xref: /linux/arch/x86/events/intel/ds.c (revision e4c995f92b210ab353aa39e4c100ffc5d12eb13c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6 
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/timer.h>
14 
15 #include "../perf_event.h"
16 
17 /* Waste a full page so it can be mapped into the cpu_entry_area */
18 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
19 
20 /* The size of a BTS record in bytes: */
21 #define BTS_RECORD_SIZE		24
22 
23 #define PEBS_FIXUP_SIZE		PAGE_SIZE
24 
25 /*
26  * pebs_record_32 for p4 and core not supported
27 
28 struct pebs_record_32 {
29 	u32 flags, ip;
30 	u32 ax, bc, cx, dx;
31 	u32 si, di, bp, sp;
32 };
33 
34  */
35 
36 union intel_x86_pebs_dse {
37 	u64 val;
38 	struct {
39 		unsigned int ld_dse:4;
40 		unsigned int ld_stlb_miss:1;
41 		unsigned int ld_locked:1;
42 		unsigned int ld_data_blk:1;
43 		unsigned int ld_addr_blk:1;
44 		unsigned int ld_reserved:24;
45 	};
46 	struct {
47 		unsigned int st_l1d_hit:1;
48 		unsigned int st_reserved1:3;
49 		unsigned int st_stlb_miss:1;
50 		unsigned int st_locked:1;
51 		unsigned int st_reserved2:26;
52 	};
53 	struct {
54 		unsigned int st_lat_dse:4;
55 		unsigned int st_lat_stlb_miss:1;
56 		unsigned int st_lat_locked:1;
57 		unsigned int ld_reserved3:26;
58 	};
59 	struct {
60 		unsigned int mtl_dse:5;
61 		unsigned int mtl_locked:1;
62 		unsigned int mtl_stlb_miss:1;
63 		unsigned int mtl_fwd_blk:1;
64 		unsigned int ld_reserved4:24;
65 	};
66 	struct {
67 		unsigned int lnc_dse:8;
68 		unsigned int ld_reserved5:2;
69 		unsigned int lnc_stlb_miss:1;
70 		unsigned int lnc_locked:1;
71 		unsigned int lnc_data_blk:1;
72 		unsigned int lnc_addr_blk:1;
73 		unsigned int ld_reserved6:18;
74 	};
75 };
76 
77 
78 /*
79  * Map PEBS Load Latency Data Source encodings to generic
80  * memory data source information
81  */
82 #define P(a, b) PERF_MEM_S(a, b)
83 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
84 #define LEVEL(x) P(LVLNUM, x)
85 #define REM P(REMOTE, REMOTE)
86 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
87 
88 /* Version for Sandy Bridge and later */
89 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
90 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
91 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
92 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
93 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
94 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
95 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
96 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
97 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
98 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
99 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
100 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
101 	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
102 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
103 	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
104 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
105 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
106 };
107 
108 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)109 void __init intel_pmu_pebs_data_source_nhm(void)
110 {
111 	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
112 	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
113 	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 }
115 
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)116 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
117 {
118 	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
119 
120 	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
121 	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
122 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
123 	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
124 	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
125 }
126 
intel_pmu_pebs_data_source_skl(bool pmem)127 void __init intel_pmu_pebs_data_source_skl(bool pmem)
128 {
129 	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
130 }
131 
__intel_pmu_pebs_data_source_grt(u64 * data_source)132 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
133 {
134 	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
135 	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
136 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
137 }
138 
intel_pmu_pebs_data_source_grt(void)139 void __init intel_pmu_pebs_data_source_grt(void)
140 {
141 	__intel_pmu_pebs_data_source_grt(pebs_data_source);
142 }
143 
intel_pmu_pebs_data_source_adl(void)144 void __init intel_pmu_pebs_data_source_adl(void)
145 {
146 	u64 *data_source;
147 
148 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
149 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
150 	__intel_pmu_pebs_data_source_skl(false, data_source);
151 
152 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
153 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
154 	__intel_pmu_pebs_data_source_grt(data_source);
155 }
156 
__intel_pmu_pebs_data_source_cmt(u64 * data_source)157 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
158 {
159 	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
160 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
161 	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
162 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
163 	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
164 	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
165 }
166 
intel_pmu_pebs_data_source_mtl(void)167 void __init intel_pmu_pebs_data_source_mtl(void)
168 {
169 	u64 *data_source;
170 
171 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
172 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
173 	__intel_pmu_pebs_data_source_skl(false, data_source);
174 
175 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
176 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
177 	__intel_pmu_pebs_data_source_cmt(data_source);
178 }
179 
intel_pmu_pebs_data_source_arl_h(void)180 void __init intel_pmu_pebs_data_source_arl_h(void)
181 {
182 	u64 *data_source;
183 
184 	intel_pmu_pebs_data_source_lnl();
185 
186 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
187 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
188 	__intel_pmu_pebs_data_source_cmt(data_source);
189 }
190 
intel_pmu_pebs_data_source_cmt(void)191 void __init intel_pmu_pebs_data_source_cmt(void)
192 {
193 	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
194 }
195 
196 /* Version for Lion Cove and later */
197 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
198 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),	/* 0x00: ukn L3 */
199 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x01: L1 hit */
200 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x02: L1 hit */
201 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),	/* 0x03: LFB/L1 Miss Handling Buffer hit */
202 	0,							/* 0x04: Reserved */
203 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),	/* 0x05: L2 Hit */
204 	OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE),			/* 0x06: L2 Miss Handling Buffer Hit */
205 	0,							/* 0x07: Reserved */
206 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),	/* 0x08: L3 Hit */
207 	0,							/* 0x09: Reserved */
208 	0,							/* 0x0a: Reserved */
209 	0,							/* 0x0b: Reserved */
210 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOPX, FWD),	/* 0x0c: L3 Hit Snoop Fwd */
211 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0d: L3 Hit Snoop HitM */
212 	0,							/* 0x0e: Reserved */
213 	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0f: L3 Miss Snoop HitM */
214 	OP_LH | LEVEL(MSC) | P(SNOOP, NONE),			/* 0x10: Memory-side Cache Hit */
215 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
216 };
217 
intel_pmu_pebs_data_source_lnl(void)218 void __init intel_pmu_pebs_data_source_lnl(void)
219 {
220 	u64 *data_source;
221 
222 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
223 	memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
224 
225 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
226 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
227 	__intel_pmu_pebs_data_source_cmt(data_source);
228 }
229 
precise_store_data(u64 status)230 static u64 precise_store_data(u64 status)
231 {
232 	union intel_x86_pebs_dse dse;
233 	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
234 
235 	dse.val = status;
236 
237 	/*
238 	 * bit 4: TLB access
239 	 * 1 = stored missed 2nd level TLB
240 	 *
241 	 * so it either hit the walker or the OS
242 	 * otherwise hit 2nd level TLB
243 	 */
244 	if (dse.st_stlb_miss)
245 		val |= P(TLB, MISS);
246 	else
247 		val |= P(TLB, HIT);
248 
249 	/*
250 	 * bit 0: hit L1 data cache
251 	 * if not set, then all we know is that
252 	 * it missed L1D
253 	 */
254 	if (dse.st_l1d_hit)
255 		val |= P(LVL, HIT);
256 	else
257 		val |= P(LVL, MISS);
258 
259 	/*
260 	 * bit 5: Locked prefix
261 	 */
262 	if (dse.st_locked)
263 		val |= P(LOCK, LOCKED);
264 
265 	return val;
266 }
267 
precise_datala_hsw(struct perf_event * event,u64 status)268 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
269 {
270 	union perf_mem_data_src dse;
271 
272 	dse.val = PERF_MEM_NA;
273 
274 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
275 		dse.mem_op = PERF_MEM_OP_STORE;
276 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
277 		dse.mem_op = PERF_MEM_OP_LOAD;
278 
279 	/*
280 	 * L1 info only valid for following events:
281 	 *
282 	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
283 	 * MEM_UOPS_RETIRED.LOCK_STORES
284 	 * MEM_UOPS_RETIRED.SPLIT_STORES
285 	 * MEM_UOPS_RETIRED.ALL_STORES
286 	 */
287 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
288 		if (status & 1)
289 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
290 		else
291 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
292 	}
293 	return dse.val;
294 }
295 
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)296 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
297 {
298 	/*
299 	 * TLB access
300 	 * 0 = did not miss 2nd level TLB
301 	 * 1 = missed 2nd level TLB
302 	 */
303 	if (tlb)
304 		*val |= P(TLB, MISS) | P(TLB, L2);
305 	else
306 		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
307 
308 	/* locked prefix */
309 	if (lock)
310 		*val |= P(LOCK, LOCKED);
311 }
312 
313 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)314 static u64 __grt_latency_data(struct perf_event *event, u64 status,
315 			       u8 dse, bool tlb, bool lock, bool blk)
316 {
317 	u64 val;
318 
319 	WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
320 
321 	dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
322 	val = hybrid_var(event->pmu, pebs_data_source)[dse];
323 
324 	pebs_set_tlb_lock(&val, tlb, lock);
325 
326 	if (blk)
327 		val |= P(BLK, DATA);
328 	else
329 		val |= P(BLK, NA);
330 
331 	return val;
332 }
333 
grt_latency_data(struct perf_event * event,u64 status)334 u64 grt_latency_data(struct perf_event *event, u64 status)
335 {
336 	union intel_x86_pebs_dse dse;
337 
338 	dse.val = status;
339 
340 	return __grt_latency_data(event, status, dse.ld_dse,
341 				  dse.ld_locked, dse.ld_stlb_miss,
342 				  dse.ld_data_blk);
343 }
344 
345 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)346 u64 cmt_latency_data(struct perf_event *event, u64 status)
347 {
348 	union intel_x86_pebs_dse dse;
349 
350 	dse.val = status;
351 
352 	return __grt_latency_data(event, status, dse.mtl_dse,
353 				  dse.mtl_stlb_miss, dse.mtl_locked,
354 				  dse.mtl_fwd_blk);
355 }
356 
lnc_latency_data(struct perf_event * event,u64 status)357 static u64 lnc_latency_data(struct perf_event *event, u64 status)
358 {
359 	union intel_x86_pebs_dse dse;
360 	union perf_mem_data_src src;
361 	u64 val;
362 
363 	dse.val = status;
364 
365 	/* LNC core latency data */
366 	val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
367 	if (!val)
368 		val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
369 
370 	if (dse.lnc_stlb_miss)
371 		val |= P(TLB, MISS) | P(TLB, L2);
372 	else
373 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
374 
375 	if (dse.lnc_locked)
376 		val |= P(LOCK, LOCKED);
377 
378 	if (dse.lnc_data_blk)
379 		val |= P(BLK, DATA);
380 	if (dse.lnc_addr_blk)
381 		val |= P(BLK, ADDR);
382 	if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
383 		val |= P(BLK, NA);
384 
385 	src.val = val;
386 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
387 		src.mem_op = P(OP, STORE);
388 
389 	return src.val;
390 }
391 
lnl_latency_data(struct perf_event * event,u64 status)392 u64 lnl_latency_data(struct perf_event *event, u64 status)
393 {
394 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
395 
396 	if (pmu->pmu_type == hybrid_small)
397 		return cmt_latency_data(event, status);
398 
399 	return lnc_latency_data(event, status);
400 }
401 
arl_h_latency_data(struct perf_event * event,u64 status)402 u64 arl_h_latency_data(struct perf_event *event, u64 status)
403 {
404 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
405 
406 	if (pmu->pmu_type == hybrid_tiny)
407 		return cmt_latency_data(event, status);
408 
409 	return lnl_latency_data(event, status);
410 }
411 
load_latency_data(struct perf_event * event,u64 status)412 static u64 load_latency_data(struct perf_event *event, u64 status)
413 {
414 	union intel_x86_pebs_dse dse;
415 	u64 val;
416 
417 	dse.val = status;
418 
419 	/*
420 	 * use the mapping table for bit 0-3
421 	 */
422 	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
423 
424 	/*
425 	 * Nehalem models do not support TLB, Lock infos
426 	 */
427 	if (x86_pmu.pebs_no_tlb) {
428 		val |= P(TLB, NA) | P(LOCK, NA);
429 		return val;
430 	}
431 
432 	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
433 
434 	/*
435 	 * Ice Lake and earlier models do not support block infos.
436 	 */
437 	if (!x86_pmu.pebs_block) {
438 		val |= P(BLK, NA);
439 		return val;
440 	}
441 	/*
442 	 * bit 6: load was blocked since its data could not be forwarded
443 	 *        from a preceding store
444 	 */
445 	if (dse.ld_data_blk)
446 		val |= P(BLK, DATA);
447 
448 	/*
449 	 * bit 7: load was blocked due to potential address conflict with
450 	 *        a preceding store
451 	 */
452 	if (dse.ld_addr_blk)
453 		val |= P(BLK, ADDR);
454 
455 	if (!dse.ld_data_blk && !dse.ld_addr_blk)
456 		val |= P(BLK, NA);
457 
458 	return val;
459 }
460 
store_latency_data(struct perf_event * event,u64 status)461 static u64 store_latency_data(struct perf_event *event, u64 status)
462 {
463 	union intel_x86_pebs_dse dse;
464 	union perf_mem_data_src src;
465 	u64 val;
466 
467 	dse.val = status;
468 
469 	/*
470 	 * use the mapping table for bit 0-3
471 	 */
472 	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
473 
474 	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
475 
476 	val |= P(BLK, NA);
477 
478 	/*
479 	 * the pebs_data_source table is only for loads
480 	 * so override the mem_op to say STORE instead
481 	 */
482 	src.val = val;
483 	src.mem_op = P(OP,STORE);
484 
485 	return src.val;
486 }
487 
488 struct pebs_record_core {
489 	u64 flags, ip;
490 	u64 ax, bx, cx, dx;
491 	u64 si, di, bp, sp;
492 	u64 r8,  r9,  r10, r11;
493 	u64 r12, r13, r14, r15;
494 };
495 
496 struct pebs_record_nhm {
497 	u64 flags, ip;
498 	u64 ax, bx, cx, dx;
499 	u64 si, di, bp, sp;
500 	u64 r8,  r9,  r10, r11;
501 	u64 r12, r13, r14, r15;
502 	u64 status, dla, dse, lat;
503 };
504 
505 /*
506  * Same as pebs_record_nhm, with two additional fields.
507  */
508 struct pebs_record_hsw {
509 	u64 flags, ip;
510 	u64 ax, bx, cx, dx;
511 	u64 si, di, bp, sp;
512 	u64 r8,  r9,  r10, r11;
513 	u64 r12, r13, r14, r15;
514 	u64 status, dla, dse, lat;
515 	u64 real_ip, tsx_tuning;
516 };
517 
518 union hsw_tsx_tuning {
519 	struct {
520 		u32 cycles_last_block     : 32,
521 		    hle_abort		  : 1,
522 		    rtm_abort		  : 1,
523 		    instruction_abort     : 1,
524 		    non_instruction_abort : 1,
525 		    retry		  : 1,
526 		    data_conflict	  : 1,
527 		    capacity_writes	  : 1,
528 		    capacity_reads	  : 1;
529 	};
530 	u64	    value;
531 };
532 
533 #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
534 
535 /* Same as HSW, plus TSC */
536 
537 struct pebs_record_skl {
538 	u64 flags, ip;
539 	u64 ax, bx, cx, dx;
540 	u64 si, di, bp, sp;
541 	u64 r8,  r9,  r10, r11;
542 	u64 r12, r13, r14, r15;
543 	u64 status, dla, dse, lat;
544 	u64 real_ip, tsx_tuning;
545 	u64 tsc;
546 };
547 
init_debug_store_on_cpu(int cpu)548 void init_debug_store_on_cpu(int cpu)
549 {
550 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
551 
552 	if (!ds)
553 		return;
554 
555 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
556 		     (u32)((u64)(unsigned long)ds),
557 		     (u32)((u64)(unsigned long)ds >> 32));
558 }
559 
fini_debug_store_on_cpu(int cpu)560 void fini_debug_store_on_cpu(int cpu)
561 {
562 	if (!per_cpu(cpu_hw_events, cpu).ds)
563 		return;
564 
565 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
566 }
567 
568 static DEFINE_PER_CPU(void *, insn_buffer);
569 
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)570 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
571 {
572 	unsigned long start = (unsigned long)cea;
573 	phys_addr_t pa;
574 	size_t msz = 0;
575 
576 	pa = virt_to_phys(addr);
577 
578 	preempt_disable();
579 	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
580 		cea_set_pte(cea, pa, prot);
581 
582 	/*
583 	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
584 	 * all TLB entries for it.
585 	 */
586 	flush_tlb_kernel_range(start, start + size);
587 	preempt_enable();
588 }
589 
ds_clear_cea(void * cea,size_t size)590 static void ds_clear_cea(void *cea, size_t size)
591 {
592 	unsigned long start = (unsigned long)cea;
593 	size_t msz = 0;
594 
595 	preempt_disable();
596 	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
597 		cea_set_pte(cea, 0, PAGE_NONE);
598 
599 	flush_tlb_kernel_range(start, start + size);
600 	preempt_enable();
601 }
602 
dsalloc_pages(size_t size,gfp_t flags,int cpu)603 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
604 {
605 	unsigned int order = get_order(size);
606 	int node = cpu_to_node(cpu);
607 	struct page *page;
608 
609 	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
610 	return page ? page_address(page) : NULL;
611 }
612 
dsfree_pages(const void * buffer,size_t size)613 static void dsfree_pages(const void *buffer, size_t size)
614 {
615 	if (buffer)
616 		free_pages((unsigned long)buffer, get_order(size));
617 }
618 
alloc_pebs_buffer(int cpu)619 static int alloc_pebs_buffer(int cpu)
620 {
621 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
622 	struct debug_store *ds = hwev->ds;
623 	size_t bsiz = x86_pmu.pebs_buffer_size;
624 	int max, node = cpu_to_node(cpu);
625 	void *buffer, *insn_buff, *cea;
626 
627 	if (!x86_pmu.pebs)
628 		return 0;
629 
630 	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
631 	if (unlikely(!buffer))
632 		return -ENOMEM;
633 
634 	/*
635 	 * HSW+ already provides us the eventing ip; no need to allocate this
636 	 * buffer then.
637 	 */
638 	if (x86_pmu.intel_cap.pebs_format < 2) {
639 		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
640 		if (!insn_buff) {
641 			dsfree_pages(buffer, bsiz);
642 			return -ENOMEM;
643 		}
644 		per_cpu(insn_buffer, cpu) = insn_buff;
645 	}
646 	hwev->ds_pebs_vaddr = buffer;
647 	/* Update the cpu entry area mapping */
648 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
649 	ds->pebs_buffer_base = (unsigned long) cea;
650 	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
651 	ds->pebs_index = ds->pebs_buffer_base;
652 	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
653 	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
654 	return 0;
655 }
656 
release_pebs_buffer(int cpu)657 static void release_pebs_buffer(int cpu)
658 {
659 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
660 	void *cea;
661 
662 	if (!x86_pmu.pebs)
663 		return;
664 
665 	kfree(per_cpu(insn_buffer, cpu));
666 	per_cpu(insn_buffer, cpu) = NULL;
667 
668 	/* Clear the fixmap */
669 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
670 	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
671 	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
672 	hwev->ds_pebs_vaddr = NULL;
673 }
674 
alloc_bts_buffer(int cpu)675 static int alloc_bts_buffer(int cpu)
676 {
677 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
678 	struct debug_store *ds = hwev->ds;
679 	void *buffer, *cea;
680 	int max;
681 
682 	if (!x86_pmu.bts)
683 		return 0;
684 
685 	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
686 	if (unlikely(!buffer)) {
687 		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
688 		return -ENOMEM;
689 	}
690 	hwev->ds_bts_vaddr = buffer;
691 	/* Update the fixmap */
692 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
693 	ds->bts_buffer_base = (unsigned long) cea;
694 	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
695 	ds->bts_index = ds->bts_buffer_base;
696 	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
697 	ds->bts_absolute_maximum = ds->bts_buffer_base +
698 					max * BTS_RECORD_SIZE;
699 	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
700 					(max / 16) * BTS_RECORD_SIZE;
701 	return 0;
702 }
703 
release_bts_buffer(int cpu)704 static void release_bts_buffer(int cpu)
705 {
706 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
707 	void *cea;
708 
709 	if (!x86_pmu.bts)
710 		return;
711 
712 	/* Clear the fixmap */
713 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
714 	ds_clear_cea(cea, BTS_BUFFER_SIZE);
715 	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
716 	hwev->ds_bts_vaddr = NULL;
717 }
718 
alloc_ds_buffer(int cpu)719 static int alloc_ds_buffer(int cpu)
720 {
721 	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
722 
723 	memset(ds, 0, sizeof(*ds));
724 	per_cpu(cpu_hw_events, cpu).ds = ds;
725 	return 0;
726 }
727 
release_ds_buffer(int cpu)728 static void release_ds_buffer(int cpu)
729 {
730 	per_cpu(cpu_hw_events, cpu).ds = NULL;
731 }
732 
release_ds_buffers(void)733 void release_ds_buffers(void)
734 {
735 	int cpu;
736 
737 	if (!x86_pmu.bts && !x86_pmu.pebs)
738 		return;
739 
740 	for_each_possible_cpu(cpu)
741 		release_ds_buffer(cpu);
742 
743 	for_each_possible_cpu(cpu) {
744 		/*
745 		 * Again, ignore errors from offline CPUs, they will no longer
746 		 * observe cpu_hw_events.ds and not program the DS_AREA when
747 		 * they come up.
748 		 */
749 		fini_debug_store_on_cpu(cpu);
750 	}
751 
752 	for_each_possible_cpu(cpu) {
753 		release_pebs_buffer(cpu);
754 		release_bts_buffer(cpu);
755 	}
756 }
757 
reserve_ds_buffers(void)758 void reserve_ds_buffers(void)
759 {
760 	int bts_err = 0, pebs_err = 0;
761 	int cpu;
762 
763 	x86_pmu.bts_active = 0;
764 	x86_pmu.pebs_active = 0;
765 
766 	if (!x86_pmu.bts && !x86_pmu.pebs)
767 		return;
768 
769 	if (!x86_pmu.bts)
770 		bts_err = 1;
771 
772 	if (!x86_pmu.pebs)
773 		pebs_err = 1;
774 
775 	for_each_possible_cpu(cpu) {
776 		if (alloc_ds_buffer(cpu)) {
777 			bts_err = 1;
778 			pebs_err = 1;
779 		}
780 
781 		if (!bts_err && alloc_bts_buffer(cpu))
782 			bts_err = 1;
783 
784 		if (!pebs_err && alloc_pebs_buffer(cpu))
785 			pebs_err = 1;
786 
787 		if (bts_err && pebs_err)
788 			break;
789 	}
790 
791 	if (bts_err) {
792 		for_each_possible_cpu(cpu)
793 			release_bts_buffer(cpu);
794 	}
795 
796 	if (pebs_err) {
797 		for_each_possible_cpu(cpu)
798 			release_pebs_buffer(cpu);
799 	}
800 
801 	if (bts_err && pebs_err) {
802 		for_each_possible_cpu(cpu)
803 			release_ds_buffer(cpu);
804 	} else {
805 		if (x86_pmu.bts && !bts_err)
806 			x86_pmu.bts_active = 1;
807 
808 		if (x86_pmu.pebs && !pebs_err)
809 			x86_pmu.pebs_active = 1;
810 
811 		for_each_possible_cpu(cpu) {
812 			/*
813 			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
814 			 * will get this call through intel_pmu_cpu_starting().
815 			 */
816 			init_debug_store_on_cpu(cpu);
817 		}
818 	}
819 }
820 
821 /*
822  * BTS
823  */
824 
825 struct event_constraint bts_constraint =
826 	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
827 
intel_pmu_enable_bts(u64 config)828 void intel_pmu_enable_bts(u64 config)
829 {
830 	unsigned long debugctlmsr;
831 
832 	debugctlmsr = get_debugctlmsr();
833 
834 	debugctlmsr |= DEBUGCTLMSR_TR;
835 	debugctlmsr |= DEBUGCTLMSR_BTS;
836 	if (config & ARCH_PERFMON_EVENTSEL_INT)
837 		debugctlmsr |= DEBUGCTLMSR_BTINT;
838 
839 	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
840 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
841 
842 	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
843 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
844 
845 	update_debugctlmsr(debugctlmsr);
846 }
847 
intel_pmu_disable_bts(void)848 void intel_pmu_disable_bts(void)
849 {
850 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
851 	unsigned long debugctlmsr;
852 
853 	if (!cpuc->ds)
854 		return;
855 
856 	debugctlmsr = get_debugctlmsr();
857 
858 	debugctlmsr &=
859 		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
860 		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
861 
862 	update_debugctlmsr(debugctlmsr);
863 }
864 
intel_pmu_drain_bts_buffer(void)865 int intel_pmu_drain_bts_buffer(void)
866 {
867 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
868 	struct debug_store *ds = cpuc->ds;
869 	struct bts_record {
870 		u64	from;
871 		u64	to;
872 		u64	flags;
873 	};
874 	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
875 	struct bts_record *at, *base, *top;
876 	struct perf_output_handle handle;
877 	struct perf_event_header header;
878 	struct perf_sample_data data;
879 	unsigned long skip = 0;
880 	struct pt_regs regs;
881 
882 	if (!event)
883 		return 0;
884 
885 	if (!x86_pmu.bts_active)
886 		return 0;
887 
888 	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
889 	top  = (struct bts_record *)(unsigned long)ds->bts_index;
890 
891 	if (top <= base)
892 		return 0;
893 
894 	memset(&regs, 0, sizeof(regs));
895 
896 	ds->bts_index = ds->bts_buffer_base;
897 
898 	perf_sample_data_init(&data, 0, event->hw.last_period);
899 
900 	/*
901 	 * BTS leaks kernel addresses in branches across the cpl boundary,
902 	 * such as traps or system calls, so unless the user is asking for
903 	 * kernel tracing (and right now it's not possible), we'd need to
904 	 * filter them out. But first we need to count how many of those we
905 	 * have in the current batch. This is an extra O(n) pass, however,
906 	 * it's much faster than the other one especially considering that
907 	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
908 	 * alloc_bts_buffer()).
909 	 */
910 	for (at = base; at < top; at++) {
911 		/*
912 		 * Note that right now *this* BTS code only works if
913 		 * attr::exclude_kernel is set, but let's keep this extra
914 		 * check here in case that changes.
915 		 */
916 		if (event->attr.exclude_kernel &&
917 		    (kernel_ip(at->from) || kernel_ip(at->to)))
918 			skip++;
919 	}
920 
921 	/*
922 	 * Prepare a generic sample, i.e. fill in the invariant fields.
923 	 * We will overwrite the from and to address before we output
924 	 * the sample.
925 	 */
926 	rcu_read_lock();
927 	perf_prepare_sample(&data, event, &regs);
928 	perf_prepare_header(&header, &data, event, &regs);
929 
930 	if (perf_output_begin(&handle, &data, event,
931 			      header.size * (top - base - skip)))
932 		goto unlock;
933 
934 	for (at = base; at < top; at++) {
935 		/* Filter out any records that contain kernel addresses. */
936 		if (event->attr.exclude_kernel &&
937 		    (kernel_ip(at->from) || kernel_ip(at->to)))
938 			continue;
939 
940 		data.ip		= at->from;
941 		data.addr	= at->to;
942 
943 		perf_output_sample(&handle, &header, &data, event);
944 	}
945 
946 	perf_output_end(&handle);
947 
948 	/* There's new data available. */
949 	event->hw.interrupts++;
950 	event->pending_kill = POLL_IN;
951 unlock:
952 	rcu_read_unlock();
953 	return 1;
954 }
955 
intel_pmu_drain_pebs_buffer(void)956 static inline void intel_pmu_drain_pebs_buffer(void)
957 {
958 	struct perf_sample_data data;
959 
960 	x86_pmu.drain_pebs(NULL, &data);
961 }
962 
963 /*
964  * PEBS
965  */
966 struct event_constraint intel_core2_pebs_event_constraints[] = {
967 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
968 	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
969 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
970 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
971 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
972 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
973 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
974 	EVENT_CONSTRAINT_END
975 };
976 
977 struct event_constraint intel_atom_pebs_event_constraints[] = {
978 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
979 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
980 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
981 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
982 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
983 	/* Allow all events as PEBS with no flags */
984 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
985 	EVENT_CONSTRAINT_END
986 };
987 
988 struct event_constraint intel_slm_pebs_event_constraints[] = {
989 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
990 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
991 	/* Allow all events as PEBS with no flags */
992 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
993 	EVENT_CONSTRAINT_END
994 };
995 
996 struct event_constraint intel_glm_pebs_event_constraints[] = {
997 	/* Allow all events as PEBS with no flags */
998 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
999 	EVENT_CONSTRAINT_END
1000 };
1001 
1002 struct event_constraint intel_grt_pebs_event_constraints[] = {
1003 	/* Allow all events as PEBS with no flags */
1004 	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1005 	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1006 	EVENT_CONSTRAINT_END
1007 };
1008 
1009 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1010 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1011 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1012 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1013 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
1014 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1015 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1016 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1017 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1018 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1019 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1020 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1021 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1022 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1023 	EVENT_CONSTRAINT_END
1024 };
1025 
1026 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1027 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1028 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1029 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1030 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
1031 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1032 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1033 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
1034 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1035 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1036 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1037 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1038 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1039 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1040 	EVENT_CONSTRAINT_END
1041 };
1042 
1043 struct event_constraint intel_snb_pebs_event_constraints[] = {
1044 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1045 	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1046 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1047 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1048 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1049         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1050         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1051         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1052         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1053 	/* Allow all events as PEBS with no flags */
1054 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1055 	EVENT_CONSTRAINT_END
1056 };
1057 
1058 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1059         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1060         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1061 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1062 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1063 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1064 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1065 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1066 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1067 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1068 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1069 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1070 	/* Allow all events as PEBS with no flags */
1071 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1072         EVENT_CONSTRAINT_END
1073 };
1074 
1075 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1076 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1077 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1078 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1079 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1080 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1081 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1082 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1083 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1084 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1085 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1086 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1087 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1088 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1089 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1090 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1091 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1092 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1093 	/* Allow all events as PEBS with no flags */
1094 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1095 	EVENT_CONSTRAINT_END
1096 };
1097 
1098 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1099 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1100 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1101 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1102 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1103 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1104 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1105 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1106 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1107 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1108 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1109 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1110 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1111 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1112 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1113 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1114 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1115 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1116 	/* Allow all events as PEBS with no flags */
1117 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1118 	EVENT_CONSTRAINT_END
1119 };
1120 
1121 
1122 struct event_constraint intel_skl_pebs_event_constraints[] = {
1123 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1124 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1125 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1126 	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1127 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1128 	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1129 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1130 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1131 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1132 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1133 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1134 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1135 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1136 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1137 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1138 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1139 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1140 	/* Allow all events as PEBS with no flags */
1141 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1142 	EVENT_CONSTRAINT_END
1143 };
1144 
1145 struct event_constraint intel_icl_pebs_event_constraints[] = {
1146 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1147 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1148 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1149 
1150 	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1151 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1152 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1153 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1154 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1155 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1156 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1157 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1158 
1159 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1160 
1161 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1162 
1163 	/*
1164 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1165 	 * need the full constraints from the main table.
1166 	 */
1167 
1168 	EVENT_CONSTRAINT_END
1169 };
1170 
1171 struct event_constraint intel_glc_pebs_event_constraints[] = {
1172 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1173 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1174 
1175 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1176 	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1177 	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1178 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1179 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1180 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1181 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1182 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1183 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1184 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1185 
1186 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1187 
1188 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1189 
1190 	/*
1191 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1192 	 * need the full constraints from the main table.
1193 	 */
1194 
1195 	EVENT_CONSTRAINT_END
1196 };
1197 
1198 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1199 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1200 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1201 
1202 	INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3ff),
1203 	INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1204 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1205 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1206 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1207 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1208 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1209 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1210 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1211 
1212 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1213 
1214 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1215 
1216 	/*
1217 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1218 	 * need the full constraints from the main table.
1219 	 */
1220 
1221 	EVENT_CONSTRAINT_END
1222 };
1223 
intel_pebs_constraints(struct perf_event * event)1224 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1225 {
1226 	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1227 	struct event_constraint *c;
1228 
1229 	if (!event->attr.precise_ip)
1230 		return NULL;
1231 
1232 	if (pebs_constraints) {
1233 		for_each_event_constraint(c, pebs_constraints) {
1234 			if (constraint_match(c, event->hw.config)) {
1235 				event->hw.flags |= c->flags;
1236 				return c;
1237 			}
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Extended PEBS support
1243 	 * Makes the PEBS code search the normal constraints.
1244 	 */
1245 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1246 		return NULL;
1247 
1248 	return &emptyconstraint;
1249 }
1250 
1251 /*
1252  * We need the sched_task callback even for per-cpu events when we use
1253  * the large interrupt threshold, such that we can provide PID and TID
1254  * to PEBS samples.
1255  */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1256 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1257 {
1258 	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1259 		return false;
1260 
1261 	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1262 }
1263 
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1264 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1265 {
1266 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1267 
1268 	if (!sched_in && pebs_needs_sched_cb(cpuc))
1269 		intel_pmu_drain_pebs_buffer();
1270 }
1271 
pebs_update_threshold(struct cpu_hw_events * cpuc)1272 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1273 {
1274 	struct debug_store *ds = cpuc->ds;
1275 	int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1276 	u64 threshold;
1277 	int reserved;
1278 
1279 	if (cpuc->n_pebs_via_pt)
1280 		return;
1281 
1282 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1283 		reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1284 	else
1285 		reserved = max_pebs_events;
1286 
1287 	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1288 		threshold = ds->pebs_absolute_maximum -
1289 			reserved * cpuc->pebs_record_size;
1290 	} else {
1291 		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1292 	}
1293 
1294 	ds->pebs_interrupt_threshold = threshold;
1295 }
1296 
adaptive_pebs_record_size_update(void)1297 static void adaptive_pebs_record_size_update(void)
1298 {
1299 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1300 	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1301 	int sz = sizeof(struct pebs_basic);
1302 
1303 	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1304 		sz += sizeof(struct pebs_meminfo);
1305 	if (pebs_data_cfg & PEBS_DATACFG_GP)
1306 		sz += sizeof(struct pebs_gprs);
1307 	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1308 		sz += sizeof(struct pebs_xmm);
1309 	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1310 		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1311 
1312 	cpuc->pebs_record_size = sz;
1313 }
1314 
1315 #define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1316 				PERF_SAMPLE_PHYS_ADDR |			     \
1317 				PERF_SAMPLE_WEIGHT_TYPE |		     \
1318 				PERF_SAMPLE_TRANSACTION |		     \
1319 				PERF_SAMPLE_DATA_PAGE_SIZE)
1320 
pebs_update_adaptive_cfg(struct perf_event * event)1321 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1322 {
1323 	struct perf_event_attr *attr = &event->attr;
1324 	u64 sample_type = attr->sample_type;
1325 	u64 pebs_data_cfg = 0;
1326 	bool gprs, tsx_weight;
1327 
1328 	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1329 	    attr->precise_ip > 1)
1330 		return pebs_data_cfg;
1331 
1332 	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1333 		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1334 
1335 	/*
1336 	 * We need GPRs when:
1337 	 * + user requested them
1338 	 * + precise_ip < 2 for the non event IP
1339 	 * + For RTM TSX weight we need GPRs for the abort code.
1340 	 */
1341 	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1342 	       (attr->sample_regs_intr & PEBS_GP_REGS);
1343 
1344 	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1345 		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1346 		      x86_pmu.rtm_abort_event);
1347 
1348 	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1349 		pebs_data_cfg |= PEBS_DATACFG_GP;
1350 
1351 	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1352 	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1353 		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1354 
1355 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1356 		/*
1357 		 * For now always log all LBRs. Could configure this
1358 		 * later.
1359 		 */
1360 		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1361 			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1362 	}
1363 
1364 	return pebs_data_cfg;
1365 }
1366 
1367 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1368 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1369 		  struct perf_event *event, bool add)
1370 {
1371 	struct pmu *pmu = event->pmu;
1372 
1373 	/*
1374 	 * Make sure we get updated with the first PEBS event.
1375 	 * During removal, ->pebs_data_cfg is still valid for
1376 	 * the last PEBS event. Don't clear it.
1377 	 */
1378 	if ((cpuc->n_pebs == 1) && add)
1379 		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1380 
1381 	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1382 		if (!needed_cb)
1383 			perf_sched_cb_inc(pmu);
1384 		else
1385 			perf_sched_cb_dec(pmu);
1386 
1387 		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1388 	}
1389 
1390 	/*
1391 	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1392 	 * iterating all remaining PEBS events to reconstruct the config.
1393 	 */
1394 	if (x86_pmu.intel_cap.pebs_baseline && add) {
1395 		u64 pebs_data_cfg;
1396 
1397 		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1398 		/*
1399 		 * Be sure to update the thresholds when we change the record.
1400 		 */
1401 		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1402 			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1403 	}
1404 }
1405 
intel_pmu_pebs_add(struct perf_event * event)1406 void intel_pmu_pebs_add(struct perf_event *event)
1407 {
1408 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1409 	struct hw_perf_event *hwc = &event->hw;
1410 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1411 
1412 	cpuc->n_pebs++;
1413 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1414 		cpuc->n_large_pebs++;
1415 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1416 		cpuc->n_pebs_via_pt++;
1417 
1418 	pebs_update_state(needed_cb, cpuc, event, true);
1419 }
1420 
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1421 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1422 {
1423 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1424 
1425 	if (!is_pebs_pt(event))
1426 		return;
1427 
1428 	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1429 		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1430 }
1431 
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1432 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1433 {
1434 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1435 	struct hw_perf_event *hwc = &event->hw;
1436 	struct debug_store *ds = cpuc->ds;
1437 	u64 value = ds->pebs_event_reset[hwc->idx];
1438 	u32 base = MSR_RELOAD_PMC0;
1439 	unsigned int idx = hwc->idx;
1440 
1441 	if (!is_pebs_pt(event))
1442 		return;
1443 
1444 	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1445 		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1446 
1447 	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1448 
1449 	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1450 		base = MSR_RELOAD_FIXED_CTR0;
1451 		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1452 		if (x86_pmu.intel_cap.pebs_format < 5)
1453 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1454 		else
1455 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1456 	}
1457 	wrmsrl(base + idx, value);
1458 }
1459 
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1460 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1461 {
1462 	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1463 	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1464 		intel_pmu_drain_pebs_buffer();
1465 }
1466 
intel_pmu_pebs_enable(struct perf_event * event)1467 void intel_pmu_pebs_enable(struct perf_event *event)
1468 {
1469 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1470 	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1471 	struct hw_perf_event *hwc = &event->hw;
1472 	struct debug_store *ds = cpuc->ds;
1473 	unsigned int idx = hwc->idx;
1474 
1475 	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1476 
1477 	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1478 
1479 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1480 		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1481 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1482 		cpuc->pebs_enabled |= 1ULL << 63;
1483 
1484 	if (x86_pmu.intel_cap.pebs_baseline) {
1485 		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1486 		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1487 			/*
1488 			 * drain_pebs() assumes uniform record size;
1489 			 * hence we need to drain when changing said
1490 			 * size.
1491 			 */
1492 			intel_pmu_drain_pebs_buffer();
1493 			adaptive_pebs_record_size_update();
1494 			wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1495 			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1496 		}
1497 	}
1498 	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1499 		cpuc->pebs_data_cfg = pebs_data_cfg;
1500 		pebs_update_threshold(cpuc);
1501 	}
1502 
1503 	if (idx >= INTEL_PMC_IDX_FIXED) {
1504 		if (x86_pmu.intel_cap.pebs_format < 5)
1505 			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1506 		else
1507 			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1508 	}
1509 
1510 	/*
1511 	 * Use auto-reload if possible to save a MSR write in the PMI.
1512 	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1513 	 */
1514 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1515 		ds->pebs_event_reset[idx] =
1516 			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1517 	} else {
1518 		ds->pebs_event_reset[idx] = 0;
1519 	}
1520 
1521 	intel_pmu_pebs_via_pt_enable(event);
1522 }
1523 
intel_pmu_pebs_del(struct perf_event * event)1524 void intel_pmu_pebs_del(struct perf_event *event)
1525 {
1526 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1527 	struct hw_perf_event *hwc = &event->hw;
1528 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1529 
1530 	cpuc->n_pebs--;
1531 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1532 		cpuc->n_large_pebs--;
1533 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1534 		cpuc->n_pebs_via_pt--;
1535 
1536 	pebs_update_state(needed_cb, cpuc, event, false);
1537 }
1538 
intel_pmu_pebs_disable(struct perf_event * event)1539 void intel_pmu_pebs_disable(struct perf_event *event)
1540 {
1541 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1542 	struct hw_perf_event *hwc = &event->hw;
1543 
1544 	intel_pmu_drain_large_pebs(cpuc);
1545 
1546 	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1547 
1548 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1549 	    (x86_pmu.version < 5))
1550 		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1551 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1552 		cpuc->pebs_enabled &= ~(1ULL << 63);
1553 
1554 	intel_pmu_pebs_via_pt_disable(event);
1555 
1556 	if (cpuc->enabled)
1557 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1558 
1559 	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1560 }
1561 
intel_pmu_pebs_enable_all(void)1562 void intel_pmu_pebs_enable_all(void)
1563 {
1564 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1565 
1566 	if (cpuc->pebs_enabled)
1567 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1568 }
1569 
intel_pmu_pebs_disable_all(void)1570 void intel_pmu_pebs_disable_all(void)
1571 {
1572 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1573 
1574 	if (cpuc->pebs_enabled)
1575 		__intel_pmu_pebs_disable_all();
1576 }
1577 
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1578 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1579 {
1580 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1581 	unsigned long from = cpuc->lbr_entries[0].from;
1582 	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1583 	unsigned long ip = regs->ip;
1584 	int is_64bit = 0;
1585 	void *kaddr;
1586 	int size;
1587 
1588 	/*
1589 	 * We don't need to fixup if the PEBS assist is fault like
1590 	 */
1591 	if (!x86_pmu.intel_cap.pebs_trap)
1592 		return 1;
1593 
1594 	/*
1595 	 * No LBR entry, no basic block, no rewinding
1596 	 */
1597 	if (!cpuc->lbr_stack.nr || !from || !to)
1598 		return 0;
1599 
1600 	/*
1601 	 * Basic blocks should never cross user/kernel boundaries
1602 	 */
1603 	if (kernel_ip(ip) != kernel_ip(to))
1604 		return 0;
1605 
1606 	/*
1607 	 * unsigned math, either ip is before the start (impossible) or
1608 	 * the basic block is larger than 1 page (sanity)
1609 	 */
1610 	if ((ip - to) > PEBS_FIXUP_SIZE)
1611 		return 0;
1612 
1613 	/*
1614 	 * We sampled a branch insn, rewind using the LBR stack
1615 	 */
1616 	if (ip == to) {
1617 		set_linear_ip(regs, from);
1618 		return 1;
1619 	}
1620 
1621 	size = ip - to;
1622 	if (!kernel_ip(ip)) {
1623 		int bytes;
1624 		u8 *buf = this_cpu_read(insn_buffer);
1625 
1626 		/* 'size' must fit our buffer, see above */
1627 		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1628 		if (bytes != 0)
1629 			return 0;
1630 
1631 		kaddr = buf;
1632 	} else {
1633 		kaddr = (void *)to;
1634 	}
1635 
1636 	do {
1637 		struct insn insn;
1638 
1639 		old_to = to;
1640 
1641 #ifdef CONFIG_X86_64
1642 		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1643 #endif
1644 		insn_init(&insn, kaddr, size, is_64bit);
1645 
1646 		/*
1647 		 * Make sure there was not a problem decoding the instruction.
1648 		 * This is doubly important because we have an infinite loop if
1649 		 * insn.length=0.
1650 		 */
1651 		if (insn_get_length(&insn))
1652 			break;
1653 
1654 		to += insn.length;
1655 		kaddr += insn.length;
1656 		size -= insn.length;
1657 	} while (to < ip);
1658 
1659 	if (to == ip) {
1660 		set_linear_ip(regs, old_to);
1661 		return 1;
1662 	}
1663 
1664 	/*
1665 	 * Even though we decoded the basic block, the instruction stream
1666 	 * never matched the given IP, either the TO or the IP got corrupted.
1667 	 */
1668 	return 0;
1669 }
1670 
intel_get_tsx_weight(u64 tsx_tuning)1671 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1672 {
1673 	if (tsx_tuning) {
1674 		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1675 		return tsx.cycles_last_block;
1676 	}
1677 	return 0;
1678 }
1679 
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1680 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1681 {
1682 	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1683 
1684 	/* For RTM XABORTs also log the abort code from AX */
1685 	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1686 		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1687 	return txn;
1688 }
1689 
get_pebs_status(void * n)1690 static inline u64 get_pebs_status(void *n)
1691 {
1692 	if (x86_pmu.intel_cap.pebs_format < 4)
1693 		return ((struct pebs_record_nhm *)n)->status;
1694 	return ((struct pebs_basic *)n)->applicable_counters;
1695 }
1696 
1697 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1698 		(PERF_X86_EVENT_PEBS_ST_HSW | \
1699 		 PERF_X86_EVENT_PEBS_LD_HSW | \
1700 		 PERF_X86_EVENT_PEBS_NA_HSW)
1701 
get_data_src(struct perf_event * event,u64 aux)1702 static u64 get_data_src(struct perf_event *event, u64 aux)
1703 {
1704 	u64 val = PERF_MEM_NA;
1705 	int fl = event->hw.flags;
1706 	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1707 
1708 	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1709 		val = load_latency_data(event, aux);
1710 	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1711 		val = store_latency_data(event, aux);
1712 	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1713 		val = x86_pmu.pebs_latency_data(event, aux);
1714 	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1715 		val = precise_datala_hsw(event, aux);
1716 	else if (fst)
1717 		val = precise_store_data(aux);
1718 	return val;
1719 }
1720 
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1721 static void setup_pebs_time(struct perf_event *event,
1722 			    struct perf_sample_data *data,
1723 			    u64 tsc)
1724 {
1725 	/* Converting to a user-defined clock is not supported yet. */
1726 	if (event->attr.use_clockid != 0)
1727 		return;
1728 
1729 	/*
1730 	 * Doesn't support the conversion when the TSC is unstable.
1731 	 * The TSC unstable case is a corner case and very unlikely to
1732 	 * happen. If it happens, the TSC in a PEBS record will be
1733 	 * dropped and fall back to perf_event_clock().
1734 	 */
1735 	if (!using_native_sched_clock() || !sched_clock_stable())
1736 		return;
1737 
1738 	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1739 	data->sample_flags |= PERF_SAMPLE_TIME;
1740 }
1741 
1742 #define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1743 				 PERF_SAMPLE_PHYS_ADDR |	\
1744 				 PERF_SAMPLE_DATA_PAGE_SIZE)
1745 
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1746 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1747 				   struct pt_regs *iregs, void *__pebs,
1748 				   struct perf_sample_data *data,
1749 				   struct pt_regs *regs)
1750 {
1751 	/*
1752 	 * We cast to the biggest pebs_record but are careful not to
1753 	 * unconditionally access the 'extra' entries.
1754 	 */
1755 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1756 	struct pebs_record_skl *pebs = __pebs;
1757 	u64 sample_type;
1758 	int fll;
1759 
1760 	if (pebs == NULL)
1761 		return;
1762 
1763 	sample_type = event->attr.sample_type;
1764 	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1765 
1766 	perf_sample_data_init(data, 0, event->hw.last_period);
1767 
1768 	data->period = event->hw.last_period;
1769 
1770 	/*
1771 	 * Use latency for weight (only avail with PEBS-LL)
1772 	 */
1773 	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1774 		data->weight.full = pebs->lat;
1775 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1776 	}
1777 
1778 	/*
1779 	 * data.data_src encodes the data source
1780 	 */
1781 	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1782 		data->data_src.val = get_data_src(event, pebs->dse);
1783 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1784 	}
1785 
1786 	/*
1787 	 * We must however always use iregs for the unwinder to stay sane; the
1788 	 * record BP,SP,IP can point into thin air when the record is from a
1789 	 * previous PMI context or an (I)RET happened between the record and
1790 	 * PMI.
1791 	 */
1792 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1793 		perf_sample_save_callchain(data, event, iregs);
1794 
1795 	/*
1796 	 * We use the interrupt regs as a base because the PEBS record does not
1797 	 * contain a full regs set, specifically it seems to lack segment
1798 	 * descriptors, which get used by things like user_mode().
1799 	 *
1800 	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1801 	 */
1802 	*regs = *iregs;
1803 
1804 	/*
1805 	 * Initialize regs_>flags from PEBS,
1806 	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1807 	 * i.e., do not rely on it being zero:
1808 	 */
1809 	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1810 
1811 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1812 		regs->ax = pebs->ax;
1813 		regs->bx = pebs->bx;
1814 		regs->cx = pebs->cx;
1815 		regs->dx = pebs->dx;
1816 		regs->si = pebs->si;
1817 		regs->di = pebs->di;
1818 
1819 		regs->bp = pebs->bp;
1820 		regs->sp = pebs->sp;
1821 
1822 #ifndef CONFIG_X86_32
1823 		regs->r8 = pebs->r8;
1824 		regs->r9 = pebs->r9;
1825 		regs->r10 = pebs->r10;
1826 		regs->r11 = pebs->r11;
1827 		regs->r12 = pebs->r12;
1828 		regs->r13 = pebs->r13;
1829 		regs->r14 = pebs->r14;
1830 		regs->r15 = pebs->r15;
1831 #endif
1832 	}
1833 
1834 	if (event->attr.precise_ip > 1) {
1835 		/*
1836 		 * Haswell and later processors have an 'eventing IP'
1837 		 * (real IP) which fixes the off-by-1 skid in hardware.
1838 		 * Use it when precise_ip >= 2 :
1839 		 */
1840 		if (x86_pmu.intel_cap.pebs_format >= 2) {
1841 			set_linear_ip(regs, pebs->real_ip);
1842 			regs->flags |= PERF_EFLAGS_EXACT;
1843 		} else {
1844 			/* Otherwise, use PEBS off-by-1 IP: */
1845 			set_linear_ip(regs, pebs->ip);
1846 
1847 			/*
1848 			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1849 			 * using the LBR. If successful, the fixup function
1850 			 * corrects regs->ip and calls set_linear_ip() on regs:
1851 			 */
1852 			if (intel_pmu_pebs_fixup_ip(regs))
1853 				regs->flags |= PERF_EFLAGS_EXACT;
1854 		}
1855 	} else {
1856 		/*
1857 		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1858 		 * no fixup attempted:
1859 		 */
1860 		set_linear_ip(regs, pebs->ip);
1861 	}
1862 
1863 
1864 	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1865 	    x86_pmu.intel_cap.pebs_format >= 1) {
1866 		data->addr = pebs->dla;
1867 		data->sample_flags |= PERF_SAMPLE_ADDR;
1868 	}
1869 
1870 	if (x86_pmu.intel_cap.pebs_format >= 2) {
1871 		/* Only set the TSX weight when no memory weight. */
1872 		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1873 			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1874 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1875 		}
1876 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1877 			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1878 							      pebs->ax);
1879 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * v3 supplies an accurate time stamp, so we use that
1885 	 * for the time stamp.
1886 	 *
1887 	 * We can only do this for the default trace clock.
1888 	 */
1889 	if (x86_pmu.intel_cap.pebs_format >= 3)
1890 		setup_pebs_time(event, data, pebs->tsc);
1891 
1892 	if (has_branch_stack(event))
1893 		perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1894 }
1895 
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1896 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1897 				    struct pebs_gprs *gprs)
1898 {
1899 	regs->ax = gprs->ax;
1900 	regs->bx = gprs->bx;
1901 	regs->cx = gprs->cx;
1902 	regs->dx = gprs->dx;
1903 	regs->si = gprs->si;
1904 	regs->di = gprs->di;
1905 	regs->bp = gprs->bp;
1906 	regs->sp = gprs->sp;
1907 #ifndef CONFIG_X86_32
1908 	regs->r8 = gprs->r8;
1909 	regs->r9 = gprs->r9;
1910 	regs->r10 = gprs->r10;
1911 	regs->r11 = gprs->r11;
1912 	regs->r12 = gprs->r12;
1913 	regs->r13 = gprs->r13;
1914 	regs->r14 = gprs->r14;
1915 	regs->r15 = gprs->r15;
1916 #endif
1917 }
1918 
1919 #define PEBS_LATENCY_MASK			0xffff
1920 #define PEBS_CACHE_LATENCY_OFFSET		32
1921 #define PEBS_RETIRE_LATENCY_OFFSET		32
1922 
1923 /*
1924  * With adaptive PEBS the layout depends on what fields are configured.
1925  */
1926 
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1927 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1928 					    struct pt_regs *iregs, void *__pebs,
1929 					    struct perf_sample_data *data,
1930 					    struct pt_regs *regs)
1931 {
1932 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1933 	struct pebs_basic *basic = __pebs;
1934 	void *next_record = basic + 1;
1935 	u64 sample_type;
1936 	u64 format_size;
1937 	struct pebs_meminfo *meminfo = NULL;
1938 	struct pebs_gprs *gprs = NULL;
1939 	struct x86_perf_regs *perf_regs;
1940 
1941 	if (basic == NULL)
1942 		return;
1943 
1944 	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1945 	perf_regs->xmm_regs = NULL;
1946 
1947 	sample_type = event->attr.sample_type;
1948 	format_size = basic->format_size;
1949 	perf_sample_data_init(data, 0, event->hw.last_period);
1950 	data->period = event->hw.last_period;
1951 
1952 	setup_pebs_time(event, data, basic->tsc);
1953 
1954 	/*
1955 	 * We must however always use iregs for the unwinder to stay sane; the
1956 	 * record BP,SP,IP can point into thin air when the record is from a
1957 	 * previous PMI context or an (I)RET happened between the record and
1958 	 * PMI.
1959 	 */
1960 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1961 		perf_sample_save_callchain(data, event, iregs);
1962 
1963 	*regs = *iregs;
1964 	/* The ip in basic is EventingIP */
1965 	set_linear_ip(regs, basic->ip);
1966 	regs->flags = PERF_EFLAGS_EXACT;
1967 
1968 	if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1969 		if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
1970 			data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1971 		else
1972 			data->weight.var3_w = 0;
1973 	}
1974 
1975 	/*
1976 	 * The record for MEMINFO is in front of GP
1977 	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1978 	 * Save the pointer here but process later.
1979 	 */
1980 	if (format_size & PEBS_DATACFG_MEMINFO) {
1981 		meminfo = next_record;
1982 		next_record = meminfo + 1;
1983 	}
1984 
1985 	if (format_size & PEBS_DATACFG_GP) {
1986 		gprs = next_record;
1987 		next_record = gprs + 1;
1988 
1989 		if (event->attr.precise_ip < 2) {
1990 			set_linear_ip(regs, gprs->ip);
1991 			regs->flags &= ~PERF_EFLAGS_EXACT;
1992 		}
1993 
1994 		if (sample_type & PERF_SAMPLE_REGS_INTR)
1995 			adaptive_pebs_save_regs(regs, gprs);
1996 	}
1997 
1998 	if (format_size & PEBS_DATACFG_MEMINFO) {
1999 		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2000 			u64 weight = meminfo->latency;
2001 
2002 			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
2003 				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
2004 				weight >>= PEBS_CACHE_LATENCY_OFFSET;
2005 			}
2006 
2007 			/*
2008 			 * Although meminfo::latency is defined as a u64,
2009 			 * only the lower 32 bits include the valid data
2010 			 * in practice on Ice Lake and earlier platforms.
2011 			 */
2012 			if (sample_type & PERF_SAMPLE_WEIGHT) {
2013 				data->weight.full = weight ?:
2014 					intel_get_tsx_weight(meminfo->tsx_tuning);
2015 			} else {
2016 				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
2017 					intel_get_tsx_weight(meminfo->tsx_tuning);
2018 			}
2019 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2020 		}
2021 
2022 		if (sample_type & PERF_SAMPLE_DATA_SRC) {
2023 			data->data_src.val = get_data_src(event, meminfo->aux);
2024 			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2025 		}
2026 
2027 		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2028 			data->addr = meminfo->address;
2029 			data->sample_flags |= PERF_SAMPLE_ADDR;
2030 		}
2031 
2032 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
2033 			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2034 							  gprs ? gprs->ax : 0);
2035 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2036 		}
2037 	}
2038 
2039 	if (format_size & PEBS_DATACFG_XMMS) {
2040 		struct pebs_xmm *xmm = next_record;
2041 
2042 		next_record = xmm + 1;
2043 		perf_regs->xmm_regs = xmm->xmm;
2044 	}
2045 
2046 	if (format_size & PEBS_DATACFG_LBRS) {
2047 		struct lbr_entry *lbr = next_record;
2048 		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
2049 					& 0xff) + 1;
2050 		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2051 
2052 		if (has_branch_stack(event)) {
2053 			intel_pmu_store_pebs_lbrs(lbr);
2054 			intel_pmu_lbr_save_brstack(data, cpuc, event);
2055 		}
2056 	}
2057 
2058 	WARN_ONCE(next_record != __pebs + (format_size >> 48),
2059 			"PEBS record size %llu, expected %llu, config %llx\n",
2060 			format_size >> 48,
2061 			(u64)(next_record - __pebs),
2062 			basic->format_size);
2063 }
2064 
2065 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2066 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2067 {
2068 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2069 	void *at;
2070 	u64 pebs_status;
2071 
2072 	/*
2073 	 * fmt0 does not have a status bitfield (does not use
2074 	 * perf_record_nhm format)
2075 	 */
2076 	if (x86_pmu.intel_cap.pebs_format < 1)
2077 		return base;
2078 
2079 	if (base == NULL)
2080 		return NULL;
2081 
2082 	for (at = base; at < top; at += cpuc->pebs_record_size) {
2083 		unsigned long status = get_pebs_status(at);
2084 
2085 		if (test_bit(bit, (unsigned long *)&status)) {
2086 			/* PEBS v3 has accurate status bits */
2087 			if (x86_pmu.intel_cap.pebs_format >= 3)
2088 				return at;
2089 
2090 			if (status == (1 << bit))
2091 				return at;
2092 
2093 			/* clear non-PEBS bit and re-check */
2094 			pebs_status = status & cpuc->pebs_enabled;
2095 			pebs_status &= PEBS_COUNTER_MASK;
2096 			if (pebs_status == (1 << bit))
2097 				return at;
2098 		}
2099 	}
2100 	return NULL;
2101 }
2102 
intel_pmu_auto_reload_read(struct perf_event * event)2103 void intel_pmu_auto_reload_read(struct perf_event *event)
2104 {
2105 	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
2106 
2107 	perf_pmu_disable(event->pmu);
2108 	intel_pmu_drain_pebs_buffer();
2109 	perf_pmu_enable(event->pmu);
2110 }
2111 
2112 /*
2113  * Special variant of intel_pmu_save_and_restart() for auto-reload.
2114  */
2115 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2116 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2117 {
2118 	struct hw_perf_event *hwc = &event->hw;
2119 	int shift = 64 - x86_pmu.cntval_bits;
2120 	u64 period = hwc->sample_period;
2121 	u64 prev_raw_count, new_raw_count;
2122 	s64 new, old;
2123 
2124 	WARN_ON(!period);
2125 
2126 	/*
2127 	 * drain_pebs() only happens when the PMU is disabled.
2128 	 */
2129 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2130 
2131 	prev_raw_count = local64_read(&hwc->prev_count);
2132 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
2133 	local64_set(&hwc->prev_count, new_raw_count);
2134 
2135 	/*
2136 	 * Since the counter increments a negative counter value and
2137 	 * overflows on the sign switch, giving the interval:
2138 	 *
2139 	 *   [-period, 0]
2140 	 *
2141 	 * the difference between two consecutive reads is:
2142 	 *
2143 	 *   A) value2 - value1;
2144 	 *      when no overflows have happened in between,
2145 	 *
2146 	 *   B) (0 - value1) + (value2 - (-period));
2147 	 *      when one overflow happened in between,
2148 	 *
2149 	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2150 	 *      when @n overflows happened in between.
2151 	 *
2152 	 * Here A) is the obvious difference, B) is the extension to the
2153 	 * discrete interval, where the first term is to the top of the
2154 	 * interval and the second term is from the bottom of the next
2155 	 * interval and C) the extension to multiple intervals, where the
2156 	 * middle term is the whole intervals covered.
2157 	 *
2158 	 * An equivalent of C, by reduction, is:
2159 	 *
2160 	 *   value2 - value1 + n * period
2161 	 */
2162 	new = ((s64)(new_raw_count << shift) >> shift);
2163 	old = ((s64)(prev_raw_count << shift) >> shift);
2164 	local64_add(new - old + count * period, &event->count);
2165 
2166 	local64_set(&hwc->period_left, -new);
2167 
2168 	perf_event_update_userpage(event);
2169 
2170 	return 0;
2171 }
2172 
2173 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))2174 __intel_pmu_pebs_event(struct perf_event *event,
2175 		       struct pt_regs *iregs,
2176 		       struct perf_sample_data *data,
2177 		       void *base, void *top,
2178 		       int bit, int count,
2179 		       void (*setup_sample)(struct perf_event *,
2180 					    struct pt_regs *,
2181 					    void *,
2182 					    struct perf_sample_data *,
2183 					    struct pt_regs *))
2184 {
2185 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2186 	struct hw_perf_event *hwc = &event->hw;
2187 	struct x86_perf_regs perf_regs;
2188 	struct pt_regs *regs = &perf_regs.regs;
2189 	void *at = get_next_pebs_record_by_bit(base, top, bit);
2190 	static struct pt_regs dummy_iregs;
2191 
2192 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2193 		/*
2194 		 * Now, auto-reload is only enabled in fixed period mode.
2195 		 * The reload value is always hwc->sample_period.
2196 		 * May need to change it, if auto-reload is enabled in
2197 		 * freq mode later.
2198 		 */
2199 		intel_pmu_save_and_restart_reload(event, count);
2200 	} else if (!intel_pmu_save_and_restart(event))
2201 		return;
2202 
2203 	if (!iregs)
2204 		iregs = &dummy_iregs;
2205 
2206 	while (count > 1) {
2207 		setup_sample(event, iregs, at, data, regs);
2208 		perf_event_output(event, data, regs);
2209 		at += cpuc->pebs_record_size;
2210 		at = get_next_pebs_record_by_bit(at, top, bit);
2211 		count--;
2212 	}
2213 
2214 	setup_sample(event, iregs, at, data, regs);
2215 	if (iregs == &dummy_iregs) {
2216 		/*
2217 		 * The PEBS records may be drained in the non-overflow context,
2218 		 * e.g., large PEBS + context switch. Perf should treat the
2219 		 * last record the same as other PEBS records, and doesn't
2220 		 * invoke the generic overflow handler.
2221 		 */
2222 		perf_event_output(event, data, regs);
2223 	} else {
2224 		/*
2225 		 * All but the last records are processed.
2226 		 * The last one is left to be able to call the overflow handler.
2227 		 */
2228 		if (perf_event_overflow(event, data, regs))
2229 			x86_pmu_stop(event, 0);
2230 	}
2231 }
2232 
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2233 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2234 {
2235 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2236 	struct debug_store *ds = cpuc->ds;
2237 	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2238 	struct pebs_record_core *at, *top;
2239 	int n;
2240 
2241 	if (!x86_pmu.pebs_active)
2242 		return;
2243 
2244 	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2245 	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2246 
2247 	/*
2248 	 * Whatever else happens, drain the thing
2249 	 */
2250 	ds->pebs_index = ds->pebs_buffer_base;
2251 
2252 	if (!test_bit(0, cpuc->active_mask))
2253 		return;
2254 
2255 	WARN_ON_ONCE(!event);
2256 
2257 	if (!event->attr.precise_ip)
2258 		return;
2259 
2260 	n = top - at;
2261 	if (n <= 0) {
2262 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2263 			intel_pmu_save_and_restart_reload(event, 0);
2264 		return;
2265 	}
2266 
2267 	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2268 			       setup_pebs_fixed_sample_data);
2269 }
2270 
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)2271 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2272 {
2273 	struct perf_event *event;
2274 	int bit;
2275 
2276 	/*
2277 	 * The drain_pebs() could be called twice in a short period
2278 	 * for auto-reload event in pmu::read(). There are no
2279 	 * overflows have happened in between.
2280 	 * It needs to call intel_pmu_save_and_restart_reload() to
2281 	 * update the event->count for this case.
2282 	 */
2283 	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2284 		event = cpuc->events[bit];
2285 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2286 			intel_pmu_save_and_restart_reload(event, 0);
2287 	}
2288 }
2289 
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2290 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2291 {
2292 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2293 	struct debug_store *ds = cpuc->ds;
2294 	struct perf_event *event;
2295 	void *base, *at, *top;
2296 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2297 	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2298 	int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2299 	int bit, i, size;
2300 	u64 mask;
2301 
2302 	if (!x86_pmu.pebs_active)
2303 		return;
2304 
2305 	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2306 	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2307 
2308 	ds->pebs_index = ds->pebs_buffer_base;
2309 
2310 	mask = x86_pmu.pebs_events_mask;
2311 	size = max_pebs_events;
2312 	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2313 		mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2314 		size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2315 	}
2316 
2317 	if (unlikely(base >= top)) {
2318 		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2319 		return;
2320 	}
2321 
2322 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2323 		struct pebs_record_nhm *p = at;
2324 		u64 pebs_status;
2325 
2326 		pebs_status = p->status & cpuc->pebs_enabled;
2327 		pebs_status &= mask;
2328 
2329 		/* PEBS v3 has more accurate status bits */
2330 		if (x86_pmu.intel_cap.pebs_format >= 3) {
2331 			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2332 				counts[bit]++;
2333 
2334 			continue;
2335 		}
2336 
2337 		/*
2338 		 * On some CPUs the PEBS status can be zero when PEBS is
2339 		 * racing with clearing of GLOBAL_STATUS.
2340 		 *
2341 		 * Normally we would drop that record, but in the
2342 		 * case when there is only a single active PEBS event
2343 		 * we can assume it's for that event.
2344 		 */
2345 		if (!pebs_status && cpuc->pebs_enabled &&
2346 			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2347 			pebs_status = p->status = cpuc->pebs_enabled;
2348 
2349 		bit = find_first_bit((unsigned long *)&pebs_status,
2350 				     max_pebs_events);
2351 
2352 		if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2353 			continue;
2354 
2355 		/*
2356 		 * The PEBS hardware does not deal well with the situation
2357 		 * when events happen near to each other and multiple bits
2358 		 * are set. But it should happen rarely.
2359 		 *
2360 		 * If these events include one PEBS and multiple non-PEBS
2361 		 * events, it doesn't impact PEBS record. The record will
2362 		 * be handled normally. (slow path)
2363 		 *
2364 		 * If these events include two or more PEBS events, the
2365 		 * records for the events can be collapsed into a single
2366 		 * one, and it's not possible to reconstruct all events
2367 		 * that caused the PEBS record. It's called collision.
2368 		 * If collision happened, the record will be dropped.
2369 		 */
2370 		if (pebs_status != (1ULL << bit)) {
2371 			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2372 				error[i]++;
2373 			continue;
2374 		}
2375 
2376 		counts[bit]++;
2377 	}
2378 
2379 	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2380 		if ((counts[bit] == 0) && (error[bit] == 0))
2381 			continue;
2382 
2383 		event = cpuc->events[bit];
2384 		if (WARN_ON_ONCE(!event))
2385 			continue;
2386 
2387 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2388 			continue;
2389 
2390 		/* log dropped samples number */
2391 		if (error[bit]) {
2392 			perf_log_lost_samples(event, error[bit]);
2393 
2394 			if (iregs && perf_event_account_interrupt(event))
2395 				x86_pmu_stop(event, 0);
2396 		}
2397 
2398 		if (counts[bit]) {
2399 			__intel_pmu_pebs_event(event, iregs, data, base,
2400 					       top, bit, counts[bit],
2401 					       setup_pebs_fixed_sample_data);
2402 		}
2403 	}
2404 }
2405 
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2406 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2407 {
2408 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2409 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2410 	struct debug_store *ds = cpuc->ds;
2411 	struct perf_event *event;
2412 	void *base, *at, *top;
2413 	int bit;
2414 	u64 mask;
2415 
2416 	if (!x86_pmu.pebs_active)
2417 		return;
2418 
2419 	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2420 	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2421 
2422 	ds->pebs_index = ds->pebs_buffer_base;
2423 
2424 	mask = hybrid(cpuc->pmu, pebs_events_mask) |
2425 	       (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2426 
2427 	if (unlikely(base >= top)) {
2428 		intel_pmu_pebs_event_update_no_drain(cpuc, X86_PMC_IDX_MAX);
2429 		return;
2430 	}
2431 
2432 	for (at = base; at < top; at += cpuc->pebs_record_size) {
2433 		u64 pebs_status;
2434 
2435 		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2436 		pebs_status &= mask;
2437 
2438 		for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX)
2439 			counts[bit]++;
2440 	}
2441 
2442 	for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2443 		if (counts[bit] == 0)
2444 			continue;
2445 
2446 		event = cpuc->events[bit];
2447 		if (WARN_ON_ONCE(!event))
2448 			continue;
2449 
2450 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2451 			continue;
2452 
2453 		__intel_pmu_pebs_event(event, iregs, data, base,
2454 				       top, bit, counts[bit],
2455 				       setup_pebs_adaptive_sample_data);
2456 	}
2457 }
2458 
2459 /*
2460  * BTS, PEBS probe and setup
2461  */
2462 
intel_ds_init(void)2463 void __init intel_ds_init(void)
2464 {
2465 	/*
2466 	 * No support for 32bit formats
2467 	 */
2468 	if (!boot_cpu_has(X86_FEATURE_DTES64))
2469 		return;
2470 
2471 	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2472 	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2473 	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2474 	if (x86_pmu.version <= 4)
2475 		x86_pmu.pebs_no_isolation = 1;
2476 
2477 	if (x86_pmu.pebs) {
2478 		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2479 		char *pebs_qual = "";
2480 		int format = x86_pmu.intel_cap.pebs_format;
2481 
2482 		if (format < 4)
2483 			x86_pmu.intel_cap.pebs_baseline = 0;
2484 
2485 		switch (format) {
2486 		case 0:
2487 			pr_cont("PEBS fmt0%c, ", pebs_type);
2488 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2489 			/*
2490 			 * Using >PAGE_SIZE buffers makes the WRMSR to
2491 			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2492 			 * mysteriously hang on Core2.
2493 			 *
2494 			 * As a workaround, we don't do this.
2495 			 */
2496 			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2497 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2498 			break;
2499 
2500 		case 1:
2501 			pr_cont("PEBS fmt1%c, ", pebs_type);
2502 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2503 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2504 			break;
2505 
2506 		case 2:
2507 			pr_cont("PEBS fmt2%c, ", pebs_type);
2508 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2509 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2510 			break;
2511 
2512 		case 3:
2513 			pr_cont("PEBS fmt3%c, ", pebs_type);
2514 			x86_pmu.pebs_record_size =
2515 						sizeof(struct pebs_record_skl);
2516 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2517 			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2518 			break;
2519 
2520 		case 5:
2521 			x86_pmu.pebs_ept = 1;
2522 			fallthrough;
2523 		case 4:
2524 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2525 			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2526 			if (x86_pmu.intel_cap.pebs_baseline) {
2527 				x86_pmu.large_pebs_flags |=
2528 					PERF_SAMPLE_BRANCH_STACK |
2529 					PERF_SAMPLE_TIME;
2530 				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2531 				x86_pmu.pebs_capable = ~0ULL;
2532 				pebs_qual = "-baseline";
2533 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2534 			} else {
2535 				/* Only basic record supported */
2536 				x86_pmu.large_pebs_flags &=
2537 					~(PERF_SAMPLE_ADDR |
2538 					  PERF_SAMPLE_TIME |
2539 					  PERF_SAMPLE_DATA_SRC |
2540 					  PERF_SAMPLE_TRANSACTION |
2541 					  PERF_SAMPLE_REGS_USER |
2542 					  PERF_SAMPLE_REGS_INTR);
2543 			}
2544 			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2545 
2546 			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2547 				pr_cont("PEBS-via-PT, ");
2548 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2549 			}
2550 
2551 			break;
2552 
2553 		default:
2554 			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2555 			x86_pmu.pebs = 0;
2556 		}
2557 	}
2558 }
2559 
perf_restore_debug_store(void)2560 void perf_restore_debug_store(void)
2561 {
2562 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2563 
2564 	if (!x86_pmu.bts && !x86_pmu.pebs)
2565 		return;
2566 
2567 	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2568 }
2569