defer(tw_req.req);
1264 }
1265 
1266 /*
1267  * After the iocb has been issued, it's safe to be found on the poll list.
1268  * Adding the kiocb to the list AFTER submission ensures that we don't
1269  * find it from a io_do_iopoll() thread before the issuer is done
1270  * accessing the kiocb cookie.
1271  */
1272 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1273 {
1274 	struct io_ring_ctx *ctx = req->ctx;
1275 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1276 
1277 	/* workqueue context doesn't hold uring_lock, grab it now */
1278 	if (unlikely(needs_lock))
1279 		mutex_lock(&ctx->uring_lock);
1280 
1281 	/*
1282 	 * Track whether we have multiple files in our lists. This will impact
1283 	 * how we do polling eventually, not spinning if we're on potentially
1284 	 * different devices.
1285 	 */
1286 	if (list_empty(&ctx->iopoll_list)) {
1287 		ctx->poll_multi_queue = false;
1288 	} else if (!ctx->poll_multi_queue) {
1289 		struct io_kiocb *list_req;
1290 
1291 		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb, iopoll_node);
1292 		if (list_req->file != req->file)
1293 			ctx->poll_multi_queue = true;
1294 	}
1295 
1296 	list_add_tail(&req->iopoll_node, &ctx->iopoll_list);
1297 
1298 	if (unlikely(needs_lock)) {
1299 		/*
1300 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1301 		 * in sq thread task context or in io worker task context. If
1302 		 * current task context is sq thread, we don't need to check
1303 		 * whether should wake up sq thread.
1304 		 */
1305 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1306 		    wq_has_sleeper(&ctx->sq_data->wait))
1307 			wake_up(&ctx->sq_data->wait);
1308 
1309 		mutex_unlock(&ctx->uring_lock);
1310 	}
1311 }
1312 
1313 io_req_flags_t io_file_get_flags(struct file *file)
1314 {
1315 	io_req_flags_t res = 0;
1316 
1317 	BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1318 
1319 	if (S_ISREG(file_inode(file)->i_mode))
1320 		res |= REQ_F_ISREG;
1321 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1322 		res |= REQ_F_SUPPORT_NOWAIT;
1323 	return res;
1324 }
1325 
1326 static __cold void io_drain_req(struct io_kiocb *req)
1327 	__must_hold(&ctx->uring_lock)
1328 {
1329 	struct io_ring_ctx *ctx = req->ctx;
1330 	bool drain = req->flags & IOSQE_IO_DRAIN;
1331 	struct io_defer_entry *de;
1332 
1333 	de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1334 	if (!de) {
1335 		io_req_defer_failed(req, -ENOMEM);
1336 		return;
1337 	}
1338 
1339 	io_prep_async_link(req);
1340 	trace_io_uring_defer(req);
1341 	de->req = req;
1342 
1343 	ctx->nr_drained += io_linked_nr(req);
1344 	list_add_tail(&de->list, &ctx->defer_list);
1345 	io_queue_deferred(ctx);
1346 	if (!drain && list_empty(&ctx->defer_list))
1347 		ctx->drain_active = false;
1348 }
1349 
1350 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1351 			   unsigned int issue_flags)
1352 {
1353 	if (req->file || !def->needs_file)
1354 		return true;
1355 
1356 	if (req->flags & REQ_F_FIXED_FILE)
1357 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1358 	else
1359 		req->file = io_file_get_normal(req, req->cqe.fd);
1360 
1361 	return !!req->file;
1362 }
1363 
1364 #define REQ_ISSUE_SLOW_FLAGS	(REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1365 
1366 static inline int __io_issue_sqe(struct io_kiocb *req,
1367 				 unsigned int issue_flags,
1368 				 const struct io_issue_def *def)
1369 {
1370 	const struct cred *creds = NULL;
1371 	struct io_kiocb *link = NULL;
1372 	int ret;
1373 
1374 	if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1375 		if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1376 			creds = override_creds(req->creds);
1377 		if (req->flags & REQ_F_ARM_LTIMEOUT)
1378 			link = __io_prep_linked_timeout(req);
1379 	}
1380 
1381 	if (!def->audit_skip)
1382 		audit_uring_entry(req->opcode);
1383 
1384 	ret = def->issue(req, issue_flags);
1385 
1386 	if (!def->audit_skip)
1387 		audit_uring_exit(!ret, ret);
1388 
1389 	if (unlikely(creds || link)) {
1390 		if (creds)
1391 			revert_creds(creds);
1392 		if (link)
1393 			io_queue_linked_timeout(link);
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1400 {
1401 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1402 	int ret;
1403 
1404 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1405 		return -EBADF;
1406 
1407 	ret = __io_issue_sqe(req, issue_flags, def);
1408 
1409 	if (ret == IOU_COMPLETE) {
1410 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1411 			io_req_complete_defer(req);
1412 		else
1413 			io_req_complete_post(req, issue_flags);
1414 
1415 		return 0;
1416 	}
1417 
1418 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1419 		ret = 0;
1420 
1421 		/* If the op doesn't have a file, we're not polling for it */
1422 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1423 			io_iopoll_req_issued(req, issue_flags);
1424 	}
1425 	return ret;
1426 }
1427 
1428 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1429 {
1430 	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1431 					 IO_URING_F_MULTISHOT |
1432 					 IO_URING_F_COMPLETE_DEFER;
1433 	int ret;
1434 
1435 	io_tw_lock(req->ctx, tw);
1436 
1437 	WARN_ON_ONCE(!req->file);
1438 	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1439 		return -EFAULT;
1440 
1441 	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1442 
1443 	WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1444 	return ret;
1445 }
1446 
1447 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1448 {
1449 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1450 	struct io_kiocb *nxt = NULL;
1451 
1452 	if (req_ref_put_and_test_atomic(req)) {
1453 		if (req->flags & IO_REQ_LINK_FLAGS)
1454 			nxt = io_req_find_next(req);
1455 		io_free_req(req);
1456 	}
1457 	return nxt ? &nxt->work : NULL;
1458 }
1459 
1460 void io_wq_submit_work(struct io_wq_work *work)
1461 {
1462 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1463 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1464 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1465 	bool needs_poll = false;
1466 	int ret = 0, err = -ECANCELED;
1467 
1468 	/* one will be dropped by io_wq_free_work() after returning to io-wq */
1469 	if (!(req->flags & REQ_F_REFCOUNT))
1470 		__io_req_set_refcount(req, 2);
1471 	else
1472 		req_ref_get(req);
1473 
1474 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1475 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1476 fail:
1477 		io_req_task_queue_fail(req, err);
1478 		return;
1479 	}
1480 	if (!io_assign_file(req, def, issue_flags)) {
1481 		err = -EBADF;
1482 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1483 		goto fail;
1484 	}
1485 
1486 	/*
1487 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1488 	 * submitter task context. Final request completions are handed to the
1489 	 * right context, however this is not the case of auxiliary CQEs,
1490 	 * which is the main mean of operation for multishot requests.
1491 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1492 	 * than necessary and also cleaner.
1493 	 */
1494 	if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1495 		err = -EBADFD;
1496 		if (!io_file_can_poll(req))
1497 			goto fail;
1498 		if (req->file->f_flags & O_NONBLOCK ||
1499 		    req->file->f_mode & FMODE_NOWAIT) {
1500 			err = -ECANCELED;
1501 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1502 				goto fail;
1503 			return;
1504 		} else {
1505 			req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1506 		}
1507 	}
1508 
1509 	if (req->flags & REQ_F_FORCE_ASYNC) {
1510 		bool opcode_poll = def->pollin || def->pollout;
1511 
1512 		if (opcode_poll && io_file_can_poll(req)) {
1513 			needs_poll = true;
1514 			issue_flags |= IO_URING_F_NONBLOCK;
1515 		}
1516 	}
1517 
1518 	do {
1519 		ret = io_issue_sqe(req, issue_flags);
1520 		if (ret != -EAGAIN)
1521 			break;
1522 
1523 		/*
1524 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1525 		 * poll. -EAGAIN is final for that case.
1526 		 */
1527 		if (req->flags & REQ_F_NOWAIT)
1528 			break;
1529 
1530 		/*
1531 		 * We can get EAGAIN for iopolled IO even though we're
1532 		 * forcing a sync submission from here, since we can't
1533 		 * wait for request slots on the block side.
1534 		 */
1535 		if (!needs_poll) {
1536 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1537 				break;
1538 			if (io_wq_worker_stopped())
1539 				break;
1540 			cond_resched();
1541 			continue;
1542 		}
1543 
1544 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1545 			return;
1546 		/* aborted or ready, in either case retry blocking */
1547 		needs_poll = false;
1548 		issue_flags &= ~IO_URING_F_NONBLOCK;
1549 	} while (1);
1550 
1551 	/* avoid locking problems by failing it from a clean context */
1552 	if (ret)
1553 		io_req_task_queue_fail(req, ret);
1554 }
1555 
1556 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1557 				      unsigned int issue_flags)
1558 {
1559 	struct io_ring_ctx *ctx = req->ctx;
1560 	struct io_rsrc_node *node;
1561 	struct file *file = NULL;
1562 
1563 	io_ring_submit_lock(ctx, issue_flags);
1564 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1565 	if (node) {
1566 		node->refs++;
1567 		req->file_node = node;
1568 		req->flags |= io_slot_flags(node);
1569 		file = io_slot_file(node);
1570 	}
1571 	io_ring_submit_unlock(ctx, issue_flags);
1572 	return file;
1573 }
1574 
1575 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1576 {
1577 	struct file *file = fget(fd);
1578 
1579 	trace_io_uring_file_get(req, fd);
1580 
1581 	/* we don't allow fixed io_uring files */
1582 	if (file && io_is_uring_fops(file))
1583 		io_req_track_inflight(req);
1584 	return file;
1585 }
1586 
1587 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
1588 {
1589 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1590 
1591 	if (req->flags & REQ_F_SQE_COPIED)
1592 		return 0;
1593 	req->flags |= REQ_F_SQE_COPIED;
1594 	if (!def->sqe_copy)
1595 		return 0;
1596 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
1597 		return -EFAULT;
1598 	def->sqe_copy(req);
1599 	return 0;
1600 }
1601 
1602 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
1603 	__must_hold(&req->ctx->uring_lock)
1604 {
1605 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1606 fail:
1607 		io_req_defer_failed(req, ret);
1608 		return;
1609 	}
1610 
1611 	ret = io_req_sqe_copy(req, issue_flags);
1612 	if (unlikely(ret))
1613 		goto fail;
1614 
1615 	switch (io_arm_poll_handler(req, 0)) {
1616 	case IO_APOLL_READY:
1617 		io_req_task_queue(req);
1618 		break;
1619 	case IO_APOLL_ABORTED:
1620 		io_queue_iowq(req);
1621 		break;
1622 	case IO_APOLL_OK:
1623 		break;
1624 	}
1625 }
1626 
1627 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
1628 	__must_hold(&req->ctx->uring_lock)
1629 {
1630 	unsigned int issue_flags = IO_URING_F_NONBLOCK |
1631 				   IO_URING_F_COMPLETE_DEFER | extra_flags;
1632 	int ret;
1633 
1634 	ret = io_issue_sqe(req, issue_flags);
1635 
1636 	/*
1637 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1638 	 * doesn't support non-blocking read/write attempts
1639 	 */
1640 	if (unlikely(ret))
1641 		io_queue_async(req, issue_flags, ret);
1642 }
1643 
1644 static void io_queue_sqe_fallback(struct io_kiocb *req)
1645 	__must_hold(&req->ctx->uring_lock)
1646 {
1647 	if (unlikely(req->flags & REQ_F_FAIL)) {
1648 		/*
1649 		 * We don't submit, fail them all, for that replace hardlinks
1650 		 * with normal links. Extra REQ_F_LINK is tolerated.
1651 		 */
1652 		req->flags &= ~REQ_F_HARDLINK;
1653 		req->flags |= REQ_F_LINK;
1654 		io_req_defer_failed(req, req->cqe.res);
1655 	} else {
1656 		/* can't fail with IO_URING_F_INLINE */
1657 		io_req_sqe_copy(req, IO_URING_F_INLINE);
1658 		if (unlikely(req->ctx->drain_active))
1659 			io_drain_req(req);
1660 		else
1661 			io_queue_iowq(req);
1662 	}
1663 }
1664 
1665 /*
1666  * Check SQE restrictions (opcode and flags).
1667  *
1668  * Returns 'true' if SQE is allowed, 'false' otherwise.
1669  */
1670 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1671 					struct io_kiocb *req,
1672 					unsigned int sqe_flags)
1673 {
1674 	if (!ctx->op_restricted)
1675 		return true;
1676 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1677 		return false;
1678 
1679 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1680 	    ctx->restrictions.sqe_flags_required)
1681 		return false;
1682 
1683 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1684 			  ctx->restrictions.sqe_flags_required))
1685 		return false;
1686 
1687 	return true;
1688 }
1689 
1690 static void io_init_drain(struct io_ring_ctx *ctx)
1691 {
1692 	struct io_kiocb *head = ctx->submit_state.link.head;
1693 
1694 	ctx->drain_active = true;
1695 	if (head) {
1696 		/*
1697 		 * If we need to drain a request in the middle of a link, drain
1698 		 * the head request and the next request/link after the current
1699 		 * link. Considering sequential execution of links,
1700 		 * REQ_F_IO_DRAIN will be maintained for every request of our
1701 		 * link.
1702 		 */
1703 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1704 		ctx->drain_next = true;
1705 	}
1706 }
1707 
1708 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
1709 {
1710 	/* ensure per-opcode data is cleared if we fail before prep */
1711 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
1712 	return err;
1713 }
1714 
1715 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1716 		       const struct io_uring_sqe *sqe, unsigned int *left)
1717 	__must_hold(&ctx->uring_lock)
1718 {
1719 	const struct io_issue_def *def;
1720 	unsigned int sqe_flags;
1721 	int personality;
1722 	u8 opcode;
1723 
1724 	req->ctx = ctx;
1725 	req->opcode = opcode = READ_ONCE(sqe->opcode);
1726 	/* same numerical values with corresponding REQ_F_*, safe to copy */
1727 	sqe_flags = READ_ONCE(sqe->flags);
1728 	req->flags = (__force io_req_flags_t) sqe_flags;
1729 	req->cqe.user_data = READ_ONCE(sqe->user_data);
1730 	req->file = NULL;
1731 	req->tctx = current->io_uring;
1732 	req->cancel_seq_set = false;
1733 	req->async_data = NULL;
1734 
1735 	if (unlikely(opcode >= IORING_OP_LAST)) {
1736 		req->opcode = 0;
1737 		return io_init_fail_req(req, -EINVAL);
1738 	}
1739 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
1740 
1741 	def = &io_issue_defs[opcode];
1742 	if (def->is_128 && !(ctx->flags & IORING_SETUP_SQE128)) {
1743 		/*
1744 		 * A 128b op on a non-128b SQ requires mixed SQE support as
1745 		 * well as 2 contiguous entries.
1746 		 */
1747 		if (!(ctx->flags & IORING_SETUP_SQE_MIXED) || *left < 2 ||
1748 		    !(ctx->cached_sq_head & (ctx->sq_entries - 1)))
1749 			return io_init_fail_req(req, -EINVAL);
1750 		/*
1751 		 * A 128b operation on a mixed SQ uses two entries, so we have
1752 		 * to increment the head and cached refs, and decrement what's
1753 		 * left.
1754 		 */
1755 		current->io_uring->cached_refs++;
1756 		ctx->cached_sq_head++;
1757 		(*left)--;
1758 	}
1759 
1760 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
1761 		/* enforce forwards compatibility on users */
1762 		if (sqe_flags & ~SQE_VALID_FLAGS)
1763 			return io_init_fail_req(req, -EINVAL);
1764 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
1765 			if (!def->buffer_select)
1766 				return io_init_fail_req(req, -EOPNOTSUPP);
1767 			req->buf_index = READ_ONCE(sqe->buf_group);
1768 		}
1769 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
1770 			ctx->drain_disabled = true;
1771 		if (sqe_flags & IOSQE_IO_DRAIN) {
1772 			if (ctx->drain_disabled)
1773 				return io_init_fail_req(req, -EOPNOTSUPP);
1774 			io_init_drain(ctx);
1775 		}
1776 	}
1777 	if (unlikely(ctx->op_restricted || ctx->drain_active || ctx->drain_next)) {
1778 		if (!io_check_restriction(ctx, req, sqe_flags))
1779 			return io_init_fail_req(req, -EACCES);
1780 		/* knock it to the slow queue path, will be drained there */
1781 		if (ctx->drain_active)
1782 			req->flags |= REQ_F_FORCE_ASYNC;
1783 		/* if there is no link, we're at "next" request and need to drain */
1784 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
1785 			ctx->drain_next = false;
1786 			ctx->drain_active = true;
1787 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1788 		}
1789 	}
1790 
1791 	if (!def->ioprio && sqe->ioprio)
1792 		return io_init_fail_req(req, -EINVAL);
1793 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
1794 		return io_init_fail_req(req, -EINVAL);
1795 
1796 	if (def->needs_file) {
1797 		struct io_submit_state *state = &ctx->submit_state;
1798 
1799 		req->cqe.fd = READ_ONCE(sqe->fd);
1800 
1801 		/*
1802 		 * Plug now if we have more than 2 IO left after this, and the
1803 		 * target is potentially a read/write to block based storage.
1804 		 */
1805 		if (state->need_plug && def->plug) {
1806 			state->plug_started = true;
1807 			state->need_plug = false;
1808 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
1809 		}
1810 	}
1811 
1812 	personality = READ_ONCE(sqe->personality);
1813 	if (personality) {
1814 		int ret;
1815 
1816 		req->creds = xa_load(&ctx->personalities, personality);
1817 		if (!req->creds)
1818 			return io_init_fail_req(req, -EINVAL);
1819 		get_cred(req->creds);
1820 		ret = security_uring_override_creds(req->creds);
1821 		if (ret) {
1822 			put_cred(req->creds);
1823 			return io_init_fail_req(req, ret);
1824 		}
1825 		req->flags |= REQ_F_CREDS;
1826 	}
1827 
1828 	return def->prep(req, sqe);
1829 }
1830 
1831 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
1832 				      struct io_kiocb *req, int ret)
1833 {
1834 	struct io_ring_ctx *ctx = req->ctx;
1835 	struct io_submit_link *link = &ctx->submit_state.link;
1836 	struct io_kiocb *head = link->head;
1837 
1838 	trace_io_uring_req_failed(sqe, req, ret);
1839 
1840 	/*
1841 	 * Avoid breaking links in the middle as it renders links with SQPOLL
1842 	 * unusable. Instead of failing eagerly, continue assembling the link if
1843 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
1844 	 * should find the flag and handle the rest.
1845 	 */
1846 	req_fail_link_node(req, ret);
1847 	if (head && !(head->flags & REQ_F_FAIL))
1848 		req_fail_link_node(head, -ECANCELED);
1849 
1850 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
1851 		if (head) {
1852 			link->last->link = req;
1853 			link->head = NULL;
1854 			req = head;
1855 		}
1856 		io_queue_sqe_fallback(req);
1857 		return ret;
1858 	}
1859 
1860 	if (head)
1861 		link->last->link = req;
1862 	else
1863 		link->head = req;
1864 	link->last = req;
1865 	return 0;
1866 }
1867 
1868 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1869 			 const struct io_uring_sqe *sqe, unsigned int *left)
1870 	__must_hold(&ctx->uring_lock)
1871 {
1872 	struct io_submit_link *link = &ctx->submit_state.link;
1873 	int ret;
1874 
1875 	ret = io_init_req(ctx, req, sqe, left);
1876 	if (unlikely(ret))
1877 		return io_submit_fail_init(sqe, req, ret);
1878 
1879 	if (unlikely(ctx->bpf_filters)) {
1880 		ret = io_uring_run_bpf_filters(ctx->bpf_filters, req);
1881 		if (ret)
1882 			return io_submit_fail_init(sqe, req, ret);
1883 	}
1884 
1885 	trace_io_uring_submit_req(req);
1886 
1887 	/*
1888 	 * If we already have a head request, queue this one for async
1889 	 * submittal once the head completes. If we don't have a head but
1890 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
1891 	 * submitted sync once the chain is complete. If none of those
1892 	 * conditions are true (normal request), then just queue it.
1893 	 */
1894 	if (unlikely(link->head)) {
1895 		trace_io_uring_link(req, link->last);
1896 		io_req_sqe_copy(req, IO_URING_F_INLINE);
1897 		link->last->link = req;
1898 		link->last = req;
1899 
1900 		if (req->flags & IO_REQ_LINK_FLAGS)
1901 			return 0;
1902 		/* last request of the link, flush it */
1903 		req = link->head;
1904 		link->head = NULL;
1905 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
1906 			goto fallback;
1907 
1908 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
1909 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
1910 		if (req->flags & IO_REQ_LINK_FLAGS) {
1911 			link->head = req;
1912 			link->last = req;
1913 		} else {
1914 fallback:
1915 			io_queue_sqe_fallback(req);
1916 		}
1917 		return 0;
1918 	}
1919 
1920 	io_queue_sqe(req, IO_URING_F_INLINE);
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Batched submission is done, ensure local IO is flushed out.
1926  */
1927 static void io_submit_state_end(struct io_ring_ctx *ctx)
1928 {
1929 	struct io_submit_state *state = &ctx->submit_state;
1930 
1931 	if (unlikely(state->link.head))
1932 		io_queue_sqe_fallback(state->link.head);
1933 	/* flush only after queuing links as they can generate completions */
1934 	io_submit_flush_completions(ctx);
1935 	if (state->plug_started)
1936 		blk_finish_plug(&state->plug);
1937 }
1938 
1939 /*
1940  * Start submission side cache.
1941  */
1942 static void io_submit_state_start(struct io_submit_state *state,
1943 				  unsigned int max_ios)
1944 {
1945 	state->plug_started = false;
1946 	state->need_plug = max_ios > 2;
1947 	state->submit_nr = max_ios;
1948 	/* set only head, no need to init link_last in advance */
1949 	state->link.head = NULL;
1950 }
1951 
1952 static void io_commit_sqring(struct io_ring_ctx *ctx)
1953 {
1954 	struct io_rings *rings = ctx->rings;
1955 
1956 	if (ctx->flags & IORING_SETUP_SQ_REWIND) {
1957 		ctx->cached_sq_head = 0;
1958 	} else {
1959 		/*
1960 		 * Ensure any loads from the SQEs are done at this point,
1961 		 * since once we write the new head, the application could
1962 		 * write new data to them.
1963 		 */
1964 		smp_store_release(&rings->sq.head, ctx->cached_sq_head);
1965 	}
1966 }
1967 
1968 /*
1969  * Fetch an sqe, if one is available. Note this returns a pointer to memory
1970  * that is mapped by userspace. This means that care needs to be taken to
1971  * ensure that reads are stable, as we cannot rely on userspace always
1972  * being a good citizen. If members of the sqe are validated and then later
1973  * used, it's important that those reads are done through READ_ONCE() to
1974  * prevent a re-load down the line.
1975  */
1976 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
1977 {
1978 	unsigned mask = ctx->sq_entries - 1;
1979 	unsigned head = ctx->cached_sq_head++ & mask;
1980 
1981 	if (static_branch_unlikely(&io_key_has_sqarray) &&
1982 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
1983 		head = READ_ONCE(ctx->sq_array[head]);
1984 		if (unlikely(head >= ctx->sq_entries)) {
1985 			WRITE_ONCE(ctx->rings->sq_dropped,
1986 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
1987 			return false;
1988 		}
1989 		head = array_index_nospec(head, ctx->sq_entries);
1990 	}
1991 
1992 	/*
1993 	 * The cached sq head (or cq tail) serves two purposes:
1994 	 *
1995 	 * 1) allows us to batch the cost of updating the user visible
1996 	 *    head updates.
1997 	 * 2) allows the kernel side to track the head on its own, even
1998 	 *    though the application is the one updating it.
1999 	 */
2000 
2001 	/* double index for 128-byte SQEs, twice as long */
2002 	if (ctx->flags & IORING_SETUP_SQE128)
2003 		head <<= 1;
2004 	*sqe = &ctx->sq_sqes[head];
2005 	return true;
2006 }
2007 
2008 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2009 	__must_hold(&ctx->uring_lock)
2010 {
2011 	unsigned int entries;
2012 	unsigned int left;
2013 	int ret;
2014 
2015 	if (ctx->flags & IORING_SETUP_SQ_REWIND)
2016 		entries = ctx->sq_entries;
2017 	else
2018 		entries = io_sqring_entries(ctx);
2019 
2020 	entries = min(nr, entries);
2021 	if (unlikely(!entries))
2022 		return 0;
2023 
2024 	ret = left = entries;
2025 	io_get_task_refs(left);
2026 	io_submit_state_start(&ctx->submit_state, left);
2027 
2028 	do {
2029 		const struct io_uring_sqe *sqe;
2030 		struct io_kiocb *req;
2031 
2032 		if (unlikely(!io_alloc_req(ctx, &req)))
2033 			break;
2034 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2035 			io_req_add_to_cache(req, ctx);
2036 			break;
2037 		}
2038 
2039 		/*
2040 		 * Continue submitting even for sqe failure if the
2041 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2042 		 */
2043 		if (unlikely(io_submit_sqe(ctx, req, sqe, &left)) &&
2044 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2045 			left--;
2046 			break;
2047 		}
2048 	} while (--left);
2049 
2050 	if (unlikely(left)) {
2051 		ret -= left;
2052 		/* try again if it submitted nothing and can't allocate a req */
2053 		if (!ret && io_req_cache_empty(ctx))
2054 			ret = -EAGAIN;
2055 		current->io_uring->cached_refs += left;
2056 	}
2057 
2058 	io_submit_state_end(ctx);
2059 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2060 	io_commit_sqring(ctx);
2061 	return ret;
2062 }
2063 
2064 static void io_rings_free(struct io_ring_ctx *ctx)
2065 {
2066 	io_free_region(ctx->user, &ctx->sq_region);
2067 	io_free_region(ctx->user, &ctx->ring_region);
2068 	ctx->rings = NULL;
2069 	ctx->sq_sqes = NULL;
2070 }
2071 
2072 static int rings_size(unsigned int flags, unsigned int sq_entries,
2073 		      unsigned int cq_entries, struct io_rings_layout *rl)
2074 {
2075 	struct io_rings *rings;
2076 	size_t sqe_size;
2077 	size_t off;
2078 
2079 	if (flags & IORING_SETUP_CQE_MIXED) {
2080 		if (cq_entries < 2)
2081 			return -EOVERFLOW;
2082 	}
2083 	if (flags & IORING_SETUP_SQE_MIXED) {
2084 		if (sq_entries < 2)
2085 			return -EOVERFLOW;
2086 	}
2087 
2088 	rl->sq_array_offset = SIZE_MAX;
2089 
2090 	sqe_size = sizeof(struct io_uring_sqe);
2091 	if (flags & IORING_SETUP_SQE128)
2092 		sqe_size *= 2;
2093 
2094 	rl->sq_size = array_size(sqe_size, sq_entries);
2095 	if (rl->sq_size == SIZE_MAX)
2096 		return -EOVERFLOW;
2097 
2098 	off = struct_size(rings, cqes, cq_entries);
2099 	if (flags & IORING_SETUP_CQE32)
2100 		off = size_mul(off, 2);
2101 	if (off == SIZE_MAX)
2102 		return -EOVERFLOW;
2103 
2104 #ifdef CONFIG_SMP
2105 	off = ALIGN(off, SMP_CACHE_BYTES);
2106 	if (off == 0)
2107 		return -EOVERFLOW;
2108 #endif
2109 
2110 	if (!(flags & IORING_SETUP_NO_SQARRAY)) {
2111 		size_t sq_array_size;
2112 
2113 		rl->sq_array_offset = off;
2114 
2115 		sq_array_size = array_size(sizeof(u32), sq_entries);
2116 		off = size_add(off, sq_array_size);
2117 		if (off == SIZE_MAX)
2118 			return -EOVERFLOW;
2119 	}
2120 
2121 	rl->rings_size = off;
2122 	return 0;
2123 }
2124 
2125 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2126 {
2127 	struct io_kiocb *req;
2128 	int nr = 0;
2129 
2130 	while (!io_req_cache_empty(ctx)) {
2131 		req = io_extract_req(ctx);
2132 		io_poison_req(req);
2133 		kmem_cache_free(req_cachep, req);
2134 		nr++;
2135 	}
2136 	if (nr) {
2137 		ctx->nr_req_allocated -= nr;
2138 		percpu_ref_put_many(&ctx->refs, nr);
2139 	}
2140 }
2141 
2142 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2143 {
2144 	guard(mutex)(&ctx->uring_lock);
2145 	__io_req_caches_free(ctx);
2146 }
2147 
2148 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2149 {
2150 	io_sq_thread_finish(ctx);
2151 
2152 	mutex_lock(&ctx->uring_lock);
2153 	io_sqe_buffers_unregister(ctx);
2154 	io_sqe_files_unregister(ctx);
2155 	io_unregister_zcrx_ifqs(ctx);
2156 	io_cqring_overflow_kill(ctx);
2157 	io_eventfd_unregister(ctx);
2158 	io_free_alloc_caches(ctx);
2159 	io_destroy_buffers(ctx);
2160 	io_free_region(ctx->user, &ctx->param_region);
2161 	mutex_unlock(&ctx->uring_lock);
2162 	if (ctx->sq_creds)
2163 		put_cred(ctx->sq_creds);
2164 	if (ctx->submitter_task)
2165 		put_task_struct(ctx->submitter_task);
2166 
2167 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2168 
2169 	if (ctx->mm_account) {
2170 		mmdrop(ctx->mm_account);
2171 		ctx->mm_account = NULL;
2172 	}
2173 	io_rings_free(ctx);
2174 
2175 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2176 		static_branch_dec(&io_key_has_sqarray);
2177 
2178 	percpu_ref_exit(&ctx->refs);
2179 	free_uid(ctx->user);
2180 	io_req_caches_free(ctx);
2181 
2182 	if (ctx->restrictions.bpf_filters) {
2183 		WARN_ON_ONCE(ctx->bpf_filters !=
2184 			     ctx->restrictions.bpf_filters->filters);
2185 	} else {
2186 		WARN_ON_ONCE(ctx->bpf_filters);
2187 	}
2188 	io_put_bpf_filters(&ctx->restrictions);
2189 
2190 	WARN_ON_ONCE(ctx->nr_req_allocated);
2191 
2192 	if (ctx->hash_map)
2193 		io_wq_put_hash(ctx->hash_map);
2194 	io_napi_free(ctx);
2195 	kvfree(ctx->cancel_table.hbs);
2196 	xa_destroy(&ctx->io_bl_xa);
2197 	kfree(ctx);
2198 }
2199 
2200 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2201 {
2202 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2203 					       poll_wq_task_work);
2204 
2205 	mutex_lock(&ctx->uring_lock);
2206 	ctx->poll_activated = true;
2207 	mutex_unlock(&ctx->uring_lock);
2208 
2209 	/*
2210 	 * Wake ups for some events between start of polling and activation
2211 	 * might've been lost due to loose synchronisation.
2212 	 */
2213 	wake_up_all(&ctx->poll_wq);
2214 	percpu_ref_put(&ctx->refs);
2215 }
2216 
2217 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2218 {
2219 	spin_lock(&ctx->completion_lock);
2220 	/* already activated or in progress */
2221 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2222 		goto out;
2223 	if (WARN_ON_ONCE(!ctx->task_complete))
2224 		goto out;
2225 	if (!ctx->submitter_task)
2226 		goto out;
2227 	/*
2228 	 * with ->submitter_task only the submitter task completes requests, we
2229 	 * only need to sync with it, which is done by injecting a tw
2230 	 */
2231 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2232 	percpu_ref_get(&ctx->refs);
2233 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2234 		percpu_ref_put(&ctx->refs);
2235 out:
2236 	spin_unlock(&ctx->completion_lock);
2237 }
2238 
2239 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2240 {
2241 	struct io_ring_ctx *ctx = file->private_data;
2242 	__poll_t mask = 0;
2243 
2244 	if (unlikely(!ctx->poll_activated))
2245 		io_activate_pollwq(ctx);
2246 	/*
2247 	 * provides mb() which pairs with barrier from wq_has_sleeper
2248 	 * call in io_commit_cqring
2249 	 */
2250 	poll_wait(file, &ctx->poll_wq, wait);
2251 
2252 	if (!io_sqring_full(ctx))
2253 		mask |= EPOLLOUT | EPOLLWRNORM;
2254 
2255 	/*
2256 	 * Don't flush cqring overflow list here, just do a simple check.
2257 	 * Otherwise there could possible be ABBA deadlock:
2258 	 *      CPU0                    CPU1
2259 	 *      ----                    ----
2260 	 * lock(&ctx->uring_lock);
2261 	 *                              lock(&ep->mtx);
2262 	 *                              lock(&ctx->uring_lock);
2263 	 * lock(&ep->mtx);
2264 	 *
2265 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2266 	 * pushes them to do the flush.
2267 	 */
2268 
2269 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2270 		mask |= EPOLLIN | EPOLLRDNORM;
2271 
2272 	return mask;
2273 }
2274 
2275 struct io_tctx_exit {
2276 	struct callback_head		task_work;
2277 	struct completion		completion;
2278 	struct io_ring_ctx		*ctx;
2279 };
2280 
2281 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2282 {
2283 	struct io_uring_task *tctx = current->io_uring;
2284 	struct io_tctx_exit *work;
2285 
2286 	work = container_of(cb, struct io_tctx_exit, task_work);
2287 	/*
2288 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2289 	 * node. It'll be removed by the end of cancellation, just ignore it.
2290 	 * tctx can be NULL if the queueing of this task_work raced with
2291 	 * work cancelation off the exec path.
2292 	 */
2293 	if (tctx && !atomic_read(&tctx->in_cancel))
2294 		io_uring_del_tctx_node((unsigned long)work->ctx);
2295 	complete(&work->completion);
2296 }
2297 
2298 static __cold void io_ring_exit_work(struct work_struct *work)
2299 {
2300 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2301 	unsigned long timeout = jiffies + IO_URING_EXIT_WAIT_MAX;
2302 	unsigned long interval = HZ / 20;
2303 	struct io_tctx_exit exit;
2304 	struct io_tctx_node *node;
2305 	int ret;
2306 
2307 	/*
2308 	 * If we're doing polled IO and end up having requests being
2309 	 * submitted async (out-of-line), then completions can come in while
2310 	 * we're waiting for refs to drop. We need to reap these manually,
2311 	 * as nobody else will be looking for them.
2312 	 */
2313 	do {
2314 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2315 			mutex_lock(&ctx->uring_lock);
2316 			io_cqring_overflow_kill(ctx);
2317 			mutex_unlock(&ctx->uring_lock);
2318 		}
2319 
2320 		/* The SQPOLL thread never reaches this path */
2321 		do {
2322 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2323 				io_move_task_work_from_local(ctx);
2324 			cond_resched();
2325 		} while (io_uring_try_cancel_requests(ctx, NULL, true, false));
2326 
2327 		if (ctx->sq_data) {
2328 			struct io_sq_data *sqd = ctx->sq_data;
2329 			struct task_struct *tsk;
2330 
2331 			io_sq_thread_park(sqd);
2332 			tsk = sqpoll_task_locked(sqd);
2333 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2334 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2335 						io_cancel_ctx_cb, ctx, true);
2336 			io_sq_thread_unpark(sqd);
2337 		}
2338 
2339 		io_req_caches_free(ctx);
2340 
2341 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2342 			/* there is little hope left, don't run it too often */
2343 			interval = HZ * 60;
2344 		}
2345 		/*
2346 		 * This is really an uninterruptible wait, as it has to be
2347 		 * complete. But it's also run from a kworker, which doesn't
2348 		 * take signals, so it's fine to make it interruptible. This
2349 		 * avoids scenarios where we knowingly can wait much longer
2350 		 * on completions, for example if someone does a SIGSTOP on
2351 		 * a task that needs to finish task_work to make this loop
2352 		 * complete. That's a synthetic situation that should not
2353 		 * cause a stuck task backtrace, and hence a potential panic
2354 		 * on stuck tasks if that is enabled.
2355 		 */
2356 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2357 
2358 	init_completion(&exit.completion);
2359 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2360 	exit.ctx = ctx;
2361 
2362 	mutex_lock(&ctx->uring_lock);
2363 	mutex_lock(&ctx->tctx_lock);
2364 	while (!list_empty(&ctx->tctx_list)) {
2365 		WARN_ON_ONCE(time_after(jiffies, timeout));
2366 
2367 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2368 					ctx_node);
2369 		/* don't spin on a single task if cancellation failed */
2370 		list_rotate_left(&ctx->tctx_list);
2371 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2372 		if (WARN_ON_ONCE(ret))
2373 			continue;
2374 
2375 		mutex_unlock(&ctx->tctx_lock);
2376 		mutex_unlock(&ctx->uring_lock);
2377 		/*
2378 		 * See comment above for
2379 		 * wait_for_completion_interruptible_timeout() on why this
2380 		 * wait is marked as interruptible.
2381 		 */
2382 		wait_for_completion_interruptible(&exit.completion);
2383 		mutex_lock(&ctx->uring_lock);
2384 		mutex_lock(&ctx->tctx_lock);
2385 	}
2386 	mutex_unlock(&ctx->tctx_lock);
2387 	mutex_unlock(&ctx->uring_lock);
2388 	spin_lock(&ctx->completion_lock);
2389 	spin_unlock(&ctx->completion_lock);
2390 
2391 	/* pairs with RCU read section in io_req_local_work_add() */
2392 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2393 		synchronize_rcu();
2394 
2395 	io_ring_ctx_free(ctx);
2396 }
2397 
2398 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2399 {
2400 	unsigned long index;
2401 	struct creds *creds;
2402 
2403 	mutex_lock(&ctx->uring_lock);
2404 	percpu_ref_kill(&ctx->refs);
2405 	xa_for_each(&ctx->personalities, index, creds)
2406 		io_unregister_personality(ctx, index);
2407 	mutex_unlock(&ctx->uring_lock);
2408 
2409 	flush_delayed_work(&ctx->fallback_work);
2410 
2411 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2412 	/*
2413 	 * Use system_dfl_wq to avoid spawning tons of event kworkers
2414 	 * if we're exiting a ton of rings at the same time. It just adds
2415 	 * noise and overhead, there's no discernable change in runtime
2416 	 * over using system_percpu_wq.
2417 	 */
2418 	queue_work(iou_wq, &ctx->exit_work);
2419 }
2420 
2421 static int io_uring_release(struct inode *inode, struct file *file)
2422 {
2423 	struct io_ring_ctx *ctx = file->private_data;
2424 
2425 	file->private_data = NULL;
2426 	io_ring_ctx_wait_and_kill(ctx);
2427 	return 0;
2428 }
2429 
2430 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
2431 			const struct io_uring_getevents_arg __user *uarg)
2432 {
2433 	unsigned long size = sizeof(struct io_uring_reg_wait);
2434 	unsigned long offset = (uintptr_t)uarg;
2435 	unsigned long end;
2436 
2437 	if (unlikely(offset % sizeof(long)))
2438 		return ERR_PTR(-EFAULT);
2439 
2440 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
2441 	if (unlikely(check_add_overflow(offset, size, &end) ||
2442 		     end > ctx->cq_wait_size))
2443 		return ERR_PTR(-EFAULT);
2444 
2445 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
2446 	return ctx->cq_wait_arg + offset;
2447 }
2448 
2449 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
2450 			       const void __user *argp, size_t argsz)
2451 {
2452 	struct io_uring_getevents_arg arg;
2453 
2454 	if (!(flags & IORING_ENTER_EXT_ARG))
2455 		return 0;
2456 	if (flags & IORING_ENTER_EXT_ARG_REG)
2457 		return -EINVAL;
2458 	if (argsz != sizeof(arg))
2459 		return -EINVAL;
2460 	if (copy_from_user(&arg, argp, sizeof(arg)))
2461 		return -EFAULT;
2462 	return 0;
2463 }
2464 
2465 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
2466 			  const void __user *argp, struct ext_arg *ext_arg)
2467 {
2468 	const struct io_uring_getevents_arg __user *uarg = argp;
2469 	struct io_uring_getevents_arg arg;
2470 
2471 	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
2472 
2473 	/*
2474 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
2475 	 * is just a pointer to the sigset_t.
2476 	 */
2477 	if (!(flags & IORING_ENTER_EXT_ARG)) {
2478 		ext_arg->sig = (const sigset_t __user *) argp;
2479 		return 0;
2480 	}
2481 
2482 	if (flags & IORING_ENTER_EXT_ARG_REG) {
2483 		struct io_uring_reg_wait *w;
2484 
2485 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
2486 			return -EINVAL;
2487 		w = io_get_ext_arg_reg(ctx, argp);
2488 		if (IS_ERR(w))
2489 			return PTR_ERR(w);
2490 
2491 		if (w->flags & ~IORING_REG_WAIT_TS)
2492 			return -EINVAL;
2493 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
2494 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
2495 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
2496 		if (w->flags & IORING_REG_WAIT_TS) {
2497 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
2498 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
2499 			ext_arg->ts_set = true;
2500 		}
2501 		return 0;
2502 	}
2503 
2504 	/*
2505 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
2506 	 * timespec and sigset_t pointers if good.
2507 	 */
2508 	if (ext_arg->argsz != sizeof(arg))
2509 		return -EINVAL;
2510 #ifdef CONFIG_64BIT
2511 	if (!user_access_begin(uarg, sizeof(*uarg)))
2512 		return -EFAULT;
2513 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
2514 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
2515 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
2516 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
2517 	user_access_end();
2518 #else
2519 	if (copy_from_user(&arg, uarg, sizeof(arg)))
2520 		return -EFAULT;
2521 #endif
2522 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
2523 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
2524 	ext_arg->argsz = arg.sigmask_sz;
2525 	if (arg.ts) {
2526 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
2527 			return -EFAULT;
2528 		ext_arg->ts_set = true;
2529 	}
2530 	return 0;
2531 #ifdef CONFIG_64BIT
2532 uaccess_end:
2533 	user_access_end();
2534 	return -EFAULT;
2535 #endif
2536 }
2537 
2538 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2539 		u32, min_complete, u32, flags, const void __user *, argp,
2540 		size_t, argsz)
2541 {
2542 	struct io_ring_ctx *ctx;
2543 	struct file *file;
2544 	long ret;
2545 
2546 	if (unlikely(flags & ~IORING_ENTER_FLAGS))
2547 		return -EINVAL;
2548 
2549 	/*
2550 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
2551 	 * need only dereference our task private array to find it.
2552 	 */
2553 	if (flags & IORING_ENTER_REGISTERED_RING) {
2554 		struct io_uring_task *tctx = current->io_uring;
2555 
2556 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
2557 			return -EINVAL;
2558 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
2559 		file = tctx->registered_rings[fd];
2560 		if (unlikely(!file))
2561 			return -EBADF;
2562 	} else {
2563 		file = fget(fd);
2564 		if (unlikely(!file))
2565 			return -EBADF;
2566 		ret = -EOPNOTSUPP;
2567 		if (unlikely(!io_is_uring_fops(file)))
2568 			goto out;
2569 	}
2570 
2571 	ctx = file->private_data;
2572 	ret = -EBADFD;
2573 	/*
2574 	 * Keep IORING_SETUP_R_DISABLED check before submitter_task load
2575 	 * in io_uring_add_tctx_node() -> __io_uring_add_tctx_node_from_submit()
2576 	 */
2577 	if (unlikely(smp_load_acquire(&ctx->flags) & IORING_SETUP_R_DISABLED))
2578 		goto out;
2579 
2580 	/*
2581 	 * For SQ polling, the thread will do all submissions and completions.
2582 	 * Just return the requested submit count, and wake the thread if
2583 	 * we were asked to.
2584 	 */
2585 	ret = 0;
2586 	if (ctx->flags & IORING_SETUP_SQPOLL) {
2587 		if (unlikely(ctx->sq_data->thread == NULL)) {
2588 			ret = -EOWNERDEAD;
2589 			goto out;
2590 		}
2591 		if (flags & IORING_ENTER_SQ_WAKEUP)
2592 			wake_up(&ctx->sq_data->wait);
2593 		if (flags & IORING_ENTER_SQ_WAIT)
2594 			io_sqpoll_wait_sq(ctx);
2595 
2596 		ret = to_submit;
2597 	} else if (to_submit) {
2598 		ret = io_uring_add_tctx_node(ctx);
2599 		if (unlikely(ret))
2600 			goto out;
2601 
2602 		mutex_lock(&ctx->uring_lock);
2603 		ret = io_submit_sqes(ctx, to_submit);
2604 		if (ret != to_submit) {
2605 			mutex_unlock(&ctx->uring_lock);
2606 			goto out;
2607 		}
2608 		if (flags & IORING_ENTER_GETEVENTS) {
2609 			if (ctx->syscall_iopoll)
2610 				goto iopoll_locked;
2611 			/*
2612 			 * Ignore errors, we'll soon call io_cqring_wait() and
2613 			 * it should handle ownership problems if any.
2614 			 */
2615 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2616 				(void)io_run_local_work_locked(ctx, min_complete);
2617 		}
2618 		mutex_unlock(&ctx->uring_lock);
2619 	}
2620 
2621 	if (flags & IORING_ENTER_GETEVENTS) {
2622 		int ret2;
2623 
2624 		if (ctx->syscall_iopoll) {
2625 			/*
2626 			 * We disallow the app entering submit/complete with
2627 			 * polling, but we still need to lock the ring to
2628 			 * prevent racing with polled issue that got punted to
2629 			 * a workqueue.
2630 			 */
2631 			mutex_lock(&ctx->uring_lock);
2632 iopoll_locked:
2633 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
2634 			if (likely(!ret2))
2635 				ret2 = io_iopoll_check(ctx, min_complete);
2636 			mutex_unlock(&ctx->uring_lock);
2637 		} else {
2638 			struct ext_arg ext_arg = { .argsz = argsz };
2639 
2640 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
2641 			if (likely(!ret2))
2642 				ret2 = io_cqring_wait(ctx, min_complete, flags,
2643 						      &ext_arg);
2644 		}
2645 
2646 		if (!ret) {
2647 			ret = ret2;
2648 
2649 			/*
2650 			 * EBADR indicates that one or more CQE were dropped.
2651 			 * Once the user has been informed we can clear the bit
2652 			 * as they are obviously ok with those drops.
2653 			 */
2654 			if (unlikely(ret2 == -EBADR))
2655 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
2656 					  &ctx->check_cq);
2657 		}
2658 	}
2659 out:
2660 	if (!(flags & IORING_ENTER_REGISTERED_RING))
2661 		fput(file);
2662 	return ret;
2663 }
2664 
2665 static const struct file_operations io_uring_fops = {
2666 	.release	= io_uring_release,
2667 	.mmap		= io_uring_mmap,
2668 	.get_unmapped_area = io_uring_get_unmapped_area,
2669 #ifndef CONFIG_MMU
2670 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
2671 #endif
2672 	.poll		= io_uring_poll,
2673 #ifdef CONFIG_PROC_FS
2674 	.show_fdinfo	= io_uring_show_fdinfo,
2675 #endif
2676 };
2677 
2678 bool io_is_uring_fops(struct file *file)
2679 {
2680 	return file->f_op == &io_uring_fops;
2681 }
2682 
2683 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2684 					 struct io_ctx_config *config)
2685 {
2686 	struct io_uring_params *p = &config->p;
2687 	struct io_rings_layout *rl = &config->layout;
2688 	struct io_uring_region_desc rd;
2689 	struct io_rings *rings;
2690 	int ret;
2691 
2692 	/* make sure these are sane, as we already accounted them */
2693 	ctx->sq_entries = p->sq_entries;
2694 	ctx->cq_entries = p->cq_entries;
2695 
2696 	memset(&rd, 0, sizeof(rd));
2697 	rd.size = PAGE_ALIGN(rl->rings_size);
2698 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
2699 		rd.user_addr = p->cq_off.user_addr;
2700 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
2701 	}
2702 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
2703 	if (ret)
2704 		return ret;
2705 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
2706 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2707 		ctx->sq_array = (u32 *)((char *)rings + rl->sq_array_offset);
2708 
2709 	memset(&rd, 0, sizeof(rd));
2710 	rd.size = PAGE_ALIGN(rl->sq_size);
2711 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
2712 		rd.user_addr = p->sq_off.user_addr;
2713 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
2714 	}
2715 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
2716 	if (ret) {
2717 		io_rings_free(ctx);
2718 		return ret;
2719 	}
2720 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
2721 
2722 	memset(rings, 0, sizeof(*rings));
2723 	WRITE_ONCE(rings->sq_ring_mask, ctx->sq_entries - 1);
2724 	WRITE_ONCE(rings->cq_ring_mask, ctx->cq_entries - 1);
2725 	WRITE_ONCE(rings->sq_ring_entries, ctx->sq_entries);
2726 	WRITE_ONCE(rings->cq_ring_entries, ctx->cq_entries);
2727 	return 0;
2728 }
2729 
2730 static int io_uring_install_fd(struct file *file)
2731 {
2732 	int fd;
2733 
2734 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2735 	if (fd < 0)
2736 		return fd;
2737 	fd_install(fd, file);
2738 	return fd;
2739 }
2740 
2741 /*
2742  * Allocate an anonymous fd, this is what constitutes the application
2743  * visible backing of an io_uring instance. The application mmaps this
2744  * fd to gain access to the SQ/CQ ring details.
2745  */
2746 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
2747 {
2748 	/* Create a new inode so that the LSM can block the creation.  */
2749 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
2750 					 O_RDWR | O_CLOEXEC, NULL);
2751 }
2752 
2753 static int io_uring_sanitise_params(struct io_uring_params *p)
2754 {
2755 	unsigned flags = p->flags;
2756 
2757 	if (flags & ~IORING_SETUP_FLAGS)
2758 		return -EINVAL;
2759 
2760 	if (flags & IORING_SETUP_SQ_REWIND) {
2761 		if ((flags & IORING_SETUP_SQPOLL) ||
2762 		    !(flags & IORING_SETUP_NO_SQARRAY))
2763 			return -EINVAL;
2764 	}
2765 
2766 	/* There is no way to mmap rings without a real fd */
2767 	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
2768 	    !(flags & IORING_SETUP_NO_MMAP))
2769 		return -EINVAL;
2770 
2771 	if (flags & IORING_SETUP_SQPOLL) {
2772 		/* IPI related flags don't make sense with SQPOLL */
2773 		if (flags & (IORING_SETUP_COOP_TASKRUN |
2774 			     IORING_SETUP_TASKRUN_FLAG |
2775 			     IORING_SETUP_DEFER_TASKRUN))
2776 			return -EINVAL;
2777 	}
2778 
2779 	if (flags & IORING_SETUP_TASKRUN_FLAG) {
2780 		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
2781 			       IORING_SETUP_DEFER_TASKRUN)))
2782 			return -EINVAL;
2783 	}
2784 
2785 	/* HYBRID_IOPOLL only valid with IOPOLL */
2786 	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
2787 		return -EINVAL;
2788 
2789 	/*
2790 	 * For DEFER_TASKRUN we require the completion task to be the same as
2791 	 * the submission task. This implies that there is only one submitter.
2792 	 */
2793 	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
2794 	    !(flags & IORING_SETUP_SINGLE_ISSUER))
2795 		return -EINVAL;
2796 
2797 	/*
2798 	 * Nonsensical to ask for CQE32 and mixed CQE support, it's not
2799 	 * supported to post 16b CQEs on a ring setup with CQE32.
2800 	 */
2801 	if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
2802 	    (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
2803 		return -EINVAL;
2804 	/*
2805 	 * Nonsensical to ask for SQE128 and mixed SQE support, it's not
2806 	 * supported to post 64b SQEs on a ring setup with SQE128.
2807 	 */
2808 	if ((flags & (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) ==
2809 	    (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED))
2810 		return -EINVAL;
2811 
2812 	return 0;
2813 }
2814 
2815 static int io_uring_fill_params(struct io_uring_params *p)
2816 {
2817 	unsigned entries = p->sq_entries;
2818 
2819 	if (!entries)
2820 		return -EINVAL;
2821 	if (entries > IORING_MAX_ENTRIES) {
2822 		if (!(p->flags & IORING_SETUP_CLAMP))
2823 			return -EINVAL;
2824 		entries = IORING_MAX_ENTRIES;
2825 	}
2826 
2827 	/*
2828 	 * Use twice as many entries for the CQ ring. It's possible for the
2829 	 * application to drive a higher depth than the size of the SQ ring,
2830 	 * since the sqes are only used at submission time. This allows for
2831 	 * some flexibility in overcommitting a bit. If the application has
2832 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
2833 	 * of CQ ring entries manually.
2834 	 */
2835 	p->sq_entries = roundup_pow_of_two(entries);
2836 	if (p->flags & IORING_SETUP_CQSIZE) {
2837 		/*
2838 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
2839 		 * to a power-of-two, if it isn't already. We do NOT impose
2840 		 * any cq vs sq ring sizing.
2841 		 */
2842 		if (!p->cq_entries)
2843 			return -EINVAL;
2844 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
2845 			if (!(p->flags & IORING_SETUP_CLAMP))
2846 				return -EINVAL;
2847 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
2848 		}
2849 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
2850 		if (p->cq_entries < p->sq_entries)
2851 			return -EINVAL;
2852 	} else {
2853 		p->cq_entries = 2 * p->sq_entries;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 int io_prepare_config(struct io_ctx_config *config)
2860 {
2861 	struct io_uring_params *p = &config->p;
2862 	int ret;
2863 
2864 	ret = io_uring_sanitise_params(p);
2865 	if (ret)
2866 		return ret;
2867 
2868 	ret = io_uring_fill_params(p);
2869 	if (ret)
2870 		return ret;
2871 
2872 	ret = rings_size(p->flags, p->sq_entries, p->cq_entries,
2873 			 &config->layout);
2874 	if (ret)
2875 		return ret;
2876 
2877 	p->sq_off.head = offsetof(struct io_rings, sq.head);
2878 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
2879 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
2880 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
2881 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
2882 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
2883 	p->sq_off.resv1 = 0;
2884 	if (!(p->flags & IORING_SETUP_NO_MMAP))
2885 		p->sq_off.user_addr = 0;
2886 
2887 	p->cq_off.head = offsetof(struct io_rings, cq.head);
2888 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
2889 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
2890 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
2891 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
2892 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
2893 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
2894 	p->cq_off.resv1 = 0;
2895 	if (!(p->flags & IORING_SETUP_NO_MMAP))
2896 		p->cq_off.user_addr = 0;
2897 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
2898 		p->sq_off.array = config->layout.sq_array_offset;
2899 
2900 	return 0;
2901 }
2902 
2903 void io_restriction_clone(struct io_restriction *dst, struct io_restriction *src)
2904 {
2905 	memcpy(&dst->register_op, &src->register_op, sizeof(dst->register_op));
2906 	memcpy(&dst->sqe_op, &src->sqe_op, sizeof(dst->sqe_op));
2907 	dst->sqe_flags_allowed = src->sqe_flags_allowed;
2908 	dst->sqe_flags_required = src->sqe_flags_required;
2909 	dst->op_registered = src->op_registered;
2910 	dst->reg_registered = src->reg_registered;
2911 
2912 	io_bpf_filter_clone(dst, src);
2913 }
2914 
2915 static void io_ctx_restriction_clone(struct io_ring_ctx *ctx,
2916 				     struct io_restriction *src)
2917 {
2918 	struct io_restriction *dst = &ctx->restrictions;
2919 
2920 	io_restriction_clone(dst, src);
2921 	if (dst->bpf_filters)
2922 		WRITE_ONCE(ctx->bpf_filters, dst->bpf_filters->filters);
2923 	if (dst->op_registered)
2924 		ctx->op_restricted = 1;
2925 	if (dst->reg_registered)
2926 		ctx->reg_restricted = 1;
2927 }
2928 
2929 static __cold int io_uring_create(struct io_ctx_config *config)
2930 {
2931 	struct io_uring_params *p = &config->p;
2932 	struct io_ring_ctx *ctx;
2933 	struct io_uring_task *tctx;
2934 	struct file *file;
2935 	int ret;
2936 
2937 	ret = io_prepare_config(config);
2938 	if (ret)
2939 		return ret;
2940 
2941 	ctx = io_ring_ctx_alloc(p);
2942 	if (!ctx)
2943 		return -ENOMEM;
2944 
2945 	ctx->clockid = CLOCK_MONOTONIC;
2946 	ctx->clock_offset = 0;
2947 
2948 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2949 		static_branch_inc(&io_key_has_sqarray);
2950 
2951 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2952 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
2953 	    !(ctx->flags & IORING_SETUP_SQPOLL))
2954 		ctx->task_complete = true;
2955 
2956 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
2957 		ctx->lockless_cq = true;
2958 
2959 	/*
2960 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
2961 	 * purposes, see io_activate_pollwq()
2962 	 */
2963 	if (!ctx->task_complete)
2964 		ctx->poll_activated = true;
2965 
2966 	/*
2967 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
2968 	 * space applications don't need to do io completion events
2969 	 * polling again, they can rely on io_sq_thread to do polling
2970 	 * work, which can reduce cpu usage and uring_lock contention.
2971 	 */
2972 	if (ctx->flags & IORING_SETUP_IOPOLL &&
2973 	    !(ctx->flags & IORING_SETUP_SQPOLL))
2974 		ctx->syscall_iopoll = 1;
2975 
2976 	ctx->compat = in_compat_syscall();
2977 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
2978 		ctx->user = get_uid(current_user());
2979 
2980 	/*
2981 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
2982 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
2983 	 */
2984 	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
2985 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
2986 	else
2987 		ctx->notify_method = TWA_SIGNAL;
2988 
2989 	/*
2990 	 * If the current task has restrictions enabled, then copy them to
2991 	 * our newly created ring and mark it as registered.
2992 	 */
2993 	if (current->io_uring_restrict)
2994 		io_ctx_restriction_clone(ctx, current->io_uring_restrict);
2995 
2996 	/*
2997 	 * This is just grabbed for accounting purposes. When a process exits,
2998 	 * the mm is exited and dropped before the files, hence we need to hang
2999 	 * on to this mm purely for the purposes of being able to unaccount
3000 	 * memory (locked/pinned vm). It's not used for anything else.
3001 	 */
3002 	mmgrab(current->mm);
3003 	ctx->mm_account = current->mm;
3004 
3005 	ret = io_allocate_scq_urings(ctx, config);
3006 	if (ret)
3007 		goto err;
3008 
3009 	ret = io_sq_offload_create(ctx, p);
3010 	if (ret)
3011 		goto err;
3012 
3013 	p->features = IORING_FEAT_FLAGS;
3014 
3015 	if (copy_to_user(config->uptr, p, sizeof(*p))) {
3016 		ret = -EFAULT;
3017 		goto err;
3018 	}
3019 
3020 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3021 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3022 		ctx->submitter_task = get_task_struct(current);
3023 
3024 	file = io_uring_get_file(ctx);
3025 	if (IS_ERR(file)) {
3026 		ret = PTR_ERR(file);
3027 		goto err;
3028 	}
3029 
3030 	ret = __io_uring_add_tctx_node(ctx);
3031 	if (ret)
3032 		goto err_fput;
3033 	tctx = current->io_uring;
3034 
3035 	/*
3036 	 * Install ring fd as the very last thing, so we don't risk someone
3037 	 * having closed it before we finish setup
3038 	 */
3039 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3040 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3041 	else
3042 		ret = io_uring_install_fd(file);
3043 	if (ret < 0)
3044 		goto err_fput;
3045 
3046 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3047 	return ret;
3048 err:
3049 	io_ring_ctx_wait_and_kill(ctx);
3050 	return ret;
3051 err_fput:
3052 	fput(file);
3053 	return ret;
3054 }
3055 
3056 /*
3057  * Sets up an aio uring context, and returns the fd. Applications asks for a
3058  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3059  * params structure passed in.
3060  */
3061 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3062 {
3063 	struct io_ctx_config config;
3064 
3065 	memset(&config, 0, sizeof(config));
3066 
3067 	if (copy_from_user(&config.p, params, sizeof(config.p)))
3068 		return -EFAULT;
3069 
3070 	if (!mem_is_zero(&config.p.resv, sizeof(config.p.resv)))
3071 		return -EINVAL;
3072 
3073 	config.p.sq_entries = entries;
3074 	config.uptr = params;
3075 	return io_uring_create(&config);
3076 }
3077 
3078 static inline int io_uring_allowed(void)
3079 {
3080 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3081 	kgid_t io_uring_group;
3082 
3083 	if (disabled == 2)
3084 		return -EPERM;
3085 
3086 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3087 		goto allowed_lsm;
3088 
3089 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3090 	if (!gid_valid(io_uring_group))
3091 		return -EPERM;
3092 
3093 	if (!in_group_p(io_uring_group))
3094 		return -EPERM;
3095 
3096 allowed_lsm:
3097 	return security_uring_allowed();
3098 }
3099 
3100 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3101 		struct io_uring_params __user *, params)
3102 {
3103 	int ret;
3104 
3105 	ret = io_uring_allowed();
3106 	if (ret)
3107 		return ret;
3108 
3109 	return io_uring_setup(entries, params);
3110 }
3111 
3112 static int __init io_uring_init(void)
3113 {
3114 	struct kmem_cache_args kmem_args = {
3115 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3116 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3117 		.freeptr_offset = offsetof(struct io_kiocb, work),
3118 		.use_freeptr_offset = true,
3119 	};
3120 
3121 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3122 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3123 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3124 } while (0)
3125 
3126 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3127 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3128 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3129 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3130 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3131 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3132 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3133 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3134 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3135 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3136 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3137 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3138 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3139 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3140 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3141 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3142 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3143 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3144 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3145 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3146 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3147 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3148 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3149 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3150 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3151 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3152 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3153 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3154 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3155 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3156 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3157 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3158 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3159 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3160 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3161 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3162 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3163 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3164 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3165 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3166 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3167 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3168 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3169 	BUILD_BUG_SQE_ELEM(44, __u8,   write_stream);
3170 	BUILD_BUG_SQE_ELEM(45, __u8,   __pad4[0]);
3171 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3172 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3173 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3174 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3175 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3176 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3177 
3178 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3179 		     sizeof(struct io_uring_rsrc_update));
3180 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3181 		     sizeof(struct io_uring_rsrc_update2));
3182 
3183 	/* ->buf_index is u16 */
3184 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3185 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3186 		     offsetof(struct io_uring_buf_ring, tail));
3187 
3188 	/* should fit into one byte */
3189 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3190 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3191 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3192 
3193 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3194 
3195 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3196 
3197 	/* top 8bits are for internal use */
3198 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3199 
3200 	io_uring_optable_init();
3201 
3202 	/* imu->dir is u8 */
3203 	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3204 
3205 	/*
3206 	 * Allow user copy in the per-command field, which starts after the
3207 	 * file in io_kiocb and until the opcode field. The openat2 handling
3208 	 * requires copying in user memory into the io_kiocb object in that
3209 	 * range, and HARDENED_USERCOPY will complain if we haven't
3210 	 * correctly annotated this range.
3211 	 */
3212 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3213 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3214 				SLAB_TYPESAFE_BY_RCU);
3215 
3216 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3217 	BUG_ON(!iou_wq);
3218 
3219 #ifdef CONFIG_SYSCTL
3220 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3221 #endif
3222 
3223 	return 0;
3224 };
3225 __initcall(io_uring_init);
3226