1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/msr.h>
14 #include <asm/timer.h>
15
16 #include "../perf_event.h"
17
18 /* Waste a full page so it can be mapped into the cpu_entry_area */
19 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
20
21 /* The size of a BTS record in bytes: */
22 #define BTS_RECORD_SIZE 24
23
24 #define PEBS_FIXUP_SIZE PAGE_SIZE
25
26 /*
27 * pebs_record_32 for p4 and core not supported
28
29 struct pebs_record_32 {
30 u32 flags, ip;
31 u32 ax, bc, cx, dx;
32 u32 si, di, bp, sp;
33 };
34
35 */
36
37 union intel_x86_pebs_dse {
38 u64 val;
39 struct {
40 unsigned int ld_dse:4;
41 unsigned int ld_stlb_miss:1;
42 unsigned int ld_locked:1;
43 unsigned int ld_data_blk:1;
44 unsigned int ld_addr_blk:1;
45 unsigned int ld_reserved:24;
46 };
47 struct {
48 unsigned int st_l1d_hit:1;
49 unsigned int st_reserved1:3;
50 unsigned int st_stlb_miss:1;
51 unsigned int st_locked:1;
52 unsigned int st_reserved2:26;
53 };
54 struct {
55 unsigned int st_lat_dse:4;
56 unsigned int st_lat_stlb_miss:1;
57 unsigned int st_lat_locked:1;
58 unsigned int ld_reserved3:26;
59 };
60 struct {
61 unsigned int mtl_dse:5;
62 unsigned int mtl_locked:1;
63 unsigned int mtl_stlb_miss:1;
64 unsigned int mtl_fwd_blk:1;
65 unsigned int ld_reserved4:24;
66 };
67 struct {
68 unsigned int lnc_dse:8;
69 unsigned int ld_reserved5:2;
70 unsigned int lnc_stlb_miss:1;
71 unsigned int lnc_locked:1;
72 unsigned int lnc_data_blk:1;
73 unsigned int lnc_addr_blk:1;
74 unsigned int ld_reserved6:18;
75 };
76 };
77
78
79 /*
80 * Map PEBS Load Latency Data Source encodings to generic
81 * memory data source information
82 */
83 #define P(a, b) PERF_MEM_S(a, b)
84 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
85 #define LEVEL(x) P(LVLNUM, x)
86 #define REM P(REMOTE, REMOTE)
87 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
88
89 /* Version for Sandy Bridge and later */
90 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
91 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
92 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
93 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
94 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
95 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
96 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
97 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
98 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
99 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
100 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
101 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
102 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
103 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
104 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
105 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
106 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
107 };
108
109 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)110 void __init intel_pmu_pebs_data_source_nhm(void)
111 {
112 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
113 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
115 }
116
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)117 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
118 {
119 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
120
121 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
122 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
123 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
124 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
125 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
126 }
127
intel_pmu_pebs_data_source_skl(bool pmem)128 void __init intel_pmu_pebs_data_source_skl(bool pmem)
129 {
130 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
131 }
132
__intel_pmu_pebs_data_source_grt(u64 * data_source)133 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
134 {
135 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
136 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
137 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
138 }
139
intel_pmu_pebs_data_source_grt(void)140 void __init intel_pmu_pebs_data_source_grt(void)
141 {
142 __intel_pmu_pebs_data_source_grt(pebs_data_source);
143 }
144
intel_pmu_pebs_data_source_adl(void)145 void __init intel_pmu_pebs_data_source_adl(void)
146 {
147 u64 *data_source;
148
149 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
150 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
151 __intel_pmu_pebs_data_source_skl(false, data_source);
152
153 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
154 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
155 __intel_pmu_pebs_data_source_grt(data_source);
156 }
157
__intel_pmu_pebs_data_source_cmt(u64 * data_source)158 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
159 {
160 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
161 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
162 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE);
163 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
164 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
165 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
166 }
167
intel_pmu_pebs_data_source_mtl(void)168 void __init intel_pmu_pebs_data_source_mtl(void)
169 {
170 u64 *data_source;
171
172 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
173 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
174 __intel_pmu_pebs_data_source_skl(false, data_source);
175
176 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
177 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
178 __intel_pmu_pebs_data_source_cmt(data_source);
179 }
180
intel_pmu_pebs_data_source_arl_h(void)181 void __init intel_pmu_pebs_data_source_arl_h(void)
182 {
183 u64 *data_source;
184
185 intel_pmu_pebs_data_source_lnl();
186
187 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
188 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
189 __intel_pmu_pebs_data_source_cmt(data_source);
190 }
191
intel_pmu_pebs_data_source_cmt(void)192 void __init intel_pmu_pebs_data_source_cmt(void)
193 {
194 __intel_pmu_pebs_data_source_cmt(pebs_data_source);
195 }
196
197 /* Version for Lion Cove and later */
198 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
199 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */
200 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */
201 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */
202 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */
203 0, /* 0x04: Reserved */
204 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */
205 OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */
206 0, /* 0x07: Reserved */
207 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */
208 0, /* 0x09: Reserved */
209 0, /* 0x0a: Reserved */
210 0, /* 0x0b: Reserved */
211 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */
212 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */
213 0, /* 0x0e: Reserved */
214 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */
215 OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */
216 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
217 };
218
intel_pmu_pebs_data_source_lnl(void)219 void __init intel_pmu_pebs_data_source_lnl(void)
220 {
221 u64 *data_source;
222
223 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
224 memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
225
226 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
227 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
228 __intel_pmu_pebs_data_source_cmt(data_source);
229 }
230
precise_store_data(u64 status)231 static u64 precise_store_data(u64 status)
232 {
233 union intel_x86_pebs_dse dse;
234 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
235
236 dse.val = status;
237
238 /*
239 * bit 4: TLB access
240 * 1 = stored missed 2nd level TLB
241 *
242 * so it either hit the walker or the OS
243 * otherwise hit 2nd level TLB
244 */
245 if (dse.st_stlb_miss)
246 val |= P(TLB, MISS);
247 else
248 val |= P(TLB, HIT);
249
250 /*
251 * bit 0: hit L1 data cache
252 * if not set, then all we know is that
253 * it missed L1D
254 */
255 if (dse.st_l1d_hit)
256 val |= P(LVL, HIT);
257 else
258 val |= P(LVL, MISS);
259
260 /*
261 * bit 5: Locked prefix
262 */
263 if (dse.st_locked)
264 val |= P(LOCK, LOCKED);
265
266 return val;
267 }
268
precise_datala_hsw(struct perf_event * event,u64 status)269 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
270 {
271 union perf_mem_data_src dse;
272
273 dse.val = PERF_MEM_NA;
274
275 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
276 dse.mem_op = PERF_MEM_OP_STORE;
277 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
278 dse.mem_op = PERF_MEM_OP_LOAD;
279
280 /*
281 * L1 info only valid for following events:
282 *
283 * MEM_UOPS_RETIRED.STLB_MISS_STORES
284 * MEM_UOPS_RETIRED.LOCK_STORES
285 * MEM_UOPS_RETIRED.SPLIT_STORES
286 * MEM_UOPS_RETIRED.ALL_STORES
287 */
288 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
289 if (status & 1)
290 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
291 else
292 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
293 }
294 return dse.val;
295 }
296
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)297 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
298 {
299 /*
300 * TLB access
301 * 0 = did not miss 2nd level TLB
302 * 1 = missed 2nd level TLB
303 */
304 if (tlb)
305 *val |= P(TLB, MISS) | P(TLB, L2);
306 else
307 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
308
309 /* locked prefix */
310 if (lock)
311 *val |= P(LOCK, LOCKED);
312 }
313
314 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)315 static u64 __grt_latency_data(struct perf_event *event, u64 status,
316 u8 dse, bool tlb, bool lock, bool blk)
317 {
318 u64 val;
319
320 WARN_ON_ONCE(is_hybrid() &&
321 hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
322
323 dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
324 val = hybrid_var(event->pmu, pebs_data_source)[dse];
325
326 pebs_set_tlb_lock(&val, tlb, lock);
327
328 if (blk)
329 val |= P(BLK, DATA);
330 else
331 val |= P(BLK, NA);
332
333 return val;
334 }
335
grt_latency_data(struct perf_event * event,u64 status)336 u64 grt_latency_data(struct perf_event *event, u64 status)
337 {
338 union intel_x86_pebs_dse dse;
339
340 dse.val = status;
341
342 return __grt_latency_data(event, status, dse.ld_dse,
343 dse.ld_locked, dse.ld_stlb_miss,
344 dse.ld_data_blk);
345 }
346
347 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)348 u64 cmt_latency_data(struct perf_event *event, u64 status)
349 {
350 union intel_x86_pebs_dse dse;
351
352 dse.val = status;
353
354 return __grt_latency_data(event, status, dse.mtl_dse,
355 dse.mtl_stlb_miss, dse.mtl_locked,
356 dse.mtl_fwd_blk);
357 }
358
lnc_latency_data(struct perf_event * event,u64 status)359 static u64 lnc_latency_data(struct perf_event *event, u64 status)
360 {
361 union intel_x86_pebs_dse dse;
362 union perf_mem_data_src src;
363 u64 val;
364
365 dse.val = status;
366
367 /* LNC core latency data */
368 val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
369 if (!val)
370 val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
371
372 if (dse.lnc_stlb_miss)
373 val |= P(TLB, MISS) | P(TLB, L2);
374 else
375 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
376
377 if (dse.lnc_locked)
378 val |= P(LOCK, LOCKED);
379
380 if (dse.lnc_data_blk)
381 val |= P(BLK, DATA);
382 if (dse.lnc_addr_blk)
383 val |= P(BLK, ADDR);
384 if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
385 val |= P(BLK, NA);
386
387 src.val = val;
388 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
389 src.mem_op = P(OP, STORE);
390
391 return src.val;
392 }
393
lnl_latency_data(struct perf_event * event,u64 status)394 u64 lnl_latency_data(struct perf_event *event, u64 status)
395 {
396 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
397
398 if (pmu->pmu_type == hybrid_small)
399 return cmt_latency_data(event, status);
400
401 return lnc_latency_data(event, status);
402 }
403
arl_h_latency_data(struct perf_event * event,u64 status)404 u64 arl_h_latency_data(struct perf_event *event, u64 status)
405 {
406 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
407
408 if (pmu->pmu_type == hybrid_tiny)
409 return cmt_latency_data(event, status);
410
411 return lnl_latency_data(event, status);
412 }
413
load_latency_data(struct perf_event * event,u64 status)414 static u64 load_latency_data(struct perf_event *event, u64 status)
415 {
416 union intel_x86_pebs_dse dse;
417 u64 val;
418
419 dse.val = status;
420
421 /*
422 * use the mapping table for bit 0-3
423 */
424 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
425
426 /*
427 * Nehalem models do not support TLB, Lock infos
428 */
429 if (x86_pmu.pebs_no_tlb) {
430 val |= P(TLB, NA) | P(LOCK, NA);
431 return val;
432 }
433
434 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
435
436 /*
437 * Ice Lake and earlier models do not support block infos.
438 */
439 if (!x86_pmu.pebs_block) {
440 val |= P(BLK, NA);
441 return val;
442 }
443 /*
444 * bit 6: load was blocked since its data could not be forwarded
445 * from a preceding store
446 */
447 if (dse.ld_data_blk)
448 val |= P(BLK, DATA);
449
450 /*
451 * bit 7: load was blocked due to potential address conflict with
452 * a preceding store
453 */
454 if (dse.ld_addr_blk)
455 val |= P(BLK, ADDR);
456
457 if (!dse.ld_data_blk && !dse.ld_addr_blk)
458 val |= P(BLK, NA);
459
460 return val;
461 }
462
store_latency_data(struct perf_event * event,u64 status)463 static u64 store_latency_data(struct perf_event *event, u64 status)
464 {
465 union intel_x86_pebs_dse dse;
466 union perf_mem_data_src src;
467 u64 val;
468
469 dse.val = status;
470
471 /*
472 * use the mapping table for bit 0-3
473 */
474 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
475
476 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
477
478 val |= P(BLK, NA);
479
480 /*
481 * the pebs_data_source table is only for loads
482 * so override the mem_op to say STORE instead
483 */
484 src.val = val;
485 src.mem_op = P(OP,STORE);
486
487 return src.val;
488 }
489
490 struct pebs_record_core {
491 u64 flags, ip;
492 u64 ax, bx, cx, dx;
493 u64 si, di, bp, sp;
494 u64 r8, r9, r10, r11;
495 u64 r12, r13, r14, r15;
496 };
497
498 struct pebs_record_nhm {
499 u64 flags, ip;
500 u64 ax, bx, cx, dx;
501 u64 si, di, bp, sp;
502 u64 r8, r9, r10, r11;
503 u64 r12, r13, r14, r15;
504 u64 status, dla, dse, lat;
505 };
506
507 /*
508 * Same as pebs_record_nhm, with two additional fields.
509 */
510 struct pebs_record_hsw {
511 u64 flags, ip;
512 u64 ax, bx, cx, dx;
513 u64 si, di, bp, sp;
514 u64 r8, r9, r10, r11;
515 u64 r12, r13, r14, r15;
516 u64 status, dla, dse, lat;
517 u64 real_ip, tsx_tuning;
518 };
519
520 union hsw_tsx_tuning {
521 struct {
522 u32 cycles_last_block : 32,
523 hle_abort : 1,
524 rtm_abort : 1,
525 instruction_abort : 1,
526 non_instruction_abort : 1,
527 retry : 1,
528 data_conflict : 1,
529 capacity_writes : 1,
530 capacity_reads : 1;
531 };
532 u64 value;
533 };
534
535 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
536
537 /* Same as HSW, plus TSC */
538
539 struct pebs_record_skl {
540 u64 flags, ip;
541 u64 ax, bx, cx, dx;
542 u64 si, di, bp, sp;
543 u64 r8, r9, r10, r11;
544 u64 r12, r13, r14, r15;
545 u64 status, dla, dse, lat;
546 u64 real_ip, tsx_tuning;
547 u64 tsc;
548 };
549
init_debug_store_on_cpu(int cpu)550 void init_debug_store_on_cpu(int cpu)
551 {
552 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
553
554 if (!ds)
555 return;
556
557 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
558 (u32)((u64)(unsigned long)ds),
559 (u32)((u64)(unsigned long)ds >> 32));
560 }
561
fini_debug_store_on_cpu(int cpu)562 void fini_debug_store_on_cpu(int cpu)
563 {
564 if (!per_cpu(cpu_hw_events, cpu).ds)
565 return;
566
567 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
568 }
569
570 static DEFINE_PER_CPU(void *, insn_buffer);
571
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)572 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
573 {
574 unsigned long start = (unsigned long)cea;
575 phys_addr_t pa;
576 size_t msz = 0;
577
578 pa = virt_to_phys(addr);
579
580 preempt_disable();
581 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
582 cea_set_pte(cea, pa, prot);
583
584 /*
585 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
586 * all TLB entries for it.
587 */
588 flush_tlb_kernel_range(start, start + size);
589 preempt_enable();
590 }
591
ds_clear_cea(void * cea,size_t size)592 static void ds_clear_cea(void *cea, size_t size)
593 {
594 unsigned long start = (unsigned long)cea;
595 size_t msz = 0;
596
597 preempt_disable();
598 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
599 cea_set_pte(cea, 0, PAGE_NONE);
600
601 flush_tlb_kernel_range(start, start + size);
602 preempt_enable();
603 }
604
dsalloc_pages(size_t size,gfp_t flags,int cpu)605 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
606 {
607 unsigned int order = get_order(size);
608 int node = cpu_to_node(cpu);
609 struct page *page;
610
611 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
612 return page ? page_address(page) : NULL;
613 }
614
dsfree_pages(const void * buffer,size_t size)615 static void dsfree_pages(const void *buffer, size_t size)
616 {
617 if (buffer)
618 free_pages((unsigned long)buffer, get_order(size));
619 }
620
alloc_pebs_buffer(int cpu)621 static int alloc_pebs_buffer(int cpu)
622 {
623 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
624 struct debug_store *ds = hwev->ds;
625 size_t bsiz = x86_pmu.pebs_buffer_size;
626 int max, node = cpu_to_node(cpu);
627 void *buffer, *insn_buff, *cea;
628
629 if (!x86_pmu.ds_pebs)
630 return 0;
631
632 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
633 if (unlikely(!buffer))
634 return -ENOMEM;
635
636 /*
637 * HSW+ already provides us the eventing ip; no need to allocate this
638 * buffer then.
639 */
640 if (x86_pmu.intel_cap.pebs_format < 2) {
641 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
642 if (!insn_buff) {
643 dsfree_pages(buffer, bsiz);
644 return -ENOMEM;
645 }
646 per_cpu(insn_buffer, cpu) = insn_buff;
647 }
648 hwev->ds_pebs_vaddr = buffer;
649 /* Update the cpu entry area mapping */
650 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
651 ds->pebs_buffer_base = (unsigned long) cea;
652 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
653 ds->pebs_index = ds->pebs_buffer_base;
654 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
655 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
656 return 0;
657 }
658
release_pebs_buffer(int cpu)659 static void release_pebs_buffer(int cpu)
660 {
661 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
662 void *cea;
663
664 if (!x86_pmu.ds_pebs)
665 return;
666
667 kfree(per_cpu(insn_buffer, cpu));
668 per_cpu(insn_buffer, cpu) = NULL;
669
670 /* Clear the fixmap */
671 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
672 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
673 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
674 hwev->ds_pebs_vaddr = NULL;
675 }
676
alloc_bts_buffer(int cpu)677 static int alloc_bts_buffer(int cpu)
678 {
679 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
680 struct debug_store *ds = hwev->ds;
681 void *buffer, *cea;
682 int max;
683
684 if (!x86_pmu.bts)
685 return 0;
686
687 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
688 if (unlikely(!buffer)) {
689 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
690 return -ENOMEM;
691 }
692 hwev->ds_bts_vaddr = buffer;
693 /* Update the fixmap */
694 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
695 ds->bts_buffer_base = (unsigned long) cea;
696 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
697 ds->bts_index = ds->bts_buffer_base;
698 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
699 ds->bts_absolute_maximum = ds->bts_buffer_base +
700 max * BTS_RECORD_SIZE;
701 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
702 (max / 16) * BTS_RECORD_SIZE;
703 return 0;
704 }
705
release_bts_buffer(int cpu)706 static void release_bts_buffer(int cpu)
707 {
708 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
709 void *cea;
710
711 if (!x86_pmu.bts)
712 return;
713
714 /* Clear the fixmap */
715 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
716 ds_clear_cea(cea, BTS_BUFFER_SIZE);
717 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
718 hwev->ds_bts_vaddr = NULL;
719 }
720
alloc_ds_buffer(int cpu)721 static int alloc_ds_buffer(int cpu)
722 {
723 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
724
725 memset(ds, 0, sizeof(*ds));
726 per_cpu(cpu_hw_events, cpu).ds = ds;
727 return 0;
728 }
729
release_ds_buffer(int cpu)730 static void release_ds_buffer(int cpu)
731 {
732 per_cpu(cpu_hw_events, cpu).ds = NULL;
733 }
734
release_ds_buffers(void)735 void release_ds_buffers(void)
736 {
737 int cpu;
738
739 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
740 return;
741
742 for_each_possible_cpu(cpu)
743 release_ds_buffer(cpu);
744
745 for_each_possible_cpu(cpu) {
746 /*
747 * Again, ignore errors from offline CPUs, they will no longer
748 * observe cpu_hw_events.ds and not program the DS_AREA when
749 * they come up.
750 */
751 fini_debug_store_on_cpu(cpu);
752 }
753
754 for_each_possible_cpu(cpu) {
755 if (x86_pmu.ds_pebs)
756 release_pebs_buffer(cpu);
757 release_bts_buffer(cpu);
758 }
759 }
760
reserve_ds_buffers(void)761 void reserve_ds_buffers(void)
762 {
763 int bts_err = 0, pebs_err = 0;
764 int cpu;
765
766 x86_pmu.bts_active = 0;
767
768 if (x86_pmu.ds_pebs)
769 x86_pmu.pebs_active = 0;
770
771 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
772 return;
773
774 if (!x86_pmu.bts)
775 bts_err = 1;
776
777 if (!x86_pmu.ds_pebs)
778 pebs_err = 1;
779
780 for_each_possible_cpu(cpu) {
781 if (alloc_ds_buffer(cpu)) {
782 bts_err = 1;
783 pebs_err = 1;
784 }
785
786 if (!bts_err && alloc_bts_buffer(cpu))
787 bts_err = 1;
788
789 if (x86_pmu.ds_pebs && !pebs_err &&
790 alloc_pebs_buffer(cpu))
791 pebs_err = 1;
792
793 if (bts_err && pebs_err)
794 break;
795 }
796
797 if (bts_err) {
798 for_each_possible_cpu(cpu)
799 release_bts_buffer(cpu);
800 }
801
802 if (x86_pmu.ds_pebs && pebs_err) {
803 for_each_possible_cpu(cpu)
804 release_pebs_buffer(cpu);
805 }
806
807 if (bts_err && pebs_err) {
808 for_each_possible_cpu(cpu)
809 release_ds_buffer(cpu);
810 } else {
811 if (x86_pmu.bts && !bts_err)
812 x86_pmu.bts_active = 1;
813
814 if (x86_pmu.ds_pebs && !pebs_err)
815 x86_pmu.pebs_active = 1;
816
817 for_each_possible_cpu(cpu) {
818 /*
819 * Ignores wrmsr_on_cpu() errors for offline CPUs they
820 * will get this call through intel_pmu_cpu_starting().
821 */
822 init_debug_store_on_cpu(cpu);
823 }
824 }
825 }
826
827 /*
828 * BTS
829 */
830
831 struct event_constraint bts_constraint =
832 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
833
intel_pmu_enable_bts(u64 config)834 void intel_pmu_enable_bts(u64 config)
835 {
836 unsigned long debugctlmsr;
837
838 debugctlmsr = get_debugctlmsr();
839
840 debugctlmsr |= DEBUGCTLMSR_TR;
841 debugctlmsr |= DEBUGCTLMSR_BTS;
842 if (config & ARCH_PERFMON_EVENTSEL_INT)
843 debugctlmsr |= DEBUGCTLMSR_BTINT;
844
845 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
846 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
847
848 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
849 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
850
851 update_debugctlmsr(debugctlmsr);
852 }
853
intel_pmu_disable_bts(void)854 void intel_pmu_disable_bts(void)
855 {
856 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
857 unsigned long debugctlmsr;
858
859 if (!cpuc->ds)
860 return;
861
862 debugctlmsr = get_debugctlmsr();
863
864 debugctlmsr &=
865 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
866 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
867
868 update_debugctlmsr(debugctlmsr);
869 }
870
intel_pmu_drain_bts_buffer(void)871 int intel_pmu_drain_bts_buffer(void)
872 {
873 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
874 struct debug_store *ds = cpuc->ds;
875 struct bts_record {
876 u64 from;
877 u64 to;
878 u64 flags;
879 };
880 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
881 struct bts_record *at, *base, *top;
882 struct perf_output_handle handle;
883 struct perf_event_header header;
884 struct perf_sample_data data;
885 unsigned long skip = 0;
886 struct pt_regs regs;
887
888 if (!event)
889 return 0;
890
891 if (!x86_pmu.bts_active)
892 return 0;
893
894 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
895 top = (struct bts_record *)(unsigned long)ds->bts_index;
896
897 if (top <= base)
898 return 0;
899
900 memset(®s, 0, sizeof(regs));
901
902 ds->bts_index = ds->bts_buffer_base;
903
904 perf_sample_data_init(&data, 0, event->hw.last_period);
905
906 /*
907 * BTS leaks kernel addresses in branches across the cpl boundary,
908 * such as traps or system calls, so unless the user is asking for
909 * kernel tracing (and right now it's not possible), we'd need to
910 * filter them out. But first we need to count how many of those we
911 * have in the current batch. This is an extra O(n) pass, however,
912 * it's much faster than the other one especially considering that
913 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
914 * alloc_bts_buffer()).
915 */
916 for (at = base; at < top; at++) {
917 /*
918 * Note that right now *this* BTS code only works if
919 * attr::exclude_kernel is set, but let's keep this extra
920 * check here in case that changes.
921 */
922 if (event->attr.exclude_kernel &&
923 (kernel_ip(at->from) || kernel_ip(at->to)))
924 skip++;
925 }
926
927 /*
928 * Prepare a generic sample, i.e. fill in the invariant fields.
929 * We will overwrite the from and to address before we output
930 * the sample.
931 */
932 rcu_read_lock();
933 perf_prepare_sample(&data, event, ®s);
934 perf_prepare_header(&header, &data, event, ®s);
935
936 if (perf_output_begin(&handle, &data, event,
937 header.size * (top - base - skip)))
938 goto unlock;
939
940 for (at = base; at < top; at++) {
941 /* Filter out any records that contain kernel addresses. */
942 if (event->attr.exclude_kernel &&
943 (kernel_ip(at->from) || kernel_ip(at->to)))
944 continue;
945
946 data.ip = at->from;
947 data.addr = at->to;
948
949 perf_output_sample(&handle, &header, &data, event);
950 }
951
952 perf_output_end(&handle);
953
954 /* There's new data available. */
955 event->hw.interrupts++;
956 event->pending_kill = POLL_IN;
957 unlock:
958 rcu_read_unlock();
959 return 1;
960 }
961
intel_pmu_drain_pebs_buffer(void)962 void intel_pmu_drain_pebs_buffer(void)
963 {
964 struct perf_sample_data data;
965
966 static_call(x86_pmu_drain_pebs)(NULL, &data);
967 }
968
969 /*
970 * PEBS
971 */
972 struct event_constraint intel_core2_pebs_event_constraints[] = {
973 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
974 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
975 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
976 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
977 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
978 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
979 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
980 EVENT_CONSTRAINT_END
981 };
982
983 struct event_constraint intel_atom_pebs_event_constraints[] = {
984 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
985 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
986 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
987 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
988 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
989 /* Allow all events as PEBS with no flags */
990 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
991 EVENT_CONSTRAINT_END
992 };
993
994 struct event_constraint intel_slm_pebs_event_constraints[] = {
995 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
996 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
997 /* Allow all events as PEBS with no flags */
998 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
999 EVENT_CONSTRAINT_END
1000 };
1001
1002 struct event_constraint intel_glm_pebs_event_constraints[] = {
1003 /* Allow all events as PEBS with no flags */
1004 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
1005 EVENT_CONSTRAINT_END
1006 };
1007
1008 struct event_constraint intel_grt_pebs_event_constraints[] = {
1009 /* Allow all events as PEBS with no flags */
1010 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1011 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1012 EVENT_CONSTRAINT_END
1013 };
1014
1015 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1016 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1017 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1018 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1019 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
1020 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1021 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1022 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1023 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1024 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1025 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1026 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1027 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1028 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1029 EVENT_CONSTRAINT_END
1030 };
1031
1032 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1033 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1034 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1035 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1036 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
1037 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1038 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1039 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
1040 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1041 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1042 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1043 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1044 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1045 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1046 EVENT_CONSTRAINT_END
1047 };
1048
1049 struct event_constraint intel_snb_pebs_event_constraints[] = {
1050 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1051 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1052 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1053 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1054 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1055 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1056 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1057 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1058 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1059 /* Allow all events as PEBS with no flags */
1060 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1061 EVENT_CONSTRAINT_END
1062 };
1063
1064 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1065 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1066 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1067 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1068 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1069 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1070 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1071 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1072 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1073 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1074 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1075 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1076 /* Allow all events as PEBS with no flags */
1077 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1078 EVENT_CONSTRAINT_END
1079 };
1080
1081 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1082 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1083 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1084 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1085 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1086 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1087 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1088 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1089 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1090 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1091 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1092 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1093 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1094 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1095 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1096 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1097 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1098 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1099 /* Allow all events as PEBS with no flags */
1100 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1101 EVENT_CONSTRAINT_END
1102 };
1103
1104 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1105 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1106 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1107 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1108 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1109 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1110 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1111 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1112 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1113 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1114 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1115 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1116 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1117 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1118 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1119 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1120 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1121 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1122 /* Allow all events as PEBS with no flags */
1123 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1124 EVENT_CONSTRAINT_END
1125 };
1126
1127
1128 struct event_constraint intel_skl_pebs_event_constraints[] = {
1129 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
1130 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1131 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1132 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1133 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1134 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
1135 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1136 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1137 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1138 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1139 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1140 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1141 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1142 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1143 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
1144 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
1145 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
1146 /* Allow all events as PEBS with no flags */
1147 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1148 EVENT_CONSTRAINT_END
1149 };
1150
1151 struct event_constraint intel_icl_pebs_event_constraints[] = {
1152 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
1153 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1154 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
1155
1156 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1157 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1158 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1159 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1160 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1161 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1162 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1163 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1164
1165 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1166
1167 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
1168
1169 /*
1170 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1171 * need the full constraints from the main table.
1172 */
1173
1174 EVENT_CONSTRAINT_END
1175 };
1176
1177 struct event_constraint intel_glc_pebs_event_constraints[] = {
1178 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1179 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1180
1181 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1182 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1183 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1184 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1185 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1186 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1187 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1188 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1189 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1190 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1191
1192 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1193
1194 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1195
1196 /*
1197 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1198 * need the full constraints from the main table.
1199 */
1200
1201 EVENT_CONSTRAINT_END
1202 };
1203
1204 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1205 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1206 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1207
1208 INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1209 INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1210 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1211 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1212 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1213 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1214 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1215 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1216 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1217
1218 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1219
1220 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1221
1222 /*
1223 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1224 * need the full constraints from the main table.
1225 */
1226
1227 EVENT_CONSTRAINT_END
1228 };
1229
intel_pebs_constraints(struct perf_event * event)1230 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1231 {
1232 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1233 struct event_constraint *c;
1234
1235 if (!event->attr.precise_ip)
1236 return NULL;
1237
1238 if (pebs_constraints) {
1239 for_each_event_constraint(c, pebs_constraints) {
1240 if (constraint_match(c, event->hw.config)) {
1241 event->hw.flags |= c->flags;
1242 return c;
1243 }
1244 }
1245 }
1246
1247 /*
1248 * Extended PEBS support
1249 * Makes the PEBS code search the normal constraints.
1250 */
1251 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1252 return NULL;
1253
1254 return &emptyconstraint;
1255 }
1256
1257 /*
1258 * We need the sched_task callback even for per-cpu events when we use
1259 * the large interrupt threshold, such that we can provide PID and TID
1260 * to PEBS samples.
1261 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1262 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1263 {
1264 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1265 return false;
1266
1267 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1268 }
1269
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1270 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1271 {
1272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1273
1274 if (!sched_in && pebs_needs_sched_cb(cpuc))
1275 intel_pmu_drain_pebs_buffer();
1276 }
1277
pebs_update_threshold(struct cpu_hw_events * cpuc)1278 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1279 {
1280 struct debug_store *ds = cpuc->ds;
1281 int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1282 u64 threshold;
1283 int reserved;
1284
1285 if (cpuc->n_pebs_via_pt)
1286 return;
1287
1288 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1289 reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1290 else
1291 reserved = max_pebs_events;
1292
1293 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1294 threshold = ds->pebs_absolute_maximum -
1295 reserved * cpuc->pebs_record_size;
1296 } else {
1297 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1298 }
1299
1300 ds->pebs_interrupt_threshold = threshold;
1301 }
1302
1303 #define PEBS_DATACFG_CNTRS(x) \
1304 ((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK)
1305
1306 #define PEBS_DATACFG_CNTR_BIT(x) \
1307 (((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT)
1308
1309 #define PEBS_DATACFG_FIX(x) \
1310 ((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK)
1311
1312 #define PEBS_DATACFG_FIX_BIT(x) \
1313 (((1ULL << (x)) & PEBS_DATACFG_FIX_MASK) \
1314 << PEBS_DATACFG_FIX_SHIFT)
1315
adaptive_pebs_record_size_update(void)1316 static void adaptive_pebs_record_size_update(void)
1317 {
1318 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1319 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1320 int sz = sizeof(struct pebs_basic);
1321
1322 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1323 sz += sizeof(struct pebs_meminfo);
1324 if (pebs_data_cfg & PEBS_DATACFG_GP)
1325 sz += sizeof(struct pebs_gprs);
1326 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1327 sz += sizeof(struct pebs_xmm);
1328 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1329 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1330 if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) {
1331 sz += sizeof(struct pebs_cntr_header);
1332
1333 /* Metrics base and Metrics Data */
1334 if (pebs_data_cfg & PEBS_DATACFG_METRICS)
1335 sz += 2 * sizeof(u64);
1336
1337 if (pebs_data_cfg & PEBS_DATACFG_CNTR) {
1338 sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) +
1339 hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) *
1340 sizeof(u64);
1341 }
1342 }
1343
1344 cpuc->pebs_record_size = sz;
1345 }
1346
__intel_pmu_pebs_update_cfg(struct perf_event * event,int idx,u64 * pebs_data_cfg)1347 static void __intel_pmu_pebs_update_cfg(struct perf_event *event,
1348 int idx, u64 *pebs_data_cfg)
1349 {
1350 if (is_metric_event(event)) {
1351 *pebs_data_cfg |= PEBS_DATACFG_METRICS;
1352 return;
1353 }
1354
1355 *pebs_data_cfg |= PEBS_DATACFG_CNTR;
1356
1357 if (idx >= INTEL_PMC_IDX_FIXED)
1358 *pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED);
1359 else
1360 *pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx);
1361 }
1362
1363
intel_pmu_pebs_late_setup(struct cpu_hw_events * cpuc)1364 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc)
1365 {
1366 struct perf_event *event;
1367 u64 pebs_data_cfg = 0;
1368 int i;
1369
1370 for (i = 0; i < cpuc->n_events; i++) {
1371 event = cpuc->event_list[i];
1372 if (!is_pebs_counter_event_group(event))
1373 continue;
1374 __intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg);
1375 }
1376
1377 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1378 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1379 }
1380
1381 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1382 PERF_SAMPLE_PHYS_ADDR | \
1383 PERF_SAMPLE_WEIGHT_TYPE | \
1384 PERF_SAMPLE_TRANSACTION | \
1385 PERF_SAMPLE_DATA_PAGE_SIZE)
1386
pebs_update_adaptive_cfg(struct perf_event * event)1387 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1388 {
1389 struct perf_event_attr *attr = &event->attr;
1390 u64 sample_type = attr->sample_type;
1391 u64 pebs_data_cfg = 0;
1392 bool gprs, tsx_weight;
1393
1394 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1395 attr->precise_ip > 1)
1396 return pebs_data_cfg;
1397
1398 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1399 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1400
1401 /*
1402 * We need GPRs when:
1403 * + user requested them
1404 * + precise_ip < 2 for the non event IP
1405 * + For RTM TSX weight we need GPRs for the abort code.
1406 */
1407 gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1408 (attr->sample_regs_intr & PEBS_GP_REGS)) ||
1409 ((sample_type & PERF_SAMPLE_REGS_USER) &&
1410 (attr->sample_regs_user & PEBS_GP_REGS));
1411
1412 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1413 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1414 x86_pmu.rtm_abort_event);
1415
1416 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1417 pebs_data_cfg |= PEBS_DATACFG_GP;
1418
1419 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1420 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1421 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1422
1423 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1424 /*
1425 * For now always log all LBRs. Could configure this
1426 * later.
1427 */
1428 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1429 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1430 }
1431
1432 return pebs_data_cfg;
1433 }
1434
1435 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1436 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1437 struct perf_event *event, bool add)
1438 {
1439 struct pmu *pmu = event->pmu;
1440
1441 /*
1442 * Make sure we get updated with the first PEBS event.
1443 * During removal, ->pebs_data_cfg is still valid for
1444 * the last PEBS event. Don't clear it.
1445 */
1446 if ((cpuc->n_pebs == 1) && add)
1447 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1448
1449 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1450 if (!needed_cb)
1451 perf_sched_cb_inc(pmu);
1452 else
1453 perf_sched_cb_dec(pmu);
1454
1455 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1456 }
1457
1458 /*
1459 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1460 * iterating all remaining PEBS events to reconstruct the config.
1461 */
1462 if (x86_pmu.intel_cap.pebs_baseline && add) {
1463 u64 pebs_data_cfg;
1464
1465 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1466 /*
1467 * Be sure to update the thresholds when we change the record.
1468 */
1469 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1470 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1471 }
1472 }
1473
intel_pmu_pebs_add(struct perf_event * event)1474 void intel_pmu_pebs_add(struct perf_event *event)
1475 {
1476 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1477 struct hw_perf_event *hwc = &event->hw;
1478 bool needed_cb = pebs_needs_sched_cb(cpuc);
1479
1480 cpuc->n_pebs++;
1481 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1482 cpuc->n_large_pebs++;
1483 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1484 cpuc->n_pebs_via_pt++;
1485
1486 pebs_update_state(needed_cb, cpuc, event, true);
1487 }
1488
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1489 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1490 {
1491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492
1493 if (!is_pebs_pt(event))
1494 return;
1495
1496 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1497 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1498 }
1499
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1500 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1501 {
1502 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503 struct hw_perf_event *hwc = &event->hw;
1504 struct debug_store *ds = cpuc->ds;
1505 u64 value = ds->pebs_event_reset[hwc->idx];
1506 u32 base = MSR_RELOAD_PMC0;
1507 unsigned int idx = hwc->idx;
1508
1509 if (!is_pebs_pt(event))
1510 return;
1511
1512 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1513 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1514
1515 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1516
1517 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1518 base = MSR_RELOAD_FIXED_CTR0;
1519 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1520 if (x86_pmu.intel_cap.pebs_format < 5)
1521 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1522 else
1523 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1524 }
1525 wrmsrq(base + idx, value);
1526 }
1527
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1528 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1529 {
1530 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1531 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1532 intel_pmu_drain_pebs_buffer();
1533 }
1534
intel_pmu_pebs_enable(struct perf_event * event)1535 void intel_pmu_pebs_enable(struct perf_event *event)
1536 {
1537 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1538 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1539 struct hw_perf_event *hwc = &event->hw;
1540 struct debug_store *ds = cpuc->ds;
1541 unsigned int idx = hwc->idx;
1542
1543 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1544
1545 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1546
1547 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1548 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1549 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1550 cpuc->pebs_enabled |= 1ULL << 63;
1551
1552 if (x86_pmu.intel_cap.pebs_baseline) {
1553 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1554 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1555 /*
1556 * drain_pebs() assumes uniform record size;
1557 * hence we need to drain when changing said
1558 * size.
1559 */
1560 intel_pmu_drain_pebs_buffer();
1561 adaptive_pebs_record_size_update();
1562 wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1563 cpuc->active_pebs_data_cfg = pebs_data_cfg;
1564 }
1565 }
1566 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1567 cpuc->pebs_data_cfg = pebs_data_cfg;
1568 pebs_update_threshold(cpuc);
1569 }
1570
1571 if (idx >= INTEL_PMC_IDX_FIXED) {
1572 if (x86_pmu.intel_cap.pebs_format < 5)
1573 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1574 else
1575 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1576 }
1577
1578 /*
1579 * Use auto-reload if possible to save a MSR write in the PMI.
1580 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1581 */
1582 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1583 ds->pebs_event_reset[idx] =
1584 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1585 } else {
1586 ds->pebs_event_reset[idx] = 0;
1587 }
1588
1589 intel_pmu_pebs_via_pt_enable(event);
1590 }
1591
intel_pmu_pebs_del(struct perf_event * event)1592 void intel_pmu_pebs_del(struct perf_event *event)
1593 {
1594 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1595 struct hw_perf_event *hwc = &event->hw;
1596 bool needed_cb = pebs_needs_sched_cb(cpuc);
1597
1598 cpuc->n_pebs--;
1599 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1600 cpuc->n_large_pebs--;
1601 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1602 cpuc->n_pebs_via_pt--;
1603
1604 pebs_update_state(needed_cb, cpuc, event, false);
1605 }
1606
intel_pmu_pebs_disable(struct perf_event * event)1607 void intel_pmu_pebs_disable(struct perf_event *event)
1608 {
1609 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1610 struct hw_perf_event *hwc = &event->hw;
1611
1612 intel_pmu_drain_large_pebs(cpuc);
1613
1614 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1615
1616 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1617 (x86_pmu.version < 5))
1618 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1619 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1620 cpuc->pebs_enabled &= ~(1ULL << 63);
1621
1622 intel_pmu_pebs_via_pt_disable(event);
1623
1624 if (cpuc->enabled)
1625 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1626
1627 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1628 }
1629
intel_pmu_pebs_enable_all(void)1630 void intel_pmu_pebs_enable_all(void)
1631 {
1632 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1633
1634 if (cpuc->pebs_enabled)
1635 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1636 }
1637
intel_pmu_pebs_disable_all(void)1638 void intel_pmu_pebs_disable_all(void)
1639 {
1640 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1641
1642 if (cpuc->pebs_enabled)
1643 __intel_pmu_pebs_disable_all();
1644 }
1645
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1646 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1647 {
1648 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1649 unsigned long from = cpuc->lbr_entries[0].from;
1650 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1651 unsigned long ip = regs->ip;
1652 int is_64bit = 0;
1653 void *kaddr;
1654 int size;
1655
1656 /*
1657 * We don't need to fixup if the PEBS assist is fault like
1658 */
1659 if (!x86_pmu.intel_cap.pebs_trap)
1660 return 1;
1661
1662 /*
1663 * No LBR entry, no basic block, no rewinding
1664 */
1665 if (!cpuc->lbr_stack.nr || !from || !to)
1666 return 0;
1667
1668 /*
1669 * Basic blocks should never cross user/kernel boundaries
1670 */
1671 if (kernel_ip(ip) != kernel_ip(to))
1672 return 0;
1673
1674 /*
1675 * unsigned math, either ip is before the start (impossible) or
1676 * the basic block is larger than 1 page (sanity)
1677 */
1678 if ((ip - to) > PEBS_FIXUP_SIZE)
1679 return 0;
1680
1681 /*
1682 * We sampled a branch insn, rewind using the LBR stack
1683 */
1684 if (ip == to) {
1685 set_linear_ip(regs, from);
1686 return 1;
1687 }
1688
1689 size = ip - to;
1690 if (!kernel_ip(ip)) {
1691 int bytes;
1692 u8 *buf = this_cpu_read(insn_buffer);
1693
1694 /* 'size' must fit our buffer, see above */
1695 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1696 if (bytes != 0)
1697 return 0;
1698
1699 kaddr = buf;
1700 } else {
1701 kaddr = (void *)to;
1702 }
1703
1704 do {
1705 struct insn insn;
1706
1707 old_to = to;
1708
1709 #ifdef CONFIG_X86_64
1710 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1711 #endif
1712 insn_init(&insn, kaddr, size, is_64bit);
1713
1714 /*
1715 * Make sure there was not a problem decoding the instruction.
1716 * This is doubly important because we have an infinite loop if
1717 * insn.length=0.
1718 */
1719 if (insn_get_length(&insn))
1720 break;
1721
1722 to += insn.length;
1723 kaddr += insn.length;
1724 size -= insn.length;
1725 } while (to < ip);
1726
1727 if (to == ip) {
1728 set_linear_ip(regs, old_to);
1729 return 1;
1730 }
1731
1732 /*
1733 * Even though we decoded the basic block, the instruction stream
1734 * never matched the given IP, either the TO or the IP got corrupted.
1735 */
1736 return 0;
1737 }
1738
intel_get_tsx_weight(u64 tsx_tuning)1739 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1740 {
1741 if (tsx_tuning) {
1742 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1743 return tsx.cycles_last_block;
1744 }
1745 return 0;
1746 }
1747
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1748 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1749 {
1750 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1751
1752 /* For RTM XABORTs also log the abort code from AX */
1753 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1754 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1755 return txn;
1756 }
1757
get_pebs_status(void * n)1758 static inline u64 get_pebs_status(void *n)
1759 {
1760 if (x86_pmu.intel_cap.pebs_format < 4)
1761 return ((struct pebs_record_nhm *)n)->status;
1762 return ((struct pebs_basic *)n)->applicable_counters;
1763 }
1764
1765 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1766 (PERF_X86_EVENT_PEBS_ST_HSW | \
1767 PERF_X86_EVENT_PEBS_LD_HSW | \
1768 PERF_X86_EVENT_PEBS_NA_HSW)
1769
get_data_src(struct perf_event * event,u64 aux)1770 static u64 get_data_src(struct perf_event *event, u64 aux)
1771 {
1772 u64 val = PERF_MEM_NA;
1773 int fl = event->hw.flags;
1774 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1775
1776 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1777 val = load_latency_data(event, aux);
1778 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1779 val = store_latency_data(event, aux);
1780 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1781 val = x86_pmu.pebs_latency_data(event, aux);
1782 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1783 val = precise_datala_hsw(event, aux);
1784 else if (fst)
1785 val = precise_store_data(aux);
1786 return val;
1787 }
1788
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1789 static void setup_pebs_time(struct perf_event *event,
1790 struct perf_sample_data *data,
1791 u64 tsc)
1792 {
1793 /* Converting to a user-defined clock is not supported yet. */
1794 if (event->attr.use_clockid != 0)
1795 return;
1796
1797 /*
1798 * Doesn't support the conversion when the TSC is unstable.
1799 * The TSC unstable case is a corner case and very unlikely to
1800 * happen. If it happens, the TSC in a PEBS record will be
1801 * dropped and fall back to perf_event_clock().
1802 */
1803 if (!using_native_sched_clock() || !sched_clock_stable())
1804 return;
1805
1806 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1807 data->sample_flags |= PERF_SAMPLE_TIME;
1808 }
1809
1810 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1811 PERF_SAMPLE_PHYS_ADDR | \
1812 PERF_SAMPLE_DATA_PAGE_SIZE)
1813
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1814 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1815 struct pt_regs *iregs, void *__pebs,
1816 struct perf_sample_data *data,
1817 struct pt_regs *regs)
1818 {
1819 /*
1820 * We cast to the biggest pebs_record but are careful not to
1821 * unconditionally access the 'extra' entries.
1822 */
1823 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1824 struct pebs_record_skl *pebs = __pebs;
1825 u64 sample_type;
1826 int fll;
1827
1828 if (pebs == NULL)
1829 return;
1830
1831 sample_type = event->attr.sample_type;
1832 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1833
1834 perf_sample_data_init(data, 0, event->hw.last_period);
1835
1836 /*
1837 * Use latency for weight (only avail with PEBS-LL)
1838 */
1839 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1840 data->weight.full = pebs->lat;
1841 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1842 }
1843
1844 /*
1845 * data.data_src encodes the data source
1846 */
1847 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1848 data->data_src.val = get_data_src(event, pebs->dse);
1849 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1850 }
1851
1852 /*
1853 * We must however always use iregs for the unwinder to stay sane; the
1854 * record BP,SP,IP can point into thin air when the record is from a
1855 * previous PMI context or an (I)RET happened between the record and
1856 * PMI.
1857 */
1858 perf_sample_save_callchain(data, event, iregs);
1859
1860 /*
1861 * We use the interrupt regs as a base because the PEBS record does not
1862 * contain a full regs set, specifically it seems to lack segment
1863 * descriptors, which get used by things like user_mode().
1864 *
1865 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1866 */
1867 *regs = *iregs;
1868
1869 /*
1870 * Initialize regs_>flags from PEBS,
1871 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1872 * i.e., do not rely on it being zero:
1873 */
1874 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1875
1876 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1877 regs->ax = pebs->ax;
1878 regs->bx = pebs->bx;
1879 regs->cx = pebs->cx;
1880 regs->dx = pebs->dx;
1881 regs->si = pebs->si;
1882 regs->di = pebs->di;
1883
1884 regs->bp = pebs->bp;
1885 regs->sp = pebs->sp;
1886
1887 #ifndef CONFIG_X86_32
1888 regs->r8 = pebs->r8;
1889 regs->r9 = pebs->r9;
1890 regs->r10 = pebs->r10;
1891 regs->r11 = pebs->r11;
1892 regs->r12 = pebs->r12;
1893 regs->r13 = pebs->r13;
1894 regs->r14 = pebs->r14;
1895 regs->r15 = pebs->r15;
1896 #endif
1897 }
1898
1899 if (event->attr.precise_ip > 1) {
1900 /*
1901 * Haswell and later processors have an 'eventing IP'
1902 * (real IP) which fixes the off-by-1 skid in hardware.
1903 * Use it when precise_ip >= 2 :
1904 */
1905 if (x86_pmu.intel_cap.pebs_format >= 2) {
1906 set_linear_ip(regs, pebs->real_ip);
1907 regs->flags |= PERF_EFLAGS_EXACT;
1908 } else {
1909 /* Otherwise, use PEBS off-by-1 IP: */
1910 set_linear_ip(regs, pebs->ip);
1911
1912 /*
1913 * With precise_ip >= 2, try to fix up the off-by-1 IP
1914 * using the LBR. If successful, the fixup function
1915 * corrects regs->ip and calls set_linear_ip() on regs:
1916 */
1917 if (intel_pmu_pebs_fixup_ip(regs))
1918 regs->flags |= PERF_EFLAGS_EXACT;
1919 }
1920 } else {
1921 /*
1922 * When precise_ip == 1, return the PEBS off-by-1 IP,
1923 * no fixup attempted:
1924 */
1925 set_linear_ip(regs, pebs->ip);
1926 }
1927
1928
1929 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1930 x86_pmu.intel_cap.pebs_format >= 1) {
1931 data->addr = pebs->dla;
1932 data->sample_flags |= PERF_SAMPLE_ADDR;
1933 }
1934
1935 if (x86_pmu.intel_cap.pebs_format >= 2) {
1936 /* Only set the TSX weight when no memory weight. */
1937 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1938 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1939 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1940 }
1941 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1942 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1943 pebs->ax);
1944 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1945 }
1946 }
1947
1948 /*
1949 * v3 supplies an accurate time stamp, so we use that
1950 * for the time stamp.
1951 *
1952 * We can only do this for the default trace clock.
1953 */
1954 if (x86_pmu.intel_cap.pebs_format >= 3)
1955 setup_pebs_time(event, data, pebs->tsc);
1956
1957 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1958 }
1959
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1960 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1961 struct pebs_gprs *gprs)
1962 {
1963 regs->ax = gprs->ax;
1964 regs->bx = gprs->bx;
1965 regs->cx = gprs->cx;
1966 regs->dx = gprs->dx;
1967 regs->si = gprs->si;
1968 regs->di = gprs->di;
1969 regs->bp = gprs->bp;
1970 regs->sp = gprs->sp;
1971 #ifndef CONFIG_X86_32
1972 regs->r8 = gprs->r8;
1973 regs->r9 = gprs->r9;
1974 regs->r10 = gprs->r10;
1975 regs->r11 = gprs->r11;
1976 regs->r12 = gprs->r12;
1977 regs->r13 = gprs->r13;
1978 regs->r14 = gprs->r14;
1979 regs->r15 = gprs->r15;
1980 #endif
1981 }
1982
intel_perf_event_update_pmc(struct perf_event * event,u64 pmc)1983 static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc)
1984 {
1985 int shift = 64 - x86_pmu.cntval_bits;
1986 struct hw_perf_event *hwc;
1987 u64 delta, prev_pmc;
1988
1989 /*
1990 * A recorded counter may not have an assigned event in the
1991 * following cases. The value should be dropped.
1992 * - An event is deleted. There is still an active PEBS event.
1993 * The PEBS record doesn't shrink on pmu::del().
1994 * If the counter of the deleted event once occurred in a PEBS
1995 * record, PEBS still records the counter until the counter is
1996 * reassigned.
1997 * - An event is stopped for some reason, e.g., throttled.
1998 * During this period, another event is added and takes the
1999 * counter of the stopped event. The stopped event is assigned
2000 * to another new and uninitialized counter, since the
2001 * x86_pmu_start(RELOAD) is not invoked for a stopped event.
2002 * The PEBS__DATA_CFG is updated regardless of the event state.
2003 * The uninitialized counter can be recorded in a PEBS record.
2004 * But the cpuc->events[uninitialized_counter] is always NULL,
2005 * because the event is stopped. The uninitialized value is
2006 * safely dropped.
2007 */
2008 if (!event)
2009 return;
2010
2011 hwc = &event->hw;
2012 prev_pmc = local64_read(&hwc->prev_count);
2013
2014 /* Only update the count when the PMU is disabled */
2015 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2016 local64_set(&hwc->prev_count, pmc);
2017
2018 delta = (pmc << shift) - (prev_pmc << shift);
2019 delta >>= shift;
2020
2021 local64_add(delta, &event->count);
2022 local64_sub(delta, &hwc->period_left);
2023 }
2024
__setup_pebs_counter_group(struct cpu_hw_events * cpuc,struct perf_event * event,struct pebs_cntr_header * cntr,void * next_record)2025 static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc,
2026 struct perf_event *event,
2027 struct pebs_cntr_header *cntr,
2028 void *next_record)
2029 {
2030 int bit;
2031
2032 for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) {
2033 intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record);
2034 next_record += sizeof(u64);
2035 }
2036
2037 for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) {
2038 /* The slots event will be handled with perf_metric later */
2039 if ((cntr->metrics == INTEL_CNTR_METRICS) &&
2040 (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) {
2041 next_record += sizeof(u64);
2042 continue;
2043 }
2044 intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED],
2045 *(u64 *)next_record);
2046 next_record += sizeof(u64);
2047 }
2048
2049 /* HW will reload the value right after the overflow. */
2050 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2051 local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period);
2052
2053 if (cntr->metrics == INTEL_CNTR_METRICS) {
2054 static_call(intel_pmu_update_topdown_event)
2055 (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS],
2056 (u64 *)next_record);
2057 next_record += 2 * sizeof(u64);
2058 }
2059 }
2060
2061 #define PEBS_LATENCY_MASK 0xffff
2062
2063 /*
2064 * With adaptive PEBS the layout depends on what fields are configured.
2065 */
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)2066 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
2067 struct pt_regs *iregs, void *__pebs,
2068 struct perf_sample_data *data,
2069 struct pt_regs *regs)
2070 {
2071 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2072 struct pebs_basic *basic = __pebs;
2073 void *next_record = basic + 1;
2074 u64 sample_type, format_group;
2075 struct pebs_meminfo *meminfo = NULL;
2076 struct pebs_gprs *gprs = NULL;
2077 struct x86_perf_regs *perf_regs;
2078
2079 if (basic == NULL)
2080 return;
2081
2082 perf_regs = container_of(regs, struct x86_perf_regs, regs);
2083 perf_regs->xmm_regs = NULL;
2084
2085 sample_type = event->attr.sample_type;
2086 format_group = basic->format_group;
2087 perf_sample_data_init(data, 0, event->hw.last_period);
2088
2089 setup_pebs_time(event, data, basic->tsc);
2090
2091 /*
2092 * We must however always use iregs for the unwinder to stay sane; the
2093 * record BP,SP,IP can point into thin air when the record is from a
2094 * previous PMI context or an (I)RET happened between the record and
2095 * PMI.
2096 */
2097 perf_sample_save_callchain(data, event, iregs);
2098
2099 *regs = *iregs;
2100 /* The ip in basic is EventingIP */
2101 set_linear_ip(regs, basic->ip);
2102 regs->flags = PERF_EFLAGS_EXACT;
2103
2104 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
2105 if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
2106 data->weight.var3_w = basic->retire_latency;
2107 else
2108 data->weight.var3_w = 0;
2109 }
2110
2111 /*
2112 * The record for MEMINFO is in front of GP
2113 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
2114 * Save the pointer here but process later.
2115 */
2116 if (format_group & PEBS_DATACFG_MEMINFO) {
2117 meminfo = next_record;
2118 next_record = meminfo + 1;
2119 }
2120
2121 if (format_group & PEBS_DATACFG_GP) {
2122 gprs = next_record;
2123 next_record = gprs + 1;
2124
2125 if (event->attr.precise_ip < 2) {
2126 set_linear_ip(regs, gprs->ip);
2127 regs->flags &= ~PERF_EFLAGS_EXACT;
2128 }
2129
2130 if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
2131 adaptive_pebs_save_regs(regs, gprs);
2132 }
2133
2134 if (format_group & PEBS_DATACFG_MEMINFO) {
2135 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2136 u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ?
2137 meminfo->cache_latency : meminfo->mem_latency;
2138
2139 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY)
2140 data->weight.var2_w = meminfo->instr_latency;
2141
2142 /*
2143 * Although meminfo::latency is defined as a u64,
2144 * only the lower 32 bits include the valid data
2145 * in practice on Ice Lake and earlier platforms.
2146 */
2147 if (sample_type & PERF_SAMPLE_WEIGHT) {
2148 data->weight.full = latency ?:
2149 intel_get_tsx_weight(meminfo->tsx_tuning);
2150 } else {
2151 data->weight.var1_dw = (u32)latency ?:
2152 intel_get_tsx_weight(meminfo->tsx_tuning);
2153 }
2154
2155 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2156 }
2157
2158 if (sample_type & PERF_SAMPLE_DATA_SRC) {
2159 data->data_src.val = get_data_src(event, meminfo->aux);
2160 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2161 }
2162
2163 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2164 data->addr = meminfo->address;
2165 data->sample_flags |= PERF_SAMPLE_ADDR;
2166 }
2167
2168 if (sample_type & PERF_SAMPLE_TRANSACTION) {
2169 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2170 gprs ? gprs->ax : 0);
2171 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2172 }
2173 }
2174
2175 if (format_group & PEBS_DATACFG_XMMS) {
2176 struct pebs_xmm *xmm = next_record;
2177
2178 next_record = xmm + 1;
2179 perf_regs->xmm_regs = xmm->xmm;
2180 }
2181
2182 if (format_group & PEBS_DATACFG_LBRS) {
2183 struct lbr_entry *lbr = next_record;
2184 int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT)
2185 & 0xff) + 1;
2186 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2187
2188 if (has_branch_stack(event)) {
2189 intel_pmu_store_pebs_lbrs(lbr);
2190 intel_pmu_lbr_save_brstack(data, cpuc, event);
2191 }
2192 }
2193
2194 if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) {
2195 struct pebs_cntr_header *cntr = next_record;
2196 unsigned int nr;
2197
2198 next_record += sizeof(struct pebs_cntr_header);
2199 /*
2200 * The PEBS_DATA_CFG is a global register, which is the
2201 * superset configuration for all PEBS events.
2202 * For the PEBS record of non-sample-read group, ignore
2203 * the counter snapshot fields.
2204 */
2205 if (is_pebs_counter_event_group(event)) {
2206 __setup_pebs_counter_group(cpuc, event, cntr, next_record);
2207 data->sample_flags |= PERF_SAMPLE_READ;
2208 }
2209
2210 nr = hweight32(cntr->cntr) + hweight32(cntr->fixed);
2211 if (cntr->metrics == INTEL_CNTR_METRICS)
2212 nr += 2;
2213 next_record += nr * sizeof(u64);
2214 }
2215
2216 WARN_ONCE(next_record != __pebs + basic->format_size,
2217 "PEBS record size %u, expected %llu, config %llx\n",
2218 basic->format_size,
2219 (u64)(next_record - __pebs),
2220 format_group);
2221 }
2222
2223 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2224 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2225 {
2226 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227 void *at;
2228 u64 pebs_status;
2229
2230 /*
2231 * fmt0 does not have a status bitfield (does not use
2232 * perf_record_nhm format)
2233 */
2234 if (x86_pmu.intel_cap.pebs_format < 1)
2235 return base;
2236
2237 if (base == NULL)
2238 return NULL;
2239
2240 for (at = base; at < top; at += cpuc->pebs_record_size) {
2241 unsigned long status = get_pebs_status(at);
2242
2243 if (test_bit(bit, (unsigned long *)&status)) {
2244 /* PEBS v3 has accurate status bits */
2245 if (x86_pmu.intel_cap.pebs_format >= 3)
2246 return at;
2247
2248 if (status == (1 << bit))
2249 return at;
2250
2251 /* clear non-PEBS bit and re-check */
2252 pebs_status = status & cpuc->pebs_enabled;
2253 pebs_status &= PEBS_COUNTER_MASK;
2254 if (pebs_status == (1 << bit))
2255 return at;
2256 }
2257 }
2258 return NULL;
2259 }
2260
2261 /*
2262 * Special variant of intel_pmu_save_and_restart() for auto-reload.
2263 */
2264 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2265 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2266 {
2267 struct hw_perf_event *hwc = &event->hw;
2268 int shift = 64 - x86_pmu.cntval_bits;
2269 u64 period = hwc->sample_period;
2270 u64 prev_raw_count, new_raw_count;
2271 s64 new, old;
2272
2273 WARN_ON(!period);
2274
2275 /*
2276 * drain_pebs() only happens when the PMU is disabled.
2277 */
2278 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2279
2280 prev_raw_count = local64_read(&hwc->prev_count);
2281 new_raw_count = rdpmc(hwc->event_base_rdpmc);
2282 local64_set(&hwc->prev_count, new_raw_count);
2283
2284 /*
2285 * Since the counter increments a negative counter value and
2286 * overflows on the sign switch, giving the interval:
2287 *
2288 * [-period, 0]
2289 *
2290 * the difference between two consecutive reads is:
2291 *
2292 * A) value2 - value1;
2293 * when no overflows have happened in between,
2294 *
2295 * B) (0 - value1) + (value2 - (-period));
2296 * when one overflow happened in between,
2297 *
2298 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2299 * when @n overflows happened in between.
2300 *
2301 * Here A) is the obvious difference, B) is the extension to the
2302 * discrete interval, where the first term is to the top of the
2303 * interval and the second term is from the bottom of the next
2304 * interval and C) the extension to multiple intervals, where the
2305 * middle term is the whole intervals covered.
2306 *
2307 * An equivalent of C, by reduction, is:
2308 *
2309 * value2 - value1 + n * period
2310 */
2311 new = ((s64)(new_raw_count << shift) >> shift);
2312 old = ((s64)(prev_raw_count << shift) >> shift);
2313 local64_add(new - old + count * period, &event->count);
2314
2315 local64_set(&hwc->period_left, -new);
2316
2317 perf_event_update_userpage(event);
2318
2319 return 0;
2320 }
2321
2322 typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *,
2323 struct perf_sample_data *, struct pt_regs *);
2324
2325 static struct pt_regs dummy_iregs;
2326
2327 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,setup_fn setup_sample)2328 __intel_pmu_pebs_event(struct perf_event *event,
2329 struct pt_regs *iregs,
2330 struct pt_regs *regs,
2331 struct perf_sample_data *data,
2332 void *at,
2333 setup_fn setup_sample)
2334 {
2335 setup_sample(event, iregs, at, data, regs);
2336 perf_event_output(event, data, regs);
2337 }
2338
2339 static __always_inline void
__intel_pmu_pebs_last_event(struct perf_event * event,struct pt_regs * iregs,struct pt_regs * regs,struct perf_sample_data * data,void * at,int count,setup_fn setup_sample)2340 __intel_pmu_pebs_last_event(struct perf_event *event,
2341 struct pt_regs *iregs,
2342 struct pt_regs *regs,
2343 struct perf_sample_data *data,
2344 void *at,
2345 int count,
2346 setup_fn setup_sample)
2347 {
2348 struct hw_perf_event *hwc = &event->hw;
2349
2350 setup_sample(event, iregs, at, data, regs);
2351 if (iregs == &dummy_iregs) {
2352 /*
2353 * The PEBS records may be drained in the non-overflow context,
2354 * e.g., large PEBS + context switch. Perf should treat the
2355 * last record the same as other PEBS records, and doesn't
2356 * invoke the generic overflow handler.
2357 */
2358 perf_event_output(event, data, regs);
2359 } else {
2360 /*
2361 * All but the last records are processed.
2362 * The last one is left to be able to call the overflow handler.
2363 */
2364 perf_event_overflow(event, data, regs);
2365 }
2366
2367 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2368 if ((is_pebs_counter_event_group(event))) {
2369 /*
2370 * The value of each sample has been updated when setup
2371 * the corresponding sample data.
2372 */
2373 perf_event_update_userpage(event);
2374 } else {
2375 /*
2376 * Now, auto-reload is only enabled in fixed period mode.
2377 * The reload value is always hwc->sample_period.
2378 * May need to change it, if auto-reload is enabled in
2379 * freq mode later.
2380 */
2381 intel_pmu_save_and_restart_reload(event, count);
2382 }
2383 } else {
2384 /*
2385 * For a non-precise event, it's possible the
2386 * counters-snapshotting records a positive value for the
2387 * overflowed event. Then the HW auto-reload mechanism
2388 * reset the counter to 0 immediately, because the
2389 * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD
2390 * is not set. The counter backwards may be observed in a
2391 * PMI handler.
2392 *
2393 * Since the event value has been updated when processing the
2394 * counters-snapshotting record, only needs to set the new
2395 * period for the counter.
2396 */
2397 if (is_pebs_counter_event_group(event))
2398 static_call(x86_pmu_set_period)(event);
2399 else
2400 intel_pmu_save_and_restart(event);
2401 }
2402 }
2403
2404 static __always_inline void
__intel_pmu_pebs_events(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,setup_fn setup_sample)2405 __intel_pmu_pebs_events(struct perf_event *event,
2406 struct pt_regs *iregs,
2407 struct perf_sample_data *data,
2408 void *base, void *top,
2409 int bit, int count,
2410 setup_fn setup_sample)
2411 {
2412 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2413 struct x86_perf_regs perf_regs;
2414 struct pt_regs *regs = &perf_regs.regs;
2415 void *at = get_next_pebs_record_by_bit(base, top, bit);
2416 int cnt = count;
2417
2418 if (!iregs)
2419 iregs = &dummy_iregs;
2420
2421 while (cnt > 1) {
2422 __intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample);
2423 at += cpuc->pebs_record_size;
2424 at = get_next_pebs_record_by_bit(at, top, bit);
2425 cnt--;
2426 }
2427
2428 __intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample);
2429 }
2430
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2431 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2432 {
2433 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2434 struct debug_store *ds = cpuc->ds;
2435 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2436 struct pebs_record_core *at, *top;
2437 int n;
2438
2439 if (!x86_pmu.pebs_active)
2440 return;
2441
2442 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2443 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2444
2445 /*
2446 * Whatever else happens, drain the thing
2447 */
2448 ds->pebs_index = ds->pebs_buffer_base;
2449
2450 if (!test_bit(0, cpuc->active_mask))
2451 return;
2452
2453 WARN_ON_ONCE(!event);
2454
2455 if (!event->attr.precise_ip)
2456 return;
2457
2458 n = top - at;
2459 if (n <= 0) {
2460 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2461 intel_pmu_save_and_restart_reload(event, 0);
2462 return;
2463 }
2464
2465 __intel_pmu_pebs_events(event, iregs, data, at, top, 0, n,
2466 setup_pebs_fixed_sample_data);
2467 }
2468
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,u64 mask)2469 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2470 {
2471 u64 pebs_enabled = cpuc->pebs_enabled & mask;
2472 struct perf_event *event;
2473 int bit;
2474
2475 /*
2476 * The drain_pebs() could be called twice in a short period
2477 * for auto-reload event in pmu::read(). There are no
2478 * overflows have happened in between.
2479 * It needs to call intel_pmu_save_and_restart_reload() to
2480 * update the event->count for this case.
2481 */
2482 for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2483 event = cpuc->events[bit];
2484 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2485 intel_pmu_save_and_restart_reload(event, 0);
2486 }
2487 }
2488
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2489 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2490 {
2491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2492 struct debug_store *ds = cpuc->ds;
2493 struct perf_event *event;
2494 void *base, *at, *top;
2495 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2496 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2497 int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2498 int bit, i, size;
2499 u64 mask;
2500
2501 if (!x86_pmu.pebs_active)
2502 return;
2503
2504 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2505 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2506
2507 ds->pebs_index = ds->pebs_buffer_base;
2508
2509 mask = x86_pmu.pebs_events_mask;
2510 size = max_pebs_events;
2511 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2512 mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2513 size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2514 }
2515
2516 if (unlikely(base >= top)) {
2517 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2518 return;
2519 }
2520
2521 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2522 struct pebs_record_nhm *p = at;
2523 u64 pebs_status;
2524
2525 pebs_status = p->status & cpuc->pebs_enabled;
2526 pebs_status &= mask;
2527
2528 /* PEBS v3 has more accurate status bits */
2529 if (x86_pmu.intel_cap.pebs_format >= 3) {
2530 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2531 counts[bit]++;
2532
2533 continue;
2534 }
2535
2536 /*
2537 * On some CPUs the PEBS status can be zero when PEBS is
2538 * racing with clearing of GLOBAL_STATUS.
2539 *
2540 * Normally we would drop that record, but in the
2541 * case when there is only a single active PEBS event
2542 * we can assume it's for that event.
2543 */
2544 if (!pebs_status && cpuc->pebs_enabled &&
2545 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2546 pebs_status = p->status = cpuc->pebs_enabled;
2547
2548 bit = find_first_bit((unsigned long *)&pebs_status,
2549 max_pebs_events);
2550
2551 if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2552 continue;
2553
2554 /*
2555 * The PEBS hardware does not deal well with the situation
2556 * when events happen near to each other and multiple bits
2557 * are set. But it should happen rarely.
2558 *
2559 * If these events include one PEBS and multiple non-PEBS
2560 * events, it doesn't impact PEBS record. The record will
2561 * be handled normally. (slow path)
2562 *
2563 * If these events include two or more PEBS events, the
2564 * records for the events can be collapsed into a single
2565 * one, and it's not possible to reconstruct all events
2566 * that caused the PEBS record. It's called collision.
2567 * If collision happened, the record will be dropped.
2568 */
2569 if (pebs_status != (1ULL << bit)) {
2570 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2571 error[i]++;
2572 continue;
2573 }
2574
2575 counts[bit]++;
2576 }
2577
2578 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2579 if ((counts[bit] == 0) && (error[bit] == 0))
2580 continue;
2581
2582 event = cpuc->events[bit];
2583 if (WARN_ON_ONCE(!event))
2584 continue;
2585
2586 if (WARN_ON_ONCE(!event->attr.precise_ip))
2587 continue;
2588
2589 /* log dropped samples number */
2590 if (error[bit]) {
2591 perf_log_lost_samples(event, error[bit]);
2592
2593 if (iregs)
2594 perf_event_account_interrupt(event);
2595 }
2596
2597 if (counts[bit]) {
2598 __intel_pmu_pebs_events(event, iregs, data, base,
2599 top, bit, counts[bit],
2600 setup_pebs_fixed_sample_data);
2601 }
2602 }
2603 }
2604
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2605 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2606 {
2607 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2608 void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS];
2609 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2610 struct debug_store *ds = cpuc->ds;
2611 struct x86_perf_regs perf_regs;
2612 struct pt_regs *regs = &perf_regs.regs;
2613 struct pebs_basic *basic;
2614 struct perf_event *event;
2615 void *base, *at, *top;
2616 int bit;
2617 u64 mask;
2618
2619 if (!x86_pmu.pebs_active)
2620 return;
2621
2622 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2623 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2624
2625 ds->pebs_index = ds->pebs_buffer_base;
2626
2627 mask = hybrid(cpuc->pmu, pebs_events_mask) |
2628 (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2629
2630 if (unlikely(base >= top)) {
2631 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2632 return;
2633 }
2634
2635 if (!iregs)
2636 iregs = &dummy_iregs;
2637
2638 /* Process all but the last event for each counter. */
2639 for (at = base; at < top; at += basic->format_size) {
2640 u64 pebs_status;
2641
2642 basic = at;
2643 if (basic->format_size != cpuc->pebs_record_size)
2644 continue;
2645
2646 pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask;
2647 for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) {
2648 event = cpuc->events[bit];
2649
2650 if (WARN_ON_ONCE(!event) ||
2651 WARN_ON_ONCE(!event->attr.precise_ip))
2652 continue;
2653
2654 if (counts[bit]++) {
2655 __intel_pmu_pebs_event(event, iregs, regs, data, last[bit],
2656 setup_pebs_adaptive_sample_data);
2657 }
2658 last[bit] = at;
2659 }
2660 }
2661
2662 for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2663 if (!counts[bit])
2664 continue;
2665
2666 event = cpuc->events[bit];
2667
2668 __intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit],
2669 counts[bit], setup_pebs_adaptive_sample_data);
2670 }
2671 }
2672
2673 /*
2674 * PEBS probe and setup
2675 */
2676
intel_pebs_init(void)2677 void __init intel_pebs_init(void)
2678 {
2679 /*
2680 * No support for 32bit formats
2681 */
2682 if (!boot_cpu_has(X86_FEATURE_DTES64))
2683 return;
2684
2685 x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS);
2686 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2687 if (x86_pmu.version <= 4)
2688 x86_pmu.pebs_no_isolation = 1;
2689
2690 if (x86_pmu.ds_pebs) {
2691 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2692 char *pebs_qual = "";
2693 int format = x86_pmu.intel_cap.pebs_format;
2694
2695 if (format < 4)
2696 x86_pmu.intel_cap.pebs_baseline = 0;
2697
2698 x86_pmu.pebs_enable = intel_pmu_pebs_enable;
2699 x86_pmu.pebs_disable = intel_pmu_pebs_disable;
2700 x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all;
2701 x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all;
2702
2703 switch (format) {
2704 case 0:
2705 pr_cont("PEBS fmt0%c, ", pebs_type);
2706 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2707 /*
2708 * Using >PAGE_SIZE buffers makes the WRMSR to
2709 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2710 * mysteriously hang on Core2.
2711 *
2712 * As a workaround, we don't do this.
2713 */
2714 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2715 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2716 break;
2717
2718 case 1:
2719 pr_cont("PEBS fmt1%c, ", pebs_type);
2720 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2721 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2722 break;
2723
2724 case 2:
2725 pr_cont("PEBS fmt2%c, ", pebs_type);
2726 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2727 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2728 break;
2729
2730 case 3:
2731 pr_cont("PEBS fmt3%c, ", pebs_type);
2732 x86_pmu.pebs_record_size =
2733 sizeof(struct pebs_record_skl);
2734 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2735 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2736 break;
2737
2738 case 6:
2739 if (x86_pmu.intel_cap.pebs_baseline) {
2740 x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
2741 x86_pmu.late_setup = intel_pmu_late_setup;
2742 }
2743 fallthrough;
2744 case 5:
2745 x86_pmu.pebs_ept = 1;
2746 fallthrough;
2747 case 4:
2748 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2749 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2750 if (x86_pmu.intel_cap.pebs_baseline) {
2751 x86_pmu.large_pebs_flags |=
2752 PERF_SAMPLE_BRANCH_STACK |
2753 PERF_SAMPLE_TIME;
2754 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2755 x86_pmu.pebs_capable = ~0ULL;
2756 pebs_qual = "-baseline";
2757 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2758 } else {
2759 /* Only basic record supported */
2760 x86_pmu.large_pebs_flags &=
2761 ~(PERF_SAMPLE_ADDR |
2762 PERF_SAMPLE_TIME |
2763 PERF_SAMPLE_DATA_SRC |
2764 PERF_SAMPLE_TRANSACTION |
2765 PERF_SAMPLE_REGS_USER |
2766 PERF_SAMPLE_REGS_INTR);
2767 }
2768 pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual);
2769
2770 /*
2771 * The PEBS-via-PT is not supported on hybrid platforms,
2772 * because not all CPUs of a hybrid machine support it.
2773 * The global x86_pmu.intel_cap, which only contains the
2774 * common capabilities, is used to check the availability
2775 * of the feature. The per-PMU pebs_output_pt_available
2776 * in a hybrid machine should be ignored.
2777 */
2778 if (x86_pmu.intel_cap.pebs_output_pt_available) {
2779 pr_cont("PEBS-via-PT, ");
2780 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2781 }
2782
2783 break;
2784
2785 default:
2786 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2787 x86_pmu.ds_pebs = 0;
2788 }
2789 }
2790 }
2791
perf_restore_debug_store(void)2792 void perf_restore_debug_store(void)
2793 {
2794 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2795
2796 if (!x86_pmu.bts && !x86_pmu.ds_pebs)
2797 return;
2798
2799 wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds);
2800 }
2801