xref: /linux/drivers/char/ipmi/ipmi_msghandler.c (revision 02897f5e56b22e78d376faff1533ad800991650e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_work(struct work_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 static void intf_free(struct kref *ref);
49 
50 static bool initialized;
51 static bool drvregistered;
52 
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 	IPMI_SEND_PANIC_EVENT_NONE,
56 	IPMI_SEND_PANIC_EVENT,
57 	IPMI_SEND_PANIC_EVENT_STRING,
58 	IPMI_SEND_PANIC_EVENT_MAX
59 };
60 
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63 
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71 
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73 
panic_op_write_handler(const char * val,const struct kernel_param * kp)74 static int panic_op_write_handler(const char *val,
75 				  const struct kernel_param *kp)
76 {
77 	char valcp[16];
78 	int e;
79 
80 	strscpy(valcp, val, sizeof(valcp));
81 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 	if (e < 0)
83 		return e;
84 
85 	ipmi_send_panic_event = e;
86 	return 0;
87 }
88 
panic_op_read_handler(char * buffer,const struct kernel_param * kp)89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 	const char *event_str;
92 
93 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 		event_str = "???";
95 	else
96 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97 
98 	return sprintf(buffer, "%s\n", event_str);
99 }
100 
101 static const struct kernel_param_ops panic_op_ops = {
102 	.set = panic_op_write_handler,
103 	.get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107 
108 
109 #define MAX_EVENTS_IN_QUEUE	25
110 
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116 
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT		60000
122 
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129 
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 		 "The time (milliseconds) between retry sends");
135 
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 		 "The time (milliseconds) between retry sends in maintenance mode");
141 
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 		 "The time (milliseconds) between retry sends in maintenance mode");
147 
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 		 "The most users that may use the IPMI stack at one time.");
153 
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 		 "The most message a user may have outstanding.");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	struct kref refcount;
184 	refcount_t destroyed;
185 
186 	/* The upper layer that handles receive messages. */
187 	const struct ipmi_user_hndl *handler;
188 	void             *handler_data;
189 
190 	/* The interface this user is bound to. */
191 	struct ipmi_smi *intf;
192 
193 	/* Does this interface receive IPMI events? */
194 	bool gets_events;
195 
196 	atomic_t nr_msgs;
197 };
198 
199 struct cmd_rcvr {
200 	struct list_head link;
201 
202 	struct ipmi_user *user;
203 	unsigned char netfn;
204 	unsigned char cmd;
205 	unsigned int  chans;
206 
207 	/*
208 	 * This is used to form a linked lised during mass deletion.
209 	 * Since this is in an RCU list, we cannot use the link above
210 	 * or change any data until the RCU period completes.  So we
211 	 * use this next variable during mass deletion so we can have
212 	 * a list and don't have to wait and restart the search on
213 	 * every individual deletion of a command.
214 	 */
215 	struct cmd_rcvr *next;
216 };
217 
218 struct seq_table {
219 	unsigned int         inuse : 1;
220 	unsigned int         broadcast : 1;
221 
222 	unsigned long        timeout;
223 	unsigned long        orig_timeout;
224 	unsigned int         retries_left;
225 
226 	/*
227 	 * To verify on an incoming send message response that this is
228 	 * the message that the response is for, we keep a sequence id
229 	 * and increment it every time we send a message.
230 	 */
231 	long                 seqid;
232 
233 	/*
234 	 * This is held so we can properly respond to the message on a
235 	 * timeout, and it is used to hold the temporary data for
236 	 * retransmission, too.
237 	 */
238 	struct ipmi_recv_msg *recv_msg;
239 };
240 
241 /*
242  * Store the information in a msgid (long) to allow us to find a
243  * sequence table entry from the msgid.
244  */
245 #define STORE_SEQ_IN_MSGID(seq, seqid) \
246 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
247 
248 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
249 	do {								\
250 		seq = (((msgid) >> 26) & 0x3f);				\
251 		seqid = ((msgid) & 0x3ffffff);				\
252 	} while (0)
253 
254 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
255 
256 #define IPMI_MAX_CHANNELS       16
257 struct ipmi_channel {
258 	unsigned char medium;
259 	unsigned char protocol;
260 };
261 
262 struct ipmi_channel_set {
263 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
264 };
265 
266 struct ipmi_my_addrinfo {
267 	/*
268 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
269 	 * but may be changed by the user.
270 	 */
271 	unsigned char address;
272 
273 	/*
274 	 * My LUN.  This should generally stay the SMS LUN, but just in
275 	 * case...
276 	 */
277 	unsigned char lun;
278 };
279 
280 /*
281  * Note that the product id, manufacturer id, guid, and device id are
282  * immutable in this structure, so dyn_mutex is not required for
283  * accessing those.  If those change on a BMC, a new BMC is allocated.
284  */
285 struct bmc_device {
286 	struct platform_device pdev;
287 	struct list_head       intfs; /* Interfaces on this BMC. */
288 	struct ipmi_device_id  id;
289 	struct ipmi_device_id  fetch_id;
290 	int                    dyn_id_set;
291 	unsigned long          dyn_id_expiry;
292 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
293 	guid_t                 guid;
294 	guid_t                 fetch_guid;
295 	int                    dyn_guid_set;
296 	struct kref	       usecount;
297 	struct work_struct     remove_work;
298 	unsigned char	       cc; /* completion code */
299 };
300 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
301 
302 static struct workqueue_struct *bmc_remove_work_wq;
303 
304 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
305 			     struct ipmi_device_id *id,
306 			     bool *guid_set, guid_t *guid);
307 
308 /*
309  * Various statistics for IPMI, these index stats[] in the ipmi_smi
310  * structure.
311  */
312 enum ipmi_stat_indexes {
313 	/* Commands we got from the user that were invalid. */
314 	IPMI_STAT_sent_invalid_commands = 0,
315 
316 	/* Commands we sent to the MC. */
317 	IPMI_STAT_sent_local_commands,
318 
319 	/* Responses from the MC that were delivered to a user. */
320 	IPMI_STAT_handled_local_responses,
321 
322 	/* Responses from the MC that were not delivered to a user. */
323 	IPMI_STAT_unhandled_local_responses,
324 
325 	/* Commands we sent out to the IPMB bus. */
326 	IPMI_STAT_sent_ipmb_commands,
327 
328 	/* Commands sent on the IPMB that had errors on the SEND CMD */
329 	IPMI_STAT_sent_ipmb_command_errs,
330 
331 	/* Each retransmit increments this count. */
332 	IPMI_STAT_retransmitted_ipmb_commands,
333 
334 	/*
335 	 * When a message times out (runs out of retransmits) this is
336 	 * incremented.
337 	 */
338 	IPMI_STAT_timed_out_ipmb_commands,
339 
340 	/*
341 	 * This is like above, but for broadcasts.  Broadcasts are
342 	 * *not* included in the above count (they are expected to
343 	 * time out).
344 	 */
345 	IPMI_STAT_timed_out_ipmb_broadcasts,
346 
347 	/* Responses I have sent to the IPMB bus. */
348 	IPMI_STAT_sent_ipmb_responses,
349 
350 	/* The response was delivered to the user. */
351 	IPMI_STAT_handled_ipmb_responses,
352 
353 	/* The response had invalid data in it. */
354 	IPMI_STAT_invalid_ipmb_responses,
355 
356 	/* The response didn't have anyone waiting for it. */
357 	IPMI_STAT_unhandled_ipmb_responses,
358 
359 	/* Commands we sent out to the IPMB bus. */
360 	IPMI_STAT_sent_lan_commands,
361 
362 	/* Commands sent on the IPMB that had errors on the SEND CMD */
363 	IPMI_STAT_sent_lan_command_errs,
364 
365 	/* Each retransmit increments this count. */
366 	IPMI_STAT_retransmitted_lan_commands,
367 
368 	/*
369 	 * When a message times out (runs out of retransmits) this is
370 	 * incremented.
371 	 */
372 	IPMI_STAT_timed_out_lan_commands,
373 
374 	/* Responses I have sent to the IPMB bus. */
375 	IPMI_STAT_sent_lan_responses,
376 
377 	/* The response was delivered to the user. */
378 	IPMI_STAT_handled_lan_responses,
379 
380 	/* The response had invalid data in it. */
381 	IPMI_STAT_invalid_lan_responses,
382 
383 	/* The response didn't have anyone waiting for it. */
384 	IPMI_STAT_unhandled_lan_responses,
385 
386 	/* The command was delivered to the user. */
387 	IPMI_STAT_handled_commands,
388 
389 	/* The command had invalid data in it. */
390 	IPMI_STAT_invalid_commands,
391 
392 	/* The command didn't have anyone waiting for it. */
393 	IPMI_STAT_unhandled_commands,
394 
395 	/* Invalid data in an event. */
396 	IPMI_STAT_invalid_events,
397 
398 	/* Events that were received with the proper format. */
399 	IPMI_STAT_events,
400 
401 	/* Retransmissions on IPMB that failed. */
402 	IPMI_STAT_dropped_rexmit_ipmb_commands,
403 
404 	/* Retransmissions on LAN that failed. */
405 	IPMI_STAT_dropped_rexmit_lan_commands,
406 
407 	/* This *must* remain last, add new values above this. */
408 	IPMI_NUM_STATS
409 };
410 
411 
412 #define IPMI_IPMB_NUM_SEQ	64
413 struct ipmi_smi {
414 	struct module *owner;
415 
416 	/* What interface number are we? */
417 	int intf_num;
418 
419 	struct kref refcount;
420 
421 	/* Set when the interface is being unregistered. */
422 	bool in_shutdown;
423 
424 	/* Used for a list of interfaces. */
425 	struct list_head link;
426 
427 	/*
428 	 * The list of upper layers that are using me.
429 	 */
430 	struct list_head users;
431 	struct mutex users_mutex;
432 	atomic_t nr_users;
433 	struct device_attribute nr_users_devattr;
434 	struct device_attribute nr_msgs_devattr;
435 
436 
437 	/* Used for wake ups at startup. */
438 	wait_queue_head_t waitq;
439 
440 	/*
441 	 * Prevents the interface from being unregistered when the
442 	 * interface is used by being looked up through the BMC
443 	 * structure.
444 	 */
445 	struct mutex bmc_reg_mutex;
446 
447 	struct bmc_device tmp_bmc;
448 	struct bmc_device *bmc;
449 	bool bmc_registered;
450 	struct list_head bmc_link;
451 	char *my_dev_name;
452 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
453 	struct work_struct bmc_reg_work;
454 
455 	const struct ipmi_smi_handlers *handlers;
456 	void                     *send_info;
457 
458 	/* Driver-model device for the system interface. */
459 	struct device          *si_dev;
460 
461 	/*
462 	 * A table of sequence numbers for this interface.  We use the
463 	 * sequence numbers for IPMB messages that go out of the
464 	 * interface to match them up with their responses.  A routine
465 	 * is called periodically to time the items in this list.
466 	 */
467 	spinlock_t       seq_lock;
468 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
469 	int curr_seq;
470 
471 	/*
472 	 * Messages queued for deliver to the user.
473 	 */
474 	struct mutex user_msgs_mutex;
475 	struct list_head user_msgs;
476 
477 	/*
478 	 * Messages queued for processing.  If processing fails (out
479 	 * of memory for instance), They will stay in here to be
480 	 * processed later in a periodic timer interrupt.  The
481 	 * workqueue is for handling received messages directly from
482 	 * the handler.
483 	 */
484 	spinlock_t       waiting_rcv_msgs_lock;
485 	struct list_head waiting_rcv_msgs;
486 	atomic_t	 watchdog_pretimeouts_to_deliver;
487 	struct work_struct smi_work;
488 
489 	spinlock_t             xmit_msgs_lock;
490 	struct list_head       xmit_msgs;
491 	struct ipmi_smi_msg    *curr_msg;
492 	struct list_head       hp_xmit_msgs;
493 
494 	/*
495 	 * The list of command receivers that are registered for commands
496 	 * on this interface.
497 	 */
498 	struct mutex     cmd_rcvrs_mutex;
499 	struct list_head cmd_rcvrs;
500 
501 	/*
502 	 * Events that were queues because no one was there to receive
503 	 * them.
504 	 */
505 	struct mutex     events_mutex; /* For dealing with event stuff. */
506 	struct list_head waiting_events;
507 	unsigned int     waiting_events_count; /* How many events in queue? */
508 	char             event_msg_printed;
509 
510 	/* How many users are waiting for events? */
511 	atomic_t         event_waiters;
512 	unsigned int     ticks_to_req_ev;
513 
514 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
515 
516 	/* How many users are waiting for commands? */
517 	unsigned int     command_waiters;
518 
519 	/* How many users are waiting for watchdogs? */
520 	unsigned int     watchdog_waiters;
521 
522 	/* How many users are waiting for message responses? */
523 	unsigned int     response_waiters;
524 
525 	/*
526 	 * Tells what the lower layer has last been asked to watch for,
527 	 * messages and/or watchdogs.  Protected by watch_lock.
528 	 */
529 	unsigned int     last_watch_mask;
530 
531 	/*
532 	 * The event receiver for my BMC, only really used at panic
533 	 * shutdown as a place to store this.
534 	 */
535 	unsigned char event_receiver;
536 	unsigned char event_receiver_lun;
537 	unsigned char local_sel_device;
538 	unsigned char local_event_generator;
539 
540 	/* For handling of maintenance mode. */
541 	int maintenance_mode;
542 	bool maintenance_mode_enable;
543 	int auto_maintenance_timeout;
544 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
545 
546 	/*
547 	 * If we are doing maintenance on something on IPMB, extend
548 	 * the timeout time to avoid timeouts writing firmware and
549 	 * such.
550 	 */
551 	int ipmb_maintenance_mode_timeout;
552 
553 	/*
554 	 * A cheap hack, if this is non-null and a message to an
555 	 * interface comes in with a NULL user, call this routine with
556 	 * it.  Note that the message will still be freed by the
557 	 * caller.  This only works on the system interface.
558 	 *
559 	 * Protected by bmc_reg_mutex.
560 	 */
561 	void (*null_user_handler)(struct ipmi_smi *intf,
562 				  struct ipmi_recv_msg *msg);
563 
564 	/*
565 	 * When we are scanning the channels for an SMI, this will
566 	 * tell which channel we are scanning.
567 	 */
568 	int curr_channel;
569 
570 	/* Channel information */
571 	struct ipmi_channel_set *channel_list;
572 	unsigned int curr_working_cset; /* First index into the following. */
573 	struct ipmi_channel_set wchannels[2];
574 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
575 	bool channels_ready;
576 
577 	atomic_t stats[IPMI_NUM_STATS];
578 
579 	/*
580 	 * run_to_completion duplicate of smb_info, smi_info
581 	 * and ipmi_serial_info structures. Used to decrease numbers of
582 	 * parameters passed by "low" level IPMI code.
583 	 */
584 	int run_to_completion;
585 };
586 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
587 
588 static void __get_guid(struct ipmi_smi *intf);
589 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
590 static int __ipmi_bmc_register(struct ipmi_smi *intf,
591 			       struct ipmi_device_id *id,
592 			       bool guid_set, guid_t *guid, int intf_num);
593 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
594 
free_ipmi_user(struct kref * ref)595 static void free_ipmi_user(struct kref *ref)
596 {
597 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
598 	struct module *owner;
599 
600 	owner = user->intf->owner;
601 	kref_put(&user->intf->refcount, intf_free);
602 	module_put(owner);
603 	vfree(user);
604 }
605 
release_ipmi_user(struct ipmi_user * user)606 static void release_ipmi_user(struct ipmi_user *user)
607 {
608 	kref_put(&user->refcount, free_ipmi_user);
609 }
610 
acquire_ipmi_user(struct ipmi_user * user)611 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user)
612 {
613 	if (!kref_get_unless_zero(&user->refcount))
614 		return NULL;
615 	return user;
616 }
617 
618 /*
619  * The driver model view of the IPMI messaging driver.
620  */
621 static struct platform_driver ipmidriver = {
622 	.driver = {
623 		.name = "ipmi",
624 		.bus = &platform_bus_type
625 	}
626 };
627 /*
628  * This mutex keeps us from adding the same BMC twice.
629  */
630 static DEFINE_MUTEX(ipmidriver_mutex);
631 
632 static LIST_HEAD(ipmi_interfaces);
633 static DEFINE_MUTEX(ipmi_interfaces_mutex);
634 
635 /*
636  * List of watchers that want to know when smi's are added and deleted.
637  */
638 static LIST_HEAD(smi_watchers);
639 static DEFINE_MUTEX(smi_watchers_mutex);
640 
641 #define ipmi_inc_stat(intf, stat) \
642 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
643 #define ipmi_get_stat(intf, stat) \
644 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
645 
646 static const char * const addr_src_to_str[] = {
647 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
648 	"device-tree", "platform"
649 };
650 
ipmi_addr_src_to_str(enum ipmi_addr_src src)651 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
652 {
653 	if (src >= SI_LAST)
654 		src = 0; /* Invalid */
655 	return addr_src_to_str[src];
656 }
657 EXPORT_SYMBOL(ipmi_addr_src_to_str);
658 
is_lan_addr(struct ipmi_addr * addr)659 static int is_lan_addr(struct ipmi_addr *addr)
660 {
661 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
662 }
663 
is_ipmb_addr(struct ipmi_addr * addr)664 static int is_ipmb_addr(struct ipmi_addr *addr)
665 {
666 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
667 }
668 
is_ipmb_bcast_addr(struct ipmi_addr * addr)669 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
670 {
671 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
672 }
673 
is_ipmb_direct_addr(struct ipmi_addr * addr)674 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
675 {
676 	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
677 }
678 
free_recv_msg_list(struct list_head * q)679 static void free_recv_msg_list(struct list_head *q)
680 {
681 	struct ipmi_recv_msg *msg, *msg2;
682 
683 	list_for_each_entry_safe(msg, msg2, q, link) {
684 		list_del(&msg->link);
685 		ipmi_free_recv_msg(msg);
686 	}
687 }
688 
free_smi_msg_list(struct list_head * q)689 static void free_smi_msg_list(struct list_head *q)
690 {
691 	struct ipmi_smi_msg *msg, *msg2;
692 
693 	list_for_each_entry_safe(msg, msg2, q, link) {
694 		list_del(&msg->link);
695 		ipmi_free_smi_msg(msg);
696 	}
697 }
698 
intf_free(struct kref * ref)699 static void intf_free(struct kref *ref)
700 {
701 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
702 	int              i;
703 	struct cmd_rcvr  *rcvr, *rcvr2;
704 
705 	free_smi_msg_list(&intf->waiting_rcv_msgs);
706 	free_recv_msg_list(&intf->waiting_events);
707 
708 	/*
709 	 * Wholesale remove all the entries from the list in the
710 	 * interface.  No need for locks, this is single-threaded.
711 	 */
712 	list_for_each_entry_safe(rcvr, rcvr2, &intf->cmd_rcvrs, link)
713 		kfree(rcvr);
714 
715 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
716 		if ((intf->seq_table[i].inuse)
717 					&& (intf->seq_table[i].recv_msg))
718 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
719 	}
720 
721 	kfree(intf);
722 }
723 
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)724 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
725 {
726 	struct ipmi_smi *intf;
727 	unsigned int count = 0, i;
728 	int *interfaces = NULL;
729 	struct device **devices = NULL;
730 	int rv = 0;
731 
732 	/*
733 	 * Make sure the driver is actually initialized, this handles
734 	 * problems with initialization order.
735 	 */
736 	rv = ipmi_init_msghandler();
737 	if (rv)
738 		return rv;
739 
740 	mutex_lock(&smi_watchers_mutex);
741 
742 	list_add(&watcher->link, &smi_watchers);
743 
744 	/*
745 	 * Build an array of ipmi interfaces and fill it in, and
746 	 * another array of the devices.  We can't call the callback
747 	 * with ipmi_interfaces_mutex held.  smi_watchers_mutex will
748 	 * keep things in order for the user.
749 	 */
750 	mutex_lock(&ipmi_interfaces_mutex);
751 	list_for_each_entry(intf, &ipmi_interfaces, link)
752 		count++;
753 	if (count > 0) {
754 		interfaces = kmalloc_array(count, sizeof(*interfaces),
755 					   GFP_KERNEL);
756 		if (!interfaces) {
757 			rv = -ENOMEM;
758 		} else {
759 			devices = kmalloc_array(count, sizeof(*devices),
760 						GFP_KERNEL);
761 			if (!devices) {
762 				kfree(interfaces);
763 				interfaces = NULL;
764 				rv = -ENOMEM;
765 			}
766 		}
767 		count = 0;
768 	}
769 	if (interfaces) {
770 		list_for_each_entry(intf, &ipmi_interfaces, link) {
771 			int intf_num = READ_ONCE(intf->intf_num);
772 
773 			if (intf_num == -1)
774 				continue;
775 			devices[count] = intf->si_dev;
776 			interfaces[count++] = intf_num;
777 		}
778 	}
779 	mutex_unlock(&ipmi_interfaces_mutex);
780 
781 	if (interfaces) {
782 		for (i = 0; i < count; i++)
783 			watcher->new_smi(interfaces[i], devices[i]);
784 		kfree(interfaces);
785 		kfree(devices);
786 	}
787 
788 	mutex_unlock(&smi_watchers_mutex);
789 
790 	return rv;
791 }
792 EXPORT_SYMBOL(ipmi_smi_watcher_register);
793 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)794 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
795 {
796 	mutex_lock(&smi_watchers_mutex);
797 	list_del(&watcher->link);
798 	mutex_unlock(&smi_watchers_mutex);
799 	return 0;
800 }
801 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
802 
803 static void
call_smi_watchers(int i,struct device * dev)804 call_smi_watchers(int i, struct device *dev)
805 {
806 	struct ipmi_smi_watcher *w;
807 
808 	list_for_each_entry(w, &smi_watchers, link) {
809 		if (try_module_get(w->owner)) {
810 			w->new_smi(i, dev);
811 			module_put(w->owner);
812 		}
813 	}
814 }
815 
816 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)817 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
818 {
819 	if (addr1->addr_type != addr2->addr_type)
820 		return 0;
821 
822 	if (addr1->channel != addr2->channel)
823 		return 0;
824 
825 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
826 		struct ipmi_system_interface_addr *smi_addr1
827 		    = (struct ipmi_system_interface_addr *) addr1;
828 		struct ipmi_system_interface_addr *smi_addr2
829 		    = (struct ipmi_system_interface_addr *) addr2;
830 		return (smi_addr1->lun == smi_addr2->lun);
831 	}
832 
833 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
834 		struct ipmi_ipmb_addr *ipmb_addr1
835 		    = (struct ipmi_ipmb_addr *) addr1;
836 		struct ipmi_ipmb_addr *ipmb_addr2
837 		    = (struct ipmi_ipmb_addr *) addr2;
838 
839 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
840 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
841 	}
842 
843 	if (is_ipmb_direct_addr(addr1)) {
844 		struct ipmi_ipmb_direct_addr *daddr1
845 			= (struct ipmi_ipmb_direct_addr *) addr1;
846 		struct ipmi_ipmb_direct_addr *daddr2
847 			= (struct ipmi_ipmb_direct_addr *) addr2;
848 
849 		return daddr1->slave_addr == daddr2->slave_addr &&
850 			daddr1->rq_lun == daddr2->rq_lun &&
851 			daddr1->rs_lun == daddr2->rs_lun;
852 	}
853 
854 	if (is_lan_addr(addr1)) {
855 		struct ipmi_lan_addr *lan_addr1
856 			= (struct ipmi_lan_addr *) addr1;
857 		struct ipmi_lan_addr *lan_addr2
858 		    = (struct ipmi_lan_addr *) addr2;
859 
860 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
861 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
862 			&& (lan_addr1->session_handle
863 			    == lan_addr2->session_handle)
864 			&& (lan_addr1->lun == lan_addr2->lun));
865 	}
866 
867 	return 1;
868 }
869 
ipmi_validate_addr(struct ipmi_addr * addr,int len)870 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
871 {
872 	if (len < sizeof(struct ipmi_system_interface_addr))
873 		return -EINVAL;
874 
875 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
876 		if (addr->channel != IPMI_BMC_CHANNEL)
877 			return -EINVAL;
878 		return 0;
879 	}
880 
881 	if ((addr->channel == IPMI_BMC_CHANNEL)
882 	    || (addr->channel >= IPMI_MAX_CHANNELS)
883 	    || (addr->channel < 0))
884 		return -EINVAL;
885 
886 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
887 		if (len < sizeof(struct ipmi_ipmb_addr))
888 			return -EINVAL;
889 		return 0;
890 	}
891 
892 	if (is_ipmb_direct_addr(addr)) {
893 		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
894 
895 		if (addr->channel != 0)
896 			return -EINVAL;
897 		if (len < sizeof(struct ipmi_ipmb_direct_addr))
898 			return -EINVAL;
899 
900 		if (daddr->slave_addr & 0x01)
901 			return -EINVAL;
902 		if (daddr->rq_lun >= 4)
903 			return -EINVAL;
904 		if (daddr->rs_lun >= 4)
905 			return -EINVAL;
906 		return 0;
907 	}
908 
909 	if (is_lan_addr(addr)) {
910 		if (len < sizeof(struct ipmi_lan_addr))
911 			return -EINVAL;
912 		return 0;
913 	}
914 
915 	return -EINVAL;
916 }
917 EXPORT_SYMBOL(ipmi_validate_addr);
918 
ipmi_addr_length(int addr_type)919 unsigned int ipmi_addr_length(int addr_type)
920 {
921 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
922 		return sizeof(struct ipmi_system_interface_addr);
923 
924 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
925 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
926 		return sizeof(struct ipmi_ipmb_addr);
927 
928 	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
929 		return sizeof(struct ipmi_ipmb_direct_addr);
930 
931 	if (addr_type == IPMI_LAN_ADDR_TYPE)
932 		return sizeof(struct ipmi_lan_addr);
933 
934 	return 0;
935 }
936 EXPORT_SYMBOL(ipmi_addr_length);
937 
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)938 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
939 {
940 	int rv = 0;
941 
942 	if (!msg->user) {
943 		/* Special handling for NULL users. */
944 		if (intf->null_user_handler) {
945 			intf->null_user_handler(intf, msg);
946 		} else {
947 			/* No handler, so give up. */
948 			rv = -EINVAL;
949 		}
950 		ipmi_free_recv_msg(msg);
951 	} else if (oops_in_progress) {
952 		/*
953 		 * If we are running in the panic context, calling the
954 		 * receive handler doesn't much meaning and has a deadlock
955 		 * risk.  At this moment, simply skip it in that case.
956 		 */
957 		ipmi_free_recv_msg(msg);
958 		atomic_dec(&msg->user->nr_msgs);
959 	} else {
960 		/*
961 		 * Deliver it in smi_work.  The message will hold a
962 		 * refcount to the user.
963 		 */
964 		mutex_lock(&intf->user_msgs_mutex);
965 		list_add_tail(&msg->link, &intf->user_msgs);
966 		mutex_unlock(&intf->user_msgs_mutex);
967 		queue_work(system_wq, &intf->smi_work);
968 	}
969 
970 	return rv;
971 }
972 
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)973 static void deliver_local_response(struct ipmi_smi *intf,
974 				   struct ipmi_recv_msg *msg)
975 {
976 	if (deliver_response(intf, msg))
977 		ipmi_inc_stat(intf, unhandled_local_responses);
978 	else
979 		ipmi_inc_stat(intf, handled_local_responses);
980 }
981 
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)982 static void deliver_err_response(struct ipmi_smi *intf,
983 				 struct ipmi_recv_msg *msg, int err)
984 {
985 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
986 	msg->msg_data[0] = err;
987 	msg->msg.netfn |= 1; /* Convert to a response. */
988 	msg->msg.data_len = 1;
989 	msg->msg.data = msg->msg_data;
990 	deliver_local_response(intf, msg);
991 }
992 
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)993 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
994 {
995 	unsigned long iflags;
996 
997 	if (!intf->handlers->set_need_watch)
998 		return;
999 
1000 	spin_lock_irqsave(&intf->watch_lock, iflags);
1001 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1002 		intf->response_waiters++;
1003 
1004 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1005 		intf->watchdog_waiters++;
1006 
1007 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1008 		intf->command_waiters++;
1009 
1010 	if ((intf->last_watch_mask & flags) != flags) {
1011 		intf->last_watch_mask |= flags;
1012 		intf->handlers->set_need_watch(intf->send_info,
1013 					       intf->last_watch_mask);
1014 	}
1015 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1016 }
1017 
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1018 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1019 {
1020 	unsigned long iflags;
1021 
1022 	if (!intf->handlers->set_need_watch)
1023 		return;
1024 
1025 	spin_lock_irqsave(&intf->watch_lock, iflags);
1026 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1027 		intf->response_waiters--;
1028 
1029 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1030 		intf->watchdog_waiters--;
1031 
1032 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1033 		intf->command_waiters--;
1034 
1035 	flags = 0;
1036 	if (intf->response_waiters)
1037 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1038 	if (intf->watchdog_waiters)
1039 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1040 	if (intf->command_waiters)
1041 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1042 
1043 	if (intf->last_watch_mask != flags) {
1044 		intf->last_watch_mask = flags;
1045 		intf->handlers->set_need_watch(intf->send_info,
1046 					       intf->last_watch_mask);
1047 	}
1048 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1049 }
1050 
1051 /*
1052  * Find the next sequence number not being used and add the given
1053  * message with the given timeout to the sequence table.  This must be
1054  * called with the interface's seq_lock held.
1055  */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1056 static int intf_next_seq(struct ipmi_smi      *intf,
1057 			 struct ipmi_recv_msg *recv_msg,
1058 			 unsigned long        timeout,
1059 			 int                  retries,
1060 			 int                  broadcast,
1061 			 unsigned char        *seq,
1062 			 long                 *seqid)
1063 {
1064 	int          rv = 0;
1065 	unsigned int i;
1066 
1067 	if (timeout == 0)
1068 		timeout = default_retry_ms;
1069 	if (retries < 0)
1070 		retries = default_max_retries;
1071 
1072 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1073 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1074 		if (!intf->seq_table[i].inuse)
1075 			break;
1076 	}
1077 
1078 	if (!intf->seq_table[i].inuse) {
1079 		intf->seq_table[i].recv_msg = recv_msg;
1080 
1081 		/*
1082 		 * Start with the maximum timeout, when the send response
1083 		 * comes in we will start the real timer.
1084 		 */
1085 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1086 		intf->seq_table[i].orig_timeout = timeout;
1087 		intf->seq_table[i].retries_left = retries;
1088 		intf->seq_table[i].broadcast = broadcast;
1089 		intf->seq_table[i].inuse = 1;
1090 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1091 		*seq = i;
1092 		*seqid = intf->seq_table[i].seqid;
1093 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1094 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1095 		need_waiter(intf);
1096 	} else {
1097 		rv = -EAGAIN;
1098 	}
1099 
1100 	return rv;
1101 }
1102 
1103 /*
1104  * Return the receive message for the given sequence number and
1105  * release the sequence number so it can be reused.  Some other data
1106  * is passed in to be sure the message matches up correctly (to help
1107  * guard against message coming in after their timeout and the
1108  * sequence number being reused).
1109  */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1110 static int intf_find_seq(struct ipmi_smi      *intf,
1111 			 unsigned char        seq,
1112 			 short                channel,
1113 			 unsigned char        cmd,
1114 			 unsigned char        netfn,
1115 			 struct ipmi_addr     *addr,
1116 			 struct ipmi_recv_msg **recv_msg)
1117 {
1118 	int           rv = -ENODEV;
1119 	unsigned long flags;
1120 
1121 	if (seq >= IPMI_IPMB_NUM_SEQ)
1122 		return -EINVAL;
1123 
1124 	spin_lock_irqsave(&intf->seq_lock, flags);
1125 	if (intf->seq_table[seq].inuse) {
1126 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1127 
1128 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1129 				&& (msg->msg.netfn == netfn)
1130 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1131 			*recv_msg = msg;
1132 			intf->seq_table[seq].inuse = 0;
1133 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1134 			rv = 0;
1135 		}
1136 	}
1137 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1138 
1139 	return rv;
1140 }
1141 
1142 
1143 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1144 static int intf_start_seq_timer(struct ipmi_smi *intf,
1145 				long       msgid)
1146 {
1147 	int           rv = -ENODEV;
1148 	unsigned long flags;
1149 	unsigned char seq;
1150 	unsigned long seqid;
1151 
1152 
1153 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1154 
1155 	spin_lock_irqsave(&intf->seq_lock, flags);
1156 	/*
1157 	 * We do this verification because the user can be deleted
1158 	 * while a message is outstanding.
1159 	 */
1160 	if ((intf->seq_table[seq].inuse)
1161 				&& (intf->seq_table[seq].seqid == seqid)) {
1162 		struct seq_table *ent = &intf->seq_table[seq];
1163 		ent->timeout = ent->orig_timeout;
1164 		rv = 0;
1165 	}
1166 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1167 
1168 	return rv;
1169 }
1170 
1171 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1172 static int intf_err_seq(struct ipmi_smi *intf,
1173 			long         msgid,
1174 			unsigned int err)
1175 {
1176 	int                  rv = -ENODEV;
1177 	unsigned long        flags;
1178 	unsigned char        seq;
1179 	unsigned long        seqid;
1180 	struct ipmi_recv_msg *msg = NULL;
1181 
1182 
1183 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1184 
1185 	spin_lock_irqsave(&intf->seq_lock, flags);
1186 	/*
1187 	 * We do this verification because the user can be deleted
1188 	 * while a message is outstanding.
1189 	 */
1190 	if ((intf->seq_table[seq].inuse)
1191 				&& (intf->seq_table[seq].seqid == seqid)) {
1192 		struct seq_table *ent = &intf->seq_table[seq];
1193 
1194 		ent->inuse = 0;
1195 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1196 		msg = ent->recv_msg;
1197 		rv = 0;
1198 	}
1199 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1200 
1201 	if (msg)
1202 		deliver_err_response(intf, msg, err);
1203 
1204 	return rv;
1205 }
1206 
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1207 int ipmi_create_user(unsigned int          if_num,
1208 		     const struct ipmi_user_hndl *handler,
1209 		     void                  *handler_data,
1210 		     struct ipmi_user      **user)
1211 {
1212 	unsigned long flags;
1213 	struct ipmi_user *new_user = NULL;
1214 	int           rv = 0;
1215 	struct ipmi_smi *intf;
1216 
1217 	/*
1218 	 * There is no module usecount here, because it's not
1219 	 * required.  Since this can only be used by and called from
1220 	 * other modules, they will implicitly use this module, and
1221 	 * thus this can't be removed unless the other modules are
1222 	 * removed.
1223 	 */
1224 
1225 	if (handler == NULL)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Make sure the driver is actually initialized, this handles
1230 	 * problems with initialization order.
1231 	 */
1232 	rv = ipmi_init_msghandler();
1233 	if (rv)
1234 		return rv;
1235 
1236 	mutex_lock(&ipmi_interfaces_mutex);
1237 	list_for_each_entry(intf, &ipmi_interfaces, link) {
1238 		if (intf->intf_num == if_num)
1239 			goto found;
1240 	}
1241 	/* Not found, return an error */
1242 	rv = -EINVAL;
1243 	goto out_unlock;
1244 
1245  found:
1246 	if (intf->in_shutdown) {
1247 		rv = -ENODEV;
1248 		goto out_unlock;
1249 	}
1250 
1251 	if (atomic_add_return(1, &intf->nr_users) > max_users) {
1252 		rv = -EBUSY;
1253 		goto out_kfree;
1254 	}
1255 
1256 	new_user = vzalloc(sizeof(*new_user));
1257 	if (!new_user) {
1258 		rv = -ENOMEM;
1259 		goto out_kfree;
1260 	}
1261 
1262 	if (!try_module_get(intf->owner)) {
1263 		rv = -ENODEV;
1264 		goto out_kfree;
1265 	}
1266 
1267 	/* Note that each existing user holds a refcount to the interface. */
1268 	kref_get(&intf->refcount);
1269 
1270 	atomic_set(&new_user->nr_msgs, 0);
1271 	kref_init(&new_user->refcount);
1272 	refcount_set(&new_user->destroyed, 1);
1273 	kref_get(&new_user->refcount); /* Destroy owns a refcount. */
1274 	new_user->handler = handler;
1275 	new_user->handler_data = handler_data;
1276 	new_user->intf = intf;
1277 	new_user->gets_events = false;
1278 
1279 	mutex_lock(&intf->users_mutex);
1280 	spin_lock_irqsave(&intf->seq_lock, flags);
1281 	list_add(&new_user->link, &intf->users);
1282 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1283 	mutex_unlock(&intf->users_mutex);
1284 
1285 	if (handler->ipmi_watchdog_pretimeout)
1286 		/* User wants pretimeouts, so make sure to watch for them. */
1287 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1288 
1289 out_kfree:
1290 	if (rv) {
1291 		atomic_dec(&intf->nr_users);
1292 		vfree(new_user);
1293 	} else {
1294 		*user = new_user;
1295 	}
1296 out_unlock:
1297 	mutex_unlock(&ipmi_interfaces_mutex);
1298 	return rv;
1299 }
1300 EXPORT_SYMBOL(ipmi_create_user);
1301 
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1302 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1303 {
1304 	int rv = -EINVAL;
1305 	struct ipmi_smi *intf;
1306 
1307 	mutex_lock(&ipmi_interfaces_mutex);
1308 	list_for_each_entry(intf, &ipmi_interfaces, link) {
1309 		if (intf->intf_num == if_num) {
1310 			if (!intf->handlers->get_smi_info)
1311 				rv = -ENOTTY;
1312 			else
1313 				rv = intf->handlers->get_smi_info(intf->send_info, data);
1314 			break;
1315 		}
1316 	}
1317 	mutex_unlock(&ipmi_interfaces_mutex);
1318 
1319 	return rv;
1320 }
1321 EXPORT_SYMBOL(ipmi_get_smi_info);
1322 
1323 /* Must be called with intf->users_mutex held. */
_ipmi_destroy_user(struct ipmi_user * user)1324 static void _ipmi_destroy_user(struct ipmi_user *user)
1325 {
1326 	struct ipmi_smi  *intf = user->intf;
1327 	int              i;
1328 	unsigned long    flags;
1329 	struct cmd_rcvr  *rcvr;
1330 	struct cmd_rcvr  *rcvrs = NULL;
1331 	struct ipmi_recv_msg *msg, *msg2;
1332 
1333 	if (!refcount_dec_if_one(&user->destroyed))
1334 		return;
1335 
1336 	if (user->handler->shutdown)
1337 		user->handler->shutdown(user->handler_data);
1338 
1339 	if (user->handler->ipmi_watchdog_pretimeout)
1340 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1341 
1342 	if (user->gets_events)
1343 		atomic_dec(&intf->event_waiters);
1344 
1345 	/* Remove the user from the interface's list and sequence table. */
1346 	list_del(&user->link);
1347 	atomic_dec(&intf->nr_users);
1348 
1349 	spin_lock_irqsave(&intf->seq_lock, flags);
1350 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1351 		if (intf->seq_table[i].inuse
1352 		    && (intf->seq_table[i].recv_msg->user == user)) {
1353 			intf->seq_table[i].inuse = 0;
1354 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1355 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1356 		}
1357 	}
1358 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1359 
1360 	/*
1361 	 * Remove the user from the command receiver's table.  First
1362 	 * we build a list of everything (not using the standard link,
1363 	 * since other things may be using it till we do
1364 	 * synchronize_rcu()) then free everything in that list.
1365 	 */
1366 	mutex_lock(&intf->cmd_rcvrs_mutex);
1367 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1368 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1369 		if (rcvr->user == user) {
1370 			list_del_rcu(&rcvr->link);
1371 			rcvr->next = rcvrs;
1372 			rcvrs = rcvr;
1373 		}
1374 	}
1375 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1376 	while (rcvrs) {
1377 		rcvr = rcvrs;
1378 		rcvrs = rcvr->next;
1379 		kfree(rcvr);
1380 	}
1381 
1382 	mutex_lock(&intf->user_msgs_mutex);
1383 	list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
1384 		if (msg->user != user)
1385 			continue;
1386 		list_del(&msg->link);
1387 		ipmi_free_recv_msg(msg);
1388 	}
1389 	mutex_unlock(&intf->user_msgs_mutex);
1390 
1391 	release_ipmi_user(user);
1392 }
1393 
ipmi_destroy_user(struct ipmi_user * user)1394 void ipmi_destroy_user(struct ipmi_user *user)
1395 {
1396 	struct ipmi_smi *intf = user->intf;
1397 
1398 	mutex_lock(&intf->users_mutex);
1399 	_ipmi_destroy_user(user);
1400 	mutex_unlock(&intf->users_mutex);
1401 
1402 	kref_put(&user->refcount, free_ipmi_user);
1403 }
1404 EXPORT_SYMBOL(ipmi_destroy_user);
1405 
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1406 int ipmi_get_version(struct ipmi_user *user,
1407 		     unsigned char *major,
1408 		     unsigned char *minor)
1409 {
1410 	struct ipmi_device_id id;
1411 	int rv;
1412 
1413 	user = acquire_ipmi_user(user);
1414 	if (!user)
1415 		return -ENODEV;
1416 
1417 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1418 	if (!rv) {
1419 		*major = ipmi_version_major(&id);
1420 		*minor = ipmi_version_minor(&id);
1421 	}
1422 	release_ipmi_user(user);
1423 
1424 	return rv;
1425 }
1426 EXPORT_SYMBOL(ipmi_get_version);
1427 
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1428 int ipmi_set_my_address(struct ipmi_user *user,
1429 			unsigned int  channel,
1430 			unsigned char address)
1431 {
1432 	int rv = 0;
1433 
1434 	user = acquire_ipmi_user(user);
1435 	if (!user)
1436 		return -ENODEV;
1437 
1438 	if (channel >= IPMI_MAX_CHANNELS) {
1439 		rv = -EINVAL;
1440 	} else {
1441 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1442 		user->intf->addrinfo[channel].address = address;
1443 	}
1444 	release_ipmi_user(user);
1445 
1446 	return rv;
1447 }
1448 EXPORT_SYMBOL(ipmi_set_my_address);
1449 
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1450 int ipmi_get_my_address(struct ipmi_user *user,
1451 			unsigned int  channel,
1452 			unsigned char *address)
1453 {
1454 	int rv = 0;
1455 
1456 	user = acquire_ipmi_user(user);
1457 	if (!user)
1458 		return -ENODEV;
1459 
1460 	if (channel >= IPMI_MAX_CHANNELS) {
1461 		rv = -EINVAL;
1462 	} else {
1463 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1464 		*address = user->intf->addrinfo[channel].address;
1465 	}
1466 	release_ipmi_user(user);
1467 
1468 	return rv;
1469 }
1470 EXPORT_SYMBOL(ipmi_get_my_address);
1471 
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1472 int ipmi_set_my_LUN(struct ipmi_user *user,
1473 		    unsigned int  channel,
1474 		    unsigned char LUN)
1475 {
1476 	int rv = 0;
1477 
1478 	user = acquire_ipmi_user(user);
1479 	if (!user)
1480 		return -ENODEV;
1481 
1482 	if (channel >= IPMI_MAX_CHANNELS) {
1483 		rv = -EINVAL;
1484 	} else {
1485 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1486 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1487 	}
1488 	release_ipmi_user(user);
1489 
1490 	return rv;
1491 }
1492 EXPORT_SYMBOL(ipmi_set_my_LUN);
1493 
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1494 int ipmi_get_my_LUN(struct ipmi_user *user,
1495 		    unsigned int  channel,
1496 		    unsigned char *address)
1497 {
1498 	int rv = 0;
1499 
1500 	user = acquire_ipmi_user(user);
1501 	if (!user)
1502 		return -ENODEV;
1503 
1504 	if (channel >= IPMI_MAX_CHANNELS) {
1505 		rv = -EINVAL;
1506 	} else {
1507 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1508 		*address = user->intf->addrinfo[channel].lun;
1509 	}
1510 	release_ipmi_user(user);
1511 
1512 	return rv;
1513 }
1514 EXPORT_SYMBOL(ipmi_get_my_LUN);
1515 
ipmi_get_maintenance_mode(struct ipmi_user * user)1516 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1517 {
1518 	int mode;
1519 	unsigned long flags;
1520 
1521 	user = acquire_ipmi_user(user);
1522 	if (!user)
1523 		return -ENODEV;
1524 
1525 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1526 	mode = user->intf->maintenance_mode;
1527 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1528 	release_ipmi_user(user);
1529 
1530 	return mode;
1531 }
1532 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1533 
maintenance_mode_update(struct ipmi_smi * intf)1534 static void maintenance_mode_update(struct ipmi_smi *intf)
1535 {
1536 	if (intf->handlers->set_maintenance_mode)
1537 		intf->handlers->set_maintenance_mode(
1538 			intf->send_info, intf->maintenance_mode_enable);
1539 }
1540 
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1541 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1542 {
1543 	int rv = 0;
1544 	unsigned long flags;
1545 	struct ipmi_smi *intf = user->intf;
1546 
1547 	user = acquire_ipmi_user(user);
1548 	if (!user)
1549 		return -ENODEV;
1550 
1551 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1552 	if (intf->maintenance_mode != mode) {
1553 		switch (mode) {
1554 		case IPMI_MAINTENANCE_MODE_AUTO:
1555 			intf->maintenance_mode_enable
1556 				= (intf->auto_maintenance_timeout > 0);
1557 			break;
1558 
1559 		case IPMI_MAINTENANCE_MODE_OFF:
1560 			intf->maintenance_mode_enable = false;
1561 			break;
1562 
1563 		case IPMI_MAINTENANCE_MODE_ON:
1564 			intf->maintenance_mode_enable = true;
1565 			break;
1566 
1567 		default:
1568 			rv = -EINVAL;
1569 			goto out_unlock;
1570 		}
1571 		intf->maintenance_mode = mode;
1572 
1573 		maintenance_mode_update(intf);
1574 	}
1575  out_unlock:
1576 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1577 	release_ipmi_user(user);
1578 
1579 	return rv;
1580 }
1581 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1582 
ipmi_set_gets_events(struct ipmi_user * user,bool val)1583 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1584 {
1585 	struct ipmi_smi      *intf = user->intf;
1586 	struct ipmi_recv_msg *msg, *msg2;
1587 	struct list_head     msgs;
1588 
1589 	user = acquire_ipmi_user(user);
1590 	if (!user)
1591 		return -ENODEV;
1592 
1593 	INIT_LIST_HEAD(&msgs);
1594 
1595 	mutex_lock(&intf->events_mutex);
1596 	if (user->gets_events == val)
1597 		goto out;
1598 
1599 	user->gets_events = val;
1600 
1601 	if (val) {
1602 		if (atomic_inc_return(&intf->event_waiters) == 1)
1603 			need_waiter(intf);
1604 	} else {
1605 		atomic_dec(&intf->event_waiters);
1606 	}
1607 
1608 	/* Deliver any queued events. */
1609 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1610 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1611 			list_move_tail(&msg->link, &msgs);
1612 		intf->waiting_events_count = 0;
1613 		if (intf->event_msg_printed) {
1614 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1615 			intf->event_msg_printed = 0;
1616 		}
1617 
1618 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1619 			msg->user = user;
1620 			kref_get(&user->refcount);
1621 			deliver_local_response(intf, msg);
1622 		}
1623 	}
1624 
1625  out:
1626 	mutex_unlock(&intf->events_mutex);
1627 	release_ipmi_user(user);
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(ipmi_set_gets_events);
1632 
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1633 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1634 				      unsigned char netfn,
1635 				      unsigned char cmd,
1636 				      unsigned char chan)
1637 {
1638 	struct cmd_rcvr *rcvr;
1639 
1640 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1641 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1642 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1643 					&& (rcvr->chans & (1 << chan)))
1644 			return rcvr;
1645 	}
1646 	return NULL;
1647 }
1648 
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1649 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1650 				 unsigned char netfn,
1651 				 unsigned char cmd,
1652 				 unsigned int  chans)
1653 {
1654 	struct cmd_rcvr *rcvr;
1655 
1656 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1657 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1658 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1659 					&& (rcvr->chans & chans))
1660 			return 0;
1661 	}
1662 	return 1;
1663 }
1664 
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1665 int ipmi_register_for_cmd(struct ipmi_user *user,
1666 			  unsigned char netfn,
1667 			  unsigned char cmd,
1668 			  unsigned int  chans)
1669 {
1670 	struct ipmi_smi *intf = user->intf;
1671 	struct cmd_rcvr *rcvr;
1672 	int rv = 0;
1673 
1674 	user = acquire_ipmi_user(user);
1675 	if (!user)
1676 		return -ENODEV;
1677 
1678 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1679 	if (!rcvr) {
1680 		rv = -ENOMEM;
1681 		goto out_release;
1682 	}
1683 	rcvr->cmd = cmd;
1684 	rcvr->netfn = netfn;
1685 	rcvr->chans = chans;
1686 	rcvr->user = user;
1687 
1688 	mutex_lock(&intf->cmd_rcvrs_mutex);
1689 	/* Make sure the command/netfn is not already registered. */
1690 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1691 		rv = -EBUSY;
1692 		goto out_unlock;
1693 	}
1694 
1695 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1696 
1697 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1698 
1699 out_unlock:
1700 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1701 	if (rv)
1702 		kfree(rcvr);
1703 out_release:
1704 	release_ipmi_user(user);
1705 
1706 	return rv;
1707 }
1708 EXPORT_SYMBOL(ipmi_register_for_cmd);
1709 
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1710 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1711 			    unsigned char netfn,
1712 			    unsigned char cmd,
1713 			    unsigned int  chans)
1714 {
1715 	struct ipmi_smi *intf = user->intf;
1716 	struct cmd_rcvr *rcvr;
1717 	struct cmd_rcvr *rcvrs = NULL;
1718 	int i, rv = -ENOENT;
1719 
1720 	user = acquire_ipmi_user(user);
1721 	if (!user)
1722 		return -ENODEV;
1723 
1724 	mutex_lock(&intf->cmd_rcvrs_mutex);
1725 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1726 		if (((1 << i) & chans) == 0)
1727 			continue;
1728 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1729 		if (rcvr == NULL)
1730 			continue;
1731 		if (rcvr->user == user) {
1732 			rv = 0;
1733 			rcvr->chans &= ~chans;
1734 			if (rcvr->chans == 0) {
1735 				list_del_rcu(&rcvr->link);
1736 				rcvr->next = rcvrs;
1737 				rcvrs = rcvr;
1738 			}
1739 		}
1740 	}
1741 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1742 	synchronize_rcu();
1743 	release_ipmi_user(user);
1744 	while (rcvrs) {
1745 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1746 		rcvr = rcvrs;
1747 		rcvrs = rcvr->next;
1748 		kfree(rcvr);
1749 	}
1750 
1751 	return rv;
1752 }
1753 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1754 
1755 unsigned char
ipmb_checksum(unsigned char * data,int size)1756 ipmb_checksum(unsigned char *data, int size)
1757 {
1758 	unsigned char csum = 0;
1759 
1760 	for (; size > 0; size--, data++)
1761 		csum += *data;
1762 
1763 	return -csum;
1764 }
1765 EXPORT_SYMBOL(ipmb_checksum);
1766 
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1767 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1768 				   struct kernel_ipmi_msg *msg,
1769 				   struct ipmi_ipmb_addr *ipmb_addr,
1770 				   long                  msgid,
1771 				   unsigned char         ipmb_seq,
1772 				   int                   broadcast,
1773 				   unsigned char         source_address,
1774 				   unsigned char         source_lun)
1775 {
1776 	int i = broadcast;
1777 
1778 	/* Format the IPMB header data. */
1779 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1780 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1781 	smi_msg->data[2] = ipmb_addr->channel;
1782 	if (broadcast)
1783 		smi_msg->data[3] = 0;
1784 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1785 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1786 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1787 	smi_msg->data[i+6] = source_address;
1788 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1789 	smi_msg->data[i+8] = msg->cmd;
1790 
1791 	/* Now tack on the data to the message. */
1792 	if (msg->data_len > 0)
1793 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1794 	smi_msg->data_size = msg->data_len + 9;
1795 
1796 	/* Now calculate the checksum and tack it on. */
1797 	smi_msg->data[i+smi_msg->data_size]
1798 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1799 
1800 	/*
1801 	 * Add on the checksum size and the offset from the
1802 	 * broadcast.
1803 	 */
1804 	smi_msg->data_size += 1 + i;
1805 
1806 	smi_msg->msgid = msgid;
1807 }
1808 
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1809 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1810 				  struct kernel_ipmi_msg *msg,
1811 				  struct ipmi_lan_addr  *lan_addr,
1812 				  long                  msgid,
1813 				  unsigned char         ipmb_seq,
1814 				  unsigned char         source_lun)
1815 {
1816 	/* Format the IPMB header data. */
1817 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1818 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1819 	smi_msg->data[2] = lan_addr->channel;
1820 	smi_msg->data[3] = lan_addr->session_handle;
1821 	smi_msg->data[4] = lan_addr->remote_SWID;
1822 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1823 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1824 	smi_msg->data[7] = lan_addr->local_SWID;
1825 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1826 	smi_msg->data[9] = msg->cmd;
1827 
1828 	/* Now tack on the data to the message. */
1829 	if (msg->data_len > 0)
1830 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1831 	smi_msg->data_size = msg->data_len + 10;
1832 
1833 	/* Now calculate the checksum and tack it on. */
1834 	smi_msg->data[smi_msg->data_size]
1835 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1836 
1837 	/*
1838 	 * Add on the checksum size and the offset from the
1839 	 * broadcast.
1840 	 */
1841 	smi_msg->data_size += 1;
1842 
1843 	smi_msg->msgid = msgid;
1844 }
1845 
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1846 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1847 					     struct ipmi_smi_msg *smi_msg,
1848 					     int priority)
1849 {
1850 	if (intf->curr_msg) {
1851 		if (priority > 0)
1852 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1853 		else
1854 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1855 		smi_msg = NULL;
1856 	} else {
1857 		intf->curr_msg = smi_msg;
1858 	}
1859 
1860 	return smi_msg;
1861 }
1862 
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1863 static void smi_send(struct ipmi_smi *intf,
1864 		     const struct ipmi_smi_handlers *handlers,
1865 		     struct ipmi_smi_msg *smi_msg, int priority)
1866 {
1867 	int run_to_completion = READ_ONCE(intf->run_to_completion);
1868 	unsigned long flags = 0;
1869 
1870 	if (!run_to_completion)
1871 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1872 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1873 	if (!run_to_completion)
1874 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1875 
1876 	if (smi_msg)
1877 		handlers->sender(intf->send_info, smi_msg);
1878 }
1879 
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1880 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1881 {
1882 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1883 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1884 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1885 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1886 }
1887 
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1888 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1889 			      struct ipmi_addr       *addr,
1890 			      long                   msgid,
1891 			      struct kernel_ipmi_msg *msg,
1892 			      struct ipmi_smi_msg    *smi_msg,
1893 			      struct ipmi_recv_msg   *recv_msg,
1894 			      int                    retries,
1895 			      unsigned int           retry_time_ms)
1896 {
1897 	struct ipmi_system_interface_addr *smi_addr;
1898 
1899 	if (msg->netfn & 1)
1900 		/* Responses are not allowed to the SMI. */
1901 		return -EINVAL;
1902 
1903 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1904 	if (smi_addr->lun > 3) {
1905 		ipmi_inc_stat(intf, sent_invalid_commands);
1906 		return -EINVAL;
1907 	}
1908 
1909 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1910 
1911 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1912 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1913 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1914 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1915 		/*
1916 		 * We don't let the user do these, since we manage
1917 		 * the sequence numbers.
1918 		 */
1919 		ipmi_inc_stat(intf, sent_invalid_commands);
1920 		return -EINVAL;
1921 	}
1922 
1923 	if (is_maintenance_mode_cmd(msg)) {
1924 		unsigned long flags;
1925 
1926 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1927 		intf->auto_maintenance_timeout
1928 			= maintenance_mode_timeout_ms;
1929 		if (!intf->maintenance_mode
1930 		    && !intf->maintenance_mode_enable) {
1931 			intf->maintenance_mode_enable = true;
1932 			maintenance_mode_update(intf);
1933 		}
1934 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1935 				       flags);
1936 	}
1937 
1938 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1939 		ipmi_inc_stat(intf, sent_invalid_commands);
1940 		return -EMSGSIZE;
1941 	}
1942 
1943 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1944 	smi_msg->data[1] = msg->cmd;
1945 	smi_msg->msgid = msgid;
1946 	smi_msg->user_data = recv_msg;
1947 	if (msg->data_len > 0)
1948 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1949 	smi_msg->data_size = msg->data_len + 2;
1950 	ipmi_inc_stat(intf, sent_local_commands);
1951 
1952 	return 0;
1953 }
1954 
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1955 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1956 			   struct ipmi_addr       *addr,
1957 			   long                   msgid,
1958 			   struct kernel_ipmi_msg *msg,
1959 			   struct ipmi_smi_msg    *smi_msg,
1960 			   struct ipmi_recv_msg   *recv_msg,
1961 			   unsigned char          source_address,
1962 			   unsigned char          source_lun,
1963 			   int                    retries,
1964 			   unsigned int           retry_time_ms)
1965 {
1966 	struct ipmi_ipmb_addr *ipmb_addr;
1967 	unsigned char ipmb_seq;
1968 	long seqid;
1969 	int broadcast = 0;
1970 	struct ipmi_channel *chans;
1971 	int rv = 0;
1972 
1973 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1974 		ipmi_inc_stat(intf, sent_invalid_commands);
1975 		return -EINVAL;
1976 	}
1977 
1978 	chans = READ_ONCE(intf->channel_list)->c;
1979 
1980 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1981 		ipmi_inc_stat(intf, sent_invalid_commands);
1982 		return -EINVAL;
1983 	}
1984 
1985 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1986 		/*
1987 		 * Broadcasts add a zero at the beginning of the
1988 		 * message, but otherwise is the same as an IPMB
1989 		 * address.
1990 		 */
1991 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1992 		broadcast = 1;
1993 		retries = 0; /* Don't retry broadcasts. */
1994 	}
1995 
1996 	/*
1997 	 * 9 for the header and 1 for the checksum, plus
1998 	 * possibly one for the broadcast.
1999 	 */
2000 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2001 		ipmi_inc_stat(intf, sent_invalid_commands);
2002 		return -EMSGSIZE;
2003 	}
2004 
2005 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2006 	if (ipmb_addr->lun > 3) {
2007 		ipmi_inc_stat(intf, sent_invalid_commands);
2008 		return -EINVAL;
2009 	}
2010 
2011 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2012 
2013 	if (recv_msg->msg.netfn & 0x1) {
2014 		/*
2015 		 * It's a response, so use the user's sequence
2016 		 * from msgid.
2017 		 */
2018 		ipmi_inc_stat(intf, sent_ipmb_responses);
2019 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2020 				msgid, broadcast,
2021 				source_address, source_lun);
2022 
2023 		/*
2024 		 * Save the receive message so we can use it
2025 		 * to deliver the response.
2026 		 */
2027 		smi_msg->user_data = recv_msg;
2028 	} else {
2029 		/* It's a command, so get a sequence for it. */
2030 		unsigned long flags;
2031 
2032 		spin_lock_irqsave(&intf->seq_lock, flags);
2033 
2034 		if (is_maintenance_mode_cmd(msg))
2035 			intf->ipmb_maintenance_mode_timeout =
2036 				maintenance_mode_timeout_ms;
2037 
2038 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2039 			/* Different default in maintenance mode */
2040 			retry_time_ms = default_maintenance_retry_ms;
2041 
2042 		/*
2043 		 * Create a sequence number with a 1 second
2044 		 * timeout and 4 retries.
2045 		 */
2046 		rv = intf_next_seq(intf,
2047 				   recv_msg,
2048 				   retry_time_ms,
2049 				   retries,
2050 				   broadcast,
2051 				   &ipmb_seq,
2052 				   &seqid);
2053 		if (rv)
2054 			/*
2055 			 * We have used up all the sequence numbers,
2056 			 * probably, so abort.
2057 			 */
2058 			goto out_err;
2059 
2060 		ipmi_inc_stat(intf, sent_ipmb_commands);
2061 
2062 		/*
2063 		 * Store the sequence number in the message,
2064 		 * so that when the send message response
2065 		 * comes back we can start the timer.
2066 		 */
2067 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2068 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2069 				ipmb_seq, broadcast,
2070 				source_address, source_lun);
2071 
2072 		/*
2073 		 * Copy the message into the recv message data, so we
2074 		 * can retransmit it later if necessary.
2075 		 */
2076 		memcpy(recv_msg->msg_data, smi_msg->data,
2077 		       smi_msg->data_size);
2078 		recv_msg->msg.data = recv_msg->msg_data;
2079 		recv_msg->msg.data_len = smi_msg->data_size;
2080 
2081 		/*
2082 		 * We don't unlock until here, because we need
2083 		 * to copy the completed message into the
2084 		 * recv_msg before we release the lock.
2085 		 * Otherwise, race conditions may bite us.  I
2086 		 * know that's pretty paranoid, but I prefer
2087 		 * to be correct.
2088 		 */
2089 out_err:
2090 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2091 	}
2092 
2093 	return rv;
2094 }
2095 
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2096 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2097 				  struct ipmi_addr       *addr,
2098 				  long			 msgid,
2099 				  struct kernel_ipmi_msg *msg,
2100 				  struct ipmi_smi_msg    *smi_msg,
2101 				  struct ipmi_recv_msg   *recv_msg,
2102 				  unsigned char          source_lun)
2103 {
2104 	struct ipmi_ipmb_direct_addr *daddr;
2105 	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2106 
2107 	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2108 		return -EAFNOSUPPORT;
2109 
2110 	/* Responses must have a completion code. */
2111 	if (!is_cmd && msg->data_len < 1) {
2112 		ipmi_inc_stat(intf, sent_invalid_commands);
2113 		return -EINVAL;
2114 	}
2115 
2116 	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2117 		ipmi_inc_stat(intf, sent_invalid_commands);
2118 		return -EMSGSIZE;
2119 	}
2120 
2121 	daddr = (struct ipmi_ipmb_direct_addr *) addr;
2122 	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2123 		ipmi_inc_stat(intf, sent_invalid_commands);
2124 		return -EINVAL;
2125 	}
2126 
2127 	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2128 	smi_msg->msgid = msgid;
2129 
2130 	if (is_cmd) {
2131 		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2132 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2133 	} else {
2134 		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2135 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2136 	}
2137 	smi_msg->data[1] = daddr->slave_addr;
2138 	smi_msg->data[3] = msg->cmd;
2139 
2140 	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2141 	smi_msg->data_size = msg->data_len + 4;
2142 
2143 	smi_msg->user_data = recv_msg;
2144 
2145 	return 0;
2146 }
2147 
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2148 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2149 			  struct ipmi_addr       *addr,
2150 			  long                   msgid,
2151 			  struct kernel_ipmi_msg *msg,
2152 			  struct ipmi_smi_msg    *smi_msg,
2153 			  struct ipmi_recv_msg   *recv_msg,
2154 			  unsigned char          source_lun,
2155 			  int                    retries,
2156 			  unsigned int           retry_time_ms)
2157 {
2158 	struct ipmi_lan_addr  *lan_addr;
2159 	unsigned char ipmb_seq;
2160 	long seqid;
2161 	struct ipmi_channel *chans;
2162 	int rv = 0;
2163 
2164 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2165 		ipmi_inc_stat(intf, sent_invalid_commands);
2166 		return -EINVAL;
2167 	}
2168 
2169 	chans = READ_ONCE(intf->channel_list)->c;
2170 
2171 	if ((chans[addr->channel].medium
2172 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2173 			&& (chans[addr->channel].medium
2174 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2175 		ipmi_inc_stat(intf, sent_invalid_commands);
2176 		return -EINVAL;
2177 	}
2178 
2179 	/* 11 for the header and 1 for the checksum. */
2180 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2181 		ipmi_inc_stat(intf, sent_invalid_commands);
2182 		return -EMSGSIZE;
2183 	}
2184 
2185 	lan_addr = (struct ipmi_lan_addr *) addr;
2186 	if (lan_addr->lun > 3) {
2187 		ipmi_inc_stat(intf, sent_invalid_commands);
2188 		return -EINVAL;
2189 	}
2190 
2191 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2192 
2193 	if (recv_msg->msg.netfn & 0x1) {
2194 		/*
2195 		 * It's a response, so use the user's sequence
2196 		 * from msgid.
2197 		 */
2198 		ipmi_inc_stat(intf, sent_lan_responses);
2199 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2200 			       msgid, source_lun);
2201 
2202 		/*
2203 		 * Save the receive message so we can use it
2204 		 * to deliver the response.
2205 		 */
2206 		smi_msg->user_data = recv_msg;
2207 	} else {
2208 		/* It's a command, so get a sequence for it. */
2209 		unsigned long flags;
2210 
2211 		spin_lock_irqsave(&intf->seq_lock, flags);
2212 
2213 		/*
2214 		 * Create a sequence number with a 1 second
2215 		 * timeout and 4 retries.
2216 		 */
2217 		rv = intf_next_seq(intf,
2218 				   recv_msg,
2219 				   retry_time_ms,
2220 				   retries,
2221 				   0,
2222 				   &ipmb_seq,
2223 				   &seqid);
2224 		if (rv)
2225 			/*
2226 			 * We have used up all the sequence numbers,
2227 			 * probably, so abort.
2228 			 */
2229 			goto out_err;
2230 
2231 		ipmi_inc_stat(intf, sent_lan_commands);
2232 
2233 		/*
2234 		 * Store the sequence number in the message,
2235 		 * so that when the send message response
2236 		 * comes back we can start the timer.
2237 		 */
2238 		format_lan_msg(smi_msg, msg, lan_addr,
2239 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2240 			       ipmb_seq, source_lun);
2241 
2242 		/*
2243 		 * Copy the message into the recv message data, so we
2244 		 * can retransmit it later if necessary.
2245 		 */
2246 		memcpy(recv_msg->msg_data, smi_msg->data,
2247 		       smi_msg->data_size);
2248 		recv_msg->msg.data = recv_msg->msg_data;
2249 		recv_msg->msg.data_len = smi_msg->data_size;
2250 
2251 		/*
2252 		 * We don't unlock until here, because we need
2253 		 * to copy the completed message into the
2254 		 * recv_msg before we release the lock.
2255 		 * Otherwise, race conditions may bite us.  I
2256 		 * know that's pretty paranoid, but I prefer
2257 		 * to be correct.
2258 		 */
2259 out_err:
2260 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2261 	}
2262 
2263 	return rv;
2264 }
2265 
2266 /*
2267  * Separate from ipmi_request so that the user does not have to be
2268  * supplied in certain circumstances (mainly at panic time).  If
2269  * messages are supplied, they will be freed, even if an error
2270  * occurs.
2271  */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2272 static int i_ipmi_request(struct ipmi_user     *user,
2273 			  struct ipmi_smi      *intf,
2274 			  struct ipmi_addr     *addr,
2275 			  long                 msgid,
2276 			  struct kernel_ipmi_msg *msg,
2277 			  void                 *user_msg_data,
2278 			  void                 *supplied_smi,
2279 			  struct ipmi_recv_msg *supplied_recv,
2280 			  int                  priority,
2281 			  unsigned char        source_address,
2282 			  unsigned char        source_lun,
2283 			  int                  retries,
2284 			  unsigned int         retry_time_ms)
2285 {
2286 	struct ipmi_smi_msg *smi_msg;
2287 	struct ipmi_recv_msg *recv_msg;
2288 	int run_to_completion = READ_ONCE(intf->run_to_completion);
2289 	int rv = 0;
2290 
2291 	if (user) {
2292 		if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2293 			/* Decrement will happen at the end of the routine. */
2294 			rv = -EBUSY;
2295 			goto out;
2296 		}
2297 	}
2298 
2299 	if (supplied_recv)
2300 		recv_msg = supplied_recv;
2301 	else {
2302 		recv_msg = ipmi_alloc_recv_msg();
2303 		if (recv_msg == NULL) {
2304 			rv = -ENOMEM;
2305 			goto out;
2306 		}
2307 	}
2308 	recv_msg->user_msg_data = user_msg_data;
2309 
2310 	if (supplied_smi)
2311 		smi_msg = supplied_smi;
2312 	else {
2313 		smi_msg = ipmi_alloc_smi_msg();
2314 		if (smi_msg == NULL) {
2315 			if (!supplied_recv)
2316 				ipmi_free_recv_msg(recv_msg);
2317 			rv = -ENOMEM;
2318 			goto out;
2319 		}
2320 	}
2321 
2322 	if (!run_to_completion)
2323 		mutex_lock(&intf->users_mutex);
2324 	if (intf->in_shutdown) {
2325 		rv = -ENODEV;
2326 		goto out_err;
2327 	}
2328 
2329 	recv_msg->user = user;
2330 	if (user)
2331 		/* The put happens when the message is freed. */
2332 		kref_get(&user->refcount);
2333 	recv_msg->msgid = msgid;
2334 	/*
2335 	 * Store the message to send in the receive message so timeout
2336 	 * responses can get the proper response data.
2337 	 */
2338 	recv_msg->msg = *msg;
2339 
2340 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2341 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2342 					recv_msg, retries, retry_time_ms);
2343 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2344 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2345 				     source_address, source_lun,
2346 				     retries, retry_time_ms);
2347 	} else if (is_ipmb_direct_addr(addr)) {
2348 		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2349 					    recv_msg, source_lun);
2350 	} else if (is_lan_addr(addr)) {
2351 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2352 				    source_lun, retries, retry_time_ms);
2353 	} else {
2354 	    /* Unknown address type. */
2355 		ipmi_inc_stat(intf, sent_invalid_commands);
2356 		rv = -EINVAL;
2357 	}
2358 
2359 	if (rv) {
2360 out_err:
2361 		ipmi_free_smi_msg(smi_msg);
2362 		ipmi_free_recv_msg(recv_msg);
2363 	} else {
2364 		dev_dbg(intf->si_dev, "Send: %*ph\n",
2365 			smi_msg->data_size, smi_msg->data);
2366 
2367 		smi_send(intf, intf->handlers, smi_msg, priority);
2368 	}
2369 	if (!run_to_completion)
2370 		mutex_unlock(&intf->users_mutex);
2371 
2372 out:
2373 	if (rv && user)
2374 		atomic_dec(&user->nr_msgs);
2375 	return rv;
2376 }
2377 
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2378 static int check_addr(struct ipmi_smi  *intf,
2379 		      struct ipmi_addr *addr,
2380 		      unsigned char    *saddr,
2381 		      unsigned char    *lun)
2382 {
2383 	if (addr->channel >= IPMI_MAX_CHANNELS)
2384 		return -EINVAL;
2385 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2386 	*lun = intf->addrinfo[addr->channel].lun;
2387 	*saddr = intf->addrinfo[addr->channel].address;
2388 	return 0;
2389 }
2390 
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2391 int ipmi_request_settime(struct ipmi_user *user,
2392 			 struct ipmi_addr *addr,
2393 			 long             msgid,
2394 			 struct kernel_ipmi_msg  *msg,
2395 			 void             *user_msg_data,
2396 			 int              priority,
2397 			 int              retries,
2398 			 unsigned int     retry_time_ms)
2399 {
2400 	unsigned char saddr = 0, lun = 0;
2401 	int rv;
2402 
2403 	if (!user)
2404 		return -EINVAL;
2405 
2406 	user = acquire_ipmi_user(user);
2407 	if (!user)
2408 		return -ENODEV;
2409 
2410 	rv = check_addr(user->intf, addr, &saddr, &lun);
2411 	if (!rv)
2412 		rv = i_ipmi_request(user,
2413 				    user->intf,
2414 				    addr,
2415 				    msgid,
2416 				    msg,
2417 				    user_msg_data,
2418 				    NULL, NULL,
2419 				    priority,
2420 				    saddr,
2421 				    lun,
2422 				    retries,
2423 				    retry_time_ms);
2424 
2425 	release_ipmi_user(user);
2426 	return rv;
2427 }
2428 EXPORT_SYMBOL(ipmi_request_settime);
2429 
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2430 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2431 			     struct ipmi_addr     *addr,
2432 			     long                 msgid,
2433 			     struct kernel_ipmi_msg *msg,
2434 			     void                 *user_msg_data,
2435 			     void                 *supplied_smi,
2436 			     struct ipmi_recv_msg *supplied_recv,
2437 			     int                  priority)
2438 {
2439 	unsigned char saddr = 0, lun = 0;
2440 	int rv;
2441 
2442 	if (!user)
2443 		return -EINVAL;
2444 
2445 	user = acquire_ipmi_user(user);
2446 	if (!user)
2447 		return -ENODEV;
2448 
2449 	rv = check_addr(user->intf, addr, &saddr, &lun);
2450 	if (!rv)
2451 		rv = i_ipmi_request(user,
2452 				    user->intf,
2453 				    addr,
2454 				    msgid,
2455 				    msg,
2456 				    user_msg_data,
2457 				    supplied_smi,
2458 				    supplied_recv,
2459 				    priority,
2460 				    saddr,
2461 				    lun,
2462 				    -1, 0);
2463 
2464 	release_ipmi_user(user);
2465 	return rv;
2466 }
2467 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2468 
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2469 static void bmc_device_id_handler(struct ipmi_smi *intf,
2470 				  struct ipmi_recv_msg *msg)
2471 {
2472 	int rv;
2473 
2474 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2475 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2476 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2477 		dev_warn(intf->si_dev,
2478 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2479 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2480 		return;
2481 	}
2482 
2483 	if (msg->msg.data[0]) {
2484 		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2485 			 msg->msg.data[0]);
2486 		intf->bmc->dyn_id_set = 0;
2487 		goto out;
2488 	}
2489 
2490 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2491 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2492 	if (rv) {
2493 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2494 		/* record completion code when error */
2495 		intf->bmc->cc = msg->msg.data[0];
2496 		intf->bmc->dyn_id_set = 0;
2497 	} else {
2498 		/*
2499 		 * Make sure the id data is available before setting
2500 		 * dyn_id_set.
2501 		 */
2502 		smp_wmb();
2503 		intf->bmc->dyn_id_set = 1;
2504 	}
2505 out:
2506 	wake_up(&intf->waitq);
2507 }
2508 
2509 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2510 send_get_device_id_cmd(struct ipmi_smi *intf)
2511 {
2512 	struct ipmi_system_interface_addr si;
2513 	struct kernel_ipmi_msg msg;
2514 
2515 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2516 	si.channel = IPMI_BMC_CHANNEL;
2517 	si.lun = 0;
2518 
2519 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2520 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2521 	msg.data = NULL;
2522 	msg.data_len = 0;
2523 
2524 	return i_ipmi_request(NULL,
2525 			      intf,
2526 			      (struct ipmi_addr *) &si,
2527 			      0,
2528 			      &msg,
2529 			      intf,
2530 			      NULL,
2531 			      NULL,
2532 			      0,
2533 			      intf->addrinfo[0].address,
2534 			      intf->addrinfo[0].lun,
2535 			      -1, 0);
2536 }
2537 
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2538 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2539 {
2540 	int rv;
2541 	unsigned int retry_count = 0;
2542 
2543 	intf->null_user_handler = bmc_device_id_handler;
2544 
2545 retry:
2546 	bmc->cc = 0;
2547 	bmc->dyn_id_set = 2;
2548 
2549 	rv = send_get_device_id_cmd(intf);
2550 	if (rv)
2551 		goto out_reset_handler;
2552 
2553 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2554 
2555 	if (!bmc->dyn_id_set) {
2556 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2557 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2558 			msleep(500);
2559 			dev_warn(intf->si_dev,
2560 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2561 			    bmc->cc);
2562 			goto retry;
2563 		}
2564 
2565 		rv = -EIO; /* Something went wrong in the fetch. */
2566 	}
2567 
2568 	/* dyn_id_set makes the id data available. */
2569 	smp_rmb();
2570 
2571 out_reset_handler:
2572 	intf->null_user_handler = NULL;
2573 
2574 	return rv;
2575 }
2576 
2577 /*
2578  * Fetch the device id for the bmc/interface.  You must pass in either
2579  * bmc or intf, this code will get the other one.  If the data has
2580  * been recently fetched, this will just use the cached data.  Otherwise
2581  * it will run a new fetch.
2582  *
2583  * Except for the first time this is called (in ipmi_add_smi()),
2584  * this will always return good data;
2585  */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2586 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2587 			       struct ipmi_device_id *id,
2588 			       bool *guid_set, guid_t *guid, int intf_num)
2589 {
2590 	int rv = 0;
2591 	int prev_dyn_id_set, prev_guid_set;
2592 	bool intf_set = intf != NULL;
2593 
2594 	if (!intf) {
2595 		mutex_lock(&bmc->dyn_mutex);
2596 retry_bmc_lock:
2597 		if (list_empty(&bmc->intfs)) {
2598 			mutex_unlock(&bmc->dyn_mutex);
2599 			return -ENOENT;
2600 		}
2601 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2602 					bmc_link);
2603 		kref_get(&intf->refcount);
2604 		mutex_unlock(&bmc->dyn_mutex);
2605 		mutex_lock(&intf->bmc_reg_mutex);
2606 		mutex_lock(&bmc->dyn_mutex);
2607 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2608 					     bmc_link)) {
2609 			mutex_unlock(&intf->bmc_reg_mutex);
2610 			kref_put(&intf->refcount, intf_free);
2611 			goto retry_bmc_lock;
2612 		}
2613 	} else {
2614 		mutex_lock(&intf->bmc_reg_mutex);
2615 		bmc = intf->bmc;
2616 		mutex_lock(&bmc->dyn_mutex);
2617 		kref_get(&intf->refcount);
2618 	}
2619 
2620 	/* If we have a valid and current ID, just return that. */
2621 	if (intf->in_bmc_register ||
2622 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2623 		goto out_noprocessing;
2624 
2625 	prev_guid_set = bmc->dyn_guid_set;
2626 	__get_guid(intf);
2627 
2628 	prev_dyn_id_set = bmc->dyn_id_set;
2629 	rv = __get_device_id(intf, bmc);
2630 	if (rv)
2631 		goto out;
2632 
2633 	/*
2634 	 * The guid, device id, manufacturer id, and product id should
2635 	 * not change on a BMC.  If it does we have to do some dancing.
2636 	 */
2637 	if (!intf->bmc_registered
2638 	    || (!prev_guid_set && bmc->dyn_guid_set)
2639 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2640 	    || (prev_guid_set && bmc->dyn_guid_set
2641 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2642 	    || bmc->id.device_id != bmc->fetch_id.device_id
2643 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2644 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2645 		struct ipmi_device_id id = bmc->fetch_id;
2646 		int guid_set = bmc->dyn_guid_set;
2647 		guid_t guid;
2648 
2649 		guid = bmc->fetch_guid;
2650 		mutex_unlock(&bmc->dyn_mutex);
2651 
2652 		__ipmi_bmc_unregister(intf);
2653 		/* Fill in the temporary BMC for good measure. */
2654 		intf->bmc->id = id;
2655 		intf->bmc->dyn_guid_set = guid_set;
2656 		intf->bmc->guid = guid;
2657 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2658 			need_waiter(intf); /* Retry later on an error. */
2659 		else
2660 			__scan_channels(intf, &id);
2661 
2662 
2663 		if (!intf_set) {
2664 			/*
2665 			 * We weren't given the interface on the
2666 			 * command line, so restart the operation on
2667 			 * the next interface for the BMC.
2668 			 */
2669 			mutex_unlock(&intf->bmc_reg_mutex);
2670 			mutex_lock(&bmc->dyn_mutex);
2671 			goto retry_bmc_lock;
2672 		}
2673 
2674 		/* We have a new BMC, set it up. */
2675 		bmc = intf->bmc;
2676 		mutex_lock(&bmc->dyn_mutex);
2677 		goto out_noprocessing;
2678 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2679 		/* Version info changes, scan the channels again. */
2680 		__scan_channels(intf, &bmc->fetch_id);
2681 
2682 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2683 
2684 out:
2685 	if (rv && prev_dyn_id_set) {
2686 		rv = 0; /* Ignore failures if we have previous data. */
2687 		bmc->dyn_id_set = prev_dyn_id_set;
2688 	}
2689 	if (!rv) {
2690 		bmc->id = bmc->fetch_id;
2691 		if (bmc->dyn_guid_set)
2692 			bmc->guid = bmc->fetch_guid;
2693 		else if (prev_guid_set)
2694 			/*
2695 			 * The guid used to be valid and it failed to fetch,
2696 			 * just use the cached value.
2697 			 */
2698 			bmc->dyn_guid_set = prev_guid_set;
2699 	}
2700 out_noprocessing:
2701 	if (!rv) {
2702 		if (id)
2703 			*id = bmc->id;
2704 
2705 		if (guid_set)
2706 			*guid_set = bmc->dyn_guid_set;
2707 
2708 		if (guid && bmc->dyn_guid_set)
2709 			*guid =  bmc->guid;
2710 	}
2711 
2712 	mutex_unlock(&bmc->dyn_mutex);
2713 	mutex_unlock(&intf->bmc_reg_mutex);
2714 
2715 	kref_put(&intf->refcount, intf_free);
2716 	return rv;
2717 }
2718 
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2719 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2720 			     struct ipmi_device_id *id,
2721 			     bool *guid_set, guid_t *guid)
2722 {
2723 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2724 }
2725 
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2726 static ssize_t device_id_show(struct device *dev,
2727 			      struct device_attribute *attr,
2728 			      char *buf)
2729 {
2730 	struct bmc_device *bmc = to_bmc_device(dev);
2731 	struct ipmi_device_id id;
2732 	int rv;
2733 
2734 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2735 	if (rv)
2736 		return rv;
2737 
2738 	return sysfs_emit(buf, "%u\n", id.device_id);
2739 }
2740 static DEVICE_ATTR_RO(device_id);
2741 
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2742 static ssize_t provides_device_sdrs_show(struct device *dev,
2743 					 struct device_attribute *attr,
2744 					 char *buf)
2745 {
2746 	struct bmc_device *bmc = to_bmc_device(dev);
2747 	struct ipmi_device_id id;
2748 	int rv;
2749 
2750 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2751 	if (rv)
2752 		return rv;
2753 
2754 	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2755 }
2756 static DEVICE_ATTR_RO(provides_device_sdrs);
2757 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2758 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2759 			     char *buf)
2760 {
2761 	struct bmc_device *bmc = to_bmc_device(dev);
2762 	struct ipmi_device_id id;
2763 	int rv;
2764 
2765 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2766 	if (rv)
2767 		return rv;
2768 
2769 	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2770 }
2771 static DEVICE_ATTR_RO(revision);
2772 
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2773 static ssize_t firmware_revision_show(struct device *dev,
2774 				      struct device_attribute *attr,
2775 				      char *buf)
2776 {
2777 	struct bmc_device *bmc = to_bmc_device(dev);
2778 	struct ipmi_device_id id;
2779 	int rv;
2780 
2781 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2782 	if (rv)
2783 		return rv;
2784 
2785 	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2786 			id.firmware_revision_2);
2787 }
2788 static DEVICE_ATTR_RO(firmware_revision);
2789 
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2790 static ssize_t ipmi_version_show(struct device *dev,
2791 				 struct device_attribute *attr,
2792 				 char *buf)
2793 {
2794 	struct bmc_device *bmc = to_bmc_device(dev);
2795 	struct ipmi_device_id id;
2796 	int rv;
2797 
2798 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2799 	if (rv)
2800 		return rv;
2801 
2802 	return sysfs_emit(buf, "%u.%u\n",
2803 			ipmi_version_major(&id),
2804 			ipmi_version_minor(&id));
2805 }
2806 static DEVICE_ATTR_RO(ipmi_version);
2807 
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2808 static ssize_t add_dev_support_show(struct device *dev,
2809 				    struct device_attribute *attr,
2810 				    char *buf)
2811 {
2812 	struct bmc_device *bmc = to_bmc_device(dev);
2813 	struct ipmi_device_id id;
2814 	int rv;
2815 
2816 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2817 	if (rv)
2818 		return rv;
2819 
2820 	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2821 }
2822 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2823 		   NULL);
2824 
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2825 static ssize_t manufacturer_id_show(struct device *dev,
2826 				    struct device_attribute *attr,
2827 				    char *buf)
2828 {
2829 	struct bmc_device *bmc = to_bmc_device(dev);
2830 	struct ipmi_device_id id;
2831 	int rv;
2832 
2833 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2834 	if (rv)
2835 		return rv;
2836 
2837 	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2838 }
2839 static DEVICE_ATTR_RO(manufacturer_id);
2840 
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2841 static ssize_t product_id_show(struct device *dev,
2842 			       struct device_attribute *attr,
2843 			       char *buf)
2844 {
2845 	struct bmc_device *bmc = to_bmc_device(dev);
2846 	struct ipmi_device_id id;
2847 	int rv;
2848 
2849 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2850 	if (rv)
2851 		return rv;
2852 
2853 	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2854 }
2855 static DEVICE_ATTR_RO(product_id);
2856 
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2857 static ssize_t aux_firmware_rev_show(struct device *dev,
2858 				     struct device_attribute *attr,
2859 				     char *buf)
2860 {
2861 	struct bmc_device *bmc = to_bmc_device(dev);
2862 	struct ipmi_device_id id;
2863 	int rv;
2864 
2865 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2866 	if (rv)
2867 		return rv;
2868 
2869 	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2870 			id.aux_firmware_revision[3],
2871 			id.aux_firmware_revision[2],
2872 			id.aux_firmware_revision[1],
2873 			id.aux_firmware_revision[0]);
2874 }
2875 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2876 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2877 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2878 			 char *buf)
2879 {
2880 	struct bmc_device *bmc = to_bmc_device(dev);
2881 	bool guid_set;
2882 	guid_t guid;
2883 	int rv;
2884 
2885 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2886 	if (rv)
2887 		return rv;
2888 	if (!guid_set)
2889 		return -ENOENT;
2890 
2891 	return sysfs_emit(buf, "%pUl\n", &guid);
2892 }
2893 static DEVICE_ATTR_RO(guid);
2894 
2895 static struct attribute *bmc_dev_attrs[] = {
2896 	&dev_attr_device_id.attr,
2897 	&dev_attr_provides_device_sdrs.attr,
2898 	&dev_attr_revision.attr,
2899 	&dev_attr_firmware_revision.attr,
2900 	&dev_attr_ipmi_version.attr,
2901 	&dev_attr_additional_device_support.attr,
2902 	&dev_attr_manufacturer_id.attr,
2903 	&dev_attr_product_id.attr,
2904 	&dev_attr_aux_firmware_revision.attr,
2905 	&dev_attr_guid.attr,
2906 	NULL
2907 };
2908 
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2909 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2910 				       struct attribute *attr, int idx)
2911 {
2912 	struct device *dev = kobj_to_dev(kobj);
2913 	struct bmc_device *bmc = to_bmc_device(dev);
2914 	umode_t mode = attr->mode;
2915 	int rv;
2916 
2917 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2918 		struct ipmi_device_id id;
2919 
2920 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2921 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2922 	}
2923 	if (attr == &dev_attr_guid.attr) {
2924 		bool guid_set;
2925 
2926 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2927 		return (!rv && guid_set) ? mode : 0;
2928 	}
2929 	return mode;
2930 }
2931 
2932 static const struct attribute_group bmc_dev_attr_group = {
2933 	.attrs		= bmc_dev_attrs,
2934 	.is_visible	= bmc_dev_attr_is_visible,
2935 };
2936 
2937 static const struct attribute_group *bmc_dev_attr_groups[] = {
2938 	&bmc_dev_attr_group,
2939 	NULL
2940 };
2941 
2942 static const struct device_type bmc_device_type = {
2943 	.groups		= bmc_dev_attr_groups,
2944 };
2945 
__find_bmc_guid(struct device * dev,const void * data)2946 static int __find_bmc_guid(struct device *dev, const void *data)
2947 {
2948 	const guid_t *guid = data;
2949 	struct bmc_device *bmc;
2950 	int rv;
2951 
2952 	if (dev->type != &bmc_device_type)
2953 		return 0;
2954 
2955 	bmc = to_bmc_device(dev);
2956 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2957 	if (rv)
2958 		rv = kref_get_unless_zero(&bmc->usecount);
2959 	return rv;
2960 }
2961 
2962 /*
2963  * Returns with the bmc's usecount incremented, if it is non-NULL.
2964  */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2965 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2966 					     guid_t *guid)
2967 {
2968 	struct device *dev;
2969 	struct bmc_device *bmc = NULL;
2970 
2971 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2972 	if (dev) {
2973 		bmc = to_bmc_device(dev);
2974 		put_device(dev);
2975 	}
2976 	return bmc;
2977 }
2978 
2979 struct prod_dev_id {
2980 	unsigned int  product_id;
2981 	unsigned char device_id;
2982 };
2983 
__find_bmc_prod_dev_id(struct device * dev,const void * data)2984 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2985 {
2986 	const struct prod_dev_id *cid = data;
2987 	struct bmc_device *bmc;
2988 	int rv;
2989 
2990 	if (dev->type != &bmc_device_type)
2991 		return 0;
2992 
2993 	bmc = to_bmc_device(dev);
2994 	rv = (bmc->id.product_id == cid->product_id
2995 	      && bmc->id.device_id == cid->device_id);
2996 	if (rv)
2997 		rv = kref_get_unless_zero(&bmc->usecount);
2998 	return rv;
2999 }
3000 
3001 /*
3002  * Returns with the bmc's usecount incremented, if it is non-NULL.
3003  */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3004 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3005 	struct device_driver *drv,
3006 	unsigned int product_id, unsigned char device_id)
3007 {
3008 	struct prod_dev_id id = {
3009 		.product_id = product_id,
3010 		.device_id = device_id,
3011 	};
3012 	struct device *dev;
3013 	struct bmc_device *bmc = NULL;
3014 
3015 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3016 	if (dev) {
3017 		bmc = to_bmc_device(dev);
3018 		put_device(dev);
3019 	}
3020 	return bmc;
3021 }
3022 
3023 static DEFINE_IDA(ipmi_bmc_ida);
3024 
3025 static void
release_bmc_device(struct device * dev)3026 release_bmc_device(struct device *dev)
3027 {
3028 	kfree(to_bmc_device(dev));
3029 }
3030 
cleanup_bmc_work(struct work_struct * work)3031 static void cleanup_bmc_work(struct work_struct *work)
3032 {
3033 	struct bmc_device *bmc = container_of(work, struct bmc_device,
3034 					      remove_work);
3035 	int id = bmc->pdev.id; /* Unregister overwrites id */
3036 
3037 	platform_device_unregister(&bmc->pdev);
3038 	ida_free(&ipmi_bmc_ida, id);
3039 }
3040 
3041 static void
cleanup_bmc_device(struct kref * ref)3042 cleanup_bmc_device(struct kref *ref)
3043 {
3044 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3045 
3046 	/*
3047 	 * Remove the platform device in a work queue to avoid issues
3048 	 * with removing the device attributes while reading a device
3049 	 * attribute.
3050 	 */
3051 	queue_work(bmc_remove_work_wq, &bmc->remove_work);
3052 }
3053 
3054 /*
3055  * Must be called with intf->bmc_reg_mutex held.
3056  */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3057 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3058 {
3059 	struct bmc_device *bmc = intf->bmc;
3060 
3061 	if (!intf->bmc_registered)
3062 		return;
3063 
3064 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3065 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3066 	kfree(intf->my_dev_name);
3067 	intf->my_dev_name = NULL;
3068 
3069 	mutex_lock(&bmc->dyn_mutex);
3070 	list_del(&intf->bmc_link);
3071 	mutex_unlock(&bmc->dyn_mutex);
3072 	intf->bmc = &intf->tmp_bmc;
3073 	kref_put(&bmc->usecount, cleanup_bmc_device);
3074 	intf->bmc_registered = false;
3075 }
3076 
ipmi_bmc_unregister(struct ipmi_smi * intf)3077 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3078 {
3079 	mutex_lock(&intf->bmc_reg_mutex);
3080 	__ipmi_bmc_unregister(intf);
3081 	mutex_unlock(&intf->bmc_reg_mutex);
3082 }
3083 
3084 /*
3085  * Must be called with intf->bmc_reg_mutex held.
3086  */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3087 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3088 			       struct ipmi_device_id *id,
3089 			       bool guid_set, guid_t *guid, int intf_num)
3090 {
3091 	int               rv;
3092 	struct bmc_device *bmc;
3093 	struct bmc_device *old_bmc;
3094 
3095 	/*
3096 	 * platform_device_register() can cause bmc_reg_mutex to
3097 	 * be claimed because of the is_visible functions of
3098 	 * the attributes.  Eliminate possible recursion and
3099 	 * release the lock.
3100 	 */
3101 	intf->in_bmc_register = true;
3102 	mutex_unlock(&intf->bmc_reg_mutex);
3103 
3104 	/*
3105 	 * Try to find if there is an bmc_device struct
3106 	 * representing the interfaced BMC already
3107 	 */
3108 	mutex_lock(&ipmidriver_mutex);
3109 	if (guid_set)
3110 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3111 	else
3112 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3113 						    id->product_id,
3114 						    id->device_id);
3115 
3116 	/*
3117 	 * If there is already an bmc_device, free the new one,
3118 	 * otherwise register the new BMC device
3119 	 */
3120 	if (old_bmc) {
3121 		bmc = old_bmc;
3122 		/*
3123 		 * Note: old_bmc already has usecount incremented by
3124 		 * the BMC find functions.
3125 		 */
3126 		intf->bmc = old_bmc;
3127 		mutex_lock(&bmc->dyn_mutex);
3128 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3129 		mutex_unlock(&bmc->dyn_mutex);
3130 
3131 		dev_info(intf->si_dev,
3132 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3133 			 bmc->id.manufacturer_id,
3134 			 bmc->id.product_id,
3135 			 bmc->id.device_id);
3136 	} else {
3137 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3138 		if (!bmc) {
3139 			rv = -ENOMEM;
3140 			goto out;
3141 		}
3142 		INIT_LIST_HEAD(&bmc->intfs);
3143 		mutex_init(&bmc->dyn_mutex);
3144 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3145 
3146 		bmc->id = *id;
3147 		bmc->dyn_id_set = 1;
3148 		bmc->dyn_guid_set = guid_set;
3149 		bmc->guid = *guid;
3150 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3151 
3152 		bmc->pdev.name = "ipmi_bmc";
3153 
3154 		rv = ida_alloc(&ipmi_bmc_ida, GFP_KERNEL);
3155 		if (rv < 0) {
3156 			kfree(bmc);
3157 			goto out;
3158 		}
3159 
3160 		bmc->pdev.dev.driver = &ipmidriver.driver;
3161 		bmc->pdev.id = rv;
3162 		bmc->pdev.dev.release = release_bmc_device;
3163 		bmc->pdev.dev.type = &bmc_device_type;
3164 		kref_init(&bmc->usecount);
3165 
3166 		intf->bmc = bmc;
3167 		mutex_lock(&bmc->dyn_mutex);
3168 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3169 		mutex_unlock(&bmc->dyn_mutex);
3170 
3171 		rv = platform_device_register(&bmc->pdev);
3172 		if (rv) {
3173 			dev_err(intf->si_dev,
3174 				"Unable to register bmc device: %d\n",
3175 				rv);
3176 			goto out_list_del;
3177 		}
3178 
3179 		dev_info(intf->si_dev,
3180 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3181 			 bmc->id.manufacturer_id,
3182 			 bmc->id.product_id,
3183 			 bmc->id.device_id);
3184 	}
3185 
3186 	/*
3187 	 * create symlink from system interface device to bmc device
3188 	 * and back.
3189 	 */
3190 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3191 	if (rv) {
3192 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3193 		goto out_put_bmc;
3194 	}
3195 
3196 	if (intf_num == -1)
3197 		intf_num = intf->intf_num;
3198 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3199 	if (!intf->my_dev_name) {
3200 		rv = -ENOMEM;
3201 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3202 			rv);
3203 		goto out_unlink1;
3204 	}
3205 
3206 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3207 			       intf->my_dev_name);
3208 	if (rv) {
3209 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3210 			rv);
3211 		goto out_free_my_dev_name;
3212 	}
3213 
3214 	intf->bmc_registered = true;
3215 
3216 out:
3217 	mutex_unlock(&ipmidriver_mutex);
3218 	mutex_lock(&intf->bmc_reg_mutex);
3219 	intf->in_bmc_register = false;
3220 	return rv;
3221 
3222 
3223 out_free_my_dev_name:
3224 	kfree(intf->my_dev_name);
3225 	intf->my_dev_name = NULL;
3226 
3227 out_unlink1:
3228 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3229 
3230 out_put_bmc:
3231 	mutex_lock(&bmc->dyn_mutex);
3232 	list_del(&intf->bmc_link);
3233 	mutex_unlock(&bmc->dyn_mutex);
3234 	intf->bmc = &intf->tmp_bmc;
3235 	kref_put(&bmc->usecount, cleanup_bmc_device);
3236 	goto out;
3237 
3238 out_list_del:
3239 	mutex_lock(&bmc->dyn_mutex);
3240 	list_del(&intf->bmc_link);
3241 	mutex_unlock(&bmc->dyn_mutex);
3242 	intf->bmc = &intf->tmp_bmc;
3243 	put_device(&bmc->pdev.dev);
3244 	goto out;
3245 }
3246 
3247 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3248 send_guid_cmd(struct ipmi_smi *intf, int chan)
3249 {
3250 	struct kernel_ipmi_msg            msg;
3251 	struct ipmi_system_interface_addr si;
3252 
3253 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3254 	si.channel = IPMI_BMC_CHANNEL;
3255 	si.lun = 0;
3256 
3257 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3258 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3259 	msg.data = NULL;
3260 	msg.data_len = 0;
3261 	return i_ipmi_request(NULL,
3262 			      intf,
3263 			      (struct ipmi_addr *) &si,
3264 			      0,
3265 			      &msg,
3266 			      intf,
3267 			      NULL,
3268 			      NULL,
3269 			      0,
3270 			      intf->addrinfo[0].address,
3271 			      intf->addrinfo[0].lun,
3272 			      -1, 0);
3273 }
3274 
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3275 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3276 {
3277 	struct bmc_device *bmc = intf->bmc;
3278 
3279 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3280 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3281 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3282 		/* Not for me */
3283 		return;
3284 
3285 	if (msg->msg.data[0] != 0) {
3286 		/* Error from getting the GUID, the BMC doesn't have one. */
3287 		bmc->dyn_guid_set = 0;
3288 		goto out;
3289 	}
3290 
3291 	if (msg->msg.data_len < UUID_SIZE + 1) {
3292 		bmc->dyn_guid_set = 0;
3293 		dev_warn(intf->si_dev,
3294 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3295 			 msg->msg.data_len, UUID_SIZE + 1);
3296 		goto out;
3297 	}
3298 
3299 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3300 	/*
3301 	 * Make sure the guid data is available before setting
3302 	 * dyn_guid_set.
3303 	 */
3304 	smp_wmb();
3305 	bmc->dyn_guid_set = 1;
3306  out:
3307 	wake_up(&intf->waitq);
3308 }
3309 
__get_guid(struct ipmi_smi * intf)3310 static void __get_guid(struct ipmi_smi *intf)
3311 {
3312 	int rv;
3313 	struct bmc_device *bmc = intf->bmc;
3314 
3315 	bmc->dyn_guid_set = 2;
3316 	intf->null_user_handler = guid_handler;
3317 	rv = send_guid_cmd(intf, 0);
3318 	if (rv)
3319 		/* Send failed, no GUID available. */
3320 		bmc->dyn_guid_set = 0;
3321 	else
3322 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3323 
3324 	/* dyn_guid_set makes the guid data available. */
3325 	smp_rmb();
3326 
3327 	intf->null_user_handler = NULL;
3328 }
3329 
3330 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3331 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3332 {
3333 	struct kernel_ipmi_msg            msg;
3334 	unsigned char                     data[1];
3335 	struct ipmi_system_interface_addr si;
3336 
3337 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3338 	si.channel = IPMI_BMC_CHANNEL;
3339 	si.lun = 0;
3340 
3341 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3342 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3343 	msg.data = data;
3344 	msg.data_len = 1;
3345 	data[0] = chan;
3346 	return i_ipmi_request(NULL,
3347 			      intf,
3348 			      (struct ipmi_addr *) &si,
3349 			      0,
3350 			      &msg,
3351 			      intf,
3352 			      NULL,
3353 			      NULL,
3354 			      0,
3355 			      intf->addrinfo[0].address,
3356 			      intf->addrinfo[0].lun,
3357 			      -1, 0);
3358 }
3359 
3360 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3361 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3362 {
3363 	int rv = 0;
3364 	int ch;
3365 	unsigned int set = intf->curr_working_cset;
3366 	struct ipmi_channel *chans;
3367 
3368 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3369 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3370 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3371 		/* It's the one we want */
3372 		if (msg->msg.data[0] != 0) {
3373 			/* Got an error from the channel, just go on. */
3374 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3375 				/*
3376 				 * If the MC does not support this
3377 				 * command, that is legal.  We just
3378 				 * assume it has one IPMB at channel
3379 				 * zero.
3380 				 */
3381 				intf->wchannels[set].c[0].medium
3382 					= IPMI_CHANNEL_MEDIUM_IPMB;
3383 				intf->wchannels[set].c[0].protocol
3384 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3385 
3386 				intf->channel_list = intf->wchannels + set;
3387 				intf->channels_ready = true;
3388 				wake_up(&intf->waitq);
3389 				goto out;
3390 			}
3391 			goto next_channel;
3392 		}
3393 		if (msg->msg.data_len < 4) {
3394 			/* Message not big enough, just go on. */
3395 			goto next_channel;
3396 		}
3397 		ch = intf->curr_channel;
3398 		chans = intf->wchannels[set].c;
3399 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3400 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3401 
3402  next_channel:
3403 		intf->curr_channel++;
3404 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3405 			intf->channel_list = intf->wchannels + set;
3406 			intf->channels_ready = true;
3407 			wake_up(&intf->waitq);
3408 		} else {
3409 			intf->channel_list = intf->wchannels + set;
3410 			intf->channels_ready = true;
3411 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3412 		}
3413 
3414 		if (rv) {
3415 			/* Got an error somehow, just give up. */
3416 			dev_warn(intf->si_dev,
3417 				 "Error sending channel information for channel %d: %d\n",
3418 				 intf->curr_channel, rv);
3419 
3420 			intf->channel_list = intf->wchannels + set;
3421 			intf->channels_ready = true;
3422 			wake_up(&intf->waitq);
3423 		}
3424 	}
3425  out:
3426 	return;
3427 }
3428 
3429 /*
3430  * Must be holding intf->bmc_reg_mutex to call this.
3431  */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3432 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3433 {
3434 	int rv;
3435 
3436 	if (ipmi_version_major(id) > 1
3437 			|| (ipmi_version_major(id) == 1
3438 			    && ipmi_version_minor(id) >= 5)) {
3439 		unsigned int set;
3440 
3441 		/*
3442 		 * Start scanning the channels to see what is
3443 		 * available.
3444 		 */
3445 		set = !intf->curr_working_cset;
3446 		intf->curr_working_cset = set;
3447 		memset(&intf->wchannels[set], 0,
3448 		       sizeof(struct ipmi_channel_set));
3449 
3450 		intf->null_user_handler = channel_handler;
3451 		intf->curr_channel = 0;
3452 		rv = send_channel_info_cmd(intf, 0);
3453 		if (rv) {
3454 			dev_warn(intf->si_dev,
3455 				 "Error sending channel information for channel 0, %d\n",
3456 				 rv);
3457 			intf->null_user_handler = NULL;
3458 			return -EIO;
3459 		}
3460 
3461 		/* Wait for the channel info to be read. */
3462 		wait_event(intf->waitq, intf->channels_ready);
3463 		intf->null_user_handler = NULL;
3464 	} else {
3465 		unsigned int set = intf->curr_working_cset;
3466 
3467 		/* Assume a single IPMB channel at zero. */
3468 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3469 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3470 		intf->channel_list = intf->wchannels + set;
3471 		intf->channels_ready = true;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
ipmi_poll(struct ipmi_smi * intf)3477 static void ipmi_poll(struct ipmi_smi *intf)
3478 {
3479 	if (intf->handlers->poll)
3480 		intf->handlers->poll(intf->send_info);
3481 	/* In case something came in */
3482 	handle_new_recv_msgs(intf);
3483 }
3484 
ipmi_poll_interface(struct ipmi_user * user)3485 void ipmi_poll_interface(struct ipmi_user *user)
3486 {
3487 	ipmi_poll(user->intf);
3488 }
3489 EXPORT_SYMBOL(ipmi_poll_interface);
3490 
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3491 static ssize_t nr_users_show(struct device *dev,
3492 			     struct device_attribute *attr,
3493 			     char *buf)
3494 {
3495 	struct ipmi_smi *intf = container_of(attr,
3496 			 struct ipmi_smi, nr_users_devattr);
3497 
3498 	return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3499 }
3500 static DEVICE_ATTR_RO(nr_users);
3501 
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3502 static ssize_t nr_msgs_show(struct device *dev,
3503 			    struct device_attribute *attr,
3504 			    char *buf)
3505 {
3506 	struct ipmi_smi *intf = container_of(attr,
3507 					     struct ipmi_smi, nr_msgs_devattr);
3508 	struct ipmi_user *user;
3509 	unsigned int count = 0;
3510 
3511 	mutex_lock(&intf->users_mutex);
3512 	list_for_each_entry(user, &intf->users, link)
3513 		count += atomic_read(&user->nr_msgs);
3514 	mutex_unlock(&intf->users_mutex);
3515 
3516 	return sysfs_emit(buf, "%u\n", count);
3517 }
3518 static DEVICE_ATTR_RO(nr_msgs);
3519 
redo_bmc_reg(struct work_struct * work)3520 static void redo_bmc_reg(struct work_struct *work)
3521 {
3522 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3523 					     bmc_reg_work);
3524 
3525 	if (!intf->in_shutdown)
3526 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3527 
3528 	kref_put(&intf->refcount, intf_free);
3529 }
3530 
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3531 int ipmi_add_smi(struct module         *owner,
3532 		 const struct ipmi_smi_handlers *handlers,
3533 		 void		       *send_info,
3534 		 struct device         *si_dev,
3535 		 unsigned char         slave_addr)
3536 {
3537 	int              i, j;
3538 	int              rv;
3539 	struct ipmi_smi *intf, *tintf;
3540 	struct list_head *link;
3541 	struct ipmi_device_id id;
3542 
3543 	/*
3544 	 * Make sure the driver is actually initialized, this handles
3545 	 * problems with initialization order.
3546 	 */
3547 	rv = ipmi_init_msghandler();
3548 	if (rv)
3549 		return rv;
3550 
3551 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3552 	if (!intf)
3553 		return -ENOMEM;
3554 
3555 	intf->owner = owner;
3556 	intf->bmc = &intf->tmp_bmc;
3557 	INIT_LIST_HEAD(&intf->bmc->intfs);
3558 	mutex_init(&intf->bmc->dyn_mutex);
3559 	INIT_LIST_HEAD(&intf->bmc_link);
3560 	mutex_init(&intf->bmc_reg_mutex);
3561 	intf->intf_num = -1; /* Mark it invalid for now. */
3562 	kref_init(&intf->refcount);
3563 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3564 	intf->si_dev = si_dev;
3565 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3566 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3567 		intf->addrinfo[j].lun = 2;
3568 	}
3569 	if (slave_addr != 0)
3570 		intf->addrinfo[0].address = slave_addr;
3571 	INIT_LIST_HEAD(&intf->user_msgs);
3572 	mutex_init(&intf->user_msgs_mutex);
3573 	INIT_LIST_HEAD(&intf->users);
3574 	mutex_init(&intf->users_mutex);
3575 	atomic_set(&intf->nr_users, 0);
3576 	intf->handlers = handlers;
3577 	intf->send_info = send_info;
3578 	spin_lock_init(&intf->seq_lock);
3579 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3580 		intf->seq_table[j].inuse = 0;
3581 		intf->seq_table[j].seqid = 0;
3582 	}
3583 	intf->curr_seq = 0;
3584 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3585 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3586 	INIT_WORK(&intf->smi_work, smi_work);
3587 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3588 	spin_lock_init(&intf->xmit_msgs_lock);
3589 	INIT_LIST_HEAD(&intf->xmit_msgs);
3590 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3591 	mutex_init(&intf->events_mutex);
3592 	spin_lock_init(&intf->watch_lock);
3593 	atomic_set(&intf->event_waiters, 0);
3594 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3595 	INIT_LIST_HEAD(&intf->waiting_events);
3596 	intf->waiting_events_count = 0;
3597 	mutex_init(&intf->cmd_rcvrs_mutex);
3598 	spin_lock_init(&intf->maintenance_mode_lock);
3599 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3600 	init_waitqueue_head(&intf->waitq);
3601 	for (i = 0; i < IPMI_NUM_STATS; i++)
3602 		atomic_set(&intf->stats[i], 0);
3603 
3604 	/*
3605 	 * Grab the watchers mutex so we can deliver the new interface
3606 	 * without races.
3607 	 */
3608 	mutex_lock(&smi_watchers_mutex);
3609 	mutex_lock(&ipmi_interfaces_mutex);
3610 	/* Look for a hole in the numbers. */
3611 	i = 0;
3612 	link = &ipmi_interfaces;
3613 	list_for_each_entry(tintf, &ipmi_interfaces, link) {
3614 		if (tintf->intf_num != i) {
3615 			link = &tintf->link;
3616 			break;
3617 		}
3618 		i++;
3619 	}
3620 	/* Add the new interface in numeric order. */
3621 	if (i == 0)
3622 		list_add(&intf->link, &ipmi_interfaces);
3623 	else
3624 		list_add_tail(&intf->link, link);
3625 
3626 	rv = handlers->start_processing(send_info, intf);
3627 	if (rv)
3628 		goto out_err;
3629 
3630 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3631 	if (rv) {
3632 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3633 		goto out_err_started;
3634 	}
3635 
3636 	mutex_lock(&intf->bmc_reg_mutex);
3637 	rv = __scan_channels(intf, &id);
3638 	mutex_unlock(&intf->bmc_reg_mutex);
3639 	if (rv)
3640 		goto out_err_bmc_reg;
3641 
3642 	intf->nr_users_devattr = dev_attr_nr_users;
3643 	sysfs_attr_init(&intf->nr_users_devattr.attr);
3644 	rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3645 	if (rv)
3646 		goto out_err_bmc_reg;
3647 
3648 	intf->nr_msgs_devattr = dev_attr_nr_msgs;
3649 	sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3650 	rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3651 	if (rv) {
3652 		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3653 		goto out_err_bmc_reg;
3654 	}
3655 
3656 	intf->intf_num = i;
3657 	mutex_unlock(&ipmi_interfaces_mutex);
3658 
3659 	/* After this point the interface is legal to use. */
3660 	call_smi_watchers(i, intf->si_dev);
3661 
3662 	mutex_unlock(&smi_watchers_mutex);
3663 
3664 	return 0;
3665 
3666  out_err_bmc_reg:
3667 	ipmi_bmc_unregister(intf);
3668  out_err_started:
3669 	if (intf->handlers->shutdown)
3670 		intf->handlers->shutdown(intf->send_info);
3671  out_err:
3672 	list_del(&intf->link);
3673 	mutex_unlock(&ipmi_interfaces_mutex);
3674 	mutex_unlock(&smi_watchers_mutex);
3675 	kref_put(&intf->refcount, intf_free);
3676 
3677 	return rv;
3678 }
3679 EXPORT_SYMBOL(ipmi_add_smi);
3680 
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3681 static void deliver_smi_err_response(struct ipmi_smi *intf,
3682 				     struct ipmi_smi_msg *msg,
3683 				     unsigned char err)
3684 {
3685 	int rv;
3686 	msg->rsp[0] = msg->data[0] | 4;
3687 	msg->rsp[1] = msg->data[1];
3688 	msg->rsp[2] = err;
3689 	msg->rsp_size = 3;
3690 
3691 	/* This will never requeue, but it may ask us to free the message. */
3692 	rv = handle_one_recv_msg(intf, msg);
3693 	if (rv == 0)
3694 		ipmi_free_smi_msg(msg);
3695 }
3696 
cleanup_smi_msgs(struct ipmi_smi * intf)3697 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3698 {
3699 	int              i;
3700 	struct seq_table *ent;
3701 	struct ipmi_smi_msg *msg;
3702 	struct list_head *entry;
3703 	struct list_head tmplist;
3704 
3705 	/* Clear out our transmit queues and hold the messages. */
3706 	INIT_LIST_HEAD(&tmplist);
3707 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3708 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3709 
3710 	/* Current message first, to preserve order */
3711 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3712 		/* Wait for the message to clear out. */
3713 		schedule_timeout(1);
3714 	}
3715 
3716 	/* No need for locks, the interface is down. */
3717 
3718 	/*
3719 	 * Return errors for all pending messages in queue and in the
3720 	 * tables waiting for remote responses.
3721 	 */
3722 	while (!list_empty(&tmplist)) {
3723 		entry = tmplist.next;
3724 		list_del(entry);
3725 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3726 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3727 	}
3728 
3729 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3730 		ent = &intf->seq_table[i];
3731 		if (!ent->inuse)
3732 			continue;
3733 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3734 	}
3735 }
3736 
ipmi_unregister_smi(struct ipmi_smi * intf)3737 void ipmi_unregister_smi(struct ipmi_smi *intf)
3738 {
3739 	struct ipmi_smi_watcher *w;
3740 	int intf_num;
3741 
3742 	if (!intf)
3743 		return;
3744 
3745 	intf_num = intf->intf_num;
3746 	mutex_lock(&ipmi_interfaces_mutex);
3747 	cancel_work_sync(&intf->smi_work);
3748 	/* smi_work() can no longer be in progress after this. */
3749 
3750 	intf->intf_num = -1;
3751 	intf->in_shutdown = true;
3752 	list_del(&intf->link);
3753 	mutex_unlock(&ipmi_interfaces_mutex);
3754 
3755 	/*
3756 	 * At this point no users can be added to the interface and no
3757 	 * new messages can be sent.
3758 	 */
3759 
3760 	if (intf->handlers->shutdown)
3761 		intf->handlers->shutdown(intf->send_info);
3762 
3763 	device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3764 	device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3765 
3766 	/*
3767 	 * Call all the watcher interfaces to tell them that
3768 	 * an interface is going away.
3769 	 */
3770 	mutex_lock(&smi_watchers_mutex);
3771 	list_for_each_entry(w, &smi_watchers, link)
3772 		w->smi_gone(intf_num);
3773 	mutex_unlock(&smi_watchers_mutex);
3774 
3775 	mutex_lock(&intf->users_mutex);
3776 	while (!list_empty(&intf->users)) {
3777 		struct ipmi_user *user = list_first_entry(&intf->users,
3778 						    struct ipmi_user, link);
3779 
3780 		_ipmi_destroy_user(user);
3781 	}
3782 	mutex_unlock(&intf->users_mutex);
3783 
3784 	cleanup_smi_msgs(intf);
3785 
3786 	ipmi_bmc_unregister(intf);
3787 
3788 	kref_put(&intf->refcount, intf_free);
3789 }
3790 EXPORT_SYMBOL(ipmi_unregister_smi);
3791 
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3792 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3793 				   struct ipmi_smi_msg *msg)
3794 {
3795 	struct ipmi_ipmb_addr ipmb_addr;
3796 	struct ipmi_recv_msg  *recv_msg;
3797 
3798 	/*
3799 	 * This is 11, not 10, because the response must contain a
3800 	 * completion code.
3801 	 */
3802 	if (msg->rsp_size < 11) {
3803 		/* Message not big enough, just ignore it. */
3804 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3805 		return 0;
3806 	}
3807 
3808 	if (msg->rsp[2] != 0) {
3809 		/* An error getting the response, just ignore it. */
3810 		return 0;
3811 	}
3812 
3813 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3814 	ipmb_addr.slave_addr = msg->rsp[6];
3815 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3816 	ipmb_addr.lun = msg->rsp[7] & 3;
3817 
3818 	/*
3819 	 * It's a response from a remote entity.  Look up the sequence
3820 	 * number and handle the response.
3821 	 */
3822 	if (intf_find_seq(intf,
3823 			  msg->rsp[7] >> 2,
3824 			  msg->rsp[3] & 0x0f,
3825 			  msg->rsp[8],
3826 			  (msg->rsp[4] >> 2) & (~1),
3827 			  (struct ipmi_addr *) &ipmb_addr,
3828 			  &recv_msg)) {
3829 		/*
3830 		 * We were unable to find the sequence number,
3831 		 * so just nuke the message.
3832 		 */
3833 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3834 		return 0;
3835 	}
3836 
3837 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3838 	/*
3839 	 * The other fields matched, so no need to set them, except
3840 	 * for netfn, which needs to be the response that was
3841 	 * returned, not the request value.
3842 	 */
3843 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3844 	recv_msg->msg.data = recv_msg->msg_data;
3845 	recv_msg->msg.data_len = msg->rsp_size - 10;
3846 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3847 	if (deliver_response(intf, recv_msg))
3848 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3849 	else
3850 		ipmi_inc_stat(intf, handled_ipmb_responses);
3851 
3852 	return 0;
3853 }
3854 
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3855 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3856 				   struct ipmi_smi_msg *msg)
3857 {
3858 	struct cmd_rcvr          *rcvr;
3859 	int                      rv = 0;
3860 	unsigned char            netfn;
3861 	unsigned char            cmd;
3862 	unsigned char            chan;
3863 	struct ipmi_user         *user = NULL;
3864 	struct ipmi_ipmb_addr    *ipmb_addr;
3865 	struct ipmi_recv_msg     *recv_msg;
3866 
3867 	if (msg->rsp_size < 10) {
3868 		/* Message not big enough, just ignore it. */
3869 		ipmi_inc_stat(intf, invalid_commands);
3870 		return 0;
3871 	}
3872 
3873 	if (msg->rsp[2] != 0) {
3874 		/* An error getting the response, just ignore it. */
3875 		return 0;
3876 	}
3877 
3878 	netfn = msg->rsp[4] >> 2;
3879 	cmd = msg->rsp[8];
3880 	chan = msg->rsp[3] & 0xf;
3881 
3882 	rcu_read_lock();
3883 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3884 	if (rcvr) {
3885 		user = rcvr->user;
3886 		kref_get(&user->refcount);
3887 	} else
3888 		user = NULL;
3889 	rcu_read_unlock();
3890 
3891 	if (user == NULL) {
3892 		/* We didn't find a user, deliver an error response. */
3893 		ipmi_inc_stat(intf, unhandled_commands);
3894 
3895 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3896 		msg->data[1] = IPMI_SEND_MSG_CMD;
3897 		msg->data[2] = msg->rsp[3];
3898 		msg->data[3] = msg->rsp[6];
3899 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3900 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3901 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3902 		/* rqseq/lun */
3903 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3904 		msg->data[8] = msg->rsp[8]; /* cmd */
3905 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3906 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3907 		msg->data_size = 11;
3908 
3909 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3910 			msg->data_size, msg->data);
3911 
3912 		smi_send(intf, intf->handlers, msg, 0);
3913 		/*
3914 		 * We used the message, so return the value that
3915 		 * causes it to not be freed or queued.
3916 		 */
3917 		rv = -1;
3918 	} else {
3919 		recv_msg = ipmi_alloc_recv_msg();
3920 		if (!recv_msg) {
3921 			/*
3922 			 * We couldn't allocate memory for the
3923 			 * message, so requeue it for handling
3924 			 * later.
3925 			 */
3926 			rv = 1;
3927 			kref_put(&user->refcount, free_ipmi_user);
3928 		} else {
3929 			/* Extract the source address from the data. */
3930 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3931 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3932 			ipmb_addr->slave_addr = msg->rsp[6];
3933 			ipmb_addr->lun = msg->rsp[7] & 3;
3934 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3935 
3936 			/*
3937 			 * Extract the rest of the message information
3938 			 * from the IPMB header.
3939 			 */
3940 			recv_msg->user = user;
3941 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3942 			recv_msg->msgid = msg->rsp[7] >> 2;
3943 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3944 			recv_msg->msg.cmd = msg->rsp[8];
3945 			recv_msg->msg.data = recv_msg->msg_data;
3946 
3947 			/*
3948 			 * We chop off 10, not 9 bytes because the checksum
3949 			 * at the end also needs to be removed.
3950 			 */
3951 			recv_msg->msg.data_len = msg->rsp_size - 10;
3952 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3953 			       msg->rsp_size - 10);
3954 			if (deliver_response(intf, recv_msg))
3955 				ipmi_inc_stat(intf, unhandled_commands);
3956 			else
3957 				ipmi_inc_stat(intf, handled_commands);
3958 		}
3959 	}
3960 
3961 	return rv;
3962 }
3963 
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3964 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3965 				      struct ipmi_smi_msg *msg)
3966 {
3967 	struct cmd_rcvr          *rcvr;
3968 	int                      rv = 0;
3969 	struct ipmi_user         *user = NULL;
3970 	struct ipmi_ipmb_direct_addr *daddr;
3971 	struct ipmi_recv_msg     *recv_msg;
3972 	unsigned char netfn = msg->rsp[0] >> 2;
3973 	unsigned char cmd = msg->rsp[3];
3974 
3975 	rcu_read_lock();
3976 	/* We always use channel 0 for direct messages. */
3977 	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
3978 	if (rcvr) {
3979 		user = rcvr->user;
3980 		kref_get(&user->refcount);
3981 	} else
3982 		user = NULL;
3983 	rcu_read_unlock();
3984 
3985 	if (user == NULL) {
3986 		/* We didn't find a user, deliver an error response. */
3987 		ipmi_inc_stat(intf, unhandled_commands);
3988 
3989 		msg->data[0] = (netfn + 1) << 2;
3990 		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
3991 		msg->data[1] = msg->rsp[1]; /* Addr */
3992 		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
3993 		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
3994 		msg->data[3] = cmd;
3995 		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
3996 		msg->data_size = 5;
3997 
3998 		smi_send(intf, intf->handlers, msg, 0);
3999 		/*
4000 		 * We used the message, so return the value that
4001 		 * causes it to not be freed or queued.
4002 		 */
4003 		rv = -1;
4004 	} else {
4005 		recv_msg = ipmi_alloc_recv_msg();
4006 		if (!recv_msg) {
4007 			/*
4008 			 * We couldn't allocate memory for the
4009 			 * message, so requeue it for handling
4010 			 * later.
4011 			 */
4012 			rv = 1;
4013 			kref_put(&user->refcount, free_ipmi_user);
4014 		} else {
4015 			/* Extract the source address from the data. */
4016 			daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4017 			daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4018 			daddr->channel = 0;
4019 			daddr->slave_addr = msg->rsp[1];
4020 			daddr->rs_lun = msg->rsp[0] & 3;
4021 			daddr->rq_lun = msg->rsp[2] & 3;
4022 
4023 			/*
4024 			 * Extract the rest of the message information
4025 			 * from the IPMB header.
4026 			 */
4027 			recv_msg->user = user;
4028 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4029 			recv_msg->msgid = (msg->rsp[2] >> 2);
4030 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4031 			recv_msg->msg.cmd = msg->rsp[3];
4032 			recv_msg->msg.data = recv_msg->msg_data;
4033 
4034 			recv_msg->msg.data_len = msg->rsp_size - 4;
4035 			memcpy(recv_msg->msg_data, msg->rsp + 4,
4036 			       msg->rsp_size - 4);
4037 			if (deliver_response(intf, recv_msg))
4038 				ipmi_inc_stat(intf, unhandled_commands);
4039 			else
4040 				ipmi_inc_stat(intf, handled_commands);
4041 		}
4042 	}
4043 
4044 	return rv;
4045 }
4046 
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4047 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4048 				      struct ipmi_smi_msg *msg)
4049 {
4050 	struct ipmi_recv_msg *recv_msg;
4051 	struct ipmi_ipmb_direct_addr *daddr;
4052 
4053 	recv_msg = msg->user_data;
4054 	if (recv_msg == NULL) {
4055 		dev_warn(intf->si_dev,
4056 			 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4057 		return 0;
4058 	}
4059 
4060 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4061 	recv_msg->msgid = msg->msgid;
4062 	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4063 	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4064 	daddr->channel = 0;
4065 	daddr->slave_addr = msg->rsp[1];
4066 	daddr->rq_lun = msg->rsp[0] & 3;
4067 	daddr->rs_lun = msg->rsp[2] & 3;
4068 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4069 	recv_msg->msg.cmd = msg->rsp[3];
4070 	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4071 	recv_msg->msg.data = recv_msg->msg_data;
4072 	recv_msg->msg.data_len = msg->rsp_size - 4;
4073 	deliver_local_response(intf, recv_msg);
4074 
4075 	return 0;
4076 }
4077 
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4078 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4079 				  struct ipmi_smi_msg *msg)
4080 {
4081 	struct ipmi_lan_addr  lan_addr;
4082 	struct ipmi_recv_msg  *recv_msg;
4083 
4084 
4085 	/*
4086 	 * This is 13, not 12, because the response must contain a
4087 	 * completion code.
4088 	 */
4089 	if (msg->rsp_size < 13) {
4090 		/* Message not big enough, just ignore it. */
4091 		ipmi_inc_stat(intf, invalid_lan_responses);
4092 		return 0;
4093 	}
4094 
4095 	if (msg->rsp[2] != 0) {
4096 		/* An error getting the response, just ignore it. */
4097 		return 0;
4098 	}
4099 
4100 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4101 	lan_addr.session_handle = msg->rsp[4];
4102 	lan_addr.remote_SWID = msg->rsp[8];
4103 	lan_addr.local_SWID = msg->rsp[5];
4104 	lan_addr.channel = msg->rsp[3] & 0x0f;
4105 	lan_addr.privilege = msg->rsp[3] >> 4;
4106 	lan_addr.lun = msg->rsp[9] & 3;
4107 
4108 	/*
4109 	 * It's a response from a remote entity.  Look up the sequence
4110 	 * number and handle the response.
4111 	 */
4112 	if (intf_find_seq(intf,
4113 			  msg->rsp[9] >> 2,
4114 			  msg->rsp[3] & 0x0f,
4115 			  msg->rsp[10],
4116 			  (msg->rsp[6] >> 2) & (~1),
4117 			  (struct ipmi_addr *) &lan_addr,
4118 			  &recv_msg)) {
4119 		/*
4120 		 * We were unable to find the sequence number,
4121 		 * so just nuke the message.
4122 		 */
4123 		ipmi_inc_stat(intf, unhandled_lan_responses);
4124 		return 0;
4125 	}
4126 
4127 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4128 	/*
4129 	 * The other fields matched, so no need to set them, except
4130 	 * for netfn, which needs to be the response that was
4131 	 * returned, not the request value.
4132 	 */
4133 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
4134 	recv_msg->msg.data = recv_msg->msg_data;
4135 	recv_msg->msg.data_len = msg->rsp_size - 12;
4136 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4137 	if (deliver_response(intf, recv_msg))
4138 		ipmi_inc_stat(intf, unhandled_lan_responses);
4139 	else
4140 		ipmi_inc_stat(intf, handled_lan_responses);
4141 
4142 	return 0;
4143 }
4144 
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4145 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4146 				  struct ipmi_smi_msg *msg)
4147 {
4148 	struct cmd_rcvr          *rcvr;
4149 	int                      rv = 0;
4150 	unsigned char            netfn;
4151 	unsigned char            cmd;
4152 	unsigned char            chan;
4153 	struct ipmi_user         *user = NULL;
4154 	struct ipmi_lan_addr     *lan_addr;
4155 	struct ipmi_recv_msg     *recv_msg;
4156 
4157 	if (msg->rsp_size < 12) {
4158 		/* Message not big enough, just ignore it. */
4159 		ipmi_inc_stat(intf, invalid_commands);
4160 		return 0;
4161 	}
4162 
4163 	if (msg->rsp[2] != 0) {
4164 		/* An error getting the response, just ignore it. */
4165 		return 0;
4166 	}
4167 
4168 	netfn = msg->rsp[6] >> 2;
4169 	cmd = msg->rsp[10];
4170 	chan = msg->rsp[3] & 0xf;
4171 
4172 	rcu_read_lock();
4173 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4174 	if (rcvr) {
4175 		user = rcvr->user;
4176 		kref_get(&user->refcount);
4177 	} else
4178 		user = NULL;
4179 	rcu_read_unlock();
4180 
4181 	if (user == NULL) {
4182 		/* We didn't find a user, just give up and return an error. */
4183 		ipmi_inc_stat(intf, unhandled_commands);
4184 
4185 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
4186 		msg->data[1] = IPMI_SEND_MSG_CMD;
4187 		msg->data[2] = chan;
4188 		msg->data[3] = msg->rsp[4]; /* handle */
4189 		msg->data[4] = msg->rsp[8]; /* rsSWID */
4190 		msg->data[5] = ((netfn + 1) << 2) | (msg->rsp[9] & 0x3);
4191 		msg->data[6] = ipmb_checksum(&msg->data[3], 3);
4192 		msg->data[7] = msg->rsp[5]; /* rqSWID */
4193 		/* rqseq/lun */
4194 		msg->data[8] = (msg->rsp[9] & 0xfc) | (msg->rsp[6] & 0x3);
4195 		msg->data[9] = cmd;
4196 		msg->data[10] = IPMI_INVALID_CMD_COMPLETION_CODE;
4197 		msg->data[11] = ipmb_checksum(&msg->data[7], 4);
4198 		msg->data_size = 12;
4199 
4200 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
4201 			msg->data_size, msg->data);
4202 
4203 		smi_send(intf, intf->handlers, msg, 0);
4204 		/*
4205 		 * We used the message, so return the value that
4206 		 * causes it to not be freed or queued.
4207 		 */
4208 		rv = -1;
4209 	} else {
4210 		recv_msg = ipmi_alloc_recv_msg();
4211 		if (!recv_msg) {
4212 			/*
4213 			 * We couldn't allocate memory for the
4214 			 * message, so requeue it for handling later.
4215 			 */
4216 			rv = 1;
4217 			kref_put(&user->refcount, free_ipmi_user);
4218 		} else {
4219 			/* Extract the source address from the data. */
4220 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4221 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4222 			lan_addr->session_handle = msg->rsp[4];
4223 			lan_addr->remote_SWID = msg->rsp[8];
4224 			lan_addr->local_SWID = msg->rsp[5];
4225 			lan_addr->lun = msg->rsp[9] & 3;
4226 			lan_addr->channel = msg->rsp[3] & 0xf;
4227 			lan_addr->privilege = msg->rsp[3] >> 4;
4228 
4229 			/*
4230 			 * Extract the rest of the message information
4231 			 * from the IPMB header.
4232 			 */
4233 			recv_msg->user = user;
4234 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4235 			recv_msg->msgid = msg->rsp[9] >> 2;
4236 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
4237 			recv_msg->msg.cmd = msg->rsp[10];
4238 			recv_msg->msg.data = recv_msg->msg_data;
4239 
4240 			/*
4241 			 * We chop off 12, not 11 bytes because the checksum
4242 			 * at the end also needs to be removed.
4243 			 */
4244 			recv_msg->msg.data_len = msg->rsp_size - 12;
4245 			memcpy(recv_msg->msg_data, &msg->rsp[11],
4246 			       msg->rsp_size - 12);
4247 			if (deliver_response(intf, recv_msg))
4248 				ipmi_inc_stat(intf, unhandled_commands);
4249 			else
4250 				ipmi_inc_stat(intf, handled_commands);
4251 		}
4252 	}
4253 
4254 	return rv;
4255 }
4256 
4257 /*
4258  * This routine will handle "Get Message" command responses with
4259  * channels that use an OEM Medium. The message format belongs to
4260  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4261  * Chapter 22, sections 22.6 and 22.24 for more details.
4262  */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4263 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4264 				  struct ipmi_smi_msg *msg)
4265 {
4266 	struct cmd_rcvr       *rcvr;
4267 	int                   rv = 0;
4268 	unsigned char         netfn;
4269 	unsigned char         cmd;
4270 	unsigned char         chan;
4271 	struct ipmi_user *user = NULL;
4272 	struct ipmi_system_interface_addr *smi_addr;
4273 	struct ipmi_recv_msg  *recv_msg;
4274 
4275 	/*
4276 	 * We expect the OEM SW to perform error checking
4277 	 * so we just do some basic sanity checks
4278 	 */
4279 	if (msg->rsp_size < 4) {
4280 		/* Message not big enough, just ignore it. */
4281 		ipmi_inc_stat(intf, invalid_commands);
4282 		return 0;
4283 	}
4284 
4285 	if (msg->rsp[2] != 0) {
4286 		/* An error getting the response, just ignore it. */
4287 		return 0;
4288 	}
4289 
4290 	/*
4291 	 * This is an OEM Message so the OEM needs to know how
4292 	 * handle the message. We do no interpretation.
4293 	 */
4294 	netfn = msg->rsp[0] >> 2;
4295 	cmd = msg->rsp[1];
4296 	chan = msg->rsp[3] & 0xf;
4297 
4298 	rcu_read_lock();
4299 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4300 	if (rcvr) {
4301 		user = rcvr->user;
4302 		kref_get(&user->refcount);
4303 	} else
4304 		user = NULL;
4305 	rcu_read_unlock();
4306 
4307 	if (user == NULL) {
4308 		/* We didn't find a user, just give up. */
4309 		ipmi_inc_stat(intf, unhandled_commands);
4310 
4311 		/*
4312 		 * Don't do anything with these messages, just allow
4313 		 * them to be freed.
4314 		 */
4315 
4316 		rv = 0;
4317 	} else {
4318 		recv_msg = ipmi_alloc_recv_msg();
4319 		if (!recv_msg) {
4320 			/*
4321 			 * We couldn't allocate memory for the
4322 			 * message, so requeue it for handling
4323 			 * later.
4324 			 */
4325 			rv = 1;
4326 			kref_put(&user->refcount, free_ipmi_user);
4327 		} else {
4328 			/*
4329 			 * OEM Messages are expected to be delivered via
4330 			 * the system interface to SMS software.  We might
4331 			 * need to visit this again depending on OEM
4332 			 * requirements
4333 			 */
4334 			smi_addr = ((struct ipmi_system_interface_addr *)
4335 				    &recv_msg->addr);
4336 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337 			smi_addr->channel = IPMI_BMC_CHANNEL;
4338 			smi_addr->lun = msg->rsp[0] & 3;
4339 
4340 			recv_msg->user = user;
4341 			recv_msg->user_msg_data = NULL;
4342 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4343 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4344 			recv_msg->msg.cmd = msg->rsp[1];
4345 			recv_msg->msg.data = recv_msg->msg_data;
4346 
4347 			/*
4348 			 * The message starts at byte 4 which follows the
4349 			 * Channel Byte in the "GET MESSAGE" command
4350 			 */
4351 			recv_msg->msg.data_len = msg->rsp_size - 4;
4352 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4353 			       msg->rsp_size - 4);
4354 			if (deliver_response(intf, recv_msg))
4355 				ipmi_inc_stat(intf, unhandled_commands);
4356 			else
4357 				ipmi_inc_stat(intf, handled_commands);
4358 		}
4359 	}
4360 
4361 	return rv;
4362 }
4363 
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4364 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4365 				     struct ipmi_smi_msg  *msg)
4366 {
4367 	struct ipmi_system_interface_addr *smi_addr;
4368 
4369 	recv_msg->msgid = 0;
4370 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4371 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4372 	smi_addr->channel = IPMI_BMC_CHANNEL;
4373 	smi_addr->lun = msg->rsp[0] & 3;
4374 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4375 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4376 	recv_msg->msg.cmd = msg->rsp[1];
4377 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4378 	recv_msg->msg.data = recv_msg->msg_data;
4379 	recv_msg->msg.data_len = msg->rsp_size - 3;
4380 }
4381 
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4382 static int handle_read_event_rsp(struct ipmi_smi *intf,
4383 				 struct ipmi_smi_msg *msg)
4384 {
4385 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4386 	struct list_head     msgs;
4387 	struct ipmi_user     *user;
4388 	int rv = 0, deliver_count = 0;
4389 
4390 	if (msg->rsp_size < 19) {
4391 		/* Message is too small to be an IPMB event. */
4392 		ipmi_inc_stat(intf, invalid_events);
4393 		return 0;
4394 	}
4395 
4396 	if (msg->rsp[2] != 0) {
4397 		/* An error getting the event, just ignore it. */
4398 		return 0;
4399 	}
4400 
4401 	INIT_LIST_HEAD(&msgs);
4402 
4403 	mutex_lock(&intf->events_mutex);
4404 
4405 	ipmi_inc_stat(intf, events);
4406 
4407 	/*
4408 	 * Allocate and fill in one message for every user that is
4409 	 * getting events.
4410 	 */
4411 	mutex_lock(&intf->users_mutex);
4412 	list_for_each_entry(user, &intf->users, link) {
4413 		if (!user->gets_events)
4414 			continue;
4415 
4416 		recv_msg = ipmi_alloc_recv_msg();
4417 		if (!recv_msg) {
4418 			mutex_unlock(&intf->users_mutex);
4419 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4420 						 link) {
4421 				user = recv_msg->user;
4422 				list_del(&recv_msg->link);
4423 				ipmi_free_recv_msg(recv_msg);
4424 				kref_put(&user->refcount, free_ipmi_user);
4425 			}
4426 			/*
4427 			 * We couldn't allocate memory for the
4428 			 * message, so requeue it for handling
4429 			 * later.
4430 			 */
4431 			rv = 1;
4432 			goto out;
4433 		}
4434 
4435 		deliver_count++;
4436 
4437 		copy_event_into_recv_msg(recv_msg, msg);
4438 		recv_msg->user = user;
4439 		kref_get(&user->refcount);
4440 		list_add_tail(&recv_msg->link, &msgs);
4441 	}
4442 	mutex_unlock(&intf->users_mutex);
4443 
4444 	if (deliver_count) {
4445 		/* Now deliver all the messages. */
4446 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4447 			list_del(&recv_msg->link);
4448 			deliver_local_response(intf, recv_msg);
4449 		}
4450 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4451 		/*
4452 		 * No one to receive the message, put it in queue if there's
4453 		 * not already too many things in the queue.
4454 		 */
4455 		recv_msg = ipmi_alloc_recv_msg();
4456 		if (!recv_msg) {
4457 			/*
4458 			 * We couldn't allocate memory for the
4459 			 * message, so requeue it for handling
4460 			 * later.
4461 			 */
4462 			rv = 1;
4463 			goto out;
4464 		}
4465 
4466 		copy_event_into_recv_msg(recv_msg, msg);
4467 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4468 		intf->waiting_events_count++;
4469 	} else if (!intf->event_msg_printed) {
4470 		/*
4471 		 * There's too many things in the queue, discard this
4472 		 * message.
4473 		 */
4474 		dev_warn(intf->si_dev,
4475 			 "Event queue full, discarding incoming events\n");
4476 		intf->event_msg_printed = 1;
4477 	}
4478 
4479  out:
4480 	mutex_unlock(&intf->events_mutex);
4481 
4482 	return rv;
4483 }
4484 
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4485 static int handle_bmc_rsp(struct ipmi_smi *intf,
4486 			  struct ipmi_smi_msg *msg)
4487 {
4488 	struct ipmi_recv_msg *recv_msg;
4489 	struct ipmi_system_interface_addr *smi_addr;
4490 
4491 	recv_msg = msg->user_data;
4492 	if (recv_msg == NULL) {
4493 		dev_warn(intf->si_dev,
4494 			 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4495 		return 0;
4496 	}
4497 
4498 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4499 	recv_msg->msgid = msg->msgid;
4500 	smi_addr = ((struct ipmi_system_interface_addr *)
4501 		    &recv_msg->addr);
4502 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4503 	smi_addr->channel = IPMI_BMC_CHANNEL;
4504 	smi_addr->lun = msg->rsp[0] & 3;
4505 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4506 	recv_msg->msg.cmd = msg->rsp[1];
4507 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4508 	recv_msg->msg.data = recv_msg->msg_data;
4509 	recv_msg->msg.data_len = msg->rsp_size - 2;
4510 	deliver_local_response(intf, recv_msg);
4511 
4512 	return 0;
4513 }
4514 
4515 /*
4516  * Handle a received message.  Return 1 if the message should be requeued,
4517  * 0 if the message should be freed, or -1 if the message should not
4518  * be freed or requeued.
4519  */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4520 static int handle_one_recv_msg(struct ipmi_smi *intf,
4521 			       struct ipmi_smi_msg *msg)
4522 {
4523 	int requeue = 0;
4524 	int chan;
4525 	unsigned char cc;
4526 	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4527 
4528 	dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4529 
4530 	if (msg->rsp_size < 2) {
4531 		/* Message is too small to be correct. */
4532 		dev_warn(intf->si_dev,
4533 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4534 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4535 
4536 return_unspecified:
4537 		/* Generate an error response for the message. */
4538 		msg->rsp[0] = msg->data[0] | (1 << 2);
4539 		msg->rsp[1] = msg->data[1];
4540 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4541 		msg->rsp_size = 3;
4542 	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4543 		/* commands must have at least 4 bytes, responses 5. */
4544 		if (is_cmd && (msg->rsp_size < 4)) {
4545 			ipmi_inc_stat(intf, invalid_commands);
4546 			goto out;
4547 		}
4548 		if (!is_cmd && (msg->rsp_size < 5)) {
4549 			ipmi_inc_stat(intf, invalid_ipmb_responses);
4550 			/* Construct a valid error response. */
4551 			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4552 			msg->rsp[0] |= (1 << 2); /* Make it a response */
4553 			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4554 			msg->rsp[1] = msg->data[1]; /* Addr */
4555 			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4556 			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4557 			msg->rsp[3] = msg->data[3]; /* Cmd */
4558 			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4559 			msg->rsp_size = 5;
4560 		}
4561 	} else if ((msg->data_size >= 2)
4562 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4563 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4564 	    && (msg->user_data == NULL)) {
4565 
4566 		if (intf->in_shutdown || intf->run_to_completion)
4567 			goto out;
4568 
4569 		/*
4570 		 * This is the local response to a command send, start
4571 		 * the timer for these.  The user_data will not be
4572 		 * NULL if this is a response send, and we will let
4573 		 * response sends just go through.
4574 		 */
4575 
4576 		/*
4577 		 * Check for errors, if we get certain errors (ones
4578 		 * that mean basically we can try again later), we
4579 		 * ignore them and start the timer.  Otherwise we
4580 		 * report the error immediately.
4581 		 */
4582 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4583 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4584 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4585 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4586 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4587 			int ch = msg->rsp[3] & 0xf;
4588 			struct ipmi_channel *chans;
4589 
4590 			/* Got an error sending the message, handle it. */
4591 
4592 			chans = READ_ONCE(intf->channel_list)->c;
4593 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4594 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4595 				ipmi_inc_stat(intf, sent_lan_command_errs);
4596 			else
4597 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4598 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4599 		} else
4600 			/* The message was sent, start the timer. */
4601 			intf_start_seq_timer(intf, msg->msgid);
4602 		requeue = 0;
4603 		goto out;
4604 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4605 		   || (msg->rsp[1] != msg->data[1])) {
4606 		/*
4607 		 * The NetFN and Command in the response is not even
4608 		 * marginally correct.
4609 		 */
4610 		dev_warn(intf->si_dev,
4611 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4612 			 (msg->data[0] >> 2) | 1, msg->data[1],
4613 			 msg->rsp[0] >> 2, msg->rsp[1]);
4614 
4615 		goto return_unspecified;
4616 	}
4617 
4618 	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4619 		if ((msg->data[0] >> 2) & 1) {
4620 			/* It's a response to a sent response. */
4621 			chan = 0;
4622 			cc = msg->rsp[4];
4623 			goto process_response_response;
4624 		}
4625 		if (is_cmd)
4626 			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4627 		else
4628 			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4629 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4630 		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4631 		   && (msg->user_data != NULL)) {
4632 		/*
4633 		 * It's a response to a response we sent.  For this we
4634 		 * deliver a send message response to the user.
4635 		 */
4636 		struct ipmi_recv_msg *recv_msg;
4637 
4638 		if (intf->run_to_completion)
4639 			goto out;
4640 
4641 		chan = msg->data[2] & 0x0f;
4642 		if (chan >= IPMI_MAX_CHANNELS)
4643 			/* Invalid channel number */
4644 			goto out;
4645 		cc = msg->rsp[2];
4646 
4647 process_response_response:
4648 		recv_msg = msg->user_data;
4649 
4650 		requeue = 0;
4651 		if (!recv_msg)
4652 			goto out;
4653 
4654 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4655 		recv_msg->msg.data = recv_msg->msg_data;
4656 		recv_msg->msg_data[0] = cc;
4657 		recv_msg->msg.data_len = 1;
4658 		deliver_local_response(intf, recv_msg);
4659 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4660 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4661 		struct ipmi_channel   *chans;
4662 
4663 		if (intf->run_to_completion)
4664 			goto out;
4665 
4666 		/* It's from the receive queue. */
4667 		chan = msg->rsp[3] & 0xf;
4668 		if (chan >= IPMI_MAX_CHANNELS) {
4669 			/* Invalid channel number */
4670 			requeue = 0;
4671 			goto out;
4672 		}
4673 
4674 		/*
4675 		 * We need to make sure the channels have been initialized.
4676 		 * The channel_handler routine will set the "curr_channel"
4677 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4678 		 * channels for this interface have been initialized.
4679 		 */
4680 		if (!intf->channels_ready) {
4681 			requeue = 0; /* Throw the message away */
4682 			goto out;
4683 		}
4684 
4685 		chans = READ_ONCE(intf->channel_list)->c;
4686 
4687 		switch (chans[chan].medium) {
4688 		case IPMI_CHANNEL_MEDIUM_IPMB:
4689 			if (msg->rsp[4] & 0x04) {
4690 				/*
4691 				 * It's a response, so find the
4692 				 * requesting message and send it up.
4693 				 */
4694 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4695 			} else {
4696 				/*
4697 				 * It's a command to the SMS from some other
4698 				 * entity.  Handle that.
4699 				 */
4700 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4701 			}
4702 			break;
4703 
4704 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4705 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4706 			if (msg->rsp[6] & 0x04) {
4707 				/*
4708 				 * It's a response, so find the
4709 				 * requesting message and send it up.
4710 				 */
4711 				requeue = handle_lan_get_msg_rsp(intf, msg);
4712 			} else {
4713 				/*
4714 				 * It's a command to the SMS from some other
4715 				 * entity.  Handle that.
4716 				 */
4717 				requeue = handle_lan_get_msg_cmd(intf, msg);
4718 			}
4719 			break;
4720 
4721 		default:
4722 			/* Check for OEM Channels.  Clients had better
4723 			   register for these commands. */
4724 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4725 			    && (chans[chan].medium
4726 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4727 				requeue = handle_oem_get_msg_cmd(intf, msg);
4728 			} else {
4729 				/*
4730 				 * We don't handle the channel type, so just
4731 				 * free the message.
4732 				 */
4733 				requeue = 0;
4734 			}
4735 		}
4736 
4737 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4738 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4739 		/* It's an asynchronous event. */
4740 		if (intf->run_to_completion)
4741 			goto out;
4742 
4743 		requeue = handle_read_event_rsp(intf, msg);
4744 	} else {
4745 		/* It's a response from the local BMC. */
4746 		requeue = handle_bmc_rsp(intf, msg);
4747 	}
4748 
4749  out:
4750 	return requeue;
4751 }
4752 
4753 /*
4754  * If there are messages in the queue or pretimeouts, handle them.
4755  */
handle_new_recv_msgs(struct ipmi_smi * intf)4756 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4757 {
4758 	struct ipmi_smi_msg *smi_msg;
4759 	unsigned long flags = 0;
4760 	int rv;
4761 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4762 
4763 	/* See if any waiting messages need to be processed. */
4764 	if (!run_to_completion)
4765 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4766 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4767 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4768 				     struct ipmi_smi_msg, link);
4769 		list_del(&smi_msg->link);
4770 		if (!run_to_completion)
4771 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4772 					       flags);
4773 		rv = handle_one_recv_msg(intf, smi_msg);
4774 		if (!run_to_completion)
4775 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4776 		if (rv > 0) {
4777 			/*
4778 			 * To preserve message order, quit if we
4779 			 * can't handle a message.  Add the message
4780 			 * back at the head, this is safe because this
4781 			 * workqueue is the only thing that pulls the
4782 			 * messages.
4783 			 */
4784 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4785 			break;
4786 		} else {
4787 			if (rv == 0)
4788 				/* Message handled */
4789 				ipmi_free_smi_msg(smi_msg);
4790 			/* If rv < 0, fatal error, del but don't free. */
4791 		}
4792 	}
4793 	if (!run_to_completion)
4794 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4795 }
4796 
smi_work(struct work_struct * t)4797 static void smi_work(struct work_struct *t)
4798 {
4799 	unsigned long flags = 0; /* keep us warning-free. */
4800 	struct ipmi_smi *intf = from_work(intf, t, smi_work);
4801 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4802 	struct ipmi_smi_msg *newmsg = NULL;
4803 	struct ipmi_recv_msg *msg, *msg2;
4804 
4805 	/*
4806 	 * Start the next message if available.
4807 	 *
4808 	 * Do this here, not in the actual receiver, because we may deadlock
4809 	 * because the lower layer is allowed to hold locks while calling
4810 	 * message delivery.
4811 	 */
4812 
4813 	if (!run_to_completion)
4814 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4815 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4816 		struct list_head *entry = NULL;
4817 
4818 		/* Pick the high priority queue first. */
4819 		if (!list_empty(&intf->hp_xmit_msgs))
4820 			entry = intf->hp_xmit_msgs.next;
4821 		else if (!list_empty(&intf->xmit_msgs))
4822 			entry = intf->xmit_msgs.next;
4823 
4824 		if (entry) {
4825 			list_del(entry);
4826 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4827 			intf->curr_msg = newmsg;
4828 		}
4829 	}
4830 	if (!run_to_completion)
4831 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4832 
4833 	if (newmsg)
4834 		intf->handlers->sender(intf->send_info, newmsg);
4835 
4836 	handle_new_recv_msgs(intf);
4837 
4838 	/* Nothing below applies during panic time. */
4839 	if (run_to_completion)
4840 		return;
4841 
4842 	/*
4843 	 * If the pretimout count is non-zero, decrement one from it and
4844 	 * deliver pretimeouts to all the users.
4845 	 */
4846 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4847 		struct ipmi_user *user;
4848 
4849 		mutex_lock(&intf->users_mutex);
4850 		list_for_each_entry(user, &intf->users, link) {
4851 			if (user->handler->ipmi_watchdog_pretimeout)
4852 				user->handler->ipmi_watchdog_pretimeout(
4853 					user->handler_data);
4854 		}
4855 		mutex_unlock(&intf->users_mutex);
4856 	}
4857 
4858 	/*
4859 	 * Freeing the message can cause a user to be released, which
4860 	 * can then cause the interface to be freed.  Make sure that
4861 	 * doesn't happen until we are ready.
4862 	 */
4863 	kref_get(&intf->refcount);
4864 
4865 	mutex_lock(&intf->user_msgs_mutex);
4866 	list_for_each_entry_safe(msg, msg2, &intf->user_msgs, link) {
4867 		struct ipmi_user *user = msg->user;
4868 
4869 		list_del(&msg->link);
4870 
4871 		if (refcount_read(&user->destroyed) == 0) {
4872 			ipmi_free_recv_msg(msg);
4873 		} else {
4874 			atomic_dec(&user->nr_msgs);
4875 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
4876 		}
4877 	}
4878 	mutex_unlock(&intf->user_msgs_mutex);
4879 
4880 	kref_put(&intf->refcount, intf_free);
4881 }
4882 
4883 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4884 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4885 			   struct ipmi_smi_msg *msg)
4886 {
4887 	unsigned long flags = 0; /* keep us warning-free. */
4888 	int run_to_completion = READ_ONCE(intf->run_to_completion);
4889 
4890 	/*
4891 	 * To preserve message order, we keep a queue and deliver from
4892 	 * a workqueue.
4893 	 */
4894 	if (!run_to_completion)
4895 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4896 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4897 	if (!run_to_completion)
4898 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4899 				       flags);
4900 
4901 	if (!run_to_completion)
4902 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4903 	/*
4904 	 * We can get an asynchronous event or receive message in addition
4905 	 * to commands we send.
4906 	 */
4907 	if (msg == intf->curr_msg)
4908 		intf->curr_msg = NULL;
4909 	if (!run_to_completion)
4910 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4911 
4912 	if (run_to_completion)
4913 		smi_work(&intf->smi_work);
4914 	else
4915 		queue_work(system_wq, &intf->smi_work);
4916 }
4917 EXPORT_SYMBOL(ipmi_smi_msg_received);
4918 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4919 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4920 {
4921 	if (intf->in_shutdown)
4922 		return;
4923 
4924 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4925 	queue_work(system_wq, &intf->smi_work);
4926 }
4927 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4928 
4929 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4930 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4931 		  unsigned char seq, long seqid)
4932 {
4933 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4934 	if (!smi_msg)
4935 		/*
4936 		 * If we can't allocate the message, then just return, we
4937 		 * get 4 retries, so this should be ok.
4938 		 */
4939 		return NULL;
4940 
4941 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4942 	smi_msg->data_size = recv_msg->msg.data_len;
4943 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4944 
4945 	dev_dbg(intf->si_dev, "Resend: %*ph\n",
4946 		smi_msg->data_size, smi_msg->data);
4947 
4948 	return smi_msg;
4949 }
4950 
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4951 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4952 			      struct list_head *timeouts,
4953 			      unsigned long timeout_period,
4954 			      int slot, unsigned long *flags,
4955 			      bool *need_timer)
4956 {
4957 	struct ipmi_recv_msg *msg;
4958 
4959 	if (intf->in_shutdown)
4960 		return;
4961 
4962 	if (!ent->inuse)
4963 		return;
4964 
4965 	if (timeout_period < ent->timeout) {
4966 		ent->timeout -= timeout_period;
4967 		*need_timer = true;
4968 		return;
4969 	}
4970 
4971 	if (ent->retries_left == 0) {
4972 		/* The message has used all its retries. */
4973 		ent->inuse = 0;
4974 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4975 		msg = ent->recv_msg;
4976 		list_add_tail(&msg->link, timeouts);
4977 		if (ent->broadcast)
4978 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4979 		else if (is_lan_addr(&ent->recv_msg->addr))
4980 			ipmi_inc_stat(intf, timed_out_lan_commands);
4981 		else
4982 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4983 	} else {
4984 		struct ipmi_smi_msg *smi_msg;
4985 		/* More retries, send again. */
4986 
4987 		*need_timer = true;
4988 
4989 		/*
4990 		 * Start with the max timer, set to normal timer after
4991 		 * the message is sent.
4992 		 */
4993 		ent->timeout = MAX_MSG_TIMEOUT;
4994 		ent->retries_left--;
4995 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4996 					    ent->seqid);
4997 		if (!smi_msg) {
4998 			if (is_lan_addr(&ent->recv_msg->addr))
4999 				ipmi_inc_stat(intf,
5000 					      dropped_rexmit_lan_commands);
5001 			else
5002 				ipmi_inc_stat(intf,
5003 					      dropped_rexmit_ipmb_commands);
5004 			return;
5005 		}
5006 
5007 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
5008 
5009 		/*
5010 		 * Send the new message.  We send with a zero
5011 		 * priority.  It timed out, I doubt time is that
5012 		 * critical now, and high priority messages are really
5013 		 * only for messages to the local MC, which don't get
5014 		 * resent.
5015 		 */
5016 		if (intf->handlers) {
5017 			if (is_lan_addr(&ent->recv_msg->addr))
5018 				ipmi_inc_stat(intf,
5019 					      retransmitted_lan_commands);
5020 			else
5021 				ipmi_inc_stat(intf,
5022 					      retransmitted_ipmb_commands);
5023 
5024 			smi_send(intf, intf->handlers, smi_msg, 0);
5025 		} else
5026 			ipmi_free_smi_msg(smi_msg);
5027 
5028 		spin_lock_irqsave(&intf->seq_lock, *flags);
5029 	}
5030 }
5031 
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5032 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5033 				 unsigned long timeout_period)
5034 {
5035 	struct list_head     timeouts;
5036 	struct ipmi_recv_msg *msg, *msg2;
5037 	unsigned long        flags;
5038 	int                  i;
5039 	bool                 need_timer = false;
5040 
5041 	if (!intf->bmc_registered) {
5042 		kref_get(&intf->refcount);
5043 		if (!schedule_work(&intf->bmc_reg_work)) {
5044 			kref_put(&intf->refcount, intf_free);
5045 			need_timer = true;
5046 		}
5047 	}
5048 
5049 	/*
5050 	 * Go through the seq table and find any messages that
5051 	 * have timed out, putting them in the timeouts
5052 	 * list.
5053 	 */
5054 	INIT_LIST_HEAD(&timeouts);
5055 	spin_lock_irqsave(&intf->seq_lock, flags);
5056 	if (intf->ipmb_maintenance_mode_timeout) {
5057 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5058 			intf->ipmb_maintenance_mode_timeout = 0;
5059 		else
5060 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
5061 	}
5062 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5063 		check_msg_timeout(intf, &intf->seq_table[i],
5064 				  &timeouts, timeout_period, i,
5065 				  &flags, &need_timer);
5066 	spin_unlock_irqrestore(&intf->seq_lock, flags);
5067 
5068 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
5069 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5070 
5071 	/*
5072 	 * Maintenance mode handling.  Check the timeout
5073 	 * optimistically before we claim the lock.  It may
5074 	 * mean a timeout gets missed occasionally, but that
5075 	 * only means the timeout gets extended by one period
5076 	 * in that case.  No big deal, and it avoids the lock
5077 	 * most of the time.
5078 	 */
5079 	if (intf->auto_maintenance_timeout > 0) {
5080 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5081 		if (intf->auto_maintenance_timeout > 0) {
5082 			intf->auto_maintenance_timeout
5083 				-= timeout_period;
5084 			if (!intf->maintenance_mode
5085 			    && (intf->auto_maintenance_timeout <= 0)) {
5086 				intf->maintenance_mode_enable = false;
5087 				maintenance_mode_update(intf);
5088 			}
5089 		}
5090 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5091 				       flags);
5092 	}
5093 
5094 	queue_work(system_wq, &intf->smi_work);
5095 
5096 	return need_timer;
5097 }
5098 
ipmi_request_event(struct ipmi_smi * intf)5099 static void ipmi_request_event(struct ipmi_smi *intf)
5100 {
5101 	/* No event requests when in maintenance mode. */
5102 	if (intf->maintenance_mode_enable)
5103 		return;
5104 
5105 	if (!intf->in_shutdown)
5106 		intf->handlers->request_events(intf->send_info);
5107 }
5108 
5109 static struct timer_list ipmi_timer;
5110 
5111 static atomic_t stop_operation;
5112 
ipmi_timeout_work(struct work_struct * work)5113 static void ipmi_timeout_work(struct work_struct *work)
5114 {
5115 	if (atomic_read(&stop_operation))
5116 		return;
5117 
5118 	struct ipmi_smi *intf;
5119 	bool need_timer = false;
5120 
5121 	if (atomic_read(&stop_operation))
5122 		return;
5123 
5124 	mutex_lock(&ipmi_interfaces_mutex);
5125 	list_for_each_entry(intf, &ipmi_interfaces, link) {
5126 		if (atomic_read(&intf->event_waiters)) {
5127 			intf->ticks_to_req_ev--;
5128 			if (intf->ticks_to_req_ev == 0) {
5129 				ipmi_request_event(intf);
5130 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5131 			}
5132 			need_timer = true;
5133 		}
5134 
5135 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5136 	}
5137 	mutex_unlock(&ipmi_interfaces_mutex);
5138 
5139 	if (need_timer)
5140 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5141 }
5142 
5143 static DECLARE_WORK(ipmi_timer_work, ipmi_timeout_work);
5144 
ipmi_timeout(struct timer_list * unused)5145 static void ipmi_timeout(struct timer_list *unused)
5146 {
5147 	if (atomic_read(&stop_operation))
5148 		return;
5149 
5150 	queue_work(system_wq, &ipmi_timer_work);
5151 }
5152 
need_waiter(struct ipmi_smi * intf)5153 static void need_waiter(struct ipmi_smi *intf)
5154 {
5155 	/* Racy, but worst case we start the timer twice. */
5156 	if (!timer_pending(&ipmi_timer))
5157 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5158 }
5159 
5160 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5161 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5162 
free_smi_msg(struct ipmi_smi_msg * msg)5163 static void free_smi_msg(struct ipmi_smi_msg *msg)
5164 {
5165 	atomic_dec(&smi_msg_inuse_count);
5166 	/* Try to keep as much stuff out of the panic path as possible. */
5167 	if (!oops_in_progress)
5168 		kfree(msg);
5169 }
5170 
ipmi_alloc_smi_msg(void)5171 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5172 {
5173 	struct ipmi_smi_msg *rv;
5174 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5175 	if (rv) {
5176 		rv->done = free_smi_msg;
5177 		rv->user_data = NULL;
5178 		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5179 		atomic_inc(&smi_msg_inuse_count);
5180 	}
5181 	return rv;
5182 }
5183 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5184 
free_recv_msg(struct ipmi_recv_msg * msg)5185 static void free_recv_msg(struct ipmi_recv_msg *msg)
5186 {
5187 	atomic_dec(&recv_msg_inuse_count);
5188 	/* Try to keep as much stuff out of the panic path as possible. */
5189 	if (!oops_in_progress)
5190 		kfree(msg);
5191 }
5192 
ipmi_alloc_recv_msg(void)5193 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5194 {
5195 	struct ipmi_recv_msg *rv;
5196 
5197 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5198 	if (rv) {
5199 		rv->user = NULL;
5200 		rv->done = free_recv_msg;
5201 		atomic_inc(&recv_msg_inuse_count);
5202 	}
5203 	return rv;
5204 }
5205 
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5206 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5207 {
5208 	if (msg->user && !oops_in_progress)
5209 		kref_put(&msg->user->refcount, free_ipmi_user);
5210 	msg->done(msg);
5211 }
5212 EXPORT_SYMBOL(ipmi_free_recv_msg);
5213 
5214 static atomic_t panic_done_count = ATOMIC_INIT(0);
5215 
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5216 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5217 {
5218 	atomic_dec(&panic_done_count);
5219 }
5220 
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5221 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5222 {
5223 	atomic_dec(&panic_done_count);
5224 }
5225 
5226 /*
5227  * Inside a panic, send a message and wait for a response.
5228  */
_ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5229 static void _ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5230 					 struct ipmi_addr *addr,
5231 					 struct kernel_ipmi_msg *msg)
5232 {
5233 	struct ipmi_smi_msg  smi_msg;
5234 	struct ipmi_recv_msg recv_msg;
5235 	int rv;
5236 
5237 	smi_msg.done = dummy_smi_done_handler;
5238 	recv_msg.done = dummy_recv_done_handler;
5239 	atomic_add(2, &panic_done_count);
5240 	rv = i_ipmi_request(NULL,
5241 			    intf,
5242 			    addr,
5243 			    0,
5244 			    msg,
5245 			    intf,
5246 			    &smi_msg,
5247 			    &recv_msg,
5248 			    0,
5249 			    intf->addrinfo[0].address,
5250 			    intf->addrinfo[0].lun,
5251 			    0, 1); /* Don't retry, and don't wait. */
5252 	if (rv)
5253 		atomic_sub(2, &panic_done_count);
5254 	else if (intf->handlers->flush_messages)
5255 		intf->handlers->flush_messages(intf->send_info);
5256 
5257 	while (atomic_read(&panic_done_count) != 0)
5258 		ipmi_poll(intf);
5259 }
5260 
ipmi_panic_request_and_wait(struct ipmi_user * user,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5261 void ipmi_panic_request_and_wait(struct ipmi_user *user,
5262 				 struct ipmi_addr *addr,
5263 				 struct kernel_ipmi_msg *msg)
5264 {
5265 	user->intf->run_to_completion = 1;
5266 	_ipmi_panic_request_and_wait(user->intf, addr, msg);
5267 }
5268 EXPORT_SYMBOL(ipmi_panic_request_and_wait);
5269 
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5270 static void event_receiver_fetcher(struct ipmi_smi *intf,
5271 				   struct ipmi_recv_msg *msg)
5272 {
5273 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5274 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5275 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5276 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5277 		/* A get event receiver command, save it. */
5278 		intf->event_receiver = msg->msg.data[1];
5279 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5280 	}
5281 }
5282 
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5283 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5284 {
5285 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5286 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5287 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5288 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5289 		/*
5290 		 * A get device id command, save if we are an event
5291 		 * receiver or generator.
5292 		 */
5293 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5294 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5295 	}
5296 }
5297 
send_panic_events(struct ipmi_smi * intf,char * str)5298 static void send_panic_events(struct ipmi_smi *intf, char *str)
5299 {
5300 	struct kernel_ipmi_msg msg;
5301 	unsigned char data[16];
5302 	struct ipmi_system_interface_addr *si;
5303 	struct ipmi_addr addr;
5304 	char *p = str;
5305 	struct ipmi_ipmb_addr *ipmb;
5306 	int j;
5307 
5308 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5309 		return;
5310 
5311 	si = (struct ipmi_system_interface_addr *) &addr;
5312 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5313 	si->channel = IPMI_BMC_CHANNEL;
5314 	si->lun = 0;
5315 
5316 	/* Fill in an event telling that we have failed. */
5317 	msg.netfn = 0x04; /* Sensor or Event. */
5318 	msg.cmd = 2; /* Platform event command. */
5319 	msg.data = data;
5320 	msg.data_len = 8;
5321 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5322 	data[1] = 0x03; /* This is for IPMI 1.0. */
5323 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5324 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5325 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5326 
5327 	/*
5328 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
5329 	 * to make the panic events more useful.
5330 	 */
5331 	if (str) {
5332 		data[3] = str[0];
5333 		data[6] = str[1];
5334 		data[7] = str[2];
5335 	}
5336 
5337 	/* Send the event announcing the panic. */
5338 	_ipmi_panic_request_and_wait(intf, &addr, &msg);
5339 
5340 	/*
5341 	 * On every interface, dump a bunch of OEM event holding the
5342 	 * string.
5343 	 */
5344 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5345 		return;
5346 
5347 	/*
5348 	 * intf_num is used as an marker to tell if the
5349 	 * interface is valid.  Thus we need a read barrier to
5350 	 * make sure data fetched before checking intf_num
5351 	 * won't be used.
5352 	 */
5353 	smp_rmb();
5354 
5355 	/*
5356 	 * First job here is to figure out where to send the
5357 	 * OEM events.  There's no way in IPMI to send OEM
5358 	 * events using an event send command, so we have to
5359 	 * find the SEL to put them in and stick them in
5360 	 * there.
5361 	 */
5362 
5363 	/* Get capabilities from the get device id. */
5364 	intf->local_sel_device = 0;
5365 	intf->local_event_generator = 0;
5366 	intf->event_receiver = 0;
5367 
5368 	/* Request the device info from the local MC. */
5369 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5370 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5371 	msg.data = NULL;
5372 	msg.data_len = 0;
5373 	intf->null_user_handler = device_id_fetcher;
5374 	_ipmi_panic_request_and_wait(intf, &addr, &msg);
5375 
5376 	if (intf->local_event_generator) {
5377 		/* Request the event receiver from the local MC. */
5378 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5379 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5380 		msg.data = NULL;
5381 		msg.data_len = 0;
5382 		intf->null_user_handler = event_receiver_fetcher;
5383 		_ipmi_panic_request_and_wait(intf, &addr, &msg);
5384 	}
5385 	intf->null_user_handler = NULL;
5386 
5387 	/*
5388 	 * Validate the event receiver.  The low bit must not
5389 	 * be 1 (it must be a valid IPMB address), it cannot
5390 	 * be zero, and it must not be my address.
5391 	 */
5392 	if (((intf->event_receiver & 1) == 0)
5393 	    && (intf->event_receiver != 0)
5394 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5395 		/*
5396 		 * The event receiver is valid, send an IPMB
5397 		 * message.
5398 		 */
5399 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5400 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5401 		ipmb->channel = 0; /* FIXME - is this right? */
5402 		ipmb->lun = intf->event_receiver_lun;
5403 		ipmb->slave_addr = intf->event_receiver;
5404 	} else if (intf->local_sel_device) {
5405 		/*
5406 		 * The event receiver was not valid (or was
5407 		 * me), but I am an SEL device, just dump it
5408 		 * in my SEL.
5409 		 */
5410 		si = (struct ipmi_system_interface_addr *) &addr;
5411 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5412 		si->channel = IPMI_BMC_CHANNEL;
5413 		si->lun = 0;
5414 	} else
5415 		return; /* No where to send the event. */
5416 
5417 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5418 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5419 	msg.data = data;
5420 	msg.data_len = 16;
5421 
5422 	j = 0;
5423 	while (*p) {
5424 		int size = strnlen(p, 11);
5425 
5426 		data[0] = 0;
5427 		data[1] = 0;
5428 		data[2] = 0xf0; /* OEM event without timestamp. */
5429 		data[3] = intf->addrinfo[0].address;
5430 		data[4] = j++; /* sequence # */
5431 
5432 		memcpy_and_pad(data+5, 11, p, size, '\0');
5433 		p += size;
5434 
5435 		_ipmi_panic_request_and_wait(intf, &addr, &msg);
5436 	}
5437 }
5438 
5439 static int has_panicked;
5440 
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5441 static int panic_event(struct notifier_block *this,
5442 		       unsigned long         event,
5443 		       void                  *ptr)
5444 {
5445 	struct ipmi_smi *intf;
5446 	struct ipmi_user *user;
5447 
5448 	if (has_panicked)
5449 		return NOTIFY_DONE;
5450 	has_panicked = 1;
5451 
5452 	/* For every registered interface, set it to run to completion. */
5453 	list_for_each_entry(intf, &ipmi_interfaces, link) {
5454 		if (!intf->handlers || intf->intf_num == -1)
5455 			/* Interface is not ready. */
5456 			continue;
5457 
5458 		if (!intf->handlers->poll)
5459 			continue;
5460 
5461 		/*
5462 		 * If we were interrupted while locking xmit_msgs_lock or
5463 		 * waiting_rcv_msgs_lock, the corresponding list may be
5464 		 * corrupted.  In this case, drop items on the list for
5465 		 * the safety.
5466 		 */
5467 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5468 			INIT_LIST_HEAD(&intf->xmit_msgs);
5469 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5470 		} else
5471 			spin_unlock(&intf->xmit_msgs_lock);
5472 
5473 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5474 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5475 		else
5476 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5477 
5478 		intf->run_to_completion = 1;
5479 		if (intf->handlers->set_run_to_completion)
5480 			intf->handlers->set_run_to_completion(intf->send_info,
5481 							      1);
5482 
5483 		list_for_each_entry(user, &intf->users, link) {
5484 			if (user->handler->ipmi_panic_handler)
5485 				user->handler->ipmi_panic_handler(
5486 					user->handler_data);
5487 		}
5488 
5489 		send_panic_events(intf, ptr);
5490 	}
5491 
5492 	return NOTIFY_DONE;
5493 }
5494 
5495 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5496 static int ipmi_register_driver(void)
5497 {
5498 	int rv;
5499 
5500 	if (drvregistered)
5501 		return 0;
5502 
5503 	rv = driver_register(&ipmidriver.driver);
5504 	if (rv)
5505 		pr_err("Could not register IPMI driver\n");
5506 	else
5507 		drvregistered = true;
5508 	return rv;
5509 }
5510 
5511 static struct notifier_block panic_block = {
5512 	.notifier_call	= panic_event,
5513 	.next		= NULL,
5514 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5515 };
5516 
ipmi_init_msghandler(void)5517 static int ipmi_init_msghandler(void)
5518 {
5519 	int rv;
5520 
5521 	mutex_lock(&ipmi_interfaces_mutex);
5522 	rv = ipmi_register_driver();
5523 	if (rv)
5524 		goto out;
5525 	if (initialized)
5526 		goto out;
5527 
5528 	bmc_remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5529 	if (!bmc_remove_work_wq) {
5530 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5531 		rv = -ENOMEM;
5532 		goto out;
5533 	}
5534 
5535 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5536 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5537 
5538 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5539 
5540 	initialized = true;
5541 
5542 out:
5543 	mutex_unlock(&ipmi_interfaces_mutex);
5544 	return rv;
5545 }
5546 
ipmi_init_msghandler_mod(void)5547 static int __init ipmi_init_msghandler_mod(void)
5548 {
5549 	int rv;
5550 
5551 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5552 
5553 	mutex_lock(&ipmi_interfaces_mutex);
5554 	rv = ipmi_register_driver();
5555 	mutex_unlock(&ipmi_interfaces_mutex);
5556 
5557 	return rv;
5558 }
5559 
cleanup_ipmi(void)5560 static void __exit cleanup_ipmi(void)
5561 {
5562 	int count;
5563 
5564 	if (initialized) {
5565 		destroy_workqueue(bmc_remove_work_wq);
5566 
5567 		atomic_notifier_chain_unregister(&panic_notifier_list,
5568 						 &panic_block);
5569 
5570 		/*
5571 		 * This can't be called if any interfaces exist, so no worry
5572 		 * about shutting down the interfaces.
5573 		 */
5574 
5575 		/*
5576 		 * Tell the timer to stop, then wait for it to stop.  This
5577 		 * avoids problems with race conditions removing the timer
5578 		 * here.
5579 		 */
5580 		atomic_set(&stop_operation, 1);
5581 		timer_delete_sync(&ipmi_timer);
5582 		cancel_work_sync(&ipmi_timer_work);
5583 
5584 		initialized = false;
5585 
5586 		/* Check for buffer leaks. */
5587 		count = atomic_read(&smi_msg_inuse_count);
5588 		if (count != 0)
5589 			pr_warn("SMI message count %d at exit\n", count);
5590 		count = atomic_read(&recv_msg_inuse_count);
5591 		if (count != 0)
5592 			pr_warn("recv message count %d at exit\n", count);
5593 	}
5594 	if (drvregistered)
5595 		driver_unregister(&ipmidriver.driver);
5596 }
5597 module_exit(cleanup_ipmi);
5598 
5599 module_init(ipmi_init_msghandler_mod);
5600 MODULE_LICENSE("GPL");
5601 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5602 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5603 MODULE_VERSION(IPMI_DRIVER_VERSION);
5604 MODULE_SOFTDEP("post: ipmi_devintf");
5605