1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/fs.h>
5 #include <linux/file.h>
6 #include <linux/blk-mq.h>
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/fsnotify.h>
10 #include <linux/poll.h>
11 #include <linux/nospec.h>
12 #include <linux/compat.h>
13 #include <linux/io_uring/cmd.h>
14 #include <linux/indirect_call_wrapper.h>
15
16 #include <uapi/linux/io_uring.h>
17
18 #include "filetable.h"
19 #include "io_uring.h"
20 #include "opdef.h"
21 #include "kbuf.h"
22 #include "alloc_cache.h"
23 #include "rsrc.h"
24 #include "poll.h"
25 #include "rw.h"
26
27 static void io_complete_rw(struct kiocb *kiocb, long res);
28 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res);
29
30 struct io_rw {
31 /* NOTE: kiocb has the file as the first member, so don't do it here */
32 struct kiocb kiocb;
33 u64 addr;
34 u32 len;
35 rwf_t flags;
36 };
37
io_file_supports_nowait(struct io_kiocb * req,__poll_t mask)38 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
39 {
40 /* If FMODE_NOWAIT is set for a file, we're golden */
41 if (req->flags & REQ_F_SUPPORT_NOWAIT)
42 return true;
43 /* No FMODE_NOWAIT, if we can poll, check the status */
44 if (io_file_can_poll(req)) {
45 struct poll_table_struct pt = { ._key = mask };
46
47 return vfs_poll(req->file, &pt) & mask;
48 }
49 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
50 return false;
51 }
52
io_iov_compat_buffer_select_prep(struct io_rw * rw)53 static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
54 {
55 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr);
56 struct compat_iovec iov;
57
58 if (copy_from_user(&iov, uiov, sizeof(iov)))
59 return -EFAULT;
60 rw->len = iov.iov_len;
61 return 0;
62 }
63
io_iov_buffer_select_prep(struct io_kiocb * req)64 static int io_iov_buffer_select_prep(struct io_kiocb *req)
65 {
66 struct iovec __user *uiov;
67 struct iovec iov;
68 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
69
70 if (rw->len != 1)
71 return -EINVAL;
72
73 if (io_is_compat(req->ctx))
74 return io_iov_compat_buffer_select_prep(rw);
75
76 uiov = u64_to_user_ptr(rw->addr);
77 if (copy_from_user(&iov, uiov, sizeof(*uiov)))
78 return -EFAULT;
79 rw->len = iov.iov_len;
80 return 0;
81 }
82
io_import_vec(int ddir,struct io_kiocb * req,struct io_async_rw * io,const struct iovec __user * uvec,size_t uvec_segs)83 static int io_import_vec(int ddir, struct io_kiocb *req,
84 struct io_async_rw *io,
85 const struct iovec __user *uvec,
86 size_t uvec_segs)
87 {
88 int ret, nr_segs;
89 struct iovec *iov;
90
91 if (io->vec.iovec) {
92 nr_segs = io->vec.nr;
93 iov = io->vec.iovec;
94 } else {
95 nr_segs = 1;
96 iov = &io->fast_iov;
97 }
98
99 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter,
100 io_is_compat(req->ctx));
101 if (unlikely(ret < 0))
102 return ret;
103 if (iov) {
104 req->flags |= REQ_F_NEED_CLEANUP;
105 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs);
106 }
107 return 0;
108 }
109
__io_import_rw_buffer(int ddir,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)110 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req,
111 struct io_async_rw *io, struct io_br_sel *sel,
112 unsigned int issue_flags)
113 {
114 const struct io_issue_def *def = &io_issue_defs[req->opcode];
115 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
116 size_t sqe_len = rw->len;
117
118 sel->addr = u64_to_user_ptr(rw->addr);
119 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT))
120 return io_import_vec(ddir, req, io, sel->addr, sqe_len);
121
122 if (io_do_buffer_select(req)) {
123 *sel = io_buffer_select(req, &sqe_len, io->buf_group, issue_flags);
124 if (!sel->addr)
125 return -ENOBUFS;
126 rw->addr = (unsigned long) sel->addr;
127 rw->len = sqe_len;
128 }
129 return import_ubuf(ddir, sel->addr, sqe_len, &io->iter);
130 }
131
io_import_rw_buffer(int rw,struct io_kiocb * req,struct io_async_rw * io,struct io_br_sel * sel,unsigned int issue_flags)132 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req,
133 struct io_async_rw *io,
134 struct io_br_sel *sel,
135 unsigned int issue_flags)
136 {
137 int ret;
138
139 ret = __io_import_rw_buffer(rw, req, io, sel, issue_flags);
140 if (unlikely(ret < 0))
141 return ret;
142
143 iov_iter_save_state(&io->iter, &io->iter_state);
144 return 0;
145 }
146
io_rw_recycle(struct io_kiocb * req,unsigned int issue_flags)147 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
148 {
149 struct io_async_rw *rw = req->async_data;
150
151 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
152 return;
153
154 io_alloc_cache_vec_kasan(&rw->vec);
155 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP)
156 io_vec_free(&rw->vec);
157
158 if (io_alloc_cache_put(&req->ctx->rw_cache, rw))
159 io_req_async_data_clear(req, 0);
160 }
161
io_req_rw_cleanup(struct io_kiocb * req,unsigned int issue_flags)162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
163 {
164 /*
165 * Disable quick recycling for anything that's gone through io-wq.
166 * In theory, this should be fine to cleanup. However, some read or
167 * write iter handling touches the iovec AFTER having called into the
168 * handler, eg to reexpand or revert. This means we can have:
169 *
170 * task io-wq
171 * issue
172 * punt to io-wq
173 * issue
174 * blkdev_write_iter()
175 * ->ki_complete()
176 * io_complete_rw()
177 * queue tw complete
178 * run tw
179 * req_rw_cleanup
180 * iov_iter_count() <- look at iov_iter again
181 *
182 * which can lead to a UAF. This is only possible for io-wq offload
183 * as the cleanup can run in parallel. As io-wq is not the fast path,
184 * just leave cleanup to the end.
185 *
186 * This is really a bug in the core code that does this, any issue
187 * path should assume that a successful (or -EIOCBQUEUED) return can
188 * mean that the underlying data can be gone at any time. But that
189 * should be fixed seperately, and then this check could be killed.
190 */
191 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) {
192 req->flags &= ~REQ_F_NEED_CLEANUP;
193 io_rw_recycle(req, issue_flags);
194 }
195 }
196
io_rw_alloc_async(struct io_kiocb * req)197 static int io_rw_alloc_async(struct io_kiocb *req)
198 {
199 struct io_ring_ctx *ctx = req->ctx;
200 struct io_async_rw *rw;
201
202 rw = io_uring_alloc_async_data(&ctx->rw_cache, req);
203 if (!rw)
204 return -ENOMEM;
205 if (rw->vec.iovec)
206 req->flags |= REQ_F_NEED_CLEANUP;
207 rw->bytes_done = 0;
208 return 0;
209 }
210
io_meta_save_state(struct io_async_rw * io)211 static inline void io_meta_save_state(struct io_async_rw *io)
212 {
213 io->meta_state.seed = io->meta.seed;
214 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta);
215 }
216
io_meta_restore(struct io_async_rw * io,struct kiocb * kiocb)217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb)
218 {
219 if (kiocb->ki_flags & IOCB_HAS_METADATA) {
220 io->meta.seed = io->meta_state.seed;
221 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta);
222 }
223 }
224
io_prep_rw_pi(struct io_kiocb * req,struct io_rw * rw,int ddir,u64 attr_ptr,u64 attr_type_mask)225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir,
226 u64 attr_ptr, u64 attr_type_mask)
227 {
228 struct io_uring_attr_pi pi_attr;
229 struct io_async_rw *io;
230 int ret;
231
232 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr),
233 sizeof(pi_attr)))
234 return -EFAULT;
235
236 if (pi_attr.rsvd)
237 return -EINVAL;
238
239 io = req->async_data;
240 io->meta.flags = pi_attr.flags;
241 io->meta.app_tag = pi_attr.app_tag;
242 io->meta.seed = pi_attr.seed;
243 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr),
244 pi_attr.len, &io->meta.iter);
245 if (unlikely(ret < 0))
246 return ret;
247 req->flags |= REQ_F_HAS_METADATA;
248 io_meta_save_state(io);
249 return ret;
250 }
251
__io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
253 int ddir)
254 {
255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
256 struct io_async_rw *io;
257 unsigned ioprio;
258 u64 attr_type_mask;
259 int ret;
260
261 if (io_rw_alloc_async(req))
262 return -ENOMEM;
263 io = req->async_data;
264
265 rw->kiocb.ki_pos = READ_ONCE(sqe->off);
266 /* used for fixed read/write too - just read unconditionally */
267 req->buf_index = READ_ONCE(sqe->buf_index);
268 io->buf_group = req->buf_index;
269
270 ioprio = READ_ONCE(sqe->ioprio);
271 if (ioprio) {
272 ret = ioprio_check_cap(ioprio);
273 if (ret)
274 return ret;
275
276 rw->kiocb.ki_ioprio = ioprio;
277 } else {
278 rw->kiocb.ki_ioprio = get_current_ioprio();
279 }
280 rw->kiocb.dio_complete = NULL;
281 rw->kiocb.ki_flags = 0;
282 rw->kiocb.ki_write_stream = READ_ONCE(sqe->write_stream);
283
284 if (req->ctx->flags & IORING_SETUP_IOPOLL)
285 rw->kiocb.ki_complete = io_complete_rw_iopoll;
286 else
287 rw->kiocb.ki_complete = io_complete_rw;
288
289 rw->addr = READ_ONCE(sqe->addr);
290 rw->len = READ_ONCE(sqe->len);
291 rw->flags = (__force rwf_t) READ_ONCE(sqe->rw_flags);
292
293 attr_type_mask = READ_ONCE(sqe->attr_type_mask);
294 if (attr_type_mask) {
295 u64 attr_ptr;
296
297 /* only PI attribute is supported currently */
298 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI)
299 return -EINVAL;
300
301 attr_ptr = READ_ONCE(sqe->attr_ptr);
302 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask);
303 }
304 return 0;
305 }
306
io_rw_do_import(struct io_kiocb * req,int ddir)307 static int io_rw_do_import(struct io_kiocb *req, int ddir)
308 {
309 struct io_br_sel sel = { };
310
311 if (io_do_buffer_select(req))
312 return 0;
313
314 return io_import_rw_buffer(ddir, req, req->async_data, &sel, 0);
315 }
316
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)317 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
318 int ddir)
319 {
320 int ret;
321
322 ret = __io_prep_rw(req, sqe, ddir);
323 if (unlikely(ret))
324 return ret;
325
326 return io_rw_do_import(req, ddir);
327 }
328
io_prep_read(struct io_kiocb * req,const struct io_uring_sqe * sqe)329 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
330 {
331 return io_prep_rw(req, sqe, ITER_DEST);
332 }
333
io_prep_write(struct io_kiocb * req,const struct io_uring_sqe * sqe)334 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
335 {
336 return io_prep_rw(req, sqe, ITER_SOURCE);
337 }
338
io_prep_rwv(struct io_kiocb * req,const struct io_uring_sqe * sqe,int ddir)339 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
340 int ddir)
341 {
342 int ret;
343
344 ret = io_prep_rw(req, sqe, ddir);
345 if (unlikely(ret))
346 return ret;
347 if (!(req->flags & REQ_F_BUFFER_SELECT))
348 return 0;
349
350 /*
351 * Have to do this validation here, as this is in io_read() rw->len
352 * might have chanaged due to buffer selection
353 */
354 return io_iov_buffer_select_prep(req);
355 }
356
io_prep_readv(struct io_kiocb * req,const struct io_uring_sqe * sqe)357 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
358 {
359 return io_prep_rwv(req, sqe, ITER_DEST);
360 }
361
io_prep_writev(struct io_kiocb * req,const struct io_uring_sqe * sqe)362 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
363 {
364 return io_prep_rwv(req, sqe, ITER_SOURCE);
365 }
366
io_init_rw_fixed(struct io_kiocb * req,unsigned int issue_flags,int ddir)367 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags,
368 int ddir)
369 {
370 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
371 struct io_async_rw *io = req->async_data;
372 int ret;
373
374 if (io->bytes_done)
375 return 0;
376
377 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir,
378 issue_flags);
379 iov_iter_save_state(&io->iter, &io->iter_state);
380 return ret;
381 }
382
io_prep_read_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)383 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
384 {
385 return __io_prep_rw(req, sqe, ITER_DEST);
386 }
387
io_prep_write_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)388 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
389 {
390 return __io_prep_rw(req, sqe, ITER_SOURCE);
391 }
392
io_rw_import_reg_vec(struct io_kiocb * req,struct io_async_rw * io,int ddir,unsigned int issue_flags)393 static int io_rw_import_reg_vec(struct io_kiocb *req,
394 struct io_async_rw *io,
395 int ddir, unsigned int issue_flags)
396 {
397 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
398 unsigned uvec_segs = rw->len;
399 int ret;
400
401 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec,
402 uvec_segs, issue_flags);
403 if (unlikely(ret))
404 return ret;
405 iov_iter_save_state(&io->iter, &io->iter_state);
406 req->flags &= ~REQ_F_IMPORT_BUFFER;
407 return 0;
408 }
409
io_rw_prep_reg_vec(struct io_kiocb * req)410 static int io_rw_prep_reg_vec(struct io_kiocb *req)
411 {
412 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
413 struct io_async_rw *io = req->async_data;
414 const struct iovec __user *uvec;
415
416 uvec = u64_to_user_ptr(rw->addr);
417 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len);
418 }
419
io_prep_readv_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)420 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
421 {
422 int ret;
423
424 ret = __io_prep_rw(req, sqe, ITER_DEST);
425 if (unlikely(ret))
426 return ret;
427 return io_rw_prep_reg_vec(req);
428 }
429
io_prep_writev_fixed(struct io_kiocb * req,const struct io_uring_sqe * sqe)430 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
431 {
432 int ret;
433
434 ret = __io_prep_rw(req, sqe, ITER_SOURCE);
435 if (unlikely(ret))
436 return ret;
437 return io_rw_prep_reg_vec(req);
438 }
439
440 /*
441 * Multishot read is prepared just like a normal read/write request, only
442 * difference is that we set the MULTISHOT flag.
443 */
io_read_mshot_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)444 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
445 {
446 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
447 int ret;
448
449 /* must be used with provided buffers */
450 if (!(req->flags & REQ_F_BUFFER_SELECT))
451 return -EINVAL;
452
453 ret = __io_prep_rw(req, sqe, ITER_DEST);
454 if (unlikely(ret))
455 return ret;
456
457 if (rw->addr || rw->len)
458 return -EINVAL;
459
460 req->flags |= REQ_F_APOLL_MULTISHOT;
461 return 0;
462 }
463
io_readv_writev_cleanup(struct io_kiocb * req)464 void io_readv_writev_cleanup(struct io_kiocb *req)
465 {
466 struct io_async_rw *rw = req->async_data;
467
468 lockdep_assert_held(&req->ctx->uring_lock);
469 io_vec_free(&rw->vec);
470 io_rw_recycle(req, 0);
471 }
472
io_kiocb_update_pos(struct io_kiocb * req)473 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
474 {
475 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
476
477 if (rw->kiocb.ki_pos != -1)
478 return &rw->kiocb.ki_pos;
479
480 if (!(req->file->f_mode & FMODE_STREAM)) {
481 req->flags |= REQ_F_CUR_POS;
482 rw->kiocb.ki_pos = req->file->f_pos;
483 return &rw->kiocb.ki_pos;
484 }
485
486 rw->kiocb.ki_pos = 0;
487 return NULL;
488 }
489
io_rw_should_reissue(struct io_kiocb * req)490 static bool io_rw_should_reissue(struct io_kiocb *req)
491 {
492 #ifdef CONFIG_BLOCK
493 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
494 umode_t mode = file_inode(req->file)->i_mode;
495 struct io_async_rw *io = req->async_data;
496 struct io_ring_ctx *ctx = req->ctx;
497
498 if (!S_ISBLK(mode) && !S_ISREG(mode))
499 return false;
500 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
501 !(ctx->flags & IORING_SETUP_IOPOLL)))
502 return false;
503 /*
504 * If ref is dying, we might be running poll reap from the exit work.
505 * Don't attempt to reissue from that path, just let it fail with
506 * -EAGAIN.
507 */
508 if (percpu_ref_is_dying(&ctx->refs))
509 return false;
510
511 io_meta_restore(io, &rw->kiocb);
512 iov_iter_restore(&io->iter, &io->iter_state);
513 return true;
514 #else
515 return false;
516 #endif
517 }
518
io_req_end_write(struct io_kiocb * req)519 static void io_req_end_write(struct io_kiocb *req)
520 {
521 if (req->flags & REQ_F_ISREG) {
522 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
523
524 kiocb_end_write(&rw->kiocb);
525 }
526 }
527
528 /*
529 * Trigger the notifications after having done some IO, and finish the write
530 * accounting, if any.
531 */
io_req_io_end(struct io_kiocb * req)532 static void io_req_io_end(struct io_kiocb *req)
533 {
534 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
535
536 if (rw->kiocb.ki_flags & IOCB_WRITE) {
537 io_req_end_write(req);
538 fsnotify_modify(req->file);
539 } else {
540 fsnotify_access(req->file);
541 }
542 }
543
__io_complete_rw_common(struct io_kiocb * req,long res)544 static void __io_complete_rw_common(struct io_kiocb *req, long res)
545 {
546 if (res == req->cqe.res)
547 return;
548 if ((res == -EOPNOTSUPP || res == -EAGAIN) && io_rw_should_reissue(req)) {
549 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
550 } else {
551 req_set_fail(req);
552 req->cqe.res = res;
553 }
554 }
555
io_fixup_rw_res(struct io_kiocb * req,long res)556 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
557 {
558 struct io_async_rw *io = req->async_data;
559
560 /* add previously done IO, if any */
561 if (req_has_async_data(req) && io->bytes_done > 0) {
562 if (res < 0)
563 res = io->bytes_done;
564 else
565 res += io->bytes_done;
566 }
567 return res;
568 }
569
io_req_rw_complete(struct io_kiocb * req,io_tw_token_t tw)570 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw)
571 {
572 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
573 struct kiocb *kiocb = &rw->kiocb;
574
575 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
576 long res = kiocb->dio_complete(rw->kiocb.private);
577
578 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
579 }
580
581 io_req_io_end(req);
582
583 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
584 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, NULL);
585
586 io_req_rw_cleanup(req, 0);
587 io_req_task_complete(req, tw);
588 }
589
io_complete_rw(struct kiocb * kiocb,long res)590 static void io_complete_rw(struct kiocb *kiocb, long res)
591 {
592 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
593 struct io_kiocb *req = cmd_to_io_kiocb(rw);
594
595 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
596 __io_complete_rw_common(req, res);
597 io_req_set_res(req, io_fixup_rw_res(req, res), 0);
598 }
599 req->io_task_work.func = io_req_rw_complete;
600 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
601 }
602
io_complete_rw_iopoll(struct kiocb * kiocb,long res)603 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
604 {
605 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
606 struct io_kiocb *req = cmd_to_io_kiocb(rw);
607
608 if (kiocb->ki_flags & IOCB_WRITE)
609 io_req_end_write(req);
610 if (unlikely(res != req->cqe.res)) {
611 if (res == -EAGAIN && io_rw_should_reissue(req))
612 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
613 else
614 req->cqe.res = res;
615 }
616
617 /* order with io_iopoll_complete() checking ->iopoll_completed */
618 smp_store_release(&req->iopoll_completed, 1);
619 }
620
io_rw_done(struct io_kiocb * req,ssize_t ret)621 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret)
622 {
623 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
624
625 /* IO was queued async, completion will happen later */
626 if (ret == -EIOCBQUEUED)
627 return;
628
629 /* transform internal restart error codes */
630 if (unlikely(ret < 0)) {
631 switch (ret) {
632 case -ERESTARTSYS:
633 case -ERESTARTNOINTR:
634 case -ERESTARTNOHAND:
635 case -ERESTART_RESTARTBLOCK:
636 /*
637 * We can't just restart the syscall, since previously
638 * submitted sqes may already be in progress. Just fail
639 * this IO with EINTR.
640 */
641 ret = -EINTR;
642 break;
643 }
644 }
645
646 if (req->ctx->flags & IORING_SETUP_IOPOLL)
647 io_complete_rw_iopoll(&rw->kiocb, ret);
648 else
649 io_complete_rw(&rw->kiocb, ret);
650 }
651
kiocb_done(struct io_kiocb * req,ssize_t ret,struct io_br_sel * sel,unsigned int issue_flags)652 static int kiocb_done(struct io_kiocb *req, ssize_t ret,
653 struct io_br_sel *sel, unsigned int issue_flags)
654 {
655 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
656 unsigned final_ret = io_fixup_rw_res(req, ret);
657
658 if (ret >= 0 && req->flags & REQ_F_CUR_POS)
659 req->file->f_pos = rw->kiocb.ki_pos;
660 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
661 u32 cflags = 0;
662
663 __io_complete_rw_common(req, ret);
664 /*
665 * Safe to call io_end from here as we're inline
666 * from the submission path.
667 */
668 io_req_io_end(req);
669 if (sel)
670 cflags = io_put_kbuf(req, ret, sel->buf_list);
671 io_req_set_res(req, final_ret, cflags);
672 io_req_rw_cleanup(req, issue_flags);
673 return IOU_COMPLETE;
674 } else {
675 io_rw_done(req, ret);
676 }
677
678 return IOU_ISSUE_SKIP_COMPLETE;
679 }
680
io_kiocb_ppos(struct kiocb * kiocb)681 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
682 {
683 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
684 }
685
686 /*
687 * For files that don't have ->read_iter() and ->write_iter(), handle them
688 * by looping over ->read() or ->write() manually.
689 */
loop_rw_iter(int ddir,struct io_rw * rw,struct iov_iter * iter)690 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
691 {
692 struct io_kiocb *req = cmd_to_io_kiocb(rw);
693 struct kiocb *kiocb = &rw->kiocb;
694 struct file *file = kiocb->ki_filp;
695 ssize_t ret = 0;
696 loff_t *ppos;
697
698 /*
699 * Don't support polled IO through this interface, and we can't
700 * support non-blocking either. For the latter, this just causes
701 * the kiocb to be handled from an async context.
702 */
703 if (kiocb->ki_flags & IOCB_HIPRI)
704 return -EOPNOTSUPP;
705 if ((kiocb->ki_flags & IOCB_NOWAIT) &&
706 !(kiocb->ki_filp->f_flags & O_NONBLOCK))
707 return -EAGAIN;
708 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf)
709 return -EFAULT;
710
711 ppos = io_kiocb_ppos(kiocb);
712
713 while (iov_iter_count(iter)) {
714 void __user *addr;
715 size_t len;
716 ssize_t nr;
717
718 if (iter_is_ubuf(iter)) {
719 addr = iter->ubuf + iter->iov_offset;
720 len = iov_iter_count(iter);
721 } else if (!iov_iter_is_bvec(iter)) {
722 addr = iter_iov_addr(iter);
723 len = iter_iov_len(iter);
724 } else {
725 addr = u64_to_user_ptr(rw->addr);
726 len = rw->len;
727 }
728
729 if (ddir == READ)
730 nr = file->f_op->read(file, addr, len, ppos);
731 else
732 nr = file->f_op->write(file, addr, len, ppos);
733
734 if (nr < 0) {
735 if (!ret)
736 ret = nr;
737 break;
738 }
739 ret += nr;
740 if (!iov_iter_is_bvec(iter)) {
741 iov_iter_advance(iter, nr);
742 } else {
743 rw->addr += nr;
744 rw->len -= nr;
745 if (!rw->len)
746 break;
747 }
748 if (nr != len)
749 break;
750 }
751
752 return ret;
753 }
754
755 /*
756 * This is our waitqueue callback handler, registered through __folio_lock_async()
757 * when we initially tried to do the IO with the iocb armed our waitqueue.
758 * This gets called when the page is unlocked, and we generally expect that to
759 * happen when the page IO is completed and the page is now uptodate. This will
760 * queue a task_work based retry of the operation, attempting to copy the data
761 * again. If the latter fails because the page was NOT uptodate, then we will
762 * do a thread based blocking retry of the operation. That's the unexpected
763 * slow path.
764 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)765 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
766 int sync, void *arg)
767 {
768 struct wait_page_queue *wpq;
769 struct io_kiocb *req = wait->private;
770 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
771 struct wait_page_key *key = arg;
772
773 wpq = container_of(wait, struct wait_page_queue, wait);
774
775 if (!wake_page_match(wpq, key))
776 return 0;
777
778 rw->kiocb.ki_flags &= ~IOCB_WAITQ;
779 list_del_init(&wait->entry);
780 io_req_task_queue(req);
781 return 1;
782 }
783
784 /*
785 * This controls whether a given IO request should be armed for async page
786 * based retry. If we return false here, the request is handed to the async
787 * worker threads for retry. If we're doing buffered reads on a regular file,
788 * we prepare a private wait_page_queue entry and retry the operation. This
789 * will either succeed because the page is now uptodate and unlocked, or it
790 * will register a callback when the page is unlocked at IO completion. Through
791 * that callback, io_uring uses task_work to setup a retry of the operation.
792 * That retry will attempt the buffered read again. The retry will generally
793 * succeed, or in rare cases where it fails, we then fall back to using the
794 * async worker threads for a blocking retry.
795 */
io_rw_should_retry(struct io_kiocb * req)796 static bool io_rw_should_retry(struct io_kiocb *req)
797 {
798 struct io_async_rw *io = req->async_data;
799 struct wait_page_queue *wait = &io->wpq;
800 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
801 struct kiocb *kiocb = &rw->kiocb;
802
803 /*
804 * Never retry for NOWAIT or a request with metadata, we just complete
805 * with -EAGAIN.
806 */
807 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA))
808 return false;
809
810 /* Only for buffered IO */
811 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
812 return false;
813
814 /*
815 * just use poll if we can, and don't attempt if the fs doesn't
816 * support callback based unlocks
817 */
818 if (io_file_can_poll(req) ||
819 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
820 return false;
821
822 wait->wait.func = io_async_buf_func;
823 wait->wait.private = req;
824 wait->wait.flags = 0;
825 INIT_LIST_HEAD(&wait->wait.entry);
826 kiocb->ki_flags |= IOCB_WAITQ;
827 kiocb->ki_flags &= ~IOCB_NOWAIT;
828 kiocb->ki_waitq = wait;
829 return true;
830 }
831
io_iter_do_read(struct io_rw * rw,struct iov_iter * iter)832 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
833 {
834 struct file *file = rw->kiocb.ki_filp;
835
836 if (likely(file->f_op->read_iter))
837 return file->f_op->read_iter(&rw->kiocb, iter);
838 else if (file->f_op->read)
839 return loop_rw_iter(READ, rw, iter);
840 else
841 return -EINVAL;
842 }
843
need_complete_io(struct io_kiocb * req)844 static bool need_complete_io(struct io_kiocb *req)
845 {
846 return req->flags & REQ_F_ISREG ||
847 S_ISBLK(file_inode(req->file)->i_mode);
848 }
849
io_rw_init_file(struct io_kiocb * req,fmode_t mode,int rw_type)850 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
851 {
852 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
853 struct kiocb *kiocb = &rw->kiocb;
854 struct io_ring_ctx *ctx = req->ctx;
855 struct file *file = req->file;
856 int ret;
857
858 if (unlikely(!(file->f_mode & mode)))
859 return -EBADF;
860
861 if (!(req->flags & REQ_F_FIXED_FILE))
862 req->flags |= io_file_get_flags(file);
863
864 kiocb->ki_flags = file->f_iocb_flags;
865 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
866 if (unlikely(ret))
867 return ret;
868 kiocb->ki_flags |= IOCB_ALLOC_CACHE;
869
870 /*
871 * If the file is marked O_NONBLOCK, still allow retry for it if it
872 * supports async. Otherwise it's impossible to use O_NONBLOCK files
873 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
874 */
875 if (kiocb->ki_flags & IOCB_NOWAIT ||
876 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
877 req->flags |= REQ_F_NOWAIT;
878
879 if (ctx->flags & IORING_SETUP_IOPOLL) {
880 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
881 return -EOPNOTSUPP;
882 kiocb->private = NULL;
883 kiocb->ki_flags |= IOCB_HIPRI;
884 req->iopoll_completed = 0;
885 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
886 /* make sure every req only blocks once*/
887 req->flags &= ~REQ_F_IOPOLL_STATE;
888 req->iopoll_start = ktime_get_ns();
889 }
890 } else {
891 if (kiocb->ki_flags & IOCB_HIPRI)
892 return -EINVAL;
893 }
894
895 if (req->flags & REQ_F_HAS_METADATA) {
896 struct io_async_rw *io = req->async_data;
897
898 if (!(file->f_mode & FMODE_HAS_METADATA))
899 return -EINVAL;
900
901 /*
902 * We have a union of meta fields with wpq used for buffered-io
903 * in io_async_rw, so fail it here.
904 */
905 if (!(req->file->f_flags & O_DIRECT))
906 return -EOPNOTSUPP;
907 kiocb->ki_flags |= IOCB_HAS_METADATA;
908 kiocb->private = &io->meta;
909 }
910
911 return 0;
912 }
913
__io_read(struct io_kiocb * req,struct io_br_sel * sel,unsigned int issue_flags)914 static int __io_read(struct io_kiocb *req, struct io_br_sel *sel,
915 unsigned int issue_flags)
916 {
917 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
918 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
919 struct io_async_rw *io = req->async_data;
920 struct kiocb *kiocb = &rw->kiocb;
921 ssize_t ret;
922 loff_t *ppos;
923
924 if (req->flags & REQ_F_IMPORT_BUFFER) {
925 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags);
926 if (unlikely(ret))
927 return ret;
928 } else if (io_do_buffer_select(req)) {
929 ret = io_import_rw_buffer(ITER_DEST, req, io, sel, issue_flags);
930 if (unlikely(ret < 0))
931 return ret;
932 }
933 ret = io_rw_init_file(req, FMODE_READ, READ);
934 if (unlikely(ret))
935 return ret;
936 req->cqe.res = iov_iter_count(&io->iter);
937
938 if (force_nonblock) {
939 /* If the file doesn't support async, just async punt */
940 if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
941 return -EAGAIN;
942 kiocb->ki_flags |= IOCB_NOWAIT;
943 } else {
944 /* Ensure we clear previously set non-block flag */
945 kiocb->ki_flags &= ~IOCB_NOWAIT;
946 }
947
948 ppos = io_kiocb_update_pos(req);
949
950 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
951 if (unlikely(ret))
952 return ret;
953
954 ret = io_iter_do_read(rw, &io->iter);
955
956 /*
957 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
958 * issue, even though they should be returning -EAGAIN. To be safe,
959 * retry from blocking context for either.
960 */
961 if (ret == -EOPNOTSUPP && force_nonblock)
962 ret = -EAGAIN;
963
964 if (ret == -EAGAIN) {
965 /* If we can poll, just do that. */
966 if (io_file_can_poll(req))
967 return -EAGAIN;
968 /* IOPOLL retry should happen for io-wq threads */
969 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
970 goto done;
971 /* no retry on NONBLOCK nor RWF_NOWAIT */
972 if (req->flags & REQ_F_NOWAIT)
973 goto done;
974 ret = 0;
975 } else if (ret == -EIOCBQUEUED) {
976 return IOU_ISSUE_SKIP_COMPLETE;
977 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
978 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) ||
979 (issue_flags & IO_URING_F_MULTISHOT)) {
980 /* read all, failed, already did sync or don't want to retry */
981 goto done;
982 }
983
984 /*
985 * Don't depend on the iter state matching what was consumed, or being
986 * untouched in case of error. Restore it and we'll advance it
987 * manually if we need to.
988 */
989 iov_iter_restore(&io->iter, &io->iter_state);
990 io_meta_restore(io, kiocb);
991
992 do {
993 /*
994 * We end up here because of a partial read, either from
995 * above or inside this loop. Advance the iter by the bytes
996 * that were consumed.
997 */
998 iov_iter_advance(&io->iter, ret);
999 if (!iov_iter_count(&io->iter))
1000 break;
1001 io->bytes_done += ret;
1002 iov_iter_save_state(&io->iter, &io->iter_state);
1003
1004 /* if we can retry, do so with the callbacks armed */
1005 if (!io_rw_should_retry(req)) {
1006 kiocb->ki_flags &= ~IOCB_WAITQ;
1007 return -EAGAIN;
1008 }
1009
1010 req->cqe.res = iov_iter_count(&io->iter);
1011 /*
1012 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
1013 * we get -EIOCBQUEUED, then we'll get a notification when the
1014 * desired page gets unlocked. We can also get a partial read
1015 * here, and if we do, then just retry at the new offset.
1016 */
1017 ret = io_iter_do_read(rw, &io->iter);
1018 if (ret == -EIOCBQUEUED)
1019 return IOU_ISSUE_SKIP_COMPLETE;
1020 /* we got some bytes, but not all. retry. */
1021 kiocb->ki_flags &= ~IOCB_WAITQ;
1022 iov_iter_restore(&io->iter, &io->iter_state);
1023 } while (ret > 0);
1024 done:
1025 /* it's faster to check here then delegate to kfree */
1026 return ret;
1027 }
1028
io_read(struct io_kiocb * req,unsigned int issue_flags)1029 int io_read(struct io_kiocb *req, unsigned int issue_flags)
1030 {
1031 struct io_br_sel sel = { };
1032 int ret;
1033
1034 ret = __io_read(req, &sel, issue_flags);
1035 if (ret >= 0)
1036 return kiocb_done(req, ret, &sel, issue_flags);
1037
1038 if (req->flags & REQ_F_BUFFERS_COMMIT)
1039 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1040 return ret;
1041 }
1042
io_read_mshot(struct io_kiocb * req,unsigned int issue_flags)1043 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
1044 {
1045 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1046 struct io_br_sel sel = { };
1047 unsigned int cflags = 0;
1048 int ret;
1049
1050 /*
1051 * Multishot MUST be used on a pollable file
1052 */
1053 if (!io_file_can_poll(req))
1054 return -EBADFD;
1055
1056 /* make it sync, multishot doesn't support async execution */
1057 rw->kiocb.ki_complete = NULL;
1058 ret = __io_read(req, &sel, issue_flags);
1059
1060 /*
1061 * If we get -EAGAIN, recycle our buffer and just let normal poll
1062 * handling arm it.
1063 */
1064 if (ret == -EAGAIN) {
1065 /*
1066 * Reset rw->len to 0 again to avoid clamping future mshot
1067 * reads, in case the buffer size varies.
1068 */
1069 if (io_kbuf_recycle(req, sel.buf_list, issue_flags))
1070 rw->len = 0;
1071 return IOU_RETRY;
1072 } else if (ret <= 0) {
1073 io_kbuf_recycle(req, sel.buf_list, issue_flags);
1074 if (ret < 0)
1075 req_set_fail(req);
1076 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
1077 cflags = io_put_kbuf(req, ret, sel.buf_list);
1078 } else {
1079 /*
1080 * Any successful return value will keep the multishot read
1081 * armed, if it's still set. Put our buffer and post a CQE. If
1082 * we fail to post a CQE, or multishot is no longer set, then
1083 * jump to the termination path. This request is then done.
1084 */
1085 cflags = io_put_kbuf(req, ret, sel.buf_list);
1086 rw->len = 0; /* similarly to above, reset len to 0 */
1087
1088 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
1089 if (issue_flags & IO_URING_F_MULTISHOT)
1090 /*
1091 * Force retry, as we might have more data to
1092 * be read and otherwise it won't get retried
1093 * until (if ever) another poll is triggered.
1094 */
1095 io_poll_multishot_retry(req);
1096
1097 return IOU_RETRY;
1098 }
1099 }
1100
1101 /*
1102 * Either an error, or we've hit overflow posting the CQE. For any
1103 * multishot request, hitting overflow will terminate it.
1104 */
1105 io_req_set_res(req, ret, cflags);
1106 io_req_rw_cleanup(req, issue_flags);
1107 return IOU_COMPLETE;
1108 }
1109
io_kiocb_start_write(struct io_kiocb * req,struct kiocb * kiocb)1110 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
1111 {
1112 struct inode *inode;
1113 bool ret;
1114
1115 if (!(req->flags & REQ_F_ISREG))
1116 return true;
1117 if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
1118 kiocb_start_write(kiocb);
1119 return true;
1120 }
1121
1122 inode = file_inode(kiocb->ki_filp);
1123 ret = sb_start_write_trylock(inode->i_sb);
1124 if (ret)
1125 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
1126 return ret;
1127 }
1128
io_write(struct io_kiocb * req,unsigned int issue_flags)1129 int io_write(struct io_kiocb *req, unsigned int issue_flags)
1130 {
1131 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
1132 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1133 struct io_async_rw *io = req->async_data;
1134 struct kiocb *kiocb = &rw->kiocb;
1135 ssize_t ret, ret2;
1136 loff_t *ppos;
1137
1138 if (req->flags & REQ_F_IMPORT_BUFFER) {
1139 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags);
1140 if (unlikely(ret))
1141 return ret;
1142 }
1143
1144 ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
1145 if (unlikely(ret))
1146 return ret;
1147 req->cqe.res = iov_iter_count(&io->iter);
1148
1149 if (force_nonblock) {
1150 /* If the file doesn't support async, just async punt */
1151 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
1152 goto ret_eagain;
1153
1154 /* Check if we can support NOWAIT. */
1155 if (!(kiocb->ki_flags & IOCB_DIRECT) &&
1156 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
1157 (req->flags & REQ_F_ISREG))
1158 goto ret_eagain;
1159
1160 kiocb->ki_flags |= IOCB_NOWAIT;
1161 } else {
1162 /* Ensure we clear previously set non-block flag */
1163 kiocb->ki_flags &= ~IOCB_NOWAIT;
1164 }
1165
1166 ppos = io_kiocb_update_pos(req);
1167
1168 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
1169 if (unlikely(ret))
1170 return ret;
1171
1172 if (unlikely(!io_kiocb_start_write(req, kiocb)))
1173 return -EAGAIN;
1174 kiocb->ki_flags |= IOCB_WRITE;
1175
1176 if (likely(req->file->f_op->write_iter))
1177 ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
1178 else if (req->file->f_op->write)
1179 ret2 = loop_rw_iter(WRITE, rw, &io->iter);
1180 else
1181 ret2 = -EINVAL;
1182
1183 /*
1184 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
1185 * retry them without IOCB_NOWAIT.
1186 */
1187 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
1188 ret2 = -EAGAIN;
1189 /* no retry on NONBLOCK nor RWF_NOWAIT */
1190 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
1191 goto done;
1192 if (!force_nonblock || ret2 != -EAGAIN) {
1193 /* IOPOLL retry should happen for io-wq threads */
1194 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
1195 goto ret_eagain;
1196
1197 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
1198 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
1199 req->cqe.res, ret2);
1200
1201 /* This is a partial write. The file pos has already been
1202 * updated, setup the async struct to complete the request
1203 * in the worker. Also update bytes_done to account for
1204 * the bytes already written.
1205 */
1206 iov_iter_save_state(&io->iter, &io->iter_state);
1207 io->bytes_done += ret2;
1208
1209 if (kiocb->ki_flags & IOCB_WRITE)
1210 io_req_end_write(req);
1211 return -EAGAIN;
1212 }
1213 done:
1214 return kiocb_done(req, ret2, NULL, issue_flags);
1215 } else {
1216 ret_eagain:
1217 iov_iter_restore(&io->iter, &io->iter_state);
1218 io_meta_restore(io, kiocb);
1219 if (kiocb->ki_flags & IOCB_WRITE)
1220 io_req_end_write(req);
1221 return -EAGAIN;
1222 }
1223 }
1224
io_read_fixed(struct io_kiocb * req,unsigned int issue_flags)1225 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags)
1226 {
1227 int ret;
1228
1229 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST);
1230 if (unlikely(ret))
1231 return ret;
1232
1233 return io_read(req, issue_flags);
1234 }
1235
io_write_fixed(struct io_kiocb * req,unsigned int issue_flags)1236 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags)
1237 {
1238 int ret;
1239
1240 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE);
1241 if (unlikely(ret))
1242 return ret;
1243
1244 return io_write(req, issue_flags);
1245 }
1246
io_rw_fail(struct io_kiocb * req)1247 void io_rw_fail(struct io_kiocb *req)
1248 {
1249 int res;
1250
1251 res = io_fixup_rw_res(req, req->cqe.res);
1252 io_req_set_res(req, res, req->cqe.flags);
1253 }
1254
io_uring_classic_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1255 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
1256 unsigned int poll_flags)
1257 {
1258 struct file *file = req->file;
1259
1260 if (req->opcode == IORING_OP_URING_CMD) {
1261 struct io_uring_cmd *ioucmd;
1262
1263 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
1264 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
1265 } else {
1266 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
1267
1268 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
1269 }
1270 }
1271
io_hybrid_iopoll_delay(struct io_ring_ctx * ctx,struct io_kiocb * req)1272 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
1273 {
1274 struct hrtimer_sleeper timer;
1275 enum hrtimer_mode mode;
1276 ktime_t kt;
1277 u64 sleep_time;
1278
1279 if (req->flags & REQ_F_IOPOLL_STATE)
1280 return 0;
1281
1282 if (ctx->hybrid_poll_time == LLONG_MAX)
1283 return 0;
1284
1285 /* Using half the running time to do schedule */
1286 sleep_time = ctx->hybrid_poll_time / 2;
1287
1288 kt = ktime_set(0, sleep_time);
1289 req->flags |= REQ_F_IOPOLL_STATE;
1290
1291 mode = HRTIMER_MODE_REL;
1292 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
1293 hrtimer_set_expires(&timer.timer, kt);
1294 set_current_state(TASK_INTERRUPTIBLE);
1295 hrtimer_sleeper_start_expires(&timer, mode);
1296
1297 if (timer.task)
1298 io_schedule();
1299
1300 hrtimer_cancel(&timer.timer);
1301 __set_current_state(TASK_RUNNING);
1302 destroy_hrtimer_on_stack(&timer.timer);
1303 return sleep_time;
1304 }
1305
io_uring_hybrid_poll(struct io_kiocb * req,struct io_comp_batch * iob,unsigned int poll_flags)1306 static int io_uring_hybrid_poll(struct io_kiocb *req,
1307 struct io_comp_batch *iob, unsigned int poll_flags)
1308 {
1309 struct io_ring_ctx *ctx = req->ctx;
1310 u64 runtime, sleep_time;
1311 int ret;
1312
1313 sleep_time = io_hybrid_iopoll_delay(ctx, req);
1314 ret = io_uring_classic_poll(req, iob, poll_flags);
1315 runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
1316
1317 /*
1318 * Use minimum sleep time if we're polling devices with different
1319 * latencies. We could get more completions from the faster ones.
1320 */
1321 if (ctx->hybrid_poll_time > runtime)
1322 ctx->hybrid_poll_time = runtime;
1323
1324 return ret;
1325 }
1326
io_do_iopoll(struct io_ring_ctx * ctx,bool force_nonspin)1327 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
1328 {
1329 struct io_wq_work_node *pos, *start, *prev;
1330 unsigned int poll_flags = 0;
1331 DEFINE_IO_COMP_BATCH(iob);
1332 int nr_events = 0;
1333
1334 /*
1335 * Only spin for completions if we don't have multiple devices hanging
1336 * off our complete list.
1337 */
1338 if (ctx->poll_multi_queue || force_nonspin)
1339 poll_flags |= BLK_POLL_ONESHOT;
1340
1341 wq_list_for_each(pos, start, &ctx->iopoll_list) {
1342 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1343 int ret;
1344
1345 /*
1346 * Move completed and retryable entries to our local lists.
1347 * If we find a request that requires polling, break out
1348 * and complete those lists first, if we have entries there.
1349 */
1350 if (READ_ONCE(req->iopoll_completed))
1351 break;
1352
1353 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
1354 ret = io_uring_hybrid_poll(req, &iob, poll_flags);
1355 else
1356 ret = io_uring_classic_poll(req, &iob, poll_flags);
1357
1358 if (unlikely(ret < 0))
1359 return ret;
1360 else if (ret)
1361 poll_flags |= BLK_POLL_ONESHOT;
1362
1363 /* iopoll may have completed current req */
1364 if (!rq_list_empty(&iob.req_list) ||
1365 READ_ONCE(req->iopoll_completed))
1366 break;
1367 }
1368
1369 if (!rq_list_empty(&iob.req_list))
1370 iob.complete(&iob);
1371 else if (!pos)
1372 return 0;
1373
1374 prev = start;
1375 wq_list_for_each_resume(pos, prev) {
1376 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
1377
1378 /* order with io_complete_rw_iopoll(), e.g. ->result updates */
1379 if (!smp_load_acquire(&req->iopoll_completed))
1380 break;
1381 nr_events++;
1382 req->cqe.flags = io_put_kbuf(req, req->cqe.res, NULL);
1383 if (req->opcode != IORING_OP_URING_CMD)
1384 io_req_rw_cleanup(req, 0);
1385 }
1386 if (unlikely(!nr_events))
1387 return 0;
1388
1389 pos = start ? start->next : ctx->iopoll_list.first;
1390 wq_list_cut(&ctx->iopoll_list, prev, start);
1391
1392 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
1393 return 0;
1394 ctx->submit_state.compl_reqs.first = pos;
1395 __io_submit_flush_completions(ctx);
1396 return nr_events;
1397 }
1398
io_rw_cache_free(const void * entry)1399 void io_rw_cache_free(const void *entry)
1400 {
1401 struct io_async_rw *rw = (struct io_async_rw *) entry;
1402
1403 io_vec_free(&rw->vec);
1404 kfree(rw);
1405 }
1406