1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
10 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/version.h>
18 #include <linux/pci.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/ioport.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/if.h>
26 #include <linux/hdlc.h>
27 #include <asm/io.h>
28 #include <linux/uaccess.h>
29
30 #include "farsync.h"
31
32 /* Module info
33 */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37
38 /* Driver configuration and global parameters
39 * ==========================================
40 */
41
42 /* Number of ports (per card) and cards supported
43 */
44 #define FST_MAX_PORTS 4
45 #define FST_MAX_CARDS 32
46
47 /* Default parameters for the link
48 */
49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful
51 */
52 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
53 * of frames on the way down to the card
54 * so that we can keep the card busy
55 * and maximise throughput
56 */
57 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
58 * network layer
59 */
60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer
62 */
63 #define FST_MAX_MTU 8000 /* Huge but possible */
64 #define FST_DEF_MTU 1500 /* Common sane value */
65
66 #define FST_TX_TIMEOUT (2 * HZ)
67
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72 #endif
73
74 /* Modules parameters and associated variables
75 */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards;
80 static int fst_excluded_list[FST_MAX_CARDS];
81
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87
88 /* Card shared memory layout
89 * =========================
90 */
91 #pragma pack(1)
92
93 /* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
97 *
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
102 */
103 #define SMC_VERSION 24
104
105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
106
107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure
109 */
110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers
112 */
113
114 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
115 #define LEN_RX_BUFFER 8192
116
117 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
118 #define LEN_SMALL_RX_BUFFER 256
119
120 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
121 #define NUM_RX_BUFFER 8
122
123 /* Interrupt retry time in milliseconds */
124 #define INT_RETRY_TIME 2
125
126 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
127 * of buffer descriptors. The structure is almost identical to that used
128 * in the LANCE Ethernet controllers. Details available as PDF from the
129 * AMD web site: https://www.amd.com/products/epd/processors/\
130 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 */
132 struct txdesc { /* Transmit descriptor */
133 volatile u16 ladr; /* Low order address of packet. This is a
134 * linear address in the Am186 memory space
135 */
136 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
137 * bits must be zero
138 */
139 volatile u8 bits; /* Status and config */
140 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
141 * Transmit terminal count interrupt enable in
142 * top bit.
143 */
144 u16 unused; /* Not used in Tx */
145 };
146
147 struct rxdesc { /* Receive descriptor */
148 volatile u16 ladr; /* Low order address of packet */
149 volatile u8 hadr; /* High order address */
150 volatile u8 bits; /* Status and config */
151 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
152 * Receive terminal count interrupt enable in
153 * top bit.
154 */
155 volatile u16 mcnt; /* Message byte count (15 bits) */
156 };
157
158 /* Convert a length into the 15 bit 2's complement */
159 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
160 /* Since we need to set the high bit to enable the completion interrupt this
161 * can be made a lot simpler
162 */
163 #define cnv_bcnt(len) (-(len))
164
165 /* Status and config bits for the above */
166 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
167 #define TX_STP 0x02 /* Tx: start of packet */
168 #define TX_ENP 0x01 /* Tx: end of packet */
169 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
170 #define RX_FRAM 0x20 /* Rx: framing error */
171 #define RX_OFLO 0x10 /* Rx: overflow error */
172 #define RX_CRC 0x08 /* Rx: CRC error */
173 #define RX_HBUF 0x04 /* Rx: buffer error */
174 #define RX_STP 0x02 /* Rx: start of packet */
175 #define RX_ENP 0x01 /* Rx: end of packet */
176
177 /* Interrupts from the card are caused by various events which are presented
178 * in a circular buffer as several events may be processed on one physical int
179 */
180 #define MAX_CIRBUFF 32
181
182 struct cirbuff {
183 u8 rdindex; /* read, then increment and wrap */
184 u8 wrindex; /* write, then increment and wrap */
185 u8 evntbuff[MAX_CIRBUFF];
186 };
187
188 /* Interrupt event codes.
189 * Where appropriate the two low order bits indicate the port number
190 */
191 #define CTLA_CHG 0x18 /* Control signal changed */
192 #define CTLB_CHG 0x19
193 #define CTLC_CHG 0x1A
194 #define CTLD_CHG 0x1B
195
196 #define INIT_CPLT 0x20 /* Initialisation complete */
197 #define INIT_FAIL 0x21 /* Initialisation failed */
198
199 #define ABTA_SENT 0x24 /* Abort sent */
200 #define ABTB_SENT 0x25
201 #define ABTC_SENT 0x26
202 #define ABTD_SENT 0x27
203
204 #define TXA_UNDF 0x28 /* Transmission underflow */
205 #define TXB_UNDF 0x29
206 #define TXC_UNDF 0x2A
207 #define TXD_UNDF 0x2B
208
209 #define F56_INT 0x2C
210 #define M32_INT 0x2D
211
212 #define TE1_ALMA 0x30
213
214 /* Port physical configuration. See farsync.h for field values */
215 struct port_cfg {
216 u16 lineInterface; /* Physical interface type */
217 u8 x25op; /* Unused at present */
218 u8 internalClock; /* 1 => internal clock, 0 => external */
219 u8 transparentMode; /* 1 => on, 0 => off */
220 u8 invertClock; /* 0 => normal, 1 => inverted */
221 u8 padBytes[6]; /* Padding */
222 u32 lineSpeed; /* Speed in bps */
223 };
224
225 /* TE1 port physical configuration */
226 struct su_config {
227 u32 dataRate;
228 u8 clocking;
229 u8 framing;
230 u8 structure;
231 u8 interface;
232 u8 coding;
233 u8 lineBuildOut;
234 u8 equalizer;
235 u8 transparentMode;
236 u8 loopMode;
237 u8 range;
238 u8 txBufferMode;
239 u8 rxBufferMode;
240 u8 startingSlot;
241 u8 losThreshold;
242 u8 enableIdleCode;
243 u8 idleCode;
244 u8 spare[44];
245 };
246
247 /* TE1 Status */
248 struct su_status {
249 u32 receiveBufferDelay;
250 u32 framingErrorCount;
251 u32 codeViolationCount;
252 u32 crcErrorCount;
253 u32 lineAttenuation;
254 u8 portStarted;
255 u8 lossOfSignal;
256 u8 receiveRemoteAlarm;
257 u8 alarmIndicationSignal;
258 u8 spare[40];
259 };
260
261 /* Finally sling all the above together into the shared memory structure.
262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263 * evolving under NT for some time so I guess we're stuck with it.
264 * The structure starts at offset SMC_BASE.
265 * See farsync.h for some field values.
266 */
267 struct fst_shared {
268 /* DMA descriptor rings */
269 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
270 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271
272 /* Obsolete small buffers */
273 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
274 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275
276 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
277 * 0xFF => halted
278 */
279
280 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
281 * set to 0xEE by host to acknowledge interrupt
282 */
283
284 u16 smcVersion; /* Must match SMC_VERSION */
285
286 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
287 * version, RR = revision and BB = build
288 */
289
290 u16 txa_done; /* Obsolete completion flags */
291 u16 rxa_done;
292 u16 txb_done;
293 u16 rxb_done;
294 u16 txc_done;
295 u16 rxc_done;
296 u16 txd_done;
297 u16 rxd_done;
298
299 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
300
301 struct cirbuff interruptEvent; /* interrupt causes */
302
303 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
304 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
305
306 struct port_cfg portConfig[FST_MAX_PORTS];
307
308 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
309
310 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
311
312 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
313 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
314
315 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
316 u16 cardMailbox[4]; /* Not used */
317
318 /* Number of times the card thinks the host has
319 * missed an interrupt by not acknowledging
320 * within 2mS (I guess NT has problems)
321 */
322 u32 interruptRetryCount;
323
324 /* Driver private data used as an ID. We'll not
325 * use this as I'd rather keep such things
326 * in main memory rather than on the PCI bus
327 */
328 u32 portHandle[FST_MAX_PORTS];
329
330 /* Count of Tx underflows for stats */
331 u32 transmitBufferUnderflow[FST_MAX_PORTS];
332
333 /* Debounced V.24 control input status */
334 u32 v24DebouncedSts[FST_MAX_PORTS];
335
336 /* Adapter debounce timers. Don't touch */
337 u32 ctsTimer[FST_MAX_PORTS];
338 u32 ctsTimerRun[FST_MAX_PORTS];
339 u32 dcdTimer[FST_MAX_PORTS];
340 u32 dcdTimerRun[FST_MAX_PORTS];
341
342 u32 numberOfPorts; /* Number of ports detected at startup */
343
344 u16 _reserved[64];
345
346 u16 cardMode; /* Bit-mask to enable features:
347 * Bit 0: 1 enables LED identify mode
348 */
349
350 u16 portScheduleOffset;
351
352 struct su_config suConfig; /* TE1 Bits */
353 struct su_status suStatus;
354
355 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
356 * the structure and marks the end of shared
357 * memory. Adapter code initializes it as
358 * END_SIG.
359 */
360 };
361
362 /* endOfSmcSignature value */
363 #define END_SIG 0x12345678
364
365 /* Mailbox values. (portMailbox) */
366 #define NOP 0 /* No operation */
367 #define ACK 1 /* Positive acknowledgement to PC driver */
368 #define NAK 2 /* Negative acknowledgement to PC driver */
369 #define STARTPORT 3 /* Start an HDLC port */
370 #define STOPPORT 4 /* Stop an HDLC port */
371 #define ABORTTX 5 /* Abort the transmitter for a port */
372 #define SETV24O 6 /* Set V24 outputs */
373
374 /* PLX Chip Register Offsets */
375 #define CNTRL_9052 0x50 /* Control Register */
376 #define CNTRL_9054 0x6c /* Control Register */
377
378 #define INTCSR_9052 0x4c /* Interrupt control/status register */
379 #define INTCSR_9054 0x68 /* Interrupt control/status register */
380
381 /* 9054 DMA Registers */
382 /* Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
384 */
385 #define DMAMODE0 0x80
386 #define DMAPADR0 0x84
387 #define DMALADR0 0x88
388 #define DMASIZ0 0x8c
389 #define DMADPR0 0x90
390 #define DMAMODE1 0x94
391 #define DMAPADR1 0x98
392 #define DMALADR1 0x9c
393 #define DMASIZ1 0xa0
394 #define DMADPR1 0xa4
395 #define DMACSR0 0xa8
396 #define DMACSR1 0xa9
397 #define DMAARB 0xac
398 #define DMATHR 0xb0
399 #define DMADAC0 0xb4
400 #define DMADAC1 0xb8
401 #define DMAMARBR 0xac
402
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT 0x01
405 #define FST_TX_DMA_INT 0x02
406 #define FST_CARD_INT 0x04
407
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412 };
413
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
416
417 #pragma pack()
418
419 /* Device driver private information
420 * =================================
421 */
422 /* Per port (line or channel) information
423 */
424 struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
435 /* A sixteen entry transmit queue
436 */
437 int txqs; /* index to get next buffer to tx */
438 int txqe; /* index to queue next packet */
439 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
440 int rxqdepth;
441 };
442
443 /* Per card information
444 */
445 struct fst_card_info {
446 char __iomem *mem; /* Card memory mapped to kernel space */
447 char __iomem *ctlmem; /* Control memory for PCI cards */
448 unsigned int phys_mem; /* Physical memory window address */
449 unsigned int phys_ctlmem; /* Physical control memory address */
450 unsigned int irq; /* Interrupt request line number */
451 unsigned int nports; /* Number of serial ports */
452 unsigned int type; /* Type index of card */
453 unsigned int state; /* State of card */
454 spinlock_t card_lock; /* Lock for SMP access */
455 unsigned short pci_conf; /* PCI card config in I/O space */
456 /* Per port info */
457 struct fst_port_info ports[FST_MAX_PORTS];
458 struct pci_dev *device; /* Information about the pci device */
459 int card_no; /* Inst of the card on the system */
460 int family; /* TxP or TxU */
461 int dmarx_in_progress;
462 int dmatx_in_progress;
463 unsigned long int_count;
464 unsigned long int_time_ave;
465 void *rx_dma_handle_host;
466 dma_addr_t rx_dma_handle_card;
467 void *tx_dma_handle_host;
468 dma_addr_t tx_dma_handle_card;
469 struct sk_buff *dma_skb_rx;
470 struct fst_port_info *dma_port_rx;
471 struct fst_port_info *dma_port_tx;
472 int dma_len_rx;
473 int dma_len_tx;
474 int dma_txpos;
475 int dma_rxpos;
476 };
477
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P) ((P)->dev)
481
482 /* Shared memory window access macros
483 *
484 * We have a nice memory based structure above, which could be directly
485 * mapped on i386 but might not work on other architectures unless we use
486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487 * physical offsets so we have to convert. The only saving grace is that
488 * this should all collapse back to a simple indirection eventually.
489 */
490 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
491
492 #define FST_RDB(C, E) (readb((C)->mem + WIN_OFFSET(E)))
493 #define FST_RDW(C, E) (readw((C)->mem + WIN_OFFSET(E)))
494 #define FST_RDL(C, E) (readl((C)->mem + WIN_OFFSET(E)))
495
496 #define FST_WRB(C, E, B) (writeb((B), (C)->mem + WIN_OFFSET(E)))
497 #define FST_WRW(C, E, W) (writew((W), (C)->mem + WIN_OFFSET(E)))
498 #define FST_WRL(C, E, L) (writel((L), (C)->mem + WIN_OFFSET(E)))
499
500 /* Debug support
501 */
502 #if FST_DEBUG
503
504 static int fst_debug_mask = { FST_DEBUG };
505
506 /* Most common debug activity is to print something if the corresponding bit
507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
508 * support variable numbers of macro parameters. The inverted if prevents us
509 * eating someone else's else clause.
510 */
511 #define dbg(F, fmt, args...) \
512 do { \
513 if (fst_debug_mask & (F)) \
514 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
515 } while (0)
516 #else
517 #define dbg(F, fmt, args...) \
518 do { \
519 if (0) \
520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
521 } while (0)
522 #endif
523
524 /* PCI ID lookup table
525 */
526 static const struct pci_device_id fst_pci_dev_id[] = {
527 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
528 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
529
530 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
531 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
532
533 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
534 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
535
536 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
537 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
538
539 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
540 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
541
542 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
543 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
544
545 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
546 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
547 {0,} /* End */
548 };
549
550 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
551
552 /* Device Driver Work Queues
553 *
554 * So that we don't spend too much time processing events in the
555 * Interrupt Service routine, we will declare a work queue per Card
556 * and make the ISR schedule a task in the queue for later execution.
557 * In the 2.4 Kernel we used to use the immediate queue for BH's
558 * Now that they are gone, tasklets seem to be much better than work
559 * queues.
560 */
561
562 static void do_bottom_half_tx(struct fst_card_info *card);
563 static void do_bottom_half_rx(struct fst_card_info *card);
564 static void fst_process_tx_work_q(struct tasklet_struct *unused);
565 static void fst_process_int_work_q(struct tasklet_struct *unused);
566
567 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
568 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
569
570 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
571 static DEFINE_SPINLOCK(fst_work_q_lock);
572 static u64 fst_work_txq;
573 static u64 fst_work_intq;
574
575 static void
fst_q_work_item(u64 * queue,int card_index)576 fst_q_work_item(u64 *queue, int card_index)
577 {
578 unsigned long flags;
579 u64 mask;
580
581 /* Grab the queue exclusively
582 */
583 spin_lock_irqsave(&fst_work_q_lock, flags);
584
585 /* Making an entry in the queue is simply a matter of setting
586 * a bit for the card indicating that there is work to do in the
587 * bottom half for the card. Note the limitation of 64 cards.
588 * That ought to be enough
589 */
590 mask = (u64)1 << card_index;
591 *queue |= mask;
592 spin_unlock_irqrestore(&fst_work_q_lock, flags);
593 }
594
595 static void
fst_process_tx_work_q(struct tasklet_struct * unused)596 fst_process_tx_work_q(struct tasklet_struct *unused)
597 {
598 unsigned long flags;
599 u64 work_txq;
600 int i;
601
602 /* Grab the queue exclusively
603 */
604 dbg(DBG_TX, "fst_process_tx_work_q\n");
605 spin_lock_irqsave(&fst_work_q_lock, flags);
606 work_txq = fst_work_txq;
607 fst_work_txq = 0;
608 spin_unlock_irqrestore(&fst_work_q_lock, flags);
609
610 /* Call the bottom half for each card with work waiting
611 */
612 for (i = 0; i < FST_MAX_CARDS; i++) {
613 if (work_txq & 0x01) {
614 if (fst_card_array[i]) {
615 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
616 do_bottom_half_tx(fst_card_array[i]);
617 }
618 }
619 work_txq = work_txq >> 1;
620 }
621 }
622
623 static void
fst_process_int_work_q(struct tasklet_struct * unused)624 fst_process_int_work_q(struct tasklet_struct *unused)
625 {
626 unsigned long flags;
627 u64 work_intq;
628 int i;
629
630 /* Grab the queue exclusively
631 */
632 dbg(DBG_INTR, "fst_process_int_work_q\n");
633 spin_lock_irqsave(&fst_work_q_lock, flags);
634 work_intq = fst_work_intq;
635 fst_work_intq = 0;
636 spin_unlock_irqrestore(&fst_work_q_lock, flags);
637
638 /* Call the bottom half for each card with work waiting
639 */
640 for (i = 0; i < FST_MAX_CARDS; i++) {
641 if (work_intq & 0x01) {
642 if (fst_card_array[i]) {
643 dbg(DBG_INTR,
644 "Calling rx & tx bh for card %d\n", i);
645 do_bottom_half_rx(fst_card_array[i]);
646 do_bottom_half_tx(fst_card_array[i]);
647 }
648 }
649 work_intq = work_intq >> 1;
650 }
651 }
652
653 /* Card control functions
654 * ======================
655 */
656 /* Place the processor in reset state
657 *
658 * Used to be a simple write to card control space but a glitch in the latest
659 * AMD Am186CH processor means that we now have to do it by asserting and de-
660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
661 * at offset 9052_CNTRL. Note the updates for the TXU.
662 */
663 static inline void
fst_cpureset(struct fst_card_info * card)664 fst_cpureset(struct fst_card_info *card)
665 {
666 unsigned char interrupt_line_register;
667 unsigned int regval;
668
669 if (card->family == FST_FAMILY_TXU) {
670 if (pci_read_config_byte
671 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
672 dbg(DBG_ASS,
673 "Error in reading interrupt line register\n");
674 }
675 /* Assert PLX software reset and Am186 hardware reset
676 * and then deassert the PLX software reset but 186 still in reset
677 */
678 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
679 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
680 /* We are delaying here to allow the 9054 to reset itself
681 */
682 usleep_range(10, 20);
683 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
684 /* We are delaying here to allow the 9054 to reload its eeprom
685 */
686 usleep_range(10, 20);
687 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
688
689 if (pci_write_config_byte
690 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
691 dbg(DBG_ASS,
692 "Error in writing interrupt line register\n");
693 }
694
695 } else {
696 regval = inl(card->pci_conf + CNTRL_9052);
697
698 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
699 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
700 }
701 }
702
703 /* Release the processor from reset
704 */
705 static inline void
fst_cpurelease(struct fst_card_info * card)706 fst_cpurelease(struct fst_card_info *card)
707 {
708 if (card->family == FST_FAMILY_TXU) {
709 /* Force posted writes to complete
710 */
711 (void)readb(card->mem);
712
713 /* Release LRESET DO = 1
714 * Then release Local Hold, DO = 1
715 */
716 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
717 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
718 } else {
719 (void)readb(card->ctlmem);
720 }
721 }
722
723 /* Clear the cards interrupt flag
724 */
725 static inline void
fst_clear_intr(struct fst_card_info * card)726 fst_clear_intr(struct fst_card_info *card)
727 {
728 if (card->family == FST_FAMILY_TXU) {
729 (void)readb(card->ctlmem);
730 } else {
731 /* Poke the appropriate PLX chip register (same as enabling interrupts)
732 */
733 outw(0x0543, card->pci_conf + INTCSR_9052);
734 }
735 }
736
737 /* Enable card interrupts
738 */
739 static inline void
fst_enable_intr(struct fst_card_info * card)740 fst_enable_intr(struct fst_card_info *card)
741 {
742 if (card->family == FST_FAMILY_TXU)
743 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
744 else
745 outw(0x0543, card->pci_conf + INTCSR_9052);
746 }
747
748 /* Disable card interrupts
749 */
750 static inline void
fst_disable_intr(struct fst_card_info * card)751 fst_disable_intr(struct fst_card_info *card)
752 {
753 if (card->family == FST_FAMILY_TXU)
754 outl(0x00000000, card->pci_conf + INTCSR_9054);
755 else
756 outw(0x0000, card->pci_conf + INTCSR_9052);
757 }
758
759 /* Process the result of trying to pass a received frame up the stack
760 */
761 static void
fst_process_rx_status(int rx_status,char * name)762 fst_process_rx_status(int rx_status, char *name)
763 {
764 switch (rx_status) {
765 case NET_RX_SUCCESS:
766 {
767 /* Nothing to do here
768 */
769 break;
770 }
771 case NET_RX_DROP:
772 {
773 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
774 break;
775 }
776 }
777 }
778
779 /* Initilaise DMA for PLX 9054
780 */
781 static inline void
fst_init_dma(struct fst_card_info * card)782 fst_init_dma(struct fst_card_info *card)
783 {
784 /* This is only required for the PLX 9054
785 */
786 if (card->family == FST_FAMILY_TXU) {
787 pci_set_master(card->device);
788 outl(0x00020441, card->pci_conf + DMAMODE0);
789 outl(0x00020441, card->pci_conf + DMAMODE1);
790 outl(0x0, card->pci_conf + DMATHR);
791 }
792 }
793
794 /* Tx dma complete interrupt
795 */
796 static void
fst_tx_dma_complete(struct fst_card_info * card,struct fst_port_info * port,int len,int txpos)797 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
798 int len, int txpos)
799 {
800 struct net_device *dev = port_to_dev(port);
801
802 /* Everything is now set, just tell the card to go
803 */
804 dbg(DBG_TX, "fst_tx_dma_complete\n");
805 FST_WRB(card, txDescrRing[port->index][txpos].bits,
806 DMA_OWN | TX_STP | TX_ENP);
807 dev->stats.tx_packets++;
808 dev->stats.tx_bytes += len;
809 netif_trans_update(dev);
810 }
811
812 /* Mark it for our own raw sockets interface
813 */
farsync_type_trans(struct sk_buff * skb,struct net_device * dev)814 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
815 {
816 skb->dev = dev;
817 skb_reset_mac_header(skb);
818 skb->pkt_type = PACKET_HOST;
819 return htons(ETH_P_CUST);
820 }
821
822 /* Rx dma complete interrupt
823 */
824 static void
fst_rx_dma_complete(struct fst_card_info * card,struct fst_port_info * port,int len,struct sk_buff * skb,int rxp)825 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 int len, struct sk_buff *skb, int rxp)
827 {
828 struct net_device *dev = port_to_dev(port);
829 int pi;
830 int rx_status;
831
832 dbg(DBG_TX, "fst_rx_dma_complete\n");
833 pi = port->index;
834 skb_put_data(skb, card->rx_dma_handle_host, len);
835
836 /* Reset buffer descriptor */
837 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
838
839 /* Update stats */
840 dev->stats.rx_packets++;
841 dev->stats.rx_bytes += len;
842
843 /* Push upstream */
844 dbg(DBG_RX, "Pushing the frame up the stack\n");
845 if (port->mode == FST_RAW)
846 skb->protocol = farsync_type_trans(skb, dev);
847 else
848 skb->protocol = hdlc_type_trans(skb, dev);
849 rx_status = netif_rx(skb);
850 fst_process_rx_status(rx_status, port_to_dev(port)->name);
851 if (rx_status == NET_RX_DROP)
852 dev->stats.rx_dropped++;
853 }
854
855 /* Receive a frame through the DMA
856 */
857 static inline void
fst_rx_dma(struct fst_card_info * card,dma_addr_t dma,u32 mem,int len)858 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
859 {
860 /* This routine will setup the DMA and start it
861 */
862
863 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
864 if (card->dmarx_in_progress)
865 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
866
867 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */
868 outl(mem, card->pci_conf + DMALADR0); /* from here */
869 outl(len, card->pci_conf + DMASIZ0); /* for this length */
870 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
871
872 /* We use the dmarx_in_progress flag to flag the channel as busy
873 */
874 card->dmarx_in_progress = 1;
875 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
876 }
877
878 /* Send a frame through the DMA
879 */
880 static inline void
fst_tx_dma(struct fst_card_info * card,dma_addr_t dma,u32 mem,int len)881 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882 {
883 /* This routine will setup the DMA and start it.
884 */
885
886 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
887 if (card->dmatx_in_progress)
888 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
889
890 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */
891 outl(mem, card->pci_conf + DMALADR1); /* to here */
892 outl(len, card->pci_conf + DMASIZ1); /* for this length */
893 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
894
895 /* We use the dmatx_in_progress to flag the channel as busy
896 */
897 card->dmatx_in_progress = 1;
898 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
899 }
900
901 /* Issue a Mailbox command for a port.
902 * Note we issue them on a fire and forget basis, not expecting to see an
903 * error and not waiting for completion.
904 */
905 static void
fst_issue_cmd(struct fst_port_info * port,unsigned short cmd)906 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
907 {
908 struct fst_card_info *card;
909 unsigned short mbval;
910 unsigned long flags;
911 int safety;
912
913 card = port->card;
914 spin_lock_irqsave(&card->card_lock, flags);
915 mbval = FST_RDW(card, portMailbox[port->index][0]);
916
917 safety = 0;
918 /* Wait for any previous command to complete */
919 while (mbval > NAK) {
920 spin_unlock_irqrestore(&card->card_lock, flags);
921 schedule_timeout_uninterruptible(1);
922 spin_lock_irqsave(&card->card_lock, flags);
923
924 if (++safety > 2000) {
925 pr_err("Mailbox safety timeout\n");
926 break;
927 }
928
929 mbval = FST_RDW(card, portMailbox[port->index][0]);
930 }
931 if (safety > 0)
932 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
933
934 if (mbval == NAK)
935 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
936
937 FST_WRW(card, portMailbox[port->index][0], cmd);
938
939 if (cmd == ABORTTX || cmd == STARTPORT) {
940 port->txpos = 0;
941 port->txipos = 0;
942 port->start = 0;
943 }
944
945 spin_unlock_irqrestore(&card->card_lock, flags);
946 }
947
948 /* Port output signals control
949 */
950 static inline void
fst_op_raise(struct fst_port_info * port,unsigned int outputs)951 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
952 {
953 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
954 FST_WRL(port->card, v24OpSts[port->index], outputs);
955
956 if (port->run)
957 fst_issue_cmd(port, SETV24O);
958 }
959
960 static inline void
fst_op_lower(struct fst_port_info * port,unsigned int outputs)961 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
962 {
963 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
964 FST_WRL(port->card, v24OpSts[port->index], outputs);
965
966 if (port->run)
967 fst_issue_cmd(port, SETV24O);
968 }
969
970 /* Setup port Rx buffers
971 */
972 static void
fst_rx_config(struct fst_port_info * port)973 fst_rx_config(struct fst_port_info *port)
974 {
975 int i;
976 int pi;
977 unsigned int offset;
978 unsigned long flags;
979 struct fst_card_info *card;
980
981 pi = port->index;
982 card = port->card;
983 spin_lock_irqsave(&card->card_lock, flags);
984 for (i = 0; i < NUM_RX_BUFFER; i++) {
985 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
986
987 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset);
988 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16));
989 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
990 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
991 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
992 }
993 port->rxpos = 0;
994 spin_unlock_irqrestore(&card->card_lock, flags);
995 }
996
997 /* Setup port Tx buffers
998 */
999 static void
fst_tx_config(struct fst_port_info * port)1000 fst_tx_config(struct fst_port_info *port)
1001 {
1002 int i;
1003 int pi;
1004 unsigned int offset;
1005 unsigned long flags;
1006 struct fst_card_info *card;
1007
1008 pi = port->index;
1009 card = port->card;
1010 spin_lock_irqsave(&card->card_lock, flags);
1011 for (i = 0; i < NUM_TX_BUFFER; i++) {
1012 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1013
1014 FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset);
1015 FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16));
1016 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1017 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1018 }
1019 port->txpos = 0;
1020 port->txipos = 0;
1021 port->start = 0;
1022 spin_unlock_irqrestore(&card->card_lock, flags);
1023 }
1024
1025 /* TE1 Alarm change interrupt event
1026 */
1027 static void
fst_intr_te1_alarm(struct fst_card_info * card,struct fst_port_info * port)1028 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1029 {
1030 u8 los;
1031 u8 rra;
1032 u8 ais;
1033
1034 los = FST_RDB(card, suStatus.lossOfSignal);
1035 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1036 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1037
1038 if (los) {
1039 /* Lost the link
1040 */
1041 if (netif_carrier_ok(port_to_dev(port))) {
1042 dbg(DBG_INTR, "Net carrier off\n");
1043 netif_carrier_off(port_to_dev(port));
1044 }
1045 } else {
1046 /* Link available
1047 */
1048 if (!netif_carrier_ok(port_to_dev(port))) {
1049 dbg(DBG_INTR, "Net carrier on\n");
1050 netif_carrier_on(port_to_dev(port));
1051 }
1052 }
1053
1054 if (los)
1055 dbg(DBG_INTR, "Assert LOS Alarm\n");
1056 else
1057 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1058 if (rra)
1059 dbg(DBG_INTR, "Assert RRA Alarm\n");
1060 else
1061 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1062
1063 if (ais)
1064 dbg(DBG_INTR, "Assert AIS Alarm\n");
1065 else
1066 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1067 }
1068
1069 /* Control signal change interrupt event
1070 */
1071 static void
fst_intr_ctlchg(struct fst_card_info * card,struct fst_port_info * port)1072 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074 int signals;
1075
1076 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1077
1078 if (signals & ((port->hwif == X21 || port->hwif == X21D)
1079 ? IPSTS_INDICATE : IPSTS_DCD)) {
1080 if (!netif_carrier_ok(port_to_dev(port))) {
1081 dbg(DBG_INTR, "DCD active\n");
1082 netif_carrier_on(port_to_dev(port));
1083 }
1084 } else {
1085 if (netif_carrier_ok(port_to_dev(port))) {
1086 dbg(DBG_INTR, "DCD lost\n");
1087 netif_carrier_off(port_to_dev(port));
1088 }
1089 }
1090 }
1091
1092 /* Log Rx Errors
1093 */
1094 static void
fst_log_rx_error(struct fst_card_info * card,struct fst_port_info * port,unsigned char dmabits,int rxp,unsigned short len)1095 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1096 unsigned char dmabits, int rxp, unsigned short len)
1097 {
1098 struct net_device *dev = port_to_dev(port);
1099
1100 /* Increment the appropriate error counter
1101 */
1102 dev->stats.rx_errors++;
1103 if (dmabits & RX_OFLO) {
1104 dev->stats.rx_fifo_errors++;
1105 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1106 card->card_no, port->index, rxp);
1107 }
1108 if (dmabits & RX_CRC) {
1109 dev->stats.rx_crc_errors++;
1110 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1111 card->card_no, port->index);
1112 }
1113 if (dmabits & RX_FRAM) {
1114 dev->stats.rx_frame_errors++;
1115 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1116 card->card_no, port->index);
1117 }
1118 if (dmabits == (RX_STP | RX_ENP)) {
1119 dev->stats.rx_length_errors++;
1120 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1121 len, card->card_no, port->index);
1122 }
1123 }
1124
1125 /* Rx Error Recovery
1126 */
1127 static void
fst_recover_rx_error(struct fst_card_info * card,struct fst_port_info * port,unsigned char dmabits,int rxp,unsigned short len)1128 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1129 unsigned char dmabits, int rxp, unsigned short len)
1130 {
1131 int i;
1132 int pi;
1133
1134 pi = port->index;
1135 /* Discard buffer descriptors until we see the start of the
1136 * next frame. Note that for long frames this could be in
1137 * a subsequent interrupt.
1138 */
1139 i = 0;
1140 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1141 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1142 rxp = (rxp + 1) % NUM_RX_BUFFER;
1143 if (++i > NUM_RX_BUFFER) {
1144 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1145 " than we have\n");
1146 break;
1147 }
1148 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1149 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1150 }
1151 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1152
1153 /* Discard the terminal buffer */
1154 if (!(dmabits & DMA_OWN)) {
1155 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1156 rxp = (rxp + 1) % NUM_RX_BUFFER;
1157 }
1158 port->rxpos = rxp;
1159 }
1160
1161 /* Rx complete interrupt
1162 */
1163 static void
fst_intr_rx(struct fst_card_info * card,struct fst_port_info * port)1164 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1165 {
1166 unsigned char dmabits;
1167 int pi;
1168 int rxp;
1169 int rx_status;
1170 unsigned short len;
1171 struct sk_buff *skb;
1172 struct net_device *dev = port_to_dev(port);
1173
1174 /* Check we have a buffer to process */
1175 pi = port->index;
1176 rxp = port->rxpos;
1177 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1178 if (dmabits & DMA_OWN) {
1179 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1180 pi, rxp);
1181 return;
1182 }
1183 if (card->dmarx_in_progress)
1184 return;
1185
1186 /* Get buffer length */
1187 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1188 /* Discard the CRC */
1189 len -= 2;
1190 if (len == 0) {
1191 /* This seems to happen on the TE1 interface sometimes
1192 * so throw the frame away and log the event.
1193 */
1194 pr_err("Frame received with 0 length. Card %d Port %d\n",
1195 card->card_no, port->index);
1196 /* Return descriptor to card */
1197 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1198
1199 rxp = (rxp + 1) % NUM_RX_BUFFER;
1200 port->rxpos = rxp;
1201 return;
1202 }
1203
1204 /* Check buffer length and for other errors. We insist on one packet
1205 * in one buffer. This simplifies things greatly and since we've
1206 * allocated 8K it shouldn't be a real world limitation
1207 */
1208 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1209 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1210 fst_log_rx_error(card, port, dmabits, rxp, len);
1211 fst_recover_rx_error(card, port, dmabits, rxp, len);
1212 return;
1213 }
1214
1215 /* Allocate SKB */
1216 skb = dev_alloc_skb(len);
1217 if (!skb) {
1218 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1219
1220 dev->stats.rx_dropped++;
1221
1222 /* Return descriptor to card */
1223 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1224
1225 rxp = (rxp + 1) % NUM_RX_BUFFER;
1226 port->rxpos = rxp;
1227 return;
1228 }
1229
1230 /* We know the length we need to receive, len.
1231 * It's not worth using the DMA for reads of less than
1232 * FST_MIN_DMA_LEN
1233 */
1234
1235 if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) {
1236 memcpy_fromio(skb_put(skb, len),
1237 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1238 len);
1239
1240 /* Reset buffer descriptor */
1241 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1242
1243 /* Update stats */
1244 dev->stats.rx_packets++;
1245 dev->stats.rx_bytes += len;
1246
1247 /* Push upstream */
1248 dbg(DBG_RX, "Pushing frame up the stack\n");
1249 if (port->mode == FST_RAW)
1250 skb->protocol = farsync_type_trans(skb, dev);
1251 else
1252 skb->protocol = hdlc_type_trans(skb, dev);
1253 rx_status = netif_rx(skb);
1254 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1255 if (rx_status == NET_RX_DROP)
1256 dev->stats.rx_dropped++;
1257 } else {
1258 card->dma_skb_rx = skb;
1259 card->dma_port_rx = port;
1260 card->dma_len_rx = len;
1261 card->dma_rxpos = rxp;
1262 fst_rx_dma(card, card->rx_dma_handle_card,
1263 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1264 }
1265 if (rxp != port->rxpos) {
1266 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1267 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1268 }
1269 rxp = (rxp + 1) % NUM_RX_BUFFER;
1270 port->rxpos = rxp;
1271 }
1272
1273 /* The bottom half to the ISR
1274 *
1275 */
1276
1277 static void
do_bottom_half_tx(struct fst_card_info * card)1278 do_bottom_half_tx(struct fst_card_info *card)
1279 {
1280 struct fst_port_info *port;
1281 int pi;
1282 int txq_length;
1283 struct sk_buff *skb;
1284 unsigned long flags;
1285 struct net_device *dev;
1286
1287 /* Find a free buffer for the transmit
1288 * Step through each port on this card
1289 */
1290
1291 dbg(DBG_TX, "do_bottom_half_tx\n");
1292 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1293 if (!port->run)
1294 continue;
1295
1296 dev = port_to_dev(port);
1297 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1298 DMA_OWN) &&
1299 !(card->dmatx_in_progress)) {
1300 /* There doesn't seem to be a txdone event per-se
1301 * We seem to have to deduce it, by checking the DMA_OWN
1302 * bit on the next buffer we think we can use
1303 */
1304 spin_lock_irqsave(&card->card_lock, flags);
1305 txq_length = port->txqe - port->txqs;
1306 if (txq_length < 0) {
1307 /* This is the case where one has wrapped and the
1308 * maths gives us a negative number
1309 */
1310 txq_length = txq_length + FST_TXQ_DEPTH;
1311 }
1312 spin_unlock_irqrestore(&card->card_lock, flags);
1313 if (txq_length > 0) {
1314 /* There is something to send
1315 */
1316 spin_lock_irqsave(&card->card_lock, flags);
1317 skb = port->txq[port->txqs];
1318 port->txqs++;
1319 if (port->txqs == FST_TXQ_DEPTH)
1320 port->txqs = 0;
1321
1322 spin_unlock_irqrestore(&card->card_lock, flags);
1323 /* copy the data and set the required indicators on the
1324 * card.
1325 */
1326 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1327 cnv_bcnt(skb->len));
1328 if (skb->len < FST_MIN_DMA_LEN ||
1329 card->family == FST_FAMILY_TXP) {
1330 /* Enqueue the packet with normal io */
1331 memcpy_toio(card->mem +
1332 BUF_OFFSET(txBuffer[pi]
1333 [port->
1334 txpos][0]),
1335 skb->data, skb->len);
1336 FST_WRB(card,
1337 txDescrRing[pi][port->txpos].
1338 bits,
1339 DMA_OWN | TX_STP | TX_ENP);
1340 dev->stats.tx_packets++;
1341 dev->stats.tx_bytes += skb->len;
1342 netif_trans_update(dev);
1343 } else {
1344 /* Or do it through dma */
1345 memcpy(card->tx_dma_handle_host,
1346 skb->data, skb->len);
1347 card->dma_port_tx = port;
1348 card->dma_len_tx = skb->len;
1349 card->dma_txpos = port->txpos;
1350 fst_tx_dma(card,
1351 card->tx_dma_handle_card,
1352 BUF_OFFSET(txBuffer[pi]
1353 [port->txpos][0]),
1354 skb->len);
1355 }
1356 if (++port->txpos >= NUM_TX_BUFFER)
1357 port->txpos = 0;
1358 /* If we have flow control on, can we now release it?
1359 */
1360 if (port->start) {
1361 if (txq_length < fst_txq_low) {
1362 netif_wake_queue(port_to_dev
1363 (port));
1364 port->start = 0;
1365 }
1366 }
1367 dev_kfree_skb(skb);
1368 } else {
1369 /* Nothing to send so break out of the while loop
1370 */
1371 break;
1372 }
1373 }
1374 }
1375 }
1376
1377 static void
do_bottom_half_rx(struct fst_card_info * card)1378 do_bottom_half_rx(struct fst_card_info *card)
1379 {
1380 struct fst_port_info *port;
1381 int pi;
1382 int rx_count = 0;
1383
1384 /* Check for rx completions on all ports on this card */
1385 dbg(DBG_RX, "do_bottom_half_rx\n");
1386 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1387 if (!port->run)
1388 continue;
1389
1390 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1391 & DMA_OWN) && !(card->dmarx_in_progress)) {
1392 if (rx_count > fst_max_reads) {
1393 /* Don't spend forever in receive processing
1394 * Schedule another event
1395 */
1396 fst_q_work_item(&fst_work_intq, card->card_no);
1397 tasklet_schedule(&fst_int_task);
1398 break; /* Leave the loop */
1399 }
1400 fst_intr_rx(card, port);
1401 rx_count++;
1402 }
1403 }
1404 }
1405
1406 /* The interrupt service routine
1407 * Dev_id is our fst_card_info pointer
1408 */
1409 static irqreturn_t
fst_intr(int dummy,void * dev_id)1410 fst_intr(int dummy, void *dev_id)
1411 {
1412 struct fst_card_info *card = dev_id;
1413 struct fst_port_info *port;
1414 int rdidx; /* Event buffer indices */
1415 int wridx;
1416 int event; /* Actual event for processing */
1417 unsigned int dma_intcsr = 0;
1418 unsigned int do_card_interrupt;
1419 unsigned int int_retry_count;
1420
1421 /* Check to see if the interrupt was for this card
1422 * return if not
1423 * Note that the call to clear the interrupt is important
1424 */
1425 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1426 if (card->state != FST_RUNNING) {
1427 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1428 card->card_no, card->state);
1429
1430 /* It is possible to really be running, i.e. we have re-loaded
1431 * a running card
1432 * Clear and reprime the interrupt source
1433 */
1434 fst_clear_intr(card);
1435 return IRQ_HANDLED;
1436 }
1437
1438 /* Clear and reprime the interrupt source */
1439 fst_clear_intr(card);
1440
1441 /* Is the interrupt for this card (handshake == 1)
1442 */
1443 do_card_interrupt = 0;
1444 if (FST_RDB(card, interruptHandshake) == 1) {
1445 do_card_interrupt += FST_CARD_INT;
1446 /* Set the software acknowledge */
1447 FST_WRB(card, interruptHandshake, 0xEE);
1448 }
1449 if (card->family == FST_FAMILY_TXU) {
1450 /* Is it a DMA Interrupt
1451 */
1452 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1453 if (dma_intcsr & 0x00200000) {
1454 /* DMA Channel 0 (Rx transfer complete)
1455 */
1456 dbg(DBG_RX, "DMA Rx xfer complete\n");
1457 outb(0x8, card->pci_conf + DMACSR0);
1458 fst_rx_dma_complete(card, card->dma_port_rx,
1459 card->dma_len_rx, card->dma_skb_rx,
1460 card->dma_rxpos);
1461 card->dmarx_in_progress = 0;
1462 do_card_interrupt += FST_RX_DMA_INT;
1463 }
1464 if (dma_intcsr & 0x00400000) {
1465 /* DMA Channel 1 (Tx transfer complete)
1466 */
1467 dbg(DBG_TX, "DMA Tx xfer complete\n");
1468 outb(0x8, card->pci_conf + DMACSR1);
1469 fst_tx_dma_complete(card, card->dma_port_tx,
1470 card->dma_len_tx, card->dma_txpos);
1471 card->dmatx_in_progress = 0;
1472 do_card_interrupt += FST_TX_DMA_INT;
1473 }
1474 }
1475
1476 /* Have we been missing Interrupts
1477 */
1478 int_retry_count = FST_RDL(card, interruptRetryCount);
1479 if (int_retry_count) {
1480 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1481 card->card_no, int_retry_count);
1482 FST_WRL(card, interruptRetryCount, 0);
1483 }
1484
1485 if (!do_card_interrupt)
1486 return IRQ_HANDLED;
1487
1488 /* Scehdule the bottom half of the ISR */
1489 fst_q_work_item(&fst_work_intq, card->card_no);
1490 tasklet_schedule(&fst_int_task);
1491
1492 /* Drain the event queue */
1493 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1494 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1495 while (rdidx != wridx) {
1496 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1497 port = &card->ports[event & 0x03];
1498
1499 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1500
1501 switch (event) {
1502 case TE1_ALMA:
1503 dbg(DBG_INTR, "TE1 Alarm intr\n");
1504 if (port->run)
1505 fst_intr_te1_alarm(card, port);
1506 break;
1507
1508 case CTLA_CHG:
1509 case CTLB_CHG:
1510 case CTLC_CHG:
1511 case CTLD_CHG:
1512 if (port->run)
1513 fst_intr_ctlchg(card, port);
1514 break;
1515
1516 case ABTA_SENT:
1517 case ABTB_SENT:
1518 case ABTC_SENT:
1519 case ABTD_SENT:
1520 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1521 break;
1522
1523 case TXA_UNDF:
1524 case TXB_UNDF:
1525 case TXC_UNDF:
1526 case TXD_UNDF:
1527 /* Difficult to see how we'd get this given that we
1528 * always load up the entire packet for DMA.
1529 */
1530 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1531 port_to_dev(port)->stats.tx_errors++;
1532 port_to_dev(port)->stats.tx_fifo_errors++;
1533 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1534 card->card_no, port->index);
1535 break;
1536
1537 case INIT_CPLT:
1538 dbg(DBG_INIT, "Card init OK intr\n");
1539 break;
1540
1541 case INIT_FAIL:
1542 dbg(DBG_INIT, "Card init FAILED intr\n");
1543 card->state = FST_IFAILED;
1544 break;
1545
1546 default:
1547 pr_err("intr: unknown card event %d. ignored\n", event);
1548 break;
1549 }
1550
1551 /* Bump and wrap the index */
1552 if (++rdidx >= MAX_CIRBUFF)
1553 rdidx = 0;
1554 }
1555 FST_WRB(card, interruptEvent.rdindex, rdidx);
1556 return IRQ_HANDLED;
1557 }
1558
1559 /* Check that the shared memory configuration is one that we can handle
1560 * and that some basic parameters are correct
1561 */
1562 static void
check_started_ok(struct fst_card_info * card)1563 check_started_ok(struct fst_card_info *card)
1564 {
1565 int i;
1566
1567 /* Check structure version and end marker */
1568 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1569 pr_err("Bad shared memory version %d expected %d\n",
1570 FST_RDW(card, smcVersion), SMC_VERSION);
1571 card->state = FST_BADVERSION;
1572 return;
1573 }
1574 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1575 pr_err("Missing shared memory signature\n");
1576 card->state = FST_BADVERSION;
1577 return;
1578 }
1579 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1580 i = FST_RDB(card, taskStatus);
1581 if (i == 0x01) {
1582 card->state = FST_RUNNING;
1583 } else if (i == 0xFF) {
1584 pr_err("Firmware initialisation failed. Card halted\n");
1585 card->state = FST_HALTED;
1586 return;
1587 } else if (i != 0x00) {
1588 pr_err("Unknown firmware status 0x%x\n", i);
1589 card->state = FST_HALTED;
1590 return;
1591 }
1592
1593 /* Finally check the number of ports reported by firmware against the
1594 * number we assumed at card detection. Should never happen with
1595 * existing firmware etc so we just report it for the moment.
1596 */
1597 if (FST_RDL(card, numberOfPorts) != card->nports) {
1598 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1599 card->card_no,
1600 FST_RDL(card, numberOfPorts), card->nports);
1601 }
1602 }
1603
1604 static int
set_conf_from_info(struct fst_card_info * card,struct fst_port_info * port,struct fstioc_info * info)1605 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1606 struct fstioc_info *info)
1607 {
1608 int err;
1609 unsigned char my_framing;
1610
1611 /* Set things according to the user set valid flags
1612 * Several of the old options have been invalidated/replaced by the
1613 * generic hdlc package.
1614 */
1615 err = 0;
1616 if (info->valid & FSTVAL_PROTO) {
1617 if (info->proto == FST_RAW)
1618 port->mode = FST_RAW;
1619 else
1620 port->mode = FST_GEN_HDLC;
1621 }
1622
1623 if (info->valid & FSTVAL_CABLE)
1624 err = -EINVAL;
1625
1626 if (info->valid & FSTVAL_SPEED)
1627 err = -EINVAL;
1628
1629 if (info->valid & FSTVAL_PHASE)
1630 FST_WRB(card, portConfig[port->index].invertClock,
1631 info->invertClock);
1632 if (info->valid & FSTVAL_MODE)
1633 FST_WRW(card, cardMode, info->cardMode);
1634 if (info->valid & FSTVAL_TE1) {
1635 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1636 FST_WRB(card, suConfig.clocking, info->clockSource);
1637 my_framing = FRAMING_E1;
1638 if (info->framing == E1)
1639 my_framing = FRAMING_E1;
1640 if (info->framing == T1)
1641 my_framing = FRAMING_T1;
1642 if (info->framing == J1)
1643 my_framing = FRAMING_J1;
1644 FST_WRB(card, suConfig.framing, my_framing);
1645 FST_WRB(card, suConfig.structure, info->structure);
1646 FST_WRB(card, suConfig.interface, info->interface);
1647 FST_WRB(card, suConfig.coding, info->coding);
1648 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1649 FST_WRB(card, suConfig.equalizer, info->equalizer);
1650 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1651 FST_WRB(card, suConfig.loopMode, info->loopMode);
1652 FST_WRB(card, suConfig.range, info->range);
1653 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1654 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1655 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1656 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1657 if (info->idleCode)
1658 FST_WRB(card, suConfig.enableIdleCode, 1);
1659 else
1660 FST_WRB(card, suConfig.enableIdleCode, 0);
1661 FST_WRB(card, suConfig.idleCode, info->idleCode);
1662 #if FST_DEBUG
1663 if (info->valid & FSTVAL_TE1) {
1664 printk("Setting TE1 data\n");
1665 printk("Line Speed = %d\n", info->lineSpeed);
1666 printk("Start slot = %d\n", info->startingSlot);
1667 printk("Clock source = %d\n", info->clockSource);
1668 printk("Framing = %d\n", my_framing);
1669 printk("Structure = %d\n", info->structure);
1670 printk("interface = %d\n", info->interface);
1671 printk("Coding = %d\n", info->coding);
1672 printk("Line build out = %d\n", info->lineBuildOut);
1673 printk("Equaliser = %d\n", info->equalizer);
1674 printk("Transparent mode = %d\n",
1675 info->transparentMode);
1676 printk("Loop mode = %d\n", info->loopMode);
1677 printk("Range = %d\n", info->range);
1678 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1679 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1680 printk("LOS Threshold = %d\n", info->losThreshold);
1681 printk("Idle Code = %d\n", info->idleCode);
1682 }
1683 #endif
1684 }
1685 #if FST_DEBUG
1686 if (info->valid & FSTVAL_DEBUG)
1687 fst_debug_mask = info->debug;
1688 #endif
1689
1690 return err;
1691 }
1692
1693 static void
gather_conf_info(struct fst_card_info * card,struct fst_port_info * port,struct fstioc_info * info)1694 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1695 struct fstioc_info *info)
1696 {
1697 int i;
1698
1699 memset(info, 0, sizeof(struct fstioc_info));
1700
1701 i = port->index;
1702 info->kernelVersion = LINUX_VERSION_CODE;
1703 info->nports = card->nports;
1704 info->type = card->type;
1705 info->state = card->state;
1706 info->proto = FST_GEN_HDLC;
1707 info->index = i;
1708 #if FST_DEBUG
1709 info->debug = fst_debug_mask;
1710 #endif
1711
1712 /* Only mark information as valid if card is running.
1713 * Copy the data anyway in case it is useful for diagnostics
1714 */
1715 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1716 #if FST_DEBUG
1717 | FSTVAL_DEBUG
1718 #endif
1719 ;
1720
1721 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1722 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1723 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1724 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1725 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1726 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1727 info->clockStatus = FST_RDW(card, clockStatus[i]);
1728 info->cableStatus = FST_RDW(card, cableStatus);
1729 info->cardMode = FST_RDW(card, cardMode);
1730 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1731
1732 /* The T2U can report cable presence for both A or B
1733 * in bits 0 and 1 of cableStatus. See which port we are and
1734 * do the mapping.
1735 */
1736 if (card->family == FST_FAMILY_TXU) {
1737 if (port->index == 0) {
1738 /* Port A
1739 */
1740 info->cableStatus = info->cableStatus & 1;
1741 } else {
1742 /* Port B
1743 */
1744 info->cableStatus = info->cableStatus >> 1;
1745 info->cableStatus = info->cableStatus & 1;
1746 }
1747 }
1748 /* Some additional bits if we are TE1
1749 */
1750 if (card->type == FST_TYPE_TE1) {
1751 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1752 info->clockSource = FST_RDB(card, suConfig.clocking);
1753 info->framing = FST_RDB(card, suConfig.framing);
1754 info->structure = FST_RDB(card, suConfig.structure);
1755 info->interface = FST_RDB(card, suConfig.interface);
1756 info->coding = FST_RDB(card, suConfig.coding);
1757 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1758 info->equalizer = FST_RDB(card, suConfig.equalizer);
1759 info->loopMode = FST_RDB(card, suConfig.loopMode);
1760 info->range = FST_RDB(card, suConfig.range);
1761 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1762 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1763 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1764 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1765 if (FST_RDB(card, suConfig.enableIdleCode))
1766 info->idleCode = FST_RDB(card, suConfig.idleCode);
1767 else
1768 info->idleCode = 0;
1769 info->receiveBufferDelay =
1770 FST_RDL(card, suStatus.receiveBufferDelay);
1771 info->framingErrorCount =
1772 FST_RDL(card, suStatus.framingErrorCount);
1773 info->codeViolationCount =
1774 FST_RDL(card, suStatus.codeViolationCount);
1775 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1776 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1777 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1778 info->receiveRemoteAlarm =
1779 FST_RDB(card, suStatus.receiveRemoteAlarm);
1780 info->alarmIndicationSignal =
1781 FST_RDB(card, suStatus.alarmIndicationSignal);
1782 }
1783 }
1784
1785 static int
fst_set_iface(struct fst_card_info * card,struct fst_port_info * port,struct if_settings * ifs)1786 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1787 struct if_settings *ifs)
1788 {
1789 sync_serial_settings sync;
1790 int i;
1791
1792 if (ifs->size != sizeof(sync))
1793 return -ENOMEM;
1794
1795 if (copy_from_user(&sync, ifs->ifs_ifsu.sync, sizeof(sync)))
1796 return -EFAULT;
1797
1798 if (sync.loopback)
1799 return -EINVAL;
1800
1801 i = port->index;
1802
1803 switch (ifs->type) {
1804 case IF_IFACE_V35:
1805 FST_WRW(card, portConfig[i].lineInterface, V35);
1806 port->hwif = V35;
1807 break;
1808
1809 case IF_IFACE_V24:
1810 FST_WRW(card, portConfig[i].lineInterface, V24);
1811 port->hwif = V24;
1812 break;
1813
1814 case IF_IFACE_X21:
1815 FST_WRW(card, portConfig[i].lineInterface, X21);
1816 port->hwif = X21;
1817 break;
1818
1819 case IF_IFACE_X21D:
1820 FST_WRW(card, portConfig[i].lineInterface, X21D);
1821 port->hwif = X21D;
1822 break;
1823
1824 case IF_IFACE_T1:
1825 FST_WRW(card, portConfig[i].lineInterface, T1);
1826 port->hwif = T1;
1827 break;
1828
1829 case IF_IFACE_E1:
1830 FST_WRW(card, portConfig[i].lineInterface, E1);
1831 port->hwif = E1;
1832 break;
1833
1834 case IF_IFACE_SYNC_SERIAL:
1835 break;
1836
1837 default:
1838 return -EINVAL;
1839 }
1840
1841 switch (sync.clock_type) {
1842 case CLOCK_EXT:
1843 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1844 break;
1845
1846 case CLOCK_INT:
1847 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1848 break;
1849
1850 default:
1851 return -EINVAL;
1852 }
1853 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1854 return 0;
1855 }
1856
1857 static int
fst_get_iface(struct fst_card_info * card,struct fst_port_info * port,struct if_settings * ifs)1858 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1859 struct if_settings *ifs)
1860 {
1861 sync_serial_settings sync;
1862 int i;
1863
1864 /* First check what line type is set, we'll default to reporting X.21
1865 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1866 * changed
1867 */
1868 switch (port->hwif) {
1869 case E1:
1870 ifs->type = IF_IFACE_E1;
1871 break;
1872 case T1:
1873 ifs->type = IF_IFACE_T1;
1874 break;
1875 case V35:
1876 ifs->type = IF_IFACE_V35;
1877 break;
1878 case V24:
1879 ifs->type = IF_IFACE_V24;
1880 break;
1881 case X21D:
1882 ifs->type = IF_IFACE_X21D;
1883 break;
1884 case X21:
1885 default:
1886 ifs->type = IF_IFACE_X21;
1887 break;
1888 }
1889 if (!ifs->size)
1890 return 0; /* only type requested */
1891
1892 if (ifs->size < sizeof(sync))
1893 return -ENOMEM;
1894
1895 i = port->index;
1896 memset(&sync, 0, sizeof(sync));
1897 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1898 /* Lucky card and linux use same encoding here */
1899 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1900 INTCLK ? CLOCK_INT : CLOCK_EXT;
1901 sync.loopback = 0;
1902
1903 if (copy_to_user(ifs->ifs_ifsu.sync, &sync, sizeof(sync)))
1904 return -EFAULT;
1905
1906 ifs->size = sizeof(sync);
1907 return 0;
1908 }
1909
1910 static int
fst_siocdevprivate(struct net_device * dev,struct ifreq * ifr,void __user * data,int cmd)1911 fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd)
1912 {
1913 struct fst_card_info *card;
1914 struct fst_port_info *port;
1915 struct fstioc_write wrthdr;
1916 struct fstioc_info info;
1917 unsigned long flags;
1918 void *buf;
1919
1920 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data);
1921
1922 port = dev_to_port(dev);
1923 card = port->card;
1924
1925 if (!capable(CAP_NET_ADMIN))
1926 return -EPERM;
1927
1928 switch (cmd) {
1929 case FSTCPURESET:
1930 fst_cpureset(card);
1931 card->state = FST_RESET;
1932 return 0;
1933
1934 case FSTCPURELEASE:
1935 fst_cpurelease(card);
1936 card->state = FST_STARTING;
1937 return 0;
1938
1939 case FSTWRITE: /* Code write (download) */
1940
1941 /* First copy in the header with the length and offset of data
1942 * to write
1943 */
1944 if (!data)
1945 return -EINVAL;
1946
1947 if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write)))
1948 return -EFAULT;
1949
1950 /* Sanity check the parameters. We don't support partial writes
1951 * when going over the top
1952 */
1953 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
1954 wrthdr.size + wrthdr.offset > FST_MEMSIZE)
1955 return -ENXIO;
1956
1957 /* Now copy the data to the card. */
1958
1959 buf = memdup_user(data + sizeof(struct fstioc_write),
1960 wrthdr.size);
1961 if (IS_ERR(buf))
1962 return PTR_ERR(buf);
1963
1964 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
1965 kfree(buf);
1966
1967 /* Writes to the memory of a card in the reset state constitute
1968 * a download
1969 */
1970 if (card->state == FST_RESET)
1971 card->state = FST_DOWNLOAD;
1972
1973 return 0;
1974
1975 case FSTGETCONF:
1976
1977 /* If card has just been started check the shared memory config
1978 * version and marker
1979 */
1980 if (card->state == FST_STARTING) {
1981 check_started_ok(card);
1982
1983 /* If everything checked out enable card interrupts */
1984 if (card->state == FST_RUNNING) {
1985 spin_lock_irqsave(&card->card_lock, flags);
1986 fst_enable_intr(card);
1987 FST_WRB(card, interruptHandshake, 0xEE);
1988 spin_unlock_irqrestore(&card->card_lock, flags);
1989 }
1990 }
1991
1992 if (!data)
1993 return -EINVAL;
1994
1995 gather_conf_info(card, port, &info);
1996
1997 if (copy_to_user(data, &info, sizeof(info)))
1998 return -EFAULT;
1999
2000 return 0;
2001
2002 case FSTSETCONF:
2003 /* Most of the settings have been moved to the generic ioctls
2004 * this just covers debug and board ident now
2005 */
2006
2007 if (card->state != FST_RUNNING) {
2008 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2009 card->card_no, card->state);
2010 return -EIO;
2011 }
2012 if (copy_from_user(&info, data, sizeof(info)))
2013 return -EFAULT;
2014
2015 return set_conf_from_info(card, port, &info);
2016 default:
2017 return -EINVAL;
2018 }
2019 }
2020
2021 static int
fst_ioctl(struct net_device * dev,struct if_settings * ifs)2022 fst_ioctl(struct net_device *dev, struct if_settings *ifs)
2023 {
2024 struct fst_card_info *card;
2025 struct fst_port_info *port;
2026
2027 dbg(DBG_IOCTL, "SIOCDEVPRIVATE, %x\n", ifs->type);
2028
2029 port = dev_to_port(dev);
2030 card = port->card;
2031
2032 if (!capable(CAP_NET_ADMIN))
2033 return -EPERM;
2034
2035 switch (ifs->type) {
2036 case IF_GET_IFACE:
2037 return fst_get_iface(card, port, ifs);
2038
2039 case IF_IFACE_SYNC_SERIAL:
2040 case IF_IFACE_V35:
2041 case IF_IFACE_V24:
2042 case IF_IFACE_X21:
2043 case IF_IFACE_X21D:
2044 case IF_IFACE_T1:
2045 case IF_IFACE_E1:
2046 return fst_set_iface(card, port, ifs);
2047
2048 case IF_PROTO_RAW:
2049 port->mode = FST_RAW;
2050 return 0;
2051
2052 case IF_GET_PROTO:
2053 if (port->mode == FST_RAW) {
2054 ifs->type = IF_PROTO_RAW;
2055 return 0;
2056 }
2057 return hdlc_ioctl(dev, ifs);
2058
2059 default:
2060 port->mode = FST_GEN_HDLC;
2061 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2062 ifs->type);
2063 return hdlc_ioctl(dev, ifs);
2064 }
2065 }
2066
2067 static void
fst_openport(struct fst_port_info * port)2068 fst_openport(struct fst_port_info *port)
2069 {
2070 int signals;
2071
2072 /* Only init things if card is actually running. This allows open to
2073 * succeed for downloads etc.
2074 */
2075 if (port->card->state == FST_RUNNING) {
2076 if (port->run) {
2077 dbg(DBG_OPEN, "open: found port already running\n");
2078
2079 fst_issue_cmd(port, STOPPORT);
2080 port->run = 0;
2081 }
2082
2083 fst_rx_config(port);
2084 fst_tx_config(port);
2085 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2086
2087 fst_issue_cmd(port, STARTPORT);
2088 port->run = 1;
2089
2090 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2091 if (signals & ((port->hwif == X21 || port->hwif == X21D)
2092 ? IPSTS_INDICATE : IPSTS_DCD))
2093 netif_carrier_on(port_to_dev(port));
2094 else
2095 netif_carrier_off(port_to_dev(port));
2096
2097 port->txqe = 0;
2098 port->txqs = 0;
2099 }
2100 }
2101
2102 static void
fst_closeport(struct fst_port_info * port)2103 fst_closeport(struct fst_port_info *port)
2104 {
2105 if (port->card->state == FST_RUNNING) {
2106 if (port->run) {
2107 port->run = 0;
2108 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2109
2110 fst_issue_cmd(port, STOPPORT);
2111 } else {
2112 dbg(DBG_OPEN, "close: port not running\n");
2113 }
2114 }
2115 }
2116
2117 static int
fst_open(struct net_device * dev)2118 fst_open(struct net_device *dev)
2119 {
2120 int err;
2121 struct fst_port_info *port;
2122
2123 port = dev_to_port(dev);
2124 if (!try_module_get(THIS_MODULE))
2125 return -EBUSY;
2126
2127 if (port->mode != FST_RAW) {
2128 err = hdlc_open(dev);
2129 if (err) {
2130 module_put(THIS_MODULE);
2131 return err;
2132 }
2133 }
2134
2135 fst_openport(port);
2136 netif_wake_queue(dev);
2137 return 0;
2138 }
2139
2140 static int
fst_close(struct net_device * dev)2141 fst_close(struct net_device *dev)
2142 {
2143 struct fst_port_info *port;
2144 struct fst_card_info *card;
2145 unsigned char tx_dma_done;
2146 unsigned char rx_dma_done;
2147
2148 port = dev_to_port(dev);
2149 card = port->card;
2150
2151 tx_dma_done = inb(card->pci_conf + DMACSR1);
2152 rx_dma_done = inb(card->pci_conf + DMACSR0);
2153 dbg(DBG_OPEN,
2154 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2155 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2156 rx_dma_done);
2157
2158 netif_stop_queue(dev);
2159 fst_closeport(dev_to_port(dev));
2160 if (port->mode != FST_RAW)
2161 hdlc_close(dev);
2162
2163 module_put(THIS_MODULE);
2164 return 0;
2165 }
2166
2167 static int
fst_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2168 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2169 {
2170 /* Setting currently fixed in FarSync card so we check and forget
2171 */
2172 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2173 return -EINVAL;
2174 return 0;
2175 }
2176
2177 static void
fst_tx_timeout(struct net_device * dev,unsigned int txqueue)2178 fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2179 {
2180 struct fst_port_info *port;
2181 struct fst_card_info *card;
2182
2183 port = dev_to_port(dev);
2184 card = port->card;
2185 dev->stats.tx_errors++;
2186 dev->stats.tx_aborted_errors++;
2187 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2188 card->card_no, port->index);
2189 fst_issue_cmd(port, ABORTTX);
2190
2191 netif_trans_update(dev);
2192 netif_wake_queue(dev);
2193 port->start = 0;
2194 }
2195
2196 static netdev_tx_t
fst_start_xmit(struct sk_buff * skb,struct net_device * dev)2197 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2198 {
2199 struct fst_card_info *card;
2200 struct fst_port_info *port;
2201 unsigned long flags;
2202 int txq_length;
2203
2204 port = dev_to_port(dev);
2205 card = port->card;
2206 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2207
2208 /* Drop packet with error if we don't have carrier */
2209 if (!netif_carrier_ok(dev)) {
2210 dev_kfree_skb(skb);
2211 dev->stats.tx_errors++;
2212 dev->stats.tx_carrier_errors++;
2213 dbg(DBG_ASS,
2214 "Tried to transmit but no carrier on card %d port %d\n",
2215 card->card_no, port->index);
2216 return NETDEV_TX_OK;
2217 }
2218
2219 /* Drop it if it's too big! MTU failure ? */
2220 if (skb->len > LEN_TX_BUFFER) {
2221 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2222 LEN_TX_BUFFER);
2223 dev_kfree_skb(skb);
2224 dev->stats.tx_errors++;
2225 return NETDEV_TX_OK;
2226 }
2227
2228 /* We are always going to queue the packet
2229 * so that the bottom half is the only place we tx from
2230 * Check there is room in the port txq
2231 */
2232 spin_lock_irqsave(&card->card_lock, flags);
2233 txq_length = port->txqe - port->txqs;
2234 if (txq_length < 0) {
2235 /* This is the case where the next free has wrapped but the
2236 * last used hasn't
2237 */
2238 txq_length = txq_length + FST_TXQ_DEPTH;
2239 }
2240 spin_unlock_irqrestore(&card->card_lock, flags);
2241 if (txq_length > fst_txq_high) {
2242 /* We have got enough buffers in the pipeline. Ask the network
2243 * layer to stop sending frames down
2244 */
2245 netif_stop_queue(dev);
2246 port->start = 1; /* I'm using this to signal stop sent up */
2247 }
2248
2249 if (txq_length == FST_TXQ_DEPTH - 1) {
2250 /* This shouldn't have happened but such is life
2251 */
2252 dev_kfree_skb(skb);
2253 dev->stats.tx_errors++;
2254 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2255 card->card_no, port->index);
2256 return NETDEV_TX_OK;
2257 }
2258
2259 /* queue the buffer
2260 */
2261 spin_lock_irqsave(&card->card_lock, flags);
2262 port->txq[port->txqe] = skb;
2263 port->txqe++;
2264 if (port->txqe == FST_TXQ_DEPTH)
2265 port->txqe = 0;
2266 spin_unlock_irqrestore(&card->card_lock, flags);
2267
2268 /* Scehdule the bottom half which now does transmit processing */
2269 fst_q_work_item(&fst_work_txq, card->card_no);
2270 tasklet_schedule(&fst_tx_task);
2271
2272 return NETDEV_TX_OK;
2273 }
2274
2275 /* Card setup having checked hardware resources.
2276 * Should be pretty bizarre if we get an error here (kernel memory
2277 * exhaustion is one possibility). If we do see a problem we report it
2278 * via a printk and leave the corresponding interface and all that follow
2279 * disabled.
2280 */
2281 static char *type_strings[] = {
2282 "no hardware", /* Should never be seen */
2283 "FarSync T2P",
2284 "FarSync T4P",
2285 "FarSync T1U",
2286 "FarSync T2U",
2287 "FarSync T4U",
2288 "FarSync TE1"
2289 };
2290
2291 static int
fst_init_card(struct fst_card_info * card)2292 fst_init_card(struct fst_card_info *card)
2293 {
2294 int i;
2295 int err;
2296
2297 /* We're working on a number of ports based on the card ID. If the
2298 * firmware detects something different later (should never happen)
2299 * we'll have to revise it in some way then.
2300 */
2301 for (i = 0; i < card->nports; i++) {
2302 err = register_hdlc_device(card->ports[i].dev);
2303 if (err < 0) {
2304 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2305 i, -err);
2306 while (i--)
2307 unregister_hdlc_device(card->ports[i].dev);
2308 return err;
2309 }
2310 }
2311
2312 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2313 port_to_dev(&card->ports[0])->name,
2314 port_to_dev(&card->ports[card->nports - 1])->name,
2315 type_strings[card->type], card->irq, card->nports);
2316 return 0;
2317 }
2318
2319 static const struct net_device_ops fst_ops = {
2320 .ndo_open = fst_open,
2321 .ndo_stop = fst_close,
2322 .ndo_start_xmit = hdlc_start_xmit,
2323 .ndo_siocwandev = fst_ioctl,
2324 .ndo_siocdevprivate = fst_siocdevprivate,
2325 .ndo_tx_timeout = fst_tx_timeout,
2326 };
2327
2328 /* Initialise card when detected.
2329 * Returns 0 to indicate success, or errno otherwise.
2330 */
2331 static int
fst_add_one(struct pci_dev * pdev,const struct pci_device_id * ent)2332 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2333 {
2334 static int no_of_cards_added;
2335 struct fst_card_info *card;
2336 int err = 0;
2337 int i;
2338
2339 printk_once(KERN_INFO
2340 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2341 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2342 #if FST_DEBUG
2343 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2344 #endif
2345 /* We are going to be clever and allow certain cards not to be
2346 * configured. An exclude list can be provided in /etc/modules.conf
2347 */
2348 if (fst_excluded_cards != 0) {
2349 /* There are cards to exclude
2350 *
2351 */
2352 for (i = 0; i < fst_excluded_cards; i++) {
2353 if (pdev->devfn >> 3 == fst_excluded_list[i]) {
2354 pr_info("FarSync PCI device %d not assigned\n",
2355 (pdev->devfn) >> 3);
2356 return -EBUSY;
2357 }
2358 }
2359 }
2360
2361 /* Allocate driver private data */
2362 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2363 if (!card)
2364 return -ENOMEM;
2365
2366 /* Try to enable the device */
2367 err = pci_enable_device(pdev);
2368 if (err) {
2369 pr_err("Failed to enable card. Err %d\n", -err);
2370 goto enable_fail;
2371 }
2372
2373 err = pci_request_regions(pdev, "FarSync");
2374 if (err) {
2375 pr_err("Failed to allocate regions. Err %d\n", -err);
2376 goto regions_fail;
2377 }
2378
2379 /* Get virtual addresses of memory regions */
2380 card->pci_conf = pci_resource_start(pdev, 1);
2381 card->phys_mem = pci_resource_start(pdev, 2);
2382 card->phys_ctlmem = pci_resource_start(pdev, 3);
2383 card->mem = ioremap(card->phys_mem, FST_MEMSIZE);
2384 if (!card->mem) {
2385 pr_err("Physical memory remap failed\n");
2386 err = -ENODEV;
2387 goto ioremap_physmem_fail;
2388 }
2389 card->ctlmem = ioremap(card->phys_ctlmem, 0x10);
2390 if (!card->ctlmem) {
2391 pr_err("Control memory remap failed\n");
2392 err = -ENODEV;
2393 goto ioremap_ctlmem_fail;
2394 }
2395 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2396
2397 /* Register the interrupt handler */
2398 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2399 pr_err("Unable to register interrupt %d\n", card->irq);
2400 err = -ENODEV;
2401 goto irq_fail;
2402 }
2403
2404 /* Record info we need */
2405 card->irq = pdev->irq;
2406 card->type = ent->driver_data;
2407 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2408 (ent->driver_data == FST_TYPE_T4P))
2409 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2410 if (ent->driver_data == FST_TYPE_T1U ||
2411 ent->driver_data == FST_TYPE_TE1)
2412 card->nports = 1;
2413 else
2414 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2415 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2416
2417 card->state = FST_UNINIT;
2418 spin_lock_init(&card->card_lock);
2419
2420 for (i = 0; i < card->nports; i++) {
2421 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2422 hdlc_device *hdlc;
2423
2424 if (!dev) {
2425 while (i--)
2426 free_netdev(card->ports[i].dev);
2427 pr_err("FarSync: out of memory\n");
2428 err = -ENOMEM;
2429 goto hdlcdev_fail;
2430 }
2431 card->ports[i].dev = dev;
2432 card->ports[i].card = card;
2433 card->ports[i].index = i;
2434 card->ports[i].run = 0;
2435
2436 hdlc = dev_to_hdlc(dev);
2437
2438 /* Fill in the net device info */
2439 /* Since this is a PCI setup this is purely
2440 * informational. Give them the buffer addresses
2441 * and basic card I/O.
2442 */
2443 dev->mem_start = card->phys_mem
2444 + BUF_OFFSET(txBuffer[i][0][0]);
2445 dev->mem_end = card->phys_mem
2446 + BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2447 dev->base_addr = card->pci_conf;
2448 dev->irq = card->irq;
2449
2450 dev->netdev_ops = &fst_ops;
2451 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2452 dev->watchdog_timeo = FST_TX_TIMEOUT;
2453 hdlc->attach = fst_attach;
2454 hdlc->xmit = fst_start_xmit;
2455 }
2456
2457 card->device = pdev;
2458
2459 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2460 card->nports, card->irq);
2461 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2462 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2463
2464 /* Reset the card's processor */
2465 fst_cpureset(card);
2466 card->state = FST_RESET;
2467
2468 /* Initialise DMA (if required) */
2469 fst_init_dma(card);
2470
2471 /* Record driver data for later use */
2472 pci_set_drvdata(pdev, card);
2473
2474 /* Remainder of card setup */
2475 if (no_of_cards_added >= FST_MAX_CARDS) {
2476 pr_err("FarSync: too many cards\n");
2477 err = -ENOMEM;
2478 goto card_array_fail;
2479 }
2480 fst_card_array[no_of_cards_added] = card;
2481 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2482 err = fst_init_card(card);
2483 if (err)
2484 goto init_card_fail;
2485 if (card->family == FST_FAMILY_TXU) {
2486 /* Allocate a dma buffer for transmit and receives
2487 */
2488 card->rx_dma_handle_host =
2489 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2490 &card->rx_dma_handle_card, GFP_KERNEL);
2491 if (!card->rx_dma_handle_host) {
2492 pr_err("Could not allocate rx dma buffer\n");
2493 err = -ENOMEM;
2494 goto rx_dma_fail;
2495 }
2496 card->tx_dma_handle_host =
2497 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2498 &card->tx_dma_handle_card, GFP_KERNEL);
2499 if (!card->tx_dma_handle_host) {
2500 pr_err("Could not allocate tx dma buffer\n");
2501 err = -ENOMEM;
2502 goto tx_dma_fail;
2503 }
2504 }
2505 return 0; /* Success */
2506
2507 tx_dma_fail:
2508 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2509 card->rx_dma_handle_host, card->rx_dma_handle_card);
2510 rx_dma_fail:
2511 fst_disable_intr(card);
2512 for (i = 0 ; i < card->nports ; i++)
2513 unregister_hdlc_device(card->ports[i].dev);
2514 init_card_fail:
2515 fst_card_array[card->card_no] = NULL;
2516 card_array_fail:
2517 for (i = 0 ; i < card->nports ; i++)
2518 free_netdev(card->ports[i].dev);
2519 hdlcdev_fail:
2520 free_irq(card->irq, card);
2521 irq_fail:
2522 iounmap(card->ctlmem);
2523 ioremap_ctlmem_fail:
2524 iounmap(card->mem);
2525 ioremap_physmem_fail:
2526 pci_release_regions(pdev);
2527 regions_fail:
2528 pci_disable_device(pdev);
2529 enable_fail:
2530 kfree(card);
2531 return err;
2532 }
2533
2534 /* Cleanup and close down a card
2535 */
2536 static void
fst_remove_one(struct pci_dev * pdev)2537 fst_remove_one(struct pci_dev *pdev)
2538 {
2539 struct fst_card_info *card;
2540 int i;
2541
2542 card = pci_get_drvdata(pdev);
2543
2544 for (i = 0; i < card->nports; i++) {
2545 struct net_device *dev = port_to_dev(&card->ports[i]);
2546
2547 unregister_hdlc_device(dev);
2548 free_netdev(dev);
2549 }
2550
2551 fst_disable_intr(card);
2552 free_irq(card->irq, card);
2553
2554 iounmap(card->ctlmem);
2555 iounmap(card->mem);
2556 pci_release_regions(pdev);
2557 if (card->family == FST_FAMILY_TXU) {
2558 /* Free dma buffers
2559 */
2560 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2561 card->rx_dma_handle_host,
2562 card->rx_dma_handle_card);
2563 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2564 card->tx_dma_handle_host,
2565 card->tx_dma_handle_card);
2566 }
2567 fst_card_array[card->card_no] = NULL;
2568 kfree(card);
2569 }
2570
2571 static struct pci_driver fst_driver = {
2572 .name = FST_NAME,
2573 .id_table = fst_pci_dev_id,
2574 .probe = fst_add_one,
2575 .remove = fst_remove_one,
2576 };
2577
2578 static int __init
fst_init(void)2579 fst_init(void)
2580 {
2581 int i;
2582
2583 for (i = 0; i < FST_MAX_CARDS; i++)
2584 fst_card_array[i] = NULL;
2585 return pci_register_driver(&fst_driver);
2586 }
2587
2588 static void __exit
fst_cleanup_module(void)2589 fst_cleanup_module(void)
2590 {
2591 pr_info("FarSync WAN driver unloading\n");
2592 pci_unregister_driver(&fst_driver);
2593 }
2594
2595 module_init(fst_init);
2596 module_exit(fst_cleanup_module);
2597