1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "alloc_cache.h" 12 #include "io-wq.h" 13 #include "slist.h" 14 #include "opdef.h" 15 16 #ifndef CREATE_TRACE_POINTS 17 #include <trace/events/io_uring.h> 18 #endif 19 20 #define IORING_FEAT_FLAGS (IORING_FEAT_SINGLE_MMAP |\ 21 IORING_FEAT_NODROP |\ 22 IORING_FEAT_SUBMIT_STABLE |\ 23 IORING_FEAT_RW_CUR_POS |\ 24 IORING_FEAT_CUR_PERSONALITY |\ 25 IORING_FEAT_FAST_POLL |\ 26 IORING_FEAT_POLL_32BITS |\ 27 IORING_FEAT_SQPOLL_NONFIXED |\ 28 IORING_FEAT_EXT_ARG |\ 29 IORING_FEAT_NATIVE_WORKERS |\ 30 IORING_FEAT_RSRC_TAGS |\ 31 IORING_FEAT_CQE_SKIP |\ 32 IORING_FEAT_LINKED_FILE |\ 33 IORING_FEAT_REG_REG_RING |\ 34 IORING_FEAT_RECVSEND_BUNDLE |\ 35 IORING_FEAT_MIN_TIMEOUT |\ 36 IORING_FEAT_RW_ATTR |\ 37 IORING_FEAT_NO_IOWAIT) 38 39 #define IORING_SETUP_FLAGS (IORING_SETUP_IOPOLL |\ 40 IORING_SETUP_SQPOLL |\ 41 IORING_SETUP_SQ_AFF |\ 42 IORING_SETUP_CQSIZE |\ 43 IORING_SETUP_CLAMP |\ 44 IORING_SETUP_ATTACH_WQ |\ 45 IORING_SETUP_R_DISABLED |\ 46 IORING_SETUP_SUBMIT_ALL |\ 47 IORING_SETUP_COOP_TASKRUN |\ 48 IORING_SETUP_TASKRUN_FLAG |\ 49 IORING_SETUP_SQE128 |\ 50 IORING_SETUP_CQE32 |\ 51 IORING_SETUP_SINGLE_ISSUER |\ 52 IORING_SETUP_DEFER_TASKRUN |\ 53 IORING_SETUP_NO_MMAP |\ 54 IORING_SETUP_REGISTERED_FD_ONLY |\ 55 IORING_SETUP_NO_SQARRAY |\ 56 IORING_SETUP_HYBRID_IOPOLL |\ 57 IORING_SETUP_CQE_MIXED) 58 59 #define IORING_ENTER_FLAGS (IORING_ENTER_GETEVENTS |\ 60 IORING_ENTER_SQ_WAKEUP |\ 61 IORING_ENTER_SQ_WAIT |\ 62 IORING_ENTER_EXT_ARG |\ 63 IORING_ENTER_REGISTERED_RING |\ 64 IORING_ENTER_ABS_TIMER |\ 65 IORING_ENTER_EXT_ARG_REG |\ 66 IORING_ENTER_NO_IOWAIT) 67 68 69 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE |\ 70 IOSQE_IO_DRAIN |\ 71 IOSQE_IO_LINK |\ 72 IOSQE_IO_HARDLINK |\ 73 IOSQE_ASYNC |\ 74 IOSQE_BUFFER_SELECT |\ 75 IOSQE_CQE_SKIP_SUCCESS) 76 77 enum { 78 IOU_COMPLETE = 0, 79 80 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 81 82 /* 83 * The request has more work to do and should be retried. io_uring will 84 * attempt to wait on the file for eligible opcodes, but otherwise 85 * it'll be handed to iowq for blocking execution. It works for normal 86 * requests as well as for the multi shot mode. 87 */ 88 IOU_RETRY = -EAGAIN, 89 90 /* 91 * Requeue the task_work to restart operations on this request. The 92 * actual value isn't important, should just be not an otherwise 93 * valid error code, yet less than -MAX_ERRNO and valid internally. 94 */ 95 IOU_REQUEUE = -3072, 96 }; 97 98 struct io_wait_queue { 99 struct wait_queue_entry wq; 100 struct io_ring_ctx *ctx; 101 unsigned cq_tail; 102 unsigned cq_min_tail; 103 unsigned nr_timeouts; 104 int hit_timeout; 105 ktime_t min_timeout; 106 ktime_t timeout; 107 struct hrtimer t; 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 ktime_t napi_busy_poll_dt; 111 bool napi_prefer_busy_poll; 112 #endif 113 }; 114 115 static inline bool io_should_wake(struct io_wait_queue *iowq) 116 { 117 struct io_ring_ctx *ctx = iowq->ctx; 118 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 119 120 /* 121 * Wake up if we have enough events, or if a timeout occurred since we 122 * started waiting. For timeouts, we always want to return to userspace, 123 * regardless of event count. 124 */ 125 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 126 } 127 128 #define IORING_MAX_ENTRIES 32768 129 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) 130 131 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 132 unsigned int cq_entries, size_t *sq_offset); 133 int io_uring_fill_params(unsigned entries, struct io_uring_params *p); 134 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32); 135 int io_run_task_work_sig(struct io_ring_ctx *ctx); 136 void io_req_defer_failed(struct io_kiocb *req, s32 res); 137 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 138 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 139 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 140 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe src_cqe[2]); 141 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 142 143 void io_req_track_inflight(struct io_kiocb *req); 144 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 145 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 146 unsigned issue_flags); 147 148 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 149 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags); 150 void io_req_task_queue(struct io_kiocb *req); 151 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw); 152 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 153 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw); 154 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 155 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 156 void tctx_task_work(struct callback_head *cb); 157 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 158 159 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 160 int start, int end); 161 void io_req_queue_iowq(struct io_kiocb *req); 162 163 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw); 164 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 165 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 166 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 167 168 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 169 void io_wq_submit_work(struct io_wq_work *work); 170 171 void io_free_req(struct io_kiocb *req); 172 void io_queue_next(struct io_kiocb *req); 173 void io_task_refs_refill(struct io_uring_task *tctx); 174 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 175 176 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 177 bool cancel_all); 178 179 void io_activate_pollwq(struct io_ring_ctx *ctx); 180 181 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 182 { 183 #if defined(CONFIG_PROVE_LOCKING) 184 lockdep_assert(in_task()); 185 186 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 187 lockdep_assert_held(&ctx->uring_lock); 188 189 if (ctx->flags & IORING_SETUP_IOPOLL) { 190 lockdep_assert_held(&ctx->uring_lock); 191 } else if (!ctx->task_complete) { 192 lockdep_assert_held(&ctx->completion_lock); 193 } else if (ctx->submitter_task) { 194 /* 195 * ->submitter_task may be NULL and we can still post a CQE, 196 * if the ring has been setup with IORING_SETUP_R_DISABLED. 197 * Not from an SQE, as those cannot be submitted, but via 198 * updating tagged resources. 199 */ 200 if (!percpu_ref_is_dying(&ctx->refs)) 201 lockdep_assert(current == ctx->submitter_task); 202 } 203 #endif 204 } 205 206 static inline bool io_is_compat(struct io_ring_ctx *ctx) 207 { 208 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat); 209 } 210 211 static inline void io_req_task_work_add(struct io_kiocb *req) 212 { 213 __io_req_task_work_add(req, 0); 214 } 215 216 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 217 { 218 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 219 ctx->submit_state.cq_flush) 220 __io_submit_flush_completions(ctx); 221 } 222 223 #define io_for_each_link(pos, head) \ 224 for (pos = (head); pos; pos = pos->link) 225 226 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 227 struct io_uring_cqe **ret, 228 bool overflow, bool cqe32) 229 { 230 io_lockdep_assert_cq_locked(ctx); 231 232 if (unlikely(ctx->cqe_sentinel - ctx->cqe_cached < (cqe32 + 1))) { 233 if (unlikely(!io_cqe_cache_refill(ctx, overflow, cqe32))) 234 return false; 235 } 236 *ret = ctx->cqe_cached; 237 ctx->cached_cq_tail++; 238 ctx->cqe_cached++; 239 if (ctx->flags & IORING_SETUP_CQE32) { 240 ctx->cqe_cached++; 241 } else if (cqe32 && ctx->flags & IORING_SETUP_CQE_MIXED) { 242 ctx->cqe_cached++; 243 ctx->cached_cq_tail++; 244 } 245 WARN_ON_ONCE(ctx->cqe_cached > ctx->cqe_sentinel); 246 return true; 247 } 248 249 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret, 250 bool cqe32) 251 { 252 return io_get_cqe_overflow(ctx, ret, false, cqe32); 253 } 254 255 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx, 256 struct io_uring_cqe **cqe_ret) 257 { 258 io_lockdep_assert_cq_locked(ctx); 259 260 ctx->submit_state.cq_flush = true; 261 return io_get_cqe(ctx, cqe_ret, ctx->flags & IORING_SETUP_CQE_MIXED); 262 } 263 264 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 265 struct io_kiocb *req) 266 { 267 bool is_cqe32 = req->cqe.flags & IORING_CQE_F_32; 268 struct io_uring_cqe *cqe; 269 270 /* 271 * If we can't get a cq entry, userspace overflowed the submission 272 * (by quite a lot). 273 */ 274 if (unlikely(!io_get_cqe(ctx, &cqe, is_cqe32))) 275 return false; 276 277 memcpy(cqe, &req->cqe, sizeof(*cqe)); 278 if (ctx->flags & IORING_SETUP_CQE32 || is_cqe32) { 279 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 280 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 281 } 282 283 if (trace_io_uring_complete_enabled()) 284 trace_io_uring_complete(req->ctx, req, cqe); 285 return true; 286 } 287 288 static inline void req_set_fail(struct io_kiocb *req) 289 { 290 req->flags |= REQ_F_FAIL; 291 if (req->flags & REQ_F_CQE_SKIP) { 292 req->flags &= ~REQ_F_CQE_SKIP; 293 req->flags |= REQ_F_SKIP_LINK_CQES; 294 } 295 } 296 297 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 298 { 299 req->cqe.res = res; 300 req->cqe.flags = cflags; 301 } 302 303 static inline u32 ctx_cqe32_flags(struct io_ring_ctx *ctx) 304 { 305 if (ctx->flags & IORING_SETUP_CQE_MIXED) 306 return IORING_CQE_F_32; 307 return 0; 308 } 309 310 static inline void io_req_set_res32(struct io_kiocb *req, s32 res, u32 cflags, 311 __u64 extra1, __u64 extra2) 312 { 313 req->cqe.res = res; 314 req->cqe.flags = cflags | ctx_cqe32_flags(req->ctx); 315 req->big_cqe.extra1 = extra1; 316 req->big_cqe.extra2 = extra2; 317 } 318 319 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache, 320 struct io_kiocb *req) 321 { 322 if (cache) { 323 req->async_data = io_cache_alloc(cache, GFP_KERNEL); 324 } else { 325 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 326 327 WARN_ON_ONCE(!def->async_size); 328 req->async_data = kmalloc(def->async_size, GFP_KERNEL); 329 } 330 if (req->async_data) 331 req->flags |= REQ_F_ASYNC_DATA; 332 return req->async_data; 333 } 334 335 static inline bool req_has_async_data(struct io_kiocb *req) 336 { 337 return req->flags & REQ_F_ASYNC_DATA; 338 } 339 340 static inline void io_req_async_data_clear(struct io_kiocb *req, 341 io_req_flags_t extra_flags) 342 { 343 req->flags &= ~(REQ_F_ASYNC_DATA|extra_flags); 344 req->async_data = NULL; 345 } 346 347 static inline void io_req_async_data_free(struct io_kiocb *req) 348 { 349 kfree(req->async_data); 350 io_req_async_data_clear(req, 0); 351 } 352 353 static inline void io_put_file(struct io_kiocb *req) 354 { 355 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 356 fput(req->file); 357 } 358 359 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 360 unsigned issue_flags) 361 { 362 lockdep_assert_held(&ctx->uring_lock); 363 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 364 mutex_unlock(&ctx->uring_lock); 365 } 366 367 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 368 unsigned issue_flags) 369 { 370 /* 371 * "Normal" inline submissions always hold the uring_lock, since we 372 * grab it from the system call. Same is true for the SQPOLL offload. 373 * The only exception is when we've detached the request and issue it 374 * from an async worker thread, grab the lock for that case. 375 */ 376 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 377 mutex_lock(&ctx->uring_lock); 378 lockdep_assert_held(&ctx->uring_lock); 379 } 380 381 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 382 { 383 /* order cqe stores with ring update */ 384 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 385 } 386 387 static inline void __io_wq_wake(struct wait_queue_head *wq) 388 { 389 /* 390 * 391 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 392 * set in the mask so that if we recurse back into our own poll 393 * waitqueue handlers, we know we have a dependency between eventfd or 394 * epoll and should terminate multishot poll at that point. 395 */ 396 if (wq_has_sleeper(wq)) 397 __wake_up(wq, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 398 } 399 400 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 401 { 402 __io_wq_wake(&ctx->poll_wq); 403 } 404 405 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 406 { 407 /* 408 * Trigger waitqueue handler on all waiters on our waitqueue. This 409 * won't necessarily wake up all the tasks, io_should_wake() will make 410 * that decision. 411 */ 412 413 __io_wq_wake(&ctx->cq_wait); 414 } 415 416 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 417 { 418 struct io_rings *r = ctx->rings; 419 420 /* 421 * SQPOLL must use the actual sqring head, as using the cached_sq_head 422 * is race prone if the SQPOLL thread has grabbed entries but not yet 423 * committed them to the ring. For !SQPOLL, this doesn't matter, but 424 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 425 * just read the actual sqring head unconditionally. 426 */ 427 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 428 } 429 430 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 431 { 432 struct io_rings *rings = ctx->rings; 433 unsigned int entries; 434 435 /* make sure SQ entry isn't read before tail */ 436 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 437 return min(entries, ctx->sq_entries); 438 } 439 440 static inline int io_run_task_work(void) 441 { 442 bool ret = false; 443 444 /* 445 * Always check-and-clear the task_work notification signal. With how 446 * signaling works for task_work, we can find it set with nothing to 447 * run. We need to clear it for that case, like get_signal() does. 448 */ 449 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 450 clear_notify_signal(); 451 /* 452 * PF_IO_WORKER never returns to userspace, so check here if we have 453 * notify work that needs processing. 454 */ 455 if (current->flags & PF_IO_WORKER) { 456 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 457 __set_current_state(TASK_RUNNING); 458 resume_user_mode_work(NULL); 459 } 460 if (current->io_uring) { 461 unsigned int count = 0; 462 463 __set_current_state(TASK_RUNNING); 464 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 465 if (count) 466 ret = true; 467 } 468 } 469 if (task_work_pending(current)) { 470 __set_current_state(TASK_RUNNING); 471 task_work_run(); 472 ret = true; 473 } 474 475 return ret; 476 } 477 478 static inline bool io_local_work_pending(struct io_ring_ctx *ctx) 479 { 480 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); 481 } 482 483 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 484 { 485 return task_work_pending(current) || io_local_work_pending(ctx); 486 } 487 488 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw) 489 { 490 lockdep_assert_held(&ctx->uring_lock); 491 } 492 493 /* 494 * Don't complete immediately but use deferred completion infrastructure. 495 * Protected by ->uring_lock and can only be used either with 496 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 497 */ 498 static inline void io_req_complete_defer(struct io_kiocb *req) 499 __must_hold(&req->ctx->uring_lock) 500 { 501 struct io_submit_state *state = &req->ctx->submit_state; 502 503 lockdep_assert_held(&req->ctx->uring_lock); 504 505 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 506 } 507 508 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 509 { 510 if (unlikely(ctx->off_timeout_used || 511 ctx->has_evfd || ctx->poll_activated)) 512 __io_commit_cqring_flush(ctx); 513 } 514 515 static inline void io_get_task_refs(int nr) 516 { 517 struct io_uring_task *tctx = current->io_uring; 518 519 tctx->cached_refs -= nr; 520 if (unlikely(tctx->cached_refs < 0)) 521 io_task_refs_refill(tctx); 522 } 523 524 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 525 { 526 return !ctx->submit_state.free_list.next; 527 } 528 529 extern struct kmem_cache *req_cachep; 530 531 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 532 { 533 struct io_kiocb *req; 534 535 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 536 wq_stack_extract(&ctx->submit_state.free_list); 537 return req; 538 } 539 540 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 541 { 542 if (unlikely(io_req_cache_empty(ctx))) { 543 if (!__io_alloc_req_refill(ctx)) 544 return false; 545 } 546 *req = io_extract_req(ctx); 547 return true; 548 } 549 550 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 551 { 552 return likely(ctx->submitter_task == current); 553 } 554 555 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 556 { 557 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 558 ctx->submitter_task == current); 559 } 560 561 /* 562 * Terminate the request if either of these conditions are true: 563 * 564 * 1) It's being executed by the original task, but that task is marked 565 * with PF_EXITING as it's exiting. 566 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is 567 * our fallback task_work. 568 */ 569 static inline bool io_should_terminate_tw(struct io_ring_ctx *ctx) 570 { 571 return (current->flags & (PF_KTHREAD | PF_EXITING)) || percpu_ref_is_dying(&ctx->refs); 572 } 573 574 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 575 { 576 io_req_set_res(req, res, 0); 577 req->io_task_work.func = io_req_task_complete; 578 io_req_task_work_add(req); 579 } 580 581 /* 582 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 583 * slot. 584 */ 585 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 586 { 587 if (ctx->flags & IORING_SETUP_SQE128) 588 return 2 * sizeof(struct io_uring_sqe); 589 return sizeof(struct io_uring_sqe); 590 } 591 592 static inline bool io_file_can_poll(struct io_kiocb *req) 593 { 594 if (req->flags & REQ_F_CAN_POLL) 595 return true; 596 if (req->file && file_can_poll(req->file)) { 597 req->flags |= REQ_F_CAN_POLL; 598 return true; 599 } 600 return false; 601 } 602 603 static inline ktime_t io_get_time(struct io_ring_ctx *ctx) 604 { 605 if (ctx->clockid == CLOCK_MONOTONIC) 606 return ktime_get(); 607 608 return ktime_get_with_offset(ctx->clock_offset); 609 } 610 611 enum { 612 IO_CHECK_CQ_OVERFLOW_BIT, 613 IO_CHECK_CQ_DROPPED_BIT, 614 }; 615 616 static inline bool io_has_work(struct io_ring_ctx *ctx) 617 { 618 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 619 io_local_work_pending(ctx); 620 } 621 #endif 622