1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/fs.h> 5 #include <linux/file.h> 6 #include <linux/blk-mq.h> 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/fsnotify.h> 10 #include <linux/poll.h> 11 #include <linux/nospec.h> 12 #include <linux/compat.h> 13 #include <linux/io_uring/cmd.h> 14 #include <linux/indirect_call_wrapper.h> 15 16 #include <uapi/linux/io_uring.h> 17 18 #include "io_uring.h" 19 #include "opdef.h" 20 #include "kbuf.h" 21 #include "alloc_cache.h" 22 #include "rsrc.h" 23 #include "poll.h" 24 #include "rw.h" 25 26 static void io_complete_rw(struct kiocb *kiocb, long res); 27 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res); 28 29 struct io_rw { 30 /* NOTE: kiocb has the file as the first member, so don't do it here */ 31 struct kiocb kiocb; 32 u64 addr; 33 u32 len; 34 rwf_t flags; 35 }; 36 37 static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask) 38 { 39 /* If FMODE_NOWAIT is set for a file, we're golden */ 40 if (req->flags & REQ_F_SUPPORT_NOWAIT) 41 return true; 42 /* No FMODE_NOWAIT, if we can poll, check the status */ 43 if (io_file_can_poll(req)) { 44 struct poll_table_struct pt = { ._key = mask }; 45 46 return vfs_poll(req->file, &pt) & mask; 47 } 48 /* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */ 49 return false; 50 } 51 52 static int io_iov_compat_buffer_select_prep(struct io_rw *rw) 53 { 54 struct compat_iovec __user *uiov = u64_to_user_ptr(rw->addr); 55 struct compat_iovec iov; 56 57 if (copy_from_user(&iov, uiov, sizeof(iov))) 58 return -EFAULT; 59 rw->len = iov.iov_len; 60 return 0; 61 } 62 63 static int io_iov_buffer_select_prep(struct io_kiocb *req) 64 { 65 struct iovec __user *uiov; 66 struct iovec iov; 67 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 68 69 if (rw->len != 1) 70 return -EINVAL; 71 72 if (io_is_compat(req->ctx)) 73 return io_iov_compat_buffer_select_prep(rw); 74 75 uiov = u64_to_user_ptr(rw->addr); 76 if (copy_from_user(&iov, uiov, sizeof(*uiov))) 77 return -EFAULT; 78 rw->len = iov.iov_len; 79 return 0; 80 } 81 82 static int io_import_vec(int ddir, struct io_kiocb *req, 83 struct io_async_rw *io, 84 const struct iovec __user *uvec, 85 size_t uvec_segs) 86 { 87 int ret, nr_segs; 88 struct iovec *iov; 89 90 if (io->vec.iovec) { 91 nr_segs = io->vec.nr; 92 iov = io->vec.iovec; 93 } else { 94 nr_segs = 1; 95 iov = &io->fast_iov; 96 } 97 98 ret = __import_iovec(ddir, uvec, uvec_segs, nr_segs, &iov, &io->iter, 99 io_is_compat(req->ctx)); 100 if (unlikely(ret < 0)) 101 return ret; 102 if (iov) { 103 req->flags |= REQ_F_NEED_CLEANUP; 104 io_vec_reset_iovec(&io->vec, iov, io->iter.nr_segs); 105 } 106 return 0; 107 } 108 109 static int __io_import_rw_buffer(int ddir, struct io_kiocb *req, 110 struct io_async_rw *io, 111 unsigned int issue_flags) 112 { 113 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 114 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 115 void __user *buf = u64_to_user_ptr(rw->addr); 116 size_t sqe_len = rw->len; 117 118 if (def->vectored && !(req->flags & REQ_F_BUFFER_SELECT)) 119 return io_import_vec(ddir, req, io, buf, sqe_len); 120 121 if (io_do_buffer_select(req)) { 122 buf = io_buffer_select(req, &sqe_len, issue_flags); 123 if (!buf) 124 return -ENOBUFS; 125 rw->addr = (unsigned long) buf; 126 rw->len = sqe_len; 127 } 128 return import_ubuf(ddir, buf, sqe_len, &io->iter); 129 } 130 131 static inline int io_import_rw_buffer(int rw, struct io_kiocb *req, 132 struct io_async_rw *io, 133 unsigned int issue_flags) 134 { 135 int ret; 136 137 ret = __io_import_rw_buffer(rw, req, io, issue_flags); 138 if (unlikely(ret < 0)) 139 return ret; 140 141 iov_iter_save_state(&io->iter, &io->iter_state); 142 return 0; 143 } 144 145 static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) 146 { 147 struct io_async_rw *rw = req->async_data; 148 149 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 150 return; 151 152 io_alloc_cache_vec_kasan(&rw->vec); 153 if (rw->vec.nr > IO_VEC_CACHE_SOFT_CAP) 154 io_vec_free(&rw->vec); 155 156 if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) { 157 req->async_data = NULL; 158 req->flags &= ~REQ_F_ASYNC_DATA; 159 } 160 } 161 162 static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) 163 { 164 /* 165 * Disable quick recycling for anything that's gone through io-wq. 166 * In theory, this should be fine to cleanup. However, some read or 167 * write iter handling touches the iovec AFTER having called into the 168 * handler, eg to reexpand or revert. This means we can have: 169 * 170 * task io-wq 171 * issue 172 * punt to io-wq 173 * issue 174 * blkdev_write_iter() 175 * ->ki_complete() 176 * io_complete_rw() 177 * queue tw complete 178 * run tw 179 * req_rw_cleanup 180 * iov_iter_count() <- look at iov_iter again 181 * 182 * which can lead to a UAF. This is only possible for io-wq offload 183 * as the cleanup can run in parallel. As io-wq is not the fast path, 184 * just leave cleanup to the end. 185 * 186 * This is really a bug in the core code that does this, any issue 187 * path should assume that a successful (or -EIOCBQUEUED) return can 188 * mean that the underlying data can be gone at any time. But that 189 * should be fixed seperately, and then this check could be killed. 190 */ 191 if (!(req->flags & (REQ_F_REISSUE | REQ_F_REFCOUNT))) { 192 req->flags &= ~REQ_F_NEED_CLEANUP; 193 io_rw_recycle(req, issue_flags); 194 } 195 } 196 197 static int io_rw_alloc_async(struct io_kiocb *req) 198 { 199 struct io_ring_ctx *ctx = req->ctx; 200 struct io_async_rw *rw; 201 202 rw = io_uring_alloc_async_data(&ctx->rw_cache, req); 203 if (!rw) 204 return -ENOMEM; 205 if (rw->vec.iovec) 206 req->flags |= REQ_F_NEED_CLEANUP; 207 rw->bytes_done = 0; 208 return 0; 209 } 210 211 static inline void io_meta_save_state(struct io_async_rw *io) 212 { 213 io->meta_state.seed = io->meta.seed; 214 iov_iter_save_state(&io->meta.iter, &io->meta_state.iter_meta); 215 } 216 217 static inline void io_meta_restore(struct io_async_rw *io, struct kiocb *kiocb) 218 { 219 if (kiocb->ki_flags & IOCB_HAS_METADATA) { 220 io->meta.seed = io->meta_state.seed; 221 iov_iter_restore(&io->meta.iter, &io->meta_state.iter_meta); 222 } 223 } 224 225 static int io_prep_rw_pi(struct io_kiocb *req, struct io_rw *rw, int ddir, 226 u64 attr_ptr, u64 attr_type_mask) 227 { 228 struct io_uring_attr_pi pi_attr; 229 struct io_async_rw *io; 230 int ret; 231 232 if (copy_from_user(&pi_attr, u64_to_user_ptr(attr_ptr), 233 sizeof(pi_attr))) 234 return -EFAULT; 235 236 if (pi_attr.rsvd) 237 return -EINVAL; 238 239 io = req->async_data; 240 io->meta.flags = pi_attr.flags; 241 io->meta.app_tag = pi_attr.app_tag; 242 io->meta.seed = pi_attr.seed; 243 ret = import_ubuf(ddir, u64_to_user_ptr(pi_attr.addr), 244 pi_attr.len, &io->meta.iter); 245 if (unlikely(ret < 0)) 246 return ret; 247 req->flags |= REQ_F_HAS_METADATA; 248 io_meta_save_state(io); 249 return ret; 250 } 251 252 static int __io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 253 int ddir) 254 { 255 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 256 unsigned ioprio; 257 u64 attr_type_mask; 258 int ret; 259 260 if (io_rw_alloc_async(req)) 261 return -ENOMEM; 262 263 rw->kiocb.ki_pos = READ_ONCE(sqe->off); 264 /* used for fixed read/write too - just read unconditionally */ 265 req->buf_index = READ_ONCE(sqe->buf_index); 266 267 ioprio = READ_ONCE(sqe->ioprio); 268 if (ioprio) { 269 ret = ioprio_check_cap(ioprio); 270 if (ret) 271 return ret; 272 273 rw->kiocb.ki_ioprio = ioprio; 274 } else { 275 rw->kiocb.ki_ioprio = get_current_ioprio(); 276 } 277 rw->kiocb.dio_complete = NULL; 278 rw->kiocb.ki_flags = 0; 279 280 if (req->ctx->flags & IORING_SETUP_IOPOLL) 281 rw->kiocb.ki_complete = io_complete_rw_iopoll; 282 else 283 rw->kiocb.ki_complete = io_complete_rw; 284 285 rw->addr = READ_ONCE(sqe->addr); 286 rw->len = READ_ONCE(sqe->len); 287 rw->flags = READ_ONCE(sqe->rw_flags); 288 289 attr_type_mask = READ_ONCE(sqe->attr_type_mask); 290 if (attr_type_mask) { 291 u64 attr_ptr; 292 293 /* only PI attribute is supported currently */ 294 if (attr_type_mask != IORING_RW_ATTR_FLAG_PI) 295 return -EINVAL; 296 297 attr_ptr = READ_ONCE(sqe->attr_ptr); 298 return io_prep_rw_pi(req, rw, ddir, attr_ptr, attr_type_mask); 299 } 300 return 0; 301 } 302 303 static int io_rw_do_import(struct io_kiocb *req, int ddir) 304 { 305 if (io_do_buffer_select(req)) 306 return 0; 307 308 return io_import_rw_buffer(ddir, req, req->async_data, 0); 309 } 310 311 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, 312 int ddir) 313 { 314 int ret; 315 316 ret = __io_prep_rw(req, sqe, ddir); 317 if (unlikely(ret)) 318 return ret; 319 320 return io_rw_do_import(req, ddir); 321 } 322 323 int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) 324 { 325 return io_prep_rw(req, sqe, ITER_DEST); 326 } 327 328 int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) 329 { 330 return io_prep_rw(req, sqe, ITER_SOURCE); 331 } 332 333 static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, 334 int ddir) 335 { 336 int ret; 337 338 ret = io_prep_rw(req, sqe, ddir); 339 if (unlikely(ret)) 340 return ret; 341 if (!(req->flags & REQ_F_BUFFER_SELECT)) 342 return 0; 343 344 /* 345 * Have to do this validation here, as this is in io_read() rw->len 346 * might have chanaged due to buffer selection 347 */ 348 return io_iov_buffer_select_prep(req); 349 } 350 351 int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) 352 { 353 return io_prep_rwv(req, sqe, ITER_DEST); 354 } 355 356 int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) 357 { 358 return io_prep_rwv(req, sqe, ITER_SOURCE); 359 } 360 361 static int io_init_rw_fixed(struct io_kiocb *req, unsigned int issue_flags, 362 int ddir) 363 { 364 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 365 struct io_async_rw *io = req->async_data; 366 int ret; 367 368 if (io->bytes_done) 369 return 0; 370 371 ret = io_import_reg_buf(req, &io->iter, rw->addr, rw->len, ddir, 372 issue_flags); 373 iov_iter_save_state(&io->iter, &io->iter_state); 374 return ret; 375 } 376 377 int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 378 { 379 return __io_prep_rw(req, sqe, ITER_DEST); 380 } 381 382 int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 383 { 384 return __io_prep_rw(req, sqe, ITER_SOURCE); 385 } 386 387 static int io_rw_import_reg_vec(struct io_kiocb *req, 388 struct io_async_rw *io, 389 int ddir, unsigned int issue_flags) 390 { 391 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 392 unsigned uvec_segs = rw->len; 393 int ret; 394 395 ret = io_import_reg_vec(ddir, &io->iter, req, &io->vec, 396 uvec_segs, issue_flags); 397 if (unlikely(ret)) 398 return ret; 399 iov_iter_save_state(&io->iter, &io->iter_state); 400 req->flags &= ~REQ_F_IMPORT_BUFFER; 401 return 0; 402 } 403 404 static int io_rw_prep_reg_vec(struct io_kiocb *req) 405 { 406 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 407 struct io_async_rw *io = req->async_data; 408 const struct iovec __user *uvec; 409 410 uvec = u64_to_user_ptr(rw->addr); 411 return io_prep_reg_iovec(req, &io->vec, uvec, rw->len); 412 } 413 414 int io_prep_readv_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 415 { 416 int ret; 417 418 ret = __io_prep_rw(req, sqe, ITER_DEST); 419 if (unlikely(ret)) 420 return ret; 421 return io_rw_prep_reg_vec(req); 422 } 423 424 int io_prep_writev_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) 425 { 426 int ret; 427 428 ret = __io_prep_rw(req, sqe, ITER_SOURCE); 429 if (unlikely(ret)) 430 return ret; 431 return io_rw_prep_reg_vec(req); 432 } 433 434 /* 435 * Multishot read is prepared just like a normal read/write request, only 436 * difference is that we set the MULTISHOT flag. 437 */ 438 int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) 439 { 440 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 441 int ret; 442 443 /* must be used with provided buffers */ 444 if (!(req->flags & REQ_F_BUFFER_SELECT)) 445 return -EINVAL; 446 447 ret = __io_prep_rw(req, sqe, ITER_DEST); 448 if (unlikely(ret)) 449 return ret; 450 451 if (rw->addr || rw->len) 452 return -EINVAL; 453 454 req->flags |= REQ_F_APOLL_MULTISHOT; 455 return 0; 456 } 457 458 void io_readv_writev_cleanup(struct io_kiocb *req) 459 { 460 lockdep_assert_held(&req->ctx->uring_lock); 461 io_rw_recycle(req, 0); 462 } 463 464 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) 465 { 466 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 467 468 if (rw->kiocb.ki_pos != -1) 469 return &rw->kiocb.ki_pos; 470 471 if (!(req->file->f_mode & FMODE_STREAM)) { 472 req->flags |= REQ_F_CUR_POS; 473 rw->kiocb.ki_pos = req->file->f_pos; 474 return &rw->kiocb.ki_pos; 475 } 476 477 rw->kiocb.ki_pos = 0; 478 return NULL; 479 } 480 481 static bool io_rw_should_reissue(struct io_kiocb *req) 482 { 483 #ifdef CONFIG_BLOCK 484 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 485 umode_t mode = file_inode(req->file)->i_mode; 486 struct io_async_rw *io = req->async_data; 487 struct io_ring_ctx *ctx = req->ctx; 488 489 if (!S_ISBLK(mode) && !S_ISREG(mode)) 490 return false; 491 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && 492 !(ctx->flags & IORING_SETUP_IOPOLL))) 493 return false; 494 /* 495 * If ref is dying, we might be running poll reap from the exit work. 496 * Don't attempt to reissue from that path, just let it fail with 497 * -EAGAIN. 498 */ 499 if (percpu_ref_is_dying(&ctx->refs)) 500 return false; 501 502 io_meta_restore(io, &rw->kiocb); 503 iov_iter_restore(&io->iter, &io->iter_state); 504 return true; 505 #else 506 return false; 507 #endif 508 } 509 510 static void io_req_end_write(struct io_kiocb *req) 511 { 512 if (req->flags & REQ_F_ISREG) { 513 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 514 515 kiocb_end_write(&rw->kiocb); 516 } 517 } 518 519 /* 520 * Trigger the notifications after having done some IO, and finish the write 521 * accounting, if any. 522 */ 523 static void io_req_io_end(struct io_kiocb *req) 524 { 525 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 526 527 if (rw->kiocb.ki_flags & IOCB_WRITE) { 528 io_req_end_write(req); 529 fsnotify_modify(req->file); 530 } else { 531 fsnotify_access(req->file); 532 } 533 } 534 535 static void __io_complete_rw_common(struct io_kiocb *req, long res) 536 { 537 if (res == req->cqe.res) 538 return; 539 if (res == -EAGAIN && io_rw_should_reissue(req)) { 540 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 541 } else { 542 req_set_fail(req); 543 req->cqe.res = res; 544 } 545 } 546 547 static inline int io_fixup_rw_res(struct io_kiocb *req, long res) 548 { 549 struct io_async_rw *io = req->async_data; 550 551 /* add previously done IO, if any */ 552 if (req_has_async_data(req) && io->bytes_done > 0) { 553 if (res < 0) 554 res = io->bytes_done; 555 else 556 res += io->bytes_done; 557 } 558 return res; 559 } 560 561 void io_req_rw_complete(struct io_kiocb *req, io_tw_token_t tw) 562 { 563 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 564 struct kiocb *kiocb = &rw->kiocb; 565 566 if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) { 567 long res = kiocb->dio_complete(rw->kiocb.private); 568 569 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 570 } 571 572 io_req_io_end(req); 573 574 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) 575 req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0); 576 577 io_req_rw_cleanup(req, 0); 578 io_req_task_complete(req, tw); 579 } 580 581 static void io_complete_rw(struct kiocb *kiocb, long res) 582 { 583 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 584 struct io_kiocb *req = cmd_to_io_kiocb(rw); 585 586 if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) { 587 __io_complete_rw_common(req, res); 588 io_req_set_res(req, io_fixup_rw_res(req, res), 0); 589 } 590 req->io_task_work.func = io_req_rw_complete; 591 __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); 592 } 593 594 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) 595 { 596 struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); 597 struct io_kiocb *req = cmd_to_io_kiocb(rw); 598 599 if (kiocb->ki_flags & IOCB_WRITE) 600 io_req_end_write(req); 601 if (unlikely(res != req->cqe.res)) { 602 if (res == -EAGAIN && io_rw_should_reissue(req)) 603 req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; 604 else 605 req->cqe.res = res; 606 } 607 608 /* order with io_iopoll_complete() checking ->iopoll_completed */ 609 smp_store_release(&req->iopoll_completed, 1); 610 } 611 612 static inline void io_rw_done(struct io_kiocb *req, ssize_t ret) 613 { 614 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 615 616 /* IO was queued async, completion will happen later */ 617 if (ret == -EIOCBQUEUED) 618 return; 619 620 /* transform internal restart error codes */ 621 if (unlikely(ret < 0)) { 622 switch (ret) { 623 case -ERESTARTSYS: 624 case -ERESTARTNOINTR: 625 case -ERESTARTNOHAND: 626 case -ERESTART_RESTARTBLOCK: 627 /* 628 * We can't just restart the syscall, since previously 629 * submitted sqes may already be in progress. Just fail 630 * this IO with EINTR. 631 */ 632 ret = -EINTR; 633 break; 634 } 635 } 636 637 if (req->ctx->flags & IORING_SETUP_IOPOLL) 638 io_complete_rw_iopoll(&rw->kiocb, ret); 639 else 640 io_complete_rw(&rw->kiocb, ret); 641 } 642 643 static int kiocb_done(struct io_kiocb *req, ssize_t ret, 644 unsigned int issue_flags) 645 { 646 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 647 unsigned final_ret = io_fixup_rw_res(req, ret); 648 649 if (ret >= 0 && req->flags & REQ_F_CUR_POS) 650 req->file->f_pos = rw->kiocb.ki_pos; 651 if (ret >= 0 && !(req->ctx->flags & IORING_SETUP_IOPOLL)) { 652 __io_complete_rw_common(req, ret); 653 /* 654 * Safe to call io_end from here as we're inline 655 * from the submission path. 656 */ 657 io_req_io_end(req); 658 io_req_set_res(req, final_ret, io_put_kbuf(req, ret, issue_flags)); 659 io_req_rw_cleanup(req, issue_flags); 660 return IOU_OK; 661 } else { 662 io_rw_done(req, ret); 663 } 664 665 return IOU_ISSUE_SKIP_COMPLETE; 666 } 667 668 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) 669 { 670 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; 671 } 672 673 /* 674 * For files that don't have ->read_iter() and ->write_iter(), handle them 675 * by looping over ->read() or ->write() manually. 676 */ 677 static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) 678 { 679 struct io_kiocb *req = cmd_to_io_kiocb(rw); 680 struct kiocb *kiocb = &rw->kiocb; 681 struct file *file = kiocb->ki_filp; 682 ssize_t ret = 0; 683 loff_t *ppos; 684 685 /* 686 * Don't support polled IO through this interface, and we can't 687 * support non-blocking either. For the latter, this just causes 688 * the kiocb to be handled from an async context. 689 */ 690 if (kiocb->ki_flags & IOCB_HIPRI) 691 return -EOPNOTSUPP; 692 if ((kiocb->ki_flags & IOCB_NOWAIT) && 693 !(kiocb->ki_filp->f_flags & O_NONBLOCK)) 694 return -EAGAIN; 695 if ((req->flags & REQ_F_BUF_NODE) && req->buf_node->buf->is_kbuf) 696 return -EFAULT; 697 698 ppos = io_kiocb_ppos(kiocb); 699 700 while (iov_iter_count(iter)) { 701 void __user *addr; 702 size_t len; 703 ssize_t nr; 704 705 if (iter_is_ubuf(iter)) { 706 addr = iter->ubuf + iter->iov_offset; 707 len = iov_iter_count(iter); 708 } else if (!iov_iter_is_bvec(iter)) { 709 addr = iter_iov_addr(iter); 710 len = iter_iov_len(iter); 711 } else { 712 addr = u64_to_user_ptr(rw->addr); 713 len = rw->len; 714 } 715 716 if (ddir == READ) 717 nr = file->f_op->read(file, addr, len, ppos); 718 else 719 nr = file->f_op->write(file, addr, len, ppos); 720 721 if (nr < 0) { 722 if (!ret) 723 ret = nr; 724 break; 725 } 726 ret += nr; 727 if (!iov_iter_is_bvec(iter)) { 728 iov_iter_advance(iter, nr); 729 } else { 730 rw->addr += nr; 731 rw->len -= nr; 732 if (!rw->len) 733 break; 734 } 735 if (nr != len) 736 break; 737 } 738 739 return ret; 740 } 741 742 /* 743 * This is our waitqueue callback handler, registered through __folio_lock_async() 744 * when we initially tried to do the IO with the iocb armed our waitqueue. 745 * This gets called when the page is unlocked, and we generally expect that to 746 * happen when the page IO is completed and the page is now uptodate. This will 747 * queue a task_work based retry of the operation, attempting to copy the data 748 * again. If the latter fails because the page was NOT uptodate, then we will 749 * do a thread based blocking retry of the operation. That's the unexpected 750 * slow path. 751 */ 752 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, 753 int sync, void *arg) 754 { 755 struct wait_page_queue *wpq; 756 struct io_kiocb *req = wait->private; 757 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 758 struct wait_page_key *key = arg; 759 760 wpq = container_of(wait, struct wait_page_queue, wait); 761 762 if (!wake_page_match(wpq, key)) 763 return 0; 764 765 rw->kiocb.ki_flags &= ~IOCB_WAITQ; 766 list_del_init(&wait->entry); 767 io_req_task_queue(req); 768 return 1; 769 } 770 771 /* 772 * This controls whether a given IO request should be armed for async page 773 * based retry. If we return false here, the request is handed to the async 774 * worker threads for retry. If we're doing buffered reads on a regular file, 775 * we prepare a private wait_page_queue entry and retry the operation. This 776 * will either succeed because the page is now uptodate and unlocked, or it 777 * will register a callback when the page is unlocked at IO completion. Through 778 * that callback, io_uring uses task_work to setup a retry of the operation. 779 * That retry will attempt the buffered read again. The retry will generally 780 * succeed, or in rare cases where it fails, we then fall back to using the 781 * async worker threads for a blocking retry. 782 */ 783 static bool io_rw_should_retry(struct io_kiocb *req) 784 { 785 struct io_async_rw *io = req->async_data; 786 struct wait_page_queue *wait = &io->wpq; 787 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 788 struct kiocb *kiocb = &rw->kiocb; 789 790 /* 791 * Never retry for NOWAIT or a request with metadata, we just complete 792 * with -EAGAIN. 793 */ 794 if (req->flags & (REQ_F_NOWAIT | REQ_F_HAS_METADATA)) 795 return false; 796 797 /* Only for buffered IO */ 798 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) 799 return false; 800 801 /* 802 * just use poll if we can, and don't attempt if the fs doesn't 803 * support callback based unlocks 804 */ 805 if (io_file_can_poll(req) || 806 !(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC)) 807 return false; 808 809 wait->wait.func = io_async_buf_func; 810 wait->wait.private = req; 811 wait->wait.flags = 0; 812 INIT_LIST_HEAD(&wait->wait.entry); 813 kiocb->ki_flags |= IOCB_WAITQ; 814 kiocb->ki_flags &= ~IOCB_NOWAIT; 815 kiocb->ki_waitq = wait; 816 return true; 817 } 818 819 static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) 820 { 821 struct file *file = rw->kiocb.ki_filp; 822 823 if (likely(file->f_op->read_iter)) 824 return file->f_op->read_iter(&rw->kiocb, iter); 825 else if (file->f_op->read) 826 return loop_rw_iter(READ, rw, iter); 827 else 828 return -EINVAL; 829 } 830 831 static bool need_complete_io(struct io_kiocb *req) 832 { 833 return req->flags & REQ_F_ISREG || 834 S_ISBLK(file_inode(req->file)->i_mode); 835 } 836 837 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type) 838 { 839 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 840 struct kiocb *kiocb = &rw->kiocb; 841 struct io_ring_ctx *ctx = req->ctx; 842 struct file *file = req->file; 843 int ret; 844 845 if (unlikely(!(file->f_mode & mode))) 846 return -EBADF; 847 848 if (!(req->flags & REQ_F_FIXED_FILE)) 849 req->flags |= io_file_get_flags(file); 850 851 kiocb->ki_flags = file->f_iocb_flags; 852 ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type); 853 if (unlikely(ret)) 854 return ret; 855 kiocb->ki_flags |= IOCB_ALLOC_CACHE; 856 857 /* 858 * If the file is marked O_NONBLOCK, still allow retry for it if it 859 * supports async. Otherwise it's impossible to use O_NONBLOCK files 860 * reliably. If not, or it IOCB_NOWAIT is set, don't retry. 861 */ 862 if (kiocb->ki_flags & IOCB_NOWAIT || 863 ((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT)))) 864 req->flags |= REQ_F_NOWAIT; 865 866 if (ctx->flags & IORING_SETUP_IOPOLL) { 867 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) 868 return -EOPNOTSUPP; 869 kiocb->private = NULL; 870 kiocb->ki_flags |= IOCB_HIPRI; 871 req->iopoll_completed = 0; 872 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) { 873 /* make sure every req only blocks once*/ 874 req->flags &= ~REQ_F_IOPOLL_STATE; 875 req->iopoll_start = ktime_get_ns(); 876 } 877 } else { 878 if (kiocb->ki_flags & IOCB_HIPRI) 879 return -EINVAL; 880 } 881 882 if (req->flags & REQ_F_HAS_METADATA) { 883 struct io_async_rw *io = req->async_data; 884 885 /* 886 * We have a union of meta fields with wpq used for buffered-io 887 * in io_async_rw, so fail it here. 888 */ 889 if (!(req->file->f_flags & O_DIRECT)) 890 return -EOPNOTSUPP; 891 kiocb->ki_flags |= IOCB_HAS_METADATA; 892 kiocb->private = &io->meta; 893 } 894 895 return 0; 896 } 897 898 static int __io_read(struct io_kiocb *req, unsigned int issue_flags) 899 { 900 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 901 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 902 struct io_async_rw *io = req->async_data; 903 struct kiocb *kiocb = &rw->kiocb; 904 ssize_t ret; 905 loff_t *ppos; 906 907 if (req->flags & REQ_F_IMPORT_BUFFER) { 908 ret = io_rw_import_reg_vec(req, io, ITER_DEST, issue_flags); 909 if (unlikely(ret)) 910 return ret; 911 } else if (io_do_buffer_select(req)) { 912 ret = io_import_rw_buffer(ITER_DEST, req, io, issue_flags); 913 if (unlikely(ret < 0)) 914 return ret; 915 } 916 ret = io_rw_init_file(req, FMODE_READ, READ); 917 if (unlikely(ret)) 918 return ret; 919 req->cqe.res = iov_iter_count(&io->iter); 920 921 if (force_nonblock) { 922 /* If the file doesn't support async, just async punt */ 923 if (unlikely(!io_file_supports_nowait(req, EPOLLIN))) 924 return -EAGAIN; 925 kiocb->ki_flags |= IOCB_NOWAIT; 926 } else { 927 /* Ensure we clear previously set non-block flag */ 928 kiocb->ki_flags &= ~IOCB_NOWAIT; 929 } 930 931 ppos = io_kiocb_update_pos(req); 932 933 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); 934 if (unlikely(ret)) 935 return ret; 936 937 ret = io_iter_do_read(rw, &io->iter); 938 939 /* 940 * Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT 941 * issue, even though they should be returning -EAGAIN. To be safe, 942 * retry from blocking context for either. 943 */ 944 if (ret == -EOPNOTSUPP && force_nonblock) 945 ret = -EAGAIN; 946 947 if (ret == -EAGAIN) { 948 /* If we can poll, just do that. */ 949 if (io_file_can_poll(req)) 950 return -EAGAIN; 951 /* IOPOLL retry should happen for io-wq threads */ 952 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) 953 goto done; 954 /* no retry on NONBLOCK nor RWF_NOWAIT */ 955 if (req->flags & REQ_F_NOWAIT) 956 goto done; 957 ret = 0; 958 } else if (ret == -EIOCBQUEUED) { 959 return IOU_ISSUE_SKIP_COMPLETE; 960 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || 961 (req->flags & REQ_F_NOWAIT) || !need_complete_io(req) || 962 (issue_flags & IO_URING_F_MULTISHOT)) { 963 /* read all, failed, already did sync or don't want to retry */ 964 goto done; 965 } 966 967 /* 968 * Don't depend on the iter state matching what was consumed, or being 969 * untouched in case of error. Restore it and we'll advance it 970 * manually if we need to. 971 */ 972 iov_iter_restore(&io->iter, &io->iter_state); 973 io_meta_restore(io, kiocb); 974 975 do { 976 /* 977 * We end up here because of a partial read, either from 978 * above or inside this loop. Advance the iter by the bytes 979 * that were consumed. 980 */ 981 iov_iter_advance(&io->iter, ret); 982 if (!iov_iter_count(&io->iter)) 983 break; 984 io->bytes_done += ret; 985 iov_iter_save_state(&io->iter, &io->iter_state); 986 987 /* if we can retry, do so with the callbacks armed */ 988 if (!io_rw_should_retry(req)) { 989 kiocb->ki_flags &= ~IOCB_WAITQ; 990 return -EAGAIN; 991 } 992 993 req->cqe.res = iov_iter_count(&io->iter); 994 /* 995 * Now retry read with the IOCB_WAITQ parts set in the iocb. If 996 * we get -EIOCBQUEUED, then we'll get a notification when the 997 * desired page gets unlocked. We can also get a partial read 998 * here, and if we do, then just retry at the new offset. 999 */ 1000 ret = io_iter_do_read(rw, &io->iter); 1001 if (ret == -EIOCBQUEUED) 1002 return IOU_ISSUE_SKIP_COMPLETE; 1003 /* we got some bytes, but not all. retry. */ 1004 kiocb->ki_flags &= ~IOCB_WAITQ; 1005 iov_iter_restore(&io->iter, &io->iter_state); 1006 } while (ret > 0); 1007 done: 1008 /* it's faster to check here then delegate to kfree */ 1009 return ret; 1010 } 1011 1012 int io_read(struct io_kiocb *req, unsigned int issue_flags) 1013 { 1014 int ret; 1015 1016 ret = __io_read(req, issue_flags); 1017 if (ret >= 0) 1018 return kiocb_done(req, ret, issue_flags); 1019 1020 return ret; 1021 } 1022 1023 int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) 1024 { 1025 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1026 unsigned int cflags = 0; 1027 int ret; 1028 1029 /* 1030 * Multishot MUST be used on a pollable file 1031 */ 1032 if (!io_file_can_poll(req)) 1033 return -EBADFD; 1034 1035 /* make it sync, multishot doesn't support async execution */ 1036 rw->kiocb.ki_complete = NULL; 1037 ret = __io_read(req, issue_flags); 1038 1039 /* 1040 * If we get -EAGAIN, recycle our buffer and just let normal poll 1041 * handling arm it. 1042 */ 1043 if (ret == -EAGAIN) { 1044 /* 1045 * Reset rw->len to 0 again to avoid clamping future mshot 1046 * reads, in case the buffer size varies. 1047 */ 1048 if (io_kbuf_recycle(req, issue_flags)) 1049 rw->len = 0; 1050 return IOU_RETRY; 1051 } else if (ret <= 0) { 1052 io_kbuf_recycle(req, issue_flags); 1053 if (ret < 0) 1054 req_set_fail(req); 1055 } else if (!(req->flags & REQ_F_APOLL_MULTISHOT)) { 1056 cflags = io_put_kbuf(req, ret, issue_flags); 1057 } else { 1058 /* 1059 * Any successful return value will keep the multishot read 1060 * armed, if it's still set. Put our buffer and post a CQE. If 1061 * we fail to post a CQE, or multishot is no longer set, then 1062 * jump to the termination path. This request is then done. 1063 */ 1064 cflags = io_put_kbuf(req, ret, issue_flags); 1065 rw->len = 0; /* similarly to above, reset len to 0 */ 1066 1067 if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { 1068 if (issue_flags & IO_URING_F_MULTISHOT) 1069 /* 1070 * Force retry, as we might have more data to 1071 * be read and otherwise it won't get retried 1072 * until (if ever) another poll is triggered. 1073 */ 1074 io_poll_multishot_retry(req); 1075 1076 return IOU_RETRY; 1077 } 1078 } 1079 1080 /* 1081 * Either an error, or we've hit overflow posting the CQE. For any 1082 * multishot request, hitting overflow will terminate it. 1083 */ 1084 io_req_set_res(req, ret, cflags); 1085 io_req_rw_cleanup(req, issue_flags); 1086 return IOU_COMPLETE; 1087 } 1088 1089 static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb) 1090 { 1091 struct inode *inode; 1092 bool ret; 1093 1094 if (!(req->flags & REQ_F_ISREG)) 1095 return true; 1096 if (!(kiocb->ki_flags & IOCB_NOWAIT)) { 1097 kiocb_start_write(kiocb); 1098 return true; 1099 } 1100 1101 inode = file_inode(kiocb->ki_filp); 1102 ret = sb_start_write_trylock(inode->i_sb); 1103 if (ret) 1104 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 1105 return ret; 1106 } 1107 1108 int io_write(struct io_kiocb *req, unsigned int issue_flags) 1109 { 1110 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; 1111 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1112 struct io_async_rw *io = req->async_data; 1113 struct kiocb *kiocb = &rw->kiocb; 1114 ssize_t ret, ret2; 1115 loff_t *ppos; 1116 1117 if (req->flags & REQ_F_IMPORT_BUFFER) { 1118 ret = io_rw_import_reg_vec(req, io, ITER_SOURCE, issue_flags); 1119 if (unlikely(ret)) 1120 return ret; 1121 } 1122 1123 ret = io_rw_init_file(req, FMODE_WRITE, WRITE); 1124 if (unlikely(ret)) 1125 return ret; 1126 req->cqe.res = iov_iter_count(&io->iter); 1127 1128 if (force_nonblock) { 1129 /* If the file doesn't support async, just async punt */ 1130 if (unlikely(!io_file_supports_nowait(req, EPOLLOUT))) 1131 goto ret_eagain; 1132 1133 /* Check if we can support NOWAIT. */ 1134 if (!(kiocb->ki_flags & IOCB_DIRECT) && 1135 !(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) && 1136 (req->flags & REQ_F_ISREG)) 1137 goto ret_eagain; 1138 1139 kiocb->ki_flags |= IOCB_NOWAIT; 1140 } else { 1141 /* Ensure we clear previously set non-block flag */ 1142 kiocb->ki_flags &= ~IOCB_NOWAIT; 1143 } 1144 1145 ppos = io_kiocb_update_pos(req); 1146 1147 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); 1148 if (unlikely(ret)) 1149 return ret; 1150 1151 if (unlikely(!io_kiocb_start_write(req, kiocb))) 1152 return -EAGAIN; 1153 kiocb->ki_flags |= IOCB_WRITE; 1154 1155 if (likely(req->file->f_op->write_iter)) 1156 ret2 = req->file->f_op->write_iter(kiocb, &io->iter); 1157 else if (req->file->f_op->write) 1158 ret2 = loop_rw_iter(WRITE, rw, &io->iter); 1159 else 1160 ret2 = -EINVAL; 1161 1162 /* 1163 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just 1164 * retry them without IOCB_NOWAIT. 1165 */ 1166 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) 1167 ret2 = -EAGAIN; 1168 /* no retry on NONBLOCK nor RWF_NOWAIT */ 1169 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) 1170 goto done; 1171 if (!force_nonblock || ret2 != -EAGAIN) { 1172 /* IOPOLL retry should happen for io-wq threads */ 1173 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) 1174 goto ret_eagain; 1175 1176 if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { 1177 trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, 1178 req->cqe.res, ret2); 1179 1180 /* This is a partial write. The file pos has already been 1181 * updated, setup the async struct to complete the request 1182 * in the worker. Also update bytes_done to account for 1183 * the bytes already written. 1184 */ 1185 iov_iter_save_state(&io->iter, &io->iter_state); 1186 io->bytes_done += ret2; 1187 1188 if (kiocb->ki_flags & IOCB_WRITE) 1189 io_req_end_write(req); 1190 return -EAGAIN; 1191 } 1192 done: 1193 return kiocb_done(req, ret2, issue_flags); 1194 } else { 1195 ret_eagain: 1196 iov_iter_restore(&io->iter, &io->iter_state); 1197 io_meta_restore(io, kiocb); 1198 if (kiocb->ki_flags & IOCB_WRITE) 1199 io_req_end_write(req); 1200 return -EAGAIN; 1201 } 1202 } 1203 1204 int io_read_fixed(struct io_kiocb *req, unsigned int issue_flags) 1205 { 1206 int ret; 1207 1208 ret = io_init_rw_fixed(req, issue_flags, ITER_DEST); 1209 if (unlikely(ret)) 1210 return ret; 1211 1212 return io_read(req, issue_flags); 1213 } 1214 1215 int io_write_fixed(struct io_kiocb *req, unsigned int issue_flags) 1216 { 1217 int ret; 1218 1219 ret = io_init_rw_fixed(req, issue_flags, ITER_SOURCE); 1220 if (unlikely(ret)) 1221 return ret; 1222 1223 return io_write(req, issue_flags); 1224 } 1225 1226 void io_rw_fail(struct io_kiocb *req) 1227 { 1228 int res; 1229 1230 res = io_fixup_rw_res(req, req->cqe.res); 1231 io_req_set_res(req, res, req->cqe.flags); 1232 } 1233 1234 static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob, 1235 unsigned int poll_flags) 1236 { 1237 struct file *file = req->file; 1238 1239 if (req->opcode == IORING_OP_URING_CMD) { 1240 struct io_uring_cmd *ioucmd; 1241 1242 ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); 1243 return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags); 1244 } else { 1245 struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); 1246 1247 return file->f_op->iopoll(&rw->kiocb, iob, poll_flags); 1248 } 1249 } 1250 1251 static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req) 1252 { 1253 struct hrtimer_sleeper timer; 1254 enum hrtimer_mode mode; 1255 ktime_t kt; 1256 u64 sleep_time; 1257 1258 if (req->flags & REQ_F_IOPOLL_STATE) 1259 return 0; 1260 1261 if (ctx->hybrid_poll_time == LLONG_MAX) 1262 return 0; 1263 1264 /* Using half the running time to do schedule */ 1265 sleep_time = ctx->hybrid_poll_time / 2; 1266 1267 kt = ktime_set(0, sleep_time); 1268 req->flags |= REQ_F_IOPOLL_STATE; 1269 1270 mode = HRTIMER_MODE_REL; 1271 hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode); 1272 hrtimer_set_expires(&timer.timer, kt); 1273 set_current_state(TASK_INTERRUPTIBLE); 1274 hrtimer_sleeper_start_expires(&timer, mode); 1275 1276 if (timer.task) 1277 io_schedule(); 1278 1279 hrtimer_cancel(&timer.timer); 1280 __set_current_state(TASK_RUNNING); 1281 destroy_hrtimer_on_stack(&timer.timer); 1282 return sleep_time; 1283 } 1284 1285 static int io_uring_hybrid_poll(struct io_kiocb *req, 1286 struct io_comp_batch *iob, unsigned int poll_flags) 1287 { 1288 struct io_ring_ctx *ctx = req->ctx; 1289 u64 runtime, sleep_time; 1290 int ret; 1291 1292 sleep_time = io_hybrid_iopoll_delay(ctx, req); 1293 ret = io_uring_classic_poll(req, iob, poll_flags); 1294 runtime = ktime_get_ns() - req->iopoll_start - sleep_time; 1295 1296 /* 1297 * Use minimum sleep time if we're polling devices with different 1298 * latencies. We could get more completions from the faster ones. 1299 */ 1300 if (ctx->hybrid_poll_time > runtime) 1301 ctx->hybrid_poll_time = runtime; 1302 1303 return ret; 1304 } 1305 1306 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) 1307 { 1308 struct io_wq_work_node *pos, *start, *prev; 1309 unsigned int poll_flags = 0; 1310 DEFINE_IO_COMP_BATCH(iob); 1311 int nr_events = 0; 1312 1313 /* 1314 * Only spin for completions if we don't have multiple devices hanging 1315 * off our complete list. 1316 */ 1317 if (ctx->poll_multi_queue || force_nonspin) 1318 poll_flags |= BLK_POLL_ONESHOT; 1319 1320 wq_list_for_each(pos, start, &ctx->iopoll_list) { 1321 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1322 int ret; 1323 1324 /* 1325 * Move completed and retryable entries to our local lists. 1326 * If we find a request that requires polling, break out 1327 * and complete those lists first, if we have entries there. 1328 */ 1329 if (READ_ONCE(req->iopoll_completed)) 1330 break; 1331 1332 if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) 1333 ret = io_uring_hybrid_poll(req, &iob, poll_flags); 1334 else 1335 ret = io_uring_classic_poll(req, &iob, poll_flags); 1336 1337 if (unlikely(ret < 0)) 1338 return ret; 1339 else if (ret) 1340 poll_flags |= BLK_POLL_ONESHOT; 1341 1342 /* iopoll may have completed current req */ 1343 if (!rq_list_empty(&iob.req_list) || 1344 READ_ONCE(req->iopoll_completed)) 1345 break; 1346 } 1347 1348 if (!rq_list_empty(&iob.req_list)) 1349 iob.complete(&iob); 1350 else if (!pos) 1351 return 0; 1352 1353 prev = start; 1354 wq_list_for_each_resume(pos, prev) { 1355 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); 1356 1357 /* order with io_complete_rw_iopoll(), e.g. ->result updates */ 1358 if (!smp_load_acquire(&req->iopoll_completed)) 1359 break; 1360 nr_events++; 1361 req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0); 1362 if (req->opcode != IORING_OP_URING_CMD) 1363 io_req_rw_cleanup(req, 0); 1364 } 1365 if (unlikely(!nr_events)) 1366 return 0; 1367 1368 pos = start ? start->next : ctx->iopoll_list.first; 1369 wq_list_cut(&ctx->iopoll_list, prev, start); 1370 1371 if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) 1372 return 0; 1373 ctx->submit_state.compl_reqs.first = pos; 1374 __io_submit_flush_completions(ctx); 1375 return nr_events; 1376 } 1377 1378 void io_rw_cache_free(const void *entry) 1379 { 1380 struct io_async_rw *rw = (struct io_async_rw *) entry; 1381 1382 io_vec_free(&rw->vec); 1383 kfree(rw); 1384 } 1385