1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * KVM PMU support for Intel CPUs
4 *
5 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/msr.h>
17 #include <asm/perf_event.h>
18 #include "x86.h"
19 #include "cpuid.h"
20 #include "lapic.h"
21 #include "nested.h"
22 #include "pmu.h"
23 #include "tdx.h"
24
25 /*
26 * Perf's "BASE" is wildly misleading, architectural PMUs use bits 31:16 of ECX
27 * to encode the "type" of counter to read, i.e. this is not a "base". And to
28 * further confuse things, non-architectural PMUs use bit 31 as a flag for
29 * "fast" reads, whereas the "type" is an explicit value.
30 */
31 #define INTEL_RDPMC_GP 0
32 #define INTEL_RDPMC_FIXED INTEL_PMC_FIXED_RDPMC_BASE
33
34 #define INTEL_RDPMC_TYPE_MASK GENMASK(31, 16)
35 #define INTEL_RDPMC_INDEX_MASK GENMASK(15, 0)
36
37 #define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0)
38
vcpu_to_lbr_desc(struct kvm_vcpu * vcpu)39 static struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
40 {
41 if (is_td_vcpu(vcpu))
42 return NULL;
43
44 return &to_vmx(vcpu)->lbr_desc;
45 }
46
vcpu_to_lbr_records(struct kvm_vcpu * vcpu)47 static struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
48 {
49 if (is_td_vcpu(vcpu))
50 return NULL;
51
52 return &to_vmx(vcpu)->lbr_desc.records;
53 }
54
55 #pragma GCC poison to_vmx
56
reprogram_fixed_counters(struct kvm_pmu * pmu,u64 data)57 static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
58 {
59 struct kvm_pmc *pmc;
60 u64 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl;
61 int i;
62
63 pmu->fixed_ctr_ctrl = data;
64 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
65 u8 new_ctrl = fixed_ctrl_field(data, i);
66 u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i);
67
68 if (old_ctrl == new_ctrl)
69 continue;
70
71 pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i);
72
73 __set_bit(KVM_FIXED_PMC_BASE_IDX + i, pmu->pmc_in_use);
74 kvm_pmu_request_counter_reprogram(pmc);
75 }
76 }
77
intel_rdpmc_ecx_to_pmc(struct kvm_vcpu * vcpu,unsigned int idx,u64 * mask)78 static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu,
79 unsigned int idx, u64 *mask)
80 {
81 unsigned int type = idx & INTEL_RDPMC_TYPE_MASK;
82 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
83 struct kvm_pmc *counters;
84 unsigned int num_counters;
85 u64 bitmask;
86
87 /*
88 * The encoding of ECX for RDPMC is different for architectural versus
89 * non-architecturals PMUs (PMUs with version '0'). For architectural
90 * PMUs, bits 31:16 specify the PMC type and bits 15:0 specify the PMC
91 * index. For non-architectural PMUs, bit 31 is a "fast" flag, and
92 * bits 30:0 specify the PMC index.
93 *
94 * Yell and reject attempts to read PMCs for a non-architectural PMU,
95 * as KVM doesn't support such PMUs.
96 */
97 if (WARN_ON_ONCE(!pmu->version))
98 return NULL;
99
100 /*
101 * General Purpose (GP) PMCs are supported on all PMUs, and fixed PMCs
102 * are supported on all architectural PMUs, i.e. on all virtual PMUs
103 * supported by KVM. Note, KVM only emulates fixed PMCs for PMU v2+,
104 * but the type itself is still valid, i.e. let RDPMC fail due to
105 * accessing a non-existent counter. Reject attempts to read all other
106 * types, which are unknown/unsupported.
107 */
108 switch (type) {
109 case INTEL_RDPMC_FIXED:
110 counters = pmu->fixed_counters;
111 num_counters = pmu->nr_arch_fixed_counters;
112 bitmask = pmu->counter_bitmask[KVM_PMC_FIXED];
113 break;
114 case INTEL_RDPMC_GP:
115 counters = pmu->gp_counters;
116 num_counters = pmu->nr_arch_gp_counters;
117 bitmask = pmu->counter_bitmask[KVM_PMC_GP];
118 break;
119 default:
120 return NULL;
121 }
122
123 idx &= INTEL_RDPMC_INDEX_MASK;
124 if (idx >= num_counters)
125 return NULL;
126
127 *mask &= bitmask;
128 return &counters[array_index_nospec(idx, num_counters)];
129 }
130
vcpu_get_perf_capabilities(struct kvm_vcpu * vcpu)131 static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu)
132 {
133 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
134 return 0;
135
136 return vcpu->arch.perf_capabilities;
137 }
138
fw_writes_is_enabled(struct kvm_vcpu * vcpu)139 static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu)
140 {
141 return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0;
142 }
143
get_fw_gp_pmc(struct kvm_pmu * pmu,u32 msr)144 static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr)
145 {
146 if (!fw_writes_is_enabled(pmu_to_vcpu(pmu)))
147 return NULL;
148
149 return get_gp_pmc(pmu, msr, MSR_IA32_PMC0);
150 }
151
intel_pmu_lbr_is_compatible(struct kvm_vcpu * vcpu)152 static bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu)
153 {
154 if (is_td_vcpu(vcpu))
155 return false;
156
157 return cpuid_model_is_consistent(vcpu);
158 }
159
intel_pmu_lbr_is_enabled(struct kvm_vcpu * vcpu)160 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
161 {
162 if (is_td_vcpu(vcpu))
163 return false;
164
165 return !!vcpu_to_lbr_records(vcpu)->nr;
166 }
167
intel_pmu_is_valid_lbr_msr(struct kvm_vcpu * vcpu,u32 index)168 static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index)
169 {
170 struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu);
171 bool ret = false;
172
173 if (!intel_pmu_lbr_is_enabled(vcpu))
174 return ret;
175
176 ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) ||
177 (index >= records->from && index < records->from + records->nr) ||
178 (index >= records->to && index < records->to + records->nr);
179
180 if (!ret && records->info)
181 ret = (index >= records->info && index < records->info + records->nr);
182
183 return ret;
184 }
185
intel_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)186 static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
187 {
188 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
189 u64 perf_capabilities;
190 int ret;
191
192 switch (msr) {
193 case MSR_CORE_PERF_FIXED_CTR_CTRL:
194 return kvm_pmu_has_perf_global_ctrl(pmu);
195 case MSR_IA32_PEBS_ENABLE:
196 ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT;
197 break;
198 case MSR_IA32_DS_AREA:
199 ret = guest_cpu_cap_has(vcpu, X86_FEATURE_DS);
200 break;
201 case MSR_PEBS_DATA_CFG:
202 perf_capabilities = vcpu_get_perf_capabilities(vcpu);
203 ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) &&
204 ((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3);
205 break;
206 default:
207 ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) ||
208 get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) ||
209 get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) ||
210 intel_pmu_is_valid_lbr_msr(vcpu, msr);
211 break;
212 }
213
214 return ret;
215 }
216
intel_msr_idx_to_pmc(struct kvm_vcpu * vcpu,u32 msr)217 static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr)
218 {
219 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
220 struct kvm_pmc *pmc;
221
222 pmc = get_fixed_pmc(pmu, msr);
223 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0);
224 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0);
225
226 return pmc;
227 }
228
intel_pmu_release_guest_lbr_event(struct kvm_vcpu * vcpu)229 static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu)
230 {
231 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
232
233 if (!lbr_desc)
234 return;
235
236 if (lbr_desc->event) {
237 perf_event_release_kernel(lbr_desc->event);
238 lbr_desc->event = NULL;
239 vcpu_to_pmu(vcpu)->event_count--;
240 }
241 }
242
intel_pmu_create_guest_lbr_event(struct kvm_vcpu * vcpu)243 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu)
244 {
245 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
246 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
247 struct perf_event *event;
248
249 /*
250 * The perf_event_attr is constructed in the minimum efficient way:
251 * - set 'pinned = true' to make it task pinned so that if another
252 * cpu pinned event reclaims LBR, the event->oncpu will be set to -1;
253 * - set '.exclude_host = true' to record guest branches behavior;
254 *
255 * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf
256 * schedule the event without a real HW counter but a fake one;
257 * check is_guest_lbr_event() and __intel_get_event_constraints();
258 *
259 * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and
260 * 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
261 * PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack
262 * event, which helps KVM to save/restore guest LBR records
263 * during host context switches and reduces quite a lot overhead,
264 * check branch_user_callstack() and intel_pmu_lbr_sched_task();
265 */
266 struct perf_event_attr attr = {
267 .type = PERF_TYPE_RAW,
268 .size = sizeof(attr),
269 .config = INTEL_FIXED_VLBR_EVENT,
270 .sample_type = PERF_SAMPLE_BRANCH_STACK,
271 .pinned = true,
272 .exclude_host = true,
273 .branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK |
274 PERF_SAMPLE_BRANCH_USER,
275 };
276
277 if (WARN_ON_ONCE(!lbr_desc))
278 return 0;
279
280 if (unlikely(lbr_desc->event)) {
281 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
282 return 0;
283 }
284
285 event = perf_event_create_kernel_counter(&attr, -1,
286 current, NULL, NULL);
287 if (IS_ERR(event)) {
288 pr_debug_ratelimited("%s: failed %ld\n",
289 __func__, PTR_ERR(event));
290 return PTR_ERR(event);
291 }
292 lbr_desc->event = event;
293 pmu->event_count++;
294 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
295 return 0;
296 }
297
298 /*
299 * It's safe to access LBR msrs from guest when they have not
300 * been passthrough since the host would help restore or reset
301 * the LBR msrs records when the guest LBR event is scheduled in.
302 */
intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info,bool read)303 static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu,
304 struct msr_data *msr_info, bool read)
305 {
306 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
307 u32 index = msr_info->index;
308
309 if (!intel_pmu_is_valid_lbr_msr(vcpu, index))
310 return false;
311
312 if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0)
313 goto dummy;
314
315 /*
316 * Disable irq to ensure the LBR feature doesn't get reclaimed by the
317 * host at the time the value is read from the msr, and this avoids the
318 * host LBR value to be leaked to the guest. If LBR has been reclaimed,
319 * return 0 on guest reads.
320 */
321 local_irq_disable();
322 if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) {
323 if (read)
324 rdmsrq(index, msr_info->data);
325 else
326 wrmsrq(index, msr_info->data);
327 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
328 local_irq_enable();
329 return true;
330 }
331 clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use);
332 local_irq_enable();
333
334 dummy:
335 if (read)
336 msr_info->data = 0;
337 return true;
338 }
339
intel_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)340 static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
341 {
342 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
343 struct kvm_pmc *pmc;
344 u32 msr = msr_info->index;
345
346 switch (msr) {
347 case MSR_CORE_PERF_FIXED_CTR_CTRL:
348 msr_info->data = pmu->fixed_ctr_ctrl;
349 break;
350 case MSR_IA32_PEBS_ENABLE:
351 msr_info->data = pmu->pebs_enable;
352 break;
353 case MSR_IA32_DS_AREA:
354 msr_info->data = pmu->ds_area;
355 break;
356 case MSR_PEBS_DATA_CFG:
357 msr_info->data = pmu->pebs_data_cfg;
358 break;
359 default:
360 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
361 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
362 u64 val = pmc_read_counter(pmc);
363 msr_info->data =
364 val & pmu->counter_bitmask[KVM_PMC_GP];
365 break;
366 } else if ((pmc = get_fixed_pmc(pmu, msr))) {
367 u64 val = pmc_read_counter(pmc);
368 msr_info->data =
369 val & pmu->counter_bitmask[KVM_PMC_FIXED];
370 break;
371 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
372 msr_info->data = pmc->eventsel;
373 break;
374 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) {
375 break;
376 }
377 return 1;
378 }
379
380 return 0;
381 }
382
intel_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)383 static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
384 {
385 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
386 struct kvm_pmc *pmc;
387 u32 msr = msr_info->index;
388 u64 data = msr_info->data;
389 u64 reserved_bits, diff;
390
391 switch (msr) {
392 case MSR_CORE_PERF_FIXED_CTR_CTRL:
393 if (data & pmu->fixed_ctr_ctrl_rsvd)
394 return 1;
395
396 if (pmu->fixed_ctr_ctrl != data)
397 reprogram_fixed_counters(pmu, data);
398 break;
399 case MSR_IA32_PEBS_ENABLE:
400 if (data & pmu->pebs_enable_rsvd)
401 return 1;
402
403 if (pmu->pebs_enable != data) {
404 diff = pmu->pebs_enable ^ data;
405 pmu->pebs_enable = data;
406 reprogram_counters(pmu, diff);
407 }
408 break;
409 case MSR_IA32_DS_AREA:
410 if (is_noncanonical_msr_address(data, vcpu))
411 return 1;
412
413 pmu->ds_area = data;
414 break;
415 case MSR_PEBS_DATA_CFG:
416 if (data & pmu->pebs_data_cfg_rsvd)
417 return 1;
418
419 pmu->pebs_data_cfg = data;
420 break;
421 default:
422 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) ||
423 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) {
424 if ((msr & MSR_PMC_FULL_WIDTH_BIT) &&
425 (data & ~pmu->counter_bitmask[KVM_PMC_GP]))
426 return 1;
427
428 if (!msr_info->host_initiated &&
429 !(msr & MSR_PMC_FULL_WIDTH_BIT))
430 data = (s64)(s32)data;
431 pmc_write_counter(pmc, data);
432 break;
433 } else if ((pmc = get_fixed_pmc(pmu, msr))) {
434 pmc_write_counter(pmc, data);
435 break;
436 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) {
437 reserved_bits = pmu->reserved_bits;
438 if ((pmc->idx == 2) &&
439 (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED))
440 reserved_bits ^= HSW_IN_TX_CHECKPOINTED;
441 if (data & reserved_bits)
442 return 1;
443
444 if (data != pmc->eventsel) {
445 pmc->eventsel = data;
446 kvm_pmu_request_counter_reprogram(pmc);
447 }
448 break;
449 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) {
450 break;
451 }
452 /* Not a known PMU MSR. */
453 return 1;
454 }
455
456 return 0;
457 }
458
459 /*
460 * Map fixed counter events to architectural general purpose event encodings.
461 * Perf doesn't provide APIs to allow KVM to directly program a fixed counter,
462 * and so KVM instead programs the architectural event to effectively request
463 * the fixed counter. Perf isn't guaranteed to use a fixed counter and may
464 * instead program the encoding into a general purpose counter, e.g. if a
465 * different perf_event is already utilizing the requested counter, but the end
466 * result is the same (ignoring the fact that using a general purpose counter
467 * will likely exacerbate counter contention).
468 *
469 * Forcibly inlined to allow asserting on @index at build time, and there should
470 * never be more than one user.
471 */
intel_get_fixed_pmc_eventsel(unsigned int index)472 static __always_inline u64 intel_get_fixed_pmc_eventsel(unsigned int index)
473 {
474 const enum perf_hw_id fixed_pmc_perf_ids[] = {
475 [0] = PERF_COUNT_HW_INSTRUCTIONS,
476 [1] = PERF_COUNT_HW_CPU_CYCLES,
477 [2] = PERF_COUNT_HW_REF_CPU_CYCLES,
478 };
479 u64 eventsel;
480
481 BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_perf_ids) != KVM_MAX_NR_INTEL_FIXED_COUTNERS);
482 BUILD_BUG_ON(index >= KVM_MAX_NR_INTEL_FIXED_COUTNERS);
483
484 /*
485 * Yell if perf reports support for a fixed counter but perf doesn't
486 * have a known encoding for the associated general purpose event.
487 */
488 eventsel = perf_get_hw_event_config(fixed_pmc_perf_ids[index]);
489 WARN_ON_ONCE(!eventsel && index < kvm_pmu_cap.num_counters_fixed);
490 return eventsel;
491 }
492
intel_pmu_enable_fixed_counter_bits(struct kvm_pmu * pmu,u64 bits)493 static void intel_pmu_enable_fixed_counter_bits(struct kvm_pmu *pmu, u64 bits)
494 {
495 int i;
496
497 for (i = 0; i < pmu->nr_arch_fixed_counters; i++)
498 pmu->fixed_ctr_ctrl_rsvd &= ~intel_fixed_bits_by_idx(i, bits);
499 }
500
intel_pmu_refresh(struct kvm_vcpu * vcpu)501 static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
502 {
503 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
504 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
505 struct kvm_cpuid_entry2 *entry;
506 union cpuid10_eax eax;
507 union cpuid10_edx edx;
508 u64 perf_capabilities;
509 u64 counter_rsvd;
510
511 if (!lbr_desc)
512 return;
513
514 memset(&lbr_desc->records, 0, sizeof(lbr_desc->records));
515
516 /*
517 * Setting passthrough of LBR MSRs is done only in the VM-Entry loop,
518 * and PMU refresh is disallowed after the vCPU has run, i.e. this code
519 * should never be reached while KVM is passing through MSRs.
520 */
521 if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm))
522 return;
523
524 entry = kvm_find_cpuid_entry(vcpu, 0xa);
525 if (!entry)
526 return;
527
528 eax.full = entry->eax;
529 edx.full = entry->edx;
530
531 pmu->version = eax.split.version_id;
532 if (!pmu->version)
533 return;
534
535 pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
536 kvm_pmu_cap.num_counters_gp);
537 eax.split.bit_width = min_t(int, eax.split.bit_width,
538 kvm_pmu_cap.bit_width_gp);
539 pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
540 eax.split.mask_length = min_t(int, eax.split.mask_length,
541 kvm_pmu_cap.events_mask_len);
542 pmu->available_event_types = ~entry->ebx &
543 ((1ull << eax.split.mask_length) - 1);
544
545 if (pmu->version == 1) {
546 pmu->nr_arch_fixed_counters = 0;
547 } else {
548 pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed,
549 kvm_pmu_cap.num_counters_fixed);
550 edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed,
551 kvm_pmu_cap.bit_width_fixed);
552 pmu->counter_bitmask[KVM_PMC_FIXED] =
553 ((u64)1 << edx.split.bit_width_fixed) - 1;
554 }
555
556 intel_pmu_enable_fixed_counter_bits(pmu, INTEL_FIXED_0_KERNEL |
557 INTEL_FIXED_0_USER |
558 INTEL_FIXED_0_ENABLE_PMI);
559
560 counter_rsvd = ~(((1ull << pmu->nr_arch_gp_counters) - 1) |
561 (((1ull << pmu->nr_arch_fixed_counters) - 1) << KVM_FIXED_PMC_BASE_IDX));
562 pmu->global_ctrl_rsvd = counter_rsvd;
563
564 /*
565 * GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET)
566 * share reserved bit definitions. The kernel just happens to use
567 * OVF_CTRL for the names.
568 */
569 pmu->global_status_rsvd = pmu->global_ctrl_rsvd
570 & ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF |
571 MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD);
572 if (vmx_pt_mode_is_host_guest())
573 pmu->global_status_rsvd &=
574 ~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI;
575
576 entry = kvm_find_cpuid_entry_index(vcpu, 7, 0);
577 if (entry &&
578 (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
579 (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) {
580 pmu->reserved_bits ^= HSW_IN_TX;
581 pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
582 }
583
584 bitmap_set(pmu->all_valid_pmc_idx,
585 0, pmu->nr_arch_gp_counters);
586 bitmap_set(pmu->all_valid_pmc_idx,
587 INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters);
588
589 perf_capabilities = vcpu_get_perf_capabilities(vcpu);
590 if (intel_pmu_lbr_is_compatible(vcpu) &&
591 (perf_capabilities & PMU_CAP_LBR_FMT))
592 memcpy(&lbr_desc->records, &vmx_lbr_caps, sizeof(vmx_lbr_caps));
593 else
594 lbr_desc->records.nr = 0;
595
596 if (lbr_desc->records.nr)
597 bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1);
598
599 if (perf_capabilities & PERF_CAP_PEBS_FORMAT) {
600 if (perf_capabilities & PERF_CAP_PEBS_BASELINE) {
601 pmu->pebs_enable_rsvd = counter_rsvd;
602 pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE;
603 pmu->pebs_data_cfg_rsvd = ~0xff00000full;
604 intel_pmu_enable_fixed_counter_bits(pmu, ICL_FIXED_0_ADAPTIVE);
605 } else {
606 pmu->pebs_enable_rsvd =
607 ~((1ull << pmu->nr_arch_gp_counters) - 1);
608 }
609 }
610 }
611
intel_pmu_init(struct kvm_vcpu * vcpu)612 static void intel_pmu_init(struct kvm_vcpu *vcpu)
613 {
614 int i;
615 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
616 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
617
618 if (!lbr_desc)
619 return;
620
621 for (i = 0; i < KVM_MAX_NR_INTEL_GP_COUNTERS; i++) {
622 pmu->gp_counters[i].type = KVM_PMC_GP;
623 pmu->gp_counters[i].vcpu = vcpu;
624 pmu->gp_counters[i].idx = i;
625 pmu->gp_counters[i].current_config = 0;
626 }
627
628 for (i = 0; i < KVM_MAX_NR_INTEL_FIXED_COUTNERS; i++) {
629 pmu->fixed_counters[i].type = KVM_PMC_FIXED;
630 pmu->fixed_counters[i].vcpu = vcpu;
631 pmu->fixed_counters[i].idx = i + KVM_FIXED_PMC_BASE_IDX;
632 pmu->fixed_counters[i].current_config = 0;
633 pmu->fixed_counters[i].eventsel = intel_get_fixed_pmc_eventsel(i);
634 }
635
636 lbr_desc->records.nr = 0;
637 lbr_desc->event = NULL;
638 lbr_desc->msr_passthrough = false;
639 }
640
intel_pmu_reset(struct kvm_vcpu * vcpu)641 static void intel_pmu_reset(struct kvm_vcpu *vcpu)
642 {
643 intel_pmu_release_guest_lbr_event(vcpu);
644 }
645
646 /*
647 * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4.
648 *
649 * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and
650 * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL.
651 *
652 * Guest needs to re-enable LBR to resume branches recording.
653 */
intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu * vcpu)654 static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu)
655 {
656 u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL);
657
658 if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) {
659 data &= ~DEBUGCTLMSR_LBR;
660 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
661 }
662 }
663
intel_pmu_deliver_pmi(struct kvm_vcpu * vcpu)664 static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
665 {
666 u8 version = vcpu_to_pmu(vcpu)->version;
667
668 if (!intel_pmu_lbr_is_enabled(vcpu))
669 return;
670
671 if (version > 1 && version < 4)
672 intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu);
673 }
674
vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu * vcpu,bool set)675 static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set)
676 {
677 struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu);
678 int i;
679
680 for (i = 0; i < lbr->nr; i++) {
681 vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set);
682 vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set);
683 if (lbr->info)
684 vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set);
685 }
686
687 vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set);
688 vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set);
689 }
690
vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu * vcpu)691 static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
692 {
693 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
694
695 if (!lbr_desc->msr_passthrough)
696 return;
697
698 vmx_update_intercept_for_lbr_msrs(vcpu, true);
699 lbr_desc->msr_passthrough = false;
700 }
701
vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu * vcpu)702 static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu)
703 {
704 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
705
706 if (lbr_desc->msr_passthrough)
707 return;
708
709 vmx_update_intercept_for_lbr_msrs(vcpu, false);
710 lbr_desc->msr_passthrough = true;
711 }
712
713 /*
714 * Higher priority host perf events (e.g. cpu pinned) could reclaim the
715 * pmu resources (e.g. LBR) that were assigned to the guest. This is
716 * usually done via ipi calls (more details in perf_install_in_context).
717 *
718 * Before entering the non-root mode (with irq disabled here), double
719 * confirm that the pmu features enabled to the guest are not reclaimed
720 * by higher priority host events. Otherwise, disallow vcpu's access to
721 * the reclaimed features.
722 */
vmx_passthrough_lbr_msrs(struct kvm_vcpu * vcpu)723 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu)
724 {
725 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
726 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu);
727
728 if (WARN_ON_ONCE(!lbr_desc))
729 return;
730
731 if (!lbr_desc->event) {
732 vmx_disable_lbr_msrs_passthrough(vcpu);
733 if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)
734 goto warn;
735 if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use))
736 goto warn;
737 return;
738 }
739
740 if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) {
741 vmx_disable_lbr_msrs_passthrough(vcpu);
742 __clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use);
743 goto warn;
744 } else
745 vmx_enable_lbr_msrs_passthrough(vcpu);
746
747 return;
748
749 warn:
750 pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id);
751 }
752
intel_pmu_cleanup(struct kvm_vcpu * vcpu)753 static void intel_pmu_cleanup(struct kvm_vcpu *vcpu)
754 {
755 if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR))
756 intel_pmu_release_guest_lbr_event(vcpu);
757 }
758
intel_pmu_cross_mapped_check(struct kvm_pmu * pmu)759 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu)
760 {
761 struct kvm_pmc *pmc = NULL;
762 int bit, hw_idx;
763
764 kvm_for_each_pmc(pmu, pmc, bit, (unsigned long *)&pmu->global_ctrl) {
765 if (!pmc_speculative_in_use(pmc) ||
766 !pmc_is_globally_enabled(pmc) || !pmc->perf_event)
767 continue;
768
769 /*
770 * A negative index indicates the event isn't mapped to a
771 * physical counter in the host, e.g. due to contention.
772 */
773 hw_idx = pmc->perf_event->hw.idx;
774 if (hw_idx != pmc->idx && hw_idx > -1)
775 pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx);
776 }
777 }
778
779 struct kvm_pmu_ops intel_pmu_ops __initdata = {
780 .rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc,
781 .msr_idx_to_pmc = intel_msr_idx_to_pmc,
782 .is_valid_msr = intel_is_valid_msr,
783 .get_msr = intel_pmu_get_msr,
784 .set_msr = intel_pmu_set_msr,
785 .refresh = intel_pmu_refresh,
786 .init = intel_pmu_init,
787 .reset = intel_pmu_reset,
788 .deliver_pmi = intel_pmu_deliver_pmi,
789 .cleanup = intel_pmu_cleanup,
790 .EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT,
791 .MAX_NR_GP_COUNTERS = KVM_MAX_NR_INTEL_GP_COUNTERS,
792 .MIN_NR_GP_COUNTERS = 1,
793 };
794