xref: /linux/arch/x86/events/intel/ds.c (revision 547c5775a742d9c83891b629b75d1d4c8e88d8c0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6 
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/msr.h>
14 #include <asm/timer.h>
15 
16 #include "../perf_event.h"
17 
18 /* Waste a full page so it can be mapped into the cpu_entry_area */
19 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
20 
21 /* The size of a BTS record in bytes: */
22 #define BTS_RECORD_SIZE		24
23 
24 #define PEBS_FIXUP_SIZE		PAGE_SIZE
25 
26 /*
27  * pebs_record_32 for p4 and core not supported
28 
29 struct pebs_record_32 {
30 	u32 flags, ip;
31 	u32 ax, bc, cx, dx;
32 	u32 si, di, bp, sp;
33 };
34 
35  */
36 
37 union intel_x86_pebs_dse {
38 	u64 val;
39 	struct {
40 		unsigned int ld_dse:4;
41 		unsigned int ld_stlb_miss:1;
42 		unsigned int ld_locked:1;
43 		unsigned int ld_data_blk:1;
44 		unsigned int ld_addr_blk:1;
45 		unsigned int ld_reserved:24;
46 	};
47 	struct {
48 		unsigned int st_l1d_hit:1;
49 		unsigned int st_reserved1:3;
50 		unsigned int st_stlb_miss:1;
51 		unsigned int st_locked:1;
52 		unsigned int st_reserved2:26;
53 	};
54 	struct {
55 		unsigned int st_lat_dse:4;
56 		unsigned int st_lat_stlb_miss:1;
57 		unsigned int st_lat_locked:1;
58 		unsigned int ld_reserved3:26;
59 	};
60 	struct {
61 		unsigned int mtl_dse:5;
62 		unsigned int mtl_locked:1;
63 		unsigned int mtl_stlb_miss:1;
64 		unsigned int mtl_fwd_blk:1;
65 		unsigned int ld_reserved4:24;
66 	};
67 	struct {
68 		unsigned int lnc_dse:8;
69 		unsigned int ld_reserved5:2;
70 		unsigned int lnc_stlb_miss:1;
71 		unsigned int lnc_locked:1;
72 		unsigned int lnc_data_blk:1;
73 		unsigned int lnc_addr_blk:1;
74 		unsigned int ld_reserved6:18;
75 	};
76 };
77 
78 
79 /*
80  * Map PEBS Load Latency Data Source encodings to generic
81  * memory data source information
82  */
83 #define P(a, b) PERF_MEM_S(a, b)
84 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
85 #define LEVEL(x) P(LVLNUM, x)
86 #define REM P(REMOTE, REMOTE)
87 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
88 
89 /* Version for Sandy Bridge and later */
90 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
91 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
92 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
93 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
94 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
95 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
96 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
97 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
98 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
99 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
100 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
101 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
102 	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
103 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
104 	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
105 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
106 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
107 };
108 
109 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)110 void __init intel_pmu_pebs_data_source_nhm(void)
111 {
112 	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
113 	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
115 }
116 
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)117 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
118 {
119 	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
120 
121 	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
122 	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
123 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
124 	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
125 	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
126 }
127 
intel_pmu_pebs_data_source_skl(bool pmem)128 void __init intel_pmu_pebs_data_source_skl(bool pmem)
129 {
130 	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
131 }
132 
__intel_pmu_pebs_data_source_grt(u64 * data_source)133 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
134 {
135 	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
136 	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
137 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
138 }
139 
intel_pmu_pebs_data_source_grt(void)140 void __init intel_pmu_pebs_data_source_grt(void)
141 {
142 	__intel_pmu_pebs_data_source_grt(pebs_data_source);
143 }
144 
intel_pmu_pebs_data_source_adl(void)145 void __init intel_pmu_pebs_data_source_adl(void)
146 {
147 	u64 *data_source;
148 
149 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
150 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
151 	__intel_pmu_pebs_data_source_skl(false, data_source);
152 
153 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
154 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
155 	__intel_pmu_pebs_data_source_grt(data_source);
156 }
157 
__intel_pmu_pebs_data_source_cmt(u64 * data_source)158 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
159 {
160 	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
161 	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
162 	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
163 	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
164 	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
165 	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
166 }
167 
intel_pmu_pebs_data_source_mtl(void)168 void __init intel_pmu_pebs_data_source_mtl(void)
169 {
170 	u64 *data_source;
171 
172 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
173 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
174 	__intel_pmu_pebs_data_source_skl(false, data_source);
175 
176 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
177 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
178 	__intel_pmu_pebs_data_source_cmt(data_source);
179 }
180 
intel_pmu_pebs_data_source_arl_h(void)181 void __init intel_pmu_pebs_data_source_arl_h(void)
182 {
183 	u64 *data_source;
184 
185 	intel_pmu_pebs_data_source_lnl();
186 
187 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
188 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
189 	__intel_pmu_pebs_data_source_cmt(data_source);
190 }
191 
intel_pmu_pebs_data_source_cmt(void)192 void __init intel_pmu_pebs_data_source_cmt(void)
193 {
194 	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
195 }
196 
197 /* Version for Lion Cove and later */
198 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
199 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),	/* 0x00: ukn L3 */
200 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x01: L1 hit */
201 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x02: L1 hit */
202 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),	/* 0x03: LFB/L1 Miss Handling Buffer hit */
203 	0,							/* 0x04: Reserved */
204 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),	/* 0x05: L2 Hit */
205 	OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE),			/* 0x06: L2 Miss Handling Buffer Hit */
206 	0,							/* 0x07: Reserved */
207 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),	/* 0x08: L3 Hit */
208 	0,							/* 0x09: Reserved */
209 	0,							/* 0x0a: Reserved */
210 	0,							/* 0x0b: Reserved */
211 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOPX, FWD),	/* 0x0c: L3 Hit Snoop Fwd */
212 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0d: L3 Hit Snoop HitM */
213 	0,							/* 0x0e: Reserved */
214 	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0f: L3 Miss Snoop HitM */
215 	OP_LH | LEVEL(MSC) | P(SNOOP, NONE),			/* 0x10: Memory-side Cache Hit */
216 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
217 };
218 
intel_pmu_pebs_data_source_lnl(void)219 void __init intel_pmu_pebs_data_source_lnl(void)
220 {
221 	u64 *data_source;
222 
223 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
224 	memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
225 
226 	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
227 	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
228 	__intel_pmu_pebs_data_source_cmt(data_source);
229 }
230 
precise_store_data(u64 status)231 static u64 precise_store_data(u64 status)
232 {
233 	union intel_x86_pebs_dse dse;
234 	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
235 
236 	dse.val = status;
237 
238 	/*
239 	 * bit 4: TLB access
240 	 * 1 = stored missed 2nd level TLB
241 	 *
242 	 * so it either hit the walker or the OS
243 	 * otherwise hit 2nd level TLB
244 	 */
245 	if (dse.st_stlb_miss)
246 		val |= P(TLB, MISS);
247 	else
248 		val |= P(TLB, HIT);
249 
250 	/*
251 	 * bit 0: hit L1 data cache
252 	 * if not set, then all we know is that
253 	 * it missed L1D
254 	 */
255 	if (dse.st_l1d_hit)
256 		val |= P(LVL, HIT);
257 	else
258 		val |= P(LVL, MISS);
259 
260 	/*
261 	 * bit 5: Locked prefix
262 	 */
263 	if (dse.st_locked)
264 		val |= P(LOCK, LOCKED);
265 
266 	return val;
267 }
268 
precise_datala_hsw(struct perf_event * event,u64 status)269 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
270 {
271 	union perf_mem_data_src dse;
272 
273 	dse.val = PERF_MEM_NA;
274 
275 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
276 		dse.mem_op = PERF_MEM_OP_STORE;
277 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
278 		dse.mem_op = PERF_MEM_OP_LOAD;
279 
280 	/*
281 	 * L1 info only valid for following events:
282 	 *
283 	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
284 	 * MEM_UOPS_RETIRED.LOCK_STORES
285 	 * MEM_UOPS_RETIRED.SPLIT_STORES
286 	 * MEM_UOPS_RETIRED.ALL_STORES
287 	 */
288 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
289 		if (status & 1)
290 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
291 		else
292 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
293 	}
294 	return dse.val;
295 }
296 
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)297 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
298 {
299 	/*
300 	 * TLB access
301 	 * 0 = did not miss 2nd level TLB
302 	 * 1 = missed 2nd level TLB
303 	 */
304 	if (tlb)
305 		*val |= P(TLB, MISS) | P(TLB, L2);
306 	else
307 		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
308 
309 	/* locked prefix */
310 	if (lock)
311 		*val |= P(LOCK, LOCKED);
312 }
313 
314 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)315 static u64 __grt_latency_data(struct perf_event *event, u64 status,
316 			       u8 dse, bool tlb, bool lock, bool blk)
317 {
318 	u64 val;
319 
320 	WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
321 
322 	dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
323 	val = hybrid_var(event->pmu, pebs_data_source)[dse];
324 
325 	pebs_set_tlb_lock(&val, tlb, lock);
326 
327 	if (blk)
328 		val |= P(BLK, DATA);
329 	else
330 		val |= P(BLK, NA);
331 
332 	return val;
333 }
334 
grt_latency_data(struct perf_event * event,u64 status)335 u64 grt_latency_data(struct perf_event *event, u64 status)
336 {
337 	union intel_x86_pebs_dse dse;
338 
339 	dse.val = status;
340 
341 	return __grt_latency_data(event, status, dse.ld_dse,
342 				  dse.ld_locked, dse.ld_stlb_miss,
343 				  dse.ld_data_blk);
344 }
345 
346 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)347 u64 cmt_latency_data(struct perf_event *event, u64 status)
348 {
349 	union intel_x86_pebs_dse dse;
350 
351 	dse.val = status;
352 
353 	return __grt_latency_data(event, status, dse.mtl_dse,
354 				  dse.mtl_stlb_miss, dse.mtl_locked,
355 				  dse.mtl_fwd_blk);
356 }
357 
lnc_latency_data(struct perf_event * event,u64 status)358 static u64 lnc_latency_data(struct perf_event *event, u64 status)
359 {
360 	union intel_x86_pebs_dse dse;
361 	union perf_mem_data_src src;
362 	u64 val;
363 
364 	dse.val = status;
365 
366 	/* LNC core latency data */
367 	val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
368 	if (!val)
369 		val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
370 
371 	if (dse.lnc_stlb_miss)
372 		val |= P(TLB, MISS) | P(TLB, L2);
373 	else
374 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
375 
376 	if (dse.lnc_locked)
377 		val |= P(LOCK, LOCKED);
378 
379 	if (dse.lnc_data_blk)
380 		val |= P(BLK, DATA);
381 	if (dse.lnc_addr_blk)
382 		val |= P(BLK, ADDR);
383 	if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
384 		val |= P(BLK, NA);
385 
386 	src.val = val;
387 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
388 		src.mem_op = P(OP, STORE);
389 
390 	return src.val;
391 }
392 
lnl_latency_data(struct perf_event * event,u64 status)393 u64 lnl_latency_data(struct perf_event *event, u64 status)
394 {
395 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
396 
397 	if (pmu->pmu_type == hybrid_small)
398 		return cmt_latency_data(event, status);
399 
400 	return lnc_latency_data(event, status);
401 }
402 
arl_h_latency_data(struct perf_event * event,u64 status)403 u64 arl_h_latency_data(struct perf_event *event, u64 status)
404 {
405 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
406 
407 	if (pmu->pmu_type == hybrid_tiny)
408 		return cmt_latency_data(event, status);
409 
410 	return lnl_latency_data(event, status);
411 }
412 
load_latency_data(struct perf_event * event,u64 status)413 static u64 load_latency_data(struct perf_event *event, u64 status)
414 {
415 	union intel_x86_pebs_dse dse;
416 	u64 val;
417 
418 	dse.val = status;
419 
420 	/*
421 	 * use the mapping table for bit 0-3
422 	 */
423 	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
424 
425 	/*
426 	 * Nehalem models do not support TLB, Lock infos
427 	 */
428 	if (x86_pmu.pebs_no_tlb) {
429 		val |= P(TLB, NA) | P(LOCK, NA);
430 		return val;
431 	}
432 
433 	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
434 
435 	/*
436 	 * Ice Lake and earlier models do not support block infos.
437 	 */
438 	if (!x86_pmu.pebs_block) {
439 		val |= P(BLK, NA);
440 		return val;
441 	}
442 	/*
443 	 * bit 6: load was blocked since its data could not be forwarded
444 	 *        from a preceding store
445 	 */
446 	if (dse.ld_data_blk)
447 		val |= P(BLK, DATA);
448 
449 	/*
450 	 * bit 7: load was blocked due to potential address conflict with
451 	 *        a preceding store
452 	 */
453 	if (dse.ld_addr_blk)
454 		val |= P(BLK, ADDR);
455 
456 	if (!dse.ld_data_blk && !dse.ld_addr_blk)
457 		val |= P(BLK, NA);
458 
459 	return val;
460 }
461 
store_latency_data(struct perf_event * event,u64 status)462 static u64 store_latency_data(struct perf_event *event, u64 status)
463 {
464 	union intel_x86_pebs_dse dse;
465 	union perf_mem_data_src src;
466 	u64 val;
467 
468 	dse.val = status;
469 
470 	/*
471 	 * use the mapping table for bit 0-3
472 	 */
473 	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
474 
475 	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
476 
477 	val |= P(BLK, NA);
478 
479 	/*
480 	 * the pebs_data_source table is only for loads
481 	 * so override the mem_op to say STORE instead
482 	 */
483 	src.val = val;
484 	src.mem_op = P(OP,STORE);
485 
486 	return src.val;
487 }
488 
489 struct pebs_record_core {
490 	u64 flags, ip;
491 	u64 ax, bx, cx, dx;
492 	u64 si, di, bp, sp;
493 	u64 r8,  r9,  r10, r11;
494 	u64 r12, r13, r14, r15;
495 };
496 
497 struct pebs_record_nhm {
498 	u64 flags, ip;
499 	u64 ax, bx, cx, dx;
500 	u64 si, di, bp, sp;
501 	u64 r8,  r9,  r10, r11;
502 	u64 r12, r13, r14, r15;
503 	u64 status, dla, dse, lat;
504 };
505 
506 /*
507  * Same as pebs_record_nhm, with two additional fields.
508  */
509 struct pebs_record_hsw {
510 	u64 flags, ip;
511 	u64 ax, bx, cx, dx;
512 	u64 si, di, bp, sp;
513 	u64 r8,  r9,  r10, r11;
514 	u64 r12, r13, r14, r15;
515 	u64 status, dla, dse, lat;
516 	u64 real_ip, tsx_tuning;
517 };
518 
519 union hsw_tsx_tuning {
520 	struct {
521 		u32 cycles_last_block     : 32,
522 		    hle_abort		  : 1,
523 		    rtm_abort		  : 1,
524 		    instruction_abort     : 1,
525 		    non_instruction_abort : 1,
526 		    retry		  : 1,
527 		    data_conflict	  : 1,
528 		    capacity_writes	  : 1,
529 		    capacity_reads	  : 1;
530 	};
531 	u64	    value;
532 };
533 
534 #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
535 
536 /* Same as HSW, plus TSC */
537 
538 struct pebs_record_skl {
539 	u64 flags, ip;
540 	u64 ax, bx, cx, dx;
541 	u64 si, di, bp, sp;
542 	u64 r8,  r9,  r10, r11;
543 	u64 r12, r13, r14, r15;
544 	u64 status, dla, dse, lat;
545 	u64 real_ip, tsx_tuning;
546 	u64 tsc;
547 };
548 
init_debug_store_on_cpu(int cpu)549 void init_debug_store_on_cpu(int cpu)
550 {
551 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
552 
553 	if (!ds)
554 		return;
555 
556 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
557 		     (u32)((u64)(unsigned long)ds),
558 		     (u32)((u64)(unsigned long)ds >> 32));
559 }
560 
fini_debug_store_on_cpu(int cpu)561 void fini_debug_store_on_cpu(int cpu)
562 {
563 	if (!per_cpu(cpu_hw_events, cpu).ds)
564 		return;
565 
566 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
567 }
568 
569 static DEFINE_PER_CPU(void *, insn_buffer);
570 
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)571 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
572 {
573 	unsigned long start = (unsigned long)cea;
574 	phys_addr_t pa;
575 	size_t msz = 0;
576 
577 	pa = virt_to_phys(addr);
578 
579 	preempt_disable();
580 	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
581 		cea_set_pte(cea, pa, prot);
582 
583 	/*
584 	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
585 	 * all TLB entries for it.
586 	 */
587 	flush_tlb_kernel_range(start, start + size);
588 	preempt_enable();
589 }
590 
ds_clear_cea(void * cea,size_t size)591 static void ds_clear_cea(void *cea, size_t size)
592 {
593 	unsigned long start = (unsigned long)cea;
594 	size_t msz = 0;
595 
596 	preempt_disable();
597 	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
598 		cea_set_pte(cea, 0, PAGE_NONE);
599 
600 	flush_tlb_kernel_range(start, start + size);
601 	preempt_enable();
602 }
603 
dsalloc_pages(size_t size,gfp_t flags,int cpu)604 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
605 {
606 	unsigned int order = get_order(size);
607 	int node = cpu_to_node(cpu);
608 	struct page *page;
609 
610 	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
611 	return page ? page_address(page) : NULL;
612 }
613 
dsfree_pages(const void * buffer,size_t size)614 static void dsfree_pages(const void *buffer, size_t size)
615 {
616 	if (buffer)
617 		free_pages((unsigned long)buffer, get_order(size));
618 }
619 
alloc_pebs_buffer(int cpu)620 static int alloc_pebs_buffer(int cpu)
621 {
622 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
623 	struct debug_store *ds = hwev->ds;
624 	size_t bsiz = x86_pmu.pebs_buffer_size;
625 	int max, node = cpu_to_node(cpu);
626 	void *buffer, *insn_buff, *cea;
627 
628 	if (!x86_pmu.ds_pebs)
629 		return 0;
630 
631 	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
632 	if (unlikely(!buffer))
633 		return -ENOMEM;
634 
635 	/*
636 	 * HSW+ already provides us the eventing ip; no need to allocate this
637 	 * buffer then.
638 	 */
639 	if (x86_pmu.intel_cap.pebs_format < 2) {
640 		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
641 		if (!insn_buff) {
642 			dsfree_pages(buffer, bsiz);
643 			return -ENOMEM;
644 		}
645 		per_cpu(insn_buffer, cpu) = insn_buff;
646 	}
647 	hwev->ds_pebs_vaddr = buffer;
648 	/* Update the cpu entry area mapping */
649 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
650 	ds->pebs_buffer_base = (unsigned long) cea;
651 	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
652 	ds->pebs_index = ds->pebs_buffer_base;
653 	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
654 	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
655 	return 0;
656 }
657 
release_pebs_buffer(int cpu)658 static void release_pebs_buffer(int cpu)
659 {
660 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
661 	void *cea;
662 
663 	if (!x86_pmu.ds_pebs)
664 		return;
665 
666 	kfree(per_cpu(insn_buffer, cpu));
667 	per_cpu(insn_buffer, cpu) = NULL;
668 
669 	/* Clear the fixmap */
670 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
671 	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
672 	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
673 	hwev->ds_pebs_vaddr = NULL;
674 }
675 
alloc_bts_buffer(int cpu)676 static int alloc_bts_buffer(int cpu)
677 {
678 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
679 	struct debug_store *ds = hwev->ds;
680 	void *buffer, *cea;
681 	int max;
682 
683 	if (!x86_pmu.bts)
684 		return 0;
685 
686 	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
687 	if (unlikely(!buffer)) {
688 		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
689 		return -ENOMEM;
690 	}
691 	hwev->ds_bts_vaddr = buffer;
692 	/* Update the fixmap */
693 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
694 	ds->bts_buffer_base = (unsigned long) cea;
695 	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
696 	ds->bts_index = ds->bts_buffer_base;
697 	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
698 	ds->bts_absolute_maximum = ds->bts_buffer_base +
699 					max * BTS_RECORD_SIZE;
700 	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
701 					(max / 16) * BTS_RECORD_SIZE;
702 	return 0;
703 }
704 
release_bts_buffer(int cpu)705 static void release_bts_buffer(int cpu)
706 {
707 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
708 	void *cea;
709 
710 	if (!x86_pmu.bts)
711 		return;
712 
713 	/* Clear the fixmap */
714 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
715 	ds_clear_cea(cea, BTS_BUFFER_SIZE);
716 	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
717 	hwev->ds_bts_vaddr = NULL;
718 }
719 
alloc_ds_buffer(int cpu)720 static int alloc_ds_buffer(int cpu)
721 {
722 	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
723 
724 	memset(ds, 0, sizeof(*ds));
725 	per_cpu(cpu_hw_events, cpu).ds = ds;
726 	return 0;
727 }
728 
release_ds_buffer(int cpu)729 static void release_ds_buffer(int cpu)
730 {
731 	per_cpu(cpu_hw_events, cpu).ds = NULL;
732 }
733 
release_ds_buffers(void)734 void release_ds_buffers(void)
735 {
736 	int cpu;
737 
738 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
739 		return;
740 
741 	for_each_possible_cpu(cpu)
742 		release_ds_buffer(cpu);
743 
744 	for_each_possible_cpu(cpu) {
745 		/*
746 		 * Again, ignore errors from offline CPUs, they will no longer
747 		 * observe cpu_hw_events.ds and not program the DS_AREA when
748 		 * they come up.
749 		 */
750 		fini_debug_store_on_cpu(cpu);
751 	}
752 
753 	for_each_possible_cpu(cpu) {
754 		if (x86_pmu.ds_pebs)
755 			release_pebs_buffer(cpu);
756 		release_bts_buffer(cpu);
757 	}
758 }
759 
reserve_ds_buffers(void)760 void reserve_ds_buffers(void)
761 {
762 	int bts_err = 0, pebs_err = 0;
763 	int cpu;
764 
765 	x86_pmu.bts_active = 0;
766 
767 	if (x86_pmu.ds_pebs)
768 		x86_pmu.pebs_active = 0;
769 
770 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
771 		return;
772 
773 	if (!x86_pmu.bts)
774 		bts_err = 1;
775 
776 	if (!x86_pmu.ds_pebs)
777 		pebs_err = 1;
778 
779 	for_each_possible_cpu(cpu) {
780 		if (alloc_ds_buffer(cpu)) {
781 			bts_err = 1;
782 			pebs_err = 1;
783 		}
784 
785 		if (!bts_err && alloc_bts_buffer(cpu))
786 			bts_err = 1;
787 
788 		if (x86_pmu.ds_pebs && !pebs_err &&
789 		    alloc_pebs_buffer(cpu))
790 			pebs_err = 1;
791 
792 		if (bts_err && pebs_err)
793 			break;
794 	}
795 
796 	if (bts_err) {
797 		for_each_possible_cpu(cpu)
798 			release_bts_buffer(cpu);
799 	}
800 
801 	if (x86_pmu.ds_pebs && pebs_err) {
802 		for_each_possible_cpu(cpu)
803 			release_pebs_buffer(cpu);
804 	}
805 
806 	if (bts_err && pebs_err) {
807 		for_each_possible_cpu(cpu)
808 			release_ds_buffer(cpu);
809 	} else {
810 		if (x86_pmu.bts && !bts_err)
811 			x86_pmu.bts_active = 1;
812 
813 		if (x86_pmu.ds_pebs && !pebs_err)
814 			x86_pmu.pebs_active = 1;
815 
816 		for_each_possible_cpu(cpu) {
817 			/*
818 			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
819 			 * will get this call through intel_pmu_cpu_starting().
820 			 */
821 			init_debug_store_on_cpu(cpu);
822 		}
823 	}
824 }
825 
826 /*
827  * BTS
828  */
829 
830 struct event_constraint bts_constraint =
831 	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
832 
intel_pmu_enable_bts(u64 config)833 void intel_pmu_enable_bts(u64 config)
834 {
835 	unsigned long debugctlmsr;
836 
837 	debugctlmsr = get_debugctlmsr();
838 
839 	debugctlmsr |= DEBUGCTLMSR_TR;
840 	debugctlmsr |= DEBUGCTLMSR_BTS;
841 	if (config & ARCH_PERFMON_EVENTSEL_INT)
842 		debugctlmsr |= DEBUGCTLMSR_BTINT;
843 
844 	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
845 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
846 
847 	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
848 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
849 
850 	update_debugctlmsr(debugctlmsr);
851 }
852 
intel_pmu_disable_bts(void)853 void intel_pmu_disable_bts(void)
854 {
855 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
856 	unsigned long debugctlmsr;
857 
858 	if (!cpuc->ds)
859 		return;
860 
861 	debugctlmsr = get_debugctlmsr();
862 
863 	debugctlmsr &=
864 		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
865 		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
866 
867 	update_debugctlmsr(debugctlmsr);
868 }
869 
intel_pmu_drain_bts_buffer(void)870 int intel_pmu_drain_bts_buffer(void)
871 {
872 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
873 	struct debug_store *ds = cpuc->ds;
874 	struct bts_record {
875 		u64	from;
876 		u64	to;
877 		u64	flags;
878 	};
879 	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
880 	struct bts_record *at, *base, *top;
881 	struct perf_output_handle handle;
882 	struct perf_event_header header;
883 	struct perf_sample_data data;
884 	unsigned long skip = 0;
885 	struct pt_regs regs;
886 
887 	if (!event)
888 		return 0;
889 
890 	if (!x86_pmu.bts_active)
891 		return 0;
892 
893 	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
894 	top  = (struct bts_record *)(unsigned long)ds->bts_index;
895 
896 	if (top <= base)
897 		return 0;
898 
899 	memset(&regs, 0, sizeof(regs));
900 
901 	ds->bts_index = ds->bts_buffer_base;
902 
903 	perf_sample_data_init(&data, 0, event->hw.last_period);
904 
905 	/*
906 	 * BTS leaks kernel addresses in branches across the cpl boundary,
907 	 * such as traps or system calls, so unless the user is asking for
908 	 * kernel tracing (and right now it's not possible), we'd need to
909 	 * filter them out. But first we need to count how many of those we
910 	 * have in the current batch. This is an extra O(n) pass, however,
911 	 * it's much faster than the other one especially considering that
912 	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
913 	 * alloc_bts_buffer()).
914 	 */
915 	for (at = base; at < top; at++) {
916 		/*
917 		 * Note that right now *this* BTS code only works if
918 		 * attr::exclude_kernel is set, but let's keep this extra
919 		 * check here in case that changes.
920 		 */
921 		if (event->attr.exclude_kernel &&
922 		    (kernel_ip(at->from) || kernel_ip(at->to)))
923 			skip++;
924 	}
925 
926 	/*
927 	 * Prepare a generic sample, i.e. fill in the invariant fields.
928 	 * We will overwrite the from and to address before we output
929 	 * the sample.
930 	 */
931 	rcu_read_lock();
932 	perf_prepare_sample(&data, event, &regs);
933 	perf_prepare_header(&header, &data, event, &regs);
934 
935 	if (perf_output_begin(&handle, &data, event,
936 			      header.size * (top - base - skip)))
937 		goto unlock;
938 
939 	for (at = base; at < top; at++) {
940 		/* Filter out any records that contain kernel addresses. */
941 		if (event->attr.exclude_kernel &&
942 		    (kernel_ip(at->from) || kernel_ip(at->to)))
943 			continue;
944 
945 		data.ip		= at->from;
946 		data.addr	= at->to;
947 
948 		perf_output_sample(&handle, &header, &data, event);
949 	}
950 
951 	perf_output_end(&handle);
952 
953 	/* There's new data available. */
954 	event->hw.interrupts++;
955 	event->pending_kill = POLL_IN;
956 unlock:
957 	rcu_read_unlock();
958 	return 1;
959 }
960 
intel_pmu_drain_pebs_buffer(void)961 void intel_pmu_drain_pebs_buffer(void)
962 {
963 	struct perf_sample_data data;
964 
965 	static_call(x86_pmu_drain_pebs)(NULL, &data);
966 }
967 
968 /*
969  * PEBS
970  */
971 struct event_constraint intel_core2_pebs_event_constraints[] = {
972 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
973 	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
974 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
975 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
976 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
977 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
978 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
979 	EVENT_CONSTRAINT_END
980 };
981 
982 struct event_constraint intel_atom_pebs_event_constraints[] = {
983 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
984 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
985 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
986 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
987 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
988 	/* Allow all events as PEBS with no flags */
989 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
990 	EVENT_CONSTRAINT_END
991 };
992 
993 struct event_constraint intel_slm_pebs_event_constraints[] = {
994 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
995 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
996 	/* Allow all events as PEBS with no flags */
997 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
998 	EVENT_CONSTRAINT_END
999 };
1000 
1001 struct event_constraint intel_glm_pebs_event_constraints[] = {
1002 	/* Allow all events as PEBS with no flags */
1003 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
1004 	EVENT_CONSTRAINT_END
1005 };
1006 
1007 struct event_constraint intel_grt_pebs_event_constraints[] = {
1008 	/* Allow all events as PEBS with no flags */
1009 	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1010 	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1011 	EVENT_CONSTRAINT_END
1012 };
1013 
1014 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1015 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1016 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1017 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1018 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
1019 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1020 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1021 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1022 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1023 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1024 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1025 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1026 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1027 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1028 	EVENT_CONSTRAINT_END
1029 };
1030 
1031 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1032 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1033 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1034 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1035 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
1036 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1037 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1038 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
1039 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1040 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1041 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1042 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1043 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1044 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1045 	EVENT_CONSTRAINT_END
1046 };
1047 
1048 struct event_constraint intel_snb_pebs_event_constraints[] = {
1049 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1050 	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1051 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1052 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1053 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1054         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1055         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1056         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1057         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1058 	/* Allow all events as PEBS with no flags */
1059 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1060 	EVENT_CONSTRAINT_END
1061 };
1062 
1063 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1064         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1065         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1066 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1067 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1068 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1069 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1070 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1071 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1072 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1073 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1074 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1075 	/* Allow all events as PEBS with no flags */
1076 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1077         EVENT_CONSTRAINT_END
1078 };
1079 
1080 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1081 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1082 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1083 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1084 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1085 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1086 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1087 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1088 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1089 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1090 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1091 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1092 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1093 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1094 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1095 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1096 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1097 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1098 	/* Allow all events as PEBS with no flags */
1099 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1100 	EVENT_CONSTRAINT_END
1101 };
1102 
1103 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1104 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1105 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1106 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1107 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1108 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1109 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1110 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1111 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1112 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1113 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1114 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1115 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1116 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1117 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1118 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1119 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1120 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1121 	/* Allow all events as PEBS with no flags */
1122 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1123 	EVENT_CONSTRAINT_END
1124 };
1125 
1126 
1127 struct event_constraint intel_skl_pebs_event_constraints[] = {
1128 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1129 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1130 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1131 	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1132 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1133 	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1134 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1135 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1136 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1137 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1138 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1139 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1140 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1141 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1142 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1143 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1144 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1145 	/* Allow all events as PEBS with no flags */
1146 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1147 	EVENT_CONSTRAINT_END
1148 };
1149 
1150 struct event_constraint intel_icl_pebs_event_constraints[] = {
1151 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1152 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1153 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1154 
1155 	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1156 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1157 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1158 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1159 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1160 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1161 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1162 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1163 
1164 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1165 
1166 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1167 
1168 	/*
1169 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1170 	 * need the full constraints from the main table.
1171 	 */
1172 
1173 	EVENT_CONSTRAINT_END
1174 };
1175 
1176 struct event_constraint intel_glc_pebs_event_constraints[] = {
1177 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1178 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1179 
1180 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1181 	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1182 	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1183 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1185 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1186 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1187 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1188 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1189 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1190 
1191 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192 
1193 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194 
1195 	/*
1196 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1197 	 * need the full constraints from the main table.
1198 	 */
1199 
1200 	EVENT_CONSTRAINT_END
1201 };
1202 
1203 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1204 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1205 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1206 
1207 	INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1208 	INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1209 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1210 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1211 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1212 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1213 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1214 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1215 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1216 
1217 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1218 
1219 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1220 
1221 	/*
1222 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1223 	 * need the full constraints from the main table.
1224 	 */
1225 
1226 	EVENT_CONSTRAINT_END
1227 };
1228 
intel_pebs_constraints(struct perf_event * event)1229 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1230 {
1231 	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1232 	struct event_constraint *c;
1233 
1234 	if (!event->attr.precise_ip)
1235 		return NULL;
1236 
1237 	if (pebs_constraints) {
1238 		for_each_event_constraint(c, pebs_constraints) {
1239 			if (constraint_match(c, event->hw.config)) {
1240 				event->hw.flags |= c->flags;
1241 				return c;
1242 			}
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * Extended PEBS support
1248 	 * Makes the PEBS code search the normal constraints.
1249 	 */
1250 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1251 		return NULL;
1252 
1253 	return &emptyconstraint;
1254 }
1255 
1256 /*
1257  * We need the sched_task callback even for per-cpu events when we use
1258  * the large interrupt threshold, such that we can provide PID and TID
1259  * to PEBS samples.
1260  */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1261 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1262 {
1263 	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1264 		return false;
1265 
1266 	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1267 }
1268 
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1269 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1270 {
1271 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272 
1273 	if (!sched_in && pebs_needs_sched_cb(cpuc))
1274 		intel_pmu_drain_pebs_buffer();
1275 }
1276 
pebs_update_threshold(struct cpu_hw_events * cpuc)1277 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1278 {
1279 	struct debug_store *ds = cpuc->ds;
1280 	int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1281 	u64 threshold;
1282 	int reserved;
1283 
1284 	if (cpuc->n_pebs_via_pt)
1285 		return;
1286 
1287 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1288 		reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1289 	else
1290 		reserved = max_pebs_events;
1291 
1292 	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1293 		threshold = ds->pebs_absolute_maximum -
1294 			reserved * cpuc->pebs_record_size;
1295 	} else {
1296 		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1297 	}
1298 
1299 	ds->pebs_interrupt_threshold = threshold;
1300 }
1301 
1302 #define PEBS_DATACFG_CNTRS(x)						\
1303 	((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK)
1304 
1305 #define PEBS_DATACFG_CNTR_BIT(x)					\
1306 	(((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT)
1307 
1308 #define PEBS_DATACFG_FIX(x)						\
1309 	((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK)
1310 
1311 #define PEBS_DATACFG_FIX_BIT(x)						\
1312 	(((1ULL << (x)) & PEBS_DATACFG_FIX_MASK)			\
1313 	 << PEBS_DATACFG_FIX_SHIFT)
1314 
adaptive_pebs_record_size_update(void)1315 static void adaptive_pebs_record_size_update(void)
1316 {
1317 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318 	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1319 	int sz = sizeof(struct pebs_basic);
1320 
1321 	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1322 		sz += sizeof(struct pebs_meminfo);
1323 	if (pebs_data_cfg & PEBS_DATACFG_GP)
1324 		sz += sizeof(struct pebs_gprs);
1325 	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1326 		sz += sizeof(struct pebs_xmm);
1327 	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1328 		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1329 	if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) {
1330 		sz += sizeof(struct pebs_cntr_header);
1331 
1332 		/* Metrics base and Metrics Data */
1333 		if (pebs_data_cfg & PEBS_DATACFG_METRICS)
1334 			sz += 2 * sizeof(u64);
1335 
1336 		if (pebs_data_cfg & PEBS_DATACFG_CNTR) {
1337 			sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) +
1338 			       hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) *
1339 			      sizeof(u64);
1340 		}
1341 	}
1342 
1343 	cpuc->pebs_record_size = sz;
1344 }
1345 
__intel_pmu_pebs_update_cfg(struct perf_event * event,int idx,u64 * pebs_data_cfg)1346 static void __intel_pmu_pebs_update_cfg(struct perf_event *event,
1347 					int idx, u64 *pebs_data_cfg)
1348 {
1349 	if (is_metric_event(event)) {
1350 		*pebs_data_cfg |= PEBS_DATACFG_METRICS;
1351 		return;
1352 	}
1353 
1354 	*pebs_data_cfg |= PEBS_DATACFG_CNTR;
1355 
1356 	if (idx >= INTEL_PMC_IDX_FIXED)
1357 		*pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED);
1358 	else
1359 		*pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx);
1360 }
1361 
1362 
intel_pmu_pebs_late_setup(struct cpu_hw_events * cpuc)1363 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc)
1364 {
1365 	struct perf_event *event;
1366 	u64 pebs_data_cfg = 0;
1367 	int i;
1368 
1369 	for (i = 0; i < cpuc->n_events; i++) {
1370 		event = cpuc->event_list[i];
1371 		if (!is_pebs_counter_event_group(event))
1372 			continue;
1373 		__intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg);
1374 	}
1375 
1376 	if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1377 		cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1378 }
1379 
1380 #define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1381 				PERF_SAMPLE_PHYS_ADDR |			     \
1382 				PERF_SAMPLE_WEIGHT_TYPE |		     \
1383 				PERF_SAMPLE_TRANSACTION |		     \
1384 				PERF_SAMPLE_DATA_PAGE_SIZE)
1385 
pebs_update_adaptive_cfg(struct perf_event * event)1386 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1387 {
1388 	struct perf_event_attr *attr = &event->attr;
1389 	u64 sample_type = attr->sample_type;
1390 	u64 pebs_data_cfg = 0;
1391 	bool gprs, tsx_weight;
1392 
1393 	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1394 	    attr->precise_ip > 1)
1395 		return pebs_data_cfg;
1396 
1397 	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1398 		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1399 
1400 	/*
1401 	 * We need GPRs when:
1402 	 * + user requested them
1403 	 * + precise_ip < 2 for the non event IP
1404 	 * + For RTM TSX weight we need GPRs for the abort code.
1405 	 */
1406 	gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1407 		(attr->sample_regs_intr & PEBS_GP_REGS)) ||
1408 	       ((sample_type & PERF_SAMPLE_REGS_USER) &&
1409 		(attr->sample_regs_user & PEBS_GP_REGS));
1410 
1411 	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1412 		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1413 		      x86_pmu.rtm_abort_event);
1414 
1415 	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1416 		pebs_data_cfg |= PEBS_DATACFG_GP;
1417 
1418 	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1419 	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1420 		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1421 
1422 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1423 		/*
1424 		 * For now always log all LBRs. Could configure this
1425 		 * later.
1426 		 */
1427 		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1428 			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1429 	}
1430 
1431 	return pebs_data_cfg;
1432 }
1433 
1434 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1435 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1436 		  struct perf_event *event, bool add)
1437 {
1438 	struct pmu *pmu = event->pmu;
1439 
1440 	/*
1441 	 * Make sure we get updated with the first PEBS event.
1442 	 * During removal, ->pebs_data_cfg is still valid for
1443 	 * the last PEBS event. Don't clear it.
1444 	 */
1445 	if ((cpuc->n_pebs == 1) && add)
1446 		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1447 
1448 	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1449 		if (!needed_cb)
1450 			perf_sched_cb_inc(pmu);
1451 		else
1452 			perf_sched_cb_dec(pmu);
1453 
1454 		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1455 	}
1456 
1457 	/*
1458 	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1459 	 * iterating all remaining PEBS events to reconstruct the config.
1460 	 */
1461 	if (x86_pmu.intel_cap.pebs_baseline && add) {
1462 		u64 pebs_data_cfg;
1463 
1464 		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1465 		/*
1466 		 * Be sure to update the thresholds when we change the record.
1467 		 */
1468 		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1469 			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1470 	}
1471 }
1472 
intel_pmu_pebs_add(struct perf_event * event)1473 void intel_pmu_pebs_add(struct perf_event *event)
1474 {
1475 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1476 	struct hw_perf_event *hwc = &event->hw;
1477 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1478 
1479 	cpuc->n_pebs++;
1480 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1481 		cpuc->n_large_pebs++;
1482 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1483 		cpuc->n_pebs_via_pt++;
1484 
1485 	pebs_update_state(needed_cb, cpuc, event, true);
1486 }
1487 
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1488 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1489 {
1490 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1491 
1492 	if (!is_pebs_pt(event))
1493 		return;
1494 
1495 	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1496 		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1497 }
1498 
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1499 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1500 {
1501 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1502 	struct hw_perf_event *hwc = &event->hw;
1503 	struct debug_store *ds = cpuc->ds;
1504 	u64 value = ds->pebs_event_reset[hwc->idx];
1505 	u32 base = MSR_RELOAD_PMC0;
1506 	unsigned int idx = hwc->idx;
1507 
1508 	if (!is_pebs_pt(event))
1509 		return;
1510 
1511 	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1512 		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1513 
1514 	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1515 
1516 	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1517 		base = MSR_RELOAD_FIXED_CTR0;
1518 		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1519 		if (x86_pmu.intel_cap.pebs_format < 5)
1520 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1521 		else
1522 			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1523 	}
1524 	wrmsrq(base + idx, value);
1525 }
1526 
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1527 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1528 {
1529 	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1530 	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1531 		intel_pmu_drain_pebs_buffer();
1532 }
1533 
intel_pmu_pebs_enable(struct perf_event * event)1534 void intel_pmu_pebs_enable(struct perf_event *event)
1535 {
1536 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1537 	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1538 	struct hw_perf_event *hwc = &event->hw;
1539 	struct debug_store *ds = cpuc->ds;
1540 	unsigned int idx = hwc->idx;
1541 
1542 	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1543 
1544 	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1545 
1546 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1547 		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1548 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1549 		cpuc->pebs_enabled |= 1ULL << 63;
1550 
1551 	if (x86_pmu.intel_cap.pebs_baseline) {
1552 		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1553 		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1554 			/*
1555 			 * drain_pebs() assumes uniform record size;
1556 			 * hence we need to drain when changing said
1557 			 * size.
1558 			 */
1559 			intel_pmu_drain_pebs_buffer();
1560 			adaptive_pebs_record_size_update();
1561 			wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1562 			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1563 		}
1564 	}
1565 	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1566 		cpuc->pebs_data_cfg = pebs_data_cfg;
1567 		pebs_update_threshold(cpuc);
1568 	}
1569 
1570 	if (idx >= INTEL_PMC_IDX_FIXED) {
1571 		if (x86_pmu.intel_cap.pebs_format < 5)
1572 			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1573 		else
1574 			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1575 	}
1576 
1577 	/*
1578 	 * Use auto-reload if possible to save a MSR write in the PMI.
1579 	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1580 	 */
1581 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1582 		ds->pebs_event_reset[idx] =
1583 			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1584 	} else {
1585 		ds->pebs_event_reset[idx] = 0;
1586 	}
1587 
1588 	intel_pmu_pebs_via_pt_enable(event);
1589 }
1590 
intel_pmu_pebs_del(struct perf_event * event)1591 void intel_pmu_pebs_del(struct perf_event *event)
1592 {
1593 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1594 	struct hw_perf_event *hwc = &event->hw;
1595 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1596 
1597 	cpuc->n_pebs--;
1598 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1599 		cpuc->n_large_pebs--;
1600 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1601 		cpuc->n_pebs_via_pt--;
1602 
1603 	pebs_update_state(needed_cb, cpuc, event, false);
1604 }
1605 
intel_pmu_pebs_disable(struct perf_event * event)1606 void intel_pmu_pebs_disable(struct perf_event *event)
1607 {
1608 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1609 	struct hw_perf_event *hwc = &event->hw;
1610 
1611 	intel_pmu_drain_large_pebs(cpuc);
1612 
1613 	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1614 
1615 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1616 	    (x86_pmu.version < 5))
1617 		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1618 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1619 		cpuc->pebs_enabled &= ~(1ULL << 63);
1620 
1621 	intel_pmu_pebs_via_pt_disable(event);
1622 
1623 	if (cpuc->enabled)
1624 		wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1625 
1626 	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1627 }
1628 
intel_pmu_pebs_enable_all(void)1629 void intel_pmu_pebs_enable_all(void)
1630 {
1631 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1632 
1633 	if (cpuc->pebs_enabled)
1634 		wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1635 }
1636 
intel_pmu_pebs_disable_all(void)1637 void intel_pmu_pebs_disable_all(void)
1638 {
1639 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1640 
1641 	if (cpuc->pebs_enabled)
1642 		__intel_pmu_pebs_disable_all();
1643 }
1644 
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1645 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1646 {
1647 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1648 	unsigned long from = cpuc->lbr_entries[0].from;
1649 	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1650 	unsigned long ip = regs->ip;
1651 	int is_64bit = 0;
1652 	void *kaddr;
1653 	int size;
1654 
1655 	/*
1656 	 * We don't need to fixup if the PEBS assist is fault like
1657 	 */
1658 	if (!x86_pmu.intel_cap.pebs_trap)
1659 		return 1;
1660 
1661 	/*
1662 	 * No LBR entry, no basic block, no rewinding
1663 	 */
1664 	if (!cpuc->lbr_stack.nr || !from || !to)
1665 		return 0;
1666 
1667 	/*
1668 	 * Basic blocks should never cross user/kernel boundaries
1669 	 */
1670 	if (kernel_ip(ip) != kernel_ip(to))
1671 		return 0;
1672 
1673 	/*
1674 	 * unsigned math, either ip is before the start (impossible) or
1675 	 * the basic block is larger than 1 page (sanity)
1676 	 */
1677 	if ((ip - to) > PEBS_FIXUP_SIZE)
1678 		return 0;
1679 
1680 	/*
1681 	 * We sampled a branch insn, rewind using the LBR stack
1682 	 */
1683 	if (ip == to) {
1684 		set_linear_ip(regs, from);
1685 		return 1;
1686 	}
1687 
1688 	size = ip - to;
1689 	if (!kernel_ip(ip)) {
1690 		int bytes;
1691 		u8 *buf = this_cpu_read(insn_buffer);
1692 
1693 		/* 'size' must fit our buffer, see above */
1694 		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1695 		if (bytes != 0)
1696 			return 0;
1697 
1698 		kaddr = buf;
1699 	} else {
1700 		kaddr = (void *)to;
1701 	}
1702 
1703 	do {
1704 		struct insn insn;
1705 
1706 		old_to = to;
1707 
1708 #ifdef CONFIG_X86_64
1709 		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1710 #endif
1711 		insn_init(&insn, kaddr, size, is_64bit);
1712 
1713 		/*
1714 		 * Make sure there was not a problem decoding the instruction.
1715 		 * This is doubly important because we have an infinite loop if
1716 		 * insn.length=0.
1717 		 */
1718 		if (insn_get_length(&insn))
1719 			break;
1720 
1721 		to += insn.length;
1722 		kaddr += insn.length;
1723 		size -= insn.length;
1724 	} while (to < ip);
1725 
1726 	if (to == ip) {
1727 		set_linear_ip(regs, old_to);
1728 		return 1;
1729 	}
1730 
1731 	/*
1732 	 * Even though we decoded the basic block, the instruction stream
1733 	 * never matched the given IP, either the TO or the IP got corrupted.
1734 	 */
1735 	return 0;
1736 }
1737 
intel_get_tsx_weight(u64 tsx_tuning)1738 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1739 {
1740 	if (tsx_tuning) {
1741 		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1742 		return tsx.cycles_last_block;
1743 	}
1744 	return 0;
1745 }
1746 
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1747 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1748 {
1749 	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1750 
1751 	/* For RTM XABORTs also log the abort code from AX */
1752 	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1753 		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1754 	return txn;
1755 }
1756 
get_pebs_status(void * n)1757 static inline u64 get_pebs_status(void *n)
1758 {
1759 	if (x86_pmu.intel_cap.pebs_format < 4)
1760 		return ((struct pebs_record_nhm *)n)->status;
1761 	return ((struct pebs_basic *)n)->applicable_counters;
1762 }
1763 
1764 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1765 		(PERF_X86_EVENT_PEBS_ST_HSW | \
1766 		 PERF_X86_EVENT_PEBS_LD_HSW | \
1767 		 PERF_X86_EVENT_PEBS_NA_HSW)
1768 
get_data_src(struct perf_event * event,u64 aux)1769 static u64 get_data_src(struct perf_event *event, u64 aux)
1770 {
1771 	u64 val = PERF_MEM_NA;
1772 	int fl = event->hw.flags;
1773 	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1774 
1775 	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1776 		val = load_latency_data(event, aux);
1777 	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1778 		val = store_latency_data(event, aux);
1779 	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1780 		val = x86_pmu.pebs_latency_data(event, aux);
1781 	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1782 		val = precise_datala_hsw(event, aux);
1783 	else if (fst)
1784 		val = precise_store_data(aux);
1785 	return val;
1786 }
1787 
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1788 static void setup_pebs_time(struct perf_event *event,
1789 			    struct perf_sample_data *data,
1790 			    u64 tsc)
1791 {
1792 	/* Converting to a user-defined clock is not supported yet. */
1793 	if (event->attr.use_clockid != 0)
1794 		return;
1795 
1796 	/*
1797 	 * Doesn't support the conversion when the TSC is unstable.
1798 	 * The TSC unstable case is a corner case and very unlikely to
1799 	 * happen. If it happens, the TSC in a PEBS record will be
1800 	 * dropped and fall back to perf_event_clock().
1801 	 */
1802 	if (!using_native_sched_clock() || !sched_clock_stable())
1803 		return;
1804 
1805 	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1806 	data->sample_flags |= PERF_SAMPLE_TIME;
1807 }
1808 
1809 #define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1810 				 PERF_SAMPLE_PHYS_ADDR |	\
1811 				 PERF_SAMPLE_DATA_PAGE_SIZE)
1812 
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1813 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1814 				   struct pt_regs *iregs, void *__pebs,
1815 				   struct perf_sample_data *data,
1816 				   struct pt_regs *regs)
1817 {
1818 	/*
1819 	 * We cast to the biggest pebs_record but are careful not to
1820 	 * unconditionally access the 'extra' entries.
1821 	 */
1822 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1823 	struct pebs_record_skl *pebs = __pebs;
1824 	u64 sample_type;
1825 	int fll;
1826 
1827 	if (pebs == NULL)
1828 		return;
1829 
1830 	sample_type = event->attr.sample_type;
1831 	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1832 
1833 	perf_sample_data_init(data, 0, event->hw.last_period);
1834 
1835 	/*
1836 	 * Use latency for weight (only avail with PEBS-LL)
1837 	 */
1838 	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1839 		data->weight.full = pebs->lat;
1840 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1841 	}
1842 
1843 	/*
1844 	 * data.data_src encodes the data source
1845 	 */
1846 	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1847 		data->data_src.val = get_data_src(event, pebs->dse);
1848 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1849 	}
1850 
1851 	/*
1852 	 * We must however always use iregs for the unwinder to stay sane; the
1853 	 * record BP,SP,IP can point into thin air when the record is from a
1854 	 * previous PMI context or an (I)RET happened between the record and
1855 	 * PMI.
1856 	 */
1857 	perf_sample_save_callchain(data, event, iregs);
1858 
1859 	/*
1860 	 * We use the interrupt regs as a base because the PEBS record does not
1861 	 * contain a full regs set, specifically it seems to lack segment
1862 	 * descriptors, which get used by things like user_mode().
1863 	 *
1864 	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1865 	 */
1866 	*regs = *iregs;
1867 
1868 	/*
1869 	 * Initialize regs_>flags from PEBS,
1870 	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1871 	 * i.e., do not rely on it being zero:
1872 	 */
1873 	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1874 
1875 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1876 		regs->ax = pebs->ax;
1877 		regs->bx = pebs->bx;
1878 		regs->cx = pebs->cx;
1879 		regs->dx = pebs->dx;
1880 		regs->si = pebs->si;
1881 		regs->di = pebs->di;
1882 
1883 		regs->bp = pebs->bp;
1884 		regs->sp = pebs->sp;
1885 
1886 #ifndef CONFIG_X86_32
1887 		regs->r8 = pebs->r8;
1888 		regs->r9 = pebs->r9;
1889 		regs->r10 = pebs->r10;
1890 		regs->r11 = pebs->r11;
1891 		regs->r12 = pebs->r12;
1892 		regs->r13 = pebs->r13;
1893 		regs->r14 = pebs->r14;
1894 		regs->r15 = pebs->r15;
1895 #endif
1896 	}
1897 
1898 	if (event->attr.precise_ip > 1) {
1899 		/*
1900 		 * Haswell and later processors have an 'eventing IP'
1901 		 * (real IP) which fixes the off-by-1 skid in hardware.
1902 		 * Use it when precise_ip >= 2 :
1903 		 */
1904 		if (x86_pmu.intel_cap.pebs_format >= 2) {
1905 			set_linear_ip(regs, pebs->real_ip);
1906 			regs->flags |= PERF_EFLAGS_EXACT;
1907 		} else {
1908 			/* Otherwise, use PEBS off-by-1 IP: */
1909 			set_linear_ip(regs, pebs->ip);
1910 
1911 			/*
1912 			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1913 			 * using the LBR. If successful, the fixup function
1914 			 * corrects regs->ip and calls set_linear_ip() on regs:
1915 			 */
1916 			if (intel_pmu_pebs_fixup_ip(regs))
1917 				regs->flags |= PERF_EFLAGS_EXACT;
1918 		}
1919 	} else {
1920 		/*
1921 		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1922 		 * no fixup attempted:
1923 		 */
1924 		set_linear_ip(regs, pebs->ip);
1925 	}
1926 
1927 
1928 	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1929 	    x86_pmu.intel_cap.pebs_format >= 1) {
1930 		data->addr = pebs->dla;
1931 		data->sample_flags |= PERF_SAMPLE_ADDR;
1932 	}
1933 
1934 	if (x86_pmu.intel_cap.pebs_format >= 2) {
1935 		/* Only set the TSX weight when no memory weight. */
1936 		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1937 			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1938 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1939 		}
1940 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1941 			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1942 							      pebs->ax);
1943 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1944 		}
1945 	}
1946 
1947 	/*
1948 	 * v3 supplies an accurate time stamp, so we use that
1949 	 * for the time stamp.
1950 	 *
1951 	 * We can only do this for the default trace clock.
1952 	 */
1953 	if (x86_pmu.intel_cap.pebs_format >= 3)
1954 		setup_pebs_time(event, data, pebs->tsc);
1955 
1956 	perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1957 }
1958 
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1959 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1960 				    struct pebs_gprs *gprs)
1961 {
1962 	regs->ax = gprs->ax;
1963 	regs->bx = gprs->bx;
1964 	regs->cx = gprs->cx;
1965 	regs->dx = gprs->dx;
1966 	regs->si = gprs->si;
1967 	regs->di = gprs->di;
1968 	regs->bp = gprs->bp;
1969 	regs->sp = gprs->sp;
1970 #ifndef CONFIG_X86_32
1971 	regs->r8 = gprs->r8;
1972 	regs->r9 = gprs->r9;
1973 	regs->r10 = gprs->r10;
1974 	regs->r11 = gprs->r11;
1975 	regs->r12 = gprs->r12;
1976 	regs->r13 = gprs->r13;
1977 	regs->r14 = gprs->r14;
1978 	regs->r15 = gprs->r15;
1979 #endif
1980 }
1981 
intel_perf_event_update_pmc(struct perf_event * event,u64 pmc)1982 static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc)
1983 {
1984 	int shift = 64 - x86_pmu.cntval_bits;
1985 	struct hw_perf_event *hwc;
1986 	u64 delta, prev_pmc;
1987 
1988 	/*
1989 	 * A recorded counter may not have an assigned event in the
1990 	 * following cases. The value should be dropped.
1991 	 * - An event is deleted. There is still an active PEBS event.
1992 	 *   The PEBS record doesn't shrink on pmu::del().
1993 	 *   If the counter of the deleted event once occurred in a PEBS
1994 	 *   record, PEBS still records the counter until the counter is
1995 	 *   reassigned.
1996 	 * - An event is stopped for some reason, e.g., throttled.
1997 	 *   During this period, another event is added and takes the
1998 	 *   counter of the stopped event. The stopped event is assigned
1999 	 *   to another new and uninitialized counter, since the
2000 	 *   x86_pmu_start(RELOAD) is not invoked for a stopped event.
2001 	 *   The PEBS__DATA_CFG is updated regardless of the event state.
2002 	 *   The uninitialized counter can be recorded in a PEBS record.
2003 	 *   But the cpuc->events[uninitialized_counter] is always NULL,
2004 	 *   because the event is stopped. The uninitialized value is
2005 	 *   safely dropped.
2006 	 */
2007 	if (!event)
2008 		return;
2009 
2010 	hwc = &event->hw;
2011 	prev_pmc = local64_read(&hwc->prev_count);
2012 
2013 	/* Only update the count when the PMU is disabled */
2014 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2015 	local64_set(&hwc->prev_count, pmc);
2016 
2017 	delta = (pmc << shift) - (prev_pmc << shift);
2018 	delta >>= shift;
2019 
2020 	local64_add(delta, &event->count);
2021 	local64_sub(delta, &hwc->period_left);
2022 }
2023 
__setup_pebs_counter_group(struct cpu_hw_events * cpuc,struct perf_event * event,struct pebs_cntr_header * cntr,void * next_record)2024 static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc,
2025 					      struct perf_event *event,
2026 					      struct pebs_cntr_header *cntr,
2027 					      void *next_record)
2028 {
2029 	int bit;
2030 
2031 	for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) {
2032 		intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record);
2033 		next_record += sizeof(u64);
2034 	}
2035 
2036 	for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) {
2037 		/* The slots event will be handled with perf_metric later */
2038 		if ((cntr->metrics == INTEL_CNTR_METRICS) &&
2039 		    (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) {
2040 			next_record += sizeof(u64);
2041 			continue;
2042 		}
2043 		intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED],
2044 					    *(u64 *)next_record);
2045 		next_record += sizeof(u64);
2046 	}
2047 
2048 	/* HW will reload the value right after the overflow. */
2049 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2050 		local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period);
2051 
2052 	if (cntr->metrics == INTEL_CNTR_METRICS) {
2053 		static_call(intel_pmu_update_topdown_event)
2054 			   (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS],
2055 			    (u64 *)next_record);
2056 		next_record += 2 * sizeof(u64);
2057 	}
2058 }
2059 
2060 #define PEBS_LATENCY_MASK			0xffff
2061 
2062 /*
2063  * With adaptive PEBS the layout depends on what fields are configured.
2064  */
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)2065 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
2066 					    struct pt_regs *iregs, void *__pebs,
2067 					    struct perf_sample_data *data,
2068 					    struct pt_regs *regs)
2069 {
2070 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2071 	struct pebs_basic *basic = __pebs;
2072 	void *next_record = basic + 1;
2073 	u64 sample_type, format_group;
2074 	struct pebs_meminfo *meminfo = NULL;
2075 	struct pebs_gprs *gprs = NULL;
2076 	struct x86_perf_regs *perf_regs;
2077 
2078 	if (basic == NULL)
2079 		return;
2080 
2081 	perf_regs = container_of(regs, struct x86_perf_regs, regs);
2082 	perf_regs->xmm_regs = NULL;
2083 
2084 	sample_type = event->attr.sample_type;
2085 	format_group = basic->format_group;
2086 	perf_sample_data_init(data, 0, event->hw.last_period);
2087 
2088 	setup_pebs_time(event, data, basic->tsc);
2089 
2090 	/*
2091 	 * We must however always use iregs for the unwinder to stay sane; the
2092 	 * record BP,SP,IP can point into thin air when the record is from a
2093 	 * previous PMI context or an (I)RET happened between the record and
2094 	 * PMI.
2095 	 */
2096 	perf_sample_save_callchain(data, event, iregs);
2097 
2098 	*regs = *iregs;
2099 	/* The ip in basic is EventingIP */
2100 	set_linear_ip(regs, basic->ip);
2101 	regs->flags = PERF_EFLAGS_EXACT;
2102 
2103 	if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
2104 		if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
2105 			data->weight.var3_w = basic->retire_latency;
2106 		else
2107 			data->weight.var3_w = 0;
2108 	}
2109 
2110 	/*
2111 	 * The record for MEMINFO is in front of GP
2112 	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
2113 	 * Save the pointer here but process later.
2114 	 */
2115 	if (format_group & PEBS_DATACFG_MEMINFO) {
2116 		meminfo = next_record;
2117 		next_record = meminfo + 1;
2118 	}
2119 
2120 	if (format_group & PEBS_DATACFG_GP) {
2121 		gprs = next_record;
2122 		next_record = gprs + 1;
2123 
2124 		if (event->attr.precise_ip < 2) {
2125 			set_linear_ip(regs, gprs->ip);
2126 			regs->flags &= ~PERF_EFLAGS_EXACT;
2127 		}
2128 
2129 		if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
2130 			adaptive_pebs_save_regs(regs, gprs);
2131 	}
2132 
2133 	if (format_group & PEBS_DATACFG_MEMINFO) {
2134 		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2135 			u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ?
2136 					meminfo->cache_latency : meminfo->mem_latency;
2137 
2138 			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY)
2139 				data->weight.var2_w = meminfo->instr_latency;
2140 
2141 			/*
2142 			 * Although meminfo::latency is defined as a u64,
2143 			 * only the lower 32 bits include the valid data
2144 			 * in practice on Ice Lake and earlier platforms.
2145 			 */
2146 			if (sample_type & PERF_SAMPLE_WEIGHT) {
2147 				data->weight.full = latency ?:
2148 					intel_get_tsx_weight(meminfo->tsx_tuning);
2149 			} else {
2150 				data->weight.var1_dw = (u32)latency ?:
2151 					intel_get_tsx_weight(meminfo->tsx_tuning);
2152 			}
2153 
2154 			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2155 		}
2156 
2157 		if (sample_type & PERF_SAMPLE_DATA_SRC) {
2158 			data->data_src.val = get_data_src(event, meminfo->aux);
2159 			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2160 		}
2161 
2162 		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2163 			data->addr = meminfo->address;
2164 			data->sample_flags |= PERF_SAMPLE_ADDR;
2165 		}
2166 
2167 		if (sample_type & PERF_SAMPLE_TRANSACTION) {
2168 			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2169 							  gprs ? gprs->ax : 0);
2170 			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2171 		}
2172 	}
2173 
2174 	if (format_group & PEBS_DATACFG_XMMS) {
2175 		struct pebs_xmm *xmm = next_record;
2176 
2177 		next_record = xmm + 1;
2178 		perf_regs->xmm_regs = xmm->xmm;
2179 	}
2180 
2181 	if (format_group & PEBS_DATACFG_LBRS) {
2182 		struct lbr_entry *lbr = next_record;
2183 		int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT)
2184 					& 0xff) + 1;
2185 		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2186 
2187 		if (has_branch_stack(event)) {
2188 			intel_pmu_store_pebs_lbrs(lbr);
2189 			intel_pmu_lbr_save_brstack(data, cpuc, event);
2190 		}
2191 	}
2192 
2193 	if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) {
2194 		struct pebs_cntr_header *cntr = next_record;
2195 		unsigned int nr;
2196 
2197 		next_record += sizeof(struct pebs_cntr_header);
2198 		/*
2199 		 * The PEBS_DATA_CFG is a global register, which is the
2200 		 * superset configuration for all PEBS events.
2201 		 * For the PEBS record of non-sample-read group, ignore
2202 		 * the counter snapshot fields.
2203 		 */
2204 		if (is_pebs_counter_event_group(event)) {
2205 			__setup_pebs_counter_group(cpuc, event, cntr, next_record);
2206 			data->sample_flags |= PERF_SAMPLE_READ;
2207 		}
2208 
2209 		nr = hweight32(cntr->cntr) + hweight32(cntr->fixed);
2210 		if (cntr->metrics == INTEL_CNTR_METRICS)
2211 			nr += 2;
2212 		next_record += nr * sizeof(u64);
2213 	}
2214 
2215 	WARN_ONCE(next_record != __pebs + basic->format_size,
2216 			"PEBS record size %u, expected %llu, config %llx\n",
2217 			basic->format_size,
2218 			(u64)(next_record - __pebs),
2219 			format_group);
2220 }
2221 
2222 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2223 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2224 {
2225 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2226 	void *at;
2227 	u64 pebs_status;
2228 
2229 	/*
2230 	 * fmt0 does not have a status bitfield (does not use
2231 	 * perf_record_nhm format)
2232 	 */
2233 	if (x86_pmu.intel_cap.pebs_format < 1)
2234 		return base;
2235 
2236 	if (base == NULL)
2237 		return NULL;
2238 
2239 	for (at = base; at < top; at += cpuc->pebs_record_size) {
2240 		unsigned long status = get_pebs_status(at);
2241 
2242 		if (test_bit(bit, (unsigned long *)&status)) {
2243 			/* PEBS v3 has accurate status bits */
2244 			if (x86_pmu.intel_cap.pebs_format >= 3)
2245 				return at;
2246 
2247 			if (status == (1 << bit))
2248 				return at;
2249 
2250 			/* clear non-PEBS bit and re-check */
2251 			pebs_status = status & cpuc->pebs_enabled;
2252 			pebs_status &= PEBS_COUNTER_MASK;
2253 			if (pebs_status == (1 << bit))
2254 				return at;
2255 		}
2256 	}
2257 	return NULL;
2258 }
2259 
2260 /*
2261  * Special variant of intel_pmu_save_and_restart() for auto-reload.
2262  */
2263 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2264 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2265 {
2266 	struct hw_perf_event *hwc = &event->hw;
2267 	int shift = 64 - x86_pmu.cntval_bits;
2268 	u64 period = hwc->sample_period;
2269 	u64 prev_raw_count, new_raw_count;
2270 	s64 new, old;
2271 
2272 	WARN_ON(!period);
2273 
2274 	/*
2275 	 * drain_pebs() only happens when the PMU is disabled.
2276 	 */
2277 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2278 
2279 	prev_raw_count = local64_read(&hwc->prev_count);
2280 	new_raw_count = rdpmc(hwc->event_base_rdpmc);
2281 	local64_set(&hwc->prev_count, new_raw_count);
2282 
2283 	/*
2284 	 * Since the counter increments a negative counter value and
2285 	 * overflows on the sign switch, giving the interval:
2286 	 *
2287 	 *   [-period, 0]
2288 	 *
2289 	 * the difference between two consecutive reads is:
2290 	 *
2291 	 *   A) value2 - value1;
2292 	 *      when no overflows have happened in between,
2293 	 *
2294 	 *   B) (0 - value1) + (value2 - (-period));
2295 	 *      when one overflow happened in between,
2296 	 *
2297 	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2298 	 *      when @n overflows happened in between.
2299 	 *
2300 	 * Here A) is the obvious difference, B) is the extension to the
2301 	 * discrete interval, where the first term is to the top of the
2302 	 * interval and the second term is from the bottom of the next
2303 	 * interval and C) the extension to multiple intervals, where the
2304 	 * middle term is the whole intervals covered.
2305 	 *
2306 	 * An equivalent of C, by reduction, is:
2307 	 *
2308 	 *   value2 - value1 + n * period
2309 	 */
2310 	new = ((s64)(new_raw_count << shift) >> shift);
2311 	old = ((s64)(prev_raw_count << shift) >> shift);
2312 	local64_add(new - old + count * period, &event->count);
2313 
2314 	local64_set(&hwc->period_left, -new);
2315 
2316 	perf_event_update_userpage(event);
2317 
2318 	return 0;
2319 }
2320 
2321 typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *,
2322 			 struct perf_sample_data *, struct pt_regs *);
2323 
2324 static struct pt_regs dummy_iregs;
2325 
2326 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,setup_fn setup_sample)2327 __intel_pmu_pebs_event(struct perf_event *event,
2328 		       struct pt_regs *iregs,
2329 		       struct pt_regs *regs,
2330 		       struct perf_sample_data *data,
2331 		       void *at,
2332 		       setup_fn setup_sample)
2333 {
2334 	setup_sample(event, iregs, at, data, regs);
2335 	perf_event_output(event, data, regs);
2336 }
2337 
2338 static __always_inline void
__intel_pmu_pebs_last_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,int count,setup_fn setup_sample)2339 __intel_pmu_pebs_last_event(struct perf_event *event,
2340 			    struct pt_regs *iregs,
2341 			    struct pt_regs *regs,
2342 			    struct perf_sample_data *data,
2343 			    void *at,
2344 			    int count,
2345 			    setup_fn setup_sample)
2346 {
2347 	struct hw_perf_event *hwc = &event->hw;
2348 
2349 	setup_sample(event, iregs, at, data, regs);
2350 	if (iregs == &dummy_iregs) {
2351 		/*
2352 		 * The PEBS records may be drained in the non-overflow context,
2353 		 * e.g., large PEBS + context switch. Perf should treat the
2354 		 * last record the same as other PEBS records, and doesn't
2355 		 * invoke the generic overflow handler.
2356 		 */
2357 		perf_event_output(event, data, regs);
2358 	} else {
2359 		/*
2360 		 * All but the last records are processed.
2361 		 * The last one is left to be able to call the overflow handler.
2362 		 */
2363 		perf_event_overflow(event, data, regs);
2364 	}
2365 
2366 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2367 		if ((is_pebs_counter_event_group(event))) {
2368 			/*
2369 			 * The value of each sample has been updated when setup
2370 			 * the corresponding sample data.
2371 			 */
2372 			perf_event_update_userpage(event);
2373 		} else {
2374 			/*
2375 			 * Now, auto-reload is only enabled in fixed period mode.
2376 			 * The reload value is always hwc->sample_period.
2377 			 * May need to change it, if auto-reload is enabled in
2378 			 * freq mode later.
2379 			 */
2380 			intel_pmu_save_and_restart_reload(event, count);
2381 		}
2382 	} else {
2383 		/*
2384 		 * For a non-precise event, it's possible the
2385 		 * counters-snapshotting records a positive value for the
2386 		 * overflowed event. Then the HW auto-reload mechanism
2387 		 * reset the counter to 0 immediately, because the
2388 		 * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD
2389 		 * is not set. The counter backwards may be observed in a
2390 		 * PMI handler.
2391 		 *
2392 		 * Since the event value has been updated when processing the
2393 		 * counters-snapshotting record, only needs to set the new
2394 		 * period for the counter.
2395 		 */
2396 		if (is_pebs_counter_event_group(event))
2397 			static_call(x86_pmu_set_period)(event);
2398 		else
2399 			intel_pmu_save_and_restart(event);
2400 	}
2401 }
2402 
2403 static __always_inline void
__intel_pmu_pebs_events(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,setup_fn setup_sample)2404 __intel_pmu_pebs_events(struct perf_event *event,
2405 			struct pt_regs *iregs,
2406 			struct perf_sample_data *data,
2407 			void *base, void *top,
2408 			int bit, int count,
2409 			setup_fn setup_sample)
2410 {
2411 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412 	struct x86_perf_regs perf_regs;
2413 	struct pt_regs *regs = &perf_regs.regs;
2414 	void *at = get_next_pebs_record_by_bit(base, top, bit);
2415 	int cnt = count;
2416 
2417 	if (!iregs)
2418 		iregs = &dummy_iregs;
2419 
2420 	while (cnt > 1) {
2421 		__intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample);
2422 		at += cpuc->pebs_record_size;
2423 		at = get_next_pebs_record_by_bit(at, top, bit);
2424 		cnt--;
2425 	}
2426 
2427 	__intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample);
2428 }
2429 
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2430 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2431 {
2432 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2433 	struct debug_store *ds = cpuc->ds;
2434 	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2435 	struct pebs_record_core *at, *top;
2436 	int n;
2437 
2438 	if (!x86_pmu.pebs_active)
2439 		return;
2440 
2441 	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2442 	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2443 
2444 	/*
2445 	 * Whatever else happens, drain the thing
2446 	 */
2447 	ds->pebs_index = ds->pebs_buffer_base;
2448 
2449 	if (!test_bit(0, cpuc->active_mask))
2450 		return;
2451 
2452 	WARN_ON_ONCE(!event);
2453 
2454 	if (!event->attr.precise_ip)
2455 		return;
2456 
2457 	n = top - at;
2458 	if (n <= 0) {
2459 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2460 			intel_pmu_save_and_restart_reload(event, 0);
2461 		return;
2462 	}
2463 
2464 	__intel_pmu_pebs_events(event, iregs, data, at, top, 0, n,
2465 				setup_pebs_fixed_sample_data);
2466 }
2467 
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,u64 mask)2468 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2469 {
2470 	u64 pebs_enabled = cpuc->pebs_enabled & mask;
2471 	struct perf_event *event;
2472 	int bit;
2473 
2474 	/*
2475 	 * The drain_pebs() could be called twice in a short period
2476 	 * for auto-reload event in pmu::read(). There are no
2477 	 * overflows have happened in between.
2478 	 * It needs to call intel_pmu_save_and_restart_reload() to
2479 	 * update the event->count for this case.
2480 	 */
2481 	for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2482 		event = cpuc->events[bit];
2483 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2484 			intel_pmu_save_and_restart_reload(event, 0);
2485 	}
2486 }
2487 
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2488 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2489 {
2490 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2491 	struct debug_store *ds = cpuc->ds;
2492 	struct perf_event *event;
2493 	void *base, *at, *top;
2494 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2495 	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2496 	int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2497 	int bit, i, size;
2498 	u64 mask;
2499 
2500 	if (!x86_pmu.pebs_active)
2501 		return;
2502 
2503 	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2504 	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2505 
2506 	ds->pebs_index = ds->pebs_buffer_base;
2507 
2508 	mask = x86_pmu.pebs_events_mask;
2509 	size = max_pebs_events;
2510 	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2511 		mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2512 		size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2513 	}
2514 
2515 	if (unlikely(base >= top)) {
2516 		intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2517 		return;
2518 	}
2519 
2520 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2521 		struct pebs_record_nhm *p = at;
2522 		u64 pebs_status;
2523 
2524 		pebs_status = p->status & cpuc->pebs_enabled;
2525 		pebs_status &= mask;
2526 
2527 		/* PEBS v3 has more accurate status bits */
2528 		if (x86_pmu.intel_cap.pebs_format >= 3) {
2529 			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2530 				counts[bit]++;
2531 
2532 			continue;
2533 		}
2534 
2535 		/*
2536 		 * On some CPUs the PEBS status can be zero when PEBS is
2537 		 * racing with clearing of GLOBAL_STATUS.
2538 		 *
2539 		 * Normally we would drop that record, but in the
2540 		 * case when there is only a single active PEBS event
2541 		 * we can assume it's for that event.
2542 		 */
2543 		if (!pebs_status && cpuc->pebs_enabled &&
2544 			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2545 			pebs_status = p->status = cpuc->pebs_enabled;
2546 
2547 		bit = find_first_bit((unsigned long *)&pebs_status,
2548 				     max_pebs_events);
2549 
2550 		if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2551 			continue;
2552 
2553 		/*
2554 		 * The PEBS hardware does not deal well with the situation
2555 		 * when events happen near to each other and multiple bits
2556 		 * are set. But it should happen rarely.
2557 		 *
2558 		 * If these events include one PEBS and multiple non-PEBS
2559 		 * events, it doesn't impact PEBS record. The record will
2560 		 * be handled normally. (slow path)
2561 		 *
2562 		 * If these events include two or more PEBS events, the
2563 		 * records for the events can be collapsed into a single
2564 		 * one, and it's not possible to reconstruct all events
2565 		 * that caused the PEBS record. It's called collision.
2566 		 * If collision happened, the record will be dropped.
2567 		 */
2568 		if (pebs_status != (1ULL << bit)) {
2569 			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2570 				error[i]++;
2571 			continue;
2572 		}
2573 
2574 		counts[bit]++;
2575 	}
2576 
2577 	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2578 		if ((counts[bit] == 0) && (error[bit] == 0))
2579 			continue;
2580 
2581 		event = cpuc->events[bit];
2582 		if (WARN_ON_ONCE(!event))
2583 			continue;
2584 
2585 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2586 			continue;
2587 
2588 		/* log dropped samples number */
2589 		if (error[bit]) {
2590 			perf_log_lost_samples(event, error[bit]);
2591 
2592 			if (iregs)
2593 				perf_event_account_interrupt(event);
2594 		}
2595 
2596 		if (counts[bit]) {
2597 			__intel_pmu_pebs_events(event, iregs, data, base,
2598 						top, bit, counts[bit],
2599 						setup_pebs_fixed_sample_data);
2600 		}
2601 	}
2602 }
2603 
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2604 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2605 {
2606 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2607 	void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS];
2608 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2609 	struct debug_store *ds = cpuc->ds;
2610 	struct x86_perf_regs perf_regs;
2611 	struct pt_regs *regs = &perf_regs.regs;
2612 	struct pebs_basic *basic;
2613 	struct perf_event *event;
2614 	void *base, *at, *top;
2615 	int bit;
2616 	u64 mask;
2617 
2618 	if (!x86_pmu.pebs_active)
2619 		return;
2620 
2621 	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2622 	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2623 
2624 	ds->pebs_index = ds->pebs_buffer_base;
2625 
2626 	mask = hybrid(cpuc->pmu, pebs_events_mask) |
2627 	       (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2628 
2629 	if (unlikely(base >= top)) {
2630 		intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2631 		return;
2632 	}
2633 
2634 	if (!iregs)
2635 		iregs = &dummy_iregs;
2636 
2637 	/* Process all but the last event for each counter. */
2638 	for (at = base; at < top; at += basic->format_size) {
2639 		u64 pebs_status;
2640 
2641 		basic = at;
2642 		if (basic->format_size != cpuc->pebs_record_size)
2643 			continue;
2644 
2645 		pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask;
2646 		for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) {
2647 			event = cpuc->events[bit];
2648 
2649 			if (WARN_ON_ONCE(!event) ||
2650 			    WARN_ON_ONCE(!event->attr.precise_ip))
2651 				continue;
2652 
2653 			if (counts[bit]++) {
2654 				__intel_pmu_pebs_event(event, iregs, regs, data, last[bit],
2655 						       setup_pebs_adaptive_sample_data);
2656 			}
2657 			last[bit] = at;
2658 		}
2659 	}
2660 
2661 	for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2662 		if (!counts[bit])
2663 			continue;
2664 
2665 		event = cpuc->events[bit];
2666 
2667 		__intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit],
2668 					    counts[bit], setup_pebs_adaptive_sample_data);
2669 	}
2670 }
2671 
2672 /*
2673  * PEBS probe and setup
2674  */
2675 
intel_pebs_init(void)2676 void __init intel_pebs_init(void)
2677 {
2678 	/*
2679 	 * No support for 32bit formats
2680 	 */
2681 	if (!boot_cpu_has(X86_FEATURE_DTES64))
2682 		return;
2683 
2684 	x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS);
2685 	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2686 	if (x86_pmu.version <= 4)
2687 		x86_pmu.pebs_no_isolation = 1;
2688 
2689 	if (x86_pmu.ds_pebs) {
2690 		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2691 		char *pebs_qual = "";
2692 		int format = x86_pmu.intel_cap.pebs_format;
2693 
2694 		if (format < 4)
2695 			x86_pmu.intel_cap.pebs_baseline = 0;
2696 
2697 		x86_pmu.pebs_enable = intel_pmu_pebs_enable;
2698 		x86_pmu.pebs_disable = intel_pmu_pebs_disable;
2699 		x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all;
2700 		x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all;
2701 
2702 		switch (format) {
2703 		case 0:
2704 			pr_cont("PEBS fmt0%c, ", pebs_type);
2705 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2706 			/*
2707 			 * Using >PAGE_SIZE buffers makes the WRMSR to
2708 			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2709 			 * mysteriously hang on Core2.
2710 			 *
2711 			 * As a workaround, we don't do this.
2712 			 */
2713 			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2714 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2715 			break;
2716 
2717 		case 1:
2718 			pr_cont("PEBS fmt1%c, ", pebs_type);
2719 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2720 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2721 			break;
2722 
2723 		case 2:
2724 			pr_cont("PEBS fmt2%c, ", pebs_type);
2725 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2726 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2727 			break;
2728 
2729 		case 3:
2730 			pr_cont("PEBS fmt3%c, ", pebs_type);
2731 			x86_pmu.pebs_record_size =
2732 						sizeof(struct pebs_record_skl);
2733 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2734 			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2735 			break;
2736 
2737 		case 6:
2738 			if (x86_pmu.intel_cap.pebs_baseline) {
2739 				x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
2740 				x86_pmu.late_setup = intel_pmu_late_setup;
2741 			}
2742 			fallthrough;
2743 		case 5:
2744 			x86_pmu.pebs_ept = 1;
2745 			fallthrough;
2746 		case 4:
2747 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2748 			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2749 			if (x86_pmu.intel_cap.pebs_baseline) {
2750 				x86_pmu.large_pebs_flags |=
2751 					PERF_SAMPLE_BRANCH_STACK |
2752 					PERF_SAMPLE_TIME;
2753 				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2754 				x86_pmu.pebs_capable = ~0ULL;
2755 				pebs_qual = "-baseline";
2756 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2757 			} else {
2758 				/* Only basic record supported */
2759 				x86_pmu.large_pebs_flags &=
2760 					~(PERF_SAMPLE_ADDR |
2761 					  PERF_SAMPLE_TIME |
2762 					  PERF_SAMPLE_DATA_SRC |
2763 					  PERF_SAMPLE_TRANSACTION |
2764 					  PERF_SAMPLE_REGS_USER |
2765 					  PERF_SAMPLE_REGS_INTR);
2766 			}
2767 			pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual);
2768 
2769 			/*
2770 			 * The PEBS-via-PT is not supported on hybrid platforms,
2771 			 * because not all CPUs of a hybrid machine support it.
2772 			 * The global x86_pmu.intel_cap, which only contains the
2773 			 * common capabilities, is used to check the availability
2774 			 * of the feature. The per-PMU pebs_output_pt_available
2775 			 * in a hybrid machine should be ignored.
2776 			 */
2777 			if (x86_pmu.intel_cap.pebs_output_pt_available) {
2778 				pr_cont("PEBS-via-PT, ");
2779 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2780 			}
2781 
2782 			break;
2783 
2784 		default:
2785 			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2786 			x86_pmu.ds_pebs = 0;
2787 		}
2788 	}
2789 }
2790 
perf_restore_debug_store(void)2791 void perf_restore_debug_store(void)
2792 {
2793 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2794 
2795 	if (!x86_pmu.bts && !x86_pmu.ds_pebs)
2796 		return;
2797 
2798 	wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds);
2799 }
2800