1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bcachefs_ioctl.h"
5 #include "btree_cache.h"
6 #include "btree_journal_iter.h"
7 #include "btree_update.h"
8 #include "btree_write_buffer.h"
9 #include "buckets.h"
10 #include "compress.h"
11 #include "disk_accounting.h"
12 #include "error.h"
13 #include "journal_io.h"
14 #include "replicas.h"
15
16 /*
17 * Notes on disk accounting:
18 *
19 * We have two parallel sets of counters to be concerned with, and both must be
20 * kept in sync.
21 *
22 * - Persistent/on disk accounting, stored in the accounting btree and updated
23 * via btree write buffer updates that treat new accounting keys as deltas to
24 * apply to existing values. But reading from a write buffer btree is
25 * expensive, so we also have
26 *
27 * - In memory accounting, where accounting is stored as an array of percpu
28 * counters, indexed by an eytzinger array of disk acounting keys/bpos (which
29 * are the same thing, excepting byte swabbing on big endian).
30 *
31 * Cheap to read, but non persistent.
32 *
33 * Disk accounting updates are generated by transactional triggers; these run as
34 * keys enter and leave the btree, and can compare old and new versions of keys;
35 * the output of these triggers are deltas to the various counters.
36 *
37 * Disk accounting updates are done as btree write buffer updates, where the
38 * counters in the disk accounting key are deltas that will be applied to the
39 * counter in the btree when the key is flushed by the write buffer (or journal
40 * replay).
41 *
42 * To do a disk accounting update:
43 * - initialize a disk_accounting_pos, to specify which counter is being update
44 * - initialize counter deltas, as an array of 1-3 s64s
45 * - call bch2_disk_accounting_mod()
46 *
47 * This queues up the accounting update to be done at transaction commit time.
48 * Underneath, it's a normal btree write buffer update.
49 *
50 * The transaction commit path is responsible for propagating updates to the in
51 * memory counters, with bch2_accounting_mem_mod().
52 *
53 * The commit path also assigns every disk accounting update a unique version
54 * number, based on the journal sequence number and offset within that journal
55 * buffer; this is used by journal replay to determine which updates have been
56 * done.
57 *
58 * The transaction commit path also ensures that replicas entry accounting
59 * updates are properly marked in the superblock (so that we know whether we can
60 * mount without data being unavailable); it will update the superblock if
61 * bch2_accounting_mem_mod() tells it to.
62 */
63
64 static const char * const disk_accounting_type_strs[] = {
65 #define x(t, n, ...) [n] = #t,
66 BCH_DISK_ACCOUNTING_TYPES()
67 #undef x
68 NULL
69 };
70
accounting_key_init(struct bkey_i * k,struct disk_accounting_pos * pos,s64 * d,unsigned nr)71 static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos,
72 s64 *d, unsigned nr)
73 {
74 struct bkey_i_accounting *acc = bkey_accounting_init(k);
75
76 acc->k.p = disk_accounting_pos_to_bpos(pos);
77 set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr);
78
79 memcpy_u64s_small(acc->v.d, d, nr);
80 }
81
82 static int bch2_accounting_update_sb_one(struct bch_fs *, struct bpos);
83
bch2_disk_accounting_mod(struct btree_trans * trans,struct disk_accounting_pos * k,s64 * d,unsigned nr,bool gc)84 int bch2_disk_accounting_mod(struct btree_trans *trans,
85 struct disk_accounting_pos *k,
86 s64 *d, unsigned nr, bool gc)
87 {
88 /* Normalize: */
89 switch (k->type) {
90 case BCH_DISK_ACCOUNTING_replicas:
91 bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp);
92 break;
93 }
94
95 BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS);
96
97 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
98
99 accounting_key_init(&k_i.k, k, d, nr);
100
101 if (unlikely(gc)) {
102 int ret = bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true);
103 if (ret == -BCH_ERR_btree_insert_need_mark_replicas)
104 ret = drop_locks_do(trans,
105 bch2_accounting_update_sb_one(trans->c, disk_accounting_pos_to_bpos(k))) ?:
106 bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true);
107 return ret;
108 } else {
109 return bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k);
110 }
111 }
112
bch2_mod_dev_cached_sectors(struct btree_trans * trans,unsigned dev,s64 sectors,bool gc)113 int bch2_mod_dev_cached_sectors(struct btree_trans *trans,
114 unsigned dev, s64 sectors,
115 bool gc)
116 {
117 struct disk_accounting_pos acc;
118 memset(&acc, 0, sizeof(acc));
119 acc.type = BCH_DISK_ACCOUNTING_replicas;
120 bch2_replicas_entry_cached(&acc.replicas, dev);
121
122 return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc);
123 }
124
is_zero(char * start,char * end)125 static inline bool is_zero(char *start, char *end)
126 {
127 BUG_ON(start > end);
128
129 for (; start < end; start++)
130 if (*start)
131 return false;
132 return true;
133 }
134
135 #define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member))
136
137 static const unsigned bch2_accounting_type_nr_counters[] = {
138 #define x(f, id, nr) [BCH_DISK_ACCOUNTING_##f] = nr,
139 BCH_DISK_ACCOUNTING_TYPES()
140 #undef x
141 };
142
bch2_accounting_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)143 int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k,
144 struct bkey_validate_context from)
145 {
146 struct disk_accounting_pos acc_k;
147 bpos_to_disk_accounting_pos(&acc_k, k.k->p);
148 void *end = &acc_k + 1;
149 int ret = 0;
150
151 bkey_fsck_err_on((from.flags & BCH_VALIDATE_commit) &&
152 bversion_zero(k.k->bversion),
153 c, accounting_key_version_0,
154 "accounting key with version=0");
155
156 switch (acc_k.type) {
157 case BCH_DISK_ACCOUNTING_nr_inodes:
158 end = field_end(acc_k, nr_inodes);
159 break;
160 case BCH_DISK_ACCOUNTING_persistent_reserved:
161 end = field_end(acc_k, persistent_reserved);
162 break;
163 case BCH_DISK_ACCOUNTING_replicas:
164 bkey_fsck_err_on(!acc_k.replicas.nr_devs,
165 c, accounting_key_replicas_nr_devs_0,
166 "accounting key replicas entry with nr_devs=0");
167
168 bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs ||
169 (acc_k.replicas.nr_required > 1 &&
170 acc_k.replicas.nr_required == acc_k.replicas.nr_devs),
171 c, accounting_key_replicas_nr_required_bad,
172 "accounting key replicas entry with bad nr_required");
173
174 for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++)
175 bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1],
176 c, accounting_key_replicas_devs_unsorted,
177 "accounting key replicas entry with unsorted devs");
178
179 end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas);
180 break;
181 case BCH_DISK_ACCOUNTING_dev_data_type:
182 end = field_end(acc_k, dev_data_type);
183 break;
184 case BCH_DISK_ACCOUNTING_compression:
185 end = field_end(acc_k, compression);
186 break;
187 case BCH_DISK_ACCOUNTING_snapshot:
188 end = field_end(acc_k, snapshot);
189 break;
190 case BCH_DISK_ACCOUNTING_btree:
191 end = field_end(acc_k, btree);
192 break;
193 case BCH_DISK_ACCOUNTING_rebalance_work:
194 end = field_end(acc_k, rebalance_work);
195 break;
196 }
197
198 bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)),
199 c, accounting_key_junk_at_end,
200 "junk at end of accounting key");
201
202 bkey_fsck_err_on(bch2_accounting_counters(k.k) != bch2_accounting_type_nr_counters[acc_k.type],
203 c, accounting_key_nr_counters_wrong,
204 "accounting key with %u counters, should be %u",
205 bch2_accounting_counters(k.k), bch2_accounting_type_nr_counters[acc_k.type]);
206 fsck_err:
207 return ret;
208 }
209
bch2_accounting_key_to_text(struct printbuf * out,struct disk_accounting_pos * k)210 void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k)
211 {
212 if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) {
213 prt_printf(out, "unknown type %u", k->type);
214 return;
215 }
216
217 prt_str(out, disk_accounting_type_strs[k->type]);
218 prt_str(out, " ");
219
220 switch (k->type) {
221 case BCH_DISK_ACCOUNTING_nr_inodes:
222 break;
223 case BCH_DISK_ACCOUNTING_persistent_reserved:
224 prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas);
225 break;
226 case BCH_DISK_ACCOUNTING_replicas:
227 bch2_replicas_entry_to_text(out, &k->replicas);
228 break;
229 case BCH_DISK_ACCOUNTING_dev_data_type:
230 prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev);
231 bch2_prt_data_type(out, k->dev_data_type.data_type);
232 break;
233 case BCH_DISK_ACCOUNTING_compression:
234 bch2_prt_compression_type(out, k->compression.type);
235 break;
236 case BCH_DISK_ACCOUNTING_snapshot:
237 prt_printf(out, "id=%u", k->snapshot.id);
238 break;
239 case BCH_DISK_ACCOUNTING_btree:
240 prt_str(out, "btree=");
241 bch2_btree_id_to_text(out, k->btree.id);
242 break;
243 }
244 }
245
bch2_accounting_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)246 void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
247 {
248 struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k);
249 struct disk_accounting_pos acc_k;
250 bpos_to_disk_accounting_pos(&acc_k, k.k->p);
251
252 bch2_accounting_key_to_text(out, &acc_k);
253
254 for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++)
255 prt_printf(out, " %lli", acc.v->d[i]);
256 }
257
bch2_accounting_swab(struct bkey_s k)258 void bch2_accounting_swab(struct bkey_s k)
259 {
260 for (u64 *p = (u64 *) k.v;
261 p < (u64 *) bkey_val_end(k);
262 p++)
263 *p = swab64(*p);
264 }
265
__accounting_to_replicas(struct bch_replicas_entry_v1 * r,struct disk_accounting_pos * acc)266 static inline void __accounting_to_replicas(struct bch_replicas_entry_v1 *r,
267 struct disk_accounting_pos *acc)
268 {
269 unsafe_memcpy(r, &acc->replicas,
270 replicas_entry_bytes(&acc->replicas),
271 "variable length struct");
272 }
273
accounting_to_replicas(struct bch_replicas_entry_v1 * r,struct bpos p)274 static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p)
275 {
276 struct disk_accounting_pos acc_k;
277 bpos_to_disk_accounting_pos(&acc_k, p);
278
279 switch (acc_k.type) {
280 case BCH_DISK_ACCOUNTING_replicas:
281 __accounting_to_replicas(r, &acc_k);
282 return true;
283 default:
284 return false;
285 }
286 }
287
bch2_accounting_update_sb_one(struct bch_fs * c,struct bpos p)288 static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p)
289 {
290 struct bch_replicas_padded r;
291 return accounting_to_replicas(&r.e, p)
292 ? bch2_mark_replicas(c, &r.e)
293 : 0;
294 }
295
296 /*
297 * Ensure accounting keys being updated are present in the superblock, when
298 * applicable (i.e. replicas updates)
299 */
bch2_accounting_update_sb(struct btree_trans * trans)300 int bch2_accounting_update_sb(struct btree_trans *trans)
301 {
302 for (struct jset_entry *i = trans->journal_entries;
303 i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s);
304 i = vstruct_next(i))
305 if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) {
306 int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p);
307 if (ret)
308 return ret;
309 }
310
311 return 0;
312 }
313
__bch2_accounting_mem_insert(struct bch_fs * c,struct bkey_s_c_accounting a)314 static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a)
315 {
316 struct bch_accounting_mem *acc = &c->accounting;
317
318 /* raced with another insert, already present: */
319 if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
320 accounting_pos_cmp, &a.k->p) < acc->k.nr)
321 return 0;
322
323 struct accounting_mem_entry n = {
324 .pos = a.k->p,
325 .bversion = a.k->bversion,
326 .nr_counters = bch2_accounting_counters(a.k),
327 .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
328 sizeof(u64), GFP_KERNEL),
329 };
330
331 if (!n.v[0])
332 goto err;
333
334 if (acc->gc_running) {
335 n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
336 sizeof(u64), GFP_KERNEL);
337 if (!n.v[1])
338 goto err;
339 }
340
341 if (darray_push(&acc->k, n))
342 goto err;
343
344 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
345 accounting_pos_cmp, NULL);
346
347 if (trace_accounting_mem_insert_enabled()) {
348 struct printbuf buf = PRINTBUF;
349
350 bch2_accounting_to_text(&buf, c, a.s_c);
351 trace_accounting_mem_insert(c, buf.buf);
352 printbuf_exit(&buf);
353 }
354 return 0;
355 err:
356 free_percpu(n.v[1]);
357 free_percpu(n.v[0]);
358 return -BCH_ERR_ENOMEM_disk_accounting;
359 }
360
bch2_accounting_mem_insert(struct bch_fs * c,struct bkey_s_c_accounting a,enum bch_accounting_mode mode)361 int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a,
362 enum bch_accounting_mode mode)
363 {
364 struct bch_replicas_padded r;
365
366 if (mode != BCH_ACCOUNTING_read &&
367 accounting_to_replicas(&r.e, a.k->p) &&
368 !bch2_replicas_marked_locked(c, &r.e))
369 return -BCH_ERR_btree_insert_need_mark_replicas;
370
371 percpu_up_read(&c->mark_lock);
372 percpu_down_write(&c->mark_lock);
373 int ret = __bch2_accounting_mem_insert(c, a);
374 percpu_up_write(&c->mark_lock);
375 percpu_down_read(&c->mark_lock);
376 return ret;
377 }
378
accounting_mem_entry_is_zero(struct accounting_mem_entry * e)379 static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e)
380 {
381 for (unsigned i = 0; i < e->nr_counters; i++)
382 if (percpu_u64_get(e->v[0] + i) ||
383 (e->v[1] &&
384 percpu_u64_get(e->v[1] + i)))
385 return false;
386 return true;
387 }
388
bch2_accounting_mem_gc(struct bch_fs * c)389 void bch2_accounting_mem_gc(struct bch_fs *c)
390 {
391 struct bch_accounting_mem *acc = &c->accounting;
392
393 percpu_down_write(&c->mark_lock);
394 struct accounting_mem_entry *dst = acc->k.data;
395
396 darray_for_each(acc->k, src) {
397 if (accounting_mem_entry_is_zero(src)) {
398 free_percpu(src->v[0]);
399 free_percpu(src->v[1]);
400 } else {
401 *dst++ = *src;
402 }
403 }
404
405 acc->k.nr = dst - acc->k.data;
406 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
407 accounting_pos_cmp, NULL);
408 percpu_up_write(&c->mark_lock);
409 }
410
411 /*
412 * Read out accounting keys for replicas entries, as an array of
413 * bch_replicas_usage entries.
414 *
415 * Note: this may be deprecated/removed at smoe point in the future and replaced
416 * with something more general, it exists to support the ioctl used by the
417 * 'bcachefs fs usage' command.
418 */
bch2_fs_replicas_usage_read(struct bch_fs * c,darray_char * usage)419 int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage)
420 {
421 struct bch_accounting_mem *acc = &c->accounting;
422 int ret = 0;
423
424 darray_init(usage);
425
426 percpu_down_read(&c->mark_lock);
427 darray_for_each(acc->k, i) {
428 struct {
429 struct bch_replicas_usage r;
430 u8 pad[BCH_BKEY_PTRS_MAX];
431 } u;
432
433 if (!accounting_to_replicas(&u.r.r, i->pos))
434 continue;
435
436 u64 sectors;
437 bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false);
438 u.r.sectors = sectors;
439
440 ret = darray_make_room(usage, replicas_usage_bytes(&u.r));
441 if (ret)
442 break;
443
444 memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r));
445 usage->nr += replicas_usage_bytes(&u.r);
446 }
447 percpu_up_read(&c->mark_lock);
448
449 if (ret)
450 darray_exit(usage);
451 return ret;
452 }
453
bch2_fs_accounting_read(struct bch_fs * c,darray_char * out_buf,unsigned accounting_types_mask)454 int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask)
455 {
456
457 struct bch_accounting_mem *acc = &c->accounting;
458 int ret = 0;
459
460 darray_init(out_buf);
461
462 percpu_down_read(&c->mark_lock);
463 darray_for_each(acc->k, i) {
464 struct disk_accounting_pos a_p;
465 bpos_to_disk_accounting_pos(&a_p, i->pos);
466
467 if (!(accounting_types_mask & BIT(a_p.type)))
468 continue;
469
470 ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) +
471 sizeof(u64) * i->nr_counters);
472 if (ret)
473 break;
474
475 struct bkey_i_accounting *a_out =
476 bkey_accounting_init((void *) &darray_top(*out_buf));
477 set_bkey_val_u64s(&a_out->k, i->nr_counters);
478 a_out->k.p = i->pos;
479 bch2_accounting_mem_read_counters(acc, i - acc->k.data,
480 a_out->v.d, i->nr_counters, false);
481
482 if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out)))
483 out_buf->nr += bkey_bytes(&a_out->k);
484 }
485
486 percpu_up_read(&c->mark_lock);
487
488 if (ret)
489 darray_exit(out_buf);
490 return ret;
491 }
492
bch2_accounting_free_counters(struct bch_accounting_mem * acc,bool gc)493 static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc)
494 {
495 darray_for_each(acc->k, e) {
496 free_percpu(e->v[gc]);
497 e->v[gc] = NULL;
498 }
499 }
500
bch2_gc_accounting_start(struct bch_fs * c)501 int bch2_gc_accounting_start(struct bch_fs *c)
502 {
503 struct bch_accounting_mem *acc = &c->accounting;
504 int ret = 0;
505
506 percpu_down_write(&c->mark_lock);
507 darray_for_each(acc->k, e) {
508 e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64),
509 sizeof(u64), GFP_KERNEL);
510 if (!e->v[1]) {
511 bch2_accounting_free_counters(acc, true);
512 ret = -BCH_ERR_ENOMEM_disk_accounting;
513 break;
514 }
515 }
516
517 acc->gc_running = !ret;
518 percpu_up_write(&c->mark_lock);
519
520 return ret;
521 }
522
bch2_gc_accounting_done(struct bch_fs * c)523 int bch2_gc_accounting_done(struct bch_fs *c)
524 {
525 struct bch_accounting_mem *acc = &c->accounting;
526 struct btree_trans *trans = bch2_trans_get(c);
527 struct printbuf buf = PRINTBUF;
528 struct bpos pos = POS_MIN;
529 int ret = 0;
530
531 percpu_down_write(&c->mark_lock);
532 while (1) {
533 unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
534 accounting_pos_cmp, &pos);
535
536 if (idx >= acc->k.nr)
537 break;
538
539 struct accounting_mem_entry *e = acc->k.data + idx;
540 pos = bpos_successor(e->pos);
541
542 struct disk_accounting_pos acc_k;
543 bpos_to_disk_accounting_pos(&acc_k, e->pos);
544
545 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
546 continue;
547
548 u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS];
549 u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS];
550
551 unsigned nr = e->nr_counters;
552 bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false);
553 bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true);
554
555 if (memcmp(dst_v, src_v, nr * sizeof(u64))) {
556 printbuf_reset(&buf);
557 prt_str(&buf, "accounting mismatch for ");
558 bch2_accounting_key_to_text(&buf, &acc_k);
559
560 prt_str(&buf, ": got");
561 for (unsigned j = 0; j < nr; j++)
562 prt_printf(&buf, " %llu", dst_v[j]);
563
564 prt_str(&buf, " should be");
565 for (unsigned j = 0; j < nr; j++)
566 prt_printf(&buf, " %llu", src_v[j]);
567
568 for (unsigned j = 0; j < nr; j++)
569 src_v[j] -= dst_v[j];
570
571 if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) {
572 percpu_up_write(&c->mark_lock);
573 ret = commit_do(trans, NULL, NULL, 0,
574 bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false));
575 percpu_down_write(&c->mark_lock);
576 if (ret)
577 goto err;
578
579 if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
580 memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta));
581 struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
582
583 accounting_key_init(&k_i.k, &acc_k, src_v, nr);
584 bch2_accounting_mem_mod_locked(trans,
585 bkey_i_to_s_c_accounting(&k_i.k),
586 BCH_ACCOUNTING_normal);
587
588 preempt_disable();
589 struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage);
590 struct bch_fs_usage_base *src = &trans->fs_usage_delta;
591 acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64));
592 preempt_enable();
593 }
594 }
595 }
596 }
597 err:
598 fsck_err:
599 percpu_up_write(&c->mark_lock);
600 printbuf_exit(&buf);
601 bch2_trans_put(trans);
602 bch_err_fn(c, ret);
603 return ret;
604 }
605
accounting_read_key(struct btree_trans * trans,struct bkey_s_c k)606 static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k)
607 {
608 struct bch_fs *c = trans->c;
609
610 if (k.k->type != KEY_TYPE_accounting)
611 return 0;
612
613 percpu_down_read(&c->mark_lock);
614 int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k),
615 BCH_ACCOUNTING_read);
616 percpu_up_read(&c->mark_lock);
617 return ret;
618 }
619
bch2_disk_accounting_validate_late(struct btree_trans * trans,struct disk_accounting_pos acc,u64 * v,unsigned nr)620 static int bch2_disk_accounting_validate_late(struct btree_trans *trans,
621 struct disk_accounting_pos acc,
622 u64 *v, unsigned nr)
623 {
624 struct bch_fs *c = trans->c;
625 struct printbuf buf = PRINTBUF;
626 int ret = 0, invalid_dev = -1;
627
628 switch (acc.type) {
629 case BCH_DISK_ACCOUNTING_replicas: {
630 struct bch_replicas_padded r;
631 __accounting_to_replicas(&r.e, &acc);
632
633 for (unsigned i = 0; i < r.e.nr_devs; i++)
634 if (r.e.devs[i] != BCH_SB_MEMBER_INVALID &&
635 !bch2_dev_exists(c, r.e.devs[i])) {
636 invalid_dev = r.e.devs[i];
637 goto invalid_device;
638 }
639
640 /*
641 * All replicas entry checks except for invalid device are done
642 * in bch2_accounting_validate
643 */
644 BUG_ON(bch2_replicas_entry_validate(&r.e, c, &buf));
645
646 if (fsck_err_on(!bch2_replicas_marked_locked(c, &r.e),
647 trans, accounting_replicas_not_marked,
648 "accounting not marked in superblock replicas\n%s",
649 (printbuf_reset(&buf),
650 bch2_accounting_key_to_text(&buf, &acc),
651 buf.buf))) {
652 /*
653 * We're not RW yet and still single threaded, dropping
654 * and retaking lock is ok:
655 */
656 percpu_up_write(&c->mark_lock);
657 ret = bch2_mark_replicas(c, &r.e);
658 if (ret)
659 goto fsck_err;
660 percpu_down_write(&c->mark_lock);
661 }
662 break;
663 }
664
665 case BCH_DISK_ACCOUNTING_dev_data_type:
666 if (!bch2_dev_exists(c, acc.dev_data_type.dev)) {
667 invalid_dev = acc.dev_data_type.dev;
668 goto invalid_device;
669 }
670 break;
671 }
672
673 fsck_err:
674 printbuf_exit(&buf);
675 return ret;
676 invalid_device:
677 if (fsck_err(trans, accounting_to_invalid_device,
678 "accounting entry points to invalid device %i\n%s",
679 invalid_dev,
680 (printbuf_reset(&buf),
681 bch2_accounting_key_to_text(&buf, &acc),
682 buf.buf))) {
683 for (unsigned i = 0; i < nr; i++)
684 v[i] = -v[i];
685
686 ret = commit_do(trans, NULL, NULL, 0,
687 bch2_disk_accounting_mod(trans, &acc, v, nr, false)) ?:
688 -BCH_ERR_remove_disk_accounting_entry;
689 } else {
690 ret = -BCH_ERR_remove_disk_accounting_entry;
691 }
692 goto fsck_err;
693 }
694
695 /*
696 * At startup time, initialize the in memory accounting from the btree (and
697 * journal)
698 */
bch2_accounting_read(struct bch_fs * c)699 int bch2_accounting_read(struct bch_fs *c)
700 {
701 struct bch_accounting_mem *acc = &c->accounting;
702 struct btree_trans *trans = bch2_trans_get(c);
703 struct printbuf buf = PRINTBUF;
704
705 /*
706 * We might run more than once if we rewind to start topology repair or
707 * btree node scan - and those might cause us to get different results,
708 * so we can't just skip if we've already run.
709 *
710 * Instead, zero out any accounting we have:
711 */
712 percpu_down_write(&c->mark_lock);
713 darray_for_each(acc->k, e)
714 percpu_memset(e->v[0], 0, sizeof(u64) * e->nr_counters);
715 for_each_member_device(c, ca)
716 percpu_memset(ca->usage, 0, sizeof(*ca->usage));
717 percpu_memset(c->usage, 0, sizeof(*c->usage));
718 percpu_up_write(&c->mark_lock);
719
720 struct btree_iter iter;
721 bch2_trans_iter_init(trans, &iter, BTREE_ID_accounting, POS_MIN,
722 BTREE_ITER_prefetch|BTREE_ITER_all_snapshots);
723 iter.flags &= ~BTREE_ITER_with_journal;
724 int ret = for_each_btree_key_continue(trans, iter,
725 BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({
726 struct bkey u;
727 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u);
728
729 if (k.k->type != KEY_TYPE_accounting)
730 continue;
731
732 struct disk_accounting_pos acc_k;
733 bpos_to_disk_accounting_pos(&acc_k, k.k->p);
734
735 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
736 break;
737
738 if (!bch2_accounting_is_mem(acc_k)) {
739 struct disk_accounting_pos next;
740 memset(&next, 0, sizeof(next));
741 next.type = acc_k.type + 1;
742 bch2_btree_iter_set_pos(trans, &iter, disk_accounting_pos_to_bpos(&next));
743 continue;
744 }
745
746 accounting_read_key(trans, k);
747 }));
748 if (ret)
749 goto err;
750
751 struct journal_keys *keys = &c->journal_keys;
752 struct journal_key *dst = keys->data;
753 move_gap(keys, keys->nr);
754
755 darray_for_each(*keys, i) {
756 if (i->k->k.type == KEY_TYPE_accounting) {
757 struct disk_accounting_pos acc_k;
758 bpos_to_disk_accounting_pos(&acc_k, i->k->k.p);
759
760 if (!bch2_accounting_is_mem(acc_k))
761 continue;
762
763 struct bkey_s_c k = bkey_i_to_s_c(i->k);
764 unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr,
765 sizeof(acc->k.data[0]),
766 accounting_pos_cmp, &k.k->p);
767
768 bool applied = idx < acc->k.nr &&
769 bversion_cmp(acc->k.data[idx].bversion, k.k->bversion) >= 0;
770
771 if (applied)
772 continue;
773
774 if (i + 1 < &darray_top(*keys) &&
775 i[1].k->k.type == KEY_TYPE_accounting &&
776 !journal_key_cmp(i, i + 1)) {
777 WARN_ON(bversion_cmp(i[0].k->k.bversion, i[1].k->k.bversion) >= 0);
778
779 i[1].journal_seq = i[0].journal_seq;
780
781 bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k),
782 bkey_s_c_to_accounting(k));
783 continue;
784 }
785
786 ret = accounting_read_key(trans, k);
787 if (ret)
788 goto err;
789 }
790
791 *dst++ = *i;
792 }
793 keys->gap = keys->nr = dst - keys->data;
794
795 percpu_down_write(&c->mark_lock);
796
797 darray_for_each_reverse(acc->k, i) {
798 struct disk_accounting_pos acc_k;
799 bpos_to_disk_accounting_pos(&acc_k, i->pos);
800
801 u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
802 memset(v, 0, sizeof(v));
803
804 for (unsigned j = 0; j < i->nr_counters; j++)
805 v[j] = percpu_u64_get(i->v[0] + j);
806
807 /*
808 * If the entry counters are zeroed, it should be treated as
809 * nonexistent - it might point to an invalid device.
810 *
811 * Remove it, so that if it's re-added it gets re-marked in the
812 * superblock:
813 */
814 ret = bch2_is_zero(v, sizeof(v[0]) * i->nr_counters)
815 ? -BCH_ERR_remove_disk_accounting_entry
816 : bch2_disk_accounting_validate_late(trans, acc_k, v, i->nr_counters);
817
818 if (ret == -BCH_ERR_remove_disk_accounting_entry) {
819 free_percpu(i->v[0]);
820 free_percpu(i->v[1]);
821 darray_remove_item(&acc->k, i);
822 ret = 0;
823 continue;
824 }
825
826 if (ret)
827 goto fsck_err;
828 }
829
830 eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
831 accounting_pos_cmp, NULL);
832
833 preempt_disable();
834 struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage);
835
836 for (unsigned i = 0; i < acc->k.nr; i++) {
837 struct disk_accounting_pos k;
838 bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos);
839
840 u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
841 bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false);
842
843 switch (k.type) {
844 case BCH_DISK_ACCOUNTING_persistent_reserved:
845 usage->reserved += v[0] * k.persistent_reserved.nr_replicas;
846 break;
847 case BCH_DISK_ACCOUNTING_replicas:
848 fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]);
849 break;
850 case BCH_DISK_ACCOUNTING_dev_data_type:
851 rcu_read_lock();
852 struct bch_dev *ca = bch2_dev_rcu_noerror(c, k.dev_data_type.dev);
853 if (ca) {
854 struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type];
855 percpu_u64_set(&d->buckets, v[0]);
856 percpu_u64_set(&d->sectors, v[1]);
857 percpu_u64_set(&d->fragmented, v[2]);
858
859 if (k.dev_data_type.data_type == BCH_DATA_sb ||
860 k.dev_data_type.data_type == BCH_DATA_journal)
861 usage->hidden += v[0] * ca->mi.bucket_size;
862 }
863 rcu_read_unlock();
864 break;
865 }
866 }
867 preempt_enable();
868 fsck_err:
869 percpu_up_write(&c->mark_lock);
870 err:
871 printbuf_exit(&buf);
872 bch2_trans_put(trans);
873 bch_err_fn(c, ret);
874 return ret;
875 }
876
bch2_dev_usage_remove(struct bch_fs * c,unsigned dev)877 int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev)
878 {
879 return bch2_trans_run(c,
880 bch2_btree_write_buffer_flush_sync(trans) ?:
881 for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN,
882 BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({
883 struct disk_accounting_pos acc;
884 bpos_to_disk_accounting_pos(&acc, k.k->p);
885
886 acc.type == BCH_DISK_ACCOUNTING_dev_data_type &&
887 acc.dev_data_type.dev == dev
888 ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0)
889 : 0;
890 })) ?:
891 bch2_btree_write_buffer_flush_sync(trans));
892 }
893
bch2_dev_usage_init(struct bch_dev * ca,bool gc)894 int bch2_dev_usage_init(struct bch_dev *ca, bool gc)
895 {
896 struct bch_fs *c = ca->fs;
897 u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 };
898
899 int ret = bch2_trans_do(c, ({
900 bch2_disk_accounting_mod2(trans, gc,
901 v, dev_data_type,
902 .dev = ca->dev_idx,
903 .data_type = BCH_DATA_free) ?:
904 (!gc ? bch2_trans_commit(trans, NULL, NULL, 0) : 0);
905 }));
906 bch_err_fn(c, ret);
907 return ret;
908 }
909
bch2_verify_accounting_clean(struct bch_fs * c)910 void bch2_verify_accounting_clean(struct bch_fs *c)
911 {
912 bool mismatch = false;
913 struct bch_fs_usage_base base = {}, base_inmem = {};
914
915 bch2_trans_run(c,
916 for_each_btree_key(trans, iter,
917 BTREE_ID_accounting, POS_MIN,
918 BTREE_ITER_all_snapshots, k, ({
919 u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
920 struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k);
921 unsigned nr = bch2_accounting_counters(k.k);
922
923 struct disk_accounting_pos acc_k;
924 bpos_to_disk_accounting_pos(&acc_k, k.k->p);
925
926 if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
927 break;
928
929 if (!bch2_accounting_is_mem(acc_k)) {
930 struct disk_accounting_pos next;
931 memset(&next, 0, sizeof(next));
932 next.type = acc_k.type + 1;
933 bch2_btree_iter_set_pos(trans, &iter, disk_accounting_pos_to_bpos(&next));
934 continue;
935 }
936
937 bch2_accounting_mem_read(c, k.k->p, v, nr);
938
939 if (memcmp(a.v->d, v, nr * sizeof(u64))) {
940 struct printbuf buf = PRINTBUF;
941
942 bch2_bkey_val_to_text(&buf, c, k);
943 prt_str(&buf, " !=");
944 for (unsigned j = 0; j < nr; j++)
945 prt_printf(&buf, " %llu", v[j]);
946
947 pr_err("%s", buf.buf);
948 printbuf_exit(&buf);
949 mismatch = true;
950 }
951
952 switch (acc_k.type) {
953 case BCH_DISK_ACCOUNTING_persistent_reserved:
954 base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0];
955 break;
956 case BCH_DISK_ACCOUNTING_replicas:
957 fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]);
958 break;
959 case BCH_DISK_ACCOUNTING_dev_data_type: {
960 rcu_read_lock();
961 struct bch_dev *ca = bch2_dev_rcu_noerror(c, acc_k.dev_data_type.dev);
962 if (!ca) {
963 rcu_read_unlock();
964 continue;
965 }
966
967 v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets);
968 v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors);
969 v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented);
970 rcu_read_unlock();
971
972 if (memcmp(a.v->d, v, 3 * sizeof(u64))) {
973 struct printbuf buf = PRINTBUF;
974
975 bch2_bkey_val_to_text(&buf, c, k);
976 prt_str(&buf, " in mem");
977 for (unsigned j = 0; j < nr; j++)
978 prt_printf(&buf, " %llu", v[j]);
979
980 pr_err("dev accounting mismatch: %s", buf.buf);
981 printbuf_exit(&buf);
982 mismatch = true;
983 }
984 }
985 }
986
987 0;
988 })));
989
990 acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64));
991
992 #define check(x) \
993 if (base.x != base_inmem.x) { \
994 pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \
995 mismatch = true; \
996 }
997
998 //check(hidden);
999 check(btree);
1000 check(data);
1001 check(cached);
1002 check(reserved);
1003 check(nr_inodes);
1004
1005 WARN_ON(mismatch);
1006 }
1007
bch2_accounting_gc_free(struct bch_fs * c)1008 void bch2_accounting_gc_free(struct bch_fs *c)
1009 {
1010 lockdep_assert_held(&c->mark_lock);
1011
1012 struct bch_accounting_mem *acc = &c->accounting;
1013
1014 bch2_accounting_free_counters(acc, true);
1015 acc->gc_running = false;
1016 }
1017
bch2_fs_accounting_exit(struct bch_fs * c)1018 void bch2_fs_accounting_exit(struct bch_fs *c)
1019 {
1020 struct bch_accounting_mem *acc = &c->accounting;
1021
1022 bch2_accounting_free_counters(acc, false);
1023 darray_exit(&acc->k);
1024 }
1025