1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/msr.h>
14 #include <asm/timer.h>
15
16 #include "../perf_event.h"
17
18 /* Waste a full page so it can be mapped into the cpu_entry_area */
19 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
20
21 /* The size of a BTS record in bytes: */
22 #define BTS_RECORD_SIZE 24
23
24 #define PEBS_FIXUP_SIZE PAGE_SIZE
25
26 /*
27 * pebs_record_32 for p4 and core not supported
28
29 struct pebs_record_32 {
30 u32 flags, ip;
31 u32 ax, bc, cx, dx;
32 u32 si, di, bp, sp;
33 };
34
35 */
36
37 union intel_x86_pebs_dse {
38 u64 val;
39 struct {
40 unsigned int ld_dse:4;
41 unsigned int ld_stlb_miss:1;
42 unsigned int ld_locked:1;
43 unsigned int ld_data_blk:1;
44 unsigned int ld_addr_blk:1;
45 unsigned int ld_reserved:24;
46 };
47 struct {
48 unsigned int st_l1d_hit:1;
49 unsigned int st_reserved1:3;
50 unsigned int st_stlb_miss:1;
51 unsigned int st_locked:1;
52 unsigned int st_reserved2:26;
53 };
54 struct {
55 unsigned int st_lat_dse:4;
56 unsigned int st_lat_stlb_miss:1;
57 unsigned int st_lat_locked:1;
58 unsigned int ld_reserved3:26;
59 };
60 struct {
61 unsigned int mtl_dse:5;
62 unsigned int mtl_locked:1;
63 unsigned int mtl_stlb_miss:1;
64 unsigned int mtl_fwd_blk:1;
65 unsigned int ld_reserved4:24;
66 };
67 struct {
68 unsigned int lnc_dse:8;
69 unsigned int ld_reserved5:2;
70 unsigned int lnc_stlb_miss:1;
71 unsigned int lnc_locked:1;
72 unsigned int lnc_data_blk:1;
73 unsigned int lnc_addr_blk:1;
74 unsigned int ld_reserved6:18;
75 };
76 };
77
78
79 /*
80 * Map PEBS Load Latency Data Source encodings to generic
81 * memory data source information
82 */
83 #define P(a, b) PERF_MEM_S(a, b)
84 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
85 #define LEVEL(x) P(LVLNUM, x)
86 #define REM P(REMOTE, REMOTE)
87 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
88
89 /* Version for Sandy Bridge and later */
90 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
91 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
92 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
93 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
94 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
95 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
96 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
97 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
98 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
99 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
100 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
101 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
102 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
103 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
104 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
105 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
106 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
107 };
108
109 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)110 void __init intel_pmu_pebs_data_source_nhm(void)
111 {
112 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
113 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
115 }
116
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)117 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
118 {
119 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
120
121 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
122 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
123 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
124 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
125 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
126 }
127
intel_pmu_pebs_data_source_skl(bool pmem)128 void __init intel_pmu_pebs_data_source_skl(bool pmem)
129 {
130 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
131 }
132
__intel_pmu_pebs_data_source_grt(u64 * data_source)133 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
134 {
135 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
136 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
137 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
138 }
139
intel_pmu_pebs_data_source_grt(void)140 void __init intel_pmu_pebs_data_source_grt(void)
141 {
142 __intel_pmu_pebs_data_source_grt(pebs_data_source);
143 }
144
intel_pmu_pebs_data_source_adl(void)145 void __init intel_pmu_pebs_data_source_adl(void)
146 {
147 u64 *data_source;
148
149 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
150 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
151 __intel_pmu_pebs_data_source_skl(false, data_source);
152
153 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
154 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
155 __intel_pmu_pebs_data_source_grt(data_source);
156 }
157
__intel_pmu_pebs_data_source_cmt(u64 * data_source)158 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
159 {
160 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
161 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
162 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE);
163 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
164 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
165 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
166 }
167
intel_pmu_pebs_data_source_mtl(void)168 void __init intel_pmu_pebs_data_source_mtl(void)
169 {
170 u64 *data_source;
171
172 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
173 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
174 __intel_pmu_pebs_data_source_skl(false, data_source);
175
176 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
177 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
178 __intel_pmu_pebs_data_source_cmt(data_source);
179 }
180
intel_pmu_pebs_data_source_arl_h(void)181 void __init intel_pmu_pebs_data_source_arl_h(void)
182 {
183 u64 *data_source;
184
185 intel_pmu_pebs_data_source_lnl();
186
187 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
188 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
189 __intel_pmu_pebs_data_source_cmt(data_source);
190 }
191
intel_pmu_pebs_data_source_cmt(void)192 void __init intel_pmu_pebs_data_source_cmt(void)
193 {
194 __intel_pmu_pebs_data_source_cmt(pebs_data_source);
195 }
196
197 /* Version for Lion Cove and later */
198 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
199 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */
200 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */
201 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */
202 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */
203 0, /* 0x04: Reserved */
204 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */
205 OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */
206 0, /* 0x07: Reserved */
207 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */
208 0, /* 0x09: Reserved */
209 0, /* 0x0a: Reserved */
210 0, /* 0x0b: Reserved */
211 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */
212 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */
213 0, /* 0x0e: Reserved */
214 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */
215 OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */
216 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
217 };
218
intel_pmu_pebs_data_source_lnl(void)219 void __init intel_pmu_pebs_data_source_lnl(void)
220 {
221 u64 *data_source;
222
223 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
224 memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
225
226 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
227 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
228 __intel_pmu_pebs_data_source_cmt(data_source);
229 }
230
precise_store_data(u64 status)231 static u64 precise_store_data(u64 status)
232 {
233 union intel_x86_pebs_dse dse;
234 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
235
236 dse.val = status;
237
238 /*
239 * bit 4: TLB access
240 * 1 = stored missed 2nd level TLB
241 *
242 * so it either hit the walker or the OS
243 * otherwise hit 2nd level TLB
244 */
245 if (dse.st_stlb_miss)
246 val |= P(TLB, MISS);
247 else
248 val |= P(TLB, HIT);
249
250 /*
251 * bit 0: hit L1 data cache
252 * if not set, then all we know is that
253 * it missed L1D
254 */
255 if (dse.st_l1d_hit)
256 val |= P(LVL, HIT);
257 else
258 val |= P(LVL, MISS);
259
260 /*
261 * bit 5: Locked prefix
262 */
263 if (dse.st_locked)
264 val |= P(LOCK, LOCKED);
265
266 return val;
267 }
268
precise_datala_hsw(struct perf_event * event,u64 status)269 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
270 {
271 union perf_mem_data_src dse;
272
273 dse.val = PERF_MEM_NA;
274
275 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
276 dse.mem_op = PERF_MEM_OP_STORE;
277 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
278 dse.mem_op = PERF_MEM_OP_LOAD;
279
280 /*
281 * L1 info only valid for following events:
282 *
283 * MEM_UOPS_RETIRED.STLB_MISS_STORES
284 * MEM_UOPS_RETIRED.LOCK_STORES
285 * MEM_UOPS_RETIRED.SPLIT_STORES
286 * MEM_UOPS_RETIRED.ALL_STORES
287 */
288 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
289 if (status & 1)
290 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
291 else
292 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
293 }
294 return dse.val;
295 }
296
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)297 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
298 {
299 /*
300 * TLB access
301 * 0 = did not miss 2nd level TLB
302 * 1 = missed 2nd level TLB
303 */
304 if (tlb)
305 *val |= P(TLB, MISS) | P(TLB, L2);
306 else
307 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
308
309 /* locked prefix */
310 if (lock)
311 *val |= P(LOCK, LOCKED);
312 }
313
314 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)315 static u64 __grt_latency_data(struct perf_event *event, u64 status,
316 u8 dse, bool tlb, bool lock, bool blk)
317 {
318 u64 val;
319
320 WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
321
322 dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
323 val = hybrid_var(event->pmu, pebs_data_source)[dse];
324
325 pebs_set_tlb_lock(&val, tlb, lock);
326
327 if (blk)
328 val |= P(BLK, DATA);
329 else
330 val |= P(BLK, NA);
331
332 return val;
333 }
334
grt_latency_data(struct perf_event * event,u64 status)335 u64 grt_latency_data(struct perf_event *event, u64 status)
336 {
337 union intel_x86_pebs_dse dse;
338
339 dse.val = status;
340
341 return __grt_latency_data(event, status, dse.ld_dse,
342 dse.ld_locked, dse.ld_stlb_miss,
343 dse.ld_data_blk);
344 }
345
346 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)347 u64 cmt_latency_data(struct perf_event *event, u64 status)
348 {
349 union intel_x86_pebs_dse dse;
350
351 dse.val = status;
352
353 return __grt_latency_data(event, status, dse.mtl_dse,
354 dse.mtl_stlb_miss, dse.mtl_locked,
355 dse.mtl_fwd_blk);
356 }
357
lnc_latency_data(struct perf_event * event,u64 status)358 static u64 lnc_latency_data(struct perf_event *event, u64 status)
359 {
360 union intel_x86_pebs_dse dse;
361 union perf_mem_data_src src;
362 u64 val;
363
364 dse.val = status;
365
366 /* LNC core latency data */
367 val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
368 if (!val)
369 val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
370
371 if (dse.lnc_stlb_miss)
372 val |= P(TLB, MISS) | P(TLB, L2);
373 else
374 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
375
376 if (dse.lnc_locked)
377 val |= P(LOCK, LOCKED);
378
379 if (dse.lnc_data_blk)
380 val |= P(BLK, DATA);
381 if (dse.lnc_addr_blk)
382 val |= P(BLK, ADDR);
383 if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
384 val |= P(BLK, NA);
385
386 src.val = val;
387 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
388 src.mem_op = P(OP, STORE);
389
390 return src.val;
391 }
392
lnl_latency_data(struct perf_event * event,u64 status)393 u64 lnl_latency_data(struct perf_event *event, u64 status)
394 {
395 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
396
397 if (pmu->pmu_type == hybrid_small)
398 return cmt_latency_data(event, status);
399
400 return lnc_latency_data(event, status);
401 }
402
arl_h_latency_data(struct perf_event * event,u64 status)403 u64 arl_h_latency_data(struct perf_event *event, u64 status)
404 {
405 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
406
407 if (pmu->pmu_type == hybrid_tiny)
408 return cmt_latency_data(event, status);
409
410 return lnl_latency_data(event, status);
411 }
412
load_latency_data(struct perf_event * event,u64 status)413 static u64 load_latency_data(struct perf_event *event, u64 status)
414 {
415 union intel_x86_pebs_dse dse;
416 u64 val;
417
418 dse.val = status;
419
420 /*
421 * use the mapping table for bit 0-3
422 */
423 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
424
425 /*
426 * Nehalem models do not support TLB, Lock infos
427 */
428 if (x86_pmu.pebs_no_tlb) {
429 val |= P(TLB, NA) | P(LOCK, NA);
430 return val;
431 }
432
433 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
434
435 /*
436 * Ice Lake and earlier models do not support block infos.
437 */
438 if (!x86_pmu.pebs_block) {
439 val |= P(BLK, NA);
440 return val;
441 }
442 /*
443 * bit 6: load was blocked since its data could not be forwarded
444 * from a preceding store
445 */
446 if (dse.ld_data_blk)
447 val |= P(BLK, DATA);
448
449 /*
450 * bit 7: load was blocked due to potential address conflict with
451 * a preceding store
452 */
453 if (dse.ld_addr_blk)
454 val |= P(BLK, ADDR);
455
456 if (!dse.ld_data_blk && !dse.ld_addr_blk)
457 val |= P(BLK, NA);
458
459 return val;
460 }
461
store_latency_data(struct perf_event * event,u64 status)462 static u64 store_latency_data(struct perf_event *event, u64 status)
463 {
464 union intel_x86_pebs_dse dse;
465 union perf_mem_data_src src;
466 u64 val;
467
468 dse.val = status;
469
470 /*
471 * use the mapping table for bit 0-3
472 */
473 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
474
475 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
476
477 val |= P(BLK, NA);
478
479 /*
480 * the pebs_data_source table is only for loads
481 * so override the mem_op to say STORE instead
482 */
483 src.val = val;
484 src.mem_op = P(OP,STORE);
485
486 return src.val;
487 }
488
489 struct pebs_record_core {
490 u64 flags, ip;
491 u64 ax, bx, cx, dx;
492 u64 si, di, bp, sp;
493 u64 r8, r9, r10, r11;
494 u64 r12, r13, r14, r15;
495 };
496
497 struct pebs_record_nhm {
498 u64 flags, ip;
499 u64 ax, bx, cx, dx;
500 u64 si, di, bp, sp;
501 u64 r8, r9, r10, r11;
502 u64 r12, r13, r14, r15;
503 u64 status, dla, dse, lat;
504 };
505
506 /*
507 * Same as pebs_record_nhm, with two additional fields.
508 */
509 struct pebs_record_hsw {
510 u64 flags, ip;
511 u64 ax, bx, cx, dx;
512 u64 si, di, bp, sp;
513 u64 r8, r9, r10, r11;
514 u64 r12, r13, r14, r15;
515 u64 status, dla, dse, lat;
516 u64 real_ip, tsx_tuning;
517 };
518
519 union hsw_tsx_tuning {
520 struct {
521 u32 cycles_last_block : 32,
522 hle_abort : 1,
523 rtm_abort : 1,
524 instruction_abort : 1,
525 non_instruction_abort : 1,
526 retry : 1,
527 data_conflict : 1,
528 capacity_writes : 1,
529 capacity_reads : 1;
530 };
531 u64 value;
532 };
533
534 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
535
536 /* Same as HSW, plus TSC */
537
538 struct pebs_record_skl {
539 u64 flags, ip;
540 u64 ax, bx, cx, dx;
541 u64 si, di, bp, sp;
542 u64 r8, r9, r10, r11;
543 u64 r12, r13, r14, r15;
544 u64 status, dla, dse, lat;
545 u64 real_ip, tsx_tuning;
546 u64 tsc;
547 };
548
init_debug_store_on_cpu(int cpu)549 void init_debug_store_on_cpu(int cpu)
550 {
551 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
552
553 if (!ds)
554 return;
555
556 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
557 (u32)((u64)(unsigned long)ds),
558 (u32)((u64)(unsigned long)ds >> 32));
559 }
560
fini_debug_store_on_cpu(int cpu)561 void fini_debug_store_on_cpu(int cpu)
562 {
563 if (!per_cpu(cpu_hw_events, cpu).ds)
564 return;
565
566 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
567 }
568
569 static DEFINE_PER_CPU(void *, insn_buffer);
570
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)571 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
572 {
573 unsigned long start = (unsigned long)cea;
574 phys_addr_t pa;
575 size_t msz = 0;
576
577 pa = virt_to_phys(addr);
578
579 preempt_disable();
580 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
581 cea_set_pte(cea, pa, prot);
582
583 /*
584 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
585 * all TLB entries for it.
586 */
587 flush_tlb_kernel_range(start, start + size);
588 preempt_enable();
589 }
590
ds_clear_cea(void * cea,size_t size)591 static void ds_clear_cea(void *cea, size_t size)
592 {
593 unsigned long start = (unsigned long)cea;
594 size_t msz = 0;
595
596 preempt_disable();
597 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
598 cea_set_pte(cea, 0, PAGE_NONE);
599
600 flush_tlb_kernel_range(start, start + size);
601 preempt_enable();
602 }
603
dsalloc_pages(size_t size,gfp_t flags,int cpu)604 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
605 {
606 unsigned int order = get_order(size);
607 int node = cpu_to_node(cpu);
608 struct page *page;
609
610 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
611 return page ? page_address(page) : NULL;
612 }
613
dsfree_pages(const void * buffer,size_t size)614 static void dsfree_pages(const void *buffer, size_t size)
615 {
616 if (buffer)
617 free_pages((unsigned long)buffer, get_order(size));
618 }
619
alloc_pebs_buffer(int cpu)620 static int alloc_pebs_buffer(int cpu)
621 {
622 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
623 struct debug_store *ds = hwev->ds;
624 size_t bsiz = x86_pmu.pebs_buffer_size;
625 int max, node = cpu_to_node(cpu);
626 void *buffer, *insn_buff, *cea;
627
628 if (!x86_pmu.ds_pebs)
629 return 0;
630
631 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
632 if (unlikely(!buffer))
633 return -ENOMEM;
634
635 /*
636 * HSW+ already provides us the eventing ip; no need to allocate this
637 * buffer then.
638 */
639 if (x86_pmu.intel_cap.pebs_format < 2) {
640 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
641 if (!insn_buff) {
642 dsfree_pages(buffer, bsiz);
643 return -ENOMEM;
644 }
645 per_cpu(insn_buffer, cpu) = insn_buff;
646 }
647 hwev->ds_pebs_vaddr = buffer;
648 /* Update the cpu entry area mapping */
649 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
650 ds->pebs_buffer_base = (unsigned long) cea;
651 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
652 ds->pebs_index = ds->pebs_buffer_base;
653 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
654 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
655 return 0;
656 }
657
release_pebs_buffer(int cpu)658 static void release_pebs_buffer(int cpu)
659 {
660 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
661 void *cea;
662
663 if (!x86_pmu.ds_pebs)
664 return;
665
666 kfree(per_cpu(insn_buffer, cpu));
667 per_cpu(insn_buffer, cpu) = NULL;
668
669 /* Clear the fixmap */
670 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
671 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
672 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
673 hwev->ds_pebs_vaddr = NULL;
674 }
675
alloc_bts_buffer(int cpu)676 static int alloc_bts_buffer(int cpu)
677 {
678 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
679 struct debug_store *ds = hwev->ds;
680 void *buffer, *cea;
681 int max;
682
683 if (!x86_pmu.bts)
684 return 0;
685
686 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
687 if (unlikely(!buffer)) {
688 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
689 return -ENOMEM;
690 }
691 hwev->ds_bts_vaddr = buffer;
692 /* Update the fixmap */
693 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
694 ds->bts_buffer_base = (unsigned long) cea;
695 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
696 ds->bts_index = ds->bts_buffer_base;
697 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
698 ds->bts_absolute_maximum = ds->bts_buffer_base +
699 max * BTS_RECORD_SIZE;
700 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
701 (max / 16) * BTS_RECORD_SIZE;
702 return 0;
703 }
704
release_bts_buffer(int cpu)705 static void release_bts_buffer(int cpu)
706 {
707 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
708 void *cea;
709
710 if (!x86_pmu.bts)
711 return;
712
713 /* Clear the fixmap */
714 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
715 ds_clear_cea(cea, BTS_BUFFER_SIZE);
716 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
717 hwev->ds_bts_vaddr = NULL;
718 }
719
alloc_ds_buffer(int cpu)720 static int alloc_ds_buffer(int cpu)
721 {
722 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
723
724 memset(ds, 0, sizeof(*ds));
725 per_cpu(cpu_hw_events, cpu).ds = ds;
726 return 0;
727 }
728
release_ds_buffer(int cpu)729 static void release_ds_buffer(int cpu)
730 {
731 per_cpu(cpu_hw_events, cpu).ds = NULL;
732 }
733
release_ds_buffers(void)734 void release_ds_buffers(void)
735 {
736 int cpu;
737
738 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
739 return;
740
741 for_each_possible_cpu(cpu)
742 release_ds_buffer(cpu);
743
744 for_each_possible_cpu(cpu) {
745 /*
746 * Again, ignore errors from offline CPUs, they will no longer
747 * observe cpu_hw_events.ds and not program the DS_AREA when
748 * they come up.
749 */
750 fini_debug_store_on_cpu(cpu);
751 }
752
753 for_each_possible_cpu(cpu) {
754 if (x86_pmu.ds_pebs)
755 release_pebs_buffer(cpu);
756 release_bts_buffer(cpu);
757 }
758 }
759
reserve_ds_buffers(void)760 void reserve_ds_buffers(void)
761 {
762 int bts_err = 0, pebs_err = 0;
763 int cpu;
764
765 x86_pmu.bts_active = 0;
766
767 if (x86_pmu.ds_pebs)
768 x86_pmu.pebs_active = 0;
769
770 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
771 return;
772
773 if (!x86_pmu.bts)
774 bts_err = 1;
775
776 if (!x86_pmu.ds_pebs)
777 pebs_err = 1;
778
779 for_each_possible_cpu(cpu) {
780 if (alloc_ds_buffer(cpu)) {
781 bts_err = 1;
782 pebs_err = 1;
783 }
784
785 if (!bts_err && alloc_bts_buffer(cpu))
786 bts_err = 1;
787
788 if (x86_pmu.ds_pebs && !pebs_err &&
789 alloc_pebs_buffer(cpu))
790 pebs_err = 1;
791
792 if (bts_err && pebs_err)
793 break;
794 }
795
796 if (bts_err) {
797 for_each_possible_cpu(cpu)
798 release_bts_buffer(cpu);
799 }
800
801 if (x86_pmu.ds_pebs && pebs_err) {
802 for_each_possible_cpu(cpu)
803 release_pebs_buffer(cpu);
804 }
805
806 if (bts_err && pebs_err) {
807 for_each_possible_cpu(cpu)
808 release_ds_buffer(cpu);
809 } else {
810 if (x86_pmu.bts && !bts_err)
811 x86_pmu.bts_active = 1;
812
813 if (x86_pmu.ds_pebs && !pebs_err)
814 x86_pmu.pebs_active = 1;
815
816 for_each_possible_cpu(cpu) {
817 /*
818 * Ignores wrmsr_on_cpu() errors for offline CPUs they
819 * will get this call through intel_pmu_cpu_starting().
820 */
821 init_debug_store_on_cpu(cpu);
822 }
823 }
824 }
825
826 /*
827 * BTS
828 */
829
830 struct event_constraint bts_constraint =
831 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
832
intel_pmu_enable_bts(u64 config)833 void intel_pmu_enable_bts(u64 config)
834 {
835 unsigned long debugctlmsr;
836
837 debugctlmsr = get_debugctlmsr();
838
839 debugctlmsr |= DEBUGCTLMSR_TR;
840 debugctlmsr |= DEBUGCTLMSR_BTS;
841 if (config & ARCH_PERFMON_EVENTSEL_INT)
842 debugctlmsr |= DEBUGCTLMSR_BTINT;
843
844 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
845 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
846
847 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
848 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
849
850 update_debugctlmsr(debugctlmsr);
851 }
852
intel_pmu_disable_bts(void)853 void intel_pmu_disable_bts(void)
854 {
855 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
856 unsigned long debugctlmsr;
857
858 if (!cpuc->ds)
859 return;
860
861 debugctlmsr = get_debugctlmsr();
862
863 debugctlmsr &=
864 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
865 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
866
867 update_debugctlmsr(debugctlmsr);
868 }
869
intel_pmu_drain_bts_buffer(void)870 int intel_pmu_drain_bts_buffer(void)
871 {
872 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
873 struct debug_store *ds = cpuc->ds;
874 struct bts_record {
875 u64 from;
876 u64 to;
877 u64 flags;
878 };
879 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
880 struct bts_record *at, *base, *top;
881 struct perf_output_handle handle;
882 struct perf_event_header header;
883 struct perf_sample_data data;
884 unsigned long skip = 0;
885 struct pt_regs regs;
886
887 if (!event)
888 return 0;
889
890 if (!x86_pmu.bts_active)
891 return 0;
892
893 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
894 top = (struct bts_record *)(unsigned long)ds->bts_index;
895
896 if (top <= base)
897 return 0;
898
899 memset(®s, 0, sizeof(regs));
900
901 ds->bts_index = ds->bts_buffer_base;
902
903 perf_sample_data_init(&data, 0, event->hw.last_period);
904
905 /*
906 * BTS leaks kernel addresses in branches across the cpl boundary,
907 * such as traps or system calls, so unless the user is asking for
908 * kernel tracing (and right now it's not possible), we'd need to
909 * filter them out. But first we need to count how many of those we
910 * have in the current batch. This is an extra O(n) pass, however,
911 * it's much faster than the other one especially considering that
912 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
913 * alloc_bts_buffer()).
914 */
915 for (at = base; at < top; at++) {
916 /*
917 * Note that right now *this* BTS code only works if
918 * attr::exclude_kernel is set, but let's keep this extra
919 * check here in case that changes.
920 */
921 if (event->attr.exclude_kernel &&
922 (kernel_ip(at->from) || kernel_ip(at->to)))
923 skip++;
924 }
925
926 /*
927 * Prepare a generic sample, i.e. fill in the invariant fields.
928 * We will overwrite the from and to address before we output
929 * the sample.
930 */
931 rcu_read_lock();
932 perf_prepare_sample(&data, event, ®s);
933 perf_prepare_header(&header, &data, event, ®s);
934
935 if (perf_output_begin(&handle, &data, event,
936 header.size * (top - base - skip)))
937 goto unlock;
938
939 for (at = base; at < top; at++) {
940 /* Filter out any records that contain kernel addresses. */
941 if (event->attr.exclude_kernel &&
942 (kernel_ip(at->from) || kernel_ip(at->to)))
943 continue;
944
945 data.ip = at->from;
946 data.addr = at->to;
947
948 perf_output_sample(&handle, &header, &data, event);
949 }
950
951 perf_output_end(&handle);
952
953 /* There's new data available. */
954 event->hw.interrupts++;
955 event->pending_kill = POLL_IN;
956 unlock:
957 rcu_read_unlock();
958 return 1;
959 }
960
intel_pmu_drain_pebs_buffer(void)961 void intel_pmu_drain_pebs_buffer(void)
962 {
963 struct perf_sample_data data;
964
965 static_call(x86_pmu_drain_pebs)(NULL, &data);
966 }
967
968 /*
969 * PEBS
970 */
971 struct event_constraint intel_core2_pebs_event_constraints[] = {
972 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
973 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
974 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
975 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
976 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
977 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
978 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
979 EVENT_CONSTRAINT_END
980 };
981
982 struct event_constraint intel_atom_pebs_event_constraints[] = {
983 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
984 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
985 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
986 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
987 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
988 /* Allow all events as PEBS with no flags */
989 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
990 EVENT_CONSTRAINT_END
991 };
992
993 struct event_constraint intel_slm_pebs_event_constraints[] = {
994 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
995 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
996 /* Allow all events as PEBS with no flags */
997 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
998 EVENT_CONSTRAINT_END
999 };
1000
1001 struct event_constraint intel_glm_pebs_event_constraints[] = {
1002 /* Allow all events as PEBS with no flags */
1003 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
1004 EVENT_CONSTRAINT_END
1005 };
1006
1007 struct event_constraint intel_grt_pebs_event_constraints[] = {
1008 /* Allow all events as PEBS with no flags */
1009 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1010 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1011 EVENT_CONSTRAINT_END
1012 };
1013
1014 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1015 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1016 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1017 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1018 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
1019 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1020 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1021 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1022 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1023 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1024 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1025 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1026 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1027 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1028 EVENT_CONSTRAINT_END
1029 };
1030
1031 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1032 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1033 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1034 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1035 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
1036 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1037 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1038 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
1039 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1040 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1041 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1042 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1043 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1044 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1045 EVENT_CONSTRAINT_END
1046 };
1047
1048 struct event_constraint intel_snb_pebs_event_constraints[] = {
1049 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1050 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1051 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1052 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1053 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1054 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1055 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1056 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1057 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1058 /* Allow all events as PEBS with no flags */
1059 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1060 EVENT_CONSTRAINT_END
1061 };
1062
1063 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1064 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1065 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1066 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1067 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1068 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1069 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1070 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1071 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1072 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1073 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1074 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1075 /* Allow all events as PEBS with no flags */
1076 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1077 EVENT_CONSTRAINT_END
1078 };
1079
1080 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1081 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1082 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1083 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1084 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1085 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1086 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1087 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1088 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1089 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1090 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1091 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1092 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1093 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1094 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1095 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1096 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1097 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1098 /* Allow all events as PEBS with no flags */
1099 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1100 EVENT_CONSTRAINT_END
1101 };
1102
1103 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1104 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1105 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1106 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1107 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1108 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1109 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1110 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1111 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1112 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1113 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1114 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1115 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1116 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1117 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1118 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1119 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1120 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1121 /* Allow all events as PEBS with no flags */
1122 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1123 EVENT_CONSTRAINT_END
1124 };
1125
1126
1127 struct event_constraint intel_skl_pebs_event_constraints[] = {
1128 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
1129 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1130 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1131 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1132 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1133 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
1134 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1135 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1136 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1137 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1138 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1139 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1140 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1141 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1142 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
1143 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
1144 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
1145 /* Allow all events as PEBS with no flags */
1146 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1147 EVENT_CONSTRAINT_END
1148 };
1149
1150 struct event_constraint intel_icl_pebs_event_constraints[] = {
1151 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
1152 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1153 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
1154
1155 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1156 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1157 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1158 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1159 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1160 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1161 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1162 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1163
1164 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1165
1166 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
1167
1168 /*
1169 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1170 * need the full constraints from the main table.
1171 */
1172
1173 EVENT_CONSTRAINT_END
1174 };
1175
1176 struct event_constraint intel_glc_pebs_event_constraints[] = {
1177 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1178 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1179
1180 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1181 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1182 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1183 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1185 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1186 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1187 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1188 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1189 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1190
1191 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192
1193 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194
1195 /*
1196 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1197 * need the full constraints from the main table.
1198 */
1199
1200 EVENT_CONSTRAINT_END
1201 };
1202
1203 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1204 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1205 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1206
1207 INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1208 INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1209 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1210 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1211 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1212 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1213 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1214 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1215 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1216
1217 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1218
1219 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1220
1221 /*
1222 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1223 * need the full constraints from the main table.
1224 */
1225
1226 EVENT_CONSTRAINT_END
1227 };
1228
intel_pebs_constraints(struct perf_event * event)1229 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1230 {
1231 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1232 struct event_constraint *c;
1233
1234 if (!event->attr.precise_ip)
1235 return NULL;
1236
1237 if (pebs_constraints) {
1238 for_each_event_constraint(c, pebs_constraints) {
1239 if (constraint_match(c, event->hw.config)) {
1240 event->hw.flags |= c->flags;
1241 return c;
1242 }
1243 }
1244 }
1245
1246 /*
1247 * Extended PEBS support
1248 * Makes the PEBS code search the normal constraints.
1249 */
1250 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1251 return NULL;
1252
1253 return &emptyconstraint;
1254 }
1255
1256 /*
1257 * We need the sched_task callback even for per-cpu events when we use
1258 * the large interrupt threshold, such that we can provide PID and TID
1259 * to PEBS samples.
1260 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1261 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1262 {
1263 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1264 return false;
1265
1266 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1267 }
1268
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1269 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1270 {
1271 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272
1273 if (!sched_in && pebs_needs_sched_cb(cpuc))
1274 intel_pmu_drain_pebs_buffer();
1275 }
1276
pebs_update_threshold(struct cpu_hw_events * cpuc)1277 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1278 {
1279 struct debug_store *ds = cpuc->ds;
1280 int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1281 u64 threshold;
1282 int reserved;
1283
1284 if (cpuc->n_pebs_via_pt)
1285 return;
1286
1287 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1288 reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1289 else
1290 reserved = max_pebs_events;
1291
1292 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1293 threshold = ds->pebs_absolute_maximum -
1294 reserved * cpuc->pebs_record_size;
1295 } else {
1296 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1297 }
1298
1299 ds->pebs_interrupt_threshold = threshold;
1300 }
1301
1302 #define PEBS_DATACFG_CNTRS(x) \
1303 ((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK)
1304
1305 #define PEBS_DATACFG_CNTR_BIT(x) \
1306 (((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT)
1307
1308 #define PEBS_DATACFG_FIX(x) \
1309 ((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK)
1310
1311 #define PEBS_DATACFG_FIX_BIT(x) \
1312 (((1ULL << (x)) & PEBS_DATACFG_FIX_MASK) \
1313 << PEBS_DATACFG_FIX_SHIFT)
1314
adaptive_pebs_record_size_update(void)1315 static void adaptive_pebs_record_size_update(void)
1316 {
1317 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1319 int sz = sizeof(struct pebs_basic);
1320
1321 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1322 sz += sizeof(struct pebs_meminfo);
1323 if (pebs_data_cfg & PEBS_DATACFG_GP)
1324 sz += sizeof(struct pebs_gprs);
1325 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1326 sz += sizeof(struct pebs_xmm);
1327 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1328 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1329 if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) {
1330 sz += sizeof(struct pebs_cntr_header);
1331
1332 /* Metrics base and Metrics Data */
1333 if (pebs_data_cfg & PEBS_DATACFG_METRICS)
1334 sz += 2 * sizeof(u64);
1335
1336 if (pebs_data_cfg & PEBS_DATACFG_CNTR) {
1337 sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) +
1338 hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) *
1339 sizeof(u64);
1340 }
1341 }
1342
1343 cpuc->pebs_record_size = sz;
1344 }
1345
__intel_pmu_pebs_update_cfg(struct perf_event * event,int idx,u64 * pebs_data_cfg)1346 static void __intel_pmu_pebs_update_cfg(struct perf_event *event,
1347 int idx, u64 *pebs_data_cfg)
1348 {
1349 if (is_metric_event(event)) {
1350 *pebs_data_cfg |= PEBS_DATACFG_METRICS;
1351 return;
1352 }
1353
1354 *pebs_data_cfg |= PEBS_DATACFG_CNTR;
1355
1356 if (idx >= INTEL_PMC_IDX_FIXED)
1357 *pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED);
1358 else
1359 *pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx);
1360 }
1361
1362
intel_pmu_pebs_late_setup(struct cpu_hw_events * cpuc)1363 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc)
1364 {
1365 struct perf_event *event;
1366 u64 pebs_data_cfg = 0;
1367 int i;
1368
1369 for (i = 0; i < cpuc->n_events; i++) {
1370 event = cpuc->event_list[i];
1371 if (!is_pebs_counter_event_group(event))
1372 continue;
1373 __intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg);
1374 }
1375
1376 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1377 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1378 }
1379
1380 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1381 PERF_SAMPLE_PHYS_ADDR | \
1382 PERF_SAMPLE_WEIGHT_TYPE | \
1383 PERF_SAMPLE_TRANSACTION | \
1384 PERF_SAMPLE_DATA_PAGE_SIZE)
1385
pebs_update_adaptive_cfg(struct perf_event * event)1386 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1387 {
1388 struct perf_event_attr *attr = &event->attr;
1389 u64 sample_type = attr->sample_type;
1390 u64 pebs_data_cfg = 0;
1391 bool gprs, tsx_weight;
1392
1393 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1394 attr->precise_ip > 1)
1395 return pebs_data_cfg;
1396
1397 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1398 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1399
1400 /*
1401 * We need GPRs when:
1402 * + user requested them
1403 * + precise_ip < 2 for the non event IP
1404 * + For RTM TSX weight we need GPRs for the abort code.
1405 */
1406 gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1407 (attr->sample_regs_intr & PEBS_GP_REGS)) ||
1408 ((sample_type & PERF_SAMPLE_REGS_USER) &&
1409 (attr->sample_regs_user & PEBS_GP_REGS));
1410
1411 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1412 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1413 x86_pmu.rtm_abort_event);
1414
1415 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1416 pebs_data_cfg |= PEBS_DATACFG_GP;
1417
1418 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1419 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1420 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1421
1422 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1423 /*
1424 * For now always log all LBRs. Could configure this
1425 * later.
1426 */
1427 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1428 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1429 }
1430
1431 return pebs_data_cfg;
1432 }
1433
1434 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1435 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1436 struct perf_event *event, bool add)
1437 {
1438 struct pmu *pmu = event->pmu;
1439
1440 /*
1441 * Make sure we get updated with the first PEBS event.
1442 * During removal, ->pebs_data_cfg is still valid for
1443 * the last PEBS event. Don't clear it.
1444 */
1445 if ((cpuc->n_pebs == 1) && add)
1446 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1447
1448 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1449 if (!needed_cb)
1450 perf_sched_cb_inc(pmu);
1451 else
1452 perf_sched_cb_dec(pmu);
1453
1454 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1455 }
1456
1457 /*
1458 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1459 * iterating all remaining PEBS events to reconstruct the config.
1460 */
1461 if (x86_pmu.intel_cap.pebs_baseline && add) {
1462 u64 pebs_data_cfg;
1463
1464 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1465 /*
1466 * Be sure to update the thresholds when we change the record.
1467 */
1468 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1469 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1470 }
1471 }
1472
intel_pmu_pebs_add(struct perf_event * event)1473 void intel_pmu_pebs_add(struct perf_event *event)
1474 {
1475 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1476 struct hw_perf_event *hwc = &event->hw;
1477 bool needed_cb = pebs_needs_sched_cb(cpuc);
1478
1479 cpuc->n_pebs++;
1480 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1481 cpuc->n_large_pebs++;
1482 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1483 cpuc->n_pebs_via_pt++;
1484
1485 pebs_update_state(needed_cb, cpuc, event, true);
1486 }
1487
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1488 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1489 {
1490 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1491
1492 if (!is_pebs_pt(event))
1493 return;
1494
1495 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1496 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1497 }
1498
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1499 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1500 {
1501 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1502 struct hw_perf_event *hwc = &event->hw;
1503 struct debug_store *ds = cpuc->ds;
1504 u64 value = ds->pebs_event_reset[hwc->idx];
1505 u32 base = MSR_RELOAD_PMC0;
1506 unsigned int idx = hwc->idx;
1507
1508 if (!is_pebs_pt(event))
1509 return;
1510
1511 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1512 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1513
1514 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1515
1516 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1517 base = MSR_RELOAD_FIXED_CTR0;
1518 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1519 if (x86_pmu.intel_cap.pebs_format < 5)
1520 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1521 else
1522 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1523 }
1524 wrmsrq(base + idx, value);
1525 }
1526
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1527 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1528 {
1529 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1530 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1531 intel_pmu_drain_pebs_buffer();
1532 }
1533
intel_pmu_pebs_enable(struct perf_event * event)1534 void intel_pmu_pebs_enable(struct perf_event *event)
1535 {
1536 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1537 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1538 struct hw_perf_event *hwc = &event->hw;
1539 struct debug_store *ds = cpuc->ds;
1540 unsigned int idx = hwc->idx;
1541
1542 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1543
1544 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1545
1546 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1547 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1548 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1549 cpuc->pebs_enabled |= 1ULL << 63;
1550
1551 if (x86_pmu.intel_cap.pebs_baseline) {
1552 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1553 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1554 /*
1555 * drain_pebs() assumes uniform record size;
1556 * hence we need to drain when changing said
1557 * size.
1558 */
1559 intel_pmu_drain_pebs_buffer();
1560 adaptive_pebs_record_size_update();
1561 wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1562 cpuc->active_pebs_data_cfg = pebs_data_cfg;
1563 }
1564 }
1565 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1566 cpuc->pebs_data_cfg = pebs_data_cfg;
1567 pebs_update_threshold(cpuc);
1568 }
1569
1570 if (idx >= INTEL_PMC_IDX_FIXED) {
1571 if (x86_pmu.intel_cap.pebs_format < 5)
1572 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1573 else
1574 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1575 }
1576
1577 /*
1578 * Use auto-reload if possible to save a MSR write in the PMI.
1579 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1580 */
1581 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1582 ds->pebs_event_reset[idx] =
1583 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1584 } else {
1585 ds->pebs_event_reset[idx] = 0;
1586 }
1587
1588 intel_pmu_pebs_via_pt_enable(event);
1589 }
1590
intel_pmu_pebs_del(struct perf_event * event)1591 void intel_pmu_pebs_del(struct perf_event *event)
1592 {
1593 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1594 struct hw_perf_event *hwc = &event->hw;
1595 bool needed_cb = pebs_needs_sched_cb(cpuc);
1596
1597 cpuc->n_pebs--;
1598 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1599 cpuc->n_large_pebs--;
1600 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1601 cpuc->n_pebs_via_pt--;
1602
1603 pebs_update_state(needed_cb, cpuc, event, false);
1604 }
1605
intel_pmu_pebs_disable(struct perf_event * event)1606 void intel_pmu_pebs_disable(struct perf_event *event)
1607 {
1608 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1609 struct hw_perf_event *hwc = &event->hw;
1610
1611 intel_pmu_drain_large_pebs(cpuc);
1612
1613 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1614
1615 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1616 (x86_pmu.version < 5))
1617 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1618 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1619 cpuc->pebs_enabled &= ~(1ULL << 63);
1620
1621 intel_pmu_pebs_via_pt_disable(event);
1622
1623 if (cpuc->enabled)
1624 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1625
1626 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1627 }
1628
intel_pmu_pebs_enable_all(void)1629 void intel_pmu_pebs_enable_all(void)
1630 {
1631 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1632
1633 if (cpuc->pebs_enabled)
1634 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1635 }
1636
intel_pmu_pebs_disable_all(void)1637 void intel_pmu_pebs_disable_all(void)
1638 {
1639 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641 if (cpuc->pebs_enabled)
1642 __intel_pmu_pebs_disable_all();
1643 }
1644
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1645 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1646 {
1647 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1648 unsigned long from = cpuc->lbr_entries[0].from;
1649 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1650 unsigned long ip = regs->ip;
1651 int is_64bit = 0;
1652 void *kaddr;
1653 int size;
1654
1655 /*
1656 * We don't need to fixup if the PEBS assist is fault like
1657 */
1658 if (!x86_pmu.intel_cap.pebs_trap)
1659 return 1;
1660
1661 /*
1662 * No LBR entry, no basic block, no rewinding
1663 */
1664 if (!cpuc->lbr_stack.nr || !from || !to)
1665 return 0;
1666
1667 /*
1668 * Basic blocks should never cross user/kernel boundaries
1669 */
1670 if (kernel_ip(ip) != kernel_ip(to))
1671 return 0;
1672
1673 /*
1674 * unsigned math, either ip is before the start (impossible) or
1675 * the basic block is larger than 1 page (sanity)
1676 */
1677 if ((ip - to) > PEBS_FIXUP_SIZE)
1678 return 0;
1679
1680 /*
1681 * We sampled a branch insn, rewind using the LBR stack
1682 */
1683 if (ip == to) {
1684 set_linear_ip(regs, from);
1685 return 1;
1686 }
1687
1688 size = ip - to;
1689 if (!kernel_ip(ip)) {
1690 int bytes;
1691 u8 *buf = this_cpu_read(insn_buffer);
1692
1693 /* 'size' must fit our buffer, see above */
1694 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1695 if (bytes != 0)
1696 return 0;
1697
1698 kaddr = buf;
1699 } else {
1700 kaddr = (void *)to;
1701 }
1702
1703 do {
1704 struct insn insn;
1705
1706 old_to = to;
1707
1708 #ifdef CONFIG_X86_64
1709 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1710 #endif
1711 insn_init(&insn, kaddr, size, is_64bit);
1712
1713 /*
1714 * Make sure there was not a problem decoding the instruction.
1715 * This is doubly important because we have an infinite loop if
1716 * insn.length=0.
1717 */
1718 if (insn_get_length(&insn))
1719 break;
1720
1721 to += insn.length;
1722 kaddr += insn.length;
1723 size -= insn.length;
1724 } while (to < ip);
1725
1726 if (to == ip) {
1727 set_linear_ip(regs, old_to);
1728 return 1;
1729 }
1730
1731 /*
1732 * Even though we decoded the basic block, the instruction stream
1733 * never matched the given IP, either the TO or the IP got corrupted.
1734 */
1735 return 0;
1736 }
1737
intel_get_tsx_weight(u64 tsx_tuning)1738 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1739 {
1740 if (tsx_tuning) {
1741 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1742 return tsx.cycles_last_block;
1743 }
1744 return 0;
1745 }
1746
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1747 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1748 {
1749 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1750
1751 /* For RTM XABORTs also log the abort code from AX */
1752 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1753 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1754 return txn;
1755 }
1756
get_pebs_status(void * n)1757 static inline u64 get_pebs_status(void *n)
1758 {
1759 if (x86_pmu.intel_cap.pebs_format < 4)
1760 return ((struct pebs_record_nhm *)n)->status;
1761 return ((struct pebs_basic *)n)->applicable_counters;
1762 }
1763
1764 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1765 (PERF_X86_EVENT_PEBS_ST_HSW | \
1766 PERF_X86_EVENT_PEBS_LD_HSW | \
1767 PERF_X86_EVENT_PEBS_NA_HSW)
1768
get_data_src(struct perf_event * event,u64 aux)1769 static u64 get_data_src(struct perf_event *event, u64 aux)
1770 {
1771 u64 val = PERF_MEM_NA;
1772 int fl = event->hw.flags;
1773 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1774
1775 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1776 val = load_latency_data(event, aux);
1777 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1778 val = store_latency_data(event, aux);
1779 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1780 val = x86_pmu.pebs_latency_data(event, aux);
1781 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1782 val = precise_datala_hsw(event, aux);
1783 else if (fst)
1784 val = precise_store_data(aux);
1785 return val;
1786 }
1787
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1788 static void setup_pebs_time(struct perf_event *event,
1789 struct perf_sample_data *data,
1790 u64 tsc)
1791 {
1792 /* Converting to a user-defined clock is not supported yet. */
1793 if (event->attr.use_clockid != 0)
1794 return;
1795
1796 /*
1797 * Doesn't support the conversion when the TSC is unstable.
1798 * The TSC unstable case is a corner case and very unlikely to
1799 * happen. If it happens, the TSC in a PEBS record will be
1800 * dropped and fall back to perf_event_clock().
1801 */
1802 if (!using_native_sched_clock() || !sched_clock_stable())
1803 return;
1804
1805 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1806 data->sample_flags |= PERF_SAMPLE_TIME;
1807 }
1808
1809 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1810 PERF_SAMPLE_PHYS_ADDR | \
1811 PERF_SAMPLE_DATA_PAGE_SIZE)
1812
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1813 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1814 struct pt_regs *iregs, void *__pebs,
1815 struct perf_sample_data *data,
1816 struct pt_regs *regs)
1817 {
1818 /*
1819 * We cast to the biggest pebs_record but are careful not to
1820 * unconditionally access the 'extra' entries.
1821 */
1822 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1823 struct pebs_record_skl *pebs = __pebs;
1824 u64 sample_type;
1825 int fll;
1826
1827 if (pebs == NULL)
1828 return;
1829
1830 sample_type = event->attr.sample_type;
1831 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1832
1833 perf_sample_data_init(data, 0, event->hw.last_period);
1834
1835 /*
1836 * Use latency for weight (only avail with PEBS-LL)
1837 */
1838 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1839 data->weight.full = pebs->lat;
1840 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1841 }
1842
1843 /*
1844 * data.data_src encodes the data source
1845 */
1846 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1847 data->data_src.val = get_data_src(event, pebs->dse);
1848 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1849 }
1850
1851 /*
1852 * We must however always use iregs for the unwinder to stay sane; the
1853 * record BP,SP,IP can point into thin air when the record is from a
1854 * previous PMI context or an (I)RET happened between the record and
1855 * PMI.
1856 */
1857 perf_sample_save_callchain(data, event, iregs);
1858
1859 /*
1860 * We use the interrupt regs as a base because the PEBS record does not
1861 * contain a full regs set, specifically it seems to lack segment
1862 * descriptors, which get used by things like user_mode().
1863 *
1864 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1865 */
1866 *regs = *iregs;
1867
1868 /*
1869 * Initialize regs_>flags from PEBS,
1870 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1871 * i.e., do not rely on it being zero:
1872 */
1873 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1874
1875 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1876 regs->ax = pebs->ax;
1877 regs->bx = pebs->bx;
1878 regs->cx = pebs->cx;
1879 regs->dx = pebs->dx;
1880 regs->si = pebs->si;
1881 regs->di = pebs->di;
1882
1883 regs->bp = pebs->bp;
1884 regs->sp = pebs->sp;
1885
1886 #ifndef CONFIG_X86_32
1887 regs->r8 = pebs->r8;
1888 regs->r9 = pebs->r9;
1889 regs->r10 = pebs->r10;
1890 regs->r11 = pebs->r11;
1891 regs->r12 = pebs->r12;
1892 regs->r13 = pebs->r13;
1893 regs->r14 = pebs->r14;
1894 regs->r15 = pebs->r15;
1895 #endif
1896 }
1897
1898 if (event->attr.precise_ip > 1) {
1899 /*
1900 * Haswell and later processors have an 'eventing IP'
1901 * (real IP) which fixes the off-by-1 skid in hardware.
1902 * Use it when precise_ip >= 2 :
1903 */
1904 if (x86_pmu.intel_cap.pebs_format >= 2) {
1905 set_linear_ip(regs, pebs->real_ip);
1906 regs->flags |= PERF_EFLAGS_EXACT;
1907 } else {
1908 /* Otherwise, use PEBS off-by-1 IP: */
1909 set_linear_ip(regs, pebs->ip);
1910
1911 /*
1912 * With precise_ip >= 2, try to fix up the off-by-1 IP
1913 * using the LBR. If successful, the fixup function
1914 * corrects regs->ip and calls set_linear_ip() on regs:
1915 */
1916 if (intel_pmu_pebs_fixup_ip(regs))
1917 regs->flags |= PERF_EFLAGS_EXACT;
1918 }
1919 } else {
1920 /*
1921 * When precise_ip == 1, return the PEBS off-by-1 IP,
1922 * no fixup attempted:
1923 */
1924 set_linear_ip(regs, pebs->ip);
1925 }
1926
1927
1928 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1929 x86_pmu.intel_cap.pebs_format >= 1) {
1930 data->addr = pebs->dla;
1931 data->sample_flags |= PERF_SAMPLE_ADDR;
1932 }
1933
1934 if (x86_pmu.intel_cap.pebs_format >= 2) {
1935 /* Only set the TSX weight when no memory weight. */
1936 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1937 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1938 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1939 }
1940 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1941 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1942 pebs->ax);
1943 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1944 }
1945 }
1946
1947 /*
1948 * v3 supplies an accurate time stamp, so we use that
1949 * for the time stamp.
1950 *
1951 * We can only do this for the default trace clock.
1952 */
1953 if (x86_pmu.intel_cap.pebs_format >= 3)
1954 setup_pebs_time(event, data, pebs->tsc);
1955
1956 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1957 }
1958
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1959 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1960 struct pebs_gprs *gprs)
1961 {
1962 regs->ax = gprs->ax;
1963 regs->bx = gprs->bx;
1964 regs->cx = gprs->cx;
1965 regs->dx = gprs->dx;
1966 regs->si = gprs->si;
1967 regs->di = gprs->di;
1968 regs->bp = gprs->bp;
1969 regs->sp = gprs->sp;
1970 #ifndef CONFIG_X86_32
1971 regs->r8 = gprs->r8;
1972 regs->r9 = gprs->r9;
1973 regs->r10 = gprs->r10;
1974 regs->r11 = gprs->r11;
1975 regs->r12 = gprs->r12;
1976 regs->r13 = gprs->r13;
1977 regs->r14 = gprs->r14;
1978 regs->r15 = gprs->r15;
1979 #endif
1980 }
1981
intel_perf_event_update_pmc(struct perf_event * event,u64 pmc)1982 static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc)
1983 {
1984 int shift = 64 - x86_pmu.cntval_bits;
1985 struct hw_perf_event *hwc;
1986 u64 delta, prev_pmc;
1987
1988 /*
1989 * A recorded counter may not have an assigned event in the
1990 * following cases. The value should be dropped.
1991 * - An event is deleted. There is still an active PEBS event.
1992 * The PEBS record doesn't shrink on pmu::del().
1993 * If the counter of the deleted event once occurred in a PEBS
1994 * record, PEBS still records the counter until the counter is
1995 * reassigned.
1996 * - An event is stopped for some reason, e.g., throttled.
1997 * During this period, another event is added and takes the
1998 * counter of the stopped event. The stopped event is assigned
1999 * to another new and uninitialized counter, since the
2000 * x86_pmu_start(RELOAD) is not invoked for a stopped event.
2001 * The PEBS__DATA_CFG is updated regardless of the event state.
2002 * The uninitialized counter can be recorded in a PEBS record.
2003 * But the cpuc->events[uninitialized_counter] is always NULL,
2004 * because the event is stopped. The uninitialized value is
2005 * safely dropped.
2006 */
2007 if (!event)
2008 return;
2009
2010 hwc = &event->hw;
2011 prev_pmc = local64_read(&hwc->prev_count);
2012
2013 /* Only update the count when the PMU is disabled */
2014 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2015 local64_set(&hwc->prev_count, pmc);
2016
2017 delta = (pmc << shift) - (prev_pmc << shift);
2018 delta >>= shift;
2019
2020 local64_add(delta, &event->count);
2021 local64_sub(delta, &hwc->period_left);
2022 }
2023
__setup_pebs_counter_group(struct cpu_hw_events * cpuc,struct perf_event * event,struct pebs_cntr_header * cntr,void * next_record)2024 static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc,
2025 struct perf_event *event,
2026 struct pebs_cntr_header *cntr,
2027 void *next_record)
2028 {
2029 int bit;
2030
2031 for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) {
2032 intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record);
2033 next_record += sizeof(u64);
2034 }
2035
2036 for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) {
2037 /* The slots event will be handled with perf_metric later */
2038 if ((cntr->metrics == INTEL_CNTR_METRICS) &&
2039 (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) {
2040 next_record += sizeof(u64);
2041 continue;
2042 }
2043 intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED],
2044 *(u64 *)next_record);
2045 next_record += sizeof(u64);
2046 }
2047
2048 /* HW will reload the value right after the overflow. */
2049 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2050 local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period);
2051
2052 if (cntr->metrics == INTEL_CNTR_METRICS) {
2053 static_call(intel_pmu_update_topdown_event)
2054 (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS],
2055 (u64 *)next_record);
2056 next_record += 2 * sizeof(u64);
2057 }
2058 }
2059
2060 #define PEBS_LATENCY_MASK 0xffff
2061
2062 /*
2063 * With adaptive PEBS the layout depends on what fields are configured.
2064 */
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)2065 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
2066 struct pt_regs *iregs, void *__pebs,
2067 struct perf_sample_data *data,
2068 struct pt_regs *regs)
2069 {
2070 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2071 struct pebs_basic *basic = __pebs;
2072 void *next_record = basic + 1;
2073 u64 sample_type, format_group;
2074 struct pebs_meminfo *meminfo = NULL;
2075 struct pebs_gprs *gprs = NULL;
2076 struct x86_perf_regs *perf_regs;
2077
2078 if (basic == NULL)
2079 return;
2080
2081 perf_regs = container_of(regs, struct x86_perf_regs, regs);
2082 perf_regs->xmm_regs = NULL;
2083
2084 sample_type = event->attr.sample_type;
2085 format_group = basic->format_group;
2086 perf_sample_data_init(data, 0, event->hw.last_period);
2087
2088 setup_pebs_time(event, data, basic->tsc);
2089
2090 /*
2091 * We must however always use iregs for the unwinder to stay sane; the
2092 * record BP,SP,IP can point into thin air when the record is from a
2093 * previous PMI context or an (I)RET happened between the record and
2094 * PMI.
2095 */
2096 perf_sample_save_callchain(data, event, iregs);
2097
2098 *regs = *iregs;
2099 /* The ip in basic is EventingIP */
2100 set_linear_ip(regs, basic->ip);
2101 regs->flags = PERF_EFLAGS_EXACT;
2102
2103 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
2104 if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
2105 data->weight.var3_w = basic->retire_latency;
2106 else
2107 data->weight.var3_w = 0;
2108 }
2109
2110 /*
2111 * The record for MEMINFO is in front of GP
2112 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
2113 * Save the pointer here but process later.
2114 */
2115 if (format_group & PEBS_DATACFG_MEMINFO) {
2116 meminfo = next_record;
2117 next_record = meminfo + 1;
2118 }
2119
2120 if (format_group & PEBS_DATACFG_GP) {
2121 gprs = next_record;
2122 next_record = gprs + 1;
2123
2124 if (event->attr.precise_ip < 2) {
2125 set_linear_ip(regs, gprs->ip);
2126 regs->flags &= ~PERF_EFLAGS_EXACT;
2127 }
2128
2129 if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
2130 adaptive_pebs_save_regs(regs, gprs);
2131 }
2132
2133 if (format_group & PEBS_DATACFG_MEMINFO) {
2134 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2135 u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ?
2136 meminfo->cache_latency : meminfo->mem_latency;
2137
2138 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY)
2139 data->weight.var2_w = meminfo->instr_latency;
2140
2141 /*
2142 * Although meminfo::latency is defined as a u64,
2143 * only the lower 32 bits include the valid data
2144 * in practice on Ice Lake and earlier platforms.
2145 */
2146 if (sample_type & PERF_SAMPLE_WEIGHT) {
2147 data->weight.full = latency ?:
2148 intel_get_tsx_weight(meminfo->tsx_tuning);
2149 } else {
2150 data->weight.var1_dw = (u32)latency ?:
2151 intel_get_tsx_weight(meminfo->tsx_tuning);
2152 }
2153
2154 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2155 }
2156
2157 if (sample_type & PERF_SAMPLE_DATA_SRC) {
2158 data->data_src.val = get_data_src(event, meminfo->aux);
2159 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2160 }
2161
2162 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2163 data->addr = meminfo->address;
2164 data->sample_flags |= PERF_SAMPLE_ADDR;
2165 }
2166
2167 if (sample_type & PERF_SAMPLE_TRANSACTION) {
2168 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2169 gprs ? gprs->ax : 0);
2170 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2171 }
2172 }
2173
2174 if (format_group & PEBS_DATACFG_XMMS) {
2175 struct pebs_xmm *xmm = next_record;
2176
2177 next_record = xmm + 1;
2178 perf_regs->xmm_regs = xmm->xmm;
2179 }
2180
2181 if (format_group & PEBS_DATACFG_LBRS) {
2182 struct lbr_entry *lbr = next_record;
2183 int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT)
2184 & 0xff) + 1;
2185 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2186
2187 if (has_branch_stack(event)) {
2188 intel_pmu_store_pebs_lbrs(lbr);
2189 intel_pmu_lbr_save_brstack(data, cpuc, event);
2190 }
2191 }
2192
2193 if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) {
2194 struct pebs_cntr_header *cntr = next_record;
2195 unsigned int nr;
2196
2197 next_record += sizeof(struct pebs_cntr_header);
2198 /*
2199 * The PEBS_DATA_CFG is a global register, which is the
2200 * superset configuration for all PEBS events.
2201 * For the PEBS record of non-sample-read group, ignore
2202 * the counter snapshot fields.
2203 */
2204 if (is_pebs_counter_event_group(event)) {
2205 __setup_pebs_counter_group(cpuc, event, cntr, next_record);
2206 data->sample_flags |= PERF_SAMPLE_READ;
2207 }
2208
2209 nr = hweight32(cntr->cntr) + hweight32(cntr->fixed);
2210 if (cntr->metrics == INTEL_CNTR_METRICS)
2211 nr += 2;
2212 next_record += nr * sizeof(u64);
2213 }
2214
2215 WARN_ONCE(next_record != __pebs + basic->format_size,
2216 "PEBS record size %u, expected %llu, config %llx\n",
2217 basic->format_size,
2218 (u64)(next_record - __pebs),
2219 format_group);
2220 }
2221
2222 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2223 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2224 {
2225 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2226 void *at;
2227 u64 pebs_status;
2228
2229 /*
2230 * fmt0 does not have a status bitfield (does not use
2231 * perf_record_nhm format)
2232 */
2233 if (x86_pmu.intel_cap.pebs_format < 1)
2234 return base;
2235
2236 if (base == NULL)
2237 return NULL;
2238
2239 for (at = base; at < top; at += cpuc->pebs_record_size) {
2240 unsigned long status = get_pebs_status(at);
2241
2242 if (test_bit(bit, (unsigned long *)&status)) {
2243 /* PEBS v3 has accurate status bits */
2244 if (x86_pmu.intel_cap.pebs_format >= 3)
2245 return at;
2246
2247 if (status == (1 << bit))
2248 return at;
2249
2250 /* clear non-PEBS bit and re-check */
2251 pebs_status = status & cpuc->pebs_enabled;
2252 pebs_status &= PEBS_COUNTER_MASK;
2253 if (pebs_status == (1 << bit))
2254 return at;
2255 }
2256 }
2257 return NULL;
2258 }
2259
2260 /*
2261 * Special variant of intel_pmu_save_and_restart() for auto-reload.
2262 */
2263 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2264 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2265 {
2266 struct hw_perf_event *hwc = &event->hw;
2267 int shift = 64 - x86_pmu.cntval_bits;
2268 u64 period = hwc->sample_period;
2269 u64 prev_raw_count, new_raw_count;
2270 s64 new, old;
2271
2272 WARN_ON(!period);
2273
2274 /*
2275 * drain_pebs() only happens when the PMU is disabled.
2276 */
2277 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2278
2279 prev_raw_count = local64_read(&hwc->prev_count);
2280 new_raw_count = rdpmc(hwc->event_base_rdpmc);
2281 local64_set(&hwc->prev_count, new_raw_count);
2282
2283 /*
2284 * Since the counter increments a negative counter value and
2285 * overflows on the sign switch, giving the interval:
2286 *
2287 * [-period, 0]
2288 *
2289 * the difference between two consecutive reads is:
2290 *
2291 * A) value2 - value1;
2292 * when no overflows have happened in between,
2293 *
2294 * B) (0 - value1) + (value2 - (-period));
2295 * when one overflow happened in between,
2296 *
2297 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2298 * when @n overflows happened in between.
2299 *
2300 * Here A) is the obvious difference, B) is the extension to the
2301 * discrete interval, where the first term is to the top of the
2302 * interval and the second term is from the bottom of the next
2303 * interval and C) the extension to multiple intervals, where the
2304 * middle term is the whole intervals covered.
2305 *
2306 * An equivalent of C, by reduction, is:
2307 *
2308 * value2 - value1 + n * period
2309 */
2310 new = ((s64)(new_raw_count << shift) >> shift);
2311 old = ((s64)(prev_raw_count << shift) >> shift);
2312 local64_add(new - old + count * period, &event->count);
2313
2314 local64_set(&hwc->period_left, -new);
2315
2316 perf_event_update_userpage(event);
2317
2318 return 0;
2319 }
2320
2321 typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *,
2322 struct perf_sample_data *, struct pt_regs *);
2323
2324 static struct pt_regs dummy_iregs;
2325
2326 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,setup_fn setup_sample)2327 __intel_pmu_pebs_event(struct perf_event *event,
2328 struct pt_regs *iregs,
2329 struct pt_regs *regs,
2330 struct perf_sample_data *data,
2331 void *at,
2332 setup_fn setup_sample)
2333 {
2334 setup_sample(event, iregs, at, data, regs);
2335 perf_event_output(event, data, regs);
2336 }
2337
2338 static __always_inline void
__intel_pmu_pebs_last_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,int count,setup_fn setup_sample)2339 __intel_pmu_pebs_last_event(struct perf_event *event,
2340 struct pt_regs *iregs,
2341 struct pt_regs *regs,
2342 struct perf_sample_data *data,
2343 void *at,
2344 int count,
2345 setup_fn setup_sample)
2346 {
2347 struct hw_perf_event *hwc = &event->hw;
2348
2349 setup_sample(event, iregs, at, data, regs);
2350 if (iregs == &dummy_iregs) {
2351 /*
2352 * The PEBS records may be drained in the non-overflow context,
2353 * e.g., large PEBS + context switch. Perf should treat the
2354 * last record the same as other PEBS records, and doesn't
2355 * invoke the generic overflow handler.
2356 */
2357 perf_event_output(event, data, regs);
2358 } else {
2359 /*
2360 * All but the last records are processed.
2361 * The last one is left to be able to call the overflow handler.
2362 */
2363 perf_event_overflow(event, data, regs);
2364 }
2365
2366 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2367 if ((is_pebs_counter_event_group(event))) {
2368 /*
2369 * The value of each sample has been updated when setup
2370 * the corresponding sample data.
2371 */
2372 perf_event_update_userpage(event);
2373 } else {
2374 /*
2375 * Now, auto-reload is only enabled in fixed period mode.
2376 * The reload value is always hwc->sample_period.
2377 * May need to change it, if auto-reload is enabled in
2378 * freq mode later.
2379 */
2380 intel_pmu_save_and_restart_reload(event, count);
2381 }
2382 } else {
2383 /*
2384 * For a non-precise event, it's possible the
2385 * counters-snapshotting records a positive value for the
2386 * overflowed event. Then the HW auto-reload mechanism
2387 * reset the counter to 0 immediately, because the
2388 * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD
2389 * is not set. The counter backwards may be observed in a
2390 * PMI handler.
2391 *
2392 * Since the event value has been updated when processing the
2393 * counters-snapshotting record, only needs to set the new
2394 * period for the counter.
2395 */
2396 if (is_pebs_counter_event_group(event))
2397 static_call(x86_pmu_set_period)(event);
2398 else
2399 intel_pmu_save_and_restart(event);
2400 }
2401 }
2402
2403 static __always_inline void
__intel_pmu_pebs_events(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,setup_fn setup_sample)2404 __intel_pmu_pebs_events(struct perf_event *event,
2405 struct pt_regs *iregs,
2406 struct perf_sample_data *data,
2407 void *base, void *top,
2408 int bit, int count,
2409 setup_fn setup_sample)
2410 {
2411 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412 struct x86_perf_regs perf_regs;
2413 struct pt_regs *regs = &perf_regs.regs;
2414 void *at = get_next_pebs_record_by_bit(base, top, bit);
2415 int cnt = count;
2416
2417 if (!iregs)
2418 iregs = &dummy_iregs;
2419
2420 while (cnt > 1) {
2421 __intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample);
2422 at += cpuc->pebs_record_size;
2423 at = get_next_pebs_record_by_bit(at, top, bit);
2424 cnt--;
2425 }
2426
2427 __intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample);
2428 }
2429
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2430 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2431 {
2432 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2433 struct debug_store *ds = cpuc->ds;
2434 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2435 struct pebs_record_core *at, *top;
2436 int n;
2437
2438 if (!x86_pmu.pebs_active)
2439 return;
2440
2441 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2442 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2443
2444 /*
2445 * Whatever else happens, drain the thing
2446 */
2447 ds->pebs_index = ds->pebs_buffer_base;
2448
2449 if (!test_bit(0, cpuc->active_mask))
2450 return;
2451
2452 WARN_ON_ONCE(!event);
2453
2454 if (!event->attr.precise_ip)
2455 return;
2456
2457 n = top - at;
2458 if (n <= 0) {
2459 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2460 intel_pmu_save_and_restart_reload(event, 0);
2461 return;
2462 }
2463
2464 __intel_pmu_pebs_events(event, iregs, data, at, top, 0, n,
2465 setup_pebs_fixed_sample_data);
2466 }
2467
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,u64 mask)2468 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2469 {
2470 u64 pebs_enabled = cpuc->pebs_enabled & mask;
2471 struct perf_event *event;
2472 int bit;
2473
2474 /*
2475 * The drain_pebs() could be called twice in a short period
2476 * for auto-reload event in pmu::read(). There are no
2477 * overflows have happened in between.
2478 * It needs to call intel_pmu_save_and_restart_reload() to
2479 * update the event->count for this case.
2480 */
2481 for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2482 event = cpuc->events[bit];
2483 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2484 intel_pmu_save_and_restart_reload(event, 0);
2485 }
2486 }
2487
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2488 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2489 {
2490 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2491 struct debug_store *ds = cpuc->ds;
2492 struct perf_event *event;
2493 void *base, *at, *top;
2494 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2495 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2496 int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2497 int bit, i, size;
2498 u64 mask;
2499
2500 if (!x86_pmu.pebs_active)
2501 return;
2502
2503 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2504 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2505
2506 ds->pebs_index = ds->pebs_buffer_base;
2507
2508 mask = x86_pmu.pebs_events_mask;
2509 size = max_pebs_events;
2510 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2511 mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2512 size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2513 }
2514
2515 if (unlikely(base >= top)) {
2516 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2517 return;
2518 }
2519
2520 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2521 struct pebs_record_nhm *p = at;
2522 u64 pebs_status;
2523
2524 pebs_status = p->status & cpuc->pebs_enabled;
2525 pebs_status &= mask;
2526
2527 /* PEBS v3 has more accurate status bits */
2528 if (x86_pmu.intel_cap.pebs_format >= 3) {
2529 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2530 counts[bit]++;
2531
2532 continue;
2533 }
2534
2535 /*
2536 * On some CPUs the PEBS status can be zero when PEBS is
2537 * racing with clearing of GLOBAL_STATUS.
2538 *
2539 * Normally we would drop that record, but in the
2540 * case when there is only a single active PEBS event
2541 * we can assume it's for that event.
2542 */
2543 if (!pebs_status && cpuc->pebs_enabled &&
2544 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2545 pebs_status = p->status = cpuc->pebs_enabled;
2546
2547 bit = find_first_bit((unsigned long *)&pebs_status,
2548 max_pebs_events);
2549
2550 if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2551 continue;
2552
2553 /*
2554 * The PEBS hardware does not deal well with the situation
2555 * when events happen near to each other and multiple bits
2556 * are set. But it should happen rarely.
2557 *
2558 * If these events include one PEBS and multiple non-PEBS
2559 * events, it doesn't impact PEBS record. The record will
2560 * be handled normally. (slow path)
2561 *
2562 * If these events include two or more PEBS events, the
2563 * records for the events can be collapsed into a single
2564 * one, and it's not possible to reconstruct all events
2565 * that caused the PEBS record. It's called collision.
2566 * If collision happened, the record will be dropped.
2567 */
2568 if (pebs_status != (1ULL << bit)) {
2569 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2570 error[i]++;
2571 continue;
2572 }
2573
2574 counts[bit]++;
2575 }
2576
2577 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2578 if ((counts[bit] == 0) && (error[bit] == 0))
2579 continue;
2580
2581 event = cpuc->events[bit];
2582 if (WARN_ON_ONCE(!event))
2583 continue;
2584
2585 if (WARN_ON_ONCE(!event->attr.precise_ip))
2586 continue;
2587
2588 /* log dropped samples number */
2589 if (error[bit]) {
2590 perf_log_lost_samples(event, error[bit]);
2591
2592 if (iregs)
2593 perf_event_account_interrupt(event);
2594 }
2595
2596 if (counts[bit]) {
2597 __intel_pmu_pebs_events(event, iregs, data, base,
2598 top, bit, counts[bit],
2599 setup_pebs_fixed_sample_data);
2600 }
2601 }
2602 }
2603
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2604 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2605 {
2606 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2607 void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS];
2608 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2609 struct debug_store *ds = cpuc->ds;
2610 struct x86_perf_regs perf_regs;
2611 struct pt_regs *regs = &perf_regs.regs;
2612 struct pebs_basic *basic;
2613 struct perf_event *event;
2614 void *base, *at, *top;
2615 int bit;
2616 u64 mask;
2617
2618 if (!x86_pmu.pebs_active)
2619 return;
2620
2621 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2622 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2623
2624 ds->pebs_index = ds->pebs_buffer_base;
2625
2626 mask = hybrid(cpuc->pmu, pebs_events_mask) |
2627 (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2628
2629 if (unlikely(base >= top)) {
2630 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2631 return;
2632 }
2633
2634 if (!iregs)
2635 iregs = &dummy_iregs;
2636
2637 /* Process all but the last event for each counter. */
2638 for (at = base; at < top; at += basic->format_size) {
2639 u64 pebs_status;
2640
2641 basic = at;
2642 if (basic->format_size != cpuc->pebs_record_size)
2643 continue;
2644
2645 pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask;
2646 for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) {
2647 event = cpuc->events[bit];
2648
2649 if (WARN_ON_ONCE(!event) ||
2650 WARN_ON_ONCE(!event->attr.precise_ip))
2651 continue;
2652
2653 if (counts[bit]++) {
2654 __intel_pmu_pebs_event(event, iregs, regs, data, last[bit],
2655 setup_pebs_adaptive_sample_data);
2656 }
2657 last[bit] = at;
2658 }
2659 }
2660
2661 for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2662 if (!counts[bit])
2663 continue;
2664
2665 event = cpuc->events[bit];
2666
2667 __intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit],
2668 counts[bit], setup_pebs_adaptive_sample_data);
2669 }
2670 }
2671
2672 /*
2673 * PEBS probe and setup
2674 */
2675
intel_pebs_init(void)2676 void __init intel_pebs_init(void)
2677 {
2678 /*
2679 * No support for 32bit formats
2680 */
2681 if (!boot_cpu_has(X86_FEATURE_DTES64))
2682 return;
2683
2684 x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS);
2685 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2686 if (x86_pmu.version <= 4)
2687 x86_pmu.pebs_no_isolation = 1;
2688
2689 if (x86_pmu.ds_pebs) {
2690 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2691 char *pebs_qual = "";
2692 int format = x86_pmu.intel_cap.pebs_format;
2693
2694 if (format < 4)
2695 x86_pmu.intel_cap.pebs_baseline = 0;
2696
2697 x86_pmu.pebs_enable = intel_pmu_pebs_enable;
2698 x86_pmu.pebs_disable = intel_pmu_pebs_disable;
2699 x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all;
2700 x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all;
2701
2702 switch (format) {
2703 case 0:
2704 pr_cont("PEBS fmt0%c, ", pebs_type);
2705 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2706 /*
2707 * Using >PAGE_SIZE buffers makes the WRMSR to
2708 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2709 * mysteriously hang on Core2.
2710 *
2711 * As a workaround, we don't do this.
2712 */
2713 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2714 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2715 break;
2716
2717 case 1:
2718 pr_cont("PEBS fmt1%c, ", pebs_type);
2719 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2720 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2721 break;
2722
2723 case 2:
2724 pr_cont("PEBS fmt2%c, ", pebs_type);
2725 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2726 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2727 break;
2728
2729 case 3:
2730 pr_cont("PEBS fmt3%c, ", pebs_type);
2731 x86_pmu.pebs_record_size =
2732 sizeof(struct pebs_record_skl);
2733 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2734 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2735 break;
2736
2737 case 6:
2738 if (x86_pmu.intel_cap.pebs_baseline) {
2739 x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
2740 x86_pmu.late_setup = intel_pmu_late_setup;
2741 }
2742 fallthrough;
2743 case 5:
2744 x86_pmu.pebs_ept = 1;
2745 fallthrough;
2746 case 4:
2747 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2748 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2749 if (x86_pmu.intel_cap.pebs_baseline) {
2750 x86_pmu.large_pebs_flags |=
2751 PERF_SAMPLE_BRANCH_STACK |
2752 PERF_SAMPLE_TIME;
2753 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2754 x86_pmu.pebs_capable = ~0ULL;
2755 pebs_qual = "-baseline";
2756 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2757 } else {
2758 /* Only basic record supported */
2759 x86_pmu.large_pebs_flags &=
2760 ~(PERF_SAMPLE_ADDR |
2761 PERF_SAMPLE_TIME |
2762 PERF_SAMPLE_DATA_SRC |
2763 PERF_SAMPLE_TRANSACTION |
2764 PERF_SAMPLE_REGS_USER |
2765 PERF_SAMPLE_REGS_INTR);
2766 }
2767 pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual);
2768
2769 /*
2770 * The PEBS-via-PT is not supported on hybrid platforms,
2771 * because not all CPUs of a hybrid machine support it.
2772 * The global x86_pmu.intel_cap, which only contains the
2773 * common capabilities, is used to check the availability
2774 * of the feature. The per-PMU pebs_output_pt_available
2775 * in a hybrid machine should be ignored.
2776 */
2777 if (x86_pmu.intel_cap.pebs_output_pt_available) {
2778 pr_cont("PEBS-via-PT, ");
2779 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2780 }
2781
2782 break;
2783
2784 default:
2785 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2786 x86_pmu.ds_pebs = 0;
2787 }
2788 }
2789 }
2790
perf_restore_debug_store(void)2791 void perf_restore_debug_store(void)
2792 {
2793 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2794
2795 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
2796 return;
2797
2798 wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds);
2799 }
2800