xref: /linux/io_uring/io_uring.h (revision c3018a2c6adae9b32f7b9259f5b38257ba9a758e)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16 
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20 
21 enum {
22 	IOU_COMPLETE		= 0,
23 
24 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
25 
26 	/*
27 	 * The request has more work to do and should be retried. io_uring will
28 	 * attempt to wait on the file for eligible opcodes, but otherwise
29 	 * it'll be handed to iowq for blocking execution. It works for normal
30 	 * requests as well as for the multi shot mode.
31 	 */
32 	IOU_RETRY		= -EAGAIN,
33 
34 	/*
35 	 * Requeue the task_work to restart operations on this request. The
36 	 * actual value isn't important, should just be not an otherwise
37 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
38 	 */
39 	IOU_REQUEUE		= -3072,
40 };
41 
42 struct io_wait_queue {
43 	struct wait_queue_entry wq;
44 	struct io_ring_ctx *ctx;
45 	unsigned cq_tail;
46 	unsigned cq_min_tail;
47 	unsigned nr_timeouts;
48 	int hit_timeout;
49 	ktime_t min_timeout;
50 	ktime_t timeout;
51 	struct hrtimer t;
52 
53 #ifdef CONFIG_NET_RX_BUSY_POLL
54 	ktime_t napi_busy_poll_dt;
55 	bool napi_prefer_busy_poll;
56 #endif
57 };
58 
io_should_wake(struct io_wait_queue * iowq)59 static inline bool io_should_wake(struct io_wait_queue *iowq)
60 {
61 	struct io_ring_ctx *ctx = iowq->ctx;
62 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
63 
64 	/*
65 	 * Wake up if we have enough events, or if a timeout occurred since we
66 	 * started waiting. For timeouts, we always want to return to userspace,
67 	 * regardless of event count.
68 	 */
69 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
70 }
71 
72 #define IORING_MAX_ENTRIES	32768
73 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
74 
75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
76 			 unsigned int cq_entries, size_t *sq_offset);
77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
79 int io_run_task_work_sig(struct io_ring_ctx *ctx);
80 void io_req_defer_failed(struct io_kiocb *req, s32 res);
81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
84 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe src_cqe[2]);
85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
86 
87 void io_req_track_inflight(struct io_kiocb *req);
88 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
89 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
90 			       unsigned issue_flags);
91 
92 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
93 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags);
94 void io_req_task_queue(struct io_kiocb *req);
95 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
96 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
97 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
98 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
99 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
100 void tctx_task_work(struct callback_head *cb);
101 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
102 
103 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
104 				     int start, int end);
105 void io_req_queue_iowq(struct io_kiocb *req);
106 
107 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
108 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
109 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
110 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
111 
112 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
113 void io_wq_submit_work(struct io_wq_work *work);
114 
115 void io_free_req(struct io_kiocb *req);
116 void io_queue_next(struct io_kiocb *req);
117 void io_task_refs_refill(struct io_uring_task *tctx);
118 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
119 
120 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
121 			bool cancel_all);
122 
123 void io_activate_pollwq(struct io_ring_ctx *ctx);
124 
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)125 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
126 {
127 #if defined(CONFIG_PROVE_LOCKING)
128 	lockdep_assert(in_task());
129 
130 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
131 		lockdep_assert_held(&ctx->uring_lock);
132 
133 	if (ctx->flags & IORING_SETUP_IOPOLL) {
134 		lockdep_assert_held(&ctx->uring_lock);
135 	} else if (!ctx->task_complete) {
136 		lockdep_assert_held(&ctx->completion_lock);
137 	} else if (ctx->submitter_task) {
138 		/*
139 		 * ->submitter_task may be NULL and we can still post a CQE,
140 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
141 		 * Not from an SQE, as those cannot be submitted, but via
142 		 * updating tagged resources.
143 		 */
144 		if (!percpu_ref_is_dying(&ctx->refs))
145 			lockdep_assert(current == ctx->submitter_task);
146 	}
147 #endif
148 }
149 
io_is_compat(struct io_ring_ctx * ctx)150 static inline bool io_is_compat(struct io_ring_ctx *ctx)
151 {
152 	return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
153 }
154 
io_req_task_work_add(struct io_kiocb * req)155 static inline void io_req_task_work_add(struct io_kiocb *req)
156 {
157 	__io_req_task_work_add(req, 0);
158 }
159 
io_submit_flush_completions(struct io_ring_ctx * ctx)160 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
161 {
162 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
163 	    ctx->submit_state.cq_flush)
164 		__io_submit_flush_completions(ctx);
165 }
166 
167 #define io_for_each_link(pos, head) \
168 	for (pos = (head); pos; pos = pos->link)
169 
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)170 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
171 					struct io_uring_cqe **ret,
172 					bool overflow)
173 {
174 	io_lockdep_assert_cq_locked(ctx);
175 
176 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
177 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
178 			return false;
179 	}
180 	*ret = ctx->cqe_cached;
181 	ctx->cached_cq_tail++;
182 	ctx->cqe_cached++;
183 	if (ctx->flags & IORING_SETUP_CQE32)
184 		ctx->cqe_cached++;
185 	return true;
186 }
187 
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)188 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
189 {
190 	return io_get_cqe_overflow(ctx, ret, false);
191 }
192 
io_defer_get_uncommited_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** cqe_ret)193 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
194 					       struct io_uring_cqe **cqe_ret)
195 {
196 	io_lockdep_assert_cq_locked(ctx);
197 
198 	ctx->submit_state.cq_flush = true;
199 	return io_get_cqe(ctx, cqe_ret);
200 }
201 
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)202 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
203 					    struct io_kiocb *req)
204 {
205 	struct io_uring_cqe *cqe;
206 
207 	/*
208 	 * If we can't get a cq entry, userspace overflowed the
209 	 * submission (by quite a lot). Increment the overflow count in
210 	 * the ring.
211 	 */
212 	if (unlikely(!io_get_cqe(ctx, &cqe)))
213 		return false;
214 
215 
216 	memcpy(cqe, &req->cqe, sizeof(*cqe));
217 	if (ctx->flags & IORING_SETUP_CQE32) {
218 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
219 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
220 	}
221 
222 	if (trace_io_uring_complete_enabled())
223 		trace_io_uring_complete(req->ctx, req, cqe);
224 	return true;
225 }
226 
req_set_fail(struct io_kiocb * req)227 static inline void req_set_fail(struct io_kiocb *req)
228 {
229 	req->flags |= REQ_F_FAIL;
230 	if (req->flags & REQ_F_CQE_SKIP) {
231 		req->flags &= ~REQ_F_CQE_SKIP;
232 		req->flags |= REQ_F_SKIP_LINK_CQES;
233 	}
234 }
235 
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)236 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
237 {
238 	req->cqe.res = res;
239 	req->cqe.flags = cflags;
240 }
241 
io_uring_alloc_async_data(struct io_alloc_cache * cache,struct io_kiocb * req)242 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
243 					      struct io_kiocb *req)
244 {
245 	if (cache) {
246 		req->async_data = io_cache_alloc(cache, GFP_KERNEL);
247 	} else {
248 		const struct io_issue_def *def = &io_issue_defs[req->opcode];
249 
250 		WARN_ON_ONCE(!def->async_size);
251 		req->async_data = kmalloc(def->async_size, GFP_KERNEL);
252 	}
253 	if (req->async_data)
254 		req->flags |= REQ_F_ASYNC_DATA;
255 	return req->async_data;
256 }
257 
req_has_async_data(struct io_kiocb * req)258 static inline bool req_has_async_data(struct io_kiocb *req)
259 {
260 	return req->flags & REQ_F_ASYNC_DATA;
261 }
262 
io_put_file(struct io_kiocb * req)263 static inline void io_put_file(struct io_kiocb *req)
264 {
265 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
266 		fput(req->file);
267 }
268 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)269 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
270 					 unsigned issue_flags)
271 {
272 	lockdep_assert_held(&ctx->uring_lock);
273 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
274 		mutex_unlock(&ctx->uring_lock);
275 }
276 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)277 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
278 				       unsigned issue_flags)
279 {
280 	/*
281 	 * "Normal" inline submissions always hold the uring_lock, since we
282 	 * grab it from the system call. Same is true for the SQPOLL offload.
283 	 * The only exception is when we've detached the request and issue it
284 	 * from an async worker thread, grab the lock for that case.
285 	 */
286 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
287 		mutex_lock(&ctx->uring_lock);
288 	lockdep_assert_held(&ctx->uring_lock);
289 }
290 
io_commit_cqring(struct io_ring_ctx * ctx)291 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
292 {
293 	/* order cqe stores with ring update */
294 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
295 }
296 
__io_wq_wake(struct wait_queue_head * wq)297 static inline void __io_wq_wake(struct wait_queue_head *wq)
298 {
299 	/*
300 	 *
301 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
302 	 * set in the mask so that if we recurse back into our own poll
303 	 * waitqueue handlers, we know we have a dependency between eventfd or
304 	 * epoll and should terminate multishot poll at that point.
305 	 */
306 	if (wq_has_sleeper(wq))
307 		__wake_up(wq, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
308 }
309 
io_poll_wq_wake(struct io_ring_ctx * ctx)310 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
311 {
312 	__io_wq_wake(&ctx->poll_wq);
313 }
314 
io_cqring_wake(struct io_ring_ctx * ctx)315 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
316 {
317 	/*
318 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
319 	 * won't necessarily wake up all the tasks, io_should_wake() will make
320 	 * that decision.
321 	 */
322 
323 	__io_wq_wake(&ctx->cq_wait);
324 }
325 
io_sqring_full(struct io_ring_ctx * ctx)326 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
327 {
328 	struct io_rings *r = ctx->rings;
329 
330 	/*
331 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
332 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
333 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
334 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
335 	 * just read the actual sqring head unconditionally.
336 	 */
337 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
338 }
339 
io_sqring_entries(struct io_ring_ctx * ctx)340 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
341 {
342 	struct io_rings *rings = ctx->rings;
343 	unsigned int entries;
344 
345 	/* make sure SQ entry isn't read before tail */
346 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
347 	return min(entries, ctx->sq_entries);
348 }
349 
io_run_task_work(void)350 static inline int io_run_task_work(void)
351 {
352 	bool ret = false;
353 
354 	/*
355 	 * Always check-and-clear the task_work notification signal. With how
356 	 * signaling works for task_work, we can find it set with nothing to
357 	 * run. We need to clear it for that case, like get_signal() does.
358 	 */
359 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
360 		clear_notify_signal();
361 	/*
362 	 * PF_IO_WORKER never returns to userspace, so check here if we have
363 	 * notify work that needs processing.
364 	 */
365 	if (current->flags & PF_IO_WORKER) {
366 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
367 			__set_current_state(TASK_RUNNING);
368 			resume_user_mode_work(NULL);
369 		}
370 		if (current->io_uring) {
371 			unsigned int count = 0;
372 
373 			__set_current_state(TASK_RUNNING);
374 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
375 			if (count)
376 				ret = true;
377 		}
378 	}
379 	if (task_work_pending(current)) {
380 		__set_current_state(TASK_RUNNING);
381 		task_work_run();
382 		ret = true;
383 	}
384 
385 	return ret;
386 }
387 
io_local_work_pending(struct io_ring_ctx * ctx)388 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
389 {
390 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
391 }
392 
io_task_work_pending(struct io_ring_ctx * ctx)393 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
394 {
395 	return task_work_pending(current) || io_local_work_pending(ctx);
396 }
397 
io_tw_lock(struct io_ring_ctx * ctx,io_tw_token_t tw)398 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
399 {
400 	lockdep_assert_held(&ctx->uring_lock);
401 }
402 
403 /*
404  * Don't complete immediately but use deferred completion infrastructure.
405  * Protected by ->uring_lock and can only be used either with
406  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
407  */
io_req_complete_defer(struct io_kiocb * req)408 static inline void io_req_complete_defer(struct io_kiocb *req)
409 	__must_hold(&req->ctx->uring_lock)
410 {
411 	struct io_submit_state *state = &req->ctx->submit_state;
412 
413 	lockdep_assert_held(&req->ctx->uring_lock);
414 
415 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
416 }
417 
io_commit_cqring_flush(struct io_ring_ctx * ctx)418 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
419 {
420 	if (unlikely(ctx->off_timeout_used ||
421 		     ctx->has_evfd || ctx->poll_activated))
422 		__io_commit_cqring_flush(ctx);
423 }
424 
io_get_task_refs(int nr)425 static inline void io_get_task_refs(int nr)
426 {
427 	struct io_uring_task *tctx = current->io_uring;
428 
429 	tctx->cached_refs -= nr;
430 	if (unlikely(tctx->cached_refs < 0))
431 		io_task_refs_refill(tctx);
432 }
433 
io_req_cache_empty(struct io_ring_ctx * ctx)434 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
435 {
436 	return !ctx->submit_state.free_list.next;
437 }
438 
439 extern struct kmem_cache *req_cachep;
440 
io_extract_req(struct io_ring_ctx * ctx)441 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
442 {
443 	struct io_kiocb *req;
444 
445 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
446 	wq_stack_extract(&ctx->submit_state.free_list);
447 	return req;
448 }
449 
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)450 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
451 {
452 	if (unlikely(io_req_cache_empty(ctx))) {
453 		if (!__io_alloc_req_refill(ctx))
454 			return false;
455 	}
456 	*req = io_extract_req(ctx);
457 	return true;
458 }
459 
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)460 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
461 {
462 	return likely(ctx->submitter_task == current);
463 }
464 
io_allowed_run_tw(struct io_ring_ctx * ctx)465 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
466 {
467 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
468 		      ctx->submitter_task == current);
469 }
470 
471 /*
472  * Terminate the request if either of these conditions are true:
473  *
474  * 1) It's being executed by the original task, but that task is marked
475  *    with PF_EXITING as it's exiting.
476  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
477  *    our fallback task_work.
478  */
io_should_terminate_tw(void)479 static inline bool io_should_terminate_tw(void)
480 {
481 	return current->flags & (PF_KTHREAD | PF_EXITING);
482 }
483 
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)484 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
485 {
486 	io_req_set_res(req, res, 0);
487 	req->io_task_work.func = io_req_task_complete;
488 	io_req_task_work_add(req);
489 }
490 
491 /*
492  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
493  * slot.
494  */
uring_sqe_size(struct io_ring_ctx * ctx)495 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
496 {
497 	if (ctx->flags & IORING_SETUP_SQE128)
498 		return 2 * sizeof(struct io_uring_sqe);
499 	return sizeof(struct io_uring_sqe);
500 }
501 
io_file_can_poll(struct io_kiocb * req)502 static inline bool io_file_can_poll(struct io_kiocb *req)
503 {
504 	if (req->flags & REQ_F_CAN_POLL)
505 		return true;
506 	if (req->file && file_can_poll(req->file)) {
507 		req->flags |= REQ_F_CAN_POLL;
508 		return true;
509 	}
510 	return false;
511 }
512 
io_get_time(struct io_ring_ctx * ctx)513 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
514 {
515 	if (ctx->clockid == CLOCK_MONOTONIC)
516 		return ktime_get();
517 
518 	return ktime_get_with_offset(ctx->clock_offset);
519 }
520 
521 enum {
522 	IO_CHECK_CQ_OVERFLOW_BIT,
523 	IO_CHECK_CQ_DROPPED_BIT,
524 };
525 
io_has_work(struct io_ring_ctx * ctx)526 static inline bool io_has_work(struct io_ring_ctx *ctx)
527 {
528 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
529 	       io_local_work_pending(ctx);
530 }
531 #endif
532