xref: /linux/arch/x86/events/intel/ds.c (revision f9bc8e0912b8f6b1d60608a715a1da575670e038)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6 
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/msr.h>
14 #include <asm/timer.h>
15 
16 #include "../perf_event.h"
17 
18 /* Waste a full page so it can be mapped into the cpu_entry_area */
19 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
20 
21 /* The size of a BTS record in bytes: */
22 #define BTS_RECORD_SIZE		24
23 
24 #define PEBS_FIXUP_SIZE		PAGE_SIZE
25 
26 /*
27  * pebs_record_32 for p4 and core not supported
28 
29 struct pebs_record_32 {
30 	u32 flags, ip;
31 	u32 ax, bc, cx, dx;
32 	u32 si, di, bp, sp;
33 };
34 
35  */
36 
37 union intel_x86_pebs_dse {
38 	u64 val;
39 	struct {
40 		unsigned int ld_dse:4;
41 		unsigned int ld_stlb_miss:1;
42 		unsigned int ld_locked:1;
43 		unsigned int ld_data_blk:1;
44 		unsigned int ld_addr_blk:1;
45 		unsigned int ld_reserved:24;
46 	};
47 	struct {
48 		unsigned int st_l1d_hit:1;
49 		unsigned int st_reserved1:3;
50 		unsigned int st_stlb_miss:1;
51 		unsigned int st_locked:1;
52 		unsigned int st_reserved2:26;
53 	};
54 	struct {
55 		unsigned int st_lat_dse:4;
56 		unsigned int st_lat_stlb_miss:1;
57 		unsigned int st_lat_locked:1;
58 		unsigned int ld_reserved3:26;
59 	};
60 	struct {
61 		unsigned int mtl_dse:5;
62 		unsigned int mtl_locked:1;
63 		unsigned int mtl_stlb_miss:1;
64 		unsigned int mtl_fwd_blk:1;
65 		unsigned int ld_reserved4:24;
66 	};
67 	struct {
68 		unsigned int lnc_dse:8;
69 		unsigned int ld_reserved5:2;
70 		unsigned int lnc_stlb_miss:1;
71 		unsigned int lnc_locked:1;
72 		unsigned int lnc_data_blk:1;
73 		unsigned int lnc_addr_blk:1;
74 		unsigned int ld_reserved6:18;
75 	};
76 };
77 
78 
79 /*
80  * Map PEBS Load Latency Data Source encodings to generic
81  * memory data source information
82  */
83 #define P(a, b) PERF_MEM_S(a, b)
84 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
85 #define LEVEL(x) P(LVLNUM, x)
86 #define REM P(REMOTE, REMOTE)
87 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
88 
89 /* Version for Sandy Bridge and later */
90 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
91 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
92 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
93 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
94 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
95 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
96 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
97 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
98 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
99 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
100 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
101 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
102 	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
103 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
104 	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
105 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
106 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
107 };
108 
109 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)110 void __init intel_pmu_pebs_data_source_nhm(void)
111 {
112 	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
113 	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
115 }
116 
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)117 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
118 {
119 	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
120 
121 	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
122 	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
123 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
124 	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
125 	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
126 }
127 
intel_pmu_pebs_data_source_skl(bool pmem)128 void __init intel_pmu_pebs_data_source_skl(bool pmem)
129 {
130 	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
131 }
132 
__intel_pmu_pebs_data_source_grt(u64 * data_source)133 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
134 {
135 	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
136 	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
137 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
138 }
139 
intel_pmu_pebs_data_source_grt(void)140 void __init intel_pmu_pebs_data_source_grt(void)
141 {
142 	__intel_pmu_pebs_data_source_grt(pebs_data_source);
143 }
144 
intel_pmu_pebs_data_source_adl(void)145 void __init intel_pmu_pebs_data_source_adl(void)
146 {
147 	u64 *data_source;
148 
149 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
150 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
151 	__intel_pmu_pebs_data_source_skl(false, data_source);
152 
153 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
154 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
155 	__intel_pmu_pebs_data_source_grt(data_source);
156 }
157 
__intel_pmu_pebs_data_source_cmt(u64 * data_source)158 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
159 {
160 	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
161 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
162 	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
163 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
164 	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
165 	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
166 }
167 
intel_pmu_pebs_data_source_mtl(void)168 void __init intel_pmu_pebs_data_source_mtl(void)
169 {
170 	u64 *data_source;
171 
172 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
173 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
174 	__intel_pmu_pebs_data_source_skl(false, data_source);
175 
176 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
177 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
178 	__intel_pmu_pebs_data_source_cmt(data_source);
179 }
180 
intel_pmu_pebs_data_source_arl_h(void)181 void __init intel_pmu_pebs_data_source_arl_h(void)
182 {
183 	u64 *data_source;
184 
185 	intel_pmu_pebs_data_source_lnl();
186 
187 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
188 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
189 	__intel_pmu_pebs_data_source_cmt(data_source);
190 }
191 
intel_pmu_pebs_data_source_cmt(void)192 void __init intel_pmu_pebs_data_source_cmt(void)
193 {
194 	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
195 }
196 
197 /* Version for Lion Cove and later */
198 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
199 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),	/* 0x00: ukn L3 */
200 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x01: L1 hit */
201 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x02: L1 hit */
202 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),	/* 0x03: LFB/L1 Miss Handling Buffer hit */
203 	0,							/* 0x04: Reserved */
204 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),	/* 0x05: L2 Hit */
205 	OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE),			/* 0x06: L2 Miss Handling Buffer Hit */
206 	0,							/* 0x07: Reserved */
207 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),	/* 0x08: L3 Hit */
208 	0,							/* 0x09: Reserved */
209 	0,							/* 0x0a: Reserved */
210 	0,							/* 0x0b: Reserved */
211 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOPX, FWD),	/* 0x0c: L3 Hit Snoop Fwd */
212 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0d: L3 Hit Snoop HitM */
213 	0,							/* 0x0e: Reserved */
214 	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0f: L3 Miss Snoop HitM */
215 	OP_LH | LEVEL(MSC) | P(SNOOP, NONE),			/* 0x10: Memory-side Cache Hit */
216 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
217 };
218 
intel_pmu_pebs_data_source_lnl(void)219 void __init intel_pmu_pebs_data_source_lnl(void)
220 {
221 	u64 *data_source;
222 
223 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
224 	memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
225 
226 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
227 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
228 	__intel_pmu_pebs_data_source_cmt(data_source);
229 }
230 
precise_store_data(u64 status)231 static u64 precise_store_data(u64 status)
232 {
233 	union intel_x86_pebs_dse dse;
234 	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
235 
236 	dse.val = status;
237 
238 	/*
239 	 * bit 4: TLB access
240 	 * 1 = stored missed 2nd level TLB
241 	 *
242 	 * so it either hit the walker or the OS
243 	 * otherwise hit 2nd level TLB
244 	 */
245 	if (dse.st_stlb_miss)
246 		val |= P(TLB, MISS);
247 	else
248 		val |= P(TLB, HIT);
249 
250 	/*
251 	 * bit 0: hit L1 data cache
252 	 * if not set, then all we know is that
253 	 * it missed L1D
254 	 */
255 	if (dse.st_l1d_hit)
256 		val |= P(LVL, HIT);
257 	else
258 		val |= P(LVL, MISS);
259 
260 	/*
261 	 * bit 5: Locked prefix
262 	 */
263 	if (dse.st_locked)
264 		val |= P(LOCK, LOCKED);
265 
266 	return val;
267 }
268 
precise_datala_hsw(struct perf_event * event,u64 status)269 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
270 {
271 	union perf_mem_data_src dse;
272 
273 	dse.val = PERF_MEM_NA;
274 
275 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
276 		dse.mem_op = PERF_MEM_OP_STORE;
277 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
278 		dse.mem_op = PERF_MEM_OP_LOAD;
279 
280 	/*
281 	 * L1 info only valid for following events:
282 	 *
283 	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
284 	 * MEM_UOPS_RETIRED.LOCK_STORES
285 	 * MEM_UOPS_RETIRED.SPLIT_STORES
286 	 * MEM_UOPS_RETIRED.ALL_STORES
287 	 */
288 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
289 		if (status & 1)
290 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
291 		else
292 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
293 	}
294 	return dse.val;
295 }
296 
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)297 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
298 {
299 	/*
300 	 * TLB access
301 	 * 0 = did not miss 2nd level TLB
302 	 * 1 = missed 2nd level TLB
303 	 */
304 	if (tlb)
305 		*val |= P(TLB, MISS) | P(TLB, L2);
306 	else
307 		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
308 
309 	/* locked prefix */
310 	if (lock)
311 		*val |= P(LOCK, LOCKED);
312 }
313 
314 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)315 static u64 __grt_latency_data(struct perf_event *event, u64 status,
316 			       u8 dse, bool tlb, bool lock, bool blk)
317 {
318 	u64 val;
319 
320 	WARN_ON_ONCE(is_hybrid() &&
321 		     hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
322 
323 	dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
324 	val = hybrid_var(event->pmu, pebs_data_source)[dse];
325 
326 	pebs_set_tlb_lock(&val, tlb, lock);
327 
328 	if (blk)
329 		val |= P(BLK, DATA);
330 	else
331 		val |= P(BLK, NA);
332 
333 	return val;
334 }
335 
grt_latency_data(struct perf_event * event,u64 status)336 u64 grt_latency_data(struct perf_event *event, u64 status)
337 {
338 	union intel_x86_pebs_dse dse;
339 
340 	dse.val = status;
341 
342 	return __grt_latency_data(event, status, dse.ld_dse,
343 				  dse.ld_locked, dse.ld_stlb_miss,
344 				  dse.ld_data_blk);
345 }
346 
347 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)348 u64 cmt_latency_data(struct perf_event *event, u64 status)
349 {
350 	union intel_x86_pebs_dse dse;
351 
352 	dse.val = status;
353 
354 	return __grt_latency_data(event, status, dse.mtl_dse,
355 				  dse.mtl_stlb_miss, dse.mtl_locked,
356 				  dse.mtl_fwd_blk);
357 }
358 
lnc_latency_data(struct perf_event * event,u64 status)359 static u64 lnc_latency_data(struct perf_event *event, u64 status)
360 {
361 	union intel_x86_pebs_dse dse;
362 	union perf_mem_data_src src;
363 	u64 val;
364 
365 	dse.val = status;
366 
367 	/* LNC core latency data */
368 	val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
369 	if (!val)
370 		val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
371 
372 	if (dse.lnc_stlb_miss)
373 		val |= P(TLB, MISS) | P(TLB, L2);
374 	else
375 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
376 
377 	if (dse.lnc_locked)
378 		val |= P(LOCK, LOCKED);
379 
380 	if (dse.lnc_data_blk)
381 		val |= P(BLK, DATA);
382 	if (dse.lnc_addr_blk)
383 		val |= P(BLK, ADDR);
384 	if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
385 		val |= P(BLK, NA);
386 
387 	src.val = val;
388 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
389 		src.mem_op = P(OP, STORE);
390 
391 	return src.val;
392 }
393 
lnl_latency_data(struct perf_event * event,u64 status)394 u64 lnl_latency_data(struct perf_event *event, u64 status)
395 {
396 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
397 
398 	if (pmu->pmu_type == hybrid_small)
399 		return cmt_latency_data(event, status);
400 
401 	return lnc_latency_data(event, status);
402 }
403 
arl_h_latency_data(struct perf_event * event,u64 status)404 u64 arl_h_latency_data(struct perf_event *event, u64 status)
405 {
406 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
407 
408 	if (pmu->pmu_type == hybrid_tiny)
409 		return cmt_latency_data(event, status);
410 
411 	return lnl_latency_data(event, status);
412 }
413 
load_latency_data(struct perf_event * event,u64 status)414 static u64 load_latency_data(struct perf_event *event, u64 status)
415 {
416 	union intel_x86_pebs_dse dse;
417 	u64 val;
418 
419 	dse.val = status;
420 
421 	/*
422 	 * use the mapping table for bit 0-3
423 	 */
424 	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
425 
426 	/*
427 	 * Nehalem models do not support TLB, Lock infos
428 	 */
429 	if (x86_pmu.pebs_no_tlb) {
430 		val |= P(TLB, NA) | P(LOCK, NA);
431 		return val;
432 	}
433 
434 	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
435 
436 	/*
437 	 * Ice Lake and earlier models do not support block infos.
438 	 */
439 	if (!x86_pmu.pebs_block) {
440 		val |= P(BLK, NA);
441 		return val;
442 	}
443 	/*
444 	 * bit 6: load was blocked since its data could not be forwarded
445 	 *        from a preceding store
446 	 */
447 	if (dse.ld_data_blk)
448 		val |= P(BLK, DATA);
449 
450 	/*
451 	 * bit 7: load was blocked due to potential address conflict with
452 	 *        a preceding store
453 	 */
454 	if (dse.ld_addr_blk)
455 		val |= P(BLK, ADDR);
456 
457 	if (!dse.ld_data_blk && !dse.ld_addr_blk)
458 		val |= P(BLK, NA);
459 
460 	return val;
461 }
462 
store_latency_data(struct perf_event * event,u64 status)463 static u64 store_latency_data(struct perf_event *event, u64 status)
464 {
465 	union intel_x86_pebs_dse dse;
466 	union perf_mem_data_src src;
467 	u64 val;
468 
469 	dse.val = status;
470 
471 	/*
472 	 * use the mapping table for bit 0-3
473 	 */
474 	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
475 
476 	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
477 
478 	val |= P(BLK, NA);
479 
480 	/*
481 	 * the pebs_data_source table is only for loads
482 	 * so override the mem_op to say STORE instead
483 	 */
484 	src.val = val;
485 	src.mem_op = P(OP,STORE);
486 
487 	return src.val;
488 }
489 
490 struct pebs_record_core {
491 	u64 flags, ip;
492 	u64 ax, bx, cx, dx;
493 	u64 si, di, bp, sp;
494 	u64 r8,  r9,  r10, r11;
495 	u64 r12, r13, r14, r15;
496 };
497 
498 struct pebs_record_nhm {
499 	u64 flags, ip;
500 	u64 ax, bx, cx, dx;
501 	u64 si, di, bp, sp;
502 	u64 r8,  r9,  r10, r11;
503 	u64 r12, r13, r14, r15;
504 	u64 status, dla, dse, lat;
505 };
506 
507 /*
508  * Same as pebs_record_nhm, with two additional fields.
509  */
510 struct pebs_record_hsw {
511 	u64 flags, ip;
512 	u64 ax, bx, cx, dx;
513 	u64 si, di, bp, sp;
514 	u64 r8,  r9,  r10, r11;
515 	u64 r12, r13, r14, r15;
516 	u64 status, dla, dse, lat;
517 	u64 real_ip, tsx_tuning;
518 };
519 
520 union hsw_tsx_tuning {
521 	struct {
522 		u32 cycles_last_block     : 32,
523 		    hle_abort		  : 1,
524 		    rtm_abort		  : 1,
525 		    instruction_abort     : 1,
526 		    non_instruction_abort : 1,
527 		    retry		  : 1,
528 		    data_conflict	  : 1,
529 		    capacity_writes	  : 1,
530 		    capacity_reads	  : 1;
531 	};
532 	u64	    value;
533 };
534 
535 #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
536 
537 /* Same as HSW, plus TSC */
538 
539 struct pebs_record_skl {
540 	u64 flags, ip;
541 	u64 ax, bx, cx, dx;
542 	u64 si, di, bp, sp;
543 	u64 r8,  r9,  r10, r11;
544 	u64 r12, r13, r14, r15;
545 	u64 status, dla, dse, lat;
546 	u64 real_ip, tsx_tuning;
547 	u64 tsc;
548 };
549 
init_debug_store_on_cpu(int cpu)550 void init_debug_store_on_cpu(int cpu)
551 {
552 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
553 
554 	if (!ds)
555 		return;
556 
557 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
558 		     (u32)((u64)(unsigned long)ds),
559 		     (u32)((u64)(unsigned long)ds >> 32));
560 }
561 
fini_debug_store_on_cpu(int cpu)562 void fini_debug_store_on_cpu(int cpu)
563 {
564 	if (!per_cpu(cpu_hw_events, cpu).ds)
565 		return;
566 
567 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
568 }
569 
570 static DEFINE_PER_CPU(void *, insn_buffer);
571 
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)572 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
573 {
574 	unsigned long start = (unsigned long)cea;
575 	phys_addr_t pa;
576 	size_t msz = 0;
577 
578 	pa = virt_to_phys(addr);
579 
580 	preempt_disable();
581 	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
582 		cea_set_pte(cea, pa, prot);
583 
584 	/*
585 	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
586 	 * all TLB entries for it.
587 	 */
588 	flush_tlb_kernel_range(start, start + size);
589 	preempt_enable();
590 }
591 
ds_clear_cea(void * cea,size_t size)592 static void ds_clear_cea(void *cea, size_t size)
593 {
594 	unsigned long start = (unsigned long)cea;
595 	size_t msz = 0;
596 
597 	preempt_disable();
598 	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
599 		cea_set_pte(cea, 0, PAGE_NONE);
600 
601 	flush_tlb_kernel_range(start, start + size);
602 	preempt_enable();
603 }
604 
dsalloc_pages(size_t size,gfp_t flags,int cpu)605 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
606 {
607 	unsigned int order = get_order(size);
608 	int node = cpu_to_node(cpu);
609 	struct page *page;
610 
611 	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
612 	return page ? page_address(page) : NULL;
613 }
614 
dsfree_pages(const void * buffer,size_t size)615 static void dsfree_pages(const void *buffer, size_t size)
616 {
617 	if (buffer)
618 		free_pages((unsigned long)buffer, get_order(size));
619 }
620 
alloc_pebs_buffer(int cpu)621 static int alloc_pebs_buffer(int cpu)
622 {
623 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
624 	struct debug_store *ds = hwev->ds;
625 	size_t bsiz = x86_pmu.pebs_buffer_size;
626 	int max, node = cpu_to_node(cpu);
627 	void *buffer, *insn_buff, *cea;
628 
629 	if (!x86_pmu.ds_pebs)
630 		return 0;
631 
632 	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
633 	if (unlikely(!buffer))
634 		return -ENOMEM;
635 
636 	/*
637 	 * HSW+ already provides us the eventing ip; no need to allocate this
638 	 * buffer then.
639 	 */
640 	if (x86_pmu.intel_cap.pebs_format < 2) {
641 		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
642 		if (!insn_buff) {
643 			dsfree_pages(buffer, bsiz);
644 			return -ENOMEM;
645 		}
646 		per_cpu(insn_buffer, cpu) = insn_buff;
647 	}
648 	hwev->ds_pebs_vaddr = buffer;
649 	/* Update the cpu entry area mapping */
650 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
651 	ds->pebs_buffer_base = (unsigned long) cea;
652 	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
653 	ds->pebs_index = ds->pebs_buffer_base;
654 	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
655 	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
656 	return 0;
657 }
658 
release_pebs_buffer(int cpu)659 static void release_pebs_buffer(int cpu)
660 {
661 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
662 	void *cea;
663 
664 	if (!x86_pmu.ds_pebs)
665 		return;
666 
667 	kfree(per_cpu(insn_buffer, cpu));
668 	per_cpu(insn_buffer, cpu) = NULL;
669 
670 	/* Clear the fixmap */
671 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
672 	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
673 	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
674 	hwev->ds_pebs_vaddr = NULL;
675 }
676 
alloc_bts_buffer(int cpu)677 static int alloc_bts_buffer(int cpu)
678 {
679 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
680 	struct debug_store *ds = hwev->ds;
681 	void *buffer, *cea;
682 	int max;
683 
684 	if (!x86_pmu.bts)
685 		return 0;
686 
687 	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
688 	if (unlikely(!buffer)) {
689 		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
690 		return -ENOMEM;
691 	}
692 	hwev->ds_bts_vaddr = buffer;
693 	/* Update the fixmap */
694 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
695 	ds->bts_buffer_base = (unsigned long) cea;
696 	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
697 	ds->bts_index = ds->bts_buffer_base;
698 	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
699 	ds->bts_absolute_maximum = ds->bts_buffer_base +
700 					max * BTS_RECORD_SIZE;
701 	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
702 					(max / 16) * BTS_RECORD_SIZE;
703 	return 0;
704 }
705 
release_bts_buffer(int cpu)706 static void release_bts_buffer(int cpu)
707 {
708 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
709 	void *cea;
710 
711 	if (!x86_pmu.bts)
712 		return;
713 
714 	/* Clear the fixmap */
715 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
716 	ds_clear_cea(cea, BTS_BUFFER_SIZE);
717 	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
718 	hwev->ds_bts_vaddr = NULL;
719 }
720 
alloc_ds_buffer(int cpu)721 static int alloc_ds_buffer(int cpu)
722 {
723 	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
724 
725 	memset(ds, 0, sizeof(*ds));
726 	per_cpu(cpu_hw_events, cpu).ds = ds;
727 	return 0;
728 }
729 
release_ds_buffer(int cpu)730 static void release_ds_buffer(int cpu)
731 {
732 	per_cpu(cpu_hw_events, cpu).ds = NULL;
733 }
734 
release_ds_buffers(void)735 void release_ds_buffers(void)
736 {
737 	int cpu;
738 
739 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
740 		return;
741 
742 	for_each_possible_cpu(cpu)
743 		release_ds_buffer(cpu);
744 
745 	for_each_possible_cpu(cpu) {
746 		/*
747 		 * Again, ignore errors from offline CPUs, they will no longer
748 		 * observe cpu_hw_events.ds and not program the DS_AREA when
749 		 * they come up.
750 		 */
751 		fini_debug_store_on_cpu(cpu);
752 	}
753 
754 	for_each_possible_cpu(cpu) {
755 		if (x86_pmu.ds_pebs)
756 			release_pebs_buffer(cpu);
757 		release_bts_buffer(cpu);
758 	}
759 }
760 
reserve_ds_buffers(void)761 void reserve_ds_buffers(void)
762 {
763 	int bts_err = 0, pebs_err = 0;
764 	int cpu;
765 
766 	x86_pmu.bts_active = 0;
767 
768 	if (x86_pmu.ds_pebs)
769 		x86_pmu.pebs_active = 0;
770 
771 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
772 		return;
773 
774 	if (!x86_pmu.bts)
775 		bts_err = 1;
776 
777 	if (!x86_pmu.ds_pebs)
778 		pebs_err = 1;
779 
780 	for_each_possible_cpu(cpu) {
781 		if (alloc_ds_buffer(cpu)) {
782 			bts_err = 1;
783 			pebs_err = 1;
784 		}
785 
786 		if (!bts_err && alloc_bts_buffer(cpu))
787 			bts_err = 1;
788 
789 		if (x86_pmu.ds_pebs && !pebs_err &&
790 		    alloc_pebs_buffer(cpu))
791 			pebs_err = 1;
792 
793 		if (bts_err && pebs_err)
794 			break;
795 	}
796 
797 	if (bts_err) {
798 		for_each_possible_cpu(cpu)
799 			release_bts_buffer(cpu);
800 	}
801 
802 	if (x86_pmu.ds_pebs && pebs_err) {
803 		for_each_possible_cpu(cpu)
804 			release_pebs_buffer(cpu);
805 	}
806 
807 	if (bts_err && pebs_err) {
808 		for_each_possible_cpu(cpu)
809 			release_ds_buffer(cpu);
810 	} else {
811 		if (x86_pmu.bts && !bts_err)
812 			x86_pmu.bts_active = 1;
813 
814 		if (x86_pmu.ds_pebs && !pebs_err)
815 			x86_pmu.pebs_active = 1;
816 
817 		for_each_possible_cpu(cpu) {
818 			/*
819 			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
820 			 * will get this call through intel_pmu_cpu_starting().
821 			 */
822 			init_debug_store_on_cpu(cpu);
823 		}
824 	}
825 }
826 
827 /*
828  * BTS
829  */
830 
831 struct event_constraint bts_constraint =
832 	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
833 
intel_pmu_enable_bts(u64 config)834 void intel_pmu_enable_bts(u64 config)
835 {
836 	unsigned long debugctlmsr;
837 
838 	debugctlmsr = get_debugctlmsr();
839 
840 	debugctlmsr |= DEBUGCTLMSR_TR;
841 	debugctlmsr |= DEBUGCTLMSR_BTS;
842 	if (config & ARCH_PERFMON_EVENTSEL_INT)
843 		debugctlmsr |= DEBUGCTLMSR_BTINT;
844 
845 	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
846 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
847 
848 	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
849 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
850 
851 	update_debugctlmsr(debugctlmsr);
852 }
853 
intel_pmu_disable_bts(void)854 void intel_pmu_disable_bts(void)
855 {
856 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
857 	unsigned long debugctlmsr;
858 
859 	if (!cpuc->ds)
860 		return;
861 
862 	debugctlmsr = get_debugctlmsr();
863 
864 	debugctlmsr &=
865 		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
866 		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
867 
868 	update_debugctlmsr(debugctlmsr);
869 }
870 
intel_pmu_drain_bts_buffer(void)871 int intel_pmu_drain_bts_buffer(void)
872 {
873 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
874 	struct debug_store *ds = cpuc->ds;
875 	struct bts_record {
876 		u64	from;
877 		u64	to;
878 		u64	flags;
879 	};
880 	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
881 	struct bts_record *at, *base, *top;
882 	struct perf_output_handle handle;
883 	struct perf_event_header header;
884 	struct perf_sample_data data;
885 	unsigned long skip = 0;
886 	struct pt_regs regs;
887 
888 	if (!event)
889 		return 0;
890 
891 	if (!x86_pmu.bts_active)
892 		return 0;
893 
894 	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
895 	top  = (struct bts_record *)(unsigned long)ds->bts_index;
896 
897 	if (top <= base)
898 		return 0;
899 
900 	memset(&regs, 0, sizeof(regs));
901 
902 	ds->bts_index = ds->bts_buffer_base;
903 
904 	perf_sample_data_init(&data, 0, event->hw.last_period);
905 
906 	/*
907 	 * BTS leaks kernel addresses in branches across the cpl boundary,
908 	 * such as traps or system calls, so unless the user is asking for
909 	 * kernel tracing (and right now it's not possible), we'd need to
910 	 * filter them out. But first we need to count how many of those we
911 	 * have in the current batch. This is an extra O(n) pass, however,
912 	 * it's much faster than the other one especially considering that
913 	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
914 	 * alloc_bts_buffer()).
915 	 */
916 	for (at = base; at < top; at++) {
917 		/*
918 		 * Note that right now *this* BTS code only works if
919 		 * attr::exclude_kernel is set, but let's keep this extra
920 		 * check here in case that changes.
921 		 */
922 		if (event->attr.exclude_kernel &&
923 		    (kernel_ip(at->from) || kernel_ip(at->to)))
924 			skip++;
925 	}
926 
927 	/*
928 	 * Prepare a generic sample, i.e. fill in the invariant fields.
929 	 * We will overwrite the from and to address before we output
930 	 * the sample.
931 	 */
932 	rcu_read_lock();
933 	perf_prepare_sample(&data, event, &regs);
934 	perf_prepare_header(&header, &data, event, &regs);
935 
936 	if (perf_output_begin(&handle, &data, event,
937 			      header.size * (top - base - skip)))
938 		goto unlock;
939 
940 	for (at = base; at < top; at++) {
941 		/* Filter out any records that contain kernel addresses. */
942 		if (event->attr.exclude_kernel &&
943 		    (kernel_ip(at->from) || kernel_ip(at->to)))
944 			continue;
945 
946 		data.ip		= at->from;
947 		data.addr	= at->to;
948 
949 		perf_output_sample(&handle, &header, &data, event);
950 	}
951 
952 	perf_output_end(&handle);
953 
954 	/* There's new data available. */
955 	event->hw.interrupts++;
956 	event->pending_kill = POLL_IN;
957 unlock:
958 	rcu_read_unlock();
959 	return 1;
960 }
961 
intel_pmu_drain_pebs_buffer(void)962 void intel_pmu_drain_pebs_buffer(void)
963 {
964 	struct perf_sample_data data;
965 
966 	static_call(x86_pmu_drain_pebs)(NULL, &data);
967 }
968 
969 /*
970  * PEBS
971  */
972 struct event_constraint intel_core2_pebs_event_constraints[] = {
973 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
974 	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
975 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
976 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
977 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
978 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
979 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
980 	EVENT_CONSTRAINT_END
981 };
982 
983 struct event_constraint intel_atom_pebs_event_constraints[] = {
984 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
985 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
986 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
987 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
988 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
989 	/* Allow all events as PEBS with no flags */
990 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
991 	EVENT_CONSTRAINT_END
992 };
993 
994 struct event_constraint intel_slm_pebs_event_constraints[] = {
995 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
996 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
997 	/* Allow all events as PEBS with no flags */
998 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
999 	EVENT_CONSTRAINT_END
1000 };
1001 
1002 struct event_constraint intel_glm_pebs_event_constraints[] = {
1003 	/* Allow all events as PEBS with no flags */
1004 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
1005 	EVENT_CONSTRAINT_END
1006 };
1007 
1008 struct event_constraint intel_grt_pebs_event_constraints[] = {
1009 	/* Allow all events as PEBS with no flags */
1010 	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1011 	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1012 	EVENT_CONSTRAINT_END
1013 };
1014 
1015 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1016 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1017 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1018 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1019 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
1020 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1021 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1022 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1023 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1024 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1025 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1026 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1027 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1028 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1029 	EVENT_CONSTRAINT_END
1030 };
1031 
1032 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1033 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1034 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1035 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1036 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
1037 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1038 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1039 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
1040 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1041 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1042 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1043 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1044 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1045 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1046 	EVENT_CONSTRAINT_END
1047 };
1048 
1049 struct event_constraint intel_snb_pebs_event_constraints[] = {
1050 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1051 	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1052 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1053 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1054 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1055         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1056         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1057         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1058         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1059 	/* Allow all events as PEBS with no flags */
1060 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1061 	EVENT_CONSTRAINT_END
1062 };
1063 
1064 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1065         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1066         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1067 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1068 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1069 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1070 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1071 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1072 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1073 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1074 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1075 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1076 	/* Allow all events as PEBS with no flags */
1077 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1078         EVENT_CONSTRAINT_END
1079 };
1080 
1081 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1082 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1083 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1084 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1085 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1086 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1087 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1088 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1089 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1090 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1091 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1092 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1093 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1094 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1095 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1096 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1097 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1098 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1099 	/* Allow all events as PEBS with no flags */
1100 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1101 	EVENT_CONSTRAINT_END
1102 };
1103 
1104 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1105 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1106 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1107 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1108 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1109 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1110 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1111 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1112 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1113 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1114 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1115 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1116 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1117 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1118 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1119 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1120 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1121 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1122 	/* Allow all events as PEBS with no flags */
1123 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1124 	EVENT_CONSTRAINT_END
1125 };
1126 
1127 
1128 struct event_constraint intel_skl_pebs_event_constraints[] = {
1129 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1130 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1131 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1132 	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1133 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1134 	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1135 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1136 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1137 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1138 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1139 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1140 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1141 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1142 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1143 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1144 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1145 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1146 	/* Allow all events as PEBS with no flags */
1147 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1148 	EVENT_CONSTRAINT_END
1149 };
1150 
1151 struct event_constraint intel_icl_pebs_event_constraints[] = {
1152 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1153 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1154 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1155 
1156 	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1157 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1158 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1159 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1160 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1161 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1162 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1163 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1164 
1165 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1166 
1167 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1168 
1169 	/*
1170 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1171 	 * need the full constraints from the main table.
1172 	 */
1173 
1174 	EVENT_CONSTRAINT_END
1175 };
1176 
1177 struct event_constraint intel_glc_pebs_event_constraints[] = {
1178 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1179 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1180 
1181 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1182 	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1183 	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1184 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1185 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1186 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1187 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1188 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1189 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1190 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1191 
1192 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1193 
1194 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1195 
1196 	/*
1197 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1198 	 * need the full constraints from the main table.
1199 	 */
1200 
1201 	EVENT_CONSTRAINT_END
1202 };
1203 
1204 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1205 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1206 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1207 
1208 	INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1209 	INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1210 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1211 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1212 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1213 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1214 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1215 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1216 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1217 
1218 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1219 
1220 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1221 
1222 	/*
1223 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1224 	 * need the full constraints from the main table.
1225 	 */
1226 
1227 	EVENT_CONSTRAINT_END
1228 };
1229 
intel_pebs_constraints(struct perf_event * event)1230 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1231 {
1232 	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1233 	struct event_constraint *c;
1234 
1235 	if (!event->attr.precise_ip)
1236 		return NULL;
1237 
1238 	if (pebs_constraints) {
1239 		for_each_event_constraint(c, pebs_constraints) {
1240 			if (constraint_match(c, event->hw.config)) {
1241 				event->hw.flags |= c->flags;
1242 				return c;
1243 			}
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * Extended PEBS support
1249 	 * Makes the PEBS code search the normal constraints.
1250 	 */
1251 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1252 		return NULL;
1253 
1254 	return &emptyconstraint;
1255 }
1256 
1257 /*
1258  * We need the sched_task callback even for per-cpu events when we use
1259  * the large interrupt threshold, such that we can provide PID and TID
1260  * to PEBS samples.
1261  */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1262 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1263 {
1264 	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1265 		return false;
1266 
1267 	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1268 }
1269 
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1270 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1271 {
1272 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1273 
1274 	if (!sched_in && pebs_needs_sched_cb(cpuc))
1275 		intel_pmu_drain_pebs_buffer();
1276 }
1277 
pebs_update_threshold(struct cpu_hw_events * cpuc)1278 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1279 {
1280 	struct debug_store *ds = cpuc->ds;
1281 	int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1282 	u64 threshold;
1283 	int reserved;
1284 
1285 	if (cpuc->n_pebs_via_pt)
1286 		return;
1287 
1288 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1289 		reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1290 	else
1291 		reserved = max_pebs_events;
1292 
1293 	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1294 		threshold = ds->pebs_absolute_maximum -
1295 			reserved * cpuc->pebs_record_size;
1296 	} else {
1297 		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1298 	}
1299 
1300 	ds->pebs_interrupt_threshold = threshold;
1301 }
1302 
1303 #define PEBS_DATACFG_CNTRS(x)						\
1304 	((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK)
1305 
1306 #define PEBS_DATACFG_CNTR_BIT(x)					\
1307 	(((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT)
1308 
1309 #define PEBS_DATACFG_FIX(x)						\
1310 	((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK)
1311 
1312 #define PEBS_DATACFG_FIX_BIT(x)						\
1313 	(((1ULL << (x)) & PEBS_DATACFG_FIX_MASK)			\
1314 	 << PEBS_DATACFG_FIX_SHIFT)
1315 
adaptive_pebs_record_size_update(void)1316 static void adaptive_pebs_record_size_update(void)
1317 {
1318 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1319 	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1320 	int sz = sizeof(struct pebs_basic);
1321 
1322 	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1323 		sz += sizeof(struct pebs_meminfo);
1324 	if (pebs_data_cfg & PEBS_DATACFG_GP)
1325 		sz += sizeof(struct pebs_gprs);
1326 	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1327 		sz += sizeof(struct pebs_xmm);
1328 	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1329 		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1330 	if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) {
1331 		sz += sizeof(struct pebs_cntr_header);
1332 
1333 		/* Metrics base and Metrics Data */
1334 		if (pebs_data_cfg & PEBS_DATACFG_METRICS)
1335 			sz += 2 * sizeof(u64);
1336 
1337 		if (pebs_data_cfg & PEBS_DATACFG_CNTR) {
1338 			sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) +
1339 			       hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) *
1340 			      sizeof(u64);
1341 		}
1342 	}
1343 
1344 	cpuc->pebs_record_size = sz;
1345 }
1346 
__intel_pmu_pebs_update_cfg(struct perf_event * event,int idx,u64 * pebs_data_cfg)1347 static void __intel_pmu_pebs_update_cfg(struct perf_event *event,
1348 					int idx, u64 *pebs_data_cfg)
1349 {
1350 	if (is_metric_event(event)) {
1351 		*pebs_data_cfg |= PEBS_DATACFG_METRICS;
1352 		return;
1353 	}
1354 
1355 	*pebs_data_cfg |= PEBS_DATACFG_CNTR;
1356 
1357 	if (idx >= INTEL_PMC_IDX_FIXED)
1358 		*pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED);
1359 	else
1360 		*pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx);
1361 }
1362 
1363 
intel_pmu_pebs_late_setup(struct cpu_hw_events * cpuc)1364 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc)
1365 {
1366 	struct perf_event *event;
1367 	u64 pebs_data_cfg = 0;
1368 	int i;
1369 
1370 	for (i = 0; i < cpuc->n_events; i++) {
1371 		event = cpuc->event_list[i];
1372 		if (!is_pebs_counter_event_group(event))
1373 			continue;
1374 		__intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg);
1375 	}
1376 
1377 	if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1378 		cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1379 }
1380 
1381 #define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1382 				PERF_SAMPLE_PHYS_ADDR |			     \
1383 				PERF_SAMPLE_WEIGHT_TYPE |		     \
1384 				PERF_SAMPLE_TRANSACTION |		     \
1385 				PERF_SAMPLE_DATA_PAGE_SIZE)
1386 
pebs_update_adaptive_cfg(struct perf_event * event)1387 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1388 {
1389 	struct perf_event_attr *attr = &event->attr;
1390 	u64 sample_type = attr->sample_type;
1391 	u64 pebs_data_cfg = 0;
1392 	bool gprs, tsx_weight;
1393 
1394 	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1395 	    attr->precise_ip > 1)
1396 		return pebs_data_cfg;
1397 
1398 	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1399 		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1400 
1401 	/*
1402 	 * We need GPRs when:
1403 	 * + user requested them
1404 	 * + precise_ip < 2 for the non event IP
1405 	 * + For RTM TSX weight we need GPRs for the abort code.
1406 	 */
1407 	gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1408 		(attr->sample_regs_intr & PEBS_GP_REGS)) ||
1409 	       ((sample_type & PERF_SAMPLE_REGS_USER) &&
1410 		(attr->sample_regs_user & PEBS_GP_REGS));
1411 
1412 	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1413 		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1414 		      x86_pmu.rtm_abort_event);
1415 
1416 	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1417 		pebs_data_cfg |= PEBS_DATACFG_GP;
1418 
1419 	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1420 	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1421 		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1422 
1423 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1424 		/*
1425 		 * For now always log all LBRs. Could configure this
1426 		 * later.
1427 		 */
1428 		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1429 			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1430 	}
1431 
1432 	return pebs_data_cfg;
1433 }
1434 
1435 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1436 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1437 		  struct perf_event *event, bool add)
1438 {
1439 	struct pmu *pmu = event->pmu;
1440 
1441 	/*
1442 	 * Make sure we get updated with the first PEBS event.
1443 	 * During removal, ->pebs_data_cfg is still valid for
1444 	 * the last PEBS event. Don't clear it.
1445 	 */
1446 	if ((cpuc->n_pebs == 1) && add)
1447 		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1448 
1449 	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1450 		if (!needed_cb)
1451 			perf_sched_cb_inc(pmu);
1452 		else
1453 			perf_sched_cb_dec(pmu);
1454 
1455 		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1456 	}
1457 
1458 	/*
1459 	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1460 	 * iterating all remaining PEBS events to reconstruct the config.
1461 	 */
1462 	if (x86_pmu.intel_cap.pebs_baseline && add) {
1463 		u64 pebs_data_cfg;
1464 
1465 		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1466 		/*
1467 		 * Be sure to update the thresholds when we change the record.
1468 		 */
1469 		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1470 			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1471 	}
1472 }
1473 
intel_pmu_pebs_add(struct perf_event * event)1474 void intel_pmu_pebs_add(struct perf_event *event)
1475 {
1476 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1477 	struct hw_perf_event *hwc = &event->hw;
1478 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1479 
1480 	cpuc->n_pebs++;
1481 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1482 		cpuc->n_large_pebs++;
1483 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1484 		cpuc->n_pebs_via_pt++;
1485 
1486 	pebs_update_state(needed_cb, cpuc, event, true);
1487 }
1488 
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1489 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1490 {
1491 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492 
1493 	if (!is_pebs_pt(event))
1494 		return;
1495 
1496 	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1497 		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1498 }
1499 
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1500 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1501 {
1502 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503 	struct hw_perf_event *hwc = &event->hw;
1504 	struct debug_store *ds = cpuc->ds;
1505 	u64 value = ds->pebs_event_reset[hwc->idx];
1506 	u32 base = MSR_RELOAD_PMC0;
1507 	unsigned int idx = hwc->idx;
1508 
1509 	if (!is_pebs_pt(event))
1510 		return;
1511 
1512 	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1513 		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1514 
1515 	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1516 
1517 	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1518 		base = MSR_RELOAD_FIXED_CTR0;
1519 		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1520 		if (x86_pmu.intel_cap.pebs_format < 5)
1521 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1522 		else
1523 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1524 	}
1525 	wrmsrq(base + idx, value);
1526 }
1527 
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1528 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1529 {
1530 	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1531 	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1532 		intel_pmu_drain_pebs_buffer();
1533 }
1534 
intel_pmu_pebs_enable(struct perf_event * event)1535 void intel_pmu_pebs_enable(struct perf_event *event)
1536 {
1537 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1538 	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1539 	struct hw_perf_event *hwc = &event->hw;
1540 	struct debug_store *ds = cpuc->ds;
1541 	unsigned int idx = hwc->idx;
1542 
1543 	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1544 
1545 	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1546 
1547 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1548 		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1549 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1550 		cpuc->pebs_enabled |= 1ULL << 63;
1551 
1552 	if (x86_pmu.intel_cap.pebs_baseline) {
1553 		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1554 		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1555 			/*
1556 			 * drain_pebs() assumes uniform record size;
1557 			 * hence we need to drain when changing said
1558 			 * size.
1559 			 */
1560 			intel_pmu_drain_pebs_buffer();
1561 			adaptive_pebs_record_size_update();
1562 			wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1563 			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1564 		}
1565 	}
1566 	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1567 		cpuc->pebs_data_cfg = pebs_data_cfg;
1568 		pebs_update_threshold(cpuc);
1569 	}
1570 
1571 	if (idx >= INTEL_PMC_IDX_FIXED) {
1572 		if (x86_pmu.intel_cap.pebs_format < 5)
1573 			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1574 		else
1575 			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1576 	}
1577 
1578 	/*
1579 	 * Use auto-reload if possible to save a MSR write in the PMI.
1580 	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1581 	 */
1582 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1583 		ds->pebs_event_reset[idx] =
1584 			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1585 	} else {
1586 		ds->pebs_event_reset[idx] = 0;
1587 	}
1588 
1589 	intel_pmu_pebs_via_pt_enable(event);
1590 }
1591 
intel_pmu_pebs_del(struct perf_event * event)1592 void intel_pmu_pebs_del(struct perf_event *event)
1593 {
1594 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1595 	struct hw_perf_event *hwc = &event->hw;
1596 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1597 
1598 	cpuc->n_pebs--;
1599 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1600 		cpuc->n_large_pebs--;
1601 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1602 		cpuc->n_pebs_via_pt--;
1603 
1604 	pebs_update_state(needed_cb, cpuc, event, false);
1605 }
1606 
intel_pmu_pebs_disable(struct perf_event * event)1607 void intel_pmu_pebs_disable(struct perf_event *event)
1608 {
1609 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1610 	struct hw_perf_event *hwc = &event->hw;
1611 
1612 	intel_pmu_drain_large_pebs(cpuc);
1613 
1614 	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1615 
1616 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1617 	    (x86_pmu.version < 5))
1618 		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1619 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1620 		cpuc->pebs_enabled &= ~(1ULL << 63);
1621 
1622 	intel_pmu_pebs_via_pt_disable(event);
1623 
1624 	if (cpuc->enabled)
1625 		wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1626 
1627 	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1628 }
1629 
intel_pmu_pebs_enable_all(void)1630 void intel_pmu_pebs_enable_all(void)
1631 {
1632 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1633 
1634 	if (cpuc->pebs_enabled)
1635 		wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1636 }
1637 
intel_pmu_pebs_disable_all(void)1638 void intel_pmu_pebs_disable_all(void)
1639 {
1640 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1641 
1642 	if (cpuc->pebs_enabled)
1643 		__intel_pmu_pebs_disable_all();
1644 }
1645 
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1646 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1647 {
1648 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1649 	unsigned long from = cpuc->lbr_entries[0].from;
1650 	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1651 	unsigned long ip = regs->ip;
1652 	int is_64bit = 0;
1653 	void *kaddr;
1654 	int size;
1655 
1656 	/*
1657 	 * We don't need to fixup if the PEBS assist is fault like
1658 	 */
1659 	if (!x86_pmu.intel_cap.pebs_trap)
1660 		return 1;
1661 
1662 	/*
1663 	 * No LBR entry, no basic block, no rewinding
1664 	 */
1665 	if (!cpuc->lbr_stack.nr || !from || !to)
1666 		return 0;
1667 
1668 	/*
1669 	 * Basic blocks should never cross user/kernel boundaries
1670 	 */
1671 	if (kernel_ip(ip) != kernel_ip(to))
1672 		return 0;
1673 
1674 	/*
1675 	 * unsigned math, either ip is before the start (impossible) or
1676 	 * the basic block is larger than 1 page (sanity)
1677 	 */
1678 	if ((ip - to) > PEBS_FIXUP_SIZE)
1679 		return 0;
1680 
1681 	/*
1682 	 * We sampled a branch insn, rewind using the LBR stack
1683 	 */
1684 	if (ip == to) {
1685 		set_linear_ip(regs, from);
1686 		return 1;
1687 	}
1688 
1689 	size = ip - to;
1690 	if (!kernel_ip(ip)) {
1691 		int bytes;
1692 		u8 *buf = this_cpu_read(insn_buffer);
1693 
1694 		/* 'size' must fit our buffer, see above */
1695 		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1696 		if (bytes != 0)
1697 			return 0;
1698 
1699 		kaddr = buf;
1700 	} else {
1701 		kaddr = (void *)to;
1702 	}
1703 
1704 	do {
1705 		struct insn insn;
1706 
1707 		old_to = to;
1708 
1709 #ifdef CONFIG_X86_64
1710 		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1711 #endif
1712 		insn_init(&insn, kaddr, size, is_64bit);
1713 
1714 		/*
1715 		 * Make sure there was not a problem decoding the instruction.
1716 		 * This is doubly important because we have an infinite loop if
1717 		 * insn.length=0.
1718 		 */
1719 		if (insn_get_length(&insn))
1720 			break;
1721 
1722 		to += insn.length;
1723 		kaddr += insn.length;
1724 		size -= insn.length;
1725 	} while (to < ip);
1726 
1727 	if (to == ip) {
1728 		set_linear_ip(regs, old_to);
1729 		return 1;
1730 	}
1731 
1732 	/*
1733 	 * Even though we decoded the basic block, the instruction stream
1734 	 * never matched the given IP, either the TO or the IP got corrupted.
1735 	 */
1736 	return 0;
1737 }
1738 
intel_get_tsx_weight(u64 tsx_tuning)1739 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1740 {
1741 	if (tsx_tuning) {
1742 		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1743 		return tsx.cycles_last_block;
1744 	}
1745 	return 0;
1746 }
1747 
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1748 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1749 {
1750 	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1751 
1752 	/* For RTM XABORTs also log the abort code from AX */
1753 	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1754 		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1755 	return txn;
1756 }
1757 
get_pebs_status(void * n)1758 static inline u64 get_pebs_status(void *n)
1759 {
1760 	if (x86_pmu.intel_cap.pebs_format < 4)
1761 		return ((struct pebs_record_nhm *)n)->status;
1762 	return ((struct pebs_basic *)n)->applicable_counters;
1763 }
1764 
1765 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1766 		(PERF_X86_EVENT_PEBS_ST_HSW | \
1767 		 PERF_X86_EVENT_PEBS_LD_HSW | \
1768 		 PERF_X86_EVENT_PEBS_NA_HSW)
1769 
get_data_src(struct perf_event * event,u64 aux)1770 static u64 get_data_src(struct perf_event *event, u64 aux)
1771 {
1772 	u64 val = PERF_MEM_NA;
1773 	int fl = event->hw.flags;
1774 	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1775 
1776 	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1777 		val = load_latency_data(event, aux);
1778 	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1779 		val = store_latency_data(event, aux);
1780 	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1781 		val = x86_pmu.pebs_latency_data(event, aux);
1782 	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1783 		val = precise_datala_hsw(event, aux);
1784 	else if (fst)
1785 		val = precise_store_data(aux);
1786 	return val;
1787 }
1788 
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1789 static void setup_pebs_time(struct perf_event *event,
1790 			    struct perf_sample_data *data,
1791 			    u64 tsc)
1792 {
1793 	/* Converting to a user-defined clock is not supported yet. */
1794 	if (event->attr.use_clockid != 0)
1795 		return;
1796 
1797 	/*
1798 	 * Doesn't support the conversion when the TSC is unstable.
1799 	 * The TSC unstable case is a corner case and very unlikely to
1800 	 * happen. If it happens, the TSC in a PEBS record will be
1801 	 * dropped and fall back to perf_event_clock().
1802 	 */
1803 	if (!using_native_sched_clock() || !sched_clock_stable())
1804 		return;
1805 
1806 	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1807 	data->sample_flags |= PERF_SAMPLE_TIME;
1808 }
1809 
1810 #define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1811 				 PERF_SAMPLE_PHYS_ADDR |	\
1812 				 PERF_SAMPLE_DATA_PAGE_SIZE)
1813 
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1814 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1815 				   struct pt_regs *iregs, void *__pebs,
1816 				   struct perf_sample_data *data,
1817 				   struct pt_regs *regs)
1818 {
1819 	/*
1820 	 * We cast to the biggest pebs_record but are careful not to
1821 	 * unconditionally access the 'extra' entries.
1822 	 */
1823 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1824 	struct pebs_record_skl *pebs = __pebs;
1825 	u64 sample_type;
1826 	int fll;
1827 
1828 	if (pebs == NULL)
1829 		return;
1830 
1831 	sample_type = event->attr.sample_type;
1832 	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1833 
1834 	perf_sample_data_init(data, 0, event->hw.last_period);
1835 
1836 	/*
1837 	 * Use latency for weight (only avail with PEBS-LL)
1838 	 */
1839 	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1840 		data->weight.full = pebs->lat;
1841 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1842 	}
1843 
1844 	/*
1845 	 * data.data_src encodes the data source
1846 	 */
1847 	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1848 		data->data_src.val = get_data_src(event, pebs->dse);
1849 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1850 	}
1851 
1852 	/*
1853 	 * We must however always use iregs for the unwinder to stay sane; the
1854 	 * record BP,SP,IP can point into thin air when the record is from a
1855 	 * previous PMI context or an (I)RET happened between the record and
1856 	 * PMI.
1857 	 */
1858 	perf_sample_save_callchain(data, event, iregs);
1859 
1860 	/*
1861 	 * We use the interrupt regs as a base because the PEBS record does not
1862 	 * contain a full regs set, specifically it seems to lack segment
1863 	 * descriptors, which get used by things like user_mode().
1864 	 *
1865 	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1866 	 */
1867 	*regs = *iregs;
1868 
1869 	/*
1870 	 * Initialize regs_>flags from PEBS,
1871 	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1872 	 * i.e., do not rely on it being zero:
1873 	 */
1874 	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1875 
1876 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1877 		regs->ax = pebs->ax;
1878 		regs->bx = pebs->bx;
1879 		regs->cx = pebs->cx;
1880 		regs->dx = pebs->dx;
1881 		regs->si = pebs->si;
1882 		regs->di = pebs->di;
1883 
1884 		regs->bp = pebs->bp;
1885 		regs->sp = pebs->sp;
1886 
1887 #ifndef CONFIG_X86_32
1888 		regs->r8 = pebs->r8;
1889 		regs->r9 = pebs->r9;
1890 		regs->r10 = pebs->r10;
1891 		regs->r11 = pebs->r11;
1892 		regs->r12 = pebs->r12;
1893 		regs->r13 = pebs->r13;
1894 		regs->r14 = pebs->r14;
1895 		regs->r15 = pebs->r15;
1896 #endif
1897 	}
1898 
1899 	if (event->attr.precise_ip > 1) {
1900 		/*
1901 		 * Haswell and later processors have an 'eventing IP'
1902 		 * (real IP) which fixes the off-by-1 skid in hardware.
1903 		 * Use it when precise_ip >= 2 :
1904 		 */
1905 		if (x86_pmu.intel_cap.pebs_format >= 2) {
1906 			set_linear_ip(regs, pebs->real_ip);
1907 			regs->flags |= PERF_EFLAGS_EXACT;
1908 		} else {
1909 			/* Otherwise, use PEBS off-by-1 IP: */
1910 			set_linear_ip(regs, pebs->ip);
1911 
1912 			/*
1913 			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1914 			 * using the LBR. If successful, the fixup function
1915 			 * corrects regs->ip and calls set_linear_ip() on regs:
1916 			 */
1917 			if (intel_pmu_pebs_fixup_ip(regs))
1918 				regs->flags |= PERF_EFLAGS_EXACT;
1919 		}
1920 	} else {
1921 		/*
1922 		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1923 		 * no fixup attempted:
1924 		 */
1925 		set_linear_ip(regs, pebs->ip);
1926 	}
1927 
1928 
1929 	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1930 	    x86_pmu.intel_cap.pebs_format >= 1) {
1931 		data->addr = pebs->dla;
1932 		data->sample_flags |= PERF_SAMPLE_ADDR;
1933 	}
1934 
1935 	if (x86_pmu.intel_cap.pebs_format >= 2) {
1936 		/* Only set the TSX weight when no memory weight. */
1937 		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1938 			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1939 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1940 		}
1941 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1942 			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1943 							      pebs->ax);
1944 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * v3 supplies an accurate time stamp, so we use that
1950 	 * for the time stamp.
1951 	 *
1952 	 * We can only do this for the default trace clock.
1953 	 */
1954 	if (x86_pmu.intel_cap.pebs_format >= 3)
1955 		setup_pebs_time(event, data, pebs->tsc);
1956 
1957 	perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1958 }
1959 
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1960 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1961 				    struct pebs_gprs *gprs)
1962 {
1963 	regs->ax = gprs->ax;
1964 	regs->bx = gprs->bx;
1965 	regs->cx = gprs->cx;
1966 	regs->dx = gprs->dx;
1967 	regs->si = gprs->si;
1968 	regs->di = gprs->di;
1969 	regs->bp = gprs->bp;
1970 	regs->sp = gprs->sp;
1971 #ifndef CONFIG_X86_32
1972 	regs->r8 = gprs->r8;
1973 	regs->r9 = gprs->r9;
1974 	regs->r10 = gprs->r10;
1975 	regs->r11 = gprs->r11;
1976 	regs->r12 = gprs->r12;
1977 	regs->r13 = gprs->r13;
1978 	regs->r14 = gprs->r14;
1979 	regs->r15 = gprs->r15;
1980 #endif
1981 }
1982 
intel_perf_event_update_pmc(struct perf_event * event,u64 pmc)1983 static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc)
1984 {
1985 	int shift = 64 - x86_pmu.cntval_bits;
1986 	struct hw_perf_event *hwc;
1987 	u64 delta, prev_pmc;
1988 
1989 	/*
1990 	 * A recorded counter may not have an assigned event in the
1991 	 * following cases. The value should be dropped.
1992 	 * - An event is deleted. There is still an active PEBS event.
1993 	 *   The PEBS record doesn't shrink on pmu::del().
1994 	 *   If the counter of the deleted event once occurred in a PEBS
1995 	 *   record, PEBS still records the counter until the counter is
1996 	 *   reassigned.
1997 	 * - An event is stopped for some reason, e.g., throttled.
1998 	 *   During this period, another event is added and takes the
1999 	 *   counter of the stopped event. The stopped event is assigned
2000 	 *   to another new and uninitialized counter, since the
2001 	 *   x86_pmu_start(RELOAD) is not invoked for a stopped event.
2002 	 *   The PEBS__DATA_CFG is updated regardless of the event state.
2003 	 *   The uninitialized counter can be recorded in a PEBS record.
2004 	 *   But the cpuc->events[uninitialized_counter] is always NULL,
2005 	 *   because the event is stopped. The uninitialized value is
2006 	 *   safely dropped.
2007 	 */
2008 	if (!event)
2009 		return;
2010 
2011 	hwc = &event->hw;
2012 	prev_pmc = local64_read(&hwc->prev_count);
2013 
2014 	/* Only update the count when the PMU is disabled */
2015 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2016 	local64_set(&hwc->prev_count, pmc);
2017 
2018 	delta = (pmc << shift) - (prev_pmc << shift);
2019 	delta >>= shift;
2020 
2021 	local64_add(delta, &event->count);
2022 	local64_sub(delta, &hwc->period_left);
2023 }
2024 
__setup_pebs_counter_group(struct cpu_hw_events * cpuc,struct perf_event * event,struct pebs_cntr_header * cntr,void * next_record)2025 static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc,
2026 					      struct perf_event *event,
2027 					      struct pebs_cntr_header *cntr,
2028 					      void *next_record)
2029 {
2030 	int bit;
2031 
2032 	for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) {
2033 		intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record);
2034 		next_record += sizeof(u64);
2035 	}
2036 
2037 	for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) {
2038 		/* The slots event will be handled with perf_metric later */
2039 		if ((cntr->metrics == INTEL_CNTR_METRICS) &&
2040 		    (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) {
2041 			next_record += sizeof(u64);
2042 			continue;
2043 		}
2044 		intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED],
2045 					    *(u64 *)next_record);
2046 		next_record += sizeof(u64);
2047 	}
2048 
2049 	/* HW will reload the value right after the overflow. */
2050 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2051 		local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period);
2052 
2053 	if (cntr->metrics == INTEL_CNTR_METRICS) {
2054 		static_call(intel_pmu_update_topdown_event)
2055 			   (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS],
2056 			    (u64 *)next_record);
2057 		next_record += 2 * sizeof(u64);
2058 	}
2059 }
2060 
2061 #define PEBS_LATENCY_MASK			0xffff
2062 
2063 /*
2064  * With adaptive PEBS the layout depends on what fields are configured.
2065  */
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)2066 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
2067 					    struct pt_regs *iregs, void *__pebs,
2068 					    struct perf_sample_data *data,
2069 					    struct pt_regs *regs)
2070 {
2071 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2072 	struct pebs_basic *basic = __pebs;
2073 	void *next_record = basic + 1;
2074 	u64 sample_type, format_group;
2075 	struct pebs_meminfo *meminfo = NULL;
2076 	struct pebs_gprs *gprs = NULL;
2077 	struct x86_perf_regs *perf_regs;
2078 
2079 	if (basic == NULL)
2080 		return;
2081 
2082 	perf_regs = container_of(regs, struct x86_perf_regs, regs);
2083 	perf_regs->xmm_regs = NULL;
2084 
2085 	sample_type = event->attr.sample_type;
2086 	format_group = basic->format_group;
2087 	perf_sample_data_init(data, 0, event->hw.last_period);
2088 
2089 	setup_pebs_time(event, data, basic->tsc);
2090 
2091 	/*
2092 	 * We must however always use iregs for the unwinder to stay sane; the
2093 	 * record BP,SP,IP can point into thin air when the record is from a
2094 	 * previous PMI context or an (I)RET happened between the record and
2095 	 * PMI.
2096 	 */
2097 	perf_sample_save_callchain(data, event, iregs);
2098 
2099 	*regs = *iregs;
2100 	/* The ip in basic is EventingIP */
2101 	set_linear_ip(regs, basic->ip);
2102 	regs->flags = PERF_EFLAGS_EXACT;
2103 
2104 	if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
2105 		if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
2106 			data->weight.var3_w = basic->retire_latency;
2107 		else
2108 			data->weight.var3_w = 0;
2109 	}
2110 
2111 	/*
2112 	 * The record for MEMINFO is in front of GP
2113 	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
2114 	 * Save the pointer here but process later.
2115 	 */
2116 	if (format_group & PEBS_DATACFG_MEMINFO) {
2117 		meminfo = next_record;
2118 		next_record = meminfo + 1;
2119 	}
2120 
2121 	if (format_group & PEBS_DATACFG_GP) {
2122 		gprs = next_record;
2123 		next_record = gprs + 1;
2124 
2125 		if (event->attr.precise_ip < 2) {
2126 			set_linear_ip(regs, gprs->ip);
2127 			regs->flags &= ~PERF_EFLAGS_EXACT;
2128 		}
2129 
2130 		if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
2131 			adaptive_pebs_save_regs(regs, gprs);
2132 	}
2133 
2134 	if (format_group & PEBS_DATACFG_MEMINFO) {
2135 		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2136 			u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ?
2137 					meminfo->cache_latency : meminfo->mem_latency;
2138 
2139 			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY)
2140 				data->weight.var2_w = meminfo->instr_latency;
2141 
2142 			/*
2143 			 * Although meminfo::latency is defined as a u64,
2144 			 * only the lower 32 bits include the valid data
2145 			 * in practice on Ice Lake and earlier platforms.
2146 			 */
2147 			if (sample_type & PERF_SAMPLE_WEIGHT) {
2148 				data->weight.full = latency ?:
2149 					intel_get_tsx_weight(meminfo->tsx_tuning);
2150 			} else {
2151 				data->weight.var1_dw = (u32)latency ?:
2152 					intel_get_tsx_weight(meminfo->tsx_tuning);
2153 			}
2154 
2155 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2156 		}
2157 
2158 		if (sample_type & PERF_SAMPLE_DATA_SRC) {
2159 			data->data_src.val = get_data_src(event, meminfo->aux);
2160 			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2161 		}
2162 
2163 		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2164 			data->addr = meminfo->address;
2165 			data->sample_flags |= PERF_SAMPLE_ADDR;
2166 		}
2167 
2168 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
2169 			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2170 							  gprs ? gprs->ax : 0);
2171 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2172 		}
2173 	}
2174 
2175 	if (format_group & PEBS_DATACFG_XMMS) {
2176 		struct pebs_xmm *xmm = next_record;
2177 
2178 		next_record = xmm + 1;
2179 		perf_regs->xmm_regs = xmm->xmm;
2180 	}
2181 
2182 	if (format_group & PEBS_DATACFG_LBRS) {
2183 		struct lbr_entry *lbr = next_record;
2184 		int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT)
2185 					& 0xff) + 1;
2186 		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2187 
2188 		if (has_branch_stack(event)) {
2189 			intel_pmu_store_pebs_lbrs(lbr);
2190 			intel_pmu_lbr_save_brstack(data, cpuc, event);
2191 		}
2192 	}
2193 
2194 	if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) {
2195 		struct pebs_cntr_header *cntr = next_record;
2196 		unsigned int nr;
2197 
2198 		next_record += sizeof(struct pebs_cntr_header);
2199 		/*
2200 		 * The PEBS_DATA_CFG is a global register, which is the
2201 		 * superset configuration for all PEBS events.
2202 		 * For the PEBS record of non-sample-read group, ignore
2203 		 * the counter snapshot fields.
2204 		 */
2205 		if (is_pebs_counter_event_group(event)) {
2206 			__setup_pebs_counter_group(cpuc, event, cntr, next_record);
2207 			data->sample_flags |= PERF_SAMPLE_READ;
2208 		}
2209 
2210 		nr = hweight32(cntr->cntr) + hweight32(cntr->fixed);
2211 		if (cntr->metrics == INTEL_CNTR_METRICS)
2212 			nr += 2;
2213 		next_record += nr * sizeof(u64);
2214 	}
2215 
2216 	WARN_ONCE(next_record != __pebs + basic->format_size,
2217 			"PEBS record size %u, expected %llu, config %llx\n",
2218 			basic->format_size,
2219 			(u64)(next_record - __pebs),
2220 			format_group);
2221 }
2222 
2223 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2224 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2225 {
2226 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227 	void *at;
2228 	u64 pebs_status;
2229 
2230 	/*
2231 	 * fmt0 does not have a status bitfield (does not use
2232 	 * perf_record_nhm format)
2233 	 */
2234 	if (x86_pmu.intel_cap.pebs_format < 1)
2235 		return base;
2236 
2237 	if (base == NULL)
2238 		return NULL;
2239 
2240 	for (at = base; at < top; at += cpuc->pebs_record_size) {
2241 		unsigned long status = get_pebs_status(at);
2242 
2243 		if (test_bit(bit, (unsigned long *)&status)) {
2244 			/* PEBS v3 has accurate status bits */
2245 			if (x86_pmu.intel_cap.pebs_format >= 3)
2246 				return at;
2247 
2248 			if (status == (1 << bit))
2249 				return at;
2250 
2251 			/* clear non-PEBS bit and re-check */
2252 			pebs_status = status & cpuc->pebs_enabled;
2253 			pebs_status &= PEBS_COUNTER_MASK;
2254 			if (pebs_status == (1 << bit))
2255 				return at;
2256 		}
2257 	}
2258 	return NULL;
2259 }
2260 
2261 /*
2262  * Special variant of intel_pmu_save_and_restart() for auto-reload.
2263  */
2264 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2265 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2266 {
2267 	struct hw_perf_event *hwc = &event->hw;
2268 	int shift = 64 - x86_pmu.cntval_bits;
2269 	u64 period = hwc->sample_period;
2270 	u64 prev_raw_count, new_raw_count;
2271 	s64 new, old;
2272 
2273 	WARN_ON(!period);
2274 
2275 	/*
2276 	 * drain_pebs() only happens when the PMU is disabled.
2277 	 */
2278 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2279 
2280 	prev_raw_count = local64_read(&hwc->prev_count);
2281 	new_raw_count = rdpmc(hwc->event_base_rdpmc);
2282 	local64_set(&hwc->prev_count, new_raw_count);
2283 
2284 	/*
2285 	 * Since the counter increments a negative counter value and
2286 	 * overflows on the sign switch, giving the interval:
2287 	 *
2288 	 *   [-period, 0]
2289 	 *
2290 	 * the difference between two consecutive reads is:
2291 	 *
2292 	 *   A) value2 - value1;
2293 	 *      when no overflows have happened in between,
2294 	 *
2295 	 *   B) (0 - value1) + (value2 - (-period));
2296 	 *      when one overflow happened in between,
2297 	 *
2298 	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2299 	 *      when @n overflows happened in between.
2300 	 *
2301 	 * Here A) is the obvious difference, B) is the extension to the
2302 	 * discrete interval, where the first term is to the top of the
2303 	 * interval and the second term is from the bottom of the next
2304 	 * interval and C) the extension to multiple intervals, where the
2305 	 * middle term is the whole intervals covered.
2306 	 *
2307 	 * An equivalent of C, by reduction, is:
2308 	 *
2309 	 *   value2 - value1 + n * period
2310 	 */
2311 	new = ((s64)(new_raw_count << shift) >> shift);
2312 	old = ((s64)(prev_raw_count << shift) >> shift);
2313 	local64_add(new - old + count * period, &event->count);
2314 
2315 	local64_set(&hwc->period_left, -new);
2316 
2317 	perf_event_update_userpage(event);
2318 
2319 	return 0;
2320 }
2321 
2322 typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *,
2323 			 struct perf_sample_data *, struct pt_regs *);
2324 
2325 static struct pt_regs dummy_iregs;
2326 
2327 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,setup_fn setup_sample)2328 __intel_pmu_pebs_event(struct perf_event *event,
2329 		       struct pt_regs *iregs,
2330 		       struct pt_regs *regs,
2331 		       struct perf_sample_data *data,
2332 		       void *at,
2333 		       setup_fn setup_sample)
2334 {
2335 	setup_sample(event, iregs, at, data, regs);
2336 	perf_event_output(event, data, regs);
2337 }
2338 
2339 static __always_inline void
__intel_pmu_pebs_last_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,int count,setup_fn setup_sample)2340 __intel_pmu_pebs_last_event(struct perf_event *event,
2341 			    struct pt_regs *iregs,
2342 			    struct pt_regs *regs,
2343 			    struct perf_sample_data *data,
2344 			    void *at,
2345 			    int count,
2346 			    setup_fn setup_sample)
2347 {
2348 	struct hw_perf_event *hwc = &event->hw;
2349 
2350 	setup_sample(event, iregs, at, data, regs);
2351 	if (iregs == &dummy_iregs) {
2352 		/*
2353 		 * The PEBS records may be drained in the non-overflow context,
2354 		 * e.g., large PEBS + context switch. Perf should treat the
2355 		 * last record the same as other PEBS records, and doesn't
2356 		 * invoke the generic overflow handler.
2357 		 */
2358 		perf_event_output(event, data, regs);
2359 	} else {
2360 		/*
2361 		 * All but the last records are processed.
2362 		 * The last one is left to be able to call the overflow handler.
2363 		 */
2364 		perf_event_overflow(event, data, regs);
2365 	}
2366 
2367 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2368 		if ((is_pebs_counter_event_group(event))) {
2369 			/*
2370 			 * The value of each sample has been updated when setup
2371 			 * the corresponding sample data.
2372 			 */
2373 			perf_event_update_userpage(event);
2374 		} else {
2375 			/*
2376 			 * Now, auto-reload is only enabled in fixed period mode.
2377 			 * The reload value is always hwc->sample_period.
2378 			 * May need to change it, if auto-reload is enabled in
2379 			 * freq mode later.
2380 			 */
2381 			intel_pmu_save_and_restart_reload(event, count);
2382 		}
2383 	} else {
2384 		/*
2385 		 * For a non-precise event, it's possible the
2386 		 * counters-snapshotting records a positive value for the
2387 		 * overflowed event. Then the HW auto-reload mechanism
2388 		 * reset the counter to 0 immediately, because the
2389 		 * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD
2390 		 * is not set. The counter backwards may be observed in a
2391 		 * PMI handler.
2392 		 *
2393 		 * Since the event value has been updated when processing the
2394 		 * counters-snapshotting record, only needs to set the new
2395 		 * period for the counter.
2396 		 */
2397 		if (is_pebs_counter_event_group(event))
2398 			static_call(x86_pmu_set_period)(event);
2399 		else
2400 			intel_pmu_save_and_restart(event);
2401 	}
2402 }
2403 
2404 static __always_inline void
__intel_pmu_pebs_events(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,setup_fn setup_sample)2405 __intel_pmu_pebs_events(struct perf_event *event,
2406 			struct pt_regs *iregs,
2407 			struct perf_sample_data *data,
2408 			void *base, void *top,
2409 			int bit, int count,
2410 			setup_fn setup_sample)
2411 {
2412 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2413 	struct x86_perf_regs perf_regs;
2414 	struct pt_regs *regs = &perf_regs.regs;
2415 	void *at = get_next_pebs_record_by_bit(base, top, bit);
2416 	int cnt = count;
2417 
2418 	if (!iregs)
2419 		iregs = &dummy_iregs;
2420 
2421 	while (cnt > 1) {
2422 		__intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample);
2423 		at += cpuc->pebs_record_size;
2424 		at = get_next_pebs_record_by_bit(at, top, bit);
2425 		cnt--;
2426 	}
2427 
2428 	__intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample);
2429 }
2430 
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2431 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2432 {
2433 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2434 	struct debug_store *ds = cpuc->ds;
2435 	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2436 	struct pebs_record_core *at, *top;
2437 	int n;
2438 
2439 	if (!x86_pmu.pebs_active)
2440 		return;
2441 
2442 	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2443 	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2444 
2445 	/*
2446 	 * Whatever else happens, drain the thing
2447 	 */
2448 	ds->pebs_index = ds->pebs_buffer_base;
2449 
2450 	if (!test_bit(0, cpuc->active_mask))
2451 		return;
2452 
2453 	WARN_ON_ONCE(!event);
2454 
2455 	if (!event->attr.precise_ip)
2456 		return;
2457 
2458 	n = top - at;
2459 	if (n <= 0) {
2460 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2461 			intel_pmu_save_and_restart_reload(event, 0);
2462 		return;
2463 	}
2464 
2465 	__intel_pmu_pebs_events(event, iregs, data, at, top, 0, n,
2466 				setup_pebs_fixed_sample_data);
2467 }
2468 
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,u64 mask)2469 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2470 {
2471 	u64 pebs_enabled = cpuc->pebs_enabled & mask;
2472 	struct perf_event *event;
2473 	int bit;
2474 
2475 	/*
2476 	 * The drain_pebs() could be called twice in a short period
2477 	 * for auto-reload event in pmu::read(). There are no
2478 	 * overflows have happened in between.
2479 	 * It needs to call intel_pmu_save_and_restart_reload() to
2480 	 * update the event->count for this case.
2481 	 */
2482 	for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2483 		event = cpuc->events[bit];
2484 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2485 			intel_pmu_save_and_restart_reload(event, 0);
2486 	}
2487 }
2488 
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2489 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2490 {
2491 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2492 	struct debug_store *ds = cpuc->ds;
2493 	struct perf_event *event;
2494 	void *base, *at, *top;
2495 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2496 	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2497 	int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2498 	int bit, i, size;
2499 	u64 mask;
2500 
2501 	if (!x86_pmu.pebs_active)
2502 		return;
2503 
2504 	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2505 	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2506 
2507 	ds->pebs_index = ds->pebs_buffer_base;
2508 
2509 	mask = x86_pmu.pebs_events_mask;
2510 	size = max_pebs_events;
2511 	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2512 		mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2513 		size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2514 	}
2515 
2516 	if (unlikely(base >= top)) {
2517 		intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2518 		return;
2519 	}
2520 
2521 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2522 		struct pebs_record_nhm *p = at;
2523 		u64 pebs_status;
2524 
2525 		pebs_status = p->status & cpuc->pebs_enabled;
2526 		pebs_status &= mask;
2527 
2528 		/* PEBS v3 has more accurate status bits */
2529 		if (x86_pmu.intel_cap.pebs_format >= 3) {
2530 			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2531 				counts[bit]++;
2532 
2533 			continue;
2534 		}
2535 
2536 		/*
2537 		 * On some CPUs the PEBS status can be zero when PEBS is
2538 		 * racing with clearing of GLOBAL_STATUS.
2539 		 *
2540 		 * Normally we would drop that record, but in the
2541 		 * case when there is only a single active PEBS event
2542 		 * we can assume it's for that event.
2543 		 */
2544 		if (!pebs_status && cpuc->pebs_enabled &&
2545 			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2546 			pebs_status = p->status = cpuc->pebs_enabled;
2547 
2548 		bit = find_first_bit((unsigned long *)&pebs_status,
2549 				     max_pebs_events);
2550 
2551 		if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2552 			continue;
2553 
2554 		/*
2555 		 * The PEBS hardware does not deal well with the situation
2556 		 * when events happen near to each other and multiple bits
2557 		 * are set. But it should happen rarely.
2558 		 *
2559 		 * If these events include one PEBS and multiple non-PEBS
2560 		 * events, it doesn't impact PEBS record. The record will
2561 		 * be handled normally. (slow path)
2562 		 *
2563 		 * If these events include two or more PEBS events, the
2564 		 * records for the events can be collapsed into a single
2565 		 * one, and it's not possible to reconstruct all events
2566 		 * that caused the PEBS record. It's called collision.
2567 		 * If collision happened, the record will be dropped.
2568 		 */
2569 		if (pebs_status != (1ULL << bit)) {
2570 			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2571 				error[i]++;
2572 			continue;
2573 		}
2574 
2575 		counts[bit]++;
2576 	}
2577 
2578 	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2579 		if ((counts[bit] == 0) && (error[bit] == 0))
2580 			continue;
2581 
2582 		event = cpuc->events[bit];
2583 		if (WARN_ON_ONCE(!event))
2584 			continue;
2585 
2586 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2587 			continue;
2588 
2589 		/* log dropped samples number */
2590 		if (error[bit]) {
2591 			perf_log_lost_samples(event, error[bit]);
2592 
2593 			if (iregs)
2594 				perf_event_account_interrupt(event);
2595 		}
2596 
2597 		if (counts[bit]) {
2598 			__intel_pmu_pebs_events(event, iregs, data, base,
2599 						top, bit, counts[bit],
2600 						setup_pebs_fixed_sample_data);
2601 		}
2602 	}
2603 }
2604 
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2605 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2606 {
2607 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2608 	void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS];
2609 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2610 	struct debug_store *ds = cpuc->ds;
2611 	struct x86_perf_regs perf_regs;
2612 	struct pt_regs *regs = &perf_regs.regs;
2613 	struct pebs_basic *basic;
2614 	struct perf_event *event;
2615 	void *base, *at, *top;
2616 	int bit;
2617 	u64 mask;
2618 
2619 	if (!x86_pmu.pebs_active)
2620 		return;
2621 
2622 	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2623 	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2624 
2625 	ds->pebs_index = ds->pebs_buffer_base;
2626 
2627 	mask = hybrid(cpuc->pmu, pebs_events_mask) |
2628 	       (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2629 
2630 	if (unlikely(base >= top)) {
2631 		intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2632 		return;
2633 	}
2634 
2635 	if (!iregs)
2636 		iregs = &dummy_iregs;
2637 
2638 	/* Process all but the last event for each counter. */
2639 	for (at = base; at < top; at += basic->format_size) {
2640 		u64 pebs_status;
2641 
2642 		basic = at;
2643 		if (basic->format_size != cpuc->pebs_record_size)
2644 			continue;
2645 
2646 		pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask;
2647 		for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) {
2648 			event = cpuc->events[bit];
2649 
2650 			if (WARN_ON_ONCE(!event) ||
2651 			    WARN_ON_ONCE(!event->attr.precise_ip))
2652 				continue;
2653 
2654 			if (counts[bit]++) {
2655 				__intel_pmu_pebs_event(event, iregs, regs, data, last[bit],
2656 						       setup_pebs_adaptive_sample_data);
2657 			}
2658 			last[bit] = at;
2659 		}
2660 	}
2661 
2662 	for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2663 		if (!counts[bit])
2664 			continue;
2665 
2666 		event = cpuc->events[bit];
2667 
2668 		__intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit],
2669 					    counts[bit], setup_pebs_adaptive_sample_data);
2670 	}
2671 }
2672 
2673 /*
2674  * PEBS probe and setup
2675  */
2676 
intel_pebs_init(void)2677 void __init intel_pebs_init(void)
2678 {
2679 	/*
2680 	 * No support for 32bit formats
2681 	 */
2682 	if (!boot_cpu_has(X86_FEATURE_DTES64))
2683 		return;
2684 
2685 	x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS);
2686 	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2687 	if (x86_pmu.version <= 4)
2688 		x86_pmu.pebs_no_isolation = 1;
2689 
2690 	if (x86_pmu.ds_pebs) {
2691 		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2692 		char *pebs_qual = "";
2693 		int format = x86_pmu.intel_cap.pebs_format;
2694 
2695 		if (format < 4)
2696 			x86_pmu.intel_cap.pebs_baseline = 0;
2697 
2698 		x86_pmu.pebs_enable = intel_pmu_pebs_enable;
2699 		x86_pmu.pebs_disable = intel_pmu_pebs_disable;
2700 		x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all;
2701 		x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all;
2702 
2703 		switch (format) {
2704 		case 0:
2705 			pr_cont("PEBS fmt0%c, ", pebs_type);
2706 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2707 			/*
2708 			 * Using >PAGE_SIZE buffers makes the WRMSR to
2709 			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2710 			 * mysteriously hang on Core2.
2711 			 *
2712 			 * As a workaround, we don't do this.
2713 			 */
2714 			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2715 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2716 			break;
2717 
2718 		case 1:
2719 			pr_cont("PEBS fmt1%c, ", pebs_type);
2720 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2721 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2722 			break;
2723 
2724 		case 2:
2725 			pr_cont("PEBS fmt2%c, ", pebs_type);
2726 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2727 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2728 			break;
2729 
2730 		case 3:
2731 			pr_cont("PEBS fmt3%c, ", pebs_type);
2732 			x86_pmu.pebs_record_size =
2733 						sizeof(struct pebs_record_skl);
2734 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2735 			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2736 			break;
2737 
2738 		case 6:
2739 			if (x86_pmu.intel_cap.pebs_baseline) {
2740 				x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
2741 				x86_pmu.late_setup = intel_pmu_late_setup;
2742 			}
2743 			fallthrough;
2744 		case 5:
2745 			x86_pmu.pebs_ept = 1;
2746 			fallthrough;
2747 		case 4:
2748 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2749 			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2750 			if (x86_pmu.intel_cap.pebs_baseline) {
2751 				x86_pmu.large_pebs_flags |=
2752 					PERF_SAMPLE_BRANCH_STACK |
2753 					PERF_SAMPLE_TIME;
2754 				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2755 				x86_pmu.pebs_capable = ~0ULL;
2756 				pebs_qual = "-baseline";
2757 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2758 			} else {
2759 				/* Only basic record supported */
2760 				x86_pmu.large_pebs_flags &=
2761 					~(PERF_SAMPLE_ADDR |
2762 					  PERF_SAMPLE_TIME |
2763 					  PERF_SAMPLE_DATA_SRC |
2764 					  PERF_SAMPLE_TRANSACTION |
2765 					  PERF_SAMPLE_REGS_USER |
2766 					  PERF_SAMPLE_REGS_INTR);
2767 			}
2768 			pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual);
2769 
2770 			/*
2771 			 * The PEBS-via-PT is not supported on hybrid platforms,
2772 			 * because not all CPUs of a hybrid machine support it.
2773 			 * The global x86_pmu.intel_cap, which only contains the
2774 			 * common capabilities, is used to check the availability
2775 			 * of the feature. The per-PMU pebs_output_pt_available
2776 			 * in a hybrid machine should be ignored.
2777 			 */
2778 			if (x86_pmu.intel_cap.pebs_output_pt_available) {
2779 				pr_cont("PEBS-via-PT, ");
2780 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2781 			}
2782 
2783 			break;
2784 
2785 		default:
2786 			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2787 			x86_pmu.ds_pebs = 0;
2788 		}
2789 	}
2790 }
2791 
perf_restore_debug_store(void)2792 void perf_restore_debug_store(void)
2793 {
2794 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2795 
2796 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
2797 		return;
2798 
2799 	wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds);
2800 }
2801