xref: /linux/io_uring/io_uring.c (revision 91928e0d3cc29789f4483bffee5f36218f23942b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Shared application/kernel submission and completion ring pairs, for
4   * supporting fast/efficient IO.
5   *
6   * A note on the read/write ordering memory barriers that are matched between
7   * the application and kernel side.
8   *
9   * After the application reads the CQ ring tail, it must use an
10   * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11   * before writing the tail (using smp_load_acquire to read the tail will
12   * do). It also needs a smp_mb() before updating CQ head (ordering the
13   * entry load(s) with the head store), pairing with an implicit barrier
14   * through a control-dependency in io_get_cqe (smp_store_release to
15   * store head will do). Failure to do so could lead to reading invalid
16   * CQ entries.
17   *
18   * Likewise, the application must use an appropriate smp_wmb() before
19   * writing the SQ tail (ordering SQ entry stores with the tail store),
20   * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21   * to store the tail will do). And it needs a barrier ordering the SQ
22   * head load before writing new SQ entries (smp_load_acquire to read
23   * head will do).
24   *
25   * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26   * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27   * updating the SQ tail; a full memory barrier smp_mb() is needed
28   * between.
29   *
30   * Also see the examples in the liburing library:
31   *
32   *	git://git.kernel.dk/liburing
33   *
34   * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35   * from data shared between the kernel and application. This is done both
36   * for ordering purposes, but also to ensure that once a value is loaded from
37   * data that the application could potentially modify, it remains stable.
38   *
39   * Copyright (C) 2018-2019 Jens Axboe
40   * Copyright (c) 2018-2019 Christoph Hellwig
41   */
42  #include <linux/kernel.h>
43  #include <linux/init.h>
44  #include <linux/errno.h>
45  #include <linux/syscalls.h>
46  #include <net/compat.h>
47  #include <linux/refcount.h>
48  #include <linux/uio.h>
49  #include <linux/bits.h>
50  
51  #include <linux/sched/signal.h>
52  #include <linux/fs.h>
53  #include <linux/file.h>
54  #include <linux/mm.h>
55  #include <linux/mman.h>
56  #include <linux/percpu.h>
57  #include <linux/slab.h>
58  #include <linux/bvec.h>
59  #include <linux/net.h>
60  #include <net/sock.h>
61  #include <linux/anon_inodes.h>
62  #include <linux/sched/mm.h>
63  #include <linux/uaccess.h>
64  #include <linux/nospec.h>
65  #include <linux/fsnotify.h>
66  #include <linux/fadvise.h>
67  #include <linux/task_work.h>
68  #include <linux/io_uring.h>
69  #include <linux/io_uring/cmd.h>
70  #include <linux/audit.h>
71  #include <linux/security.h>
72  #include <linux/jump_label.h>
73  #include <asm/shmparam.h>
74  
75  #define CREATE_TRACE_POINTS
76  #include <trace/events/io_uring.h>
77  
78  #include <uapi/linux/io_uring.h>
79  
80  #include "io-wq.h"
81  
82  #include "io_uring.h"
83  #include "opdef.h"
84  #include "refs.h"
85  #include "tctx.h"
86  #include "register.h"
87  #include "sqpoll.h"
88  #include "fdinfo.h"
89  #include "kbuf.h"
90  #include "rsrc.h"
91  #include "cancel.h"
92  #include "net.h"
93  #include "notif.h"
94  #include "waitid.h"
95  #include "futex.h"
96  #include "napi.h"
97  #include "uring_cmd.h"
98  #include "msg_ring.h"
99  #include "memmap.h"
100  
101  #include "timeout.h"
102  #include "poll.h"
103  #include "rw.h"
104  #include "alloc_cache.h"
105  #include "eventfd.h"
106  
107  #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108  			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109  
110  #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111  			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112  
113  #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
114  
115  #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
116  				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117  				REQ_F_ASYNC_DATA)
118  
119  #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
120  				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
121  
122  #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
123  
124  #define IO_COMPL_BATCH			32
125  #define IO_REQ_ALLOC_BATCH		8
126  #define IO_LOCAL_TW_DEFAULT_MAX		20
127  
128  struct io_defer_entry {
129  	struct list_head	list;
130  	struct io_kiocb		*req;
131  	u32			seq;
132  };
133  
134  /* requests with any of those set should undergo io_disarm_next() */
135  #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136  
137  /*
138   * No waiters. It's larger than any valid value of the tw counter
139   * so that tests against ->cq_wait_nr would fail and skip wake_up().
140   */
141  #define IO_CQ_WAKE_INIT		(-1U)
142  /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
143  #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
144  
145  static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146  					 struct io_uring_task *tctx,
147  					 bool cancel_all,
148  					 bool is_sqpoll_thread);
149  
150  static void io_queue_sqe(struct io_kiocb *req);
151  
152  static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
153  
154  struct kmem_cache *req_cachep;
155  static struct workqueue_struct *iou_wq __ro_after_init;
156  
157  static int __read_mostly sysctl_io_uring_disabled;
158  static int __read_mostly sysctl_io_uring_group = -1;
159  
160  #ifdef CONFIG_SYSCTL
161  static const struct ctl_table kernel_io_uring_disabled_table[] = {
162  	{
163  		.procname	= "io_uring_disabled",
164  		.data		= &sysctl_io_uring_disabled,
165  		.maxlen		= sizeof(sysctl_io_uring_disabled),
166  		.mode		= 0644,
167  		.proc_handler	= proc_dointvec_minmax,
168  		.extra1		= SYSCTL_ZERO,
169  		.extra2		= SYSCTL_TWO,
170  	},
171  	{
172  		.procname	= "io_uring_group",
173  		.data		= &sysctl_io_uring_group,
174  		.maxlen		= sizeof(gid_t),
175  		.mode		= 0644,
176  		.proc_handler	= proc_dointvec,
177  	},
178  };
179  #endif
180  
__io_cqring_events(struct io_ring_ctx * ctx)181  static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
182  {
183  	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
184  }
185  
__io_cqring_events_user(struct io_ring_ctx * ctx)186  static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
187  {
188  	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
189  }
190  
io_match_linked(struct io_kiocb * head)191  static bool io_match_linked(struct io_kiocb *head)
192  {
193  	struct io_kiocb *req;
194  
195  	io_for_each_link(req, head) {
196  		if (req->flags & REQ_F_INFLIGHT)
197  			return true;
198  	}
199  	return false;
200  }
201  
202  /*
203   * As io_match_task() but protected against racing with linked timeouts.
204   * User must not hold timeout_lock.
205   */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)206  bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
207  			bool cancel_all)
208  {
209  	bool matched;
210  
211  	if (tctx && head->tctx != tctx)
212  		return false;
213  	if (cancel_all)
214  		return true;
215  
216  	if (head->flags & REQ_F_LINK_TIMEOUT) {
217  		struct io_ring_ctx *ctx = head->ctx;
218  
219  		/* protect against races with linked timeouts */
220  		raw_spin_lock_irq(&ctx->timeout_lock);
221  		matched = io_match_linked(head);
222  		raw_spin_unlock_irq(&ctx->timeout_lock);
223  	} else {
224  		matched = io_match_linked(head);
225  	}
226  	return matched;
227  }
228  
req_fail_link_node(struct io_kiocb * req,int res)229  static inline void req_fail_link_node(struct io_kiocb *req, int res)
230  {
231  	req_set_fail(req);
232  	io_req_set_res(req, res, 0);
233  }
234  
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)235  static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
236  {
237  	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
238  }
239  
io_ring_ctx_ref_free(struct percpu_ref * ref)240  static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
241  {
242  	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
243  
244  	complete(&ctx->ref_comp);
245  }
246  
io_fallback_req_func(struct work_struct * work)247  static __cold void io_fallback_req_func(struct work_struct *work)
248  {
249  	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
250  						fallback_work.work);
251  	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
252  	struct io_kiocb *req, *tmp;
253  	struct io_tw_state ts = {};
254  
255  	percpu_ref_get(&ctx->refs);
256  	mutex_lock(&ctx->uring_lock);
257  	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
258  		req->io_task_work.func(req, ts);
259  	io_submit_flush_completions(ctx);
260  	mutex_unlock(&ctx->uring_lock);
261  	percpu_ref_put(&ctx->refs);
262  }
263  
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)264  static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
265  {
266  	unsigned int hash_buckets;
267  	int i;
268  
269  	do {
270  		hash_buckets = 1U << bits;
271  		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
272  						GFP_KERNEL_ACCOUNT);
273  		if (table->hbs)
274  			break;
275  		if (bits == 1)
276  			return -ENOMEM;
277  		bits--;
278  	} while (1);
279  
280  	table->hash_bits = bits;
281  	for (i = 0; i < hash_buckets; i++)
282  		INIT_HLIST_HEAD(&table->hbs[i].list);
283  	return 0;
284  }
285  
io_free_alloc_caches(struct io_ring_ctx * ctx)286  static void io_free_alloc_caches(struct io_ring_ctx *ctx)
287  {
288  	io_alloc_cache_free(&ctx->apoll_cache, kfree);
289  	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
290  	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
291  	io_alloc_cache_free(&ctx->uring_cache, kfree);
292  	io_alloc_cache_free(&ctx->msg_cache, kfree);
293  	io_futex_cache_free(ctx);
294  	io_rsrc_cache_free(ctx);
295  }
296  
io_ring_ctx_alloc(struct io_uring_params * p)297  static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298  {
299  	struct io_ring_ctx *ctx;
300  	int hash_bits;
301  	bool ret;
302  
303  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
304  	if (!ctx)
305  		return NULL;
306  
307  	xa_init(&ctx->io_bl_xa);
308  
309  	/*
310  	 * Use 5 bits less than the max cq entries, that should give us around
311  	 * 32 entries per hash list if totally full and uniformly spread, but
312  	 * don't keep too many buckets to not overconsume memory.
313  	 */
314  	hash_bits = ilog2(p->cq_entries) - 5;
315  	hash_bits = clamp(hash_bits, 1, 8);
316  	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
317  		goto err;
318  	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
319  			    0, GFP_KERNEL))
320  		goto err;
321  
322  	ctx->flags = p->flags;
323  	ctx->hybrid_poll_time = LLONG_MAX;
324  	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
325  	init_waitqueue_head(&ctx->sqo_sq_wait);
326  	INIT_LIST_HEAD(&ctx->sqd_list);
327  	INIT_LIST_HEAD(&ctx->cq_overflow_list);
328  	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
329  			    sizeof(struct async_poll), 0);
330  	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
331  			    sizeof(struct io_async_msghdr),
332  			    offsetof(struct io_async_msghdr, clear));
333  	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
334  			    sizeof(struct io_async_rw),
335  			    offsetof(struct io_async_rw, clear));
336  	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
337  			    sizeof(struct io_uring_cmd_data), 0);
338  	spin_lock_init(&ctx->msg_lock);
339  	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
340  			    sizeof(struct io_kiocb), 0);
341  	ret |= io_futex_cache_init(ctx);
342  	ret |= io_rsrc_cache_init(ctx);
343  	if (ret)
344  		goto free_ref;
345  	init_completion(&ctx->ref_comp);
346  	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
347  	mutex_init(&ctx->uring_lock);
348  	init_waitqueue_head(&ctx->cq_wait);
349  	init_waitqueue_head(&ctx->poll_wq);
350  	spin_lock_init(&ctx->completion_lock);
351  	raw_spin_lock_init(&ctx->timeout_lock);
352  	INIT_WQ_LIST(&ctx->iopoll_list);
353  	INIT_LIST_HEAD(&ctx->defer_list);
354  	INIT_LIST_HEAD(&ctx->timeout_list);
355  	INIT_LIST_HEAD(&ctx->ltimeout_list);
356  	init_llist_head(&ctx->work_llist);
357  	INIT_LIST_HEAD(&ctx->tctx_list);
358  	ctx->submit_state.free_list.next = NULL;
359  	INIT_HLIST_HEAD(&ctx->waitid_list);
360  #ifdef CONFIG_FUTEX
361  	INIT_HLIST_HEAD(&ctx->futex_list);
362  #endif
363  	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
364  	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
365  	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
366  	io_napi_init(ctx);
367  	mutex_init(&ctx->mmap_lock);
368  
369  	return ctx;
370  
371  free_ref:
372  	percpu_ref_exit(&ctx->refs);
373  err:
374  	io_free_alloc_caches(ctx);
375  	kvfree(ctx->cancel_table.hbs);
376  	xa_destroy(&ctx->io_bl_xa);
377  	kfree(ctx);
378  	return NULL;
379  }
380  
io_account_cq_overflow(struct io_ring_ctx * ctx)381  static void io_account_cq_overflow(struct io_ring_ctx *ctx)
382  {
383  	struct io_rings *r = ctx->rings;
384  
385  	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
386  	ctx->cq_extra--;
387  }
388  
req_need_defer(struct io_kiocb * req,u32 seq)389  static bool req_need_defer(struct io_kiocb *req, u32 seq)
390  {
391  	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
392  		struct io_ring_ctx *ctx = req->ctx;
393  
394  		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
395  	}
396  
397  	return false;
398  }
399  
io_clean_op(struct io_kiocb * req)400  static void io_clean_op(struct io_kiocb *req)
401  {
402  	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
403  		io_kbuf_drop_legacy(req);
404  
405  	if (req->flags & REQ_F_NEED_CLEANUP) {
406  		const struct io_cold_def *def = &io_cold_defs[req->opcode];
407  
408  		if (def->cleanup)
409  			def->cleanup(req);
410  	}
411  	if ((req->flags & REQ_F_POLLED) && req->apoll) {
412  		kfree(req->apoll->double_poll);
413  		kfree(req->apoll);
414  		req->apoll = NULL;
415  	}
416  	if (req->flags & REQ_F_INFLIGHT)
417  		atomic_dec(&req->tctx->inflight_tracked);
418  	if (req->flags & REQ_F_CREDS)
419  		put_cred(req->creds);
420  	if (req->flags & REQ_F_ASYNC_DATA) {
421  		kfree(req->async_data);
422  		req->async_data = NULL;
423  	}
424  	req->flags &= ~IO_REQ_CLEAN_FLAGS;
425  }
426  
io_req_track_inflight(struct io_kiocb * req)427  static inline void io_req_track_inflight(struct io_kiocb *req)
428  {
429  	if (!(req->flags & REQ_F_INFLIGHT)) {
430  		req->flags |= REQ_F_INFLIGHT;
431  		atomic_inc(&req->tctx->inflight_tracked);
432  	}
433  }
434  
__io_prep_linked_timeout(struct io_kiocb * req)435  static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
436  {
437  	if (WARN_ON_ONCE(!req->link))
438  		return NULL;
439  
440  	req->flags &= ~REQ_F_ARM_LTIMEOUT;
441  	req->flags |= REQ_F_LINK_TIMEOUT;
442  
443  	/* linked timeouts should have two refs once prep'ed */
444  	io_req_set_refcount(req);
445  	__io_req_set_refcount(req->link, 2);
446  	return req->link;
447  }
448  
io_prep_linked_timeout(struct io_kiocb * req)449  static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
450  {
451  	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
452  		return NULL;
453  	return __io_prep_linked_timeout(req);
454  }
455  
__io_arm_ltimeout(struct io_kiocb * req)456  static noinline void __io_arm_ltimeout(struct io_kiocb *req)
457  {
458  	io_queue_linked_timeout(__io_prep_linked_timeout(req));
459  }
460  
io_arm_ltimeout(struct io_kiocb * req)461  static inline void io_arm_ltimeout(struct io_kiocb *req)
462  {
463  	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
464  		__io_arm_ltimeout(req);
465  }
466  
io_prep_async_work(struct io_kiocb * req)467  static void io_prep_async_work(struct io_kiocb *req)
468  {
469  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
470  	struct io_ring_ctx *ctx = req->ctx;
471  
472  	if (!(req->flags & REQ_F_CREDS)) {
473  		req->flags |= REQ_F_CREDS;
474  		req->creds = get_current_cred();
475  	}
476  
477  	req->work.list.next = NULL;
478  	atomic_set(&req->work.flags, 0);
479  	if (req->flags & REQ_F_FORCE_ASYNC)
480  		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
481  
482  	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
483  		req->flags |= io_file_get_flags(req->file);
484  
485  	if (req->file && (req->flags & REQ_F_ISREG)) {
486  		bool should_hash = def->hash_reg_file;
487  
488  		/* don't serialize this request if the fs doesn't need it */
489  		if (should_hash && (req->file->f_flags & O_DIRECT) &&
490  		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
491  			should_hash = false;
492  		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
493  			io_wq_hash_work(&req->work, file_inode(req->file));
494  	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
495  		if (def->unbound_nonreg_file)
496  			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
497  	}
498  }
499  
io_prep_async_link(struct io_kiocb * req)500  static void io_prep_async_link(struct io_kiocb *req)
501  {
502  	struct io_kiocb *cur;
503  
504  	if (req->flags & REQ_F_LINK_TIMEOUT) {
505  		struct io_ring_ctx *ctx = req->ctx;
506  
507  		raw_spin_lock_irq(&ctx->timeout_lock);
508  		io_for_each_link(cur, req)
509  			io_prep_async_work(cur);
510  		raw_spin_unlock_irq(&ctx->timeout_lock);
511  	} else {
512  		io_for_each_link(cur, req)
513  			io_prep_async_work(cur);
514  	}
515  }
516  
io_queue_iowq(struct io_kiocb * req)517  static void io_queue_iowq(struct io_kiocb *req)
518  {
519  	struct io_kiocb *link = io_prep_linked_timeout(req);
520  	struct io_uring_task *tctx = req->tctx;
521  
522  	BUG_ON(!tctx);
523  
524  	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
525  		io_req_task_queue_fail(req, -ECANCELED);
526  		return;
527  	}
528  
529  	/* init ->work of the whole link before punting */
530  	io_prep_async_link(req);
531  
532  	/*
533  	 * Not expected to happen, but if we do have a bug where this _can_
534  	 * happen, catch it here and ensure the request is marked as
535  	 * canceled. That will make io-wq go through the usual work cancel
536  	 * procedure rather than attempt to run this request (or create a new
537  	 * worker for it).
538  	 */
539  	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
540  		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
541  
542  	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
543  	io_wq_enqueue(tctx->io_wq, &req->work);
544  	if (link)
545  		io_queue_linked_timeout(link);
546  }
547  
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)548  static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
549  {
550  	io_queue_iowq(req);
551  }
552  
io_req_queue_iowq(struct io_kiocb * req)553  void io_req_queue_iowq(struct io_kiocb *req)
554  {
555  	req->io_task_work.func = io_req_queue_iowq_tw;
556  	io_req_task_work_add(req);
557  }
558  
io_queue_deferred(struct io_ring_ctx * ctx)559  static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
560  {
561  	spin_lock(&ctx->completion_lock);
562  	while (!list_empty(&ctx->defer_list)) {
563  		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
564  						struct io_defer_entry, list);
565  
566  		if (req_need_defer(de->req, de->seq))
567  			break;
568  		list_del_init(&de->list);
569  		io_req_task_queue(de->req);
570  		kfree(de);
571  	}
572  	spin_unlock(&ctx->completion_lock);
573  }
574  
__io_commit_cqring_flush(struct io_ring_ctx * ctx)575  void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
576  {
577  	if (ctx->poll_activated)
578  		io_poll_wq_wake(ctx);
579  	if (ctx->off_timeout_used)
580  		io_flush_timeouts(ctx);
581  	if (ctx->drain_active)
582  		io_queue_deferred(ctx);
583  	if (ctx->has_evfd)
584  		io_eventfd_flush_signal(ctx);
585  }
586  
__io_cq_lock(struct io_ring_ctx * ctx)587  static inline void __io_cq_lock(struct io_ring_ctx *ctx)
588  {
589  	if (!ctx->lockless_cq)
590  		spin_lock(&ctx->completion_lock);
591  }
592  
io_cq_lock(struct io_ring_ctx * ctx)593  static inline void io_cq_lock(struct io_ring_ctx *ctx)
594  	__acquires(ctx->completion_lock)
595  {
596  	spin_lock(&ctx->completion_lock);
597  }
598  
__io_cq_unlock_post(struct io_ring_ctx * ctx)599  static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
600  {
601  	io_commit_cqring(ctx);
602  	if (!ctx->task_complete) {
603  		if (!ctx->lockless_cq)
604  			spin_unlock(&ctx->completion_lock);
605  		/* IOPOLL rings only need to wake up if it's also SQPOLL */
606  		if (!ctx->syscall_iopoll)
607  			io_cqring_wake(ctx);
608  	}
609  	io_commit_cqring_flush(ctx);
610  }
611  
io_cq_unlock_post(struct io_ring_ctx * ctx)612  static void io_cq_unlock_post(struct io_ring_ctx *ctx)
613  	__releases(ctx->completion_lock)
614  {
615  	io_commit_cqring(ctx);
616  	spin_unlock(&ctx->completion_lock);
617  	io_cqring_wake(ctx);
618  	io_commit_cqring_flush(ctx);
619  }
620  
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)621  static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
622  {
623  	size_t cqe_size = sizeof(struct io_uring_cqe);
624  
625  	lockdep_assert_held(&ctx->uring_lock);
626  
627  	/* don't abort if we're dying, entries must get freed */
628  	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
629  		return;
630  
631  	if (ctx->flags & IORING_SETUP_CQE32)
632  		cqe_size <<= 1;
633  
634  	io_cq_lock(ctx);
635  	while (!list_empty(&ctx->cq_overflow_list)) {
636  		struct io_uring_cqe *cqe;
637  		struct io_overflow_cqe *ocqe;
638  
639  		ocqe = list_first_entry(&ctx->cq_overflow_list,
640  					struct io_overflow_cqe, list);
641  
642  		if (!dying) {
643  			if (!io_get_cqe_overflow(ctx, &cqe, true))
644  				break;
645  			memcpy(cqe, &ocqe->cqe, cqe_size);
646  		}
647  		list_del(&ocqe->list);
648  		kfree(ocqe);
649  
650  		/*
651  		 * For silly syzbot cases that deliberately overflow by huge
652  		 * amounts, check if we need to resched and drop and
653  		 * reacquire the locks if so. Nothing real would ever hit this.
654  		 * Ideally we'd have a non-posting unlock for this, but hard
655  		 * to care for a non-real case.
656  		 */
657  		if (need_resched()) {
658  			io_cq_unlock_post(ctx);
659  			mutex_unlock(&ctx->uring_lock);
660  			cond_resched();
661  			mutex_lock(&ctx->uring_lock);
662  			io_cq_lock(ctx);
663  		}
664  	}
665  
666  	if (list_empty(&ctx->cq_overflow_list)) {
667  		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
668  		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
669  	}
670  	io_cq_unlock_post(ctx);
671  }
672  
io_cqring_overflow_kill(struct io_ring_ctx * ctx)673  static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
674  {
675  	if (ctx->rings)
676  		__io_cqring_overflow_flush(ctx, true);
677  }
678  
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)679  static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
680  {
681  	mutex_lock(&ctx->uring_lock);
682  	__io_cqring_overflow_flush(ctx, false);
683  	mutex_unlock(&ctx->uring_lock);
684  }
685  
686  /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)687  static inline void io_put_task(struct io_kiocb *req)
688  {
689  	struct io_uring_task *tctx = req->tctx;
690  
691  	if (likely(tctx->task == current)) {
692  		tctx->cached_refs++;
693  	} else {
694  		percpu_counter_sub(&tctx->inflight, 1);
695  		if (unlikely(atomic_read(&tctx->in_cancel)))
696  			wake_up(&tctx->wait);
697  		put_task_struct(tctx->task);
698  	}
699  }
700  
io_task_refs_refill(struct io_uring_task * tctx)701  void io_task_refs_refill(struct io_uring_task *tctx)
702  {
703  	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
704  
705  	percpu_counter_add(&tctx->inflight, refill);
706  	refcount_add(refill, &current->usage);
707  	tctx->cached_refs += refill;
708  }
709  
io_uring_drop_tctx_refs(struct task_struct * task)710  static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
711  {
712  	struct io_uring_task *tctx = task->io_uring;
713  	unsigned int refs = tctx->cached_refs;
714  
715  	if (refs) {
716  		tctx->cached_refs = 0;
717  		percpu_counter_sub(&tctx->inflight, refs);
718  		put_task_struct_many(task, refs);
719  	}
720  }
721  
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)722  static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
723  				     s32 res, u32 cflags, u64 extra1, u64 extra2)
724  {
725  	struct io_overflow_cqe *ocqe;
726  	size_t ocq_size = sizeof(struct io_overflow_cqe);
727  	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
728  
729  	lockdep_assert_held(&ctx->completion_lock);
730  
731  	if (is_cqe32)
732  		ocq_size += sizeof(struct io_uring_cqe);
733  
734  	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
735  	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
736  	if (!ocqe) {
737  		/*
738  		 * If we're in ring overflow flush mode, or in task cancel mode,
739  		 * or cannot allocate an overflow entry, then we need to drop it
740  		 * on the floor.
741  		 */
742  		io_account_cq_overflow(ctx);
743  		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
744  		return false;
745  	}
746  	if (list_empty(&ctx->cq_overflow_list)) {
747  		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
748  		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
749  
750  	}
751  	ocqe->cqe.user_data = user_data;
752  	ocqe->cqe.res = res;
753  	ocqe->cqe.flags = cflags;
754  	if (is_cqe32) {
755  		ocqe->cqe.big_cqe[0] = extra1;
756  		ocqe->cqe.big_cqe[1] = extra2;
757  	}
758  	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
759  	return true;
760  }
761  
io_req_cqe_overflow(struct io_kiocb * req)762  static void io_req_cqe_overflow(struct io_kiocb *req)
763  {
764  	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
765  				req->cqe.res, req->cqe.flags,
766  				req->big_cqe.extra1, req->big_cqe.extra2);
767  	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
768  }
769  
770  /*
771   * writes to the cq entry need to come after reading head; the
772   * control dependency is enough as we're using WRITE_ONCE to
773   * fill the cq entry
774   */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)775  bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
776  {
777  	struct io_rings *rings = ctx->rings;
778  	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
779  	unsigned int free, queued, len;
780  
781  	/*
782  	 * Posting into the CQ when there are pending overflowed CQEs may break
783  	 * ordering guarantees, which will affect links, F_MORE users and more.
784  	 * Force overflow the completion.
785  	 */
786  	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
787  		return false;
788  
789  	/* userspace may cheat modifying the tail, be safe and do min */
790  	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
791  	free = ctx->cq_entries - queued;
792  	/* we need a contiguous range, limit based on the current array offset */
793  	len = min(free, ctx->cq_entries - off);
794  	if (!len)
795  		return false;
796  
797  	if (ctx->flags & IORING_SETUP_CQE32) {
798  		off <<= 1;
799  		len <<= 1;
800  	}
801  
802  	ctx->cqe_cached = &rings->cqes[off];
803  	ctx->cqe_sentinel = ctx->cqe_cached + len;
804  	return true;
805  }
806  
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)807  static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
808  			      u32 cflags)
809  {
810  	struct io_uring_cqe *cqe;
811  
812  	ctx->cq_extra++;
813  
814  	/*
815  	 * If we can't get a cq entry, userspace overflowed the
816  	 * submission (by quite a lot). Increment the overflow count in
817  	 * the ring.
818  	 */
819  	if (likely(io_get_cqe(ctx, &cqe))) {
820  		WRITE_ONCE(cqe->user_data, user_data);
821  		WRITE_ONCE(cqe->res, res);
822  		WRITE_ONCE(cqe->flags, cflags);
823  
824  		if (ctx->flags & IORING_SETUP_CQE32) {
825  			WRITE_ONCE(cqe->big_cqe[0], 0);
826  			WRITE_ONCE(cqe->big_cqe[1], 0);
827  		}
828  
829  		trace_io_uring_complete(ctx, NULL, cqe);
830  		return true;
831  	}
832  	return false;
833  }
834  
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)835  static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
836  			      u32 cflags)
837  {
838  	bool filled;
839  
840  	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
841  	if (!filled)
842  		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
843  
844  	return filled;
845  }
846  
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)847  bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
848  {
849  	bool filled;
850  
851  	io_cq_lock(ctx);
852  	filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
853  	io_cq_unlock_post(ctx);
854  	return filled;
855  }
856  
857  /*
858   * Must be called from inline task_work so we now a flush will happen later,
859   * and obviously with ctx->uring_lock held (tw always has that).
860   */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)861  void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
862  {
863  	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
864  		spin_lock(&ctx->completion_lock);
865  		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
866  		spin_unlock(&ctx->completion_lock);
867  	}
868  	ctx->submit_state.cq_flush = true;
869  }
870  
871  /*
872   * A helper for multishot requests posting additional CQEs.
873   * Should only be used from a task_work including IO_URING_F_MULTISHOT.
874   */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)875  bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
876  {
877  	struct io_ring_ctx *ctx = req->ctx;
878  	bool posted;
879  
880  	lockdep_assert(!io_wq_current_is_worker());
881  	lockdep_assert_held(&ctx->uring_lock);
882  
883  	__io_cq_lock(ctx);
884  	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
885  	ctx->submit_state.cq_flush = true;
886  	__io_cq_unlock_post(ctx);
887  	return posted;
888  }
889  
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)890  static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
891  {
892  	struct io_ring_ctx *ctx = req->ctx;
893  
894  	/*
895  	 * All execution paths but io-wq use the deferred completions by
896  	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
897  	 */
898  	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
899  		return;
900  
901  	/*
902  	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
903  	 * the submitter task context, IOPOLL protects with uring_lock.
904  	 */
905  	if (ctx->lockless_cq) {
906  		req->io_task_work.func = io_req_task_complete;
907  		io_req_task_work_add(req);
908  		return;
909  	}
910  
911  	io_cq_lock(ctx);
912  	if (!(req->flags & REQ_F_CQE_SKIP)) {
913  		if (!io_fill_cqe_req(ctx, req))
914  			io_req_cqe_overflow(req);
915  	}
916  	io_cq_unlock_post(ctx);
917  
918  	/*
919  	 * We don't free the request here because we know it's called from
920  	 * io-wq only, which holds a reference, so it cannot be the last put.
921  	 */
922  	req_ref_put(req);
923  }
924  
io_req_defer_failed(struct io_kiocb * req,s32 res)925  void io_req_defer_failed(struct io_kiocb *req, s32 res)
926  	__must_hold(&ctx->uring_lock)
927  {
928  	const struct io_cold_def *def = &io_cold_defs[req->opcode];
929  
930  	lockdep_assert_held(&req->ctx->uring_lock);
931  
932  	req_set_fail(req);
933  	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
934  	if (def->fail)
935  		def->fail(req);
936  	io_req_complete_defer(req);
937  }
938  
939  /*
940   * Don't initialise the fields below on every allocation, but do that in
941   * advance and keep them valid across allocations.
942   */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)943  static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
944  {
945  	req->ctx = ctx;
946  	req->buf_node = NULL;
947  	req->file_node = NULL;
948  	req->link = NULL;
949  	req->async_data = NULL;
950  	/* not necessary, but safer to zero */
951  	memset(&req->cqe, 0, sizeof(req->cqe));
952  	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
953  }
954  
955  /*
956   * A request might get retired back into the request caches even before opcode
957   * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
958   * Because of that, io_alloc_req() should be called only under ->uring_lock
959   * and with extra caution to not get a request that is still worked on.
960   */
__io_alloc_req_refill(struct io_ring_ctx * ctx)961  __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
962  	__must_hold(&ctx->uring_lock)
963  {
964  	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
965  	void *reqs[IO_REQ_ALLOC_BATCH];
966  	int ret;
967  
968  	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
969  
970  	/*
971  	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
972  	 * retry single alloc to be on the safe side.
973  	 */
974  	if (unlikely(ret <= 0)) {
975  		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
976  		if (!reqs[0])
977  			return false;
978  		ret = 1;
979  	}
980  
981  	percpu_ref_get_many(&ctx->refs, ret);
982  	while (ret--) {
983  		struct io_kiocb *req = reqs[ret];
984  
985  		io_preinit_req(req, ctx);
986  		io_req_add_to_cache(req, ctx);
987  	}
988  	return true;
989  }
990  
io_free_req(struct io_kiocb * req)991  __cold void io_free_req(struct io_kiocb *req)
992  {
993  	/* refs were already put, restore them for io_req_task_complete() */
994  	req->flags &= ~REQ_F_REFCOUNT;
995  	/* we only want to free it, don't post CQEs */
996  	req->flags |= REQ_F_CQE_SKIP;
997  	req->io_task_work.func = io_req_task_complete;
998  	io_req_task_work_add(req);
999  }
1000  
__io_req_find_next_prep(struct io_kiocb * req)1001  static void __io_req_find_next_prep(struct io_kiocb *req)
1002  {
1003  	struct io_ring_ctx *ctx = req->ctx;
1004  
1005  	spin_lock(&ctx->completion_lock);
1006  	io_disarm_next(req);
1007  	spin_unlock(&ctx->completion_lock);
1008  }
1009  
io_req_find_next(struct io_kiocb * req)1010  static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1011  {
1012  	struct io_kiocb *nxt;
1013  
1014  	/*
1015  	 * If LINK is set, we have dependent requests in this chain. If we
1016  	 * didn't fail this request, queue the first one up, moving any other
1017  	 * dependencies to the next request. In case of failure, fail the rest
1018  	 * of the chain.
1019  	 */
1020  	if (unlikely(req->flags & IO_DISARM_MASK))
1021  		__io_req_find_next_prep(req);
1022  	nxt = req->link;
1023  	req->link = NULL;
1024  	return nxt;
1025  }
1026  
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1027  static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1028  {
1029  	if (!ctx)
1030  		return;
1031  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1032  		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1033  
1034  	io_submit_flush_completions(ctx);
1035  	mutex_unlock(&ctx->uring_lock);
1036  	percpu_ref_put(&ctx->refs);
1037  }
1038  
1039  /*
1040   * Run queued task_work, returning the number of entries processed in *count.
1041   * If more entries than max_entries are available, stop processing once this
1042   * is reached and return the rest of the list.
1043   */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1044  struct llist_node *io_handle_tw_list(struct llist_node *node,
1045  				     unsigned int *count,
1046  				     unsigned int max_entries)
1047  {
1048  	struct io_ring_ctx *ctx = NULL;
1049  	struct io_tw_state ts = { };
1050  
1051  	do {
1052  		struct llist_node *next = node->next;
1053  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1054  						    io_task_work.node);
1055  
1056  		if (req->ctx != ctx) {
1057  			ctx_flush_and_put(ctx, ts);
1058  			ctx = req->ctx;
1059  			mutex_lock(&ctx->uring_lock);
1060  			percpu_ref_get(&ctx->refs);
1061  		}
1062  		INDIRECT_CALL_2(req->io_task_work.func,
1063  				io_poll_task_func, io_req_rw_complete,
1064  				req, ts);
1065  		node = next;
1066  		(*count)++;
1067  		if (unlikely(need_resched())) {
1068  			ctx_flush_and_put(ctx, ts);
1069  			ctx = NULL;
1070  			cond_resched();
1071  		}
1072  	} while (node && *count < max_entries);
1073  
1074  	ctx_flush_and_put(ctx, ts);
1075  	return node;
1076  }
1077  
__io_fallback_tw(struct llist_node * node,bool sync)1078  static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1079  {
1080  	struct io_ring_ctx *last_ctx = NULL;
1081  	struct io_kiocb *req;
1082  
1083  	while (node) {
1084  		req = container_of(node, struct io_kiocb, io_task_work.node);
1085  		node = node->next;
1086  		if (sync && last_ctx != req->ctx) {
1087  			if (last_ctx) {
1088  				flush_delayed_work(&last_ctx->fallback_work);
1089  				percpu_ref_put(&last_ctx->refs);
1090  			}
1091  			last_ctx = req->ctx;
1092  			percpu_ref_get(&last_ctx->refs);
1093  		}
1094  		if (llist_add(&req->io_task_work.node,
1095  			      &req->ctx->fallback_llist))
1096  			schedule_delayed_work(&req->ctx->fallback_work, 1);
1097  	}
1098  
1099  	if (last_ctx) {
1100  		flush_delayed_work(&last_ctx->fallback_work);
1101  		percpu_ref_put(&last_ctx->refs);
1102  	}
1103  }
1104  
io_fallback_tw(struct io_uring_task * tctx,bool sync)1105  static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1106  {
1107  	struct llist_node *node = llist_del_all(&tctx->task_list);
1108  
1109  	__io_fallback_tw(node, sync);
1110  }
1111  
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1112  struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1113  				      unsigned int max_entries,
1114  				      unsigned int *count)
1115  {
1116  	struct llist_node *node;
1117  
1118  	if (unlikely(current->flags & PF_EXITING)) {
1119  		io_fallback_tw(tctx, true);
1120  		return NULL;
1121  	}
1122  
1123  	node = llist_del_all(&tctx->task_list);
1124  	if (node) {
1125  		node = llist_reverse_order(node);
1126  		node = io_handle_tw_list(node, count, max_entries);
1127  	}
1128  
1129  	/* relaxed read is enough as only the task itself sets ->in_cancel */
1130  	if (unlikely(atomic_read(&tctx->in_cancel)))
1131  		io_uring_drop_tctx_refs(current);
1132  
1133  	trace_io_uring_task_work_run(tctx, *count);
1134  	return node;
1135  }
1136  
tctx_task_work(struct callback_head * cb)1137  void tctx_task_work(struct callback_head *cb)
1138  {
1139  	struct io_uring_task *tctx;
1140  	struct llist_node *ret;
1141  	unsigned int count = 0;
1142  
1143  	tctx = container_of(cb, struct io_uring_task, task_work);
1144  	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1145  	/* can't happen */
1146  	WARN_ON_ONCE(ret);
1147  }
1148  
io_req_local_work_add(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1149  static inline void io_req_local_work_add(struct io_kiocb *req,
1150  					 struct io_ring_ctx *ctx,
1151  					 unsigned flags)
1152  {
1153  	unsigned nr_wait, nr_tw, nr_tw_prev;
1154  	struct llist_node *head;
1155  
1156  	/* See comment above IO_CQ_WAKE_INIT */
1157  	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1158  
1159  	/*
1160  	 * We don't know how many reuqests is there in the link and whether
1161  	 * they can even be queued lazily, fall back to non-lazy.
1162  	 */
1163  	if (req->flags & IO_REQ_LINK_FLAGS)
1164  		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1165  
1166  	guard(rcu)();
1167  
1168  	head = READ_ONCE(ctx->work_llist.first);
1169  	do {
1170  		nr_tw_prev = 0;
1171  		if (head) {
1172  			struct io_kiocb *first_req = container_of(head,
1173  							struct io_kiocb,
1174  							io_task_work.node);
1175  			/*
1176  			 * Might be executed at any moment, rely on
1177  			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1178  			 */
1179  			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1180  		}
1181  
1182  		/*
1183  		 * Theoretically, it can overflow, but that's fine as one of
1184  		 * previous adds should've tried to wake the task.
1185  		 */
1186  		nr_tw = nr_tw_prev + 1;
1187  		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1188  			nr_tw = IO_CQ_WAKE_FORCE;
1189  
1190  		req->nr_tw = nr_tw;
1191  		req->io_task_work.node.next = head;
1192  	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1193  			      &req->io_task_work.node));
1194  
1195  	/*
1196  	 * cmpxchg implies a full barrier, which pairs with the barrier
1197  	 * in set_current_state() on the io_cqring_wait() side. It's used
1198  	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1199  	 * going to sleep will observe the work added to the list, which
1200  	 * is similar to the wait/wawke task state sync.
1201  	 */
1202  
1203  	if (!head) {
1204  		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1205  			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1206  		if (ctx->has_evfd)
1207  			io_eventfd_signal(ctx);
1208  	}
1209  
1210  	nr_wait = atomic_read(&ctx->cq_wait_nr);
1211  	/* not enough or no one is waiting */
1212  	if (nr_tw < nr_wait)
1213  		return;
1214  	/* the previous add has already woken it up */
1215  	if (nr_tw_prev >= nr_wait)
1216  		return;
1217  	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1218  }
1219  
io_req_normal_work_add(struct io_kiocb * req)1220  static void io_req_normal_work_add(struct io_kiocb *req)
1221  {
1222  	struct io_uring_task *tctx = req->tctx;
1223  	struct io_ring_ctx *ctx = req->ctx;
1224  
1225  	/* task_work already pending, we're done */
1226  	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1227  		return;
1228  
1229  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1230  		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1231  
1232  	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1233  	if (ctx->flags & IORING_SETUP_SQPOLL) {
1234  		__set_notify_signal(tctx->task);
1235  		return;
1236  	}
1237  
1238  	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1239  		return;
1240  
1241  	io_fallback_tw(tctx, false);
1242  }
1243  
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1244  void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1245  {
1246  	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1247  		io_req_local_work_add(req, req->ctx, flags);
1248  	else
1249  		io_req_normal_work_add(req);
1250  }
1251  
io_req_task_work_add_remote(struct io_kiocb * req,struct io_ring_ctx * ctx,unsigned flags)1252  void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1253  				 unsigned flags)
1254  {
1255  	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1256  		return;
1257  	io_req_local_work_add(req, ctx, flags);
1258  }
1259  
io_move_task_work_from_local(struct io_ring_ctx * ctx)1260  static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1261  {
1262  	struct llist_node *node = llist_del_all(&ctx->work_llist);
1263  
1264  	__io_fallback_tw(node, false);
1265  	node = llist_del_all(&ctx->retry_llist);
1266  	__io_fallback_tw(node, false);
1267  }
1268  
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1269  static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1270  				       int min_events)
1271  {
1272  	if (!io_local_work_pending(ctx))
1273  		return false;
1274  	if (events < min_events)
1275  		return true;
1276  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1277  		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1278  	return false;
1279  }
1280  
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1281  static int __io_run_local_work_loop(struct llist_node **node,
1282  				    io_tw_token_t tw,
1283  				    int events)
1284  {
1285  	int ret = 0;
1286  
1287  	while (*node) {
1288  		struct llist_node *next = (*node)->next;
1289  		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1290  						    io_task_work.node);
1291  		INDIRECT_CALL_2(req->io_task_work.func,
1292  				io_poll_task_func, io_req_rw_complete,
1293  				req, tw);
1294  		*node = next;
1295  		if (++ret >= events)
1296  			break;
1297  	}
1298  
1299  	return ret;
1300  }
1301  
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1302  static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1303  			       int min_events, int max_events)
1304  {
1305  	struct llist_node *node;
1306  	unsigned int loops = 0;
1307  	int ret = 0;
1308  
1309  	if (WARN_ON_ONCE(ctx->submitter_task != current))
1310  		return -EEXIST;
1311  	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1312  		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1313  again:
1314  	min_events -= ret;
1315  	ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1316  	if (ctx->retry_llist.first)
1317  		goto retry_done;
1318  
1319  	/*
1320  	 * llists are in reverse order, flip it back the right way before
1321  	 * running the pending items.
1322  	 */
1323  	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1324  	ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1325  	ctx->retry_llist.first = node;
1326  	loops++;
1327  
1328  	if (io_run_local_work_continue(ctx, ret, min_events))
1329  		goto again;
1330  retry_done:
1331  	io_submit_flush_completions(ctx);
1332  	if (io_run_local_work_continue(ctx, ret, min_events))
1333  		goto again;
1334  
1335  	trace_io_uring_local_work_run(ctx, ret, loops);
1336  	return ret;
1337  }
1338  
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1339  static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1340  					   int min_events)
1341  {
1342  	struct io_tw_state ts = {};
1343  
1344  	if (!io_local_work_pending(ctx))
1345  		return 0;
1346  	return __io_run_local_work(ctx, ts, min_events,
1347  					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1348  }
1349  
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1350  static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1351  			     int max_events)
1352  {
1353  	struct io_tw_state ts = {};
1354  	int ret;
1355  
1356  	mutex_lock(&ctx->uring_lock);
1357  	ret = __io_run_local_work(ctx, ts, min_events, max_events);
1358  	mutex_unlock(&ctx->uring_lock);
1359  	return ret;
1360  }
1361  
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1362  static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1363  {
1364  	io_tw_lock(req->ctx, tw);
1365  	io_req_defer_failed(req, req->cqe.res);
1366  }
1367  
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1368  void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1369  {
1370  	io_tw_lock(req->ctx, tw);
1371  	if (unlikely(io_should_terminate_tw()))
1372  		io_req_defer_failed(req, -EFAULT);
1373  	else if (req->flags & REQ_F_FORCE_ASYNC)
1374  		io_queue_iowq(req);
1375  	else
1376  		io_queue_sqe(req);
1377  }
1378  
io_req_task_queue_fail(struct io_kiocb * req,int ret)1379  void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1380  {
1381  	io_req_set_res(req, ret, 0);
1382  	req->io_task_work.func = io_req_task_cancel;
1383  	io_req_task_work_add(req);
1384  }
1385  
io_req_task_queue(struct io_kiocb * req)1386  void io_req_task_queue(struct io_kiocb *req)
1387  {
1388  	req->io_task_work.func = io_req_task_submit;
1389  	io_req_task_work_add(req);
1390  }
1391  
io_queue_next(struct io_kiocb * req)1392  void io_queue_next(struct io_kiocb *req)
1393  {
1394  	struct io_kiocb *nxt = io_req_find_next(req);
1395  
1396  	if (nxt)
1397  		io_req_task_queue(nxt);
1398  }
1399  
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1400  static void io_free_batch_list(struct io_ring_ctx *ctx,
1401  			       struct io_wq_work_node *node)
1402  	__must_hold(&ctx->uring_lock)
1403  {
1404  	do {
1405  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1406  						    comp_list);
1407  
1408  		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1409  			if (req->flags & REQ_F_REISSUE) {
1410  				node = req->comp_list.next;
1411  				req->flags &= ~REQ_F_REISSUE;
1412  				io_queue_iowq(req);
1413  				continue;
1414  			}
1415  			if (req->flags & REQ_F_REFCOUNT) {
1416  				node = req->comp_list.next;
1417  				if (!req_ref_put_and_test(req))
1418  					continue;
1419  			}
1420  			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1421  				struct async_poll *apoll = req->apoll;
1422  
1423  				if (apoll->double_poll)
1424  					kfree(apoll->double_poll);
1425  				io_cache_free(&ctx->apoll_cache, apoll);
1426  				req->flags &= ~REQ_F_POLLED;
1427  			}
1428  			if (req->flags & IO_REQ_LINK_FLAGS)
1429  				io_queue_next(req);
1430  			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1431  				io_clean_op(req);
1432  		}
1433  		io_put_file(req);
1434  		io_req_put_rsrc_nodes(req);
1435  		io_put_task(req);
1436  
1437  		node = req->comp_list.next;
1438  		io_req_add_to_cache(req, ctx);
1439  	} while (node);
1440  }
1441  
__io_submit_flush_completions(struct io_ring_ctx * ctx)1442  void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1443  	__must_hold(&ctx->uring_lock)
1444  {
1445  	struct io_submit_state *state = &ctx->submit_state;
1446  	struct io_wq_work_node *node;
1447  
1448  	__io_cq_lock(ctx);
1449  	__wq_list_for_each(node, &state->compl_reqs) {
1450  		struct io_kiocb *req = container_of(node, struct io_kiocb,
1451  					    comp_list);
1452  
1453  		/*
1454  		 * Requests marked with REQUEUE should not post a CQE, they
1455  		 * will go through the io-wq retry machinery and post one
1456  		 * later.
1457  		 */
1458  		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1459  		    unlikely(!io_fill_cqe_req(ctx, req))) {
1460  			if (ctx->lockless_cq) {
1461  				spin_lock(&ctx->completion_lock);
1462  				io_req_cqe_overflow(req);
1463  				spin_unlock(&ctx->completion_lock);
1464  			} else {
1465  				io_req_cqe_overflow(req);
1466  			}
1467  		}
1468  	}
1469  	__io_cq_unlock_post(ctx);
1470  
1471  	if (!wq_list_empty(&state->compl_reqs)) {
1472  		io_free_batch_list(ctx, state->compl_reqs.first);
1473  		INIT_WQ_LIST(&state->compl_reqs);
1474  	}
1475  	ctx->submit_state.cq_flush = false;
1476  }
1477  
io_cqring_events(struct io_ring_ctx * ctx)1478  static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1479  {
1480  	/* See comment at the top of this file */
1481  	smp_rmb();
1482  	return __io_cqring_events(ctx);
1483  }
1484  
1485  /*
1486   * We can't just wait for polled events to come to us, we have to actively
1487   * find and complete them.
1488   */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1489  static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1490  {
1491  	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1492  		return;
1493  
1494  	mutex_lock(&ctx->uring_lock);
1495  	while (!wq_list_empty(&ctx->iopoll_list)) {
1496  		/* let it sleep and repeat later if can't complete a request */
1497  		if (io_do_iopoll(ctx, true) == 0)
1498  			break;
1499  		/*
1500  		 * Ensure we allow local-to-the-cpu processing to take place,
1501  		 * in this case we need to ensure that we reap all events.
1502  		 * Also let task_work, etc. to progress by releasing the mutex
1503  		 */
1504  		if (need_resched()) {
1505  			mutex_unlock(&ctx->uring_lock);
1506  			cond_resched();
1507  			mutex_lock(&ctx->uring_lock);
1508  		}
1509  	}
1510  	mutex_unlock(&ctx->uring_lock);
1511  }
1512  
io_iopoll_check(struct io_ring_ctx * ctx,long min)1513  static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1514  {
1515  	unsigned int nr_events = 0;
1516  	unsigned long check_cq;
1517  
1518  	lockdep_assert_held(&ctx->uring_lock);
1519  
1520  	if (!io_allowed_run_tw(ctx))
1521  		return -EEXIST;
1522  
1523  	check_cq = READ_ONCE(ctx->check_cq);
1524  	if (unlikely(check_cq)) {
1525  		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1526  			__io_cqring_overflow_flush(ctx, false);
1527  		/*
1528  		 * Similarly do not spin if we have not informed the user of any
1529  		 * dropped CQE.
1530  		 */
1531  		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1532  			return -EBADR;
1533  	}
1534  	/*
1535  	 * Don't enter poll loop if we already have events pending.
1536  	 * If we do, we can potentially be spinning for commands that
1537  	 * already triggered a CQE (eg in error).
1538  	 */
1539  	if (io_cqring_events(ctx))
1540  		return 0;
1541  
1542  	do {
1543  		int ret = 0;
1544  
1545  		/*
1546  		 * If a submit got punted to a workqueue, we can have the
1547  		 * application entering polling for a command before it gets
1548  		 * issued. That app will hold the uring_lock for the duration
1549  		 * of the poll right here, so we need to take a breather every
1550  		 * now and then to ensure that the issue has a chance to add
1551  		 * the poll to the issued list. Otherwise we can spin here
1552  		 * forever, while the workqueue is stuck trying to acquire the
1553  		 * very same mutex.
1554  		 */
1555  		if (wq_list_empty(&ctx->iopoll_list) ||
1556  		    io_task_work_pending(ctx)) {
1557  			u32 tail = ctx->cached_cq_tail;
1558  
1559  			(void) io_run_local_work_locked(ctx, min);
1560  
1561  			if (task_work_pending(current) ||
1562  			    wq_list_empty(&ctx->iopoll_list)) {
1563  				mutex_unlock(&ctx->uring_lock);
1564  				io_run_task_work();
1565  				mutex_lock(&ctx->uring_lock);
1566  			}
1567  			/* some requests don't go through iopoll_list */
1568  			if (tail != ctx->cached_cq_tail ||
1569  			    wq_list_empty(&ctx->iopoll_list))
1570  				break;
1571  		}
1572  		ret = io_do_iopoll(ctx, !min);
1573  		if (unlikely(ret < 0))
1574  			return ret;
1575  
1576  		if (task_sigpending(current))
1577  			return -EINTR;
1578  		if (need_resched())
1579  			break;
1580  
1581  		nr_events += ret;
1582  	} while (nr_events < min);
1583  
1584  	return 0;
1585  }
1586  
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1587  void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1588  {
1589  	io_req_complete_defer(req);
1590  }
1591  
1592  /*
1593   * After the iocb has been issued, it's safe to be found on the poll list.
1594   * Adding the kiocb to the list AFTER submission ensures that we don't
1595   * find it from a io_do_iopoll() thread before the issuer is done
1596   * accessing the kiocb cookie.
1597   */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1598  static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1599  {
1600  	struct io_ring_ctx *ctx = req->ctx;
1601  	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1602  
1603  	/* workqueue context doesn't hold uring_lock, grab it now */
1604  	if (unlikely(needs_lock))
1605  		mutex_lock(&ctx->uring_lock);
1606  
1607  	/*
1608  	 * Track whether we have multiple files in our lists. This will impact
1609  	 * how we do polling eventually, not spinning if we're on potentially
1610  	 * different devices.
1611  	 */
1612  	if (wq_list_empty(&ctx->iopoll_list)) {
1613  		ctx->poll_multi_queue = false;
1614  	} else if (!ctx->poll_multi_queue) {
1615  		struct io_kiocb *list_req;
1616  
1617  		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1618  					comp_list);
1619  		if (list_req->file != req->file)
1620  			ctx->poll_multi_queue = true;
1621  	}
1622  
1623  	/*
1624  	 * For fast devices, IO may have already completed. If it has, add
1625  	 * it to the front so we find it first.
1626  	 */
1627  	if (READ_ONCE(req->iopoll_completed))
1628  		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1629  	else
1630  		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1631  
1632  	if (unlikely(needs_lock)) {
1633  		/*
1634  		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1635  		 * in sq thread task context or in io worker task context. If
1636  		 * current task context is sq thread, we don't need to check
1637  		 * whether should wake up sq thread.
1638  		 */
1639  		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1640  		    wq_has_sleeper(&ctx->sq_data->wait))
1641  			wake_up(&ctx->sq_data->wait);
1642  
1643  		mutex_unlock(&ctx->uring_lock);
1644  	}
1645  }
1646  
io_file_get_flags(struct file * file)1647  io_req_flags_t io_file_get_flags(struct file *file)
1648  {
1649  	io_req_flags_t res = 0;
1650  
1651  	if (S_ISREG(file_inode(file)->i_mode))
1652  		res |= REQ_F_ISREG;
1653  	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1654  		res |= REQ_F_SUPPORT_NOWAIT;
1655  	return res;
1656  }
1657  
io_get_sequence(struct io_kiocb * req)1658  static u32 io_get_sequence(struct io_kiocb *req)
1659  {
1660  	u32 seq = req->ctx->cached_sq_head;
1661  	struct io_kiocb *cur;
1662  
1663  	/* need original cached_sq_head, but it was increased for each req */
1664  	io_for_each_link(cur, req)
1665  		seq--;
1666  	return seq;
1667  }
1668  
io_drain_req(struct io_kiocb * req)1669  static __cold void io_drain_req(struct io_kiocb *req)
1670  	__must_hold(&ctx->uring_lock)
1671  {
1672  	struct io_ring_ctx *ctx = req->ctx;
1673  	struct io_defer_entry *de;
1674  	int ret;
1675  	u32 seq = io_get_sequence(req);
1676  
1677  	/* Still need defer if there is pending req in defer list. */
1678  	spin_lock(&ctx->completion_lock);
1679  	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1680  		spin_unlock(&ctx->completion_lock);
1681  queue:
1682  		ctx->drain_active = false;
1683  		io_req_task_queue(req);
1684  		return;
1685  	}
1686  	spin_unlock(&ctx->completion_lock);
1687  
1688  	io_prep_async_link(req);
1689  	de = kmalloc(sizeof(*de), GFP_KERNEL);
1690  	if (!de) {
1691  		ret = -ENOMEM;
1692  		io_req_defer_failed(req, ret);
1693  		return;
1694  	}
1695  
1696  	spin_lock(&ctx->completion_lock);
1697  	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1698  		spin_unlock(&ctx->completion_lock);
1699  		kfree(de);
1700  		goto queue;
1701  	}
1702  
1703  	trace_io_uring_defer(req);
1704  	de->req = req;
1705  	de->seq = seq;
1706  	list_add_tail(&de->list, &ctx->defer_list);
1707  	spin_unlock(&ctx->completion_lock);
1708  }
1709  
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1710  static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1711  			   unsigned int issue_flags)
1712  {
1713  	if (req->file || !def->needs_file)
1714  		return true;
1715  
1716  	if (req->flags & REQ_F_FIXED_FILE)
1717  		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1718  	else
1719  		req->file = io_file_get_normal(req, req->cqe.fd);
1720  
1721  	return !!req->file;
1722  }
1723  
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1724  static inline int __io_issue_sqe(struct io_kiocb *req,
1725  				 unsigned int issue_flags,
1726  				 const struct io_issue_def *def)
1727  {
1728  	const struct cred *creds = NULL;
1729  	int ret;
1730  
1731  	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1732  		creds = override_creds(req->creds);
1733  
1734  	if (!def->audit_skip)
1735  		audit_uring_entry(req->opcode);
1736  
1737  	ret = def->issue(req, issue_flags);
1738  
1739  	if (!def->audit_skip)
1740  		audit_uring_exit(!ret, ret);
1741  
1742  	if (creds)
1743  		revert_creds(creds);
1744  
1745  	return ret;
1746  }
1747  
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1748  static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1749  {
1750  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1751  	int ret;
1752  
1753  	if (unlikely(!io_assign_file(req, def, issue_flags)))
1754  		return -EBADF;
1755  
1756  	ret = __io_issue_sqe(req, issue_flags, def);
1757  
1758  	if (ret == IOU_OK) {
1759  		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1760  			io_req_complete_defer(req);
1761  		else
1762  			io_req_complete_post(req, issue_flags);
1763  
1764  		return 0;
1765  	}
1766  
1767  	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1768  		ret = 0;
1769  		io_arm_ltimeout(req);
1770  
1771  		/* If the op doesn't have a file, we're not polling for it */
1772  		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1773  			io_iopoll_req_issued(req, issue_flags);
1774  	}
1775  	return ret;
1776  }
1777  
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1778  int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1779  {
1780  	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1781  					 IO_URING_F_MULTISHOT |
1782  					 IO_URING_F_COMPLETE_DEFER;
1783  	int ret;
1784  
1785  	io_tw_lock(req->ctx, tw);
1786  
1787  	WARN_ON_ONCE(!req->file);
1788  	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1789  		return -EFAULT;
1790  
1791  	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1792  
1793  	WARN_ON_ONCE(ret == IOU_OK);
1794  
1795  	if (ret == IOU_ISSUE_SKIP_COMPLETE)
1796  		ret = 0;
1797  	return ret;
1798  }
1799  
io_wq_free_work(struct io_wq_work * work)1800  struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1801  {
1802  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1803  	struct io_kiocb *nxt = NULL;
1804  
1805  	if (req_ref_put_and_test(req)) {
1806  		if (req->flags & IO_REQ_LINK_FLAGS)
1807  			nxt = io_req_find_next(req);
1808  		io_free_req(req);
1809  	}
1810  	return nxt ? &nxt->work : NULL;
1811  }
1812  
io_wq_submit_work(struct io_wq_work * work)1813  void io_wq_submit_work(struct io_wq_work *work)
1814  {
1815  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1816  	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1817  	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1818  	bool needs_poll = false;
1819  	int ret = 0, err = -ECANCELED;
1820  
1821  	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1822  	if (!(req->flags & REQ_F_REFCOUNT))
1823  		__io_req_set_refcount(req, 2);
1824  	else
1825  		req_ref_get(req);
1826  
1827  	io_arm_ltimeout(req);
1828  
1829  	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1830  	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1831  fail:
1832  		io_req_task_queue_fail(req, err);
1833  		return;
1834  	}
1835  	if (!io_assign_file(req, def, issue_flags)) {
1836  		err = -EBADF;
1837  		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1838  		goto fail;
1839  	}
1840  
1841  	/*
1842  	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1843  	 * submitter task context. Final request completions are handed to the
1844  	 * right context, however this is not the case of auxiliary CQEs,
1845  	 * which is the main mean of operation for multishot requests.
1846  	 * Don't allow any multishot execution from io-wq. It's more restrictive
1847  	 * than necessary and also cleaner.
1848  	 */
1849  	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1850  		err = -EBADFD;
1851  		if (!io_file_can_poll(req))
1852  			goto fail;
1853  		if (req->file->f_flags & O_NONBLOCK ||
1854  		    req->file->f_mode & FMODE_NOWAIT) {
1855  			err = -ECANCELED;
1856  			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1857  				goto fail;
1858  			return;
1859  		} else {
1860  			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1861  		}
1862  	}
1863  
1864  	if (req->flags & REQ_F_FORCE_ASYNC) {
1865  		bool opcode_poll = def->pollin || def->pollout;
1866  
1867  		if (opcode_poll && io_file_can_poll(req)) {
1868  			needs_poll = true;
1869  			issue_flags |= IO_URING_F_NONBLOCK;
1870  		}
1871  	}
1872  
1873  	do {
1874  		ret = io_issue_sqe(req, issue_flags);
1875  		if (ret != -EAGAIN)
1876  			break;
1877  
1878  		/*
1879  		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1880  		 * poll. -EAGAIN is final for that case.
1881  		 */
1882  		if (req->flags & REQ_F_NOWAIT)
1883  			break;
1884  
1885  		/*
1886  		 * We can get EAGAIN for iopolled IO even though we're
1887  		 * forcing a sync submission from here, since we can't
1888  		 * wait for request slots on the block side.
1889  		 */
1890  		if (!needs_poll) {
1891  			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1892  				break;
1893  			if (io_wq_worker_stopped())
1894  				break;
1895  			cond_resched();
1896  			continue;
1897  		}
1898  
1899  		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1900  			return;
1901  		/* aborted or ready, in either case retry blocking */
1902  		needs_poll = false;
1903  		issue_flags &= ~IO_URING_F_NONBLOCK;
1904  	} while (1);
1905  
1906  	/* avoid locking problems by failing it from a clean context */
1907  	if (ret)
1908  		io_req_task_queue_fail(req, ret);
1909  }
1910  
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1911  inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1912  				      unsigned int issue_flags)
1913  {
1914  	struct io_ring_ctx *ctx = req->ctx;
1915  	struct io_rsrc_node *node;
1916  	struct file *file = NULL;
1917  
1918  	io_ring_submit_lock(ctx, issue_flags);
1919  	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1920  	if (node) {
1921  		io_req_assign_rsrc_node(&req->file_node, node);
1922  		req->flags |= io_slot_flags(node);
1923  		file = io_slot_file(node);
1924  	}
1925  	io_ring_submit_unlock(ctx, issue_flags);
1926  	return file;
1927  }
1928  
io_file_get_normal(struct io_kiocb * req,int fd)1929  struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1930  {
1931  	struct file *file = fget(fd);
1932  
1933  	trace_io_uring_file_get(req, fd);
1934  
1935  	/* we don't allow fixed io_uring files */
1936  	if (file && io_is_uring_fops(file))
1937  		io_req_track_inflight(req);
1938  	return file;
1939  }
1940  
io_queue_async(struct io_kiocb * req,int ret)1941  static void io_queue_async(struct io_kiocb *req, int ret)
1942  	__must_hold(&req->ctx->uring_lock)
1943  {
1944  	struct io_kiocb *linked_timeout;
1945  
1946  	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1947  		io_req_defer_failed(req, ret);
1948  		return;
1949  	}
1950  
1951  	linked_timeout = io_prep_linked_timeout(req);
1952  
1953  	switch (io_arm_poll_handler(req, 0)) {
1954  	case IO_APOLL_READY:
1955  		io_kbuf_recycle(req, 0);
1956  		io_req_task_queue(req);
1957  		break;
1958  	case IO_APOLL_ABORTED:
1959  		io_kbuf_recycle(req, 0);
1960  		io_queue_iowq(req);
1961  		break;
1962  	case IO_APOLL_OK:
1963  		break;
1964  	}
1965  
1966  	if (linked_timeout)
1967  		io_queue_linked_timeout(linked_timeout);
1968  }
1969  
io_queue_sqe(struct io_kiocb * req)1970  static inline void io_queue_sqe(struct io_kiocb *req)
1971  	__must_hold(&req->ctx->uring_lock)
1972  {
1973  	int ret;
1974  
1975  	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1976  
1977  	/*
1978  	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1979  	 * doesn't support non-blocking read/write attempts
1980  	 */
1981  	if (unlikely(ret))
1982  		io_queue_async(req, ret);
1983  }
1984  
io_queue_sqe_fallback(struct io_kiocb * req)1985  static void io_queue_sqe_fallback(struct io_kiocb *req)
1986  	__must_hold(&req->ctx->uring_lock)
1987  {
1988  	if (unlikely(req->flags & REQ_F_FAIL)) {
1989  		/*
1990  		 * We don't submit, fail them all, for that replace hardlinks
1991  		 * with normal links. Extra REQ_F_LINK is tolerated.
1992  		 */
1993  		req->flags &= ~REQ_F_HARDLINK;
1994  		req->flags |= REQ_F_LINK;
1995  		io_req_defer_failed(req, req->cqe.res);
1996  	} else {
1997  		if (unlikely(req->ctx->drain_active))
1998  			io_drain_req(req);
1999  		else
2000  			io_queue_iowq(req);
2001  	}
2002  }
2003  
2004  /*
2005   * Check SQE restrictions (opcode and flags).
2006   *
2007   * Returns 'true' if SQE is allowed, 'false' otherwise.
2008   */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2009  static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2010  					struct io_kiocb *req,
2011  					unsigned int sqe_flags)
2012  {
2013  	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2014  		return false;
2015  
2016  	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2017  	    ctx->restrictions.sqe_flags_required)
2018  		return false;
2019  
2020  	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2021  			  ctx->restrictions.sqe_flags_required))
2022  		return false;
2023  
2024  	return true;
2025  }
2026  
io_init_drain(struct io_ring_ctx * ctx)2027  static void io_init_drain(struct io_ring_ctx *ctx)
2028  {
2029  	struct io_kiocb *head = ctx->submit_state.link.head;
2030  
2031  	ctx->drain_active = true;
2032  	if (head) {
2033  		/*
2034  		 * If we need to drain a request in the middle of a link, drain
2035  		 * the head request and the next request/link after the current
2036  		 * link. Considering sequential execution of links,
2037  		 * REQ_F_IO_DRAIN will be maintained for every request of our
2038  		 * link.
2039  		 */
2040  		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2041  		ctx->drain_next = true;
2042  	}
2043  }
2044  
io_init_fail_req(struct io_kiocb * req,int err)2045  static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2046  {
2047  	/* ensure per-opcode data is cleared if we fail before prep */
2048  	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2049  	return err;
2050  }
2051  
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2052  static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2053  		       const struct io_uring_sqe *sqe)
2054  	__must_hold(&ctx->uring_lock)
2055  {
2056  	const struct io_issue_def *def;
2057  	unsigned int sqe_flags;
2058  	int personality;
2059  	u8 opcode;
2060  
2061  	/* req is partially pre-initialised, see io_preinit_req() */
2062  	req->opcode = opcode = READ_ONCE(sqe->opcode);
2063  	/* same numerical values with corresponding REQ_F_*, safe to copy */
2064  	sqe_flags = READ_ONCE(sqe->flags);
2065  	req->flags = (__force io_req_flags_t) sqe_flags;
2066  	req->cqe.user_data = READ_ONCE(sqe->user_data);
2067  	req->file = NULL;
2068  	req->tctx = current->io_uring;
2069  	req->cancel_seq_set = false;
2070  
2071  	if (unlikely(opcode >= IORING_OP_LAST)) {
2072  		req->opcode = 0;
2073  		return io_init_fail_req(req, -EINVAL);
2074  	}
2075  	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2076  
2077  	def = &io_issue_defs[opcode];
2078  	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2079  		/* enforce forwards compatibility on users */
2080  		if (sqe_flags & ~SQE_VALID_FLAGS)
2081  			return io_init_fail_req(req, -EINVAL);
2082  		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2083  			if (!def->buffer_select)
2084  				return io_init_fail_req(req, -EOPNOTSUPP);
2085  			req->buf_index = READ_ONCE(sqe->buf_group);
2086  		}
2087  		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2088  			ctx->drain_disabled = true;
2089  		if (sqe_flags & IOSQE_IO_DRAIN) {
2090  			if (ctx->drain_disabled)
2091  				return io_init_fail_req(req, -EOPNOTSUPP);
2092  			io_init_drain(ctx);
2093  		}
2094  	}
2095  	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2096  		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2097  			return io_init_fail_req(req, -EACCES);
2098  		/* knock it to the slow queue path, will be drained there */
2099  		if (ctx->drain_active)
2100  			req->flags |= REQ_F_FORCE_ASYNC;
2101  		/* if there is no link, we're at "next" request and need to drain */
2102  		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2103  			ctx->drain_next = false;
2104  			ctx->drain_active = true;
2105  			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2106  		}
2107  	}
2108  
2109  	if (!def->ioprio && sqe->ioprio)
2110  		return io_init_fail_req(req, -EINVAL);
2111  	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2112  		return io_init_fail_req(req, -EINVAL);
2113  
2114  	if (def->needs_file) {
2115  		struct io_submit_state *state = &ctx->submit_state;
2116  
2117  		req->cqe.fd = READ_ONCE(sqe->fd);
2118  
2119  		/*
2120  		 * Plug now if we have more than 2 IO left after this, and the
2121  		 * target is potentially a read/write to block based storage.
2122  		 */
2123  		if (state->need_plug && def->plug) {
2124  			state->plug_started = true;
2125  			state->need_plug = false;
2126  			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2127  		}
2128  	}
2129  
2130  	personality = READ_ONCE(sqe->personality);
2131  	if (personality) {
2132  		int ret;
2133  
2134  		req->creds = xa_load(&ctx->personalities, personality);
2135  		if (!req->creds)
2136  			return io_init_fail_req(req, -EINVAL);
2137  		get_cred(req->creds);
2138  		ret = security_uring_override_creds(req->creds);
2139  		if (ret) {
2140  			put_cred(req->creds);
2141  			return io_init_fail_req(req, ret);
2142  		}
2143  		req->flags |= REQ_F_CREDS;
2144  	}
2145  
2146  	return def->prep(req, sqe);
2147  }
2148  
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2149  static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2150  				      struct io_kiocb *req, int ret)
2151  {
2152  	struct io_ring_ctx *ctx = req->ctx;
2153  	struct io_submit_link *link = &ctx->submit_state.link;
2154  	struct io_kiocb *head = link->head;
2155  
2156  	trace_io_uring_req_failed(sqe, req, ret);
2157  
2158  	/*
2159  	 * Avoid breaking links in the middle as it renders links with SQPOLL
2160  	 * unusable. Instead of failing eagerly, continue assembling the link if
2161  	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2162  	 * should find the flag and handle the rest.
2163  	 */
2164  	req_fail_link_node(req, ret);
2165  	if (head && !(head->flags & REQ_F_FAIL))
2166  		req_fail_link_node(head, -ECANCELED);
2167  
2168  	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2169  		if (head) {
2170  			link->last->link = req;
2171  			link->head = NULL;
2172  			req = head;
2173  		}
2174  		io_queue_sqe_fallback(req);
2175  		return ret;
2176  	}
2177  
2178  	if (head)
2179  		link->last->link = req;
2180  	else
2181  		link->head = req;
2182  	link->last = req;
2183  	return 0;
2184  }
2185  
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2186  static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2187  			 const struct io_uring_sqe *sqe)
2188  	__must_hold(&ctx->uring_lock)
2189  {
2190  	struct io_submit_link *link = &ctx->submit_state.link;
2191  	int ret;
2192  
2193  	ret = io_init_req(ctx, req, sqe);
2194  	if (unlikely(ret))
2195  		return io_submit_fail_init(sqe, req, ret);
2196  
2197  	trace_io_uring_submit_req(req);
2198  
2199  	/*
2200  	 * If we already have a head request, queue this one for async
2201  	 * submittal once the head completes. If we don't have a head but
2202  	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2203  	 * submitted sync once the chain is complete. If none of those
2204  	 * conditions are true (normal request), then just queue it.
2205  	 */
2206  	if (unlikely(link->head)) {
2207  		trace_io_uring_link(req, link->last);
2208  		link->last->link = req;
2209  		link->last = req;
2210  
2211  		if (req->flags & IO_REQ_LINK_FLAGS)
2212  			return 0;
2213  		/* last request of the link, flush it */
2214  		req = link->head;
2215  		link->head = NULL;
2216  		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2217  			goto fallback;
2218  
2219  	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2220  					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2221  		if (req->flags & IO_REQ_LINK_FLAGS) {
2222  			link->head = req;
2223  			link->last = req;
2224  		} else {
2225  fallback:
2226  			io_queue_sqe_fallback(req);
2227  		}
2228  		return 0;
2229  	}
2230  
2231  	io_queue_sqe(req);
2232  	return 0;
2233  }
2234  
2235  /*
2236   * Batched submission is done, ensure local IO is flushed out.
2237   */
io_submit_state_end(struct io_ring_ctx * ctx)2238  static void io_submit_state_end(struct io_ring_ctx *ctx)
2239  {
2240  	struct io_submit_state *state = &ctx->submit_state;
2241  
2242  	if (unlikely(state->link.head))
2243  		io_queue_sqe_fallback(state->link.head);
2244  	/* flush only after queuing links as they can generate completions */
2245  	io_submit_flush_completions(ctx);
2246  	if (state->plug_started)
2247  		blk_finish_plug(&state->plug);
2248  }
2249  
2250  /*
2251   * Start submission side cache.
2252   */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2253  static void io_submit_state_start(struct io_submit_state *state,
2254  				  unsigned int max_ios)
2255  {
2256  	state->plug_started = false;
2257  	state->need_plug = max_ios > 2;
2258  	state->submit_nr = max_ios;
2259  	/* set only head, no need to init link_last in advance */
2260  	state->link.head = NULL;
2261  }
2262  
io_commit_sqring(struct io_ring_ctx * ctx)2263  static void io_commit_sqring(struct io_ring_ctx *ctx)
2264  {
2265  	struct io_rings *rings = ctx->rings;
2266  
2267  	/*
2268  	 * Ensure any loads from the SQEs are done at this point,
2269  	 * since once we write the new head, the application could
2270  	 * write new data to them.
2271  	 */
2272  	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2273  }
2274  
2275  /*
2276   * Fetch an sqe, if one is available. Note this returns a pointer to memory
2277   * that is mapped by userspace. This means that care needs to be taken to
2278   * ensure that reads are stable, as we cannot rely on userspace always
2279   * being a good citizen. If members of the sqe are validated and then later
2280   * used, it's important that those reads are done through READ_ONCE() to
2281   * prevent a re-load down the line.
2282   */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2283  static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2284  {
2285  	unsigned mask = ctx->sq_entries - 1;
2286  	unsigned head = ctx->cached_sq_head++ & mask;
2287  
2288  	if (static_branch_unlikely(&io_key_has_sqarray) &&
2289  	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2290  		head = READ_ONCE(ctx->sq_array[head]);
2291  		if (unlikely(head >= ctx->sq_entries)) {
2292  			/* drop invalid entries */
2293  			spin_lock(&ctx->completion_lock);
2294  			ctx->cq_extra--;
2295  			spin_unlock(&ctx->completion_lock);
2296  			WRITE_ONCE(ctx->rings->sq_dropped,
2297  				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2298  			return false;
2299  		}
2300  		head = array_index_nospec(head, ctx->sq_entries);
2301  	}
2302  
2303  	/*
2304  	 * The cached sq head (or cq tail) serves two purposes:
2305  	 *
2306  	 * 1) allows us to batch the cost of updating the user visible
2307  	 *    head updates.
2308  	 * 2) allows the kernel side to track the head on its own, even
2309  	 *    though the application is the one updating it.
2310  	 */
2311  
2312  	/* double index for 128-byte SQEs, twice as long */
2313  	if (ctx->flags & IORING_SETUP_SQE128)
2314  		head <<= 1;
2315  	*sqe = &ctx->sq_sqes[head];
2316  	return true;
2317  }
2318  
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2319  int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2320  	__must_hold(&ctx->uring_lock)
2321  {
2322  	unsigned int entries = io_sqring_entries(ctx);
2323  	unsigned int left;
2324  	int ret;
2325  
2326  	if (unlikely(!entries))
2327  		return 0;
2328  	/* make sure SQ entry isn't read before tail */
2329  	ret = left = min(nr, entries);
2330  	io_get_task_refs(left);
2331  	io_submit_state_start(&ctx->submit_state, left);
2332  
2333  	do {
2334  		const struct io_uring_sqe *sqe;
2335  		struct io_kiocb *req;
2336  
2337  		if (unlikely(!io_alloc_req(ctx, &req)))
2338  			break;
2339  		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2340  			io_req_add_to_cache(req, ctx);
2341  			break;
2342  		}
2343  
2344  		/*
2345  		 * Continue submitting even for sqe failure if the
2346  		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2347  		 */
2348  		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2349  		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2350  			left--;
2351  			break;
2352  		}
2353  	} while (--left);
2354  
2355  	if (unlikely(left)) {
2356  		ret -= left;
2357  		/* try again if it submitted nothing and can't allocate a req */
2358  		if (!ret && io_req_cache_empty(ctx))
2359  			ret = -EAGAIN;
2360  		current->io_uring->cached_refs += left;
2361  	}
2362  
2363  	io_submit_state_end(ctx);
2364  	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2365  	io_commit_sqring(ctx);
2366  	return ret;
2367  }
2368  
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2369  static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2370  			    int wake_flags, void *key)
2371  {
2372  	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2373  
2374  	/*
2375  	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2376  	 * the task, and the next invocation will do it.
2377  	 */
2378  	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2379  		return autoremove_wake_function(curr, mode, wake_flags, key);
2380  	return -1;
2381  }
2382  
io_run_task_work_sig(struct io_ring_ctx * ctx)2383  int io_run_task_work_sig(struct io_ring_ctx *ctx)
2384  {
2385  	if (io_local_work_pending(ctx)) {
2386  		__set_current_state(TASK_RUNNING);
2387  		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2388  			return 0;
2389  	}
2390  	if (io_run_task_work() > 0)
2391  		return 0;
2392  	if (task_sigpending(current))
2393  		return -EINTR;
2394  	return 0;
2395  }
2396  
current_pending_io(void)2397  static bool current_pending_io(void)
2398  {
2399  	struct io_uring_task *tctx = current->io_uring;
2400  
2401  	if (!tctx)
2402  		return false;
2403  	return percpu_counter_read_positive(&tctx->inflight);
2404  }
2405  
io_cqring_timer_wakeup(struct hrtimer * timer)2406  static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2407  {
2408  	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2409  
2410  	WRITE_ONCE(iowq->hit_timeout, 1);
2411  	iowq->min_timeout = 0;
2412  	wake_up_process(iowq->wq.private);
2413  	return HRTIMER_NORESTART;
2414  }
2415  
2416  /*
2417   * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2418   * wake up. If not, and we have a normal timeout, switch to that and keep
2419   * sleeping.
2420   */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2421  static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2422  {
2423  	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2424  	struct io_ring_ctx *ctx = iowq->ctx;
2425  
2426  	/* no general timeout, or shorter (or equal), we are done */
2427  	if (iowq->timeout == KTIME_MAX ||
2428  	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2429  		goto out_wake;
2430  	/* work we may need to run, wake function will see if we need to wake */
2431  	if (io_has_work(ctx))
2432  		goto out_wake;
2433  	/* got events since we started waiting, min timeout is done */
2434  	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2435  		goto out_wake;
2436  	/* if we have any events and min timeout expired, we're done */
2437  	if (io_cqring_events(ctx))
2438  		goto out_wake;
2439  
2440  	/*
2441  	 * If using deferred task_work running and application is waiting on
2442  	 * more than one request, ensure we reset it now where we are switching
2443  	 * to normal sleeps. Any request completion post min_wait should wake
2444  	 * the task and return.
2445  	 */
2446  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2447  		atomic_set(&ctx->cq_wait_nr, 1);
2448  		smp_mb();
2449  		if (!llist_empty(&ctx->work_llist))
2450  			goto out_wake;
2451  	}
2452  
2453  	hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2454  	hrtimer_set_expires(timer, iowq->timeout);
2455  	return HRTIMER_RESTART;
2456  out_wake:
2457  	return io_cqring_timer_wakeup(timer);
2458  }
2459  
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2460  static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2461  				      clockid_t clock_id, ktime_t start_time)
2462  {
2463  	ktime_t timeout;
2464  
2465  	if (iowq->min_timeout) {
2466  		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2467  		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2468  				       HRTIMER_MODE_ABS);
2469  	} else {
2470  		timeout = iowq->timeout;
2471  		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2472  				       HRTIMER_MODE_ABS);
2473  	}
2474  
2475  	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2476  	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2477  
2478  	if (!READ_ONCE(iowq->hit_timeout))
2479  		schedule();
2480  
2481  	hrtimer_cancel(&iowq->t);
2482  	destroy_hrtimer_on_stack(&iowq->t);
2483  	__set_current_state(TASK_RUNNING);
2484  
2485  	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2486  }
2487  
2488  struct ext_arg {
2489  	size_t argsz;
2490  	struct timespec64 ts;
2491  	const sigset_t __user *sig;
2492  	ktime_t min_time;
2493  	bool ts_set;
2494  	bool iowait;
2495  };
2496  
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2497  static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2498  				     struct io_wait_queue *iowq,
2499  				     struct ext_arg *ext_arg,
2500  				     ktime_t start_time)
2501  {
2502  	int ret = 0;
2503  
2504  	/*
2505  	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2506  	 * can take into account that the task is waiting for IO - turns out
2507  	 * to be important for low QD IO.
2508  	 */
2509  	if (ext_arg->iowait && current_pending_io())
2510  		current->in_iowait = 1;
2511  	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2512  		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2513  	else
2514  		schedule();
2515  	current->in_iowait = 0;
2516  	return ret;
2517  }
2518  
2519  /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2520  static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2521  					  struct io_wait_queue *iowq,
2522  					  struct ext_arg *ext_arg,
2523  					  ktime_t start_time)
2524  {
2525  	if (unlikely(READ_ONCE(ctx->check_cq)))
2526  		return 1;
2527  	if (unlikely(io_local_work_pending(ctx)))
2528  		return 1;
2529  	if (unlikely(task_work_pending(current)))
2530  		return 1;
2531  	if (unlikely(task_sigpending(current)))
2532  		return -EINTR;
2533  	if (unlikely(io_should_wake(iowq)))
2534  		return 0;
2535  
2536  	return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2537  }
2538  
2539  /*
2540   * Wait until events become available, if we don't already have some. The
2541   * application must reap them itself, as they reside on the shared cq ring.
2542   */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2543  static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2544  			  struct ext_arg *ext_arg)
2545  {
2546  	struct io_wait_queue iowq;
2547  	struct io_rings *rings = ctx->rings;
2548  	ktime_t start_time;
2549  	int ret;
2550  
2551  	if (!io_allowed_run_tw(ctx))
2552  		return -EEXIST;
2553  	if (io_local_work_pending(ctx))
2554  		io_run_local_work(ctx, min_events,
2555  				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2556  	io_run_task_work();
2557  
2558  	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2559  		io_cqring_do_overflow_flush(ctx);
2560  	if (__io_cqring_events_user(ctx) >= min_events)
2561  		return 0;
2562  
2563  	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2564  	iowq.wq.private = current;
2565  	INIT_LIST_HEAD(&iowq.wq.entry);
2566  	iowq.ctx = ctx;
2567  	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2568  	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2569  	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2570  	iowq.hit_timeout = 0;
2571  	iowq.min_timeout = ext_arg->min_time;
2572  	iowq.timeout = KTIME_MAX;
2573  	start_time = io_get_time(ctx);
2574  
2575  	if (ext_arg->ts_set) {
2576  		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2577  		if (!(flags & IORING_ENTER_ABS_TIMER))
2578  			iowq.timeout = ktime_add(iowq.timeout, start_time);
2579  	}
2580  
2581  	if (ext_arg->sig) {
2582  #ifdef CONFIG_COMPAT
2583  		if (in_compat_syscall())
2584  			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2585  						      ext_arg->argsz);
2586  		else
2587  #endif
2588  			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2589  
2590  		if (ret)
2591  			return ret;
2592  	}
2593  
2594  	io_napi_busy_loop(ctx, &iowq);
2595  
2596  	trace_io_uring_cqring_wait(ctx, min_events);
2597  	do {
2598  		unsigned long check_cq;
2599  		int nr_wait;
2600  
2601  		/* if min timeout has been hit, don't reset wait count */
2602  		if (!iowq.hit_timeout)
2603  			nr_wait = (int) iowq.cq_tail -
2604  					READ_ONCE(ctx->rings->cq.tail);
2605  		else
2606  			nr_wait = 1;
2607  
2608  		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2609  			atomic_set(&ctx->cq_wait_nr, nr_wait);
2610  			set_current_state(TASK_INTERRUPTIBLE);
2611  		} else {
2612  			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2613  							TASK_INTERRUPTIBLE);
2614  		}
2615  
2616  		ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2617  		__set_current_state(TASK_RUNNING);
2618  		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2619  
2620  		/*
2621  		 * Run task_work after scheduling and before io_should_wake().
2622  		 * If we got woken because of task_work being processed, run it
2623  		 * now rather than let the caller do another wait loop.
2624  		 */
2625  		if (io_local_work_pending(ctx))
2626  			io_run_local_work(ctx, nr_wait, nr_wait);
2627  		io_run_task_work();
2628  
2629  		/*
2630  		 * Non-local task_work will be run on exit to userspace, but
2631  		 * if we're using DEFER_TASKRUN, then we could have waited
2632  		 * with a timeout for a number of requests. If the timeout
2633  		 * hits, we could have some requests ready to process. Ensure
2634  		 * this break is _after_ we have run task_work, to avoid
2635  		 * deferring running potentially pending requests until the
2636  		 * next time we wait for events.
2637  		 */
2638  		if (ret < 0)
2639  			break;
2640  
2641  		check_cq = READ_ONCE(ctx->check_cq);
2642  		if (unlikely(check_cq)) {
2643  			/* let the caller flush overflows, retry */
2644  			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2645  				io_cqring_do_overflow_flush(ctx);
2646  			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2647  				ret = -EBADR;
2648  				break;
2649  			}
2650  		}
2651  
2652  		if (io_should_wake(&iowq)) {
2653  			ret = 0;
2654  			break;
2655  		}
2656  		cond_resched();
2657  	} while (1);
2658  
2659  	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2660  		finish_wait(&ctx->cq_wait, &iowq.wq);
2661  	restore_saved_sigmask_unless(ret == -EINTR);
2662  
2663  	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2664  }
2665  
io_rings_free(struct io_ring_ctx * ctx)2666  static void io_rings_free(struct io_ring_ctx *ctx)
2667  {
2668  	io_free_region(ctx, &ctx->sq_region);
2669  	io_free_region(ctx, &ctx->ring_region);
2670  	ctx->rings = NULL;
2671  	ctx->sq_sqes = NULL;
2672  }
2673  
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2674  unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2675  			 unsigned int cq_entries, size_t *sq_offset)
2676  {
2677  	struct io_rings *rings;
2678  	size_t off, sq_array_size;
2679  
2680  	off = struct_size(rings, cqes, cq_entries);
2681  	if (off == SIZE_MAX)
2682  		return SIZE_MAX;
2683  	if (flags & IORING_SETUP_CQE32) {
2684  		if (check_shl_overflow(off, 1, &off))
2685  			return SIZE_MAX;
2686  	}
2687  
2688  #ifdef CONFIG_SMP
2689  	off = ALIGN(off, SMP_CACHE_BYTES);
2690  	if (off == 0)
2691  		return SIZE_MAX;
2692  #endif
2693  
2694  	if (flags & IORING_SETUP_NO_SQARRAY) {
2695  		*sq_offset = SIZE_MAX;
2696  		return off;
2697  	}
2698  
2699  	*sq_offset = off;
2700  
2701  	sq_array_size = array_size(sizeof(u32), sq_entries);
2702  	if (sq_array_size == SIZE_MAX)
2703  		return SIZE_MAX;
2704  
2705  	if (check_add_overflow(off, sq_array_size, &off))
2706  		return SIZE_MAX;
2707  
2708  	return off;
2709  }
2710  
io_req_caches_free(struct io_ring_ctx * ctx)2711  static void io_req_caches_free(struct io_ring_ctx *ctx)
2712  {
2713  	struct io_kiocb *req;
2714  	int nr = 0;
2715  
2716  	mutex_lock(&ctx->uring_lock);
2717  
2718  	while (!io_req_cache_empty(ctx)) {
2719  		req = io_extract_req(ctx);
2720  		kmem_cache_free(req_cachep, req);
2721  		nr++;
2722  	}
2723  	if (nr)
2724  		percpu_ref_put_many(&ctx->refs, nr);
2725  	mutex_unlock(&ctx->uring_lock);
2726  }
2727  
io_ring_ctx_free(struct io_ring_ctx * ctx)2728  static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2729  {
2730  	io_sq_thread_finish(ctx);
2731  
2732  	mutex_lock(&ctx->uring_lock);
2733  	io_sqe_buffers_unregister(ctx);
2734  	io_sqe_files_unregister(ctx);
2735  	io_cqring_overflow_kill(ctx);
2736  	io_eventfd_unregister(ctx);
2737  	io_free_alloc_caches(ctx);
2738  	io_destroy_buffers(ctx);
2739  	io_free_region(ctx, &ctx->param_region);
2740  	mutex_unlock(&ctx->uring_lock);
2741  	if (ctx->sq_creds)
2742  		put_cred(ctx->sq_creds);
2743  	if (ctx->submitter_task)
2744  		put_task_struct(ctx->submitter_task);
2745  
2746  	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2747  
2748  	if (ctx->mm_account) {
2749  		mmdrop(ctx->mm_account);
2750  		ctx->mm_account = NULL;
2751  	}
2752  	io_rings_free(ctx);
2753  
2754  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2755  		static_branch_dec(&io_key_has_sqarray);
2756  
2757  	percpu_ref_exit(&ctx->refs);
2758  	free_uid(ctx->user);
2759  	io_req_caches_free(ctx);
2760  	if (ctx->hash_map)
2761  		io_wq_put_hash(ctx->hash_map);
2762  	io_napi_free(ctx);
2763  	kvfree(ctx->cancel_table.hbs);
2764  	xa_destroy(&ctx->io_bl_xa);
2765  	kfree(ctx);
2766  }
2767  
io_activate_pollwq_cb(struct callback_head * cb)2768  static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2769  {
2770  	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2771  					       poll_wq_task_work);
2772  
2773  	mutex_lock(&ctx->uring_lock);
2774  	ctx->poll_activated = true;
2775  	mutex_unlock(&ctx->uring_lock);
2776  
2777  	/*
2778  	 * Wake ups for some events between start of polling and activation
2779  	 * might've been lost due to loose synchronisation.
2780  	 */
2781  	wake_up_all(&ctx->poll_wq);
2782  	percpu_ref_put(&ctx->refs);
2783  }
2784  
io_activate_pollwq(struct io_ring_ctx * ctx)2785  __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2786  {
2787  	spin_lock(&ctx->completion_lock);
2788  	/* already activated or in progress */
2789  	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2790  		goto out;
2791  	if (WARN_ON_ONCE(!ctx->task_complete))
2792  		goto out;
2793  	if (!ctx->submitter_task)
2794  		goto out;
2795  	/*
2796  	 * with ->submitter_task only the submitter task completes requests, we
2797  	 * only need to sync with it, which is done by injecting a tw
2798  	 */
2799  	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2800  	percpu_ref_get(&ctx->refs);
2801  	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2802  		percpu_ref_put(&ctx->refs);
2803  out:
2804  	spin_unlock(&ctx->completion_lock);
2805  }
2806  
io_uring_poll(struct file * file,poll_table * wait)2807  static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2808  {
2809  	struct io_ring_ctx *ctx = file->private_data;
2810  	__poll_t mask = 0;
2811  
2812  	if (unlikely(!ctx->poll_activated))
2813  		io_activate_pollwq(ctx);
2814  	/*
2815  	 * provides mb() which pairs with barrier from wq_has_sleeper
2816  	 * call in io_commit_cqring
2817  	 */
2818  	poll_wait(file, &ctx->poll_wq, wait);
2819  
2820  	if (!io_sqring_full(ctx))
2821  		mask |= EPOLLOUT | EPOLLWRNORM;
2822  
2823  	/*
2824  	 * Don't flush cqring overflow list here, just do a simple check.
2825  	 * Otherwise there could possible be ABBA deadlock:
2826  	 *      CPU0                    CPU1
2827  	 *      ----                    ----
2828  	 * lock(&ctx->uring_lock);
2829  	 *                              lock(&ep->mtx);
2830  	 *                              lock(&ctx->uring_lock);
2831  	 * lock(&ep->mtx);
2832  	 *
2833  	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2834  	 * pushes them to do the flush.
2835  	 */
2836  
2837  	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2838  		mask |= EPOLLIN | EPOLLRDNORM;
2839  
2840  	return mask;
2841  }
2842  
2843  struct io_tctx_exit {
2844  	struct callback_head		task_work;
2845  	struct completion		completion;
2846  	struct io_ring_ctx		*ctx;
2847  };
2848  
io_tctx_exit_cb(struct callback_head * cb)2849  static __cold void io_tctx_exit_cb(struct callback_head *cb)
2850  {
2851  	struct io_uring_task *tctx = current->io_uring;
2852  	struct io_tctx_exit *work;
2853  
2854  	work = container_of(cb, struct io_tctx_exit, task_work);
2855  	/*
2856  	 * When @in_cancel, we're in cancellation and it's racy to remove the
2857  	 * node. It'll be removed by the end of cancellation, just ignore it.
2858  	 * tctx can be NULL if the queueing of this task_work raced with
2859  	 * work cancelation off the exec path.
2860  	 */
2861  	if (tctx && !atomic_read(&tctx->in_cancel))
2862  		io_uring_del_tctx_node((unsigned long)work->ctx);
2863  	complete(&work->completion);
2864  }
2865  
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2866  static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2867  {
2868  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2869  
2870  	return req->ctx == data;
2871  }
2872  
io_ring_exit_work(struct work_struct * work)2873  static __cold void io_ring_exit_work(struct work_struct *work)
2874  {
2875  	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2876  	unsigned long timeout = jiffies + HZ * 60 * 5;
2877  	unsigned long interval = HZ / 20;
2878  	struct io_tctx_exit exit;
2879  	struct io_tctx_node *node;
2880  	int ret;
2881  
2882  	/*
2883  	 * If we're doing polled IO and end up having requests being
2884  	 * submitted async (out-of-line), then completions can come in while
2885  	 * we're waiting for refs to drop. We need to reap these manually,
2886  	 * as nobody else will be looking for them.
2887  	 */
2888  	do {
2889  		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2890  			mutex_lock(&ctx->uring_lock);
2891  			io_cqring_overflow_kill(ctx);
2892  			mutex_unlock(&ctx->uring_lock);
2893  		}
2894  
2895  		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2896  			io_move_task_work_from_local(ctx);
2897  
2898  		/* The SQPOLL thread never reaches this path */
2899  		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2900  			cond_resched();
2901  
2902  		if (ctx->sq_data) {
2903  			struct io_sq_data *sqd = ctx->sq_data;
2904  			struct task_struct *tsk;
2905  
2906  			io_sq_thread_park(sqd);
2907  			tsk = sqd->thread;
2908  			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2909  				io_wq_cancel_cb(tsk->io_uring->io_wq,
2910  						io_cancel_ctx_cb, ctx, true);
2911  			io_sq_thread_unpark(sqd);
2912  		}
2913  
2914  		io_req_caches_free(ctx);
2915  
2916  		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2917  			/* there is little hope left, don't run it too often */
2918  			interval = HZ * 60;
2919  		}
2920  		/*
2921  		 * This is really an uninterruptible wait, as it has to be
2922  		 * complete. But it's also run from a kworker, which doesn't
2923  		 * take signals, so it's fine to make it interruptible. This
2924  		 * avoids scenarios where we knowingly can wait much longer
2925  		 * on completions, for example if someone does a SIGSTOP on
2926  		 * a task that needs to finish task_work to make this loop
2927  		 * complete. That's a synthetic situation that should not
2928  		 * cause a stuck task backtrace, and hence a potential panic
2929  		 * on stuck tasks if that is enabled.
2930  		 */
2931  	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2932  
2933  	init_completion(&exit.completion);
2934  	init_task_work(&exit.task_work, io_tctx_exit_cb);
2935  	exit.ctx = ctx;
2936  
2937  	mutex_lock(&ctx->uring_lock);
2938  	while (!list_empty(&ctx->tctx_list)) {
2939  		WARN_ON_ONCE(time_after(jiffies, timeout));
2940  
2941  		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2942  					ctx_node);
2943  		/* don't spin on a single task if cancellation failed */
2944  		list_rotate_left(&ctx->tctx_list);
2945  		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2946  		if (WARN_ON_ONCE(ret))
2947  			continue;
2948  
2949  		mutex_unlock(&ctx->uring_lock);
2950  		/*
2951  		 * See comment above for
2952  		 * wait_for_completion_interruptible_timeout() on why this
2953  		 * wait is marked as interruptible.
2954  		 */
2955  		wait_for_completion_interruptible(&exit.completion);
2956  		mutex_lock(&ctx->uring_lock);
2957  	}
2958  	mutex_unlock(&ctx->uring_lock);
2959  	spin_lock(&ctx->completion_lock);
2960  	spin_unlock(&ctx->completion_lock);
2961  
2962  	/* pairs with RCU read section in io_req_local_work_add() */
2963  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2964  		synchronize_rcu();
2965  
2966  	io_ring_ctx_free(ctx);
2967  }
2968  
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2969  static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2970  {
2971  	unsigned long index;
2972  	struct creds *creds;
2973  
2974  	mutex_lock(&ctx->uring_lock);
2975  	percpu_ref_kill(&ctx->refs);
2976  	xa_for_each(&ctx->personalities, index, creds)
2977  		io_unregister_personality(ctx, index);
2978  	mutex_unlock(&ctx->uring_lock);
2979  
2980  	flush_delayed_work(&ctx->fallback_work);
2981  
2982  	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2983  	/*
2984  	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2985  	 * if we're exiting a ton of rings at the same time. It just adds
2986  	 * noise and overhead, there's no discernable change in runtime
2987  	 * over using system_wq.
2988  	 */
2989  	queue_work(iou_wq, &ctx->exit_work);
2990  }
2991  
io_uring_release(struct inode * inode,struct file * file)2992  static int io_uring_release(struct inode *inode, struct file *file)
2993  {
2994  	struct io_ring_ctx *ctx = file->private_data;
2995  
2996  	file->private_data = NULL;
2997  	io_ring_ctx_wait_and_kill(ctx);
2998  	return 0;
2999  }
3000  
3001  struct io_task_cancel {
3002  	struct io_uring_task *tctx;
3003  	bool all;
3004  };
3005  
io_cancel_task_cb(struct io_wq_work * work,void * data)3006  static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3007  {
3008  	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3009  	struct io_task_cancel *cancel = data;
3010  
3011  	return io_match_task_safe(req, cancel->tctx, cancel->all);
3012  }
3013  
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3014  static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3015  					 struct io_uring_task *tctx,
3016  					 bool cancel_all)
3017  {
3018  	struct io_defer_entry *de;
3019  	LIST_HEAD(list);
3020  
3021  	spin_lock(&ctx->completion_lock);
3022  	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3023  		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3024  			list_cut_position(&list, &ctx->defer_list, &de->list);
3025  			break;
3026  		}
3027  	}
3028  	spin_unlock(&ctx->completion_lock);
3029  	if (list_empty(&list))
3030  		return false;
3031  
3032  	while (!list_empty(&list)) {
3033  		de = list_first_entry(&list, struct io_defer_entry, list);
3034  		list_del_init(&de->list);
3035  		io_req_task_queue_fail(de->req, -ECANCELED);
3036  		kfree(de);
3037  	}
3038  	return true;
3039  }
3040  
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3041  static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3042  {
3043  	struct io_tctx_node *node;
3044  	enum io_wq_cancel cret;
3045  	bool ret = false;
3046  
3047  	mutex_lock(&ctx->uring_lock);
3048  	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3049  		struct io_uring_task *tctx = node->task->io_uring;
3050  
3051  		/*
3052  		 * io_wq will stay alive while we hold uring_lock, because it's
3053  		 * killed after ctx nodes, which requires to take the lock.
3054  		 */
3055  		if (!tctx || !tctx->io_wq)
3056  			continue;
3057  		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3058  		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3059  	}
3060  	mutex_unlock(&ctx->uring_lock);
3061  
3062  	return ret;
3063  }
3064  
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3065  static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3066  						struct io_uring_task *tctx,
3067  						bool cancel_all,
3068  						bool is_sqpoll_thread)
3069  {
3070  	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3071  	enum io_wq_cancel cret;
3072  	bool ret = false;
3073  
3074  	/* set it so io_req_local_work_add() would wake us up */
3075  	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3076  		atomic_set(&ctx->cq_wait_nr, 1);
3077  		smp_mb();
3078  	}
3079  
3080  	/* failed during ring init, it couldn't have issued any requests */
3081  	if (!ctx->rings)
3082  		return false;
3083  
3084  	if (!tctx) {
3085  		ret |= io_uring_try_cancel_iowq(ctx);
3086  	} else if (tctx->io_wq) {
3087  		/*
3088  		 * Cancels requests of all rings, not only @ctx, but
3089  		 * it's fine as the task is in exit/exec.
3090  		 */
3091  		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3092  				       &cancel, true);
3093  		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3094  	}
3095  
3096  	/* SQPOLL thread does its own polling */
3097  	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3098  	    is_sqpoll_thread) {
3099  		while (!wq_list_empty(&ctx->iopoll_list)) {
3100  			io_iopoll_try_reap_events(ctx);
3101  			ret = true;
3102  			cond_resched();
3103  		}
3104  	}
3105  
3106  	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3107  	    io_allowed_defer_tw_run(ctx))
3108  		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3109  	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3110  	mutex_lock(&ctx->uring_lock);
3111  	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3112  	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3113  	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3114  	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3115  	mutex_unlock(&ctx->uring_lock);
3116  	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3117  	if (tctx)
3118  		ret |= io_run_task_work() > 0;
3119  	else
3120  		ret |= flush_delayed_work(&ctx->fallback_work);
3121  	return ret;
3122  }
3123  
tctx_inflight(struct io_uring_task * tctx,bool tracked)3124  static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3125  {
3126  	if (tracked)
3127  		return atomic_read(&tctx->inflight_tracked);
3128  	return percpu_counter_sum(&tctx->inflight);
3129  }
3130  
3131  /*
3132   * Find any io_uring ctx that this task has registered or done IO on, and cancel
3133   * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3134   */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3135  __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3136  {
3137  	struct io_uring_task *tctx = current->io_uring;
3138  	struct io_ring_ctx *ctx;
3139  	struct io_tctx_node *node;
3140  	unsigned long index;
3141  	s64 inflight;
3142  	DEFINE_WAIT(wait);
3143  
3144  	WARN_ON_ONCE(sqd && sqd->thread != current);
3145  
3146  	if (!current->io_uring)
3147  		return;
3148  	if (tctx->io_wq)
3149  		io_wq_exit_start(tctx->io_wq);
3150  
3151  	atomic_inc(&tctx->in_cancel);
3152  	do {
3153  		bool loop = false;
3154  
3155  		io_uring_drop_tctx_refs(current);
3156  		if (!tctx_inflight(tctx, !cancel_all))
3157  			break;
3158  
3159  		/* read completions before cancelations */
3160  		inflight = tctx_inflight(tctx, false);
3161  		if (!inflight)
3162  			break;
3163  
3164  		if (!sqd) {
3165  			xa_for_each(&tctx->xa, index, node) {
3166  				/* sqpoll task will cancel all its requests */
3167  				if (node->ctx->sq_data)
3168  					continue;
3169  				loop |= io_uring_try_cancel_requests(node->ctx,
3170  							current->io_uring,
3171  							cancel_all,
3172  							false);
3173  			}
3174  		} else {
3175  			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3176  				loop |= io_uring_try_cancel_requests(ctx,
3177  								     current->io_uring,
3178  								     cancel_all,
3179  								     true);
3180  		}
3181  
3182  		if (loop) {
3183  			cond_resched();
3184  			continue;
3185  		}
3186  
3187  		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3188  		io_run_task_work();
3189  		io_uring_drop_tctx_refs(current);
3190  		xa_for_each(&tctx->xa, index, node) {
3191  			if (io_local_work_pending(node->ctx)) {
3192  				WARN_ON_ONCE(node->ctx->submitter_task &&
3193  					     node->ctx->submitter_task != current);
3194  				goto end_wait;
3195  			}
3196  		}
3197  		/*
3198  		 * If we've seen completions, retry without waiting. This
3199  		 * avoids a race where a completion comes in before we did
3200  		 * prepare_to_wait().
3201  		 */
3202  		if (inflight == tctx_inflight(tctx, !cancel_all))
3203  			schedule();
3204  end_wait:
3205  		finish_wait(&tctx->wait, &wait);
3206  	} while (1);
3207  
3208  	io_uring_clean_tctx(tctx);
3209  	if (cancel_all) {
3210  		/*
3211  		 * We shouldn't run task_works after cancel, so just leave
3212  		 * ->in_cancel set for normal exit.
3213  		 */
3214  		atomic_dec(&tctx->in_cancel);
3215  		/* for exec all current's requests should be gone, kill tctx */
3216  		__io_uring_free(current);
3217  	}
3218  }
3219  
__io_uring_cancel(bool cancel_all)3220  void __io_uring_cancel(bool cancel_all)
3221  {
3222  	io_uring_unreg_ringfd();
3223  	io_uring_cancel_generic(cancel_all, NULL);
3224  }
3225  
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3226  static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3227  			const struct io_uring_getevents_arg __user *uarg)
3228  {
3229  	unsigned long size = sizeof(struct io_uring_reg_wait);
3230  	unsigned long offset = (uintptr_t)uarg;
3231  	unsigned long end;
3232  
3233  	if (unlikely(offset % sizeof(long)))
3234  		return ERR_PTR(-EFAULT);
3235  
3236  	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3237  	if (unlikely(check_add_overflow(offset, size, &end) ||
3238  		     end > ctx->cq_wait_size))
3239  		return ERR_PTR(-EFAULT);
3240  
3241  	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3242  	return ctx->cq_wait_arg + offset;
3243  }
3244  
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3245  static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3246  			       const void __user *argp, size_t argsz)
3247  {
3248  	struct io_uring_getevents_arg arg;
3249  
3250  	if (!(flags & IORING_ENTER_EXT_ARG))
3251  		return 0;
3252  	if (flags & IORING_ENTER_EXT_ARG_REG)
3253  		return -EINVAL;
3254  	if (argsz != sizeof(arg))
3255  		return -EINVAL;
3256  	if (copy_from_user(&arg, argp, sizeof(arg)))
3257  		return -EFAULT;
3258  	return 0;
3259  }
3260  
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3261  static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3262  			  const void __user *argp, struct ext_arg *ext_arg)
3263  {
3264  	const struct io_uring_getevents_arg __user *uarg = argp;
3265  	struct io_uring_getevents_arg arg;
3266  
3267  	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3268  
3269  	/*
3270  	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3271  	 * is just a pointer to the sigset_t.
3272  	 */
3273  	if (!(flags & IORING_ENTER_EXT_ARG)) {
3274  		ext_arg->sig = (const sigset_t __user *) argp;
3275  		return 0;
3276  	}
3277  
3278  	if (flags & IORING_ENTER_EXT_ARG_REG) {
3279  		struct io_uring_reg_wait *w;
3280  
3281  		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3282  			return -EINVAL;
3283  		w = io_get_ext_arg_reg(ctx, argp);
3284  		if (IS_ERR(w))
3285  			return PTR_ERR(w);
3286  
3287  		if (w->flags & ~IORING_REG_WAIT_TS)
3288  			return -EINVAL;
3289  		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3290  		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3291  		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3292  		if (w->flags & IORING_REG_WAIT_TS) {
3293  			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3294  			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3295  			ext_arg->ts_set = true;
3296  		}
3297  		return 0;
3298  	}
3299  
3300  	/*
3301  	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3302  	 * timespec and sigset_t pointers if good.
3303  	 */
3304  	if (ext_arg->argsz != sizeof(arg))
3305  		return -EINVAL;
3306  #ifdef CONFIG_64BIT
3307  	if (!user_access_begin(uarg, sizeof(*uarg)))
3308  		return -EFAULT;
3309  	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3310  	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3311  	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3312  	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3313  	user_access_end();
3314  #else
3315  	if (copy_from_user(&arg, uarg, sizeof(arg)))
3316  		return -EFAULT;
3317  #endif
3318  	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3319  	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3320  	ext_arg->argsz = arg.sigmask_sz;
3321  	if (arg.ts) {
3322  		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3323  			return -EFAULT;
3324  		ext_arg->ts_set = true;
3325  	}
3326  	return 0;
3327  #ifdef CONFIG_64BIT
3328  uaccess_end:
3329  	user_access_end();
3330  	return -EFAULT;
3331  #endif
3332  }
3333  
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3334  SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3335  		u32, min_complete, u32, flags, const void __user *, argp,
3336  		size_t, argsz)
3337  {
3338  	struct io_ring_ctx *ctx;
3339  	struct file *file;
3340  	long ret;
3341  
3342  	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3343  			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3344  			       IORING_ENTER_REGISTERED_RING |
3345  			       IORING_ENTER_ABS_TIMER |
3346  			       IORING_ENTER_EXT_ARG_REG |
3347  			       IORING_ENTER_NO_IOWAIT)))
3348  		return -EINVAL;
3349  
3350  	/*
3351  	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3352  	 * need only dereference our task private array to find it.
3353  	 */
3354  	if (flags & IORING_ENTER_REGISTERED_RING) {
3355  		struct io_uring_task *tctx = current->io_uring;
3356  
3357  		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3358  			return -EINVAL;
3359  		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3360  		file = tctx->registered_rings[fd];
3361  		if (unlikely(!file))
3362  			return -EBADF;
3363  	} else {
3364  		file = fget(fd);
3365  		if (unlikely(!file))
3366  			return -EBADF;
3367  		ret = -EOPNOTSUPP;
3368  		if (unlikely(!io_is_uring_fops(file)))
3369  			goto out;
3370  	}
3371  
3372  	ctx = file->private_data;
3373  	ret = -EBADFD;
3374  	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3375  		goto out;
3376  
3377  	/*
3378  	 * For SQ polling, the thread will do all submissions and completions.
3379  	 * Just return the requested submit count, and wake the thread if
3380  	 * we were asked to.
3381  	 */
3382  	ret = 0;
3383  	if (ctx->flags & IORING_SETUP_SQPOLL) {
3384  		if (unlikely(ctx->sq_data->thread == NULL)) {
3385  			ret = -EOWNERDEAD;
3386  			goto out;
3387  		}
3388  		if (flags & IORING_ENTER_SQ_WAKEUP)
3389  			wake_up(&ctx->sq_data->wait);
3390  		if (flags & IORING_ENTER_SQ_WAIT)
3391  			io_sqpoll_wait_sq(ctx);
3392  
3393  		ret = to_submit;
3394  	} else if (to_submit) {
3395  		ret = io_uring_add_tctx_node(ctx);
3396  		if (unlikely(ret))
3397  			goto out;
3398  
3399  		mutex_lock(&ctx->uring_lock);
3400  		ret = io_submit_sqes(ctx, to_submit);
3401  		if (ret != to_submit) {
3402  			mutex_unlock(&ctx->uring_lock);
3403  			goto out;
3404  		}
3405  		if (flags & IORING_ENTER_GETEVENTS) {
3406  			if (ctx->syscall_iopoll)
3407  				goto iopoll_locked;
3408  			/*
3409  			 * Ignore errors, we'll soon call io_cqring_wait() and
3410  			 * it should handle ownership problems if any.
3411  			 */
3412  			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3413  				(void)io_run_local_work_locked(ctx, min_complete);
3414  		}
3415  		mutex_unlock(&ctx->uring_lock);
3416  	}
3417  
3418  	if (flags & IORING_ENTER_GETEVENTS) {
3419  		int ret2;
3420  
3421  		if (ctx->syscall_iopoll) {
3422  			/*
3423  			 * We disallow the app entering submit/complete with
3424  			 * polling, but we still need to lock the ring to
3425  			 * prevent racing with polled issue that got punted to
3426  			 * a workqueue.
3427  			 */
3428  			mutex_lock(&ctx->uring_lock);
3429  iopoll_locked:
3430  			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3431  			if (likely(!ret2)) {
3432  				min_complete = min(min_complete,
3433  						   ctx->cq_entries);
3434  				ret2 = io_iopoll_check(ctx, min_complete);
3435  			}
3436  			mutex_unlock(&ctx->uring_lock);
3437  		} else {
3438  			struct ext_arg ext_arg = { .argsz = argsz };
3439  
3440  			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3441  			if (likely(!ret2)) {
3442  				min_complete = min(min_complete,
3443  						   ctx->cq_entries);
3444  				ret2 = io_cqring_wait(ctx, min_complete, flags,
3445  						      &ext_arg);
3446  			}
3447  		}
3448  
3449  		if (!ret) {
3450  			ret = ret2;
3451  
3452  			/*
3453  			 * EBADR indicates that one or more CQE were dropped.
3454  			 * Once the user has been informed we can clear the bit
3455  			 * as they are obviously ok with those drops.
3456  			 */
3457  			if (unlikely(ret2 == -EBADR))
3458  				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3459  					  &ctx->check_cq);
3460  		}
3461  	}
3462  out:
3463  	if (!(flags & IORING_ENTER_REGISTERED_RING))
3464  		fput(file);
3465  	return ret;
3466  }
3467  
3468  static const struct file_operations io_uring_fops = {
3469  	.release	= io_uring_release,
3470  	.mmap		= io_uring_mmap,
3471  	.get_unmapped_area = io_uring_get_unmapped_area,
3472  #ifndef CONFIG_MMU
3473  	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3474  #endif
3475  	.poll		= io_uring_poll,
3476  #ifdef CONFIG_PROC_FS
3477  	.show_fdinfo	= io_uring_show_fdinfo,
3478  #endif
3479  };
3480  
io_is_uring_fops(struct file * file)3481  bool io_is_uring_fops(struct file *file)
3482  {
3483  	return file->f_op == &io_uring_fops;
3484  }
3485  
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3486  static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3487  					 struct io_uring_params *p)
3488  {
3489  	struct io_uring_region_desc rd;
3490  	struct io_rings *rings;
3491  	size_t size, sq_array_offset;
3492  	int ret;
3493  
3494  	/* make sure these are sane, as we already accounted them */
3495  	ctx->sq_entries = p->sq_entries;
3496  	ctx->cq_entries = p->cq_entries;
3497  
3498  	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3499  			  &sq_array_offset);
3500  	if (size == SIZE_MAX)
3501  		return -EOVERFLOW;
3502  
3503  	memset(&rd, 0, sizeof(rd));
3504  	rd.size = PAGE_ALIGN(size);
3505  	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3506  		rd.user_addr = p->cq_off.user_addr;
3507  		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3508  	}
3509  	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3510  	if (ret)
3511  		return ret;
3512  	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3513  
3514  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3515  		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3516  	rings->sq_ring_mask = p->sq_entries - 1;
3517  	rings->cq_ring_mask = p->cq_entries - 1;
3518  	rings->sq_ring_entries = p->sq_entries;
3519  	rings->cq_ring_entries = p->cq_entries;
3520  
3521  	if (p->flags & IORING_SETUP_SQE128)
3522  		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3523  	else
3524  		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3525  	if (size == SIZE_MAX) {
3526  		io_rings_free(ctx);
3527  		return -EOVERFLOW;
3528  	}
3529  
3530  	memset(&rd, 0, sizeof(rd));
3531  	rd.size = PAGE_ALIGN(size);
3532  	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3533  		rd.user_addr = p->sq_off.user_addr;
3534  		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3535  	}
3536  	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3537  	if (ret) {
3538  		io_rings_free(ctx);
3539  		return ret;
3540  	}
3541  	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3542  	return 0;
3543  }
3544  
io_uring_install_fd(struct file * file)3545  static int io_uring_install_fd(struct file *file)
3546  {
3547  	int fd;
3548  
3549  	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3550  	if (fd < 0)
3551  		return fd;
3552  	fd_install(fd, file);
3553  	return fd;
3554  }
3555  
3556  /*
3557   * Allocate an anonymous fd, this is what constitutes the application
3558   * visible backing of an io_uring instance. The application mmaps this
3559   * fd to gain access to the SQ/CQ ring details.
3560   */
io_uring_get_file(struct io_ring_ctx * ctx)3561  static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3562  {
3563  	/* Create a new inode so that the LSM can block the creation.  */
3564  	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3565  					 O_RDWR | O_CLOEXEC, NULL);
3566  }
3567  
io_uring_sanitise_params(struct io_uring_params * p)3568  static int io_uring_sanitise_params(struct io_uring_params *p)
3569  {
3570  	unsigned flags = p->flags;
3571  
3572  	/* There is no way to mmap rings without a real fd */
3573  	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3574  	    !(flags & IORING_SETUP_NO_MMAP))
3575  		return -EINVAL;
3576  
3577  	if (flags & IORING_SETUP_SQPOLL) {
3578  		/* IPI related flags don't make sense with SQPOLL */
3579  		if (flags & (IORING_SETUP_COOP_TASKRUN |
3580  			     IORING_SETUP_TASKRUN_FLAG |
3581  			     IORING_SETUP_DEFER_TASKRUN))
3582  			return -EINVAL;
3583  	}
3584  
3585  	if (flags & IORING_SETUP_TASKRUN_FLAG) {
3586  		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3587  			       IORING_SETUP_DEFER_TASKRUN)))
3588  			return -EINVAL;
3589  	}
3590  
3591  	/* HYBRID_IOPOLL only valid with IOPOLL */
3592  	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3593  		return -EINVAL;
3594  
3595  	/*
3596  	 * For DEFER_TASKRUN we require the completion task to be the same as
3597  	 * the submission task. This implies that there is only one submitter.
3598  	 */
3599  	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3600  	    !(flags & IORING_SETUP_SINGLE_ISSUER))
3601  		return -EINVAL;
3602  
3603  	return 0;
3604  }
3605  
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3606  int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3607  {
3608  	if (!entries)
3609  		return -EINVAL;
3610  	if (entries > IORING_MAX_ENTRIES) {
3611  		if (!(p->flags & IORING_SETUP_CLAMP))
3612  			return -EINVAL;
3613  		entries = IORING_MAX_ENTRIES;
3614  	}
3615  
3616  	/*
3617  	 * Use twice as many entries for the CQ ring. It's possible for the
3618  	 * application to drive a higher depth than the size of the SQ ring,
3619  	 * since the sqes are only used at submission time. This allows for
3620  	 * some flexibility in overcommitting a bit. If the application has
3621  	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3622  	 * of CQ ring entries manually.
3623  	 */
3624  	p->sq_entries = roundup_pow_of_two(entries);
3625  	if (p->flags & IORING_SETUP_CQSIZE) {
3626  		/*
3627  		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3628  		 * to a power-of-two, if it isn't already. We do NOT impose
3629  		 * any cq vs sq ring sizing.
3630  		 */
3631  		if (!p->cq_entries)
3632  			return -EINVAL;
3633  		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3634  			if (!(p->flags & IORING_SETUP_CLAMP))
3635  				return -EINVAL;
3636  			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3637  		}
3638  		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3639  		if (p->cq_entries < p->sq_entries)
3640  			return -EINVAL;
3641  	} else {
3642  		p->cq_entries = 2 * p->sq_entries;
3643  	}
3644  
3645  	p->sq_off.head = offsetof(struct io_rings, sq.head);
3646  	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3647  	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3648  	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3649  	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3650  	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3651  	p->sq_off.resv1 = 0;
3652  	if (!(p->flags & IORING_SETUP_NO_MMAP))
3653  		p->sq_off.user_addr = 0;
3654  
3655  	p->cq_off.head = offsetof(struct io_rings, cq.head);
3656  	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3657  	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3658  	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3659  	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3660  	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3661  	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3662  	p->cq_off.resv1 = 0;
3663  	if (!(p->flags & IORING_SETUP_NO_MMAP))
3664  		p->cq_off.user_addr = 0;
3665  
3666  	return 0;
3667  }
3668  
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3669  static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3670  				  struct io_uring_params __user *params)
3671  {
3672  	struct io_ring_ctx *ctx;
3673  	struct io_uring_task *tctx;
3674  	struct file *file;
3675  	int ret;
3676  
3677  	ret = io_uring_sanitise_params(p);
3678  	if (ret)
3679  		return ret;
3680  
3681  	ret = io_uring_fill_params(entries, p);
3682  	if (unlikely(ret))
3683  		return ret;
3684  
3685  	ctx = io_ring_ctx_alloc(p);
3686  	if (!ctx)
3687  		return -ENOMEM;
3688  
3689  	ctx->clockid = CLOCK_MONOTONIC;
3690  	ctx->clock_offset = 0;
3691  
3692  	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3693  		static_branch_inc(&io_key_has_sqarray);
3694  
3695  	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3696  	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3697  	    !(ctx->flags & IORING_SETUP_SQPOLL))
3698  		ctx->task_complete = true;
3699  
3700  	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3701  		ctx->lockless_cq = true;
3702  
3703  	/*
3704  	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3705  	 * purposes, see io_activate_pollwq()
3706  	 */
3707  	if (!ctx->task_complete)
3708  		ctx->poll_activated = true;
3709  
3710  	/*
3711  	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3712  	 * space applications don't need to do io completion events
3713  	 * polling again, they can rely on io_sq_thread to do polling
3714  	 * work, which can reduce cpu usage and uring_lock contention.
3715  	 */
3716  	if (ctx->flags & IORING_SETUP_IOPOLL &&
3717  	    !(ctx->flags & IORING_SETUP_SQPOLL))
3718  		ctx->syscall_iopoll = 1;
3719  
3720  	ctx->compat = in_compat_syscall();
3721  	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3722  		ctx->user = get_uid(current_user());
3723  
3724  	/*
3725  	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3726  	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3727  	 */
3728  	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3729  		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3730  	else
3731  		ctx->notify_method = TWA_SIGNAL;
3732  
3733  	/*
3734  	 * This is just grabbed for accounting purposes. When a process exits,
3735  	 * the mm is exited and dropped before the files, hence we need to hang
3736  	 * on to this mm purely for the purposes of being able to unaccount
3737  	 * memory (locked/pinned vm). It's not used for anything else.
3738  	 */
3739  	mmgrab(current->mm);
3740  	ctx->mm_account = current->mm;
3741  
3742  	ret = io_allocate_scq_urings(ctx, p);
3743  	if (ret)
3744  		goto err;
3745  
3746  	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3747  		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3748  
3749  	ret = io_sq_offload_create(ctx, p);
3750  	if (ret)
3751  		goto err;
3752  
3753  	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3754  			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3755  			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3756  			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3757  			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3758  			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3759  			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3760  			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3761  			IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3762  
3763  	if (copy_to_user(params, p, sizeof(*p))) {
3764  		ret = -EFAULT;
3765  		goto err;
3766  	}
3767  
3768  	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3769  	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3770  		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3771  
3772  	file = io_uring_get_file(ctx);
3773  	if (IS_ERR(file)) {
3774  		ret = PTR_ERR(file);
3775  		goto err;
3776  	}
3777  
3778  	ret = __io_uring_add_tctx_node(ctx);
3779  	if (ret)
3780  		goto err_fput;
3781  	tctx = current->io_uring;
3782  
3783  	/*
3784  	 * Install ring fd as the very last thing, so we don't risk someone
3785  	 * having closed it before we finish setup
3786  	 */
3787  	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3788  		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3789  	else
3790  		ret = io_uring_install_fd(file);
3791  	if (ret < 0)
3792  		goto err_fput;
3793  
3794  	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3795  	return ret;
3796  err:
3797  	io_ring_ctx_wait_and_kill(ctx);
3798  	return ret;
3799  err_fput:
3800  	fput(file);
3801  	return ret;
3802  }
3803  
3804  /*
3805   * Sets up an aio uring context, and returns the fd. Applications asks for a
3806   * ring size, we return the actual sq/cq ring sizes (among other things) in the
3807   * params structure passed in.
3808   */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3809  static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3810  {
3811  	struct io_uring_params p;
3812  	int i;
3813  
3814  	if (copy_from_user(&p, params, sizeof(p)))
3815  		return -EFAULT;
3816  	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3817  		if (p.resv[i])
3818  			return -EINVAL;
3819  	}
3820  
3821  	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3822  			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3823  			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3824  			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3825  			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3826  			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3827  			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3828  			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3829  			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3830  		return -EINVAL;
3831  
3832  	return io_uring_create(entries, &p, params);
3833  }
3834  
io_uring_allowed(void)3835  static inline int io_uring_allowed(void)
3836  {
3837  	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3838  	kgid_t io_uring_group;
3839  
3840  	if (disabled == 2)
3841  		return -EPERM;
3842  
3843  	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3844  		goto allowed_lsm;
3845  
3846  	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3847  	if (!gid_valid(io_uring_group))
3848  		return -EPERM;
3849  
3850  	if (!in_group_p(io_uring_group))
3851  		return -EPERM;
3852  
3853  allowed_lsm:
3854  	return security_uring_allowed();
3855  }
3856  
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3857  SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3858  		struct io_uring_params __user *, params)
3859  {
3860  	int ret;
3861  
3862  	ret = io_uring_allowed();
3863  	if (ret)
3864  		return ret;
3865  
3866  	return io_uring_setup(entries, params);
3867  }
3868  
io_uring_init(void)3869  static int __init io_uring_init(void)
3870  {
3871  	struct kmem_cache_args kmem_args = {
3872  		.useroffset = offsetof(struct io_kiocb, cmd.data),
3873  		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3874  		.freeptr_offset = offsetof(struct io_kiocb, work),
3875  		.use_freeptr_offset = true,
3876  	};
3877  
3878  #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3879  	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3880  	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3881  } while (0)
3882  
3883  #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3884  	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3885  #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3886  	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3887  	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3888  	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3889  	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3890  	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3891  	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3892  	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3893  	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3894  	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3895  	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3896  	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3897  	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3898  	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3899  	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3900  	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3901  	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3902  	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3903  	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3904  	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3905  	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3906  	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3907  	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3908  	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3909  	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3910  	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3911  	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3912  	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3913  	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3914  	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3915  	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3916  	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3917  	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3918  	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3919  	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3920  	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3921  	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3922  	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3923  	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3924  	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3925  	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3926  	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3927  	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3928  	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3929  	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3930  	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3931  	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3932  
3933  	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3934  		     sizeof(struct io_uring_rsrc_update));
3935  	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3936  		     sizeof(struct io_uring_rsrc_update2));
3937  
3938  	/* ->buf_index is u16 */
3939  	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3940  	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3941  		     offsetof(struct io_uring_buf_ring, tail));
3942  
3943  	/* should fit into one byte */
3944  	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3945  	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3946  	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3947  
3948  	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3949  
3950  	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3951  
3952  	/* top 8bits are for internal use */
3953  	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3954  
3955  	io_uring_optable_init();
3956  
3957  	/* imu->dir is u8 */
3958  	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3959  
3960  	/*
3961  	 * Allow user copy in the per-command field, which starts after the
3962  	 * file in io_kiocb and until the opcode field. The openat2 handling
3963  	 * requires copying in user memory into the io_kiocb object in that
3964  	 * range, and HARDENED_USERCOPY will complain if we haven't
3965  	 * correctly annotated this range.
3966  	 */
3967  	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3968  				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3969  				SLAB_TYPESAFE_BY_RCU);
3970  
3971  	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3972  	BUG_ON(!iou_wq);
3973  
3974  #ifdef CONFIG_SYSCTL
3975  	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3976  #endif
3977  
3978  	return 0;
3979  };
3980  __initcall(io_uring_init);
3981