1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/msr.h>
27
28 #include "../perf_event.h"
29
30 /*
31 * Intel PerfMon, used on Core and later.
32 */
33 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34 {
35 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43 };
44
45 static struct event_constraint intel_core_event_constraints[] __read_mostly =
46 {
47 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53 EVENT_CONSTRAINT_END
54 };
55
56 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57 {
58 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71 EVENT_CONSTRAINT_END
72 };
73
74 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75 {
76 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87 EVENT_CONSTRAINT_END
88 };
89
90 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91 {
92 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95 EVENT_EXTRA_END
96 };
97
98 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99 {
100 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107 EVENT_CONSTRAINT_END
108 };
109
110 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111 {
112 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125 /*
126 * When HT is off these events can only run on the bottom 4 counters
127 * When HT is on, they are impacted by the HT bug and require EXCL access
128 */
129 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134 EVENT_CONSTRAINT_END
135 };
136
137 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138 {
139 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153 /*
154 * When HT is off these events can only run on the bottom 4 counters
155 * When HT is on, they are impacted by the HT bug and require EXCL access
156 */
157 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162 EVENT_CONSTRAINT_END
163 };
164
165 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166 {
167 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171 EVENT_EXTRA_END
172 };
173
174 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175 {
176 EVENT_CONSTRAINT_END
177 };
178
179 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180 {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 EVENT_CONSTRAINT_END
185 };
186
187 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188 {
189 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193 FIXED_EVENT_CONSTRAINT(0x0500, 4),
194 FIXED_EVENT_CONSTRAINT(0x0600, 5),
195 FIXED_EVENT_CONSTRAINT(0x0700, 6),
196 FIXED_EVENT_CONSTRAINT(0x0800, 7),
197 FIXED_EVENT_CONSTRAINT(0x0900, 8),
198 FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199 FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200 FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201 FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202 FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203 FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204 FIXED_EVENT_CONSTRAINT(0x1000, 15),
205 EVENT_CONSTRAINT_END
206 };
207
208 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209 {
210 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213 EVENT_CONSTRAINT_END
214 };
215
216 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221 EVENT_CONSTRAINT_END
222 };
223
224 static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229 FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230 FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231 FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232 EVENT_CONSTRAINT_END
233 };
234
235 static struct event_constraint intel_arw_event_constraints[] __read_mostly = {
236 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
239 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
240 FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
241 FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
242 FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
243 INTEL_UEVENT_CONSTRAINT(0x01b7, 0x1),
244 INTEL_UEVENT_CONSTRAINT(0x02b7, 0x2),
245 INTEL_UEVENT_CONSTRAINT(0x04b7, 0x4),
246 INTEL_UEVENT_CONSTRAINT(0x08b7, 0x8),
247 INTEL_UEVENT_CONSTRAINT(0x01d4, 0x1),
248 INTEL_UEVENT_CONSTRAINT(0x02d4, 0x2),
249 INTEL_UEVENT_CONSTRAINT(0x04d4, 0x4),
250 INTEL_UEVENT_CONSTRAINT(0x08d4, 0x8),
251 INTEL_UEVENT_CONSTRAINT(0x0175, 0x1),
252 INTEL_UEVENT_CONSTRAINT(0x0275, 0x2),
253 INTEL_UEVENT_CONSTRAINT(0x21d3, 0x1),
254 INTEL_UEVENT_CONSTRAINT(0x22d3, 0x1),
255 EVENT_CONSTRAINT_END
256 };
257
258 static struct event_constraint intel_skl_event_constraints[] = {
259 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
260 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
261 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
262 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
263
264 /*
265 * when HT is off, these can only run on the bottom 4 counters
266 */
267 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
268 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
269 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
270 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
271 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
272
273 EVENT_CONSTRAINT_END
274 };
275
276 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
277 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
278 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
279 EVENT_EXTRA_END
280 };
281
282 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
283 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
284 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
285 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
286 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
287 EVENT_EXTRA_END
288 };
289
290 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
291 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
292 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
293 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
294 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
295 EVENT_EXTRA_END
296 };
297
298 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
299 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
300 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
301 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
302 /*
303 * Note the low 8 bits eventsel code is not a continuous field, containing
304 * some #GPing bits. These are masked out.
305 */
306 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
307 EVENT_EXTRA_END
308 };
309
310 static struct event_constraint intel_icl_event_constraints[] = {
311 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
312 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
313 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
314 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
315 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
316 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
317 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
318 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
319 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
320 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
321 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
322 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
323 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
324 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
325 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
326 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
327 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
328 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
329 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
330 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
331 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
332 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
333 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
334 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
335 EVENT_CONSTRAINT_END
336 };
337
338 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
339 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
340 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
341 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
342 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
343 EVENT_EXTRA_END
344 };
345
346 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
347 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
348 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
349 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
350 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
351 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
352 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
353 EVENT_EXTRA_END
354 };
355
356 static struct event_constraint intel_glc_event_constraints[] = {
357 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
358 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
359 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
360 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
361 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
362 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
363 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
364 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
365 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
366 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
367 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
368 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
369 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
370 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
371
372 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
373 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
374 /*
375 * Generally event codes < 0x90 are restricted to counters 0-3.
376 * The 0x2E and 0x3C are exception, which has no restriction.
377 */
378 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
379
380 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
381 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
382 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
383 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
384 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
385 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
386 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
387 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
388 /*
389 * Generally event codes >= 0x90 are likely to have no restrictions.
390 * The exception are defined as above.
391 */
392 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
393
394 EVENT_CONSTRAINT_END
395 };
396
397 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
398 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
399 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
400 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
401 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
402 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
403 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
404 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
405 EVENT_EXTRA_END
406 };
407
408 static struct event_constraint intel_lnc_event_constraints[] = {
409 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
410 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
411 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
412 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
413 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
414 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
415 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
416 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
417 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
418 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
419 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
420 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
421 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
422 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
423
424 INTEL_EVENT_CONSTRAINT(0x20, 0xf),
425
426 INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
427 INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
428 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
429 INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
430
431 INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
432 INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
433
434 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
435 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
436 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
437 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
438 INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
439 INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
440 INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
441 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
442
443 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
444
445 INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
446
447 EVENT_CONSTRAINT_END
448 };
449
450 static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
451 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
452 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
453 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
454 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
455 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
456 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
457 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
458 EVENT_EXTRA_END
459 };
460
461 static struct event_constraint intel_pnc_event_constraints[] = {
462 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
463 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
464 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
465 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
466 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
467 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
468 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
469 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
470 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
471 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
472 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
473 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
474 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
475 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
476
477 INTEL_EVENT_CONSTRAINT(0x20, 0xf),
478 INTEL_EVENT_CONSTRAINT(0x79, 0xf),
479
480 INTEL_UEVENT_CONSTRAINT(0x0275, 0xf),
481 INTEL_UEVENT_CONSTRAINT(0x0176, 0xf),
482 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
483 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
484 INTEL_UEVENT_CONSTRAINT(0x01cd, 0xfc),
485 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
486
487 INTEL_EVENT_CONSTRAINT(0xd0, 0xf),
488 INTEL_EVENT_CONSTRAINT(0xd1, 0xf),
489 INTEL_EVENT_CONSTRAINT(0xd4, 0xf),
490 INTEL_EVENT_CONSTRAINT(0xd6, 0xf),
491 INTEL_EVENT_CONSTRAINT(0xdf, 0xf),
492 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
493
494 INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
495 INTEL_UEVENT_CONSTRAINT(0x0847, 0xf),
496 INTEL_UEVENT_CONSTRAINT(0x0446, 0xf),
497 INTEL_UEVENT_CONSTRAINT(0x0846, 0xf),
498 INTEL_UEVENT_CONSTRAINT(0x0148, 0xf),
499
500 EVENT_CONSTRAINT_END
501 };
502
503 static struct extra_reg intel_pnc_extra_regs[] __read_mostly = {
504 /* must define OMR_X first, see intel_alt_er() */
505 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OMR_0, 0x40ffffff0000ffffull, OMR_0),
506 INTEL_UEVENT_EXTRA_REG(0x022a, MSR_OMR_1, 0x40ffffff0000ffffull, OMR_1),
507 INTEL_UEVENT_EXTRA_REG(0x042a, MSR_OMR_2, 0x40ffffff0000ffffull, OMR_2),
508 INTEL_UEVENT_EXTRA_REG(0x082a, MSR_OMR_3, 0x40ffffff0000ffffull, OMR_3),
509 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
510 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
511 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
512 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
513 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
514 EVENT_EXTRA_END
515 };
516
517 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
518 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
519 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
520
521 static struct attribute *nhm_mem_events_attrs[] = {
522 EVENT_PTR(mem_ld_nhm),
523 NULL,
524 };
525
526 /*
527 * topdown events for Intel Core CPUs.
528 *
529 * The events are all in slots, which is a free slot in a 4 wide
530 * pipeline. Some events are already reported in slots, for cycle
531 * events we multiply by the pipeline width (4).
532 *
533 * With Hyper Threading on, topdown metrics are either summed or averaged
534 * between the threads of a core: (count_t0 + count_t1).
535 *
536 * For the average case the metric is always scaled to pipeline width,
537 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
538 */
539
540 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
541 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
542 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
543 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
544 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
545 "event=0xe,umask=0x1"); /* uops_issued.any */
546 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
547 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
548 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
549 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
550 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
551 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
552 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
553 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
554 "4", "2");
555
556 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
557 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
558 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
559 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
560 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
561 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
562 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
563 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
564 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
565
566 static struct attribute *snb_events_attrs[] = {
567 EVENT_PTR(td_slots_issued),
568 EVENT_PTR(td_slots_retired),
569 EVENT_PTR(td_fetch_bubbles),
570 EVENT_PTR(td_total_slots),
571 EVENT_PTR(td_total_slots_scale),
572 EVENT_PTR(td_recovery_bubbles),
573 EVENT_PTR(td_recovery_bubbles_scale),
574 NULL,
575 };
576
577 static struct attribute *snb_mem_events_attrs[] = {
578 EVENT_PTR(mem_ld_snb),
579 EVENT_PTR(mem_st_snb),
580 NULL,
581 };
582
583 static struct event_constraint intel_hsw_event_constraints[] = {
584 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
585 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
586 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
587 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
588 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
589 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
590 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
591 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
592 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
593 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
594 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
595 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
596
597 /*
598 * When HT is off these events can only run on the bottom 4 counters
599 * When HT is on, they are impacted by the HT bug and require EXCL access
600 */
601 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
602 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
603 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
604 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
605
606 EVENT_CONSTRAINT_END
607 };
608
609 static struct event_constraint intel_bdw_event_constraints[] = {
610 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
611 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
612 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
613 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
614 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
615 /*
616 * when HT is off, these can only run on the bottom 4 counters
617 */
618 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
619 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
620 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
621 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
622 EVENT_CONSTRAINT_END
623 };
624
intel_pmu_event_map(int hw_event)625 static u64 intel_pmu_event_map(int hw_event)
626 {
627 return intel_perfmon_event_map[hw_event];
628 }
629
630 static __initconst const u64 glc_hw_cache_event_ids
631 [PERF_COUNT_HW_CACHE_MAX]
632 [PERF_COUNT_HW_CACHE_OP_MAX]
633 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
634 {
635 [ C(L1D ) ] = {
636 [ C(OP_READ) ] = {
637 [ C(RESULT_ACCESS) ] = 0x81d0,
638 [ C(RESULT_MISS) ] = 0xe124,
639 },
640 [ C(OP_WRITE) ] = {
641 [ C(RESULT_ACCESS) ] = 0x82d0,
642 },
643 },
644 [ C(L1I ) ] = {
645 [ C(OP_READ) ] = {
646 [ C(RESULT_MISS) ] = 0xe424,
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = -1,
650 [ C(RESULT_MISS) ] = -1,
651 },
652 },
653 [ C(LL ) ] = {
654 [ C(OP_READ) ] = {
655 [ C(RESULT_ACCESS) ] = 0x12a,
656 [ C(RESULT_MISS) ] = 0x12a,
657 },
658 [ C(OP_WRITE) ] = {
659 [ C(RESULT_ACCESS) ] = 0x12a,
660 [ C(RESULT_MISS) ] = 0x12a,
661 },
662 },
663 [ C(DTLB) ] = {
664 [ C(OP_READ) ] = {
665 [ C(RESULT_ACCESS) ] = 0x81d0,
666 [ C(RESULT_MISS) ] = 0xe12,
667 },
668 [ C(OP_WRITE) ] = {
669 [ C(RESULT_ACCESS) ] = 0x82d0,
670 [ C(RESULT_MISS) ] = 0xe13,
671 },
672 },
673 [ C(ITLB) ] = {
674 [ C(OP_READ) ] = {
675 [ C(RESULT_ACCESS) ] = -1,
676 [ C(RESULT_MISS) ] = 0xe11,
677 },
678 [ C(OP_WRITE) ] = {
679 [ C(RESULT_ACCESS) ] = -1,
680 [ C(RESULT_MISS) ] = -1,
681 },
682 [ C(OP_PREFETCH) ] = {
683 [ C(RESULT_ACCESS) ] = -1,
684 [ C(RESULT_MISS) ] = -1,
685 },
686 },
687 [ C(BPU ) ] = {
688 [ C(OP_READ) ] = {
689 [ C(RESULT_ACCESS) ] = 0x4c4,
690 [ C(RESULT_MISS) ] = 0x4c5,
691 },
692 [ C(OP_WRITE) ] = {
693 [ C(RESULT_ACCESS) ] = -1,
694 [ C(RESULT_MISS) ] = -1,
695 },
696 [ C(OP_PREFETCH) ] = {
697 [ C(RESULT_ACCESS) ] = -1,
698 [ C(RESULT_MISS) ] = -1,
699 },
700 },
701 [ C(NODE) ] = {
702 [ C(OP_READ) ] = {
703 [ C(RESULT_ACCESS) ] = 0x12a,
704 [ C(RESULT_MISS) ] = 0x12a,
705 },
706 },
707 };
708
709 static __initconst const u64 glc_hw_cache_extra_regs
710 [PERF_COUNT_HW_CACHE_MAX]
711 [PERF_COUNT_HW_CACHE_OP_MAX]
712 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
713 {
714 [ C(LL ) ] = {
715 [ C(OP_READ) ] = {
716 [ C(RESULT_ACCESS) ] = 0x10001,
717 [ C(RESULT_MISS) ] = 0x3fbfc00001,
718 },
719 [ C(OP_WRITE) ] = {
720 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
721 [ C(RESULT_MISS) ] = 0x3f3fc00002,
722 },
723 },
724 [ C(NODE) ] = {
725 [ C(OP_READ) ] = {
726 [ C(RESULT_ACCESS) ] = 0x10c000001,
727 [ C(RESULT_MISS) ] = 0x3fb3000001,
728 },
729 },
730 };
731
732 static __initconst const u64 pnc_hw_cache_event_ids
733 [PERF_COUNT_HW_CACHE_MAX]
734 [PERF_COUNT_HW_CACHE_OP_MAX]
735 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
736 {
737 [ C(L1D ) ] = {
738 [ C(OP_READ) ] = {
739 [ C(RESULT_ACCESS) ] = 0x81d0,
740 [ C(RESULT_MISS) ] = 0xe124,
741 },
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0x82d0,
744 },
745 },
746 [ C(L1I ) ] = {
747 [ C(OP_READ) ] = {
748 [ C(RESULT_MISS) ] = 0xe424,
749 },
750 [ C(OP_WRITE) ] = {
751 [ C(RESULT_ACCESS) ] = -1,
752 [ C(RESULT_MISS) ] = -1,
753 },
754 },
755 [ C(LL ) ] = {
756 [ C(OP_READ) ] = {
757 [ C(RESULT_ACCESS) ] = 0x12a,
758 [ C(RESULT_MISS) ] = 0x12a,
759 },
760 [ C(OP_WRITE) ] = {
761 [ C(RESULT_ACCESS) ] = 0x12a,
762 [ C(RESULT_MISS) ] = 0x12a,
763 },
764 },
765 [ C(DTLB) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0x81d0,
768 [ C(RESULT_MISS) ] = 0xe12,
769 },
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = 0x82d0,
772 [ C(RESULT_MISS) ] = 0xe13,
773 },
774 },
775 [ C(ITLB) ] = {
776 [ C(OP_READ) ] = {
777 [ C(RESULT_ACCESS) ] = -1,
778 [ C(RESULT_MISS) ] = 0xe11,
779 },
780 [ C(OP_WRITE) ] = {
781 [ C(RESULT_ACCESS) ] = -1,
782 [ C(RESULT_MISS) ] = -1,
783 },
784 [ C(OP_PREFETCH) ] = {
785 [ C(RESULT_ACCESS) ] = -1,
786 [ C(RESULT_MISS) ] = -1,
787 },
788 },
789 [ C(BPU ) ] = {
790 [ C(OP_READ) ] = {
791 [ C(RESULT_ACCESS) ] = 0x4c4,
792 [ C(RESULT_MISS) ] = 0x4c5,
793 },
794 [ C(OP_WRITE) ] = {
795 [ C(RESULT_ACCESS) ] = -1,
796 [ C(RESULT_MISS) ] = -1,
797 },
798 [ C(OP_PREFETCH) ] = {
799 [ C(RESULT_ACCESS) ] = -1,
800 [ C(RESULT_MISS) ] = -1,
801 },
802 },
803 [ C(NODE) ] = {
804 [ C(OP_READ) ] = {
805 [ C(RESULT_ACCESS) ] = -1,
806 [ C(RESULT_MISS) ] = -1,
807 },
808 },
809 };
810
811 static __initconst const u64 pnc_hw_cache_extra_regs
812 [PERF_COUNT_HW_CACHE_MAX]
813 [PERF_COUNT_HW_CACHE_OP_MAX]
814 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
815 {
816 [ C(LL ) ] = {
817 [ C(OP_READ) ] = {
818 [ C(RESULT_ACCESS) ] = 0x4000000000000001,
819 [ C(RESULT_MISS) ] = 0xFFFFF000000001,
820 },
821 [ C(OP_WRITE) ] = {
822 [ C(RESULT_ACCESS) ] = 0x4000000000000002,
823 [ C(RESULT_MISS) ] = 0xFFFFF000000002,
824 },
825 },
826 };
827
828 /*
829 * Notes on the events:
830 * - data reads do not include code reads (comparable to earlier tables)
831 * - data counts include speculative execution (except L1 write, dtlb, bpu)
832 * - remote node access includes remote memory, remote cache, remote mmio.
833 * - prefetches are not included in the counts.
834 * - icache miss does not include decoded icache
835 */
836
837 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
838 #define SKL_DEMAND_RFO BIT_ULL(1)
839 #define SKL_ANY_RESPONSE BIT_ULL(16)
840 #define SKL_SUPPLIER_NONE BIT_ULL(17)
841 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
842 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
843 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
844 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
845 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
846 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
847 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
848 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
849 #define SKL_SPL_HIT BIT_ULL(30)
850 #define SKL_SNOOP_NONE BIT_ULL(31)
851 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
852 #define SKL_SNOOP_MISS BIT_ULL(33)
853 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
854 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
855 #define SKL_SNOOP_HITM BIT_ULL(36)
856 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
857 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
858 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
859 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
860 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
861 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
862 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
863 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
864 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
865 SKL_SNOOP_HITM|SKL_SPL_HIT)
866 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
867 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
868 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
869 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
870 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
871
872 static __initconst const u64 skl_hw_cache_event_ids
873 [PERF_COUNT_HW_CACHE_MAX]
874 [PERF_COUNT_HW_CACHE_OP_MAX]
875 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
876 {
877 [ C(L1D ) ] = {
878 [ C(OP_READ) ] = {
879 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
880 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
881 },
882 [ C(OP_WRITE) ] = {
883 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
884 [ C(RESULT_MISS) ] = 0x0,
885 },
886 [ C(OP_PREFETCH) ] = {
887 [ C(RESULT_ACCESS) ] = 0x0,
888 [ C(RESULT_MISS) ] = 0x0,
889 },
890 },
891 [ C(L1I ) ] = {
892 [ C(OP_READ) ] = {
893 [ C(RESULT_ACCESS) ] = 0x0,
894 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
895 },
896 [ C(OP_WRITE) ] = {
897 [ C(RESULT_ACCESS) ] = -1,
898 [ C(RESULT_MISS) ] = -1,
899 },
900 [ C(OP_PREFETCH) ] = {
901 [ C(RESULT_ACCESS) ] = 0x0,
902 [ C(RESULT_MISS) ] = 0x0,
903 },
904 },
905 [ C(LL ) ] = {
906 [ C(OP_READ) ] = {
907 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
908 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
909 },
910 [ C(OP_WRITE) ] = {
911 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
912 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
913 },
914 [ C(OP_PREFETCH) ] = {
915 [ C(RESULT_ACCESS) ] = 0x0,
916 [ C(RESULT_MISS) ] = 0x0,
917 },
918 },
919 [ C(DTLB) ] = {
920 [ C(OP_READ) ] = {
921 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
922 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
923 },
924 [ C(OP_WRITE) ] = {
925 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
926 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
927 },
928 [ C(OP_PREFETCH) ] = {
929 [ C(RESULT_ACCESS) ] = 0x0,
930 [ C(RESULT_MISS) ] = 0x0,
931 },
932 },
933 [ C(ITLB) ] = {
934 [ C(OP_READ) ] = {
935 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
936 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
937 },
938 [ C(OP_WRITE) ] = {
939 [ C(RESULT_ACCESS) ] = -1,
940 [ C(RESULT_MISS) ] = -1,
941 },
942 [ C(OP_PREFETCH) ] = {
943 [ C(RESULT_ACCESS) ] = -1,
944 [ C(RESULT_MISS) ] = -1,
945 },
946 },
947 [ C(BPU ) ] = {
948 [ C(OP_READ) ] = {
949 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
950 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
951 },
952 [ C(OP_WRITE) ] = {
953 [ C(RESULT_ACCESS) ] = -1,
954 [ C(RESULT_MISS) ] = -1,
955 },
956 [ C(OP_PREFETCH) ] = {
957 [ C(RESULT_ACCESS) ] = -1,
958 [ C(RESULT_MISS) ] = -1,
959 },
960 },
961 [ C(NODE) ] = {
962 [ C(OP_READ) ] = {
963 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
964 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
965 },
966 [ C(OP_WRITE) ] = {
967 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
968 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
969 },
970 [ C(OP_PREFETCH) ] = {
971 [ C(RESULT_ACCESS) ] = 0x0,
972 [ C(RESULT_MISS) ] = 0x0,
973 },
974 },
975 };
976
977 static __initconst const u64 skl_hw_cache_extra_regs
978 [PERF_COUNT_HW_CACHE_MAX]
979 [PERF_COUNT_HW_CACHE_OP_MAX]
980 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
981 {
982 [ C(LL ) ] = {
983 [ C(OP_READ) ] = {
984 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
985 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
986 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
987 SKL_L3_MISS|SKL_ANY_SNOOP|
988 SKL_SUPPLIER_NONE,
989 },
990 [ C(OP_WRITE) ] = {
991 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
992 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
993 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
994 SKL_L3_MISS|SKL_ANY_SNOOP|
995 SKL_SUPPLIER_NONE,
996 },
997 [ C(OP_PREFETCH) ] = {
998 [ C(RESULT_ACCESS) ] = 0x0,
999 [ C(RESULT_MISS) ] = 0x0,
1000 },
1001 },
1002 [ C(NODE) ] = {
1003 [ C(OP_READ) ] = {
1004 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
1005 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
1006 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
1007 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
1008 },
1009 [ C(OP_WRITE) ] = {
1010 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
1011 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
1012 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
1013 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
1014 },
1015 [ C(OP_PREFETCH) ] = {
1016 [ C(RESULT_ACCESS) ] = 0x0,
1017 [ C(RESULT_MISS) ] = 0x0,
1018 },
1019 },
1020 };
1021
1022 #define SNB_DMND_DATA_RD (1ULL << 0)
1023 #define SNB_DMND_RFO (1ULL << 1)
1024 #define SNB_DMND_IFETCH (1ULL << 2)
1025 #define SNB_DMND_WB (1ULL << 3)
1026 #define SNB_PF_DATA_RD (1ULL << 4)
1027 #define SNB_PF_RFO (1ULL << 5)
1028 #define SNB_PF_IFETCH (1ULL << 6)
1029 #define SNB_LLC_DATA_RD (1ULL << 7)
1030 #define SNB_LLC_RFO (1ULL << 8)
1031 #define SNB_LLC_IFETCH (1ULL << 9)
1032 #define SNB_BUS_LOCKS (1ULL << 10)
1033 #define SNB_STRM_ST (1ULL << 11)
1034 #define SNB_OTHER (1ULL << 15)
1035 #define SNB_RESP_ANY (1ULL << 16)
1036 #define SNB_NO_SUPP (1ULL << 17)
1037 #define SNB_LLC_HITM (1ULL << 18)
1038 #define SNB_LLC_HITE (1ULL << 19)
1039 #define SNB_LLC_HITS (1ULL << 20)
1040 #define SNB_LLC_HITF (1ULL << 21)
1041 #define SNB_LOCAL (1ULL << 22)
1042 #define SNB_REMOTE (0xffULL << 23)
1043 #define SNB_SNP_NONE (1ULL << 31)
1044 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
1045 #define SNB_SNP_MISS (1ULL << 33)
1046 #define SNB_NO_FWD (1ULL << 34)
1047 #define SNB_SNP_FWD (1ULL << 35)
1048 #define SNB_HITM (1ULL << 36)
1049 #define SNB_NON_DRAM (1ULL << 37)
1050
1051 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
1052 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
1053 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1054
1055 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
1056 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
1057 SNB_HITM)
1058
1059 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
1060 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
1061
1062 #define SNB_L3_ACCESS SNB_RESP_ANY
1063 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
1064
1065 static __initconst const u64 snb_hw_cache_extra_regs
1066 [PERF_COUNT_HW_CACHE_MAX]
1067 [PERF_COUNT_HW_CACHE_OP_MAX]
1068 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1069 {
1070 [ C(LL ) ] = {
1071 [ C(OP_READ) ] = {
1072 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
1073 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
1074 },
1075 [ C(OP_WRITE) ] = {
1076 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
1077 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
1078 },
1079 [ C(OP_PREFETCH) ] = {
1080 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
1081 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
1082 },
1083 },
1084 [ C(NODE) ] = {
1085 [ C(OP_READ) ] = {
1086 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
1087 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
1088 },
1089 [ C(OP_WRITE) ] = {
1090 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
1091 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
1092 },
1093 [ C(OP_PREFETCH) ] = {
1094 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
1095 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
1096 },
1097 },
1098 };
1099
1100 static __initconst const u64 snb_hw_cache_event_ids
1101 [PERF_COUNT_HW_CACHE_MAX]
1102 [PERF_COUNT_HW_CACHE_OP_MAX]
1103 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1104 {
1105 [ C(L1D) ] = {
1106 [ C(OP_READ) ] = {
1107 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
1108 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
1109 },
1110 [ C(OP_WRITE) ] = {
1111 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
1112 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
1113 },
1114 [ C(OP_PREFETCH) ] = {
1115 [ C(RESULT_ACCESS) ] = 0x0,
1116 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
1117 },
1118 },
1119 [ C(L1I ) ] = {
1120 [ C(OP_READ) ] = {
1121 [ C(RESULT_ACCESS) ] = 0x0,
1122 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
1123 },
1124 [ C(OP_WRITE) ] = {
1125 [ C(RESULT_ACCESS) ] = -1,
1126 [ C(RESULT_MISS) ] = -1,
1127 },
1128 [ C(OP_PREFETCH) ] = {
1129 [ C(RESULT_ACCESS) ] = 0x0,
1130 [ C(RESULT_MISS) ] = 0x0,
1131 },
1132 },
1133 [ C(LL ) ] = {
1134 [ C(OP_READ) ] = {
1135 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1136 [ C(RESULT_ACCESS) ] = 0x01b7,
1137 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1138 [ C(RESULT_MISS) ] = 0x01b7,
1139 },
1140 [ C(OP_WRITE) ] = {
1141 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1142 [ C(RESULT_ACCESS) ] = 0x01b7,
1143 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1144 [ C(RESULT_MISS) ] = 0x01b7,
1145 },
1146 [ C(OP_PREFETCH) ] = {
1147 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1148 [ C(RESULT_ACCESS) ] = 0x01b7,
1149 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1150 [ C(RESULT_MISS) ] = 0x01b7,
1151 },
1152 },
1153 [ C(DTLB) ] = {
1154 [ C(OP_READ) ] = {
1155 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
1156 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
1157 },
1158 [ C(OP_WRITE) ] = {
1159 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
1160 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1161 },
1162 [ C(OP_PREFETCH) ] = {
1163 [ C(RESULT_ACCESS) ] = 0x0,
1164 [ C(RESULT_MISS) ] = 0x0,
1165 },
1166 },
1167 [ C(ITLB) ] = {
1168 [ C(OP_READ) ] = {
1169 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
1170 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
1171 },
1172 [ C(OP_WRITE) ] = {
1173 [ C(RESULT_ACCESS) ] = -1,
1174 [ C(RESULT_MISS) ] = -1,
1175 },
1176 [ C(OP_PREFETCH) ] = {
1177 [ C(RESULT_ACCESS) ] = -1,
1178 [ C(RESULT_MISS) ] = -1,
1179 },
1180 },
1181 [ C(BPU ) ] = {
1182 [ C(OP_READ) ] = {
1183 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1184 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1185 },
1186 [ C(OP_WRITE) ] = {
1187 [ C(RESULT_ACCESS) ] = -1,
1188 [ C(RESULT_MISS) ] = -1,
1189 },
1190 [ C(OP_PREFETCH) ] = {
1191 [ C(RESULT_ACCESS) ] = -1,
1192 [ C(RESULT_MISS) ] = -1,
1193 },
1194 },
1195 [ C(NODE) ] = {
1196 [ C(OP_READ) ] = {
1197 [ C(RESULT_ACCESS) ] = 0x01b7,
1198 [ C(RESULT_MISS) ] = 0x01b7,
1199 },
1200 [ C(OP_WRITE) ] = {
1201 [ C(RESULT_ACCESS) ] = 0x01b7,
1202 [ C(RESULT_MISS) ] = 0x01b7,
1203 },
1204 [ C(OP_PREFETCH) ] = {
1205 [ C(RESULT_ACCESS) ] = 0x01b7,
1206 [ C(RESULT_MISS) ] = 0x01b7,
1207 },
1208 },
1209
1210 };
1211
1212 /*
1213 * Notes on the events:
1214 * - data reads do not include code reads (comparable to earlier tables)
1215 * - data counts include speculative execution (except L1 write, dtlb, bpu)
1216 * - remote node access includes remote memory, remote cache, remote mmio.
1217 * - prefetches are not included in the counts because they are not
1218 * reliably counted.
1219 */
1220
1221 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
1222 #define HSW_DEMAND_RFO BIT_ULL(1)
1223 #define HSW_ANY_RESPONSE BIT_ULL(16)
1224 #define HSW_SUPPLIER_NONE BIT_ULL(17)
1225 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1226 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1227 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1228 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1229 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1230 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1231 HSW_L3_MISS_REMOTE_HOP2P)
1232 #define HSW_SNOOP_NONE BIT_ULL(31)
1233 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1234 #define HSW_SNOOP_MISS BIT_ULL(33)
1235 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1236 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1237 #define HSW_SNOOP_HITM BIT_ULL(36)
1238 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1239 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1240 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1241 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1242 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1243 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1244 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1245 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1246 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1247 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1248 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1249
1250 #define BDW_L3_MISS_LOCAL BIT(26)
1251 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1252 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1253 HSW_L3_MISS_REMOTE_HOP2P)
1254
1255
1256 static __initconst const u64 hsw_hw_cache_event_ids
1257 [PERF_COUNT_HW_CACHE_MAX]
1258 [PERF_COUNT_HW_CACHE_OP_MAX]
1259 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1260 {
1261 [ C(L1D ) ] = {
1262 [ C(OP_READ) ] = {
1263 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1264 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1265 },
1266 [ C(OP_WRITE) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1268 [ C(RESULT_MISS) ] = 0x0,
1269 },
1270 [ C(OP_PREFETCH) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x0,
1272 [ C(RESULT_MISS) ] = 0x0,
1273 },
1274 },
1275 [ C(L1I ) ] = {
1276 [ C(OP_READ) ] = {
1277 [ C(RESULT_ACCESS) ] = 0x0,
1278 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1279 },
1280 [ C(OP_WRITE) ] = {
1281 [ C(RESULT_ACCESS) ] = -1,
1282 [ C(RESULT_MISS) ] = -1,
1283 },
1284 [ C(OP_PREFETCH) ] = {
1285 [ C(RESULT_ACCESS) ] = 0x0,
1286 [ C(RESULT_MISS) ] = 0x0,
1287 },
1288 },
1289 [ C(LL ) ] = {
1290 [ C(OP_READ) ] = {
1291 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1292 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1293 },
1294 [ C(OP_WRITE) ] = {
1295 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1296 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1297 },
1298 [ C(OP_PREFETCH) ] = {
1299 [ C(RESULT_ACCESS) ] = 0x0,
1300 [ C(RESULT_MISS) ] = 0x0,
1301 },
1302 },
1303 [ C(DTLB) ] = {
1304 [ C(OP_READ) ] = {
1305 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1306 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1307 },
1308 [ C(OP_WRITE) ] = {
1309 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1310 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1311 },
1312 [ C(OP_PREFETCH) ] = {
1313 [ C(RESULT_ACCESS) ] = 0x0,
1314 [ C(RESULT_MISS) ] = 0x0,
1315 },
1316 },
1317 [ C(ITLB) ] = {
1318 [ C(OP_READ) ] = {
1319 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1320 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1321 },
1322 [ C(OP_WRITE) ] = {
1323 [ C(RESULT_ACCESS) ] = -1,
1324 [ C(RESULT_MISS) ] = -1,
1325 },
1326 [ C(OP_PREFETCH) ] = {
1327 [ C(RESULT_ACCESS) ] = -1,
1328 [ C(RESULT_MISS) ] = -1,
1329 },
1330 },
1331 [ C(BPU ) ] = {
1332 [ C(OP_READ) ] = {
1333 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1334 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1335 },
1336 [ C(OP_WRITE) ] = {
1337 [ C(RESULT_ACCESS) ] = -1,
1338 [ C(RESULT_MISS) ] = -1,
1339 },
1340 [ C(OP_PREFETCH) ] = {
1341 [ C(RESULT_ACCESS) ] = -1,
1342 [ C(RESULT_MISS) ] = -1,
1343 },
1344 },
1345 [ C(NODE) ] = {
1346 [ C(OP_READ) ] = {
1347 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1348 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1349 },
1350 [ C(OP_WRITE) ] = {
1351 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1352 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1353 },
1354 [ C(OP_PREFETCH) ] = {
1355 [ C(RESULT_ACCESS) ] = 0x0,
1356 [ C(RESULT_MISS) ] = 0x0,
1357 },
1358 },
1359 };
1360
1361 static __initconst const u64 hsw_hw_cache_extra_regs
1362 [PERF_COUNT_HW_CACHE_MAX]
1363 [PERF_COUNT_HW_CACHE_OP_MAX]
1364 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1365 {
1366 [ C(LL ) ] = {
1367 [ C(OP_READ) ] = {
1368 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1369 HSW_LLC_ACCESS,
1370 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1371 HSW_L3_MISS|HSW_ANY_SNOOP,
1372 },
1373 [ C(OP_WRITE) ] = {
1374 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1375 HSW_LLC_ACCESS,
1376 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1377 HSW_L3_MISS|HSW_ANY_SNOOP,
1378 },
1379 [ C(OP_PREFETCH) ] = {
1380 [ C(RESULT_ACCESS) ] = 0x0,
1381 [ C(RESULT_MISS) ] = 0x0,
1382 },
1383 },
1384 [ C(NODE) ] = {
1385 [ C(OP_READ) ] = {
1386 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1387 HSW_L3_MISS_LOCAL_DRAM|
1388 HSW_SNOOP_DRAM,
1389 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1390 HSW_L3_MISS_REMOTE|
1391 HSW_SNOOP_DRAM,
1392 },
1393 [ C(OP_WRITE) ] = {
1394 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1395 HSW_L3_MISS_LOCAL_DRAM|
1396 HSW_SNOOP_DRAM,
1397 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1398 HSW_L3_MISS_REMOTE|
1399 HSW_SNOOP_DRAM,
1400 },
1401 [ C(OP_PREFETCH) ] = {
1402 [ C(RESULT_ACCESS) ] = 0x0,
1403 [ C(RESULT_MISS) ] = 0x0,
1404 },
1405 },
1406 };
1407
1408 static __initconst const u64 westmere_hw_cache_event_ids
1409 [PERF_COUNT_HW_CACHE_MAX]
1410 [PERF_COUNT_HW_CACHE_OP_MAX]
1411 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1412 {
1413 [ C(L1D) ] = {
1414 [ C(OP_READ) ] = {
1415 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1416 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1417 },
1418 [ C(OP_WRITE) ] = {
1419 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1420 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1421 },
1422 [ C(OP_PREFETCH) ] = {
1423 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1424 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1425 },
1426 },
1427 [ C(L1I ) ] = {
1428 [ C(OP_READ) ] = {
1429 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1430 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1431 },
1432 [ C(OP_WRITE) ] = {
1433 [ C(RESULT_ACCESS) ] = -1,
1434 [ C(RESULT_MISS) ] = -1,
1435 },
1436 [ C(OP_PREFETCH) ] = {
1437 [ C(RESULT_ACCESS) ] = 0x0,
1438 [ C(RESULT_MISS) ] = 0x0,
1439 },
1440 },
1441 [ C(LL ) ] = {
1442 [ C(OP_READ) ] = {
1443 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1444 [ C(RESULT_ACCESS) ] = 0x01b7,
1445 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1446 [ C(RESULT_MISS) ] = 0x01b7,
1447 },
1448 /*
1449 * Use RFO, not WRITEBACK, because a write miss would typically occur
1450 * on RFO.
1451 */
1452 [ C(OP_WRITE) ] = {
1453 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1454 [ C(RESULT_ACCESS) ] = 0x01b7,
1455 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1456 [ C(RESULT_MISS) ] = 0x01b7,
1457 },
1458 [ C(OP_PREFETCH) ] = {
1459 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1460 [ C(RESULT_ACCESS) ] = 0x01b7,
1461 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1462 [ C(RESULT_MISS) ] = 0x01b7,
1463 },
1464 },
1465 [ C(DTLB) ] = {
1466 [ C(OP_READ) ] = {
1467 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1468 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1469 },
1470 [ C(OP_WRITE) ] = {
1471 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1472 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1473 },
1474 [ C(OP_PREFETCH) ] = {
1475 [ C(RESULT_ACCESS) ] = 0x0,
1476 [ C(RESULT_MISS) ] = 0x0,
1477 },
1478 },
1479 [ C(ITLB) ] = {
1480 [ C(OP_READ) ] = {
1481 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1482 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1483 },
1484 [ C(OP_WRITE) ] = {
1485 [ C(RESULT_ACCESS) ] = -1,
1486 [ C(RESULT_MISS) ] = -1,
1487 },
1488 [ C(OP_PREFETCH) ] = {
1489 [ C(RESULT_ACCESS) ] = -1,
1490 [ C(RESULT_MISS) ] = -1,
1491 },
1492 },
1493 [ C(BPU ) ] = {
1494 [ C(OP_READ) ] = {
1495 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1496 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1497 },
1498 [ C(OP_WRITE) ] = {
1499 [ C(RESULT_ACCESS) ] = -1,
1500 [ C(RESULT_MISS) ] = -1,
1501 },
1502 [ C(OP_PREFETCH) ] = {
1503 [ C(RESULT_ACCESS) ] = -1,
1504 [ C(RESULT_MISS) ] = -1,
1505 },
1506 },
1507 [ C(NODE) ] = {
1508 [ C(OP_READ) ] = {
1509 [ C(RESULT_ACCESS) ] = 0x01b7,
1510 [ C(RESULT_MISS) ] = 0x01b7,
1511 },
1512 [ C(OP_WRITE) ] = {
1513 [ C(RESULT_ACCESS) ] = 0x01b7,
1514 [ C(RESULT_MISS) ] = 0x01b7,
1515 },
1516 [ C(OP_PREFETCH) ] = {
1517 [ C(RESULT_ACCESS) ] = 0x01b7,
1518 [ C(RESULT_MISS) ] = 0x01b7,
1519 },
1520 },
1521 };
1522
1523 /*
1524 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1525 * See IA32 SDM Vol 3B 30.6.1.3
1526 */
1527
1528 #define NHM_DMND_DATA_RD (1 << 0)
1529 #define NHM_DMND_RFO (1 << 1)
1530 #define NHM_DMND_IFETCH (1 << 2)
1531 #define NHM_DMND_WB (1 << 3)
1532 #define NHM_PF_DATA_RD (1 << 4)
1533 #define NHM_PF_DATA_RFO (1 << 5)
1534 #define NHM_PF_IFETCH (1 << 6)
1535 #define NHM_OFFCORE_OTHER (1 << 7)
1536 #define NHM_UNCORE_HIT (1 << 8)
1537 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1538 #define NHM_OTHER_CORE_HITM (1 << 10)
1539 /* reserved */
1540 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1541 #define NHM_REMOTE_DRAM (1 << 13)
1542 #define NHM_LOCAL_DRAM (1 << 14)
1543 #define NHM_NON_DRAM (1 << 15)
1544
1545 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1546 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1547
1548 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1549 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1550 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1551
1552 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1553 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1554 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1555
1556 static __initconst const u64 nehalem_hw_cache_extra_regs
1557 [PERF_COUNT_HW_CACHE_MAX]
1558 [PERF_COUNT_HW_CACHE_OP_MAX]
1559 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1560 {
1561 [ C(LL ) ] = {
1562 [ C(OP_READ) ] = {
1563 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1564 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1565 },
1566 [ C(OP_WRITE) ] = {
1567 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1568 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1569 },
1570 [ C(OP_PREFETCH) ] = {
1571 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1572 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1573 },
1574 },
1575 [ C(NODE) ] = {
1576 [ C(OP_READ) ] = {
1577 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1578 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1579 },
1580 [ C(OP_WRITE) ] = {
1581 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1582 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1583 },
1584 [ C(OP_PREFETCH) ] = {
1585 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1586 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1587 },
1588 },
1589 };
1590
1591 static __initconst const u64 nehalem_hw_cache_event_ids
1592 [PERF_COUNT_HW_CACHE_MAX]
1593 [PERF_COUNT_HW_CACHE_OP_MAX]
1594 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1595 {
1596 [ C(L1D) ] = {
1597 [ C(OP_READ) ] = {
1598 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1599 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1600 },
1601 [ C(OP_WRITE) ] = {
1602 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1603 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1604 },
1605 [ C(OP_PREFETCH) ] = {
1606 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1607 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1608 },
1609 },
1610 [ C(L1I ) ] = {
1611 [ C(OP_READ) ] = {
1612 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1613 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1614 },
1615 [ C(OP_WRITE) ] = {
1616 [ C(RESULT_ACCESS) ] = -1,
1617 [ C(RESULT_MISS) ] = -1,
1618 },
1619 [ C(OP_PREFETCH) ] = {
1620 [ C(RESULT_ACCESS) ] = 0x0,
1621 [ C(RESULT_MISS) ] = 0x0,
1622 },
1623 },
1624 [ C(LL ) ] = {
1625 [ C(OP_READ) ] = {
1626 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1627 [ C(RESULT_ACCESS) ] = 0x01b7,
1628 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1629 [ C(RESULT_MISS) ] = 0x01b7,
1630 },
1631 /*
1632 * Use RFO, not WRITEBACK, because a write miss would typically occur
1633 * on RFO.
1634 */
1635 [ C(OP_WRITE) ] = {
1636 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1637 [ C(RESULT_ACCESS) ] = 0x01b7,
1638 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1639 [ C(RESULT_MISS) ] = 0x01b7,
1640 },
1641 [ C(OP_PREFETCH) ] = {
1642 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1643 [ C(RESULT_ACCESS) ] = 0x01b7,
1644 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1645 [ C(RESULT_MISS) ] = 0x01b7,
1646 },
1647 },
1648 [ C(DTLB) ] = {
1649 [ C(OP_READ) ] = {
1650 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1651 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1652 },
1653 [ C(OP_WRITE) ] = {
1654 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1655 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1656 },
1657 [ C(OP_PREFETCH) ] = {
1658 [ C(RESULT_ACCESS) ] = 0x0,
1659 [ C(RESULT_MISS) ] = 0x0,
1660 },
1661 },
1662 [ C(ITLB) ] = {
1663 [ C(OP_READ) ] = {
1664 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1665 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1666 },
1667 [ C(OP_WRITE) ] = {
1668 [ C(RESULT_ACCESS) ] = -1,
1669 [ C(RESULT_MISS) ] = -1,
1670 },
1671 [ C(OP_PREFETCH) ] = {
1672 [ C(RESULT_ACCESS) ] = -1,
1673 [ C(RESULT_MISS) ] = -1,
1674 },
1675 },
1676 [ C(BPU ) ] = {
1677 [ C(OP_READ) ] = {
1678 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1679 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1680 },
1681 [ C(OP_WRITE) ] = {
1682 [ C(RESULT_ACCESS) ] = -1,
1683 [ C(RESULT_MISS) ] = -1,
1684 },
1685 [ C(OP_PREFETCH) ] = {
1686 [ C(RESULT_ACCESS) ] = -1,
1687 [ C(RESULT_MISS) ] = -1,
1688 },
1689 },
1690 [ C(NODE) ] = {
1691 [ C(OP_READ) ] = {
1692 [ C(RESULT_ACCESS) ] = 0x01b7,
1693 [ C(RESULT_MISS) ] = 0x01b7,
1694 },
1695 [ C(OP_WRITE) ] = {
1696 [ C(RESULT_ACCESS) ] = 0x01b7,
1697 [ C(RESULT_MISS) ] = 0x01b7,
1698 },
1699 [ C(OP_PREFETCH) ] = {
1700 [ C(RESULT_ACCESS) ] = 0x01b7,
1701 [ C(RESULT_MISS) ] = 0x01b7,
1702 },
1703 },
1704 };
1705
1706 static __initconst const u64 core2_hw_cache_event_ids
1707 [PERF_COUNT_HW_CACHE_MAX]
1708 [PERF_COUNT_HW_CACHE_OP_MAX]
1709 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1710 {
1711 [ C(L1D) ] = {
1712 [ C(OP_READ) ] = {
1713 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1714 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1715 },
1716 [ C(OP_WRITE) ] = {
1717 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1718 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1719 },
1720 [ C(OP_PREFETCH) ] = {
1721 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1722 [ C(RESULT_MISS) ] = 0,
1723 },
1724 },
1725 [ C(L1I ) ] = {
1726 [ C(OP_READ) ] = {
1727 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1728 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1729 },
1730 [ C(OP_WRITE) ] = {
1731 [ C(RESULT_ACCESS) ] = -1,
1732 [ C(RESULT_MISS) ] = -1,
1733 },
1734 [ C(OP_PREFETCH) ] = {
1735 [ C(RESULT_ACCESS) ] = 0,
1736 [ C(RESULT_MISS) ] = 0,
1737 },
1738 },
1739 [ C(LL ) ] = {
1740 [ C(OP_READ) ] = {
1741 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1742 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1743 },
1744 [ C(OP_WRITE) ] = {
1745 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1746 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1747 },
1748 [ C(OP_PREFETCH) ] = {
1749 [ C(RESULT_ACCESS) ] = 0,
1750 [ C(RESULT_MISS) ] = 0,
1751 },
1752 },
1753 [ C(DTLB) ] = {
1754 [ C(OP_READ) ] = {
1755 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1756 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1757 },
1758 [ C(OP_WRITE) ] = {
1759 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1760 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1761 },
1762 [ C(OP_PREFETCH) ] = {
1763 [ C(RESULT_ACCESS) ] = 0,
1764 [ C(RESULT_MISS) ] = 0,
1765 },
1766 },
1767 [ C(ITLB) ] = {
1768 [ C(OP_READ) ] = {
1769 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1770 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1771 },
1772 [ C(OP_WRITE) ] = {
1773 [ C(RESULT_ACCESS) ] = -1,
1774 [ C(RESULT_MISS) ] = -1,
1775 },
1776 [ C(OP_PREFETCH) ] = {
1777 [ C(RESULT_ACCESS) ] = -1,
1778 [ C(RESULT_MISS) ] = -1,
1779 },
1780 },
1781 [ C(BPU ) ] = {
1782 [ C(OP_READ) ] = {
1783 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1784 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1785 },
1786 [ C(OP_WRITE) ] = {
1787 [ C(RESULT_ACCESS) ] = -1,
1788 [ C(RESULT_MISS) ] = -1,
1789 },
1790 [ C(OP_PREFETCH) ] = {
1791 [ C(RESULT_ACCESS) ] = -1,
1792 [ C(RESULT_MISS) ] = -1,
1793 },
1794 },
1795 };
1796
1797 static __initconst const u64 atom_hw_cache_event_ids
1798 [PERF_COUNT_HW_CACHE_MAX]
1799 [PERF_COUNT_HW_CACHE_OP_MAX]
1800 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1801 {
1802 [ C(L1D) ] = {
1803 [ C(OP_READ) ] = {
1804 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1805 [ C(RESULT_MISS) ] = 0,
1806 },
1807 [ C(OP_WRITE) ] = {
1808 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1809 [ C(RESULT_MISS) ] = 0,
1810 },
1811 [ C(OP_PREFETCH) ] = {
1812 [ C(RESULT_ACCESS) ] = 0x0,
1813 [ C(RESULT_MISS) ] = 0,
1814 },
1815 },
1816 [ C(L1I ) ] = {
1817 [ C(OP_READ) ] = {
1818 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1819 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1820 },
1821 [ C(OP_WRITE) ] = {
1822 [ C(RESULT_ACCESS) ] = -1,
1823 [ C(RESULT_MISS) ] = -1,
1824 },
1825 [ C(OP_PREFETCH) ] = {
1826 [ C(RESULT_ACCESS) ] = 0,
1827 [ C(RESULT_MISS) ] = 0,
1828 },
1829 },
1830 [ C(LL ) ] = {
1831 [ C(OP_READ) ] = {
1832 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1833 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1834 },
1835 [ C(OP_WRITE) ] = {
1836 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1837 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1838 },
1839 [ C(OP_PREFETCH) ] = {
1840 [ C(RESULT_ACCESS) ] = 0,
1841 [ C(RESULT_MISS) ] = 0,
1842 },
1843 },
1844 [ C(DTLB) ] = {
1845 [ C(OP_READ) ] = {
1846 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1847 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1848 },
1849 [ C(OP_WRITE) ] = {
1850 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1851 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1852 },
1853 [ C(OP_PREFETCH) ] = {
1854 [ C(RESULT_ACCESS) ] = 0,
1855 [ C(RESULT_MISS) ] = 0,
1856 },
1857 },
1858 [ C(ITLB) ] = {
1859 [ C(OP_READ) ] = {
1860 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1861 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1862 },
1863 [ C(OP_WRITE) ] = {
1864 [ C(RESULT_ACCESS) ] = -1,
1865 [ C(RESULT_MISS) ] = -1,
1866 },
1867 [ C(OP_PREFETCH) ] = {
1868 [ C(RESULT_ACCESS) ] = -1,
1869 [ C(RESULT_MISS) ] = -1,
1870 },
1871 },
1872 [ C(BPU ) ] = {
1873 [ C(OP_READ) ] = {
1874 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1875 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1876 },
1877 [ C(OP_WRITE) ] = {
1878 [ C(RESULT_ACCESS) ] = -1,
1879 [ C(RESULT_MISS) ] = -1,
1880 },
1881 [ C(OP_PREFETCH) ] = {
1882 [ C(RESULT_ACCESS) ] = -1,
1883 [ C(RESULT_MISS) ] = -1,
1884 },
1885 },
1886 };
1887
1888 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1889 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1890 /* no_alloc_cycles.not_delivered */
1891 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1892 "event=0xca,umask=0x50");
1893 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1894 /* uops_retired.all */
1895 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1896 "event=0xc2,umask=0x10");
1897 /* uops_retired.all */
1898 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1899 "event=0xc2,umask=0x10");
1900
1901 static struct attribute *slm_events_attrs[] = {
1902 EVENT_PTR(td_total_slots_slm),
1903 EVENT_PTR(td_total_slots_scale_slm),
1904 EVENT_PTR(td_fetch_bubbles_slm),
1905 EVENT_PTR(td_fetch_bubbles_scale_slm),
1906 EVENT_PTR(td_slots_issued_slm),
1907 EVENT_PTR(td_slots_retired_slm),
1908 NULL
1909 };
1910
1911 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1912 {
1913 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1914 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1915 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1916 EVENT_EXTRA_END
1917 };
1918
1919 #define SLM_DMND_READ SNB_DMND_DATA_RD
1920 #define SLM_DMND_WRITE SNB_DMND_RFO
1921 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1922
1923 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1924 #define SLM_LLC_ACCESS SNB_RESP_ANY
1925 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1926
1927 static __initconst const u64 slm_hw_cache_extra_regs
1928 [PERF_COUNT_HW_CACHE_MAX]
1929 [PERF_COUNT_HW_CACHE_OP_MAX]
1930 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1931 {
1932 [ C(LL ) ] = {
1933 [ C(OP_READ) ] = {
1934 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1935 [ C(RESULT_MISS) ] = 0,
1936 },
1937 [ C(OP_WRITE) ] = {
1938 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1939 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1940 },
1941 [ C(OP_PREFETCH) ] = {
1942 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1943 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1944 },
1945 },
1946 };
1947
1948 static __initconst const u64 slm_hw_cache_event_ids
1949 [PERF_COUNT_HW_CACHE_MAX]
1950 [PERF_COUNT_HW_CACHE_OP_MAX]
1951 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1952 {
1953 [ C(L1D) ] = {
1954 [ C(OP_READ) ] = {
1955 [ C(RESULT_ACCESS) ] = 0,
1956 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1957 },
1958 [ C(OP_WRITE) ] = {
1959 [ C(RESULT_ACCESS) ] = 0,
1960 [ C(RESULT_MISS) ] = 0,
1961 },
1962 [ C(OP_PREFETCH) ] = {
1963 [ C(RESULT_ACCESS) ] = 0,
1964 [ C(RESULT_MISS) ] = 0,
1965 },
1966 },
1967 [ C(L1I ) ] = {
1968 [ C(OP_READ) ] = {
1969 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1970 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1971 },
1972 [ C(OP_WRITE) ] = {
1973 [ C(RESULT_ACCESS) ] = -1,
1974 [ C(RESULT_MISS) ] = -1,
1975 },
1976 [ C(OP_PREFETCH) ] = {
1977 [ C(RESULT_ACCESS) ] = 0,
1978 [ C(RESULT_MISS) ] = 0,
1979 },
1980 },
1981 [ C(LL ) ] = {
1982 [ C(OP_READ) ] = {
1983 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1984 [ C(RESULT_ACCESS) ] = 0x01b7,
1985 [ C(RESULT_MISS) ] = 0,
1986 },
1987 [ C(OP_WRITE) ] = {
1988 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1989 [ C(RESULT_ACCESS) ] = 0x01b7,
1990 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1991 [ C(RESULT_MISS) ] = 0x01b7,
1992 },
1993 [ C(OP_PREFETCH) ] = {
1994 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1995 [ C(RESULT_ACCESS) ] = 0x01b7,
1996 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1997 [ C(RESULT_MISS) ] = 0x01b7,
1998 },
1999 },
2000 [ C(DTLB) ] = {
2001 [ C(OP_READ) ] = {
2002 [ C(RESULT_ACCESS) ] = 0,
2003 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
2004 },
2005 [ C(OP_WRITE) ] = {
2006 [ C(RESULT_ACCESS) ] = 0,
2007 [ C(RESULT_MISS) ] = 0,
2008 },
2009 [ C(OP_PREFETCH) ] = {
2010 [ C(RESULT_ACCESS) ] = 0,
2011 [ C(RESULT_MISS) ] = 0,
2012 },
2013 },
2014 [ C(ITLB) ] = {
2015 [ C(OP_READ) ] = {
2016 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
2017 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
2018 },
2019 [ C(OP_WRITE) ] = {
2020 [ C(RESULT_ACCESS) ] = -1,
2021 [ C(RESULT_MISS) ] = -1,
2022 },
2023 [ C(OP_PREFETCH) ] = {
2024 [ C(RESULT_ACCESS) ] = -1,
2025 [ C(RESULT_MISS) ] = -1,
2026 },
2027 },
2028 [ C(BPU ) ] = {
2029 [ C(OP_READ) ] = {
2030 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
2031 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
2032 },
2033 [ C(OP_WRITE) ] = {
2034 [ C(RESULT_ACCESS) ] = -1,
2035 [ C(RESULT_MISS) ] = -1,
2036 },
2037 [ C(OP_PREFETCH) ] = {
2038 [ C(RESULT_ACCESS) ] = -1,
2039 [ C(RESULT_MISS) ] = -1,
2040 },
2041 },
2042 };
2043
2044 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
2045 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
2046 /* UOPS_NOT_DELIVERED.ANY */
2047 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
2048 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
2049 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
2050 /* UOPS_RETIRED.ANY */
2051 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
2052 /* UOPS_ISSUED.ANY */
2053 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
2054
2055 static struct attribute *glm_events_attrs[] = {
2056 EVENT_PTR(td_total_slots_glm),
2057 EVENT_PTR(td_total_slots_scale_glm),
2058 EVENT_PTR(td_fetch_bubbles_glm),
2059 EVENT_PTR(td_recovery_bubbles_glm),
2060 EVENT_PTR(td_slots_issued_glm),
2061 EVENT_PTR(td_slots_retired_glm),
2062 NULL
2063 };
2064
2065 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
2066 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2067 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
2068 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
2069 EVENT_EXTRA_END
2070 };
2071
2072 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
2073 #define GLM_DEMAND_RFO BIT_ULL(1)
2074 #define GLM_ANY_RESPONSE BIT_ULL(16)
2075 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
2076 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
2077 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
2078 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
2079 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
2080 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
2081 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
2082
2083 static __initconst const u64 glm_hw_cache_event_ids
2084 [PERF_COUNT_HW_CACHE_MAX]
2085 [PERF_COUNT_HW_CACHE_OP_MAX]
2086 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2087 [C(L1D)] = {
2088 [C(OP_READ)] = {
2089 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2090 [C(RESULT_MISS)] = 0x0,
2091 },
2092 [C(OP_WRITE)] = {
2093 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2094 [C(RESULT_MISS)] = 0x0,
2095 },
2096 [C(OP_PREFETCH)] = {
2097 [C(RESULT_ACCESS)] = 0x0,
2098 [C(RESULT_MISS)] = 0x0,
2099 },
2100 },
2101 [C(L1I)] = {
2102 [C(OP_READ)] = {
2103 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2104 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2105 },
2106 [C(OP_WRITE)] = {
2107 [C(RESULT_ACCESS)] = -1,
2108 [C(RESULT_MISS)] = -1,
2109 },
2110 [C(OP_PREFETCH)] = {
2111 [C(RESULT_ACCESS)] = 0x0,
2112 [C(RESULT_MISS)] = 0x0,
2113 },
2114 },
2115 [C(LL)] = {
2116 [C(OP_READ)] = {
2117 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2118 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2119 },
2120 [C(OP_WRITE)] = {
2121 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2122 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2123 },
2124 [C(OP_PREFETCH)] = {
2125 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2126 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2127 },
2128 },
2129 [C(DTLB)] = {
2130 [C(OP_READ)] = {
2131 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2132 [C(RESULT_MISS)] = 0x0,
2133 },
2134 [C(OP_WRITE)] = {
2135 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2136 [C(RESULT_MISS)] = 0x0,
2137 },
2138 [C(OP_PREFETCH)] = {
2139 [C(RESULT_ACCESS)] = 0x0,
2140 [C(RESULT_MISS)] = 0x0,
2141 },
2142 },
2143 [C(ITLB)] = {
2144 [C(OP_READ)] = {
2145 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2146 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2147 },
2148 [C(OP_WRITE)] = {
2149 [C(RESULT_ACCESS)] = -1,
2150 [C(RESULT_MISS)] = -1,
2151 },
2152 [C(OP_PREFETCH)] = {
2153 [C(RESULT_ACCESS)] = -1,
2154 [C(RESULT_MISS)] = -1,
2155 },
2156 },
2157 [C(BPU)] = {
2158 [C(OP_READ)] = {
2159 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2160 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2161 },
2162 [C(OP_WRITE)] = {
2163 [C(RESULT_ACCESS)] = -1,
2164 [C(RESULT_MISS)] = -1,
2165 },
2166 [C(OP_PREFETCH)] = {
2167 [C(RESULT_ACCESS)] = -1,
2168 [C(RESULT_MISS)] = -1,
2169 },
2170 },
2171 };
2172
2173 static __initconst const u64 glm_hw_cache_extra_regs
2174 [PERF_COUNT_HW_CACHE_MAX]
2175 [PERF_COUNT_HW_CACHE_OP_MAX]
2176 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2177 [C(LL)] = {
2178 [C(OP_READ)] = {
2179 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2180 GLM_LLC_ACCESS,
2181 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2182 GLM_LLC_MISS,
2183 },
2184 [C(OP_WRITE)] = {
2185 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2186 GLM_LLC_ACCESS,
2187 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2188 GLM_LLC_MISS,
2189 },
2190 [C(OP_PREFETCH)] = {
2191 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2192 GLM_LLC_ACCESS,
2193 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2194 GLM_LLC_MISS,
2195 },
2196 },
2197 };
2198
2199 static __initconst const u64 glp_hw_cache_event_ids
2200 [PERF_COUNT_HW_CACHE_MAX]
2201 [PERF_COUNT_HW_CACHE_OP_MAX]
2202 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2203 [C(L1D)] = {
2204 [C(OP_READ)] = {
2205 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2206 [C(RESULT_MISS)] = 0x0,
2207 },
2208 [C(OP_WRITE)] = {
2209 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2210 [C(RESULT_MISS)] = 0x0,
2211 },
2212 [C(OP_PREFETCH)] = {
2213 [C(RESULT_ACCESS)] = 0x0,
2214 [C(RESULT_MISS)] = 0x0,
2215 },
2216 },
2217 [C(L1I)] = {
2218 [C(OP_READ)] = {
2219 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2220 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2221 },
2222 [C(OP_WRITE)] = {
2223 [C(RESULT_ACCESS)] = -1,
2224 [C(RESULT_MISS)] = -1,
2225 },
2226 [C(OP_PREFETCH)] = {
2227 [C(RESULT_ACCESS)] = 0x0,
2228 [C(RESULT_MISS)] = 0x0,
2229 },
2230 },
2231 [C(LL)] = {
2232 [C(OP_READ)] = {
2233 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2234 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2235 },
2236 [C(OP_WRITE)] = {
2237 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2238 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2239 },
2240 [C(OP_PREFETCH)] = {
2241 [C(RESULT_ACCESS)] = 0x0,
2242 [C(RESULT_MISS)] = 0x0,
2243 },
2244 },
2245 [C(DTLB)] = {
2246 [C(OP_READ)] = {
2247 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2248 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2249 },
2250 [C(OP_WRITE)] = {
2251 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2252 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2253 },
2254 [C(OP_PREFETCH)] = {
2255 [C(RESULT_ACCESS)] = 0x0,
2256 [C(RESULT_MISS)] = 0x0,
2257 },
2258 },
2259 [C(ITLB)] = {
2260 [C(OP_READ)] = {
2261 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2262 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2263 },
2264 [C(OP_WRITE)] = {
2265 [C(RESULT_ACCESS)] = -1,
2266 [C(RESULT_MISS)] = -1,
2267 },
2268 [C(OP_PREFETCH)] = {
2269 [C(RESULT_ACCESS)] = -1,
2270 [C(RESULT_MISS)] = -1,
2271 },
2272 },
2273 [C(BPU)] = {
2274 [C(OP_READ)] = {
2275 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2276 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2277 },
2278 [C(OP_WRITE)] = {
2279 [C(RESULT_ACCESS)] = -1,
2280 [C(RESULT_MISS)] = -1,
2281 },
2282 [C(OP_PREFETCH)] = {
2283 [C(RESULT_ACCESS)] = -1,
2284 [C(RESULT_MISS)] = -1,
2285 },
2286 },
2287 };
2288
2289 static __initconst const u64 glp_hw_cache_extra_regs
2290 [PERF_COUNT_HW_CACHE_MAX]
2291 [PERF_COUNT_HW_CACHE_OP_MAX]
2292 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2293 [C(LL)] = {
2294 [C(OP_READ)] = {
2295 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2296 GLM_LLC_ACCESS,
2297 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2298 GLM_LLC_MISS,
2299 },
2300 [C(OP_WRITE)] = {
2301 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2302 GLM_LLC_ACCESS,
2303 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2304 GLM_LLC_MISS,
2305 },
2306 [C(OP_PREFETCH)] = {
2307 [C(RESULT_ACCESS)] = 0x0,
2308 [C(RESULT_MISS)] = 0x0,
2309 },
2310 },
2311 };
2312
2313 #define TNT_LOCAL_DRAM BIT_ULL(26)
2314 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2315 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2316 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2317 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2318 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2319 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2320
2321 static __initconst const u64 tnt_hw_cache_extra_regs
2322 [PERF_COUNT_HW_CACHE_MAX]
2323 [PERF_COUNT_HW_CACHE_OP_MAX]
2324 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2325 [C(LL)] = {
2326 [C(OP_READ)] = {
2327 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2328 TNT_LLC_ACCESS,
2329 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2330 TNT_LLC_MISS,
2331 },
2332 [C(OP_WRITE)] = {
2333 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2334 TNT_LLC_ACCESS,
2335 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2336 TNT_LLC_MISS,
2337 },
2338 [C(OP_PREFETCH)] = {
2339 [C(RESULT_ACCESS)] = 0x0,
2340 [C(RESULT_MISS)] = 0x0,
2341 },
2342 },
2343 };
2344
2345 static __initconst const u64 arw_hw_cache_extra_regs
2346 [PERF_COUNT_HW_CACHE_MAX]
2347 [PERF_COUNT_HW_CACHE_OP_MAX]
2348 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2349 [C(LL)] = {
2350 [C(OP_READ)] = {
2351 [C(RESULT_ACCESS)] = 0x4000000000000001,
2352 [C(RESULT_MISS)] = 0xFFFFF000000001,
2353 },
2354 [C(OP_WRITE)] = {
2355 [C(RESULT_ACCESS)] = 0x4000000000000002,
2356 [C(RESULT_MISS)] = 0xFFFFF000000002,
2357 },
2358 [C(OP_PREFETCH)] = {
2359 [C(RESULT_ACCESS)] = 0x0,
2360 [C(RESULT_MISS)] = 0x0,
2361 },
2362 },
2363 };
2364
2365 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2366 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2367 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2368 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2369
2370 static struct attribute *tnt_events_attrs[] = {
2371 EVENT_PTR(td_fe_bound_tnt),
2372 EVENT_PTR(td_retiring_tnt),
2373 EVENT_PTR(td_bad_spec_tnt),
2374 EVENT_PTR(td_be_bound_tnt),
2375 NULL,
2376 };
2377
2378 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2379 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2380 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2381 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2382 EVENT_EXTRA_END
2383 };
2384
2385 EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2386 EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2387
2388 static struct attribute *grt_mem_attrs[] = {
2389 EVENT_PTR(mem_ld_grt),
2390 EVENT_PTR(mem_st_grt),
2391 NULL
2392 };
2393
2394 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2395 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2396 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2397 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2398 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2399 EVENT_EXTRA_END
2400 };
2401
2402 EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2403 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2404
2405 static struct attribute *cmt_events_attrs[] = {
2406 EVENT_PTR(td_fe_bound_tnt),
2407 EVENT_PTR(td_retiring_cmt),
2408 EVENT_PTR(td_bad_spec_cmt),
2409 EVENT_PTR(td_be_bound_tnt),
2410 NULL
2411 };
2412
2413 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2414 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2415 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2416 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2417 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2418 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2419 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2420 EVENT_EXTRA_END
2421 };
2422
2423 static struct extra_reg intel_arw_extra_regs[] __read_mostly = {
2424 /* must define OMR_X first, see intel_alt_er() */
2425 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OMR_0, 0xc0ffffffffffffffull, OMR_0),
2426 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OMR_1, 0xc0ffffffffffffffull, OMR_1),
2427 INTEL_UEVENT_EXTRA_REG(0x04b7, MSR_OMR_2, 0xc0ffffffffffffffull, OMR_2),
2428 INTEL_UEVENT_EXTRA_REG(0x08b7, MSR_OMR_3, 0xc0ffffffffffffffull, OMR_3),
2429 INTEL_UEVENT_EXTRA_REG(0x01d4, MSR_OMR_0, 0xc0ffffffffffffffull, OMR_0),
2430 INTEL_UEVENT_EXTRA_REG(0x02d4, MSR_OMR_1, 0xc0ffffffffffffffull, OMR_1),
2431 INTEL_UEVENT_EXTRA_REG(0x04d4, MSR_OMR_2, 0xc0ffffffffffffffull, OMR_2),
2432 INTEL_UEVENT_EXTRA_REG(0x08d4, MSR_OMR_3, 0xc0ffffffffffffffull, OMR_3),
2433 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2434 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2435 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2436 EVENT_EXTRA_END
2437 };
2438
2439 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2440 EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2441 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2442
2443 static struct attribute *skt_events_attrs[] = {
2444 EVENT_PTR(td_fe_bound_skt),
2445 EVENT_PTR(td_retiring_skt),
2446 EVENT_PTR(td_bad_spec_cmt),
2447 EVENT_PTR(td_be_bound_skt),
2448 NULL,
2449 };
2450
2451 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2452 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2453 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2454 #define KNL_MCDRAM_FAR BIT_ULL(22)
2455 #define KNL_DDR_LOCAL BIT_ULL(23)
2456 #define KNL_DDR_FAR BIT_ULL(24)
2457 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2458 KNL_DDR_LOCAL | KNL_DDR_FAR)
2459 #define KNL_L2_READ SLM_DMND_READ
2460 #define KNL_L2_WRITE SLM_DMND_WRITE
2461 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2462 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2463 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2464 KNL_DRAM_ANY | SNB_SNP_ANY | \
2465 SNB_NON_DRAM)
2466
2467 static __initconst const u64 knl_hw_cache_extra_regs
2468 [PERF_COUNT_HW_CACHE_MAX]
2469 [PERF_COUNT_HW_CACHE_OP_MAX]
2470 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2471 [C(LL)] = {
2472 [C(OP_READ)] = {
2473 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2474 [C(RESULT_MISS)] = 0,
2475 },
2476 [C(OP_WRITE)] = {
2477 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2478 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2479 },
2480 [C(OP_PREFETCH)] = {
2481 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2482 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2483 },
2484 },
2485 };
2486
2487 /*
2488 * Used from PMIs where the LBRs are already disabled.
2489 *
2490 * This function could be called consecutively. It is required to remain in
2491 * disabled state if called consecutively.
2492 *
2493 * During consecutive calls, the same disable value will be written to related
2494 * registers, so the PMU state remains unchanged.
2495 *
2496 * intel_bts events don't coexist with intel PMU's BTS events because of
2497 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2498 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2499 *
2500 * Avoid PEBS_ENABLE MSR access in PMIs.
2501 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2502 * It doesn't matter if the PEBS is enabled or not.
2503 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2504 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2505 * However, there are some cases which may change PEBS status, e.g. PMI
2506 * throttle. The PEBS_ENABLE should be updated where the status changes.
2507 */
__intel_pmu_disable_all(bool bts)2508 static __always_inline void __intel_pmu_disable_all(bool bts)
2509 {
2510 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2511
2512 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2513
2514 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2515 intel_pmu_disable_bts();
2516 }
2517
intel_pmu_disable_all(void)2518 static __always_inline void intel_pmu_disable_all(void)
2519 {
2520 __intel_pmu_disable_all(true);
2521 static_call_cond(x86_pmu_pebs_disable_all)();
2522 intel_pmu_lbr_disable_all();
2523 }
2524
__intel_pmu_enable_all(int added,bool pmi)2525 static void __intel_pmu_enable_all(int added, bool pmi)
2526 {
2527 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2528 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2529
2530 intel_pmu_lbr_enable_all(pmi);
2531
2532 if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2533 wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2534 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2535 }
2536
2537 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2538 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2539
2540 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2541 struct perf_event *event =
2542 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2543
2544 if (WARN_ON_ONCE(!event))
2545 return;
2546
2547 intel_pmu_enable_bts(event->hw.config);
2548 }
2549 }
2550
intel_pmu_enable_all(int added)2551 static void intel_pmu_enable_all(int added)
2552 {
2553 static_call_cond(x86_pmu_pebs_enable_all)();
2554 __intel_pmu_enable_all(added, false);
2555 }
2556
2557 static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt,unsigned long flags)2558 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2559 unsigned int cnt, unsigned long flags)
2560 {
2561 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2562
2563 intel_pmu_lbr_read();
2564 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2565
2566 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2567 intel_pmu_enable_all(0);
2568 local_irq_restore(flags);
2569 return cnt;
2570 }
2571
2572 static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2573 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2574 {
2575 unsigned long flags;
2576
2577 /* must not have branches... */
2578 local_irq_save(flags);
2579 __intel_pmu_disable_all(false); /* we don't care about BTS */
2580 __intel_pmu_lbr_disable();
2581 /* ... until here */
2582 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2583 }
2584
2585 static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2586 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2587 {
2588 unsigned long flags;
2589
2590 /* must not have branches... */
2591 local_irq_save(flags);
2592 __intel_pmu_disable_all(false); /* we don't care about BTS */
2593 __intel_pmu_arch_lbr_disable();
2594 /* ... until here */
2595 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2596 }
2597
2598 /*
2599 * Workaround for:
2600 * Intel Errata AAK100 (model 26)
2601 * Intel Errata AAP53 (model 30)
2602 * Intel Errata BD53 (model 44)
2603 *
2604 * The official story:
2605 * These chips need to be 'reset' when adding counters by programming the
2606 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2607 * in sequence on the same PMC or on different PMCs.
2608 *
2609 * In practice it appears some of these events do in fact count, and
2610 * we need to program all 4 events.
2611 */
intel_pmu_nhm_workaround(void)2612 static void intel_pmu_nhm_workaround(void)
2613 {
2614 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2615 static const unsigned long nhm_magic[4] = {
2616 0x4300B5,
2617 0x4300D2,
2618 0x4300B1,
2619 0x4300B1
2620 };
2621 struct perf_event *event;
2622 int i;
2623
2624 /*
2625 * The Errata requires below steps:
2626 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2627 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2628 * the corresponding PMCx;
2629 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2630 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2631 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2632 */
2633
2634 /*
2635 * The real steps we choose are a little different from above.
2636 * A) To reduce MSR operations, we don't run step 1) as they
2637 * are already cleared before this function is called;
2638 * B) Call x86_perf_event_update to save PMCx before configuring
2639 * PERFEVTSELx with magic number;
2640 * C) With step 5), we do clear only when the PERFEVTSELx is
2641 * not used currently.
2642 * D) Call x86_perf_event_set_period to restore PMCx;
2643 */
2644
2645 /* We always operate 4 pairs of PERF Counters */
2646 for (i = 0; i < 4; i++) {
2647 event = cpuc->events[i];
2648 if (event)
2649 static_call(x86_pmu_update)(event);
2650 }
2651
2652 for (i = 0; i < 4; i++) {
2653 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2654 wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2655 }
2656
2657 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2658 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2659
2660 for (i = 0; i < 4; i++) {
2661 event = cpuc->events[i];
2662
2663 if (event) {
2664 static_call(x86_pmu_set_period)(event);
2665 __x86_pmu_enable_event(&event->hw,
2666 ARCH_PERFMON_EVENTSEL_ENABLE);
2667 } else
2668 wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2669 }
2670 }
2671
intel_pmu_nhm_enable_all(int added)2672 static void intel_pmu_nhm_enable_all(int added)
2673 {
2674 if (added)
2675 intel_pmu_nhm_workaround();
2676 intel_pmu_enable_all(added);
2677 }
2678
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2679 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2680 {
2681 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2682
2683 if (cpuc->tfa_shadow != val) {
2684 cpuc->tfa_shadow = val;
2685 wrmsrq(MSR_TSX_FORCE_ABORT, val);
2686 }
2687 }
2688
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2689 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2690 {
2691 /*
2692 * We're going to use PMC3, make sure TFA is set before we touch it.
2693 */
2694 if (cntr == 3)
2695 intel_set_tfa(cpuc, true);
2696 }
2697
intel_tfa_pmu_enable_all(int added)2698 static void intel_tfa_pmu_enable_all(int added)
2699 {
2700 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2701
2702 /*
2703 * If we find PMC3 is no longer used when we enable the PMU, we can
2704 * clear TFA.
2705 */
2706 if (!test_bit(3, cpuc->active_mask))
2707 intel_set_tfa(cpuc, false);
2708
2709 intel_pmu_enable_all(added);
2710 }
2711
intel_pmu_get_status(void)2712 static inline u64 intel_pmu_get_status(void)
2713 {
2714 u64 status;
2715
2716 rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2717
2718 return status;
2719 }
2720
intel_pmu_ack_status(u64 ack)2721 static inline void intel_pmu_ack_status(u64 ack)
2722 {
2723 wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2724 }
2725
event_is_checkpointed(struct perf_event * event)2726 static inline bool event_is_checkpointed(struct perf_event *event)
2727 {
2728 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2729 }
2730
intel_set_masks(struct perf_event * event,int idx)2731 static inline void intel_set_masks(struct perf_event *event, int idx)
2732 {
2733 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2734
2735 if (event->attr.exclude_host)
2736 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2737 if (event->attr.exclude_guest)
2738 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2739 if (event_is_checkpointed(event))
2740 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2741 }
2742
intel_clear_masks(struct perf_event * event,int idx)2743 static inline void intel_clear_masks(struct perf_event *event, int idx)
2744 {
2745 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2746
2747 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2748 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2749 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2750 }
2751
intel_pmu_disable_fixed(struct perf_event * event)2752 static void intel_pmu_disable_fixed(struct perf_event *event)
2753 {
2754 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2755 struct hw_perf_event *hwc = &event->hw;
2756 int idx = hwc->idx;
2757 u64 mask;
2758
2759 if (is_topdown_idx(idx)) {
2760 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2761
2762 /*
2763 * When there are other active TopDown events,
2764 * don't disable the fixed counter 3.
2765 */
2766 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2767 return;
2768 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2769 }
2770
2771 intel_clear_masks(event, idx);
2772
2773 mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2774 cpuc->fixed_ctrl_val &= ~mask;
2775 }
2776
__intel_pmu_update_event_ext(int idx,u64 ext)2777 static inline void __intel_pmu_update_event_ext(int idx, u64 ext)
2778 {
2779 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2780 u32 msr;
2781
2782 if (idx < INTEL_PMC_IDX_FIXED) {
2783 msr = MSR_IA32_PMC_V6_GP0_CFG_C +
2784 x86_pmu.addr_offset(idx, false);
2785 } else {
2786 msr = MSR_IA32_PMC_V6_FX0_CFG_C +
2787 x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2788 }
2789
2790 cpuc->cfg_c_val[idx] = ext;
2791 wrmsrq(msr, ext);
2792 }
2793
intel_pmu_disable_event_ext(struct perf_event * event)2794 static void intel_pmu_disable_event_ext(struct perf_event *event)
2795 {
2796 /*
2797 * Only clear CFG_C MSR for PEBS counter group events,
2798 * it avoids the HW counter's value to be added into
2799 * other PEBS records incorrectly after PEBS counter
2800 * group events are disabled.
2801 *
2802 * For other events, it's unnecessary to clear CFG_C MSRs
2803 * since CFG_C doesn't take effect if counter is in
2804 * disabled state. That helps to reduce the WRMSR overhead
2805 * in context switches.
2806 */
2807 if (!is_pebs_counter_event_group(event))
2808 return;
2809
2810 __intel_pmu_update_event_ext(event->hw.idx, 0);
2811 }
2812
2813 DEFINE_STATIC_CALL_NULL(intel_pmu_disable_event_ext, intel_pmu_disable_event_ext);
2814
intel_pmu_disable_event(struct perf_event * event)2815 static void intel_pmu_disable_event(struct perf_event *event)
2816 {
2817 struct hw_perf_event *hwc = &event->hw;
2818 int idx = hwc->idx;
2819
2820 switch (idx) {
2821 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2822 intel_clear_masks(event, idx);
2823 static_call_cond(intel_pmu_disable_event_ext)(event);
2824 x86_pmu_disable_event(event);
2825 break;
2826 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2827 static_call_cond(intel_pmu_disable_event_ext)(event);
2828 fallthrough;
2829 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2830 intel_pmu_disable_fixed(event);
2831 break;
2832 case INTEL_PMC_IDX_FIXED_BTS:
2833 intel_pmu_disable_bts();
2834 intel_pmu_drain_bts_buffer();
2835 return;
2836 case INTEL_PMC_IDX_FIXED_VLBR:
2837 intel_clear_masks(event, idx);
2838 break;
2839 default:
2840 intel_clear_masks(event, idx);
2841 pr_warn("Failed to disable the event with invalid index %d\n",
2842 idx);
2843 return;
2844 }
2845
2846 /*
2847 * Needs to be called after x86_pmu_disable_event,
2848 * so we don't trigger the event without PEBS bit set.
2849 */
2850 if (unlikely(event->attr.precise_ip))
2851 static_call(x86_pmu_pebs_disable)(event);
2852 }
2853
intel_pmu_assign_event(struct perf_event * event,int idx)2854 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2855 {
2856 if (is_pebs_pt(event))
2857 perf_report_aux_output_id(event, idx);
2858 }
2859
intel_pmu_needs_branch_stack(struct perf_event * event)2860 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2861 {
2862 return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2863 }
2864
intel_pmu_del_event(struct perf_event * event)2865 static void intel_pmu_del_event(struct perf_event *event)
2866 {
2867 if (intel_pmu_needs_branch_stack(event))
2868 intel_pmu_lbr_del(event);
2869 if (event->attr.precise_ip)
2870 intel_pmu_pebs_del(event);
2871 if (is_pebs_counter_event_group(event) ||
2872 is_acr_event_group(event))
2873 this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2874 }
2875
icl_set_topdown_event_period(struct perf_event * event)2876 static int icl_set_topdown_event_period(struct perf_event *event)
2877 {
2878 struct hw_perf_event *hwc = &event->hw;
2879 s64 left = local64_read(&hwc->period_left);
2880
2881 /*
2882 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2883 * Software should start both registers, PERF_METRICS and fixed
2884 * counter 3, from zero.
2885 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2886 * After that, both MSRs will be cleared for each read.
2887 * Don't need to clear them again.
2888 */
2889 if (left == x86_pmu.max_period) {
2890 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2891 wrmsrq(MSR_PERF_METRICS, 0);
2892 hwc->saved_slots = 0;
2893 hwc->saved_metric = 0;
2894 }
2895
2896 if ((hwc->saved_slots) && is_slots_event(event)) {
2897 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2898 wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2899 }
2900
2901 perf_event_update_userpage(event);
2902
2903 return 0;
2904 }
2905
2906 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2907
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2908 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2909 {
2910 u32 val;
2911
2912 /*
2913 * The metric is reported as an 8bit integer fraction
2914 * summing up to 0xff.
2915 * slots-in-metric = (Metric / 0xff) * slots
2916 */
2917 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2918 return mul_u64_u32_div(slots, val, 0xff);
2919 }
2920
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2921 static u64 icl_get_topdown_value(struct perf_event *event,
2922 u64 slots, u64 metrics)
2923 {
2924 int idx = event->hw.idx;
2925 u64 delta;
2926
2927 if (is_metric_idx(idx))
2928 delta = icl_get_metrics_event_value(metrics, slots, idx);
2929 else
2930 delta = slots;
2931
2932 return delta;
2933 }
2934
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2935 static void __icl_update_topdown_event(struct perf_event *event,
2936 u64 slots, u64 metrics,
2937 u64 last_slots, u64 last_metrics)
2938 {
2939 u64 delta, last = 0;
2940
2941 delta = icl_get_topdown_value(event, slots, metrics);
2942 if (last_slots)
2943 last = icl_get_topdown_value(event, last_slots, last_metrics);
2944
2945 /*
2946 * The 8bit integer fraction of metric may be not accurate,
2947 * especially when the changes is very small.
2948 * For example, if only a few bad_spec happens, the fraction
2949 * may be reduced from 1 to 0. If so, the bad_spec event value
2950 * will be 0 which is definitely less than the last value.
2951 * Avoid update event->count for this case.
2952 */
2953 if (delta > last) {
2954 delta -= last;
2955 local64_add(delta, &event->count);
2956 }
2957 }
2958
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2959 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2960 u64 metrics, int metric_end)
2961 {
2962 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2963 struct perf_event *other;
2964 int idx;
2965
2966 event->hw.saved_slots = slots;
2967 event->hw.saved_metric = metrics;
2968
2969 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2970 if (!is_topdown_idx(idx))
2971 continue;
2972 other = cpuc->events[idx];
2973 other->hw.saved_slots = slots;
2974 other->hw.saved_metric = metrics;
2975 }
2976 }
2977
2978 /*
2979 * Update all active Topdown events.
2980 *
2981 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2982 * modify by a NMI. PMU has to be disabled before calling this function.
2983 */
2984
intel_update_topdown_event(struct perf_event * event,int metric_end,u64 * val)2985 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2986 {
2987 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2988 struct perf_event *other;
2989 u64 slots, metrics;
2990 bool reset = true;
2991 int idx;
2992
2993 if (!val) {
2994 /* read Fixed counter 3 */
2995 slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2996 if (!slots)
2997 return 0;
2998
2999 /* read PERF_METRICS */
3000 metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
3001 } else {
3002 slots = val[0];
3003 metrics = val[1];
3004 /*
3005 * Don't reset the PERF_METRICS and Fixed counter 3
3006 * for each PEBS record read. Utilize the RDPMC metrics
3007 * clear mode.
3008 */
3009 reset = false;
3010 }
3011
3012 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
3013 if (!is_topdown_idx(idx))
3014 continue;
3015 other = cpuc->events[idx];
3016 __icl_update_topdown_event(other, slots, metrics,
3017 event ? event->hw.saved_slots : 0,
3018 event ? event->hw.saved_metric : 0);
3019 }
3020
3021 /*
3022 * Check and update this event, which may have been cleared
3023 * in active_mask e.g. x86_pmu_stop()
3024 */
3025 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
3026 __icl_update_topdown_event(event, slots, metrics,
3027 event->hw.saved_slots,
3028 event->hw.saved_metric);
3029
3030 /*
3031 * In x86_pmu_stop(), the event is cleared in active_mask first,
3032 * then drain the delta, which indicates context switch for
3033 * counting.
3034 * Save metric and slots for context switch.
3035 * Don't need to reset the PERF_METRICS and Fixed counter 3.
3036 * Because the values will be restored in next schedule in.
3037 */
3038 update_saved_topdown_regs(event, slots, metrics, metric_end);
3039 reset = false;
3040 }
3041
3042 if (reset) {
3043 /* The fixed counter 3 has to be written before the PERF_METRICS. */
3044 wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
3045 wrmsrq(MSR_PERF_METRICS, 0);
3046 if (event)
3047 update_saved_topdown_regs(event, 0, 0, metric_end);
3048 }
3049
3050 return slots;
3051 }
3052
icl_update_topdown_event(struct perf_event * event,u64 * val)3053 static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
3054 {
3055 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
3056 x86_pmu.num_topdown_events - 1,
3057 val);
3058 }
3059
3060 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
3061
intel_pmu_read_event(struct perf_event * event)3062 static void intel_pmu_read_event(struct perf_event *event)
3063 {
3064 if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
3065 is_pebs_counter_event_group(event)) {
3066 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3067 bool pmu_enabled = cpuc->enabled;
3068
3069 /* Only need to call update_topdown_event() once for group read. */
3070 if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
3071 return;
3072
3073 cpuc->enabled = 0;
3074 if (pmu_enabled)
3075 intel_pmu_disable_all();
3076
3077 /*
3078 * If the PEBS counters snapshotting is enabled,
3079 * the topdown event is available in PEBS records.
3080 */
3081 if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
3082 static_call(intel_pmu_update_topdown_event)(event, NULL);
3083 else
3084 intel_pmu_drain_pebs_buffer();
3085
3086 cpuc->enabled = pmu_enabled;
3087 if (pmu_enabled)
3088 intel_pmu_enable_all(0);
3089
3090 return;
3091 }
3092
3093 x86_perf_event_update(event);
3094 }
3095
intel_pmu_enable_fixed(struct perf_event * event)3096 static void intel_pmu_enable_fixed(struct perf_event *event)
3097 {
3098 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3099 struct hw_perf_event *hwc = &event->hw;
3100 int idx = hwc->idx;
3101 u64 bits = 0;
3102
3103 if (is_topdown_idx(idx)) {
3104 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3105 /*
3106 * When there are other active TopDown events,
3107 * don't enable the fixed counter 3 again.
3108 */
3109 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
3110 return;
3111
3112 idx = INTEL_PMC_IDX_FIXED_SLOTS;
3113
3114 if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
3115 bits |= INTEL_FIXED_3_METRICS_CLEAR;
3116 }
3117
3118 intel_set_masks(event, idx);
3119
3120 /*
3121 * Enable IRQ generation (0x8), if not PEBS,
3122 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
3123 * if requested:
3124 */
3125 if (!event->attr.precise_ip)
3126 bits |= INTEL_FIXED_0_ENABLE_PMI;
3127 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
3128 bits |= INTEL_FIXED_0_USER;
3129 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
3130 bits |= INTEL_FIXED_0_KERNEL;
3131 if (hwc->config & ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE)
3132 bits |= INTEL_FIXED_0_RDPMC_USER_DISABLE;
3133
3134 /*
3135 * ANY bit is supported in v3 and up
3136 */
3137 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
3138 bits |= INTEL_FIXED_0_ANYTHREAD;
3139
3140 idx -= INTEL_PMC_IDX_FIXED;
3141 bits = intel_fixed_bits_by_idx(idx, bits);
3142 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip)
3143 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
3144
3145 cpuc->fixed_ctrl_val &= ~intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
3146 cpuc->fixed_ctrl_val |= bits;
3147 }
3148
intel_pmu_config_acr(int idx,u64 mask,u32 reload)3149 static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
3150 {
3151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3152 int msr_b, msr_c;
3153 int msr_offset;
3154
3155 if (!mask && !cpuc->acr_cfg_b[idx])
3156 return;
3157
3158 if (idx < INTEL_PMC_IDX_FIXED) {
3159 msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
3160 msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
3161 msr_offset = x86_pmu.addr_offset(idx, false);
3162 } else {
3163 msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
3164 msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
3165 msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
3166 }
3167
3168 if (cpuc->acr_cfg_b[idx] != mask) {
3169 wrmsrl(msr_b + msr_offset, mask);
3170 cpuc->acr_cfg_b[idx] = mask;
3171 }
3172 /* Only need to update the reload value when there is a valid config value. */
3173 if (mask && cpuc->acr_cfg_c[idx] != reload) {
3174 wrmsrl(msr_c + msr_offset, reload);
3175 cpuc->acr_cfg_c[idx] = reload;
3176 }
3177 }
3178
intel_pmu_enable_acr(struct perf_event * event)3179 static void intel_pmu_enable_acr(struct perf_event *event)
3180 {
3181 struct hw_perf_event *hwc = &event->hw;
3182
3183 if (!is_acr_event_group(event) || !event->attr.config2) {
3184 /*
3185 * The disable doesn't clear the ACR CFG register.
3186 * Check and clear the ACR CFG register.
3187 */
3188 intel_pmu_config_acr(hwc->idx, 0, 0);
3189 return;
3190 }
3191
3192 intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
3193 }
3194
3195 DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
3196
intel_pmu_enable_event_ext(struct perf_event * event)3197 static void intel_pmu_enable_event_ext(struct perf_event *event)
3198 {
3199 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3200 struct hw_perf_event *hwc = &event->hw;
3201 union arch_pebs_index old, new;
3202 struct arch_pebs_cap cap;
3203 u64 ext = 0;
3204
3205 cap = hybrid(cpuc->pmu, arch_pebs_cap);
3206
3207 if (event->attr.precise_ip) {
3208 u64 pebs_data_cfg = intel_get_arch_pebs_data_config(event);
3209
3210 ext |= ARCH_PEBS_EN;
3211 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD)
3212 ext |= (-hwc->sample_period) & ARCH_PEBS_RELOAD;
3213
3214 if (pebs_data_cfg && cap.caps) {
3215 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
3216 ext |= ARCH_PEBS_AUX & cap.caps;
3217
3218 if (pebs_data_cfg & PEBS_DATACFG_GP)
3219 ext |= ARCH_PEBS_GPR & cap.caps;
3220
3221 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
3222 ext |= ARCH_PEBS_VECR_XMM & cap.caps;
3223
3224 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
3225 ext |= ARCH_PEBS_LBR & cap.caps;
3226
3227 if (pebs_data_cfg &
3228 (PEBS_DATACFG_CNTR_MASK << PEBS_DATACFG_CNTR_SHIFT))
3229 ext |= ARCH_PEBS_CNTR_GP & cap.caps;
3230
3231 if (pebs_data_cfg &
3232 (PEBS_DATACFG_FIX_MASK << PEBS_DATACFG_FIX_SHIFT))
3233 ext |= ARCH_PEBS_CNTR_FIXED & cap.caps;
3234
3235 if (pebs_data_cfg & PEBS_DATACFG_METRICS)
3236 ext |= ARCH_PEBS_CNTR_METRICS & cap.caps;
3237 }
3238
3239 if (cpuc->n_pebs == cpuc->n_large_pebs)
3240 new.thresh = ARCH_PEBS_THRESH_MULTI;
3241 else
3242 new.thresh = ARCH_PEBS_THRESH_SINGLE;
3243
3244 rdmsrq(MSR_IA32_PEBS_INDEX, old.whole);
3245 if (new.thresh != old.thresh || !old.en) {
3246 if (old.thresh == ARCH_PEBS_THRESH_MULTI && old.wr > 0) {
3247 /*
3248 * Large PEBS was enabled.
3249 * Drain PEBS buffer before applying the single PEBS.
3250 */
3251 intel_pmu_drain_pebs_buffer();
3252 } else {
3253 new.wr = 0;
3254 new.full = 0;
3255 new.en = 1;
3256 wrmsrq(MSR_IA32_PEBS_INDEX, new.whole);
3257 }
3258 }
3259 }
3260
3261 if (is_pebs_counter_event_group(event))
3262 ext |= ARCH_PEBS_CNTR_ALLOW;
3263
3264 if (cpuc->cfg_c_val[hwc->idx] != ext)
3265 __intel_pmu_update_event_ext(hwc->idx, ext);
3266 }
3267
intel_pmu_update_rdpmc_user_disable(struct perf_event * event)3268 static void intel_pmu_update_rdpmc_user_disable(struct perf_event *event)
3269 {
3270 if (!x86_pmu_has_rdpmc_user_disable(event->pmu))
3271 return;
3272
3273 /*
3274 * Counter scope's user-space rdpmc is disabled by default
3275 * except two cases.
3276 * a. rdpmc = 2 (user space rdpmc enabled unconditionally)
3277 * b. rdpmc = 1 and the event is not a system-wide event.
3278 * The count of non-system-wide events would be cleared when
3279 * context switches, so no count data is leaked.
3280 */
3281 if (x86_pmu.attr_rdpmc == X86_USER_RDPMC_ALWAYS_ENABLE ||
3282 (x86_pmu.attr_rdpmc == X86_USER_RDPMC_CONDITIONAL_ENABLE &&
3283 event->ctx->task))
3284 event->hw.config &= ~ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
3285 else
3286 event->hw.config |= ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
3287 }
3288
3289 DEFINE_STATIC_CALL_NULL(intel_pmu_enable_event_ext, intel_pmu_enable_event_ext);
3290
intel_pmu_enable_event(struct perf_event * event)3291 static void intel_pmu_enable_event(struct perf_event *event)
3292 {
3293 u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
3294 struct hw_perf_event *hwc = &event->hw;
3295 int idx = hwc->idx;
3296
3297 intel_pmu_update_rdpmc_user_disable(event);
3298
3299 if (unlikely(event->attr.precise_ip))
3300 static_call(x86_pmu_pebs_enable)(event);
3301
3302 switch (idx) {
3303 case 0 ... INTEL_PMC_IDX_FIXED - 1:
3304 if (branch_sample_counters(event))
3305 enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
3306 intel_set_masks(event, idx);
3307 static_call_cond(intel_pmu_enable_acr_event)(event);
3308 static_call_cond(intel_pmu_enable_event_ext)(event);
3309 __x86_pmu_enable_event(hwc, enable_mask);
3310 break;
3311 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
3312 static_call_cond(intel_pmu_enable_acr_event)(event);
3313 static_call_cond(intel_pmu_enable_event_ext)(event);
3314 fallthrough;
3315 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
3316 intel_pmu_enable_fixed(event);
3317 break;
3318 case INTEL_PMC_IDX_FIXED_BTS:
3319 if (!__this_cpu_read(cpu_hw_events.enabled))
3320 return;
3321 intel_pmu_enable_bts(hwc->config);
3322 break;
3323 case INTEL_PMC_IDX_FIXED_VLBR:
3324 intel_set_masks(event, idx);
3325 break;
3326 default:
3327 pr_warn("Failed to enable the event with invalid index %d\n",
3328 idx);
3329 }
3330 }
3331
intel_pmu_acr_late_setup(struct cpu_hw_events * cpuc)3332 static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
3333 {
3334 struct perf_event *event, *leader;
3335 int i, j, idx;
3336
3337 for (i = 0; i < cpuc->n_events; i++) {
3338 leader = cpuc->event_list[i];
3339 if (!is_acr_event_group(leader))
3340 continue;
3341
3342 /* The ACR events must be contiguous. */
3343 for (j = i; j < cpuc->n_events; j++) {
3344 event = cpuc->event_list[j];
3345 if (event->group_leader != leader->group_leader)
3346 break;
3347 for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
3348 if (i + idx >= cpuc->n_events ||
3349 !is_acr_event_group(cpuc->event_list[i + idx]))
3350 return;
3351 __set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3352 }
3353 }
3354 i = j - 1;
3355 }
3356 }
3357
intel_pmu_late_setup(void)3358 void intel_pmu_late_setup(void)
3359 {
3360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3361
3362 if (!cpuc->n_late_setup)
3363 return;
3364
3365 intel_pmu_pebs_late_setup(cpuc);
3366 intel_pmu_acr_late_setup(cpuc);
3367 }
3368
intel_pmu_add_event(struct perf_event * event)3369 static void intel_pmu_add_event(struct perf_event *event)
3370 {
3371 if (event->attr.precise_ip)
3372 intel_pmu_pebs_add(event);
3373 if (intel_pmu_needs_branch_stack(event))
3374 intel_pmu_lbr_add(event);
3375 if (is_pebs_counter_event_group(event) ||
3376 is_acr_event_group(event))
3377 this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3378 }
3379
3380 /*
3381 * Save and restart an expired event. Called by NMI contexts,
3382 * so it has to be careful about preempting normal event ops:
3383 */
intel_pmu_save_and_restart(struct perf_event * event)3384 int intel_pmu_save_and_restart(struct perf_event *event)
3385 {
3386 static_call(x86_pmu_update)(event);
3387 /*
3388 * For a checkpointed counter always reset back to 0. This
3389 * avoids a situation where the counter overflows, aborts the
3390 * transaction and is then set back to shortly before the
3391 * overflow, and overflows and aborts again.
3392 */
3393 if (unlikely(event_is_checkpointed(event))) {
3394 /* No race with NMIs because the counter should not be armed */
3395 wrmsrq(event->hw.event_base, 0);
3396 local64_set(&event->hw.prev_count, 0);
3397 }
3398 return static_call(x86_pmu_set_period)(event);
3399 }
3400
intel_pmu_set_period(struct perf_event * event)3401 static int intel_pmu_set_period(struct perf_event *event)
3402 {
3403 if (unlikely(is_topdown_count(event)))
3404 return static_call(intel_pmu_set_topdown_event_period)(event);
3405
3406 return x86_perf_event_set_period(event);
3407 }
3408
intel_pmu_update(struct perf_event * event)3409 static u64 intel_pmu_update(struct perf_event *event)
3410 {
3411 if (unlikely(is_topdown_count(event)))
3412 return static_call(intel_pmu_update_topdown_event)(event, NULL);
3413
3414 return x86_perf_event_update(event);
3415 }
3416
intel_pmu_reset(void)3417 static void intel_pmu_reset(void)
3418 {
3419 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3420 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3421 unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3422 unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3423 unsigned long flags;
3424 int idx;
3425
3426 if (!*(u64 *)cntr_mask)
3427 return;
3428
3429 local_irq_save(flags);
3430
3431 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3432
3433 for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3434 wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3435 wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3436 }
3437 for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3438 if (fixed_counter_disabled(idx, cpuc->pmu))
3439 continue;
3440 wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3441 }
3442
3443 if (ds)
3444 ds->bts_index = ds->bts_buffer_base;
3445
3446 /* Ack all overflows and disable fixed counters */
3447 if (x86_pmu.version >= 2) {
3448 intel_pmu_ack_status(intel_pmu_get_status());
3449 wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3450 }
3451
3452 /* Reset LBRs and LBR freezing */
3453 if (x86_pmu.lbr_nr) {
3454 update_debugctlmsr(get_debugctlmsr() &
3455 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3456 }
3457
3458 local_irq_restore(flags);
3459 }
3460
3461 /*
3462 * We may be running with guest PEBS events created by KVM, and the
3463 * PEBS records are logged into the guest's DS and invisible to host.
3464 *
3465 * In the case of guest PEBS overflow, we only trigger a fake event
3466 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3467 * The guest will then vm-entry and check the guest DS area to read
3468 * the guest PEBS records.
3469 *
3470 * The contents and other behavior of the guest event do not matter.
3471 */
x86_pmu_handle_guest_pebs(struct pt_regs * regs,struct perf_sample_data * data)3472 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3473 struct perf_sample_data *data)
3474 {
3475 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3476 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3477 struct perf_event *event = NULL;
3478 int bit;
3479
3480 if (!unlikely(perf_guest_state()))
3481 return;
3482
3483 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3484 !guest_pebs_idxs)
3485 return;
3486
3487 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3488 event = cpuc->events[bit];
3489 if (!event->attr.precise_ip)
3490 continue;
3491
3492 perf_sample_data_init(data, 0, event->hw.last_period);
3493 perf_event_overflow(event, data, regs);
3494
3495 /* Inject one fake event is enough. */
3496 break;
3497 }
3498 }
3499
handle_pmi_common(struct pt_regs * regs,u64 status)3500 static int handle_pmi_common(struct pt_regs *regs, u64 status)
3501 {
3502 struct perf_sample_data data;
3503 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3504 int bit;
3505 int handled = 0;
3506
3507 inc_irq_stat(apic_perf_irqs);
3508
3509 /*
3510 * Ignore a range of extra bits in status that do not indicate
3511 * overflow by themselves.
3512 */
3513 status &= ~(GLOBAL_STATUS_COND_CHG |
3514 GLOBAL_STATUS_ASIF |
3515 GLOBAL_STATUS_LBRS_FROZEN);
3516 if (!status)
3517 return 0;
3518 /*
3519 * In case multiple PEBS events are sampled at the same time,
3520 * it is possible to have GLOBAL_STATUS bit 62 set indicating
3521 * PEBS buffer overflow and also seeing at most 3 PEBS counters
3522 * having their bits set in the status register. This is a sign
3523 * that there was at least one PEBS record pending at the time
3524 * of the PMU interrupt. PEBS counters must only be processed
3525 * via the drain_pebs() calls and not via the regular sample
3526 * processing loop coming after that the function, otherwise
3527 * phony regular samples may be generated in the sampling buffer
3528 * not marked with the EXACT tag. Another possibility is to have
3529 * one PEBS event and at least one non-PEBS event which overflows
3530 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3531 * not be set, yet the overflow status bit for the PEBS counter will
3532 * be on Skylake.
3533 *
3534 * To avoid this problem, we systematically ignore the PEBS-enabled
3535 * counters from the GLOBAL_STATUS mask and we always process PEBS
3536 * events via drain_pebs().
3537 */
3538 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3539
3540 /*
3541 * PEBS overflow sets bit 62 in the global status register
3542 */
3543 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3544 u64 pebs_enabled = cpuc->pebs_enabled;
3545
3546 handled++;
3547 x86_pmu_handle_guest_pebs(regs, &data);
3548 static_call(x86_pmu_drain_pebs)(regs, &data);
3549
3550 /*
3551 * PMI throttle may be triggered, which stops the PEBS event.
3552 * Although cpuc->pebs_enabled is updated accordingly, the
3553 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3554 * cpuc->enabled has been forced to 0 in PMI.
3555 * Update the MSR if pebs_enabled is changed.
3556 */
3557 if (pebs_enabled != cpuc->pebs_enabled)
3558 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3559
3560 /*
3561 * Above PEBS handler (PEBS counters snapshotting) has updated fixed
3562 * counter 3 and perf metrics counts if they are in counter group,
3563 * unnecessary to update again.
3564 */
3565 if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3566 is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3567 status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3568 }
3569
3570 /*
3571 * Arch PEBS sets bit 54 in the global status register
3572 */
3573 if (__test_and_clear_bit(GLOBAL_STATUS_ARCH_PEBS_THRESHOLD_BIT,
3574 (unsigned long *)&status)) {
3575 handled++;
3576 static_call(x86_pmu_drain_pebs)(regs, &data);
3577
3578 if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3579 is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3580 status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3581 }
3582
3583 /*
3584 * Intel PT
3585 */
3586 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3587 handled++;
3588 if (!perf_guest_handle_intel_pt_intr())
3589 intel_pt_interrupt();
3590 }
3591
3592 /*
3593 * Intel Perf metrics
3594 */
3595 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3596 handled++;
3597 static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3598 }
3599
3600 status &= hybrid(cpuc->pmu, intel_ctrl);
3601
3602 /*
3603 * Checkpointed counters can lead to 'spurious' PMIs because the
3604 * rollback caused by the PMI will have cleared the overflow status
3605 * bit. Therefore always force probe these counters.
3606 */
3607 status |= cpuc->intel_cp_status;
3608
3609 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3610 struct perf_event *event = cpuc->events[bit];
3611 u64 last_period;
3612
3613 handled++;
3614
3615 if (!test_bit(bit, cpuc->active_mask))
3616 continue;
3617 /* Event may have already been cleared: */
3618 if (!event)
3619 continue;
3620
3621 /*
3622 * There may be unprocessed PEBS records in the PEBS buffer,
3623 * which still stores the previous values.
3624 * Process those records first before handling the latest value.
3625 * For example,
3626 * A is a regular counter
3627 * B is a PEBS event which reads A
3628 * C is a PEBS event
3629 *
3630 * The following can happen:
3631 * B-assist A=1
3632 * C A=2
3633 * B-assist A=3
3634 * A-overflow-PMI A=4
3635 * C-assist-PMI (PEBS buffer) A=5
3636 *
3637 * The PEBS buffer has to be drained before handling the A-PMI
3638 */
3639 if (is_pebs_counter_event_group(event))
3640 static_call(x86_pmu_drain_pebs)(regs, &data);
3641
3642 last_period = event->hw.last_period;
3643
3644 if (!intel_pmu_save_and_restart(event))
3645 continue;
3646
3647 perf_sample_data_init(&data, 0, last_period);
3648
3649 if (has_branch_stack(event))
3650 intel_pmu_lbr_save_brstack(&data, cpuc, event);
3651
3652 perf_event_overflow(event, &data, regs);
3653 }
3654
3655 return handled;
3656 }
3657
3658 /*
3659 * This handler is triggered by the local APIC, so the APIC IRQ handling
3660 * rules apply:
3661 */
intel_pmu_handle_irq(struct pt_regs * regs)3662 static int intel_pmu_handle_irq(struct pt_regs *regs)
3663 {
3664 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3665 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3666 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3667 int loops;
3668 u64 status;
3669 int handled;
3670 int pmu_enabled;
3671
3672 /*
3673 * Save the PMU state.
3674 * It needs to be restored when leaving the handler.
3675 */
3676 pmu_enabled = cpuc->enabled;
3677 /*
3678 * In general, the early ACK is only applied for old platforms.
3679 * For the big core starts from Haswell, the late ACK should be
3680 * applied.
3681 * For the small core after Tremont, we have to do the ACK right
3682 * before re-enabling counters, which is in the middle of the
3683 * NMI handler.
3684 */
3685 if (!late_ack && !mid_ack)
3686 apic_write(APIC_LVTPC, APIC_DM_NMI);
3687 intel_bts_disable_local();
3688 cpuc->enabled = 0;
3689 __intel_pmu_disable_all(true);
3690 handled = intel_pmu_drain_bts_buffer();
3691 handled += intel_bts_interrupt();
3692 status = intel_pmu_get_status();
3693 if (!status)
3694 goto done;
3695
3696 loops = 0;
3697 again:
3698 intel_pmu_lbr_read();
3699 intel_pmu_ack_status(status);
3700 if (++loops > 100) {
3701 static bool warned;
3702
3703 if (!warned) {
3704 WARN(1, "perfevents: irq loop stuck!\n");
3705 perf_event_print_debug();
3706 warned = true;
3707 }
3708 intel_pmu_reset();
3709 goto done;
3710 }
3711
3712 handled += handle_pmi_common(regs, status);
3713
3714 /*
3715 * Repeat if there is more work to be done:
3716 */
3717 status = intel_pmu_get_status();
3718 if (status)
3719 goto again;
3720
3721 done:
3722 if (mid_ack)
3723 apic_write(APIC_LVTPC, APIC_DM_NMI);
3724 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3725 cpuc->enabled = pmu_enabled;
3726 if (pmu_enabled)
3727 __intel_pmu_enable_all(0, true);
3728 intel_bts_enable_local();
3729
3730 /*
3731 * Only unmask the NMI after the overflow counters
3732 * have been reset. This avoids spurious NMIs on
3733 * Haswell CPUs.
3734 */
3735 if (late_ack)
3736 apic_write(APIC_LVTPC, APIC_DM_NMI);
3737 return handled;
3738 }
3739
3740 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)3741 intel_bts_constraints(struct perf_event *event)
3742 {
3743 if (unlikely(intel_pmu_has_bts(event)))
3744 return &bts_constraint;
3745
3746 return NULL;
3747 }
3748
3749 /*
3750 * Note: matches a fake event, like Fixed2.
3751 */
3752 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3753 intel_vlbr_constraints(struct perf_event *event)
3754 {
3755 struct event_constraint *c = &vlbr_constraint;
3756
3757 if (unlikely(constraint_match(c, event->hw.config))) {
3758 event->hw.flags |= c->flags;
3759 return c;
3760 }
3761
3762 return NULL;
3763 }
3764
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3765 static int intel_alt_er(struct cpu_hw_events *cpuc,
3766 int idx, u64 config)
3767 {
3768 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3769 int alt_idx = idx;
3770
3771 switch (idx) {
3772 case EXTRA_REG_RSP_0 ... EXTRA_REG_RSP_1:
3773 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3774 return idx;
3775 if (++alt_idx > EXTRA_REG_RSP_1)
3776 alt_idx = EXTRA_REG_RSP_0;
3777 if (config & ~extra_regs[alt_idx].valid_mask)
3778 return idx;
3779 break;
3780
3781 case EXTRA_REG_OMR_0 ... EXTRA_REG_OMR_3:
3782 if (!(x86_pmu.flags & PMU_FL_HAS_OMR))
3783 return idx;
3784 if (++alt_idx > EXTRA_REG_OMR_3)
3785 alt_idx = EXTRA_REG_OMR_0;
3786 /*
3787 * Subtracting EXTRA_REG_OMR_0 ensures to get correct
3788 * OMR extra_reg entries which start from 0.
3789 */
3790 if (config & ~extra_regs[alt_idx - EXTRA_REG_OMR_0].valid_mask)
3791 return idx;
3792 break;
3793
3794 default:
3795 break;
3796 }
3797
3798 return alt_idx;
3799 }
3800
intel_fixup_er(struct perf_event * event,int idx)3801 static void intel_fixup_er(struct perf_event *event, int idx)
3802 {
3803 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3804 int er_idx;
3805
3806 event->hw.extra_reg.idx = idx;
3807 switch (idx) {
3808 case EXTRA_REG_RSP_0 ... EXTRA_REG_RSP_1:
3809 er_idx = idx - EXTRA_REG_RSP_0;
3810 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3811 event->hw.config |= extra_regs[er_idx].event;
3812 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0 + er_idx;
3813 break;
3814
3815 case EXTRA_REG_OMR_0 ... EXTRA_REG_OMR_3:
3816 er_idx = idx - EXTRA_REG_OMR_0;
3817 event->hw.config &= ~ARCH_PERFMON_EVENTSEL_UMASK;
3818 event->hw.config |= 1ULL << (8 + er_idx);
3819 event->hw.extra_reg.reg = MSR_OMR_0 + er_idx;
3820 break;
3821
3822 default:
3823 pr_warn("The extra reg idx %d is not supported.\n", idx);
3824 }
3825 }
3826
3827 /*
3828 * manage allocation of shared extra msr for certain events
3829 *
3830 * sharing can be:
3831 * per-cpu: to be shared between the various events on a single PMU
3832 * per-core: per-cpu + shared by HT threads
3833 */
3834 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3835 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3836 struct perf_event *event,
3837 struct hw_perf_event_extra *reg)
3838 {
3839 struct event_constraint *c = &emptyconstraint;
3840 struct er_account *era;
3841 unsigned long flags;
3842 int idx = reg->idx;
3843
3844 /*
3845 * reg->alloc can be set due to existing state, so for fake cpuc we
3846 * need to ignore this, otherwise we might fail to allocate proper fake
3847 * state for this extra reg constraint. Also see the comment below.
3848 */
3849 if (reg->alloc && !cpuc->is_fake)
3850 return NULL; /* call x86_get_event_constraint() */
3851
3852 again:
3853 era = &cpuc->shared_regs->regs[idx];
3854 /*
3855 * we use spin_lock_irqsave() to avoid lockdep issues when
3856 * passing a fake cpuc
3857 */
3858 raw_spin_lock_irqsave(&era->lock, flags);
3859
3860 if (!atomic_read(&era->ref) || era->config == reg->config) {
3861
3862 /*
3863 * If its a fake cpuc -- as per validate_{group,event}() we
3864 * shouldn't touch event state and we can avoid doing so
3865 * since both will only call get_event_constraints() once
3866 * on each event, this avoids the need for reg->alloc.
3867 *
3868 * Not doing the ER fixup will only result in era->reg being
3869 * wrong, but since we won't actually try and program hardware
3870 * this isn't a problem either.
3871 */
3872 if (!cpuc->is_fake) {
3873 if (idx != reg->idx)
3874 intel_fixup_er(event, idx);
3875
3876 /*
3877 * x86_schedule_events() can call get_event_constraints()
3878 * multiple times on events in the case of incremental
3879 * scheduling(). reg->alloc ensures we only do the ER
3880 * allocation once.
3881 */
3882 reg->alloc = 1;
3883 }
3884
3885 /* lock in msr value */
3886 era->config = reg->config;
3887 era->reg = reg->reg;
3888
3889 /* one more user */
3890 atomic_inc(&era->ref);
3891
3892 /*
3893 * need to call x86_get_event_constraint()
3894 * to check if associated event has constraints
3895 */
3896 c = NULL;
3897 } else {
3898 idx = intel_alt_er(cpuc, idx, reg->config);
3899 if (idx != reg->idx) {
3900 raw_spin_unlock_irqrestore(&era->lock, flags);
3901 goto again;
3902 }
3903 }
3904 raw_spin_unlock_irqrestore(&era->lock, flags);
3905
3906 return c;
3907 }
3908
3909 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3910 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3911 struct hw_perf_event_extra *reg)
3912 {
3913 struct er_account *era;
3914
3915 /*
3916 * Only put constraint if extra reg was actually allocated. Also takes
3917 * care of event which do not use an extra shared reg.
3918 *
3919 * Also, if this is a fake cpuc we shouldn't touch any event state
3920 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3921 * either since it'll be thrown out.
3922 */
3923 if (!reg->alloc || cpuc->is_fake)
3924 return;
3925
3926 era = &cpuc->shared_regs->regs[reg->idx];
3927
3928 /* one fewer user */
3929 atomic_dec(&era->ref);
3930
3931 /* allocate again next time */
3932 reg->alloc = 0;
3933 }
3934
3935 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3936 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3937 struct perf_event *event)
3938 {
3939 struct event_constraint *c = NULL, *d;
3940 struct hw_perf_event_extra *xreg, *breg;
3941
3942 xreg = &event->hw.extra_reg;
3943 if (xreg->idx != EXTRA_REG_NONE) {
3944 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3945 if (c == &emptyconstraint)
3946 return c;
3947 }
3948 breg = &event->hw.branch_reg;
3949 if (breg->idx != EXTRA_REG_NONE) {
3950 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3951 if (d == &emptyconstraint) {
3952 __intel_shared_reg_put_constraints(cpuc, xreg);
3953 c = d;
3954 }
3955 }
3956 return c;
3957 }
3958
3959 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3960 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3961 struct perf_event *event)
3962 {
3963 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3964 struct event_constraint *c;
3965
3966 if (event_constraints) {
3967 for_each_event_constraint(c, event_constraints) {
3968 if (constraint_match(c, event->hw.config)) {
3969 event->hw.flags |= c->flags;
3970 return c;
3971 }
3972 }
3973 }
3974
3975 return &hybrid_var(cpuc->pmu, unconstrained);
3976 }
3977
3978 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3979 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3980 struct perf_event *event)
3981 {
3982 struct event_constraint *c;
3983
3984 c = intel_vlbr_constraints(event);
3985 if (c)
3986 return c;
3987
3988 c = intel_bts_constraints(event);
3989 if (c)
3990 return c;
3991
3992 c = intel_shared_regs_constraints(cpuc, event);
3993 if (c)
3994 return c;
3995
3996 c = intel_pebs_constraints(event);
3997 if (c)
3998 return c;
3999
4000 return x86_get_event_constraints(cpuc, idx, event);
4001 }
4002
4003 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)4004 intel_start_scheduling(struct cpu_hw_events *cpuc)
4005 {
4006 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4007 struct intel_excl_states *xl;
4008 int tid = cpuc->excl_thread_id;
4009
4010 /*
4011 * nothing needed if in group validation mode
4012 */
4013 if (cpuc->is_fake || !is_ht_workaround_enabled())
4014 return;
4015
4016 /*
4017 * no exclusion needed
4018 */
4019 if (WARN_ON_ONCE(!excl_cntrs))
4020 return;
4021
4022 xl = &excl_cntrs->states[tid];
4023
4024 xl->sched_started = true;
4025 /*
4026 * lock shared state until we are done scheduling
4027 * in stop_event_scheduling()
4028 * makes scheduling appear as a transaction
4029 */
4030 raw_spin_lock(&excl_cntrs->lock);
4031 }
4032
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)4033 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
4034 {
4035 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4036 struct event_constraint *c = cpuc->event_constraint[idx];
4037 struct intel_excl_states *xl;
4038 int tid = cpuc->excl_thread_id;
4039
4040 if (cpuc->is_fake || !is_ht_workaround_enabled())
4041 return;
4042
4043 if (WARN_ON_ONCE(!excl_cntrs))
4044 return;
4045
4046 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
4047 return;
4048
4049 xl = &excl_cntrs->states[tid];
4050
4051 lockdep_assert_held(&excl_cntrs->lock);
4052
4053 if (c->flags & PERF_X86_EVENT_EXCL)
4054 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
4055 else
4056 xl->state[cntr] = INTEL_EXCL_SHARED;
4057 }
4058
4059 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)4060 intel_stop_scheduling(struct cpu_hw_events *cpuc)
4061 {
4062 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4063 struct intel_excl_states *xl;
4064 int tid = cpuc->excl_thread_id;
4065
4066 /*
4067 * nothing needed if in group validation mode
4068 */
4069 if (cpuc->is_fake || !is_ht_workaround_enabled())
4070 return;
4071 /*
4072 * no exclusion needed
4073 */
4074 if (WARN_ON_ONCE(!excl_cntrs))
4075 return;
4076
4077 xl = &excl_cntrs->states[tid];
4078
4079 xl->sched_started = false;
4080 /*
4081 * release shared state lock (acquired in intel_start_scheduling())
4082 */
4083 raw_spin_unlock(&excl_cntrs->lock);
4084 }
4085
4086 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)4087 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
4088 {
4089 WARN_ON_ONCE(!cpuc->constraint_list);
4090
4091 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
4092 struct event_constraint *cx;
4093
4094 /*
4095 * grab pre-allocated constraint entry
4096 */
4097 cx = &cpuc->constraint_list[idx];
4098
4099 /*
4100 * initialize dynamic constraint
4101 * with static constraint
4102 */
4103 *cx = *c;
4104
4105 /*
4106 * mark constraint as dynamic
4107 */
4108 cx->flags |= PERF_X86_EVENT_DYNAMIC;
4109 c = cx;
4110 }
4111
4112 return c;
4113 }
4114
4115 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)4116 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
4117 int idx, struct event_constraint *c)
4118 {
4119 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4120 struct intel_excl_states *xlo;
4121 int tid = cpuc->excl_thread_id;
4122 int is_excl, i, w;
4123
4124 /*
4125 * validating a group does not require
4126 * enforcing cross-thread exclusion
4127 */
4128 if (cpuc->is_fake || !is_ht_workaround_enabled())
4129 return c;
4130
4131 /*
4132 * no exclusion needed
4133 */
4134 if (WARN_ON_ONCE(!excl_cntrs))
4135 return c;
4136
4137 /*
4138 * because we modify the constraint, we need
4139 * to make a copy. Static constraints come
4140 * from static const tables.
4141 *
4142 * only needed when constraint has not yet
4143 * been cloned (marked dynamic)
4144 */
4145 c = dyn_constraint(cpuc, c, idx);
4146
4147 /*
4148 * From here on, the constraint is dynamic.
4149 * Either it was just allocated above, or it
4150 * was allocated during a earlier invocation
4151 * of this function
4152 */
4153
4154 /*
4155 * state of sibling HT
4156 */
4157 xlo = &excl_cntrs->states[tid ^ 1];
4158
4159 /*
4160 * event requires exclusive counter access
4161 * across HT threads
4162 */
4163 is_excl = c->flags & PERF_X86_EVENT_EXCL;
4164 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
4165 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
4166 if (!cpuc->n_excl++)
4167 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
4168 }
4169
4170 /*
4171 * Modify static constraint with current dynamic
4172 * state of thread
4173 *
4174 * EXCLUSIVE: sibling counter measuring exclusive event
4175 * SHARED : sibling counter measuring non-exclusive event
4176 * UNUSED : sibling counter unused
4177 */
4178 w = c->weight;
4179 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
4180 /*
4181 * exclusive event in sibling counter
4182 * our corresponding counter cannot be used
4183 * regardless of our event
4184 */
4185 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
4186 __clear_bit(i, c->idxmsk);
4187 w--;
4188 continue;
4189 }
4190 /*
4191 * if measuring an exclusive event, sibling
4192 * measuring non-exclusive, then counter cannot
4193 * be used
4194 */
4195 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
4196 __clear_bit(i, c->idxmsk);
4197 w--;
4198 continue;
4199 }
4200 }
4201
4202 /*
4203 * if we return an empty mask, then switch
4204 * back to static empty constraint to avoid
4205 * the cost of freeing later on
4206 */
4207 if (!w)
4208 c = &emptyconstraint;
4209
4210 c->weight = w;
4211
4212 return c;
4213 }
4214
4215 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4216 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4217 struct perf_event *event)
4218 {
4219 struct event_constraint *c1, *c2;
4220
4221 c1 = cpuc->event_constraint[idx];
4222
4223 /*
4224 * first time only
4225 * - static constraint: no change across incremental scheduling calls
4226 * - dynamic constraint: handled by intel_get_excl_constraints()
4227 */
4228 c2 = __intel_get_event_constraints(cpuc, idx, event);
4229 if (c1) {
4230 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
4231 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
4232 c1->weight = c2->weight;
4233 c2 = c1;
4234 }
4235
4236 if (cpuc->excl_cntrs)
4237 return intel_get_excl_constraints(cpuc, event, idx, c2);
4238
4239 if (event->hw.dyn_constraint != ~0ULL) {
4240 c2 = dyn_constraint(cpuc, c2, idx);
4241 c2->idxmsk64 &= event->hw.dyn_constraint;
4242 c2->weight = hweight64(c2->idxmsk64);
4243 }
4244
4245 return c2;
4246 }
4247
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)4248 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
4249 struct perf_event *event)
4250 {
4251 struct hw_perf_event *hwc = &event->hw;
4252 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4253 int tid = cpuc->excl_thread_id;
4254 struct intel_excl_states *xl;
4255
4256 /*
4257 * nothing needed if in group validation mode
4258 */
4259 if (cpuc->is_fake)
4260 return;
4261
4262 if (WARN_ON_ONCE(!excl_cntrs))
4263 return;
4264
4265 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
4266 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
4267 if (!--cpuc->n_excl)
4268 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
4269 }
4270
4271 /*
4272 * If event was actually assigned, then mark the counter state as
4273 * unused now.
4274 */
4275 if (hwc->idx >= 0) {
4276 xl = &excl_cntrs->states[tid];
4277
4278 /*
4279 * put_constraint may be called from x86_schedule_events()
4280 * which already has the lock held so here make locking
4281 * conditional.
4282 */
4283 if (!xl->sched_started)
4284 raw_spin_lock(&excl_cntrs->lock);
4285
4286 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
4287
4288 if (!xl->sched_started)
4289 raw_spin_unlock(&excl_cntrs->lock);
4290 }
4291 }
4292
4293 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)4294 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
4295 struct perf_event *event)
4296 {
4297 struct hw_perf_event_extra *reg;
4298
4299 reg = &event->hw.extra_reg;
4300 if (reg->idx != EXTRA_REG_NONE)
4301 __intel_shared_reg_put_constraints(cpuc, reg);
4302
4303 reg = &event->hw.branch_reg;
4304 if (reg->idx != EXTRA_REG_NONE)
4305 __intel_shared_reg_put_constraints(cpuc, reg);
4306 }
4307
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)4308 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
4309 struct perf_event *event)
4310 {
4311 intel_put_shared_regs_event_constraints(cpuc, event);
4312
4313 /*
4314 * is PMU has exclusive counter restrictions, then
4315 * all events are subject to and must call the
4316 * put_excl_constraints() routine
4317 */
4318 if (cpuc->excl_cntrs)
4319 intel_put_excl_constraints(cpuc, event);
4320 }
4321
intel_pebs_aliases_core2(struct perf_event * event)4322 static void intel_pebs_aliases_core2(struct perf_event *event)
4323 {
4324 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4325 /*
4326 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4327 * (0x003c) so that we can use it with PEBS.
4328 *
4329 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4330 * PEBS capable. However we can use INST_RETIRED.ANY_P
4331 * (0x00c0), which is a PEBS capable event, to get the same
4332 * count.
4333 *
4334 * INST_RETIRED.ANY_P counts the number of cycles that retires
4335 * CNTMASK instructions. By setting CNTMASK to a value (16)
4336 * larger than the maximum number of instructions that can be
4337 * retired per cycle (4) and then inverting the condition, we
4338 * count all cycles that retire 16 or less instructions, which
4339 * is every cycle.
4340 *
4341 * Thereby we gain a PEBS capable cycle counter.
4342 */
4343 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
4344
4345 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4346 event->hw.config = alt_config;
4347 }
4348 }
4349
intel_pebs_aliases_snb(struct perf_event * event)4350 static void intel_pebs_aliases_snb(struct perf_event *event)
4351 {
4352 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4353 /*
4354 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4355 * (0x003c) so that we can use it with PEBS.
4356 *
4357 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4358 * PEBS capable. However we can use UOPS_RETIRED.ALL
4359 * (0x01c2), which is a PEBS capable event, to get the same
4360 * count.
4361 *
4362 * UOPS_RETIRED.ALL counts the number of cycles that retires
4363 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
4364 * larger than the maximum number of micro-ops that can be
4365 * retired per cycle (4) and then inverting the condition, we
4366 * count all cycles that retire 16 or less micro-ops, which
4367 * is every cycle.
4368 *
4369 * Thereby we gain a PEBS capable cycle counter.
4370 */
4371 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
4372
4373 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4374 event->hw.config = alt_config;
4375 }
4376 }
4377
intel_pebs_aliases_precdist(struct perf_event * event)4378 static void intel_pebs_aliases_precdist(struct perf_event *event)
4379 {
4380 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4381 /*
4382 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4383 * (0x003c) so that we can use it with PEBS.
4384 *
4385 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4386 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
4387 * (0x01c0), which is a PEBS capable event, to get the same
4388 * count.
4389 *
4390 * The PREC_DIST event has special support to minimize sample
4391 * shadowing effects. One drawback is that it can be
4392 * only programmed on counter 1, but that seems like an
4393 * acceptable trade off.
4394 */
4395 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4396
4397 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4398 event->hw.config = alt_config;
4399 }
4400 }
4401
intel_pebs_aliases_ivb(struct perf_event * event)4402 static void intel_pebs_aliases_ivb(struct perf_event *event)
4403 {
4404 if (event->attr.precise_ip < 3)
4405 return intel_pebs_aliases_snb(event);
4406 return intel_pebs_aliases_precdist(event);
4407 }
4408
intel_pebs_aliases_skl(struct perf_event * event)4409 static void intel_pebs_aliases_skl(struct perf_event *event)
4410 {
4411 if (event->attr.precise_ip < 3)
4412 return intel_pebs_aliases_core2(event);
4413 return intel_pebs_aliases_precdist(event);
4414 }
4415
intel_pmu_large_pebs_flags(struct perf_event * event)4416 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4417 {
4418 unsigned long flags = x86_pmu.large_pebs_flags;
4419
4420 if (event->attr.use_clockid)
4421 flags &= ~PERF_SAMPLE_TIME;
4422 if (!event->attr.exclude_kernel)
4423 flags &= ~PERF_SAMPLE_REGS_USER;
4424 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4425 flags &= ~PERF_SAMPLE_REGS_USER;
4426 if (event->attr.sample_regs_intr & ~PEBS_GP_REGS)
4427 flags &= ~PERF_SAMPLE_REGS_INTR;
4428 return flags;
4429 }
4430
intel_pmu_bts_config(struct perf_event * event)4431 static int intel_pmu_bts_config(struct perf_event *event)
4432 {
4433 struct perf_event_attr *attr = &event->attr;
4434
4435 if (unlikely(intel_pmu_has_bts(event))) {
4436 /* BTS is not supported by this architecture. */
4437 if (!x86_pmu.bts_active)
4438 return -EOPNOTSUPP;
4439
4440 /* BTS is currently only allowed for user-mode. */
4441 if (!attr->exclude_kernel)
4442 return -EOPNOTSUPP;
4443
4444 /* BTS is not allowed for precise events. */
4445 if (attr->precise_ip)
4446 return -EOPNOTSUPP;
4447
4448 /* disallow bts if conflicting events are present */
4449 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4450 return -EBUSY;
4451
4452 event->destroy = hw_perf_lbr_event_destroy;
4453 }
4454
4455 return 0;
4456 }
4457
core_pmu_hw_config(struct perf_event * event)4458 static int core_pmu_hw_config(struct perf_event *event)
4459 {
4460 int ret = x86_pmu_hw_config(event);
4461
4462 if (ret)
4463 return ret;
4464
4465 return intel_pmu_bts_config(event);
4466 }
4467
4468 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4469 ((x86_pmu.num_topdown_events - 1) << 8))
4470
is_available_metric_event(struct perf_event * event)4471 static bool is_available_metric_event(struct perf_event *event)
4472 {
4473 return is_metric_event(event) &&
4474 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4475 }
4476
is_mem_loads_event(struct perf_event * event)4477 static inline bool is_mem_loads_event(struct perf_event *event)
4478 {
4479 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4480 }
4481
is_mem_loads_aux_event(struct perf_event * event)4482 static inline bool is_mem_loads_aux_event(struct perf_event *event)
4483 {
4484 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4485 }
4486
require_mem_loads_aux_event(struct perf_event * event)4487 static inline bool require_mem_loads_aux_event(struct perf_event *event)
4488 {
4489 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4490 return false;
4491
4492 if (is_hybrid())
4493 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4494
4495 return true;
4496 }
4497
intel_pmu_has_cap(struct perf_event * event,int idx)4498 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4499 {
4500 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4501
4502 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4503 }
4504
intel_pmu_freq_start_period(struct perf_event * event)4505 static u64 intel_pmu_freq_start_period(struct perf_event *event)
4506 {
4507 int type = event->attr.type;
4508 u64 config, factor;
4509 s64 start;
4510
4511 /*
4512 * The 127 is the lowest possible recommended SAV (sample after value)
4513 * for a 4000 freq (default freq), according to the event list JSON file.
4514 * Also, assume the workload is idle 50% time.
4515 */
4516 factor = 64 * 4000;
4517 if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4518 goto end;
4519
4520 /*
4521 * The estimation of the start period in the freq mode is
4522 * based on the below assumption.
4523 *
4524 * For a cycles or an instructions event, 1GHZ of the
4525 * underlying platform, 1 IPC. The workload is idle 50% time.
4526 * The start period = 1,000,000,000 * 1 / freq / 2.
4527 * = 500,000,000 / freq
4528 *
4529 * Usually, the branch-related events occur less than the
4530 * instructions event. According to the Intel event list JSON
4531 * file, the SAV (sample after value) of a branch-related event
4532 * is usually 1/4 of an instruction event.
4533 * The start period of branch-related events = 125,000,000 / freq.
4534 *
4535 * The cache-related events occurs even less. The SAV is usually
4536 * 1/20 of an instruction event.
4537 * The start period of cache-related events = 25,000,000 / freq.
4538 */
4539 config = event->attr.config & PERF_HW_EVENT_MASK;
4540 if (type == PERF_TYPE_HARDWARE) {
4541 switch (config) {
4542 case PERF_COUNT_HW_CPU_CYCLES:
4543 case PERF_COUNT_HW_INSTRUCTIONS:
4544 case PERF_COUNT_HW_BUS_CYCLES:
4545 case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4546 case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4547 case PERF_COUNT_HW_REF_CPU_CYCLES:
4548 factor = 500000000;
4549 break;
4550 case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4551 case PERF_COUNT_HW_BRANCH_MISSES:
4552 factor = 125000000;
4553 break;
4554 case PERF_COUNT_HW_CACHE_REFERENCES:
4555 case PERF_COUNT_HW_CACHE_MISSES:
4556 factor = 25000000;
4557 break;
4558 default:
4559 goto end;
4560 }
4561 }
4562
4563 if (type == PERF_TYPE_HW_CACHE)
4564 factor = 25000000;
4565 end:
4566 /*
4567 * Usually, a prime or a number with less factors (close to prime)
4568 * is chosen as an SAV, which makes it less likely that the sampling
4569 * period synchronizes with some periodic event in the workload.
4570 * Minus 1 to make it at least avoiding values near power of twos
4571 * for the default freq.
4572 */
4573 start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4574
4575 if (start > x86_pmu.max_period)
4576 start = x86_pmu.max_period;
4577
4578 if (x86_pmu.limit_period)
4579 x86_pmu.limit_period(event, &start);
4580
4581 return start;
4582 }
4583
intel_pmu_has_acr(struct pmu * pmu)4584 static inline bool intel_pmu_has_acr(struct pmu *pmu)
4585 {
4586 return !!hybrid(pmu, acr_cause_mask64);
4587 }
4588
intel_pmu_is_acr_group(struct perf_event * event)4589 static bool intel_pmu_is_acr_group(struct perf_event *event)
4590 {
4591 /* The group leader has the ACR flag set */
4592 if (is_acr_event_group(event))
4593 return true;
4594
4595 /* The acr_mask is set */
4596 if (event->attr.config2)
4597 return true;
4598
4599 return false;
4600 }
4601
intel_pmu_has_pebs_counter_group(struct pmu * pmu)4602 static inline bool intel_pmu_has_pebs_counter_group(struct pmu *pmu)
4603 {
4604 u64 caps;
4605
4606 if (x86_pmu.intel_cap.pebs_format >= 6 && x86_pmu.intel_cap.pebs_baseline)
4607 return true;
4608
4609 caps = hybrid(pmu, arch_pebs_cap).caps;
4610 if (x86_pmu.arch_pebs && (caps & ARCH_PEBS_CNTR_MASK))
4611 return true;
4612
4613 return false;
4614 }
4615
intel_pmu_set_acr_cntr_constr(struct perf_event * event,u64 * cause_mask,int * num)4616 static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4617 u64 *cause_mask, int *num)
4618 {
4619 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4620 *cause_mask |= event->attr.config2;
4621 *num += 1;
4622 }
4623
intel_pmu_set_acr_caused_constr(struct perf_event * event,int idx,u64 cause_mask)4624 static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4625 int idx, u64 cause_mask)
4626 {
4627 if (test_bit(idx, (unsigned long *)&cause_mask))
4628 event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4629 }
4630
intel_pmu_hw_config(struct perf_event * event)4631 static int intel_pmu_hw_config(struct perf_event *event)
4632 {
4633 int ret = x86_pmu_hw_config(event);
4634
4635 if (ret)
4636 return ret;
4637
4638 ret = intel_pmu_bts_config(event);
4639 if (ret)
4640 return ret;
4641
4642 if (event->attr.freq && event->attr.sample_freq) {
4643 event->hw.sample_period = intel_pmu_freq_start_period(event);
4644 event->hw.last_period = event->hw.sample_period;
4645 local64_set(&event->hw.period_left, event->hw.sample_period);
4646 }
4647
4648 if (event->attr.precise_ip) {
4649 struct arch_pebs_cap pebs_cap = hybrid(event->pmu, arch_pebs_cap);
4650
4651 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4652 return -EINVAL;
4653
4654 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4655 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4656 if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4657 !has_aux_action(event)) {
4658 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4659 event->attach_state |= PERF_ATTACH_SCHED_CB;
4660 }
4661 }
4662 if (x86_pmu.pebs_aliases)
4663 x86_pmu.pebs_aliases(event);
4664
4665 if (x86_pmu.arch_pebs) {
4666 u64 cntr_mask = hybrid(event->pmu, intel_ctrl) &
4667 ~GLOBAL_CTRL_EN_PERF_METRICS;
4668 u64 pebs_mask = event->attr.precise_ip >= 3 ?
4669 pebs_cap.pdists : pebs_cap.counters;
4670 if (cntr_mask != pebs_mask)
4671 event->hw.dyn_constraint &= pebs_mask;
4672 }
4673 }
4674
4675 if (needs_branch_stack(event)) {
4676 /* Avoid branch stack setup for counting events in SAMPLE READ */
4677 if (is_sampling_event(event) ||
4678 !(event->attr.sample_type & PERF_SAMPLE_READ))
4679 event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4680 }
4681
4682 if (branch_sample_counters(event)) {
4683 struct perf_event *leader, *sibling;
4684 int num = 0;
4685
4686 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4687 (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4688 return -EINVAL;
4689
4690 /*
4691 * The branch counter logging is not supported in the call stack
4692 * mode yet, since we cannot simply flush the LBR during e.g.,
4693 * multiplexing. Also, there is no obvious usage with the call
4694 * stack mode. Simply forbids it for now.
4695 *
4696 * If any events in the group enable the branch counter logging
4697 * feature, the group is treated as a branch counter logging
4698 * group, which requires the extra space to store the counters.
4699 */
4700 leader = event->group_leader;
4701 if (branch_sample_call_stack(leader))
4702 return -EINVAL;
4703 if (branch_sample_counters(leader)) {
4704 num++;
4705 leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4706 }
4707 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4708
4709 for_each_sibling_event(sibling, leader) {
4710 if (branch_sample_call_stack(sibling))
4711 return -EINVAL;
4712 if (branch_sample_counters(sibling)) {
4713 num++;
4714 sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4715 }
4716 }
4717
4718 if (num > fls(x86_pmu.lbr_counters))
4719 return -EINVAL;
4720 /*
4721 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4722 * require any branch stack setup.
4723 * Clear the bit to avoid unnecessary branch stack setup.
4724 */
4725 if (0 == (event->attr.branch_sample_type &
4726 ~(PERF_SAMPLE_BRANCH_PLM_ALL |
4727 PERF_SAMPLE_BRANCH_COUNTERS)))
4728 event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4729
4730 /*
4731 * Force the leader to be a LBR event. So LBRs can be reset
4732 * with the leader event. See intel_pmu_lbr_del() for details.
4733 */
4734 if (!intel_pmu_needs_branch_stack(leader))
4735 return -EINVAL;
4736 }
4737
4738 if (intel_pmu_needs_branch_stack(event)) {
4739 ret = intel_pmu_setup_lbr_filter(event);
4740 if (ret)
4741 return ret;
4742 event->attach_state |= PERF_ATTACH_SCHED_CB;
4743
4744 /*
4745 * BTS is set up earlier in this path, so don't account twice
4746 */
4747 if (!unlikely(intel_pmu_has_bts(event))) {
4748 /* disallow lbr if conflicting events are present */
4749 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4750 return -EBUSY;
4751
4752 event->destroy = hw_perf_lbr_event_destroy;
4753 }
4754 }
4755
4756 if (event->attr.aux_output) {
4757 if (!event->attr.precise_ip)
4758 return -EINVAL;
4759
4760 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4761 }
4762
4763 if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4764 intel_pmu_has_pebs_counter_group(event->pmu) &&
4765 is_sampling_event(event) &&
4766 event->attr.precise_ip)
4767 event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4768
4769 if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4770 struct perf_event *sibling, *leader = event->group_leader;
4771 struct pmu *pmu = event->pmu;
4772 bool has_sw_event = false;
4773 int num = 0, idx = 0;
4774 u64 cause_mask = 0;
4775
4776 /* Not support perf metrics */
4777 if (is_metric_event(event))
4778 return -EINVAL;
4779
4780 /* Not support freq mode */
4781 if (event->attr.freq)
4782 return -EINVAL;
4783
4784 /* PDist is not supported */
4785 if (event->attr.config2 && event->attr.precise_ip > 2)
4786 return -EINVAL;
4787
4788 /* The reload value cannot exceeds the max period */
4789 if (event->attr.sample_period > x86_pmu.max_period)
4790 return -EINVAL;
4791 /*
4792 * The counter-constraints of each event cannot be finalized
4793 * unless the whole group is scanned. However, it's hard
4794 * to know whether the event is the last one of the group.
4795 * Recalculate the counter-constraints for each event when
4796 * adding a new event.
4797 *
4798 * The group is traversed twice, which may be optimized later.
4799 * In the first round,
4800 * - Find all events which do reload when other events
4801 * overflow and set the corresponding counter-constraints
4802 * - Add all events, which can cause other events reload,
4803 * in the cause_mask
4804 * - Error out if the number of events exceeds the HW limit
4805 * - The ACR events must be contiguous.
4806 * Error out if there are non-X86 events between ACR events.
4807 * This is not a HW limit, but a SW limit.
4808 * With the assumption, the intel_pmu_acr_late_setup() can
4809 * easily convert the event idx to counter idx without
4810 * traversing the whole event list.
4811 */
4812 if (!is_x86_event(leader))
4813 return -EINVAL;
4814
4815 if (leader->attr.config2)
4816 intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4817
4818 if (leader->nr_siblings) {
4819 for_each_sibling_event(sibling, leader) {
4820 if (!is_x86_event(sibling)) {
4821 has_sw_event = true;
4822 continue;
4823 }
4824 if (!sibling->attr.config2)
4825 continue;
4826 if (has_sw_event)
4827 return -EINVAL;
4828 intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4829 }
4830 }
4831 if (leader != event && event->attr.config2) {
4832 if (has_sw_event)
4833 return -EINVAL;
4834 intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4835 }
4836
4837 if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4838 num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4839 return -EINVAL;
4840 /*
4841 * In the second round, apply the counter-constraints for
4842 * the events which can cause other events reload.
4843 */
4844 intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4845
4846 if (leader->nr_siblings) {
4847 for_each_sibling_event(sibling, leader)
4848 intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4849 }
4850
4851 if (leader != event)
4852 intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4853
4854 leader->hw.flags |= PERF_X86_EVENT_ACR;
4855 }
4856
4857 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4858 (event->attr.type == PERF_TYPE_HW_CACHE))
4859 return 0;
4860
4861 /*
4862 * Config Topdown slots and metric events
4863 *
4864 * The slots event on Fixed Counter 3 can support sampling,
4865 * which will be handled normally in x86_perf_event_update().
4866 *
4867 * Metric events don't support sampling and require being paired
4868 * with a slots event as group leader. When the slots event
4869 * is used in a metrics group, it too cannot support sampling.
4870 */
4871 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4872 /* The metrics_clear can only be set for the slots event */
4873 if (event->attr.config1 &&
4874 (!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4875 return -EINVAL;
4876
4877 if (event->attr.config2)
4878 return -EINVAL;
4879
4880 /*
4881 * The TopDown metrics events and slots event don't
4882 * support any filters.
4883 */
4884 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4885 return -EINVAL;
4886
4887 if (is_available_metric_event(event)) {
4888 struct perf_event *leader = event->group_leader;
4889
4890 /* The metric events don't support sampling. */
4891 if (is_sampling_event(event))
4892 return -EINVAL;
4893
4894 /* The metric events require a slots group leader. */
4895 if (!is_slots_event(leader))
4896 return -EINVAL;
4897
4898 /*
4899 * The leader/SLOTS must not be a sampling event for
4900 * metric use; hardware requires it starts at 0 when used
4901 * in conjunction with MSR_PERF_METRICS.
4902 */
4903 if (is_sampling_event(leader))
4904 return -EINVAL;
4905
4906 event->event_caps |= PERF_EV_CAP_SIBLING;
4907 /*
4908 * Only once we have a METRICs sibling do we
4909 * need TopDown magic.
4910 */
4911 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4912 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4913 }
4914 }
4915
4916 /*
4917 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4918 * doesn't function quite right. As a work-around it needs to always be
4919 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4920 * The actual count of this second event is irrelevant it just needs
4921 * to be active to make the first event function correctly.
4922 *
4923 * In a group, the auxiliary event must be in front of the load latency
4924 * event. The rule is to simplify the implementation of the check.
4925 * That's because perf cannot have a complete group at the moment.
4926 */
4927 if (require_mem_loads_aux_event(event) &&
4928 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4929 is_mem_loads_event(event)) {
4930 struct perf_event *leader = event->group_leader;
4931 struct perf_event *sibling = NULL;
4932
4933 /*
4934 * When this memload event is also the first event (no group
4935 * exists yet), then there is no aux event before it.
4936 */
4937 if (leader == event)
4938 return -ENODATA;
4939
4940 if (!is_mem_loads_aux_event(leader)) {
4941 for_each_sibling_event(sibling, leader) {
4942 if (is_mem_loads_aux_event(sibling))
4943 break;
4944 }
4945 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4946 return -ENODATA;
4947 }
4948 }
4949
4950 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4951 return 0;
4952
4953 if (x86_pmu.version < 3)
4954 return -EINVAL;
4955
4956 ret = perf_allow_cpu();
4957 if (ret)
4958 return ret;
4959
4960 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4961
4962 return 0;
4963 }
4964
4965 /*
4966 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4967 * The host perf context helps to prepare the values of the real hardware for
4968 * a set of msrs that need to be switched atomically in a vmx transaction.
4969 *
4970 * For example, the pseudocode needed to add a new msr should look like:
4971 *
4972 * arr[(*nr)++] = (struct perf_guest_switch_msr){
4973 * .msr = the hardware msr address,
4974 * .host = the value the hardware has when it doesn't run a guest,
4975 * .guest = the value the hardware has when it runs a guest,
4976 * };
4977 *
4978 * These values have nothing to do with the emulated values the guest sees
4979 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4980 * specifically in the intel_pmu_{get,set}_msr().
4981 */
intel_guest_get_msrs(int * nr,void * data)4982 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4983 {
4984 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4985 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4986 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4987 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4988 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4989 int global_ctrl, pebs_enable;
4990
4991 /*
4992 * In addition to obeying exclude_guest/exclude_host, remove bits being
4993 * used for PEBS when running a guest, because PEBS writes to virtual
4994 * addresses (not physical addresses).
4995 */
4996 *nr = 0;
4997 global_ctrl = (*nr)++;
4998 arr[global_ctrl] = (struct perf_guest_switch_msr){
4999 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
5000 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
5001 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
5002 };
5003
5004 if (!x86_pmu.ds_pebs)
5005 return arr;
5006
5007 /*
5008 * If PMU counter has PEBS enabled it is not enough to
5009 * disable counter on a guest entry since PEBS memory
5010 * write can overshoot guest entry and corrupt guest
5011 * memory. Disabling PEBS solves the problem.
5012 *
5013 * Don't do this if the CPU already enforces it.
5014 */
5015 if (x86_pmu.pebs_no_isolation) {
5016 arr[(*nr)++] = (struct perf_guest_switch_msr){
5017 .msr = MSR_IA32_PEBS_ENABLE,
5018 .host = cpuc->pebs_enabled,
5019 .guest = 0,
5020 };
5021 return arr;
5022 }
5023
5024 if (!kvm_pmu || !x86_pmu.pebs_ept)
5025 return arr;
5026
5027 arr[(*nr)++] = (struct perf_guest_switch_msr){
5028 .msr = MSR_IA32_DS_AREA,
5029 .host = (unsigned long)cpuc->ds,
5030 .guest = kvm_pmu->ds_area,
5031 };
5032
5033 if (x86_pmu.intel_cap.pebs_baseline) {
5034 arr[(*nr)++] = (struct perf_guest_switch_msr){
5035 .msr = MSR_PEBS_DATA_CFG,
5036 .host = cpuc->active_pebs_data_cfg,
5037 .guest = kvm_pmu->pebs_data_cfg,
5038 };
5039 }
5040
5041 pebs_enable = (*nr)++;
5042 arr[pebs_enable] = (struct perf_guest_switch_msr){
5043 .msr = MSR_IA32_PEBS_ENABLE,
5044 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
5045 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
5046 };
5047
5048 if (arr[pebs_enable].host) {
5049 /* Disable guest PEBS if host PEBS is enabled. */
5050 arr[pebs_enable].guest = 0;
5051 } else {
5052 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
5053 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
5054 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
5055 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
5056 arr[global_ctrl].guest |= arr[pebs_enable].guest;
5057 }
5058
5059 return arr;
5060 }
5061
core_guest_get_msrs(int * nr,void * data)5062 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
5063 {
5064 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5065 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
5066 int idx;
5067
5068 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
5069 struct perf_event *event = cpuc->events[idx];
5070
5071 arr[idx].msr = x86_pmu_config_addr(idx);
5072 arr[idx].host = arr[idx].guest = 0;
5073
5074 if (!test_bit(idx, cpuc->active_mask))
5075 continue;
5076
5077 arr[idx].host = arr[idx].guest =
5078 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
5079
5080 if (event->attr.exclude_host)
5081 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
5082 else if (event->attr.exclude_guest)
5083 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
5084 }
5085
5086 *nr = x86_pmu_max_num_counters(cpuc->pmu);
5087 return arr;
5088 }
5089
core_pmu_enable_event(struct perf_event * event)5090 static void core_pmu_enable_event(struct perf_event *event)
5091 {
5092 if (!event->attr.exclude_host)
5093 x86_pmu_enable_event(event);
5094 }
5095
core_pmu_enable_all(int added)5096 static void core_pmu_enable_all(int added)
5097 {
5098 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5099 int idx;
5100
5101 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
5102 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
5103
5104 if (!test_bit(idx, cpuc->active_mask) ||
5105 cpuc->events[idx]->attr.exclude_host)
5106 continue;
5107
5108 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
5109 }
5110 }
5111
hsw_hw_config(struct perf_event * event)5112 static int hsw_hw_config(struct perf_event *event)
5113 {
5114 int ret = intel_pmu_hw_config(event);
5115
5116 if (ret)
5117 return ret;
5118 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
5119 return 0;
5120 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
5121
5122 /*
5123 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
5124 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
5125 * this combination.
5126 */
5127 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
5128 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
5129 event->attr.precise_ip > 0))
5130 return -EOPNOTSUPP;
5131
5132 if (event_is_checkpointed(event)) {
5133 /*
5134 * Sampling of checkpointed events can cause situations where
5135 * the CPU constantly aborts because of a overflow, which is
5136 * then checkpointed back and ignored. Forbid checkpointing
5137 * for sampling.
5138 *
5139 * But still allow a long sampling period, so that perf stat
5140 * from KVM works.
5141 */
5142 if (event->attr.sample_period > 0 &&
5143 event->attr.sample_period < 0x7fffffff)
5144 return -EOPNOTSUPP;
5145 }
5146 return 0;
5147 }
5148
5149 static struct event_constraint counter0_constraint =
5150 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
5151
5152 static struct event_constraint counter1_constraint =
5153 INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
5154
5155 static struct event_constraint counter0_1_constraint =
5156 INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
5157
5158 static struct event_constraint counter2_constraint =
5159 EVENT_CONSTRAINT(0, 0x4, 0);
5160
5161 static struct event_constraint fixed0_constraint =
5162 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
5163
5164 static struct event_constraint fixed0_counter0_constraint =
5165 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
5166
5167 static struct event_constraint fixed0_counter0_1_constraint =
5168 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
5169
5170 static struct event_constraint counters_1_7_constraint =
5171 INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
5172
5173 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5174 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5175 struct perf_event *event)
5176 {
5177 struct event_constraint *c;
5178
5179 c = intel_get_event_constraints(cpuc, idx, event);
5180
5181 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
5182 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
5183 if (c->idxmsk64 & (1U << 2))
5184 return &counter2_constraint;
5185 return &emptyconstraint;
5186 }
5187
5188 return c;
5189 }
5190
5191 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5192 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5193 struct perf_event *event)
5194 {
5195 /*
5196 * Fixed counter 0 has less skid.
5197 * Force instruction:ppp in Fixed counter 0
5198 */
5199 if ((event->attr.precise_ip == 3) &&
5200 constraint_match(&fixed0_constraint, event->hw.config))
5201 return &fixed0_constraint;
5202
5203 return hsw_get_event_constraints(cpuc, idx, event);
5204 }
5205
5206 static struct event_constraint *
glc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5207 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5208 struct perf_event *event)
5209 {
5210 struct event_constraint *c;
5211
5212 c = icl_get_event_constraints(cpuc, idx, event);
5213
5214 /*
5215 * The :ppp indicates the Precise Distribution (PDist) facility, which
5216 * is only supported on the GP counter 0. If a :ppp event which is not
5217 * available on the GP counter 0, error out.
5218 * Exception: Instruction PDIR is only available on the fixed counter 0.
5219 */
5220 if ((event->attr.precise_ip == 3) &&
5221 !constraint_match(&fixed0_constraint, event->hw.config)) {
5222 if (c->idxmsk64 & BIT_ULL(0))
5223 return &counter0_constraint;
5224
5225 return &emptyconstraint;
5226 }
5227
5228 return c;
5229 }
5230
5231 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5232 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5233 struct perf_event *event)
5234 {
5235 struct event_constraint *c;
5236
5237 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
5238 if (event->attr.precise_ip == 3)
5239 return &counter0_constraint;
5240
5241 c = intel_get_event_constraints(cpuc, idx, event);
5242
5243 return c;
5244 }
5245
5246 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5247 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5248 struct perf_event *event)
5249 {
5250 struct event_constraint *c;
5251
5252 c = intel_get_event_constraints(cpuc, idx, event);
5253
5254 /*
5255 * :ppp means to do reduced skid PEBS,
5256 * which is available on PMC0 and fixed counter 0.
5257 */
5258 if (event->attr.precise_ip == 3) {
5259 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
5260 if (constraint_match(&fixed0_constraint, event->hw.config))
5261 return &fixed0_counter0_constraint;
5262
5263 return &counter0_constraint;
5264 }
5265
5266 return c;
5267 }
5268
5269 static bool allow_tsx_force_abort = true;
5270
5271 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5272 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5273 struct perf_event *event)
5274 {
5275 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
5276
5277 /*
5278 * Without TFA we must not use PMC3.
5279 */
5280 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
5281 c = dyn_constraint(cpuc, c, idx);
5282 c->idxmsk64 &= ~(1ULL << 3);
5283 c->weight--;
5284 }
5285
5286 return c;
5287 }
5288
5289 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5290 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5291 struct perf_event *event)
5292 {
5293 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5294
5295 if (pmu->pmu_type == hybrid_big)
5296 return glc_get_event_constraints(cpuc, idx, event);
5297 else if (pmu->pmu_type == hybrid_small)
5298 return tnt_get_event_constraints(cpuc, idx, event);
5299
5300 WARN_ON(1);
5301 return &emptyconstraint;
5302 }
5303
5304 static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5305 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5306 struct perf_event *event)
5307 {
5308 struct event_constraint *c;
5309
5310 c = intel_get_event_constraints(cpuc, idx, event);
5311
5312 /*
5313 * The :ppp indicates the Precise Distribution (PDist) facility, which
5314 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
5315 * If a :ppp event which is not available on the above eligible counters,
5316 * error out.
5317 */
5318 if (event->attr.precise_ip == 3) {
5319 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
5320 if (constraint_match(&fixed0_constraint, event->hw.config)) {
5321 /* The fixed counter 0 doesn't support LBR event logging. */
5322 if (branch_sample_counters(event))
5323 return &counter0_1_constraint;
5324 else
5325 return &fixed0_counter0_1_constraint;
5326 }
5327
5328 switch (c->idxmsk64 & 0x3ull) {
5329 case 0x1:
5330 return &counter0_constraint;
5331 case 0x2:
5332 return &counter1_constraint;
5333 case 0x3:
5334 return &counter0_1_constraint;
5335 }
5336 return &emptyconstraint;
5337 }
5338
5339 return c;
5340 }
5341
5342 static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5343 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5344 struct perf_event *event)
5345 {
5346 struct event_constraint *c;
5347
5348 c = glc_get_event_constraints(cpuc, idx, event);
5349
5350 /* The Retire Latency is not supported by the fixed counter 0. */
5351 if (event->attr.precise_ip &&
5352 (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
5353 constraint_match(&fixed0_constraint, event->hw.config)) {
5354 /*
5355 * The Instruction PDIR is only available
5356 * on the fixed counter 0. Error out for this case.
5357 */
5358 if (event->attr.precise_ip == 3)
5359 return &emptyconstraint;
5360 return &counters_1_7_constraint;
5361 }
5362
5363 return c;
5364 }
5365
5366 static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5367 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5368 struct perf_event *event)
5369 {
5370 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5371
5372 if (pmu->pmu_type == hybrid_big)
5373 return rwc_get_event_constraints(cpuc, idx, event);
5374 if (pmu->pmu_type == hybrid_small)
5375 return cmt_get_event_constraints(cpuc, idx, event);
5376
5377 WARN_ON(1);
5378 return &emptyconstraint;
5379 }
5380
adl_hw_config(struct perf_event * event)5381 static int adl_hw_config(struct perf_event *event)
5382 {
5383 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5384
5385 if (pmu->pmu_type == hybrid_big)
5386 return hsw_hw_config(event);
5387 else if (pmu->pmu_type == hybrid_small)
5388 return intel_pmu_hw_config(event);
5389
5390 WARN_ON(1);
5391 return -EOPNOTSUPP;
5392 }
5393
adl_get_hybrid_cpu_type(void)5394 static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
5395 {
5396 return INTEL_CPU_TYPE_CORE;
5397 }
5398
erratum_hsw11(struct perf_event * event)5399 static inline bool erratum_hsw11(struct perf_event *event)
5400 {
5401 return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
5402 X86_CONFIG(.event=0xc0, .umask=0x01);
5403 }
5404
5405 static struct event_constraint *
arl_h_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)5406 arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5407 struct perf_event *event)
5408 {
5409 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5410
5411 if (pmu->pmu_type == hybrid_tiny)
5412 return cmt_get_event_constraints(cpuc, idx, event);
5413
5414 return mtl_get_event_constraints(cpuc, idx, event);
5415 }
5416
arl_h_hw_config(struct perf_event * event)5417 static int arl_h_hw_config(struct perf_event *event)
5418 {
5419 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5420
5421 if (pmu->pmu_type == hybrid_tiny)
5422 return intel_pmu_hw_config(event);
5423
5424 return adl_hw_config(event);
5425 }
5426
5427 /*
5428 * The HSW11 requires a period larger than 100 which is the same as the BDM11.
5429 * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5430 *
5431 * The message 'interrupt took too long' can be observed on any counter which
5432 * was armed with a period < 32 and two events expired in the same NMI.
5433 * A minimum period of 32 is enforced for the rest of the events.
5434 */
hsw_limit_period(struct perf_event * event,s64 * left)5435 static void hsw_limit_period(struct perf_event *event, s64 *left)
5436 {
5437 *left = max(*left, erratum_hsw11(event) ? 128 : 32);
5438 }
5439
5440 /*
5441 * Broadwell:
5442 *
5443 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5444 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5445 * the two to enforce a minimum period of 128 (the smallest value that has bits
5446 * 0-5 cleared and >= 100).
5447 *
5448 * Because of how the code in x86_perf_event_set_period() works, the truncation
5449 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5450 * to make up for the 'lost' events due to carrying the 'error' in period_left.
5451 *
5452 * Therefore the effective (average) period matches the requested period,
5453 * despite coarser hardware granularity.
5454 */
bdw_limit_period(struct perf_event * event,s64 * left)5455 static void bdw_limit_period(struct perf_event *event, s64 *left)
5456 {
5457 if (erratum_hsw11(event)) {
5458 if (*left < 128)
5459 *left = 128;
5460 *left &= ~0x3fULL;
5461 }
5462 }
5463
nhm_limit_period(struct perf_event * event,s64 * left)5464 static void nhm_limit_period(struct perf_event *event, s64 *left)
5465 {
5466 *left = max(*left, 32LL);
5467 }
5468
glc_limit_period(struct perf_event * event,s64 * left)5469 static void glc_limit_period(struct perf_event *event, s64 *left)
5470 {
5471 if (event->attr.precise_ip == 3)
5472 *left = max(*left, 128LL);
5473 }
5474
5475 PMU_FORMAT_ATTR(event, "config:0-7" );
5476 PMU_FORMAT_ATTR(umask, "config:8-15" );
5477 PMU_FORMAT_ATTR(edge, "config:18" );
5478 PMU_FORMAT_ATTR(pc, "config:19" );
5479 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5480 PMU_FORMAT_ATTR(inv, "config:23" );
5481 PMU_FORMAT_ATTR(cmask, "config:24-31" );
5482 PMU_FORMAT_ATTR(in_tx, "config:32" );
5483 PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5484 PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5485
5486 PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5487
umask2_show(struct device * dev,struct device_attribute * attr,char * page)5488 static ssize_t umask2_show(struct device *dev,
5489 struct device_attribute *attr,
5490 char *page)
5491 {
5492 u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5493
5494 if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5495 return sprintf(page, "config:8-15,40-47\n");
5496
5497 /* Roll back to the old format if umask2 is not supported. */
5498 return sprintf(page, "config:8-15\n");
5499 }
5500
5501 static struct device_attribute format_attr_umask2 =
5502 __ATTR(umask, 0444, umask2_show, NULL);
5503
5504 static struct attribute *format_evtsel_ext_attrs[] = {
5505 &format_attr_umask2.attr,
5506 &format_attr_eq.attr,
5507 &format_attr_metrics_clear.attr,
5508 NULL
5509 };
5510
5511 static umode_t
evtsel_ext_is_visible(struct kobject * kobj,struct attribute * attr,int i)5512 evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5513 {
5514 struct device *dev = kobj_to_dev(kobj);
5515 u64 mask;
5516
5517 /*
5518 * The umask and umask2 have different formats but share the
5519 * same attr name. In update mode, the previous value of the
5520 * umask is unconditionally removed before is_visible. If
5521 * umask2 format is not enumerated, it's impossible to roll
5522 * back to the old format.
5523 * Does the check in umask2_show rather than is_visible.
5524 */
5525 if (i == 0)
5526 return attr->mode;
5527
5528 mask = hybrid(dev_get_drvdata(dev), config_mask);
5529 if (i == 1)
5530 return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5531
5532 /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5533 if (i == 2) {
5534 union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5535
5536 return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5537 }
5538
5539 return 0;
5540 }
5541
5542 static struct attribute *intel_arch_formats_attr[] = {
5543 &format_attr_event.attr,
5544 &format_attr_umask.attr,
5545 &format_attr_edge.attr,
5546 &format_attr_pc.attr,
5547 &format_attr_inv.attr,
5548 &format_attr_cmask.attr,
5549 NULL,
5550 };
5551
intel_event_sysfs_show(char * page,u64 config)5552 ssize_t intel_event_sysfs_show(char *page, u64 config)
5553 {
5554 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5555
5556 return x86_event_sysfs_show(page, config, event);
5557 }
5558
allocate_shared_regs(int cpu)5559 static struct intel_shared_regs *allocate_shared_regs(int cpu)
5560 {
5561 struct intel_shared_regs *regs;
5562 int i;
5563
5564 regs = kzalloc_node(sizeof(struct intel_shared_regs),
5565 GFP_KERNEL, cpu_to_node(cpu));
5566 if (regs) {
5567 /*
5568 * initialize the locks to keep lockdep happy
5569 */
5570 for (i = 0; i < EXTRA_REG_MAX; i++)
5571 raw_spin_lock_init(®s->regs[i].lock);
5572
5573 regs->core_id = -1;
5574 }
5575 return regs;
5576 }
5577
allocate_excl_cntrs(int cpu)5578 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5579 {
5580 struct intel_excl_cntrs *c;
5581
5582 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5583 GFP_KERNEL, cpu_to_node(cpu));
5584 if (c) {
5585 raw_spin_lock_init(&c->lock);
5586 c->core_id = -1;
5587 }
5588 return c;
5589 }
5590
5591
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)5592 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5593 {
5594 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5595
5596 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5597 cpuc->shared_regs = allocate_shared_regs(cpu);
5598 if (!cpuc->shared_regs)
5599 goto err;
5600 }
5601
5602 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5603 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5604
5605 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5606 if (!cpuc->constraint_list)
5607 goto err_shared_regs;
5608 }
5609
5610 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5611 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5612 if (!cpuc->excl_cntrs)
5613 goto err_constraint_list;
5614
5615 cpuc->excl_thread_id = 0;
5616 }
5617
5618 return 0;
5619
5620 err_constraint_list:
5621 kfree(cpuc->constraint_list);
5622 cpuc->constraint_list = NULL;
5623
5624 err_shared_regs:
5625 kfree(cpuc->shared_regs);
5626 cpuc->shared_regs = NULL;
5627
5628 err:
5629 return -ENOMEM;
5630 }
5631
intel_pmu_cpu_prepare(int cpu)5632 static int intel_pmu_cpu_prepare(int cpu)
5633 {
5634 int ret;
5635
5636 ret = intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5637 if (ret)
5638 return ret;
5639
5640 return alloc_arch_pebs_buf_on_cpu(cpu);
5641 }
5642
flip_smm_bit(void * data)5643 static void flip_smm_bit(void *data)
5644 {
5645 unsigned long set = *(unsigned long *)data;
5646
5647 if (set > 0) {
5648 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5649 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5650 } else {
5651 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5652 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5653 }
5654 }
5655
intel_pmu_check_counters_mask(u64 * cntr_mask,u64 * fixed_cntr_mask,u64 * intel_ctrl)5656 static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5657 u64 *fixed_cntr_mask,
5658 u64 *intel_ctrl)
5659 {
5660 unsigned int bit;
5661
5662 bit = fls64(*cntr_mask);
5663 if (bit > INTEL_PMC_MAX_GENERIC) {
5664 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5665 bit, INTEL_PMC_MAX_GENERIC);
5666 *cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5667 }
5668 *intel_ctrl = *cntr_mask;
5669
5670 bit = fls64(*fixed_cntr_mask);
5671 if (bit > INTEL_PMC_MAX_FIXED) {
5672 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5673 bit, INTEL_PMC_MAX_FIXED);
5674 *fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5675 }
5676
5677 *intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5678 }
5679
5680 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5681 u64 cntr_mask,
5682 u64 fixed_cntr_mask,
5683 u64 intel_ctrl);
5684
5685 enum dyn_constr_type {
5686 DYN_CONSTR_NONE,
5687 DYN_CONSTR_BR_CNTR,
5688 DYN_CONSTR_ACR_CNTR,
5689 DYN_CONSTR_ACR_CAUSE,
5690 DYN_CONSTR_PEBS,
5691 DYN_CONSTR_PDIST,
5692
5693 DYN_CONSTR_MAX,
5694 };
5695
5696 static const char * const dyn_constr_type_name[] = {
5697 [DYN_CONSTR_NONE] = "a normal event",
5698 [DYN_CONSTR_BR_CNTR] = "a branch counter logging event",
5699 [DYN_CONSTR_ACR_CNTR] = "an auto-counter reload event",
5700 [DYN_CONSTR_ACR_CAUSE] = "an auto-counter reload cause event",
5701 [DYN_CONSTR_PEBS] = "a PEBS event",
5702 [DYN_CONSTR_PDIST] = "a PEBS PDIST event",
5703 };
5704
__intel_pmu_check_dyn_constr(struct event_constraint * constr,enum dyn_constr_type type,u64 mask)5705 static void __intel_pmu_check_dyn_constr(struct event_constraint *constr,
5706 enum dyn_constr_type type, u64 mask)
5707 {
5708 struct event_constraint *c1, *c2;
5709 int new_weight, check_weight;
5710 u64 new_mask, check_mask;
5711
5712 for_each_event_constraint(c1, constr) {
5713 new_mask = c1->idxmsk64 & mask;
5714 new_weight = hweight64(new_mask);
5715
5716 /* ignore topdown perf metrics event */
5717 if (c1->idxmsk64 & INTEL_PMC_MSK_TOPDOWN)
5718 continue;
5719
5720 if (!new_weight && fls64(c1->idxmsk64) < INTEL_PMC_IDX_FIXED) {
5721 pr_info("The event 0x%llx is not supported as %s.\n",
5722 c1->code, dyn_constr_type_name[type]);
5723 }
5724
5725 if (new_weight <= 1)
5726 continue;
5727
5728 for_each_event_constraint(c2, c1 + 1) {
5729 bool check_fail = false;
5730
5731 check_mask = c2->idxmsk64 & mask;
5732 check_weight = hweight64(check_mask);
5733
5734 if (c2->idxmsk64 & INTEL_PMC_MSK_TOPDOWN ||
5735 !check_weight)
5736 continue;
5737
5738 /* The same constraints or no overlap */
5739 if (new_mask == check_mask ||
5740 (new_mask ^ check_mask) == (new_mask | check_mask))
5741 continue;
5742
5743 /*
5744 * A scheduler issue may be triggered in the following cases.
5745 * - Two overlap constraints have the same weight.
5746 * E.g., A constraints: 0x3, B constraints: 0x6
5747 * event counter failure case
5748 * B PMC[2:1] 1
5749 * A PMC[1:0] 0
5750 * A PMC[1:0] FAIL
5751 * - Two overlap constraints have different weight.
5752 * The constraint has a low weight, but has high last bit.
5753 * E.g., A constraints: 0x7, B constraints: 0xC
5754 * event counter failure case
5755 * B PMC[3:2] 2
5756 * A PMC[2:0] 0
5757 * A PMC[2:0] 1
5758 * A PMC[2:0] FAIL
5759 */
5760 if (new_weight == check_weight) {
5761 check_fail = true;
5762 } else if (new_weight < check_weight) {
5763 if ((new_mask | check_mask) != check_mask &&
5764 fls64(new_mask) > fls64(check_mask))
5765 check_fail = true;
5766 } else {
5767 if ((new_mask | check_mask) != new_mask &&
5768 fls64(new_mask) < fls64(check_mask))
5769 check_fail = true;
5770 }
5771
5772 if (check_fail) {
5773 pr_info("The two events 0x%llx and 0x%llx may not be "
5774 "fully scheduled under some circumstances as "
5775 "%s.\n",
5776 c1->code, c2->code, dyn_constr_type_name[type]);
5777 }
5778 }
5779 }
5780 }
5781
intel_pmu_check_dyn_constr(struct pmu * pmu,struct event_constraint * constr,u64 cntr_mask)5782 static void intel_pmu_check_dyn_constr(struct pmu *pmu,
5783 struct event_constraint *constr,
5784 u64 cntr_mask)
5785 {
5786 enum dyn_constr_type i;
5787 u64 mask;
5788
5789 for (i = DYN_CONSTR_NONE; i < DYN_CONSTR_MAX; i++) {
5790 mask = 0;
5791 switch (i) {
5792 case DYN_CONSTR_NONE:
5793 mask = cntr_mask;
5794 break;
5795 case DYN_CONSTR_BR_CNTR:
5796 if (x86_pmu.flags & PMU_FL_BR_CNTR)
5797 mask = x86_pmu.lbr_counters;
5798 break;
5799 case DYN_CONSTR_ACR_CNTR:
5800 mask = hybrid(pmu, acr_cntr_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5801 break;
5802 case DYN_CONSTR_ACR_CAUSE:
5803 if (hybrid(pmu, acr_cntr_mask64) == hybrid(pmu, acr_cause_mask64))
5804 continue;
5805 mask = hybrid(pmu, acr_cause_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5806 break;
5807 case DYN_CONSTR_PEBS:
5808 if (x86_pmu.arch_pebs)
5809 mask = hybrid(pmu, arch_pebs_cap).counters;
5810 break;
5811 case DYN_CONSTR_PDIST:
5812 if (x86_pmu.arch_pebs)
5813 mask = hybrid(pmu, arch_pebs_cap).pdists;
5814 break;
5815 default:
5816 pr_warn("Unsupported dynamic constraint type %d\n", i);
5817 }
5818
5819 if (mask)
5820 __intel_pmu_check_dyn_constr(constr, i, mask);
5821 }
5822 }
5823
intel_pmu_check_event_constraints_all(struct pmu * pmu)5824 static void intel_pmu_check_event_constraints_all(struct pmu *pmu)
5825 {
5826 struct event_constraint *event_constraints = hybrid(pmu, event_constraints);
5827 struct event_constraint *pebs_constraints = hybrid(pmu, pebs_constraints);
5828 u64 cntr_mask = hybrid(pmu, cntr_mask64);
5829 u64 fixed_cntr_mask = hybrid(pmu, fixed_cntr_mask64);
5830 u64 intel_ctrl = hybrid(pmu, intel_ctrl);
5831
5832 intel_pmu_check_event_constraints(event_constraints, cntr_mask,
5833 fixed_cntr_mask, intel_ctrl);
5834
5835 if (event_constraints)
5836 intel_pmu_check_dyn_constr(pmu, event_constraints, cntr_mask);
5837
5838 if (pebs_constraints)
5839 intel_pmu_check_dyn_constr(pmu, pebs_constraints, cntr_mask);
5840 }
5841
5842 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5843
intel_pmu_broken_perf_cap(void)5844 static inline bool intel_pmu_broken_perf_cap(void)
5845 {
5846 /* The Perf Metric (Bit 15) is always cleared */
5847 if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5848 boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5849 return true;
5850
5851 return false;
5852 }
5853
__intel_update_pmu_caps(struct pmu * pmu)5854 static inline void __intel_update_pmu_caps(struct pmu *pmu)
5855 {
5856 struct pmu *dest_pmu = pmu ? pmu : x86_get_pmu(smp_processor_id());
5857
5858 if (hybrid(pmu, arch_pebs_cap).caps & ARCH_PEBS_VECR_XMM)
5859 dest_pmu->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
5860 }
5861
__intel_update_large_pebs_flags(struct pmu * pmu)5862 static inline void __intel_update_large_pebs_flags(struct pmu *pmu)
5863 {
5864 u64 caps = hybrid(pmu, arch_pebs_cap).caps;
5865
5866 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
5867 if (caps & ARCH_PEBS_LBR)
5868 x86_pmu.large_pebs_flags |= PERF_SAMPLE_BRANCH_STACK;
5869 if (caps & ARCH_PEBS_CNTR_MASK)
5870 x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
5871
5872 if (!(caps & ARCH_PEBS_AUX))
5873 x86_pmu.large_pebs_flags &= ~PERF_SAMPLE_DATA_SRC;
5874 if (!(caps & ARCH_PEBS_GPR)) {
5875 x86_pmu.large_pebs_flags &=
5876 ~(PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER);
5877 }
5878 }
5879
5880 #define counter_mask(_gp, _fixed) ((_gp) | ((u64)(_fixed) << INTEL_PMC_IDX_FIXED))
5881
update_pmu_cap(struct pmu * pmu)5882 static void update_pmu_cap(struct pmu *pmu)
5883 {
5884 unsigned int eax, ebx, ecx, edx;
5885 union cpuid35_eax eax_0;
5886 union cpuid35_ebx ebx_0;
5887 u64 cntrs_mask = 0;
5888 u64 pebs_mask = 0;
5889 u64 pdists_mask = 0;
5890
5891 cpuid(ARCH_PERFMON_EXT_LEAF, &eax_0.full, &ebx_0.full, &ecx, &edx);
5892
5893 if (ebx_0.split.umask2)
5894 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5895 if (ebx_0.split.eq)
5896 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5897 if (ebx_0.split.rdpmc_user_disable)
5898 hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
5899
5900 if (eax_0.split.cntr_subleaf) {
5901 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5902 &eax, &ebx, &ecx, &edx);
5903 hybrid(pmu, cntr_mask64) = eax;
5904 hybrid(pmu, fixed_cntr_mask64) = ebx;
5905 cntrs_mask = counter_mask(eax, ebx);
5906 }
5907
5908 if (eax_0.split.acr_subleaf) {
5909 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5910 &eax, &ebx, &ecx, &edx);
5911 /* The mask of the counters which can be reloaded */
5912 hybrid(pmu, acr_cntr_mask64) = counter_mask(eax, ebx);
5913 /* The mask of the counters which can cause a reload of reloadable counters */
5914 hybrid(pmu, acr_cause_mask64) = counter_mask(ecx, edx);
5915 }
5916
5917 /* Bits[5:4] should be set simultaneously if arch-PEBS is supported */
5918 if (eax_0.split.pebs_caps_subleaf && eax_0.split.pebs_cnts_subleaf) {
5919 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_CAP_LEAF,
5920 &eax, &ebx, &ecx, &edx);
5921 hybrid(pmu, arch_pebs_cap).caps = (u64)ebx << 32;
5922
5923 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_COUNTER_LEAF,
5924 &eax, &ebx, &ecx, &edx);
5925 pebs_mask = counter_mask(eax, ecx);
5926 pdists_mask = counter_mask(ebx, edx);
5927 hybrid(pmu, arch_pebs_cap).counters = pebs_mask;
5928 hybrid(pmu, arch_pebs_cap).pdists = pdists_mask;
5929
5930 if (WARN_ON((pebs_mask | pdists_mask) & ~cntrs_mask)) {
5931 x86_pmu.arch_pebs = 0;
5932 } else {
5933 __intel_update_pmu_caps(pmu);
5934 __intel_update_large_pebs_flags(pmu);
5935 }
5936 } else {
5937 WARN_ON(x86_pmu.arch_pebs == 1);
5938 x86_pmu.arch_pebs = 0;
5939 }
5940
5941 if (!intel_pmu_broken_perf_cap()) {
5942 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5943 rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5944 }
5945 }
5946
intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu * pmu)5947 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5948 {
5949 intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5950 &pmu->intel_ctrl);
5951 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5952 pmu->unconstrained = (struct event_constraint)
5953 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5954 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5955
5956 if (pmu->intel_cap.perf_metrics)
5957 pmu->intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
5958 else
5959 pmu->intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5960
5961 pmu->pmu.capabilities |= PERF_PMU_CAP_MEDIATED_VPMU;
5962
5963 intel_pmu_check_event_constraints_all(&pmu->pmu);
5964
5965 intel_pmu_check_extra_regs(pmu->extra_regs);
5966 }
5967
find_hybrid_pmu_for_cpu(void)5968 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5969 {
5970 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5971 enum intel_cpu_type cpu_type = c->topo.intel_type;
5972 int i;
5973
5974 /*
5975 * This is running on a CPU model that is known to have hybrid
5976 * configurations. But the CPU told us it is not hybrid, shame
5977 * on it. There should be a fixup function provided for these
5978 * troublesome CPUs (->get_hybrid_cpu_type).
5979 */
5980 if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5981 if (x86_pmu.get_hybrid_cpu_type)
5982 cpu_type = x86_pmu.get_hybrid_cpu_type();
5983 else
5984 return NULL;
5985 }
5986
5987 /*
5988 * This essentially just maps between the 'hybrid_cpu_type'
5989 * and 'hybrid_pmu_type' enums except for ARL-H processor
5990 * which needs to compare atom uarch native id since ARL-H
5991 * contains two different atom uarchs.
5992 */
5993 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5994 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5995 u32 native_id;
5996
5997 if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5998 return &x86_pmu.hybrid_pmu[i];
5999 if (cpu_type == INTEL_CPU_TYPE_ATOM) {
6000 if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
6001 return &x86_pmu.hybrid_pmu[i];
6002
6003 native_id = c->topo.intel_native_model_id;
6004 if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
6005 return &x86_pmu.hybrid_pmu[i];
6006 if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
6007 return &x86_pmu.hybrid_pmu[i];
6008 }
6009 }
6010
6011 return NULL;
6012 }
6013
init_hybrid_pmu(int cpu)6014 static bool init_hybrid_pmu(int cpu)
6015 {
6016 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6017 struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
6018
6019 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
6020 cpuc->pmu = NULL;
6021 return false;
6022 }
6023
6024 /* Only check and dump the PMU information for the first CPU */
6025 if (!cpumask_empty(&pmu->supported_cpus))
6026 goto end;
6027
6028 if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
6029 update_pmu_cap(&pmu->pmu);
6030
6031 intel_pmu_check_hybrid_pmus(pmu);
6032
6033 if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
6034 return false;
6035
6036 pr_info("%s PMU driver: ", pmu->name);
6037
6038 pr_cont("\n");
6039
6040 x86_pmu_show_pmu_cap(&pmu->pmu);
6041
6042 end:
6043 cpumask_set_cpu(cpu, &pmu->supported_cpus);
6044 cpuc->pmu = &pmu->pmu;
6045
6046 return true;
6047 }
6048
intel_pmu_cpu_starting(int cpu)6049 static void intel_pmu_cpu_starting(int cpu)
6050 {
6051 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6052 int core_id = topology_core_id(cpu);
6053 int i;
6054
6055 if (is_hybrid() && !init_hybrid_pmu(cpu))
6056 return;
6057
6058 init_debug_store_on_cpu(cpu);
6059 init_arch_pebs_on_cpu(cpu);
6060 /*
6061 * Deal with CPUs that don't clear their LBRs on power-up, and that may
6062 * even boot with LBRs enabled.
6063 */
6064 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
6065 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
6066 intel_pmu_lbr_reset();
6067
6068 cpuc->lbr_sel = NULL;
6069
6070 if (x86_pmu.flags & PMU_FL_TFA) {
6071 WARN_ON_ONCE(cpuc->tfa_shadow);
6072 cpuc->tfa_shadow = ~0ULL;
6073 intel_set_tfa(cpuc, false);
6074 }
6075
6076 if (x86_pmu.version > 1)
6077 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
6078
6079 /*
6080 * Disable perf metrics if any added CPU doesn't support it.
6081 *
6082 * Turn off the check for a hybrid architecture, because the
6083 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
6084 * the architecture features. The perf metrics is a model-specific
6085 * feature for now. The corresponding bit should always be 0 on
6086 * a hybrid platform, e.g., Alder Lake.
6087 */
6088 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
6089 union perf_capabilities perf_cap;
6090
6091 rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
6092 if (!perf_cap.perf_metrics) {
6093 x86_pmu.intel_cap.perf_metrics = 0;
6094 x86_pmu.intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
6095 }
6096 }
6097
6098 __intel_update_pmu_caps(cpuc->pmu);
6099
6100 if (!cpuc->shared_regs)
6101 return;
6102
6103 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
6104 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6105 struct intel_shared_regs *pc;
6106
6107 pc = per_cpu(cpu_hw_events, i).shared_regs;
6108 if (pc && pc->core_id == core_id) {
6109 cpuc->kfree_on_online[0] = cpuc->shared_regs;
6110 cpuc->shared_regs = pc;
6111 break;
6112 }
6113 }
6114 cpuc->shared_regs->core_id = core_id;
6115 cpuc->shared_regs->refcnt++;
6116 }
6117
6118 if (x86_pmu.lbr_sel_map)
6119 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6120
6121 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
6122 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6123 struct cpu_hw_events *sibling;
6124 struct intel_excl_cntrs *c;
6125
6126 sibling = &per_cpu(cpu_hw_events, i);
6127 c = sibling->excl_cntrs;
6128 if (c && c->core_id == core_id) {
6129 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
6130 cpuc->excl_cntrs = c;
6131 if (!sibling->excl_thread_id)
6132 cpuc->excl_thread_id = 1;
6133 break;
6134 }
6135 }
6136 cpuc->excl_cntrs->core_id = core_id;
6137 cpuc->excl_cntrs->refcnt++;
6138 }
6139 }
6140
free_excl_cntrs(struct cpu_hw_events * cpuc)6141 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
6142 {
6143 struct intel_excl_cntrs *c;
6144
6145 c = cpuc->excl_cntrs;
6146 if (c) {
6147 if (c->core_id == -1 || --c->refcnt == 0)
6148 kfree(c);
6149 cpuc->excl_cntrs = NULL;
6150 }
6151
6152 kfree(cpuc->constraint_list);
6153 cpuc->constraint_list = NULL;
6154 }
6155
intel_pmu_cpu_dying(int cpu)6156 static void intel_pmu_cpu_dying(int cpu)
6157 {
6158 fini_debug_store_on_cpu(cpu);
6159 fini_arch_pebs_on_cpu(cpu);
6160 }
6161
intel_cpuc_finish(struct cpu_hw_events * cpuc)6162 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
6163 {
6164 struct intel_shared_regs *pc;
6165
6166 pc = cpuc->shared_regs;
6167 if (pc) {
6168 if (pc->core_id == -1 || --pc->refcnt == 0)
6169 kfree(pc);
6170 cpuc->shared_regs = NULL;
6171 }
6172
6173 free_excl_cntrs(cpuc);
6174 }
6175
intel_pmu_cpu_dead(int cpu)6176 static void intel_pmu_cpu_dead(int cpu)
6177 {
6178 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6179
6180 release_arch_pebs_buf_on_cpu(cpu);
6181 intel_cpuc_finish(cpuc);
6182
6183 if (is_hybrid() && cpuc->pmu)
6184 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
6185 }
6186
intel_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)6187 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
6188 struct task_struct *task, bool sched_in)
6189 {
6190 intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
6191 intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
6192 }
6193
intel_pmu_check_period(struct perf_event * event,u64 value)6194 static int intel_pmu_check_period(struct perf_event *event, u64 value)
6195 {
6196 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
6197 }
6198
intel_aux_output_init(void)6199 static void intel_aux_output_init(void)
6200 {
6201 /* Refer also intel_pmu_aux_output_match() */
6202 if (x86_pmu.intel_cap.pebs_output_pt_available)
6203 x86_pmu.assign = intel_pmu_assign_event;
6204 }
6205
intel_pmu_aux_output_match(struct perf_event * event)6206 static int intel_pmu_aux_output_match(struct perf_event *event)
6207 {
6208 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
6209 if (!x86_pmu.intel_cap.pebs_output_pt_available)
6210 return 0;
6211
6212 return is_intel_pt_event(event);
6213 }
6214
intel_pmu_filter(struct pmu * pmu,int cpu,bool * ret)6215 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
6216 {
6217 struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
6218
6219 *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
6220 }
6221
6222 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
6223
6224 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
6225
6226 PMU_FORMAT_ATTR(frontend, "config1:0-23");
6227
6228 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
6229
6230 static struct attribute *intel_arch3_formats_attr[] = {
6231 &format_attr_event.attr,
6232 &format_attr_umask.attr,
6233 &format_attr_edge.attr,
6234 &format_attr_pc.attr,
6235 &format_attr_any.attr,
6236 &format_attr_inv.attr,
6237 &format_attr_cmask.attr,
6238 NULL,
6239 };
6240
6241 static struct attribute *hsw_format_attr[] = {
6242 &format_attr_in_tx.attr,
6243 &format_attr_in_tx_cp.attr,
6244 &format_attr_offcore_rsp.attr,
6245 &format_attr_ldlat.attr,
6246 NULL
6247 };
6248
6249 static struct attribute *nhm_format_attr[] = {
6250 &format_attr_offcore_rsp.attr,
6251 &format_attr_ldlat.attr,
6252 NULL
6253 };
6254
6255 static struct attribute *slm_format_attr[] = {
6256 &format_attr_offcore_rsp.attr,
6257 NULL
6258 };
6259
6260 static struct attribute *cmt_format_attr[] = {
6261 &format_attr_offcore_rsp.attr,
6262 &format_attr_ldlat.attr,
6263 &format_attr_snoop_rsp.attr,
6264 NULL
6265 };
6266
6267 static struct attribute *skl_format_attr[] = {
6268 &format_attr_frontend.attr,
6269 NULL,
6270 };
6271
6272 static __initconst const struct x86_pmu core_pmu = {
6273 .name = "core",
6274 .handle_irq = x86_pmu_handle_irq,
6275 .disable_all = x86_pmu_disable_all,
6276 .enable_all = core_pmu_enable_all,
6277 .enable = core_pmu_enable_event,
6278 .disable = x86_pmu_disable_event,
6279 .hw_config = core_pmu_hw_config,
6280 .schedule_events = x86_schedule_events,
6281 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6282 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6283 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6284 .event_map = intel_pmu_event_map,
6285 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
6286 .apic = 1,
6287 .large_pebs_flags = LARGE_PEBS_FLAGS,
6288
6289 /*
6290 * Intel PMCs cannot be accessed sanely above 32-bit width,
6291 * so we install an artificial 1<<31 period regardless of
6292 * the generic event period:
6293 */
6294 .max_period = (1ULL<<31) - 1,
6295 .get_event_constraints = intel_get_event_constraints,
6296 .put_event_constraints = intel_put_event_constraints,
6297 .event_constraints = intel_core_event_constraints,
6298 .guest_get_msrs = core_guest_get_msrs,
6299 .format_attrs = intel_arch_formats_attr,
6300 .events_sysfs_show = intel_event_sysfs_show,
6301
6302 /*
6303 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
6304 * together with PMU version 1 and thus be using core_pmu with
6305 * shared_regs. We need following callbacks here to allocate
6306 * it properly.
6307 */
6308 .cpu_prepare = intel_pmu_cpu_prepare,
6309 .cpu_starting = intel_pmu_cpu_starting,
6310 .cpu_dying = intel_pmu_cpu_dying,
6311 .cpu_dead = intel_pmu_cpu_dead,
6312
6313 .check_period = intel_pmu_check_period,
6314
6315 .lbr_reset = intel_pmu_lbr_reset_64,
6316 .lbr_read = intel_pmu_lbr_read_64,
6317 .lbr_save = intel_pmu_lbr_save,
6318 .lbr_restore = intel_pmu_lbr_restore,
6319 };
6320
6321 static __initconst const struct x86_pmu intel_pmu = {
6322 .name = "Intel",
6323 .handle_irq = intel_pmu_handle_irq,
6324 .disable_all = intel_pmu_disable_all,
6325 .enable_all = intel_pmu_enable_all,
6326 .enable = intel_pmu_enable_event,
6327 .disable = intel_pmu_disable_event,
6328 .add = intel_pmu_add_event,
6329 .del = intel_pmu_del_event,
6330 .read = intel_pmu_read_event,
6331 .set_period = intel_pmu_set_period,
6332 .update = intel_pmu_update,
6333 .hw_config = intel_pmu_hw_config,
6334 .schedule_events = x86_schedule_events,
6335 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6336 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6337 .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6338 .event_map = intel_pmu_event_map,
6339 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
6340 .apic = 1,
6341 .large_pebs_flags = LARGE_PEBS_FLAGS,
6342 /*
6343 * Intel PMCs cannot be accessed sanely above 32 bit width,
6344 * so we install an artificial 1<<31 period regardless of
6345 * the generic event period:
6346 */
6347 .max_period = (1ULL << 31) - 1,
6348 .get_event_constraints = intel_get_event_constraints,
6349 .put_event_constraints = intel_put_event_constraints,
6350 .pebs_aliases = intel_pebs_aliases_core2,
6351
6352 .format_attrs = intel_arch3_formats_attr,
6353 .events_sysfs_show = intel_event_sysfs_show,
6354
6355 .cpu_prepare = intel_pmu_cpu_prepare,
6356 .cpu_starting = intel_pmu_cpu_starting,
6357 .cpu_dying = intel_pmu_cpu_dying,
6358 .cpu_dead = intel_pmu_cpu_dead,
6359
6360 .guest_get_msrs = intel_guest_get_msrs,
6361 .sched_task = intel_pmu_sched_task,
6362
6363 .check_period = intel_pmu_check_period,
6364
6365 .aux_output_match = intel_pmu_aux_output_match,
6366
6367 .lbr_reset = intel_pmu_lbr_reset_64,
6368 .lbr_read = intel_pmu_lbr_read_64,
6369 .lbr_save = intel_pmu_lbr_save,
6370 .lbr_restore = intel_pmu_lbr_restore,
6371
6372 /*
6373 * SMM has access to all 4 rings and while traditionally SMM code only
6374 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
6375 *
6376 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
6377 * between SMM or not, this results in what should be pure userspace
6378 * counters including SMM data.
6379 *
6380 * This is a clear privilege issue, therefore globally disable
6381 * counting SMM by default.
6382 */
6383 .attr_freeze_on_smi = 1,
6384 };
6385
intel_clovertown_quirk(void)6386 static __init void intel_clovertown_quirk(void)
6387 {
6388 /*
6389 * PEBS is unreliable due to:
6390 *
6391 * AJ67 - PEBS may experience CPL leaks
6392 * AJ68 - PEBS PMI may be delayed by one event
6393 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
6394 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
6395 *
6396 * AJ67 could be worked around by restricting the OS/USR flags.
6397 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
6398 *
6399 * AJ106 could possibly be worked around by not allowing LBR
6400 * usage from PEBS, including the fixup.
6401 * AJ68 could possibly be worked around by always programming
6402 * a pebs_event_reset[0] value and coping with the lost events.
6403 *
6404 * But taken together it might just make sense to not enable PEBS on
6405 * these chips.
6406 */
6407 pr_warn("PEBS disabled due to CPU errata\n");
6408 x86_pmu.ds_pebs = 0;
6409 x86_pmu.pebs_constraints = NULL;
6410 }
6411
6412 static const struct x86_cpu_id isolation_ucodes[] = {
6413 X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
6414 X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
6415 X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
6416 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
6417 X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
6418 X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
6419 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
6420 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
6421 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
6422 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
6423 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
6424 X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
6425 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
6426 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
6427 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
6428 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
6429 X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
6430 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
6431 X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
6432 {}
6433 };
6434
intel_check_pebs_isolation(void)6435 static void intel_check_pebs_isolation(void)
6436 {
6437 x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
6438 }
6439
intel_pebs_isolation_quirk(void)6440 static __init void intel_pebs_isolation_quirk(void)
6441 {
6442 WARN_ON_ONCE(x86_pmu.check_microcode);
6443 x86_pmu.check_microcode = intel_check_pebs_isolation;
6444 intel_check_pebs_isolation();
6445 }
6446
6447 static const struct x86_cpu_id pebs_ucodes[] = {
6448 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
6449 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
6450 X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
6451 {}
6452 };
6453
intel_snb_pebs_broken(void)6454 static bool intel_snb_pebs_broken(void)
6455 {
6456 return !x86_match_min_microcode_rev(pebs_ucodes);
6457 }
6458
intel_snb_check_microcode(void)6459 static void intel_snb_check_microcode(void)
6460 {
6461 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
6462 return;
6463
6464 /*
6465 * Serialized by the microcode lock..
6466 */
6467 if (x86_pmu.pebs_broken) {
6468 pr_info("PEBS enabled due to microcode update\n");
6469 x86_pmu.pebs_broken = 0;
6470 } else {
6471 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
6472 x86_pmu.pebs_broken = 1;
6473 }
6474 }
6475
is_lbr_from(unsigned long msr)6476 static bool is_lbr_from(unsigned long msr)
6477 {
6478 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
6479
6480 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
6481 }
6482
6483 /*
6484 * Under certain circumstances, access certain MSR may cause #GP.
6485 * The function tests if the input MSR can be safely accessed.
6486 */
check_msr(unsigned long msr,u64 mask)6487 static bool check_msr(unsigned long msr, u64 mask)
6488 {
6489 u64 val_old, val_new, val_tmp;
6490
6491 /*
6492 * Disable the check for real HW, so we don't
6493 * mess with potentially enabled registers:
6494 */
6495 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
6496 return true;
6497
6498 /*
6499 * Read the current value, change it and read it back to see if it
6500 * matches, this is needed to detect certain hardware emulators
6501 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
6502 */
6503 if (rdmsrq_safe(msr, &val_old))
6504 return false;
6505
6506 /*
6507 * Only change the bits which can be updated by wrmsrq.
6508 */
6509 val_tmp = val_old ^ mask;
6510
6511 if (is_lbr_from(msr))
6512 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
6513
6514 if (wrmsrq_safe(msr, val_tmp) ||
6515 rdmsrq_safe(msr, &val_new))
6516 return false;
6517
6518 /*
6519 * Quirk only affects validation in wrmsr(), so wrmsrq()'s value
6520 * should equal rdmsrq()'s even with the quirk.
6521 */
6522 if (val_new != val_tmp)
6523 return false;
6524
6525 if (is_lbr_from(msr))
6526 val_old = lbr_from_signext_quirk_wr(val_old);
6527
6528 /* Here it's sure that the MSR can be safely accessed.
6529 * Restore the old value and return.
6530 */
6531 wrmsrq(msr, val_old);
6532
6533 return true;
6534 }
6535
intel_sandybridge_quirk(void)6536 static __init void intel_sandybridge_quirk(void)
6537 {
6538 x86_pmu.check_microcode = intel_snb_check_microcode;
6539 cpus_read_lock();
6540 intel_snb_check_microcode();
6541 cpus_read_unlock();
6542 }
6543
6544 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
6545 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
6546 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
6547 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
6548 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
6549 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
6550 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
6551 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
6552 };
6553
intel_arch_events_quirk(void)6554 static __init void intel_arch_events_quirk(void)
6555 {
6556 int bit;
6557
6558 /* disable event that reported as not present by cpuid */
6559 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
6560 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
6561 pr_warn("CPUID marked event: \'%s\' unavailable\n",
6562 intel_arch_events_map[bit].name);
6563 }
6564 }
6565
intel_nehalem_quirk(void)6566 static __init void intel_nehalem_quirk(void)
6567 {
6568 union cpuid10_ebx ebx;
6569
6570 ebx.full = x86_pmu.events_maskl;
6571 if (ebx.split.no_branch_misses_retired) {
6572 /*
6573 * Erratum AAJ80 detected, we work it around by using
6574 * the BR_MISP_EXEC.ANY event. This will over-count
6575 * branch-misses, but it's still much better than the
6576 * architectural event which is often completely bogus:
6577 */
6578 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
6579 ebx.split.no_branch_misses_retired = 0;
6580 x86_pmu.events_maskl = ebx.full;
6581 pr_info("CPU erratum AAJ80 worked around\n");
6582 }
6583 }
6584
6585 /*
6586 * enable software workaround for errata:
6587 * SNB: BJ122
6588 * IVB: BV98
6589 * HSW: HSD29
6590 *
6591 * Only needed when HT is enabled. However detecting
6592 * if HT is enabled is difficult (model specific). So instead,
6593 * we enable the workaround in the early boot, and verify if
6594 * it is needed in a later initcall phase once we have valid
6595 * topology information to check if HT is actually enabled
6596 */
intel_ht_bug(void)6597 static __init void intel_ht_bug(void)
6598 {
6599 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
6600
6601 x86_pmu.start_scheduling = intel_start_scheduling;
6602 x86_pmu.commit_scheduling = intel_commit_scheduling;
6603 x86_pmu.stop_scheduling = intel_stop_scheduling;
6604 }
6605
6606 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
6607 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
6608
6609 /* Haswell special events */
6610 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
6611 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
6612 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
6613 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
6614 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
6615 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
6616 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
6617 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
6618 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
6619 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
6620 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
6621 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
6622
6623 static struct attribute *hsw_events_attrs[] = {
6624 EVENT_PTR(td_slots_issued),
6625 EVENT_PTR(td_slots_retired),
6626 EVENT_PTR(td_fetch_bubbles),
6627 EVENT_PTR(td_total_slots),
6628 EVENT_PTR(td_total_slots_scale),
6629 EVENT_PTR(td_recovery_bubbles),
6630 EVENT_PTR(td_recovery_bubbles_scale),
6631 NULL
6632 };
6633
6634 static struct attribute *hsw_mem_events_attrs[] = {
6635 EVENT_PTR(mem_ld_hsw),
6636 EVENT_PTR(mem_st_hsw),
6637 NULL,
6638 };
6639
6640 static struct attribute *hsw_tsx_events_attrs[] = {
6641 EVENT_PTR(tx_start),
6642 EVENT_PTR(tx_commit),
6643 EVENT_PTR(tx_abort),
6644 EVENT_PTR(tx_capacity),
6645 EVENT_PTR(tx_conflict),
6646 EVENT_PTR(el_start),
6647 EVENT_PTR(el_commit),
6648 EVENT_PTR(el_abort),
6649 EVENT_PTR(el_capacity),
6650 EVENT_PTR(el_conflict),
6651 EVENT_PTR(cycles_t),
6652 EVENT_PTR(cycles_ct),
6653 NULL
6654 };
6655
6656 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6657 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6658 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6659 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6660
6661 static struct attribute *icl_events_attrs[] = {
6662 EVENT_PTR(mem_ld_hsw),
6663 EVENT_PTR(mem_st_hsw),
6664 NULL,
6665 };
6666
6667 static struct attribute *icl_td_events_attrs[] = {
6668 EVENT_PTR(slots),
6669 EVENT_PTR(td_retiring),
6670 EVENT_PTR(td_bad_spec),
6671 EVENT_PTR(td_fe_bound),
6672 EVENT_PTR(td_be_bound),
6673 NULL,
6674 };
6675
6676 static struct attribute *icl_tsx_events_attrs[] = {
6677 EVENT_PTR(tx_start),
6678 EVENT_PTR(tx_abort),
6679 EVENT_PTR(tx_commit),
6680 EVENT_PTR(tx_capacity_read),
6681 EVENT_PTR(tx_capacity_write),
6682 EVENT_PTR(tx_conflict),
6683 EVENT_PTR(el_start),
6684 EVENT_PTR(el_abort),
6685 EVENT_PTR(el_commit),
6686 EVENT_PTR(el_capacity_read),
6687 EVENT_PTR(el_capacity_write),
6688 EVENT_PTR(el_conflict),
6689 EVENT_PTR(cycles_t),
6690 EVENT_PTR(cycles_ct),
6691 NULL,
6692 };
6693
6694
6695 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6696 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6697
6698 static struct attribute *glc_events_attrs[] = {
6699 EVENT_PTR(mem_ld_hsw),
6700 EVENT_PTR(mem_st_spr),
6701 EVENT_PTR(mem_ld_aux),
6702 NULL,
6703 };
6704
6705 static struct attribute *glc_td_events_attrs[] = {
6706 EVENT_PTR(slots),
6707 EVENT_PTR(td_retiring),
6708 EVENT_PTR(td_bad_spec),
6709 EVENT_PTR(td_fe_bound),
6710 EVENT_PTR(td_be_bound),
6711 EVENT_PTR(td_heavy_ops),
6712 EVENT_PTR(td_br_mispredict),
6713 EVENT_PTR(td_fetch_lat),
6714 EVENT_PTR(td_mem_bound),
6715 NULL,
6716 };
6717
6718 static struct attribute *glc_tsx_events_attrs[] = {
6719 EVENT_PTR(tx_start),
6720 EVENT_PTR(tx_abort),
6721 EVENT_PTR(tx_commit),
6722 EVENT_PTR(tx_capacity_read),
6723 EVENT_PTR(tx_capacity_write),
6724 EVENT_PTR(tx_conflict),
6725 EVENT_PTR(cycles_t),
6726 EVENT_PTR(cycles_ct),
6727 NULL,
6728 };
6729
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)6730 static ssize_t freeze_on_smi_show(struct device *cdev,
6731 struct device_attribute *attr,
6732 char *buf)
6733 {
6734 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6735 }
6736
6737 static DEFINE_MUTEX(freeze_on_smi_mutex);
6738
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6739 static ssize_t freeze_on_smi_store(struct device *cdev,
6740 struct device_attribute *attr,
6741 const char *buf, size_t count)
6742 {
6743 unsigned long val;
6744 ssize_t ret;
6745
6746 ret = kstrtoul(buf, 0, &val);
6747 if (ret)
6748 return ret;
6749
6750 if (val > 1)
6751 return -EINVAL;
6752
6753 mutex_lock(&freeze_on_smi_mutex);
6754
6755 if (x86_pmu.attr_freeze_on_smi == val)
6756 goto done;
6757
6758 x86_pmu.attr_freeze_on_smi = val;
6759
6760 cpus_read_lock();
6761 on_each_cpu(flip_smm_bit, &val, 1);
6762 cpus_read_unlock();
6763 done:
6764 mutex_unlock(&freeze_on_smi_mutex);
6765
6766 return count;
6767 }
6768
update_tfa_sched(void * ignored)6769 static void update_tfa_sched(void *ignored)
6770 {
6771 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6772
6773 /*
6774 * check if PMC3 is used
6775 * and if so force schedule out for all event types all contexts
6776 */
6777 if (test_bit(3, cpuc->active_mask))
6778 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6779 }
6780
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)6781 static ssize_t show_sysctl_tfa(struct device *cdev,
6782 struct device_attribute *attr,
6783 char *buf)
6784 {
6785 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6786 }
6787
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)6788 static ssize_t set_sysctl_tfa(struct device *cdev,
6789 struct device_attribute *attr,
6790 const char *buf, size_t count)
6791 {
6792 bool val;
6793 ssize_t ret;
6794
6795 ret = kstrtobool(buf, &val);
6796 if (ret)
6797 return ret;
6798
6799 /* no change */
6800 if (val == allow_tsx_force_abort)
6801 return count;
6802
6803 allow_tsx_force_abort = val;
6804
6805 cpus_read_lock();
6806 on_each_cpu(update_tfa_sched, NULL, 1);
6807 cpus_read_unlock();
6808
6809 return count;
6810 }
6811
6812
6813 static DEVICE_ATTR_RW(freeze_on_smi);
6814
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)6815 static ssize_t branches_show(struct device *cdev,
6816 struct device_attribute *attr,
6817 char *buf)
6818 {
6819 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6820 }
6821
6822 static DEVICE_ATTR_RO(branches);
6823
branch_counter_nr_show(struct device * cdev,struct device_attribute * attr,char * buf)6824 static ssize_t branch_counter_nr_show(struct device *cdev,
6825 struct device_attribute *attr,
6826 char *buf)
6827 {
6828 return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6829 }
6830
6831 static DEVICE_ATTR_RO(branch_counter_nr);
6832
branch_counter_width_show(struct device * cdev,struct device_attribute * attr,char * buf)6833 static ssize_t branch_counter_width_show(struct device *cdev,
6834 struct device_attribute *attr,
6835 char *buf)
6836 {
6837 return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6838 }
6839
6840 static DEVICE_ATTR_RO(branch_counter_width);
6841
6842 static struct attribute *lbr_attrs[] = {
6843 &dev_attr_branches.attr,
6844 &dev_attr_branch_counter_nr.attr,
6845 &dev_attr_branch_counter_width.attr,
6846 NULL
6847 };
6848
6849 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6850 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6851 {
6852 /* branches */
6853 if (i == 0)
6854 return x86_pmu.lbr_nr ? attr->mode : 0;
6855
6856 return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6857 }
6858
6859 static char pmu_name_str[30];
6860
6861 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6862
6863 static struct attribute *intel_pmu_caps_attrs[] = {
6864 &dev_attr_pmu_name.attr.attr,
6865 NULL
6866 };
6867
6868 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6869 show_sysctl_tfa,
6870 set_sysctl_tfa);
6871
6872 static struct attribute *intel_pmu_attrs[] = {
6873 &dev_attr_freeze_on_smi.attr,
6874 &dev_attr_allow_tsx_force_abort.attr,
6875 NULL,
6876 };
6877
6878 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)6879 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6880 {
6881 if (attr == &dev_attr_allow_tsx_force_abort.attr)
6882 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6883
6884 return attr->mode;
6885 }
6886
6887 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)6888 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6889 {
6890 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6891 }
6892
6893 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)6894 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6895 {
6896 return intel_pmu_has_pebs() ? attr->mode : 0;
6897 }
6898
6899 static umode_t
mem_is_visible(struct kobject * kobj,struct attribute * attr,int i)6900 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6901 {
6902 if (attr == &event_attr_mem_ld_aux.attr.attr)
6903 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6904
6905 return pebs_is_visible(kobj, attr, i);
6906 }
6907
6908 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)6909 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6910 {
6911 return x86_pmu.version >= 2 ? attr->mode : 0;
6912 }
6913
6914 static umode_t
td_is_visible(struct kobject * kobj,struct attribute * attr,int i)6915 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6916 {
6917 /*
6918 * Hide the perf metrics topdown events
6919 * if the feature is not enumerated.
6920 */
6921 if (x86_pmu.num_topdown_events)
6922 return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6923
6924 return attr->mode;
6925 }
6926
6927 PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6928
6929 static struct attribute *format_acr_attrs[] = {
6930 &format_attr_acr_mask.attr,
6931 NULL
6932 };
6933
6934 static umode_t
acr_is_visible(struct kobject * kobj,struct attribute * attr,int i)6935 acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6936 {
6937 struct device *dev = kobj_to_dev(kobj);
6938
6939 return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6940 }
6941
6942 static struct attribute_group group_events_td = {
6943 .name = "events",
6944 .is_visible = td_is_visible,
6945 };
6946
6947 static struct attribute_group group_events_mem = {
6948 .name = "events",
6949 .is_visible = mem_is_visible,
6950 };
6951
6952 static struct attribute_group group_events_tsx = {
6953 .name = "events",
6954 .is_visible = tsx_is_visible,
6955 };
6956
6957 static struct attribute_group group_caps_gen = {
6958 .name = "caps",
6959 .attrs = intel_pmu_caps_attrs,
6960 };
6961
6962 static struct attribute_group group_caps_lbr = {
6963 .name = "caps",
6964 .attrs = lbr_attrs,
6965 .is_visible = lbr_is_visible,
6966 };
6967
6968 static struct attribute_group group_format_extra = {
6969 .name = "format",
6970 .is_visible = exra_is_visible,
6971 };
6972
6973 static struct attribute_group group_format_extra_skl = {
6974 .name = "format",
6975 .is_visible = exra_is_visible,
6976 };
6977
6978 static struct attribute_group group_format_evtsel_ext = {
6979 .name = "format",
6980 .attrs = format_evtsel_ext_attrs,
6981 .is_visible = evtsel_ext_is_visible,
6982 };
6983
6984 static struct attribute_group group_format_acr = {
6985 .name = "format",
6986 .attrs = format_acr_attrs,
6987 .is_visible = acr_is_visible,
6988 };
6989
6990 static struct attribute_group group_default = {
6991 .attrs = intel_pmu_attrs,
6992 .is_visible = default_is_visible,
6993 };
6994
6995 static const struct attribute_group *attr_update[] = {
6996 &group_events_td,
6997 &group_events_mem,
6998 &group_events_tsx,
6999 &group_caps_gen,
7000 &group_caps_lbr,
7001 &group_format_extra,
7002 &group_format_extra_skl,
7003 &group_format_evtsel_ext,
7004 &group_format_acr,
7005 &group_default,
7006 NULL,
7007 };
7008
7009 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
7010 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
7011 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
7012 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
7013 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
7014 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
7015 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
7016 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
7017 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
7018
7019 static struct attribute *adl_hybrid_events_attrs[] = {
7020 EVENT_PTR(slots_adl),
7021 EVENT_PTR(td_retiring_adl),
7022 EVENT_PTR(td_bad_spec_adl),
7023 EVENT_PTR(td_fe_bound_adl),
7024 EVENT_PTR(td_be_bound_adl),
7025 EVENT_PTR(td_heavy_ops_adl),
7026 EVENT_PTR(td_br_mis_adl),
7027 EVENT_PTR(td_fetch_lat_adl),
7028 EVENT_PTR(td_mem_bound_adl),
7029 NULL,
7030 };
7031
7032 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
7033 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
7034 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
7035
7036 static struct attribute *lnl_hybrid_events_attrs[] = {
7037 EVENT_PTR(slots_adl),
7038 EVENT_PTR(td_retiring_lnl),
7039 EVENT_PTR(td_bad_spec_adl),
7040 EVENT_PTR(td_fe_bound_lnl),
7041 EVENT_PTR(td_be_bound_lnl),
7042 EVENT_PTR(td_heavy_ops_adl),
7043 EVENT_PTR(td_br_mis_adl),
7044 EVENT_PTR(td_fetch_lat_adl),
7045 EVENT_PTR(td_mem_bound_adl),
7046 NULL
7047 };
7048
7049 /* The event string must be in PMU IDX order. */
7050 EVENT_ATTR_STR_HYBRID(topdown-retiring,
7051 td_retiring_arl_h,
7052 "event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
7053 hybrid_big_small_tiny);
7054 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
7055 td_bad_spec_arl_h,
7056 "event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
7057 hybrid_big_small_tiny);
7058 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
7059 td_fe_bound_arl_h,
7060 "event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
7061 hybrid_big_small_tiny);
7062 EVENT_ATTR_STR_HYBRID(topdown-be-bound,
7063 td_be_bound_arl_h,
7064 "event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
7065 hybrid_big_small_tiny);
7066
7067 static struct attribute *arl_h_hybrid_events_attrs[] = {
7068 EVENT_PTR(slots_adl),
7069 EVENT_PTR(td_retiring_arl_h),
7070 EVENT_PTR(td_bad_spec_arl_h),
7071 EVENT_PTR(td_fe_bound_arl_h),
7072 EVENT_PTR(td_be_bound_arl_h),
7073 EVENT_PTR(td_heavy_ops_adl),
7074 EVENT_PTR(td_br_mis_adl),
7075 EVENT_PTR(td_fetch_lat_adl),
7076 EVENT_PTR(td_mem_bound_adl),
7077 NULL,
7078 };
7079
7080 /* Must be in IDX order */
7081 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
7082 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
7083 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
7084
7085 static struct attribute *adl_hybrid_mem_attrs[] = {
7086 EVENT_PTR(mem_ld_adl),
7087 EVENT_PTR(mem_st_adl),
7088 EVENT_PTR(mem_ld_aux_adl),
7089 NULL,
7090 };
7091
7092 static struct attribute *mtl_hybrid_mem_attrs[] = {
7093 EVENT_PTR(mem_ld_adl),
7094 EVENT_PTR(mem_st_adl),
7095 NULL
7096 };
7097
7098 EVENT_ATTR_STR_HYBRID(mem-loads,
7099 mem_ld_arl_h,
7100 "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
7101 hybrid_big_small_tiny);
7102 EVENT_ATTR_STR_HYBRID(mem-stores,
7103 mem_st_arl_h,
7104 "event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
7105 hybrid_big_small_tiny);
7106
7107 static struct attribute *arl_h_hybrid_mem_attrs[] = {
7108 EVENT_PTR(mem_ld_arl_h),
7109 EVENT_PTR(mem_st_arl_h),
7110 NULL,
7111 };
7112
7113 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
7114 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
7115 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
7116 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
7117 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
7118 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
7119 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
7120 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
7121
7122 static struct attribute *adl_hybrid_tsx_attrs[] = {
7123 EVENT_PTR(tx_start_adl),
7124 EVENT_PTR(tx_abort_adl),
7125 EVENT_PTR(tx_commit_adl),
7126 EVENT_PTR(tx_capacity_read_adl),
7127 EVENT_PTR(tx_capacity_write_adl),
7128 EVENT_PTR(tx_conflict_adl),
7129 EVENT_PTR(cycles_t_adl),
7130 EVENT_PTR(cycles_ct_adl),
7131 NULL,
7132 };
7133
7134 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
7135 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
7136 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
7137 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
7138 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
7139
7140 #define ADL_HYBRID_RTM_FORMAT_ATTR \
7141 FORMAT_HYBRID_PTR(in_tx), \
7142 FORMAT_HYBRID_PTR(in_tx_cp)
7143
7144 #define ADL_HYBRID_FORMAT_ATTR \
7145 FORMAT_HYBRID_PTR(offcore_rsp), \
7146 FORMAT_HYBRID_PTR(ldlat), \
7147 FORMAT_HYBRID_PTR(frontend)
7148
7149 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
7150 ADL_HYBRID_RTM_FORMAT_ATTR,
7151 ADL_HYBRID_FORMAT_ATTR,
7152 NULL
7153 };
7154
7155 static struct attribute *adl_hybrid_extra_attr[] = {
7156 ADL_HYBRID_FORMAT_ATTR,
7157 NULL
7158 };
7159
7160 FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
7161
7162 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
7163 ADL_HYBRID_RTM_FORMAT_ATTR,
7164 ADL_HYBRID_FORMAT_ATTR,
7165 FORMAT_HYBRID_PTR(snoop_rsp),
7166 NULL
7167 };
7168
7169 static struct attribute *mtl_hybrid_extra_attr[] = {
7170 ADL_HYBRID_FORMAT_ATTR,
7171 FORMAT_HYBRID_PTR(snoop_rsp),
7172 NULL
7173 };
7174
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)7175 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
7176 {
7177 struct device *dev = kobj_to_dev(kobj);
7178 struct x86_hybrid_pmu *pmu =
7179 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7180 struct perf_pmu_events_hybrid_attr *pmu_attr =
7181 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
7182
7183 return pmu->pmu_type & pmu_attr->pmu_type;
7184 }
7185
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)7186 static umode_t hybrid_events_is_visible(struct kobject *kobj,
7187 struct attribute *attr, int i)
7188 {
7189 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
7190 }
7191
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)7192 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
7193 {
7194 int cpu = cpumask_first(&pmu->supported_cpus);
7195
7196 return (cpu >= nr_cpu_ids) ? -1 : cpu;
7197 }
7198
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)7199 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
7200 struct attribute *attr, int i)
7201 {
7202 struct device *dev = kobj_to_dev(kobj);
7203 struct x86_hybrid_pmu *pmu =
7204 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7205 int cpu = hybrid_find_supported_cpu(pmu);
7206
7207 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
7208 }
7209
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)7210 static umode_t hybrid_format_is_visible(struct kobject *kobj,
7211 struct attribute *attr, int i)
7212 {
7213 struct device *dev = kobj_to_dev(kobj);
7214 struct x86_hybrid_pmu *pmu =
7215 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7216 struct perf_pmu_format_hybrid_attr *pmu_attr =
7217 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
7218 int cpu = hybrid_find_supported_cpu(pmu);
7219
7220 return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
7221 }
7222
hybrid_td_is_visible(struct kobject * kobj,struct attribute * attr,int i)7223 static umode_t hybrid_td_is_visible(struct kobject *kobj,
7224 struct attribute *attr, int i)
7225 {
7226 struct device *dev = kobj_to_dev(kobj);
7227 struct x86_hybrid_pmu *pmu =
7228 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7229
7230 if (!is_attr_for_this_pmu(kobj, attr))
7231 return 0;
7232
7233
7234 /* Only the big core supports perf metrics */
7235 if (pmu->pmu_type == hybrid_big)
7236 return pmu->intel_cap.perf_metrics ? attr->mode : 0;
7237
7238 return attr->mode;
7239 }
7240
7241 static struct attribute_group hybrid_group_events_td = {
7242 .name = "events",
7243 .is_visible = hybrid_td_is_visible,
7244 };
7245
7246 static struct attribute_group hybrid_group_events_mem = {
7247 .name = "events",
7248 .is_visible = hybrid_events_is_visible,
7249 };
7250
7251 static struct attribute_group hybrid_group_events_tsx = {
7252 .name = "events",
7253 .is_visible = hybrid_tsx_is_visible,
7254 };
7255
7256 static struct attribute_group hybrid_group_format_extra = {
7257 .name = "format",
7258 .is_visible = hybrid_format_is_visible,
7259 };
7260
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)7261 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
7262 struct device_attribute *attr,
7263 char *buf)
7264 {
7265 struct x86_hybrid_pmu *pmu =
7266 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7267
7268 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
7269 }
7270
7271 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
7272 static struct attribute *intel_hybrid_cpus_attrs[] = {
7273 &dev_attr_cpus.attr,
7274 NULL,
7275 };
7276
7277 static struct attribute_group hybrid_group_cpus = {
7278 .attrs = intel_hybrid_cpus_attrs,
7279 };
7280
7281 static const struct attribute_group *hybrid_attr_update[] = {
7282 &hybrid_group_events_td,
7283 &hybrid_group_events_mem,
7284 &hybrid_group_events_tsx,
7285 &group_caps_gen,
7286 &group_caps_lbr,
7287 &hybrid_group_format_extra,
7288 &group_format_evtsel_ext,
7289 &group_format_acr,
7290 &group_default,
7291 &hybrid_group_cpus,
7292 NULL,
7293 };
7294
7295 static struct attribute *empty_attrs;
7296
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,u64 cntr_mask,u64 fixed_cntr_mask,u64 intel_ctrl)7297 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
7298 u64 cntr_mask,
7299 u64 fixed_cntr_mask,
7300 u64 intel_ctrl)
7301 {
7302 struct event_constraint *c;
7303
7304 if (!event_constraints)
7305 return;
7306
7307 /*
7308 * event on fixed counter2 (REF_CYCLES) only works on this
7309 * counter, so do not extend mask to generic counters
7310 */
7311 for_each_event_constraint(c, event_constraints) {
7312 /*
7313 * Don't extend the topdown slots and metrics
7314 * events to the generic counters.
7315 */
7316 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
7317 /*
7318 * Disable topdown slots and metrics events,
7319 * if slots event is not in CPUID.
7320 */
7321 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
7322 c->idxmsk64 = 0;
7323 c->weight = hweight64(c->idxmsk64);
7324 continue;
7325 }
7326
7327 if (c->cmask == FIXED_EVENT_FLAGS) {
7328 /* Disabled fixed counters which are not in CPUID */
7329 c->idxmsk64 &= intel_ctrl;
7330
7331 /*
7332 * Don't extend the pseudo-encoding to the
7333 * generic counters
7334 */
7335 if (!use_fixed_pseudo_encoding(c->code))
7336 c->idxmsk64 |= cntr_mask;
7337 }
7338 c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
7339 c->weight = hweight64(c->idxmsk64);
7340 }
7341 }
7342
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)7343 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
7344 {
7345 struct extra_reg *er;
7346
7347 /*
7348 * Access extra MSR may cause #GP under certain circumstances.
7349 * E.g. KVM doesn't support offcore event
7350 * Check all extra_regs here.
7351 */
7352 if (!extra_regs)
7353 return;
7354
7355 for (er = extra_regs; er->msr; er++) {
7356 er->extra_msr_access = check_msr(er->msr, 0x11UL);
7357 /* Disable LBR select mapping */
7358 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
7359 x86_pmu.lbr_sel_map = NULL;
7360 }
7361 }
7362
intel_pmu_v6_addr_offset(int index,bool eventsel)7363 static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
7364 {
7365 return MSR_IA32_PMC_V6_STEP * index;
7366 }
7367
7368 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
7369 { hybrid_small, "cpu_atom" },
7370 { hybrid_big, "cpu_core" },
7371 { hybrid_tiny, "cpu_lowpower" },
7372 };
7373
intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)7374 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
7375 {
7376 unsigned long pmus_mask = pmus;
7377 struct x86_hybrid_pmu *pmu;
7378 int idx = 0, bit;
7379
7380 x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
7381 x86_pmu.hybrid_pmu = kzalloc_objs(struct x86_hybrid_pmu,
7382 x86_pmu.num_hybrid_pmus, GFP_KERNEL);
7383 if (!x86_pmu.hybrid_pmu)
7384 return -ENOMEM;
7385
7386 static_branch_enable(&perf_is_hybrid);
7387 x86_pmu.filter = intel_pmu_filter;
7388
7389 for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
7390 pmu = &x86_pmu.hybrid_pmu[idx++];
7391 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
7392 pmu->name = intel_hybrid_pmu_type_map[bit].name;
7393
7394 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7395 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7396 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7397 pmu->config_mask = X86_RAW_EVENT_MASK;
7398 pmu->unconstrained = (struct event_constraint)
7399 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7400 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7401
7402 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
7403 if (pmu->pmu_type & hybrid_small_tiny) {
7404 pmu->intel_cap.perf_metrics = 0;
7405 pmu->mid_ack = true;
7406 } else if (pmu->pmu_type & hybrid_big) {
7407 pmu->intel_cap.perf_metrics = 1;
7408 pmu->late_ack = true;
7409 }
7410 }
7411
7412 return 0;
7413 }
7414
intel_pmu_ref_cycles_ext(void)7415 static __always_inline void intel_pmu_ref_cycles_ext(void)
7416 {
7417 if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
7418 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
7419 }
7420
intel_pmu_init_glc(struct pmu * pmu)7421 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
7422 {
7423 x86_pmu.late_ack = true;
7424 x86_pmu.limit_period = glc_limit_period;
7425 x86_pmu.pebs_aliases = NULL;
7426 x86_pmu.pebs_prec_dist = true;
7427 x86_pmu.pebs_block = true;
7428 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7429 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7430 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7431 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7432 x86_pmu.lbr_pt_coexist = true;
7433 x86_pmu.num_topdown_events = 8;
7434 static_call_update(intel_pmu_update_topdown_event,
7435 &icl_update_topdown_event);
7436 static_call_update(intel_pmu_set_topdown_event_period,
7437 &icl_set_topdown_event_period);
7438
7439 memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7440 memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7441 hybrid(pmu, event_constraints) = intel_glc_event_constraints;
7442 hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
7443
7444 intel_pmu_ref_cycles_ext();
7445 }
7446
intel_pmu_init_grt(struct pmu * pmu)7447 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
7448 {
7449 x86_pmu.mid_ack = true;
7450 x86_pmu.limit_period = glc_limit_period;
7451 x86_pmu.pebs_aliases = NULL;
7452 x86_pmu.pebs_prec_dist = true;
7453 x86_pmu.pebs_block = true;
7454 x86_pmu.lbr_pt_coexist = true;
7455 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7456 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7457
7458 memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7459 memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7460 hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7461 hybrid(pmu, event_constraints) = intel_grt_event_constraints;
7462 hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
7463 hybrid(pmu, extra_regs) = intel_grt_extra_regs;
7464
7465 intel_pmu_ref_cycles_ext();
7466 }
7467
intel_pmu_init_lnc(struct pmu * pmu)7468 static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
7469 {
7470 intel_pmu_init_glc(pmu);
7471 hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
7472 hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
7473 hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
7474 }
7475
intel_pmu_init_pnc(struct pmu * pmu)7476 static __always_inline void intel_pmu_init_pnc(struct pmu *pmu)
7477 {
7478 intel_pmu_init_glc(pmu);
7479 x86_pmu.flags &= ~PMU_FL_HAS_RSP_1;
7480 x86_pmu.flags |= PMU_FL_HAS_OMR;
7481 memcpy(hybrid_var(pmu, hw_cache_event_ids),
7482 pnc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7483 memcpy(hybrid_var(pmu, hw_cache_extra_regs),
7484 pnc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7485 hybrid(pmu, event_constraints) = intel_pnc_event_constraints;
7486 hybrid(pmu, pebs_constraints) = intel_pnc_pebs_event_constraints;
7487 hybrid(pmu, extra_regs) = intel_pnc_extra_regs;
7488 }
7489
intel_pmu_init_skt(struct pmu * pmu)7490 static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
7491 {
7492 intel_pmu_init_grt(pmu);
7493 hybrid(pmu, event_constraints) = intel_skt_event_constraints;
7494 hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
7495 static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
7496 }
7497
intel_pmu_init_arw(struct pmu * pmu)7498 static __always_inline void intel_pmu_init_arw(struct pmu *pmu)
7499 {
7500 intel_pmu_init_grt(pmu);
7501 x86_pmu.flags &= ~PMU_FL_HAS_RSP_1;
7502 x86_pmu.flags |= PMU_FL_HAS_OMR;
7503 memcpy(hybrid_var(pmu, hw_cache_extra_regs),
7504 arw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7505 hybrid(pmu, event_constraints) = intel_arw_event_constraints;
7506 hybrid(pmu, pebs_constraints) = intel_arw_pebs_event_constraints;
7507 hybrid(pmu, extra_regs) = intel_arw_extra_regs;
7508 static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
7509 }
7510
intel_pmu_init(void)7511 __init int intel_pmu_init(void)
7512 {
7513 struct attribute **extra_skl_attr = &empty_attrs;
7514 struct attribute **extra_attr = &empty_attrs;
7515 struct attribute **td_attr = &empty_attrs;
7516 struct attribute **mem_attr = &empty_attrs;
7517 struct attribute **tsx_attr = &empty_attrs;
7518 union cpuid10_edx edx;
7519 union cpuid10_eax eax;
7520 union cpuid10_ebx ebx;
7521 unsigned int fixed_mask;
7522 bool pmem = false;
7523 int version, i;
7524 char *name;
7525 struct x86_hybrid_pmu *pmu;
7526
7527 /* Architectural Perfmon was introduced starting with Core "Yonah" */
7528 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
7529 switch (boot_cpu_data.x86) {
7530 case 6:
7531 if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
7532 return p6_pmu_init();
7533 break;
7534 case 11:
7535 return knc_pmu_init();
7536 case 15:
7537 return p4_pmu_init();
7538 }
7539
7540 pr_cont("unsupported CPU family %d model %d ",
7541 boot_cpu_data.x86, boot_cpu_data.x86_model);
7542 return -ENODEV;
7543 }
7544
7545 /*
7546 * Check whether the Architectural PerfMon supports
7547 * Branch Misses Retired hw_event or not.
7548 */
7549 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
7550 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
7551 return -ENODEV;
7552
7553 version = eax.split.version_id;
7554 if (version < 2)
7555 x86_pmu = core_pmu;
7556 else
7557 x86_pmu = intel_pmu;
7558
7559 x86_pmu.version = version;
7560 x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
7561 x86_pmu.cntval_bits = eax.split.bit_width;
7562 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
7563
7564 x86_pmu.events_maskl = ebx.full;
7565 x86_pmu.events_mask_len = eax.split.mask_length;
7566
7567 x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
7568 x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
7569 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
7570
7571 /*
7572 * Quirk: v2 perfmon does not report fixed-purpose events, so
7573 * assume at least 3 events, when not running in a hypervisor:
7574 */
7575 if (version > 1 && version < 5) {
7576 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
7577
7578 x86_pmu.fixed_cntr_mask64 =
7579 GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
7580 } else if (version >= 5)
7581 x86_pmu.fixed_cntr_mask64 = fixed_mask;
7582
7583 if (boot_cpu_has(X86_FEATURE_PDCM)) {
7584 u64 capabilities;
7585
7586 rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
7587 x86_pmu.intel_cap.capabilities = capabilities;
7588 }
7589
7590 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
7591 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
7592 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
7593 }
7594
7595 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
7596 intel_pmu_arch_lbr_init();
7597
7598 intel_pebs_init();
7599
7600 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
7601
7602 if (version >= 5) {
7603 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
7604 if (x86_pmu.intel_cap.anythread_deprecated)
7605 pr_cont(" AnyThread deprecated, ");
7606 }
7607
7608 /* The perf side of core PMU is ready to support the mediated vPMU. */
7609 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_MEDIATED_VPMU;
7610
7611 /*
7612 * Many features on and after V6 require dynamic constraint,
7613 * e.g., Arch PEBS, ACR.
7614 */
7615 if (version >= 6) {
7616 x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
7617 x86_pmu.late_setup = intel_pmu_late_setup;
7618 }
7619
7620 /*
7621 * Install the hw-cache-events table:
7622 */
7623 switch (boot_cpu_data.x86_vfm) {
7624 case INTEL_CORE_YONAH:
7625 pr_cont("Core events, ");
7626 name = "core";
7627 break;
7628
7629 case INTEL_CORE2_MEROM:
7630 x86_add_quirk(intel_clovertown_quirk);
7631 fallthrough;
7632
7633 case INTEL_CORE2_MEROM_L:
7634 case INTEL_CORE2_PENRYN:
7635 case INTEL_CORE2_DUNNINGTON:
7636 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
7637 sizeof(hw_cache_event_ids));
7638
7639 intel_pmu_lbr_init_core();
7640
7641 x86_pmu.event_constraints = intel_core2_event_constraints;
7642 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
7643 pr_cont("Core2 events, ");
7644 name = "core2";
7645 break;
7646
7647 case INTEL_NEHALEM:
7648 case INTEL_NEHALEM_EP:
7649 case INTEL_NEHALEM_EX:
7650 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
7651 sizeof(hw_cache_event_ids));
7652 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7653 sizeof(hw_cache_extra_regs));
7654
7655 intel_pmu_lbr_init_nhm();
7656
7657 x86_pmu.event_constraints = intel_nehalem_event_constraints;
7658 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
7659 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7660 x86_pmu.extra_regs = intel_nehalem_extra_regs;
7661 x86_pmu.limit_period = nhm_limit_period;
7662
7663 mem_attr = nhm_mem_events_attrs;
7664
7665 /* UOPS_ISSUED.STALLED_CYCLES */
7666 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7667 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7668 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7669 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7670 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7671
7672 intel_pmu_pebs_data_source_nhm();
7673 x86_add_quirk(intel_nehalem_quirk);
7674 x86_pmu.pebs_no_tlb = 1;
7675 extra_attr = nhm_format_attr;
7676
7677 pr_cont("Nehalem events, ");
7678 name = "nehalem";
7679 break;
7680
7681 case INTEL_ATOM_BONNELL:
7682 case INTEL_ATOM_BONNELL_MID:
7683 case INTEL_ATOM_SALTWELL:
7684 case INTEL_ATOM_SALTWELL_MID:
7685 case INTEL_ATOM_SALTWELL_TABLET:
7686 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7687 sizeof(hw_cache_event_ids));
7688
7689 intel_pmu_lbr_init_atom();
7690
7691 x86_pmu.event_constraints = intel_gen_event_constraints;
7692 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7693 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7694 pr_cont("Atom events, ");
7695 name = "bonnell";
7696 break;
7697
7698 case INTEL_ATOM_SILVERMONT:
7699 case INTEL_ATOM_SILVERMONT_D:
7700 case INTEL_ATOM_SILVERMONT_MID:
7701 case INTEL_ATOM_AIRMONT:
7702 case INTEL_ATOM_AIRMONT_NP:
7703 case INTEL_ATOM_SILVERMONT_MID2:
7704 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7705 sizeof(hw_cache_event_ids));
7706 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7707 sizeof(hw_cache_extra_regs));
7708
7709 intel_pmu_lbr_init_slm();
7710
7711 x86_pmu.event_constraints = intel_slm_event_constraints;
7712 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7713 x86_pmu.extra_regs = intel_slm_extra_regs;
7714 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7715 td_attr = slm_events_attrs;
7716 extra_attr = slm_format_attr;
7717 pr_cont("Silvermont events, ");
7718 name = "silvermont";
7719 break;
7720
7721 case INTEL_ATOM_GOLDMONT:
7722 case INTEL_ATOM_GOLDMONT_D:
7723 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7724 sizeof(hw_cache_event_ids));
7725 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7726 sizeof(hw_cache_extra_regs));
7727
7728 intel_pmu_lbr_init_skl();
7729
7730 x86_pmu.event_constraints = intel_slm_event_constraints;
7731 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7732 x86_pmu.extra_regs = intel_glm_extra_regs;
7733 /*
7734 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7735 * for precise cycles.
7736 * :pp is identical to :ppp
7737 */
7738 x86_pmu.pebs_aliases = NULL;
7739 x86_pmu.pebs_prec_dist = true;
7740 x86_pmu.lbr_pt_coexist = true;
7741 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7742 td_attr = glm_events_attrs;
7743 extra_attr = slm_format_attr;
7744 pr_cont("Goldmont events, ");
7745 name = "goldmont";
7746 break;
7747
7748 case INTEL_ATOM_GOLDMONT_PLUS:
7749 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7750 sizeof(hw_cache_event_ids));
7751 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7752 sizeof(hw_cache_extra_regs));
7753
7754 intel_pmu_lbr_init_skl();
7755
7756 x86_pmu.event_constraints = intel_slm_event_constraints;
7757 x86_pmu.extra_regs = intel_glm_extra_regs;
7758 /*
7759 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7760 * for precise cycles.
7761 */
7762 x86_pmu.pebs_aliases = NULL;
7763 x86_pmu.pebs_prec_dist = true;
7764 x86_pmu.lbr_pt_coexist = true;
7765 x86_pmu.pebs_capable = ~0ULL;
7766 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7767 x86_pmu.flags |= PMU_FL_PEBS_ALL;
7768 x86_pmu.get_event_constraints = glp_get_event_constraints;
7769 td_attr = glm_events_attrs;
7770 /* Goldmont Plus has 4-wide pipeline */
7771 event_attr_td_total_slots_scale_glm.event_str = "4";
7772 extra_attr = slm_format_attr;
7773 pr_cont("Goldmont plus events, ");
7774 name = "goldmont_plus";
7775 break;
7776
7777 case INTEL_ATOM_TREMONT_D:
7778 case INTEL_ATOM_TREMONT:
7779 case INTEL_ATOM_TREMONT_L:
7780 x86_pmu.late_ack = true;
7781 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7782 sizeof(hw_cache_event_ids));
7783 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7784 sizeof(hw_cache_extra_regs));
7785 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7786
7787 intel_pmu_lbr_init_skl();
7788
7789 x86_pmu.event_constraints = intel_slm_event_constraints;
7790 x86_pmu.extra_regs = intel_tnt_extra_regs;
7791 /*
7792 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7793 * for precise cycles.
7794 */
7795 x86_pmu.pebs_aliases = NULL;
7796 x86_pmu.pebs_prec_dist = true;
7797 x86_pmu.lbr_pt_coexist = true;
7798 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7799 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7800 td_attr = tnt_events_attrs;
7801 extra_attr = slm_format_attr;
7802 pr_cont("Tremont events, ");
7803 name = "Tremont";
7804 break;
7805
7806 case INTEL_ATOM_GRACEMONT:
7807 intel_pmu_init_grt(NULL);
7808 intel_pmu_pebs_data_source_grt();
7809 x86_pmu.pebs_latency_data = grt_latency_data;
7810 x86_pmu.get_event_constraints = tnt_get_event_constraints;
7811 td_attr = tnt_events_attrs;
7812 mem_attr = grt_mem_attrs;
7813 extra_attr = nhm_format_attr;
7814 pr_cont("Gracemont events, ");
7815 name = "gracemont";
7816 break;
7817
7818 case INTEL_ATOM_CRESTMONT:
7819 case INTEL_ATOM_CRESTMONT_X:
7820 intel_pmu_init_grt(NULL);
7821 x86_pmu.extra_regs = intel_cmt_extra_regs;
7822 intel_pmu_pebs_data_source_cmt();
7823 x86_pmu.pebs_latency_data = cmt_latency_data;
7824 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7825 td_attr = cmt_events_attrs;
7826 mem_attr = grt_mem_attrs;
7827 extra_attr = cmt_format_attr;
7828 pr_cont("Crestmont events, ");
7829 name = "crestmont";
7830 break;
7831
7832 case INTEL_ATOM_DARKMONT_X:
7833 intel_pmu_init_skt(NULL);
7834 intel_pmu_pebs_data_source_cmt();
7835 x86_pmu.pebs_latency_data = cmt_latency_data;
7836 x86_pmu.get_event_constraints = cmt_get_event_constraints;
7837 td_attr = skt_events_attrs;
7838 mem_attr = grt_mem_attrs;
7839 extra_attr = cmt_format_attr;
7840 pr_cont("Darkmont events, ");
7841 name = "darkmont";
7842 break;
7843
7844 case INTEL_WESTMERE:
7845 case INTEL_WESTMERE_EP:
7846 case INTEL_WESTMERE_EX:
7847 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7848 sizeof(hw_cache_event_ids));
7849 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7850 sizeof(hw_cache_extra_regs));
7851
7852 intel_pmu_lbr_init_nhm();
7853
7854 x86_pmu.event_constraints = intel_westmere_event_constraints;
7855 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7856 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7857 x86_pmu.extra_regs = intel_westmere_extra_regs;
7858 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7859
7860 mem_attr = nhm_mem_events_attrs;
7861
7862 /* UOPS_ISSUED.STALLED_CYCLES */
7863 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7864 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7865 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7866 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7867 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7868
7869 intel_pmu_pebs_data_source_nhm();
7870 extra_attr = nhm_format_attr;
7871 pr_cont("Westmere events, ");
7872 name = "westmere";
7873 break;
7874
7875 case INTEL_SANDYBRIDGE:
7876 case INTEL_SANDYBRIDGE_X:
7877 x86_add_quirk(intel_sandybridge_quirk);
7878 x86_add_quirk(intel_ht_bug);
7879 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7880 sizeof(hw_cache_event_ids));
7881 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7882 sizeof(hw_cache_extra_regs));
7883
7884 intel_pmu_lbr_init_snb();
7885
7886 x86_pmu.event_constraints = intel_snb_event_constraints;
7887 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7888 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7889 if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7890 x86_pmu.extra_regs = intel_snbep_extra_regs;
7891 else
7892 x86_pmu.extra_regs = intel_snb_extra_regs;
7893
7894
7895 /* all extra regs are per-cpu when HT is on */
7896 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7897 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7898
7899 td_attr = snb_events_attrs;
7900 mem_attr = snb_mem_events_attrs;
7901
7902 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7903 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7904 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7905 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7906 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7907 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7908
7909 extra_attr = nhm_format_attr;
7910
7911 pr_cont("SandyBridge events, ");
7912 name = "sandybridge";
7913 break;
7914
7915 case INTEL_IVYBRIDGE:
7916 case INTEL_IVYBRIDGE_X:
7917 x86_add_quirk(intel_ht_bug);
7918 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7919 sizeof(hw_cache_event_ids));
7920 /* dTLB-load-misses on IVB is different than SNB */
7921 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7922
7923 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7924 sizeof(hw_cache_extra_regs));
7925
7926 intel_pmu_lbr_init_snb();
7927
7928 x86_pmu.event_constraints = intel_ivb_event_constraints;
7929 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7930 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7931 x86_pmu.pebs_prec_dist = true;
7932 if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7933 x86_pmu.extra_regs = intel_snbep_extra_regs;
7934 else
7935 x86_pmu.extra_regs = intel_snb_extra_regs;
7936 /* all extra regs are per-cpu when HT is on */
7937 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7938 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7939
7940 td_attr = snb_events_attrs;
7941 mem_attr = snb_mem_events_attrs;
7942
7943 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7944 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7945 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7946
7947 extra_attr = nhm_format_attr;
7948
7949 pr_cont("IvyBridge events, ");
7950 name = "ivybridge";
7951 break;
7952
7953
7954 case INTEL_HASWELL:
7955 case INTEL_HASWELL_X:
7956 case INTEL_HASWELL_L:
7957 case INTEL_HASWELL_G:
7958 x86_add_quirk(intel_ht_bug);
7959 x86_add_quirk(intel_pebs_isolation_quirk);
7960 x86_pmu.late_ack = true;
7961 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7962 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7963
7964 intel_pmu_lbr_init_hsw();
7965
7966 x86_pmu.event_constraints = intel_hsw_event_constraints;
7967 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7968 x86_pmu.extra_regs = intel_snbep_extra_regs;
7969 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7970 x86_pmu.pebs_prec_dist = true;
7971 /* all extra regs are per-cpu when HT is on */
7972 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7973 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7974
7975 x86_pmu.hw_config = hsw_hw_config;
7976 x86_pmu.get_event_constraints = hsw_get_event_constraints;
7977 x86_pmu.limit_period = hsw_limit_period;
7978 x86_pmu.lbr_double_abort = true;
7979 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7980 hsw_format_attr : nhm_format_attr;
7981 td_attr = hsw_events_attrs;
7982 mem_attr = hsw_mem_events_attrs;
7983 tsx_attr = hsw_tsx_events_attrs;
7984 pr_cont("Haswell events, ");
7985 name = "haswell";
7986 break;
7987
7988 case INTEL_BROADWELL:
7989 case INTEL_BROADWELL_D:
7990 case INTEL_BROADWELL_G:
7991 case INTEL_BROADWELL_X:
7992 x86_add_quirk(intel_pebs_isolation_quirk);
7993 x86_pmu.late_ack = true;
7994 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7995 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7996
7997 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7998 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
7999 BDW_L3_MISS|HSW_SNOOP_DRAM;
8000 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
8001 HSW_SNOOP_DRAM;
8002 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
8003 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
8004 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
8005 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
8006
8007 intel_pmu_lbr_init_hsw();
8008
8009 x86_pmu.event_constraints = intel_bdw_event_constraints;
8010 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
8011 x86_pmu.extra_regs = intel_snbep_extra_regs;
8012 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
8013 x86_pmu.pebs_prec_dist = true;
8014 /* all extra regs are per-cpu when HT is on */
8015 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8016 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8017
8018 x86_pmu.hw_config = hsw_hw_config;
8019 x86_pmu.get_event_constraints = hsw_get_event_constraints;
8020 x86_pmu.limit_period = bdw_limit_period;
8021 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8022 hsw_format_attr : nhm_format_attr;
8023 td_attr = hsw_events_attrs;
8024 mem_attr = hsw_mem_events_attrs;
8025 tsx_attr = hsw_tsx_events_attrs;
8026 pr_cont("Broadwell events, ");
8027 name = "broadwell";
8028 break;
8029
8030 case INTEL_XEON_PHI_KNL:
8031 case INTEL_XEON_PHI_KNM:
8032 memcpy(hw_cache_event_ids,
8033 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8034 memcpy(hw_cache_extra_regs,
8035 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8036 intel_pmu_lbr_init_knl();
8037
8038 x86_pmu.event_constraints = intel_slm_event_constraints;
8039 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
8040 x86_pmu.extra_regs = intel_knl_extra_regs;
8041
8042 /* all extra regs are per-cpu when HT is on */
8043 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8044 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8045 extra_attr = slm_format_attr;
8046 pr_cont("Knights Landing/Mill events, ");
8047 name = "knights-landing";
8048 break;
8049
8050 case INTEL_SKYLAKE_X:
8051 pmem = true;
8052 fallthrough;
8053 case INTEL_SKYLAKE_L:
8054 case INTEL_SKYLAKE:
8055 case INTEL_KABYLAKE_L:
8056 case INTEL_KABYLAKE:
8057 case INTEL_COMETLAKE_L:
8058 case INTEL_COMETLAKE:
8059 x86_add_quirk(intel_pebs_isolation_quirk);
8060 x86_pmu.late_ack = true;
8061 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8062 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8063 intel_pmu_lbr_init_skl();
8064
8065 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
8066 event_attr_td_recovery_bubbles.event_str_noht =
8067 "event=0xd,umask=0x1,cmask=1";
8068 event_attr_td_recovery_bubbles.event_str_ht =
8069 "event=0xd,umask=0x1,cmask=1,any=1";
8070
8071 x86_pmu.event_constraints = intel_skl_event_constraints;
8072 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
8073 x86_pmu.extra_regs = intel_skl_extra_regs;
8074 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
8075 x86_pmu.pebs_prec_dist = true;
8076 /* all extra regs are per-cpu when HT is on */
8077 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8078 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8079
8080 x86_pmu.hw_config = hsw_hw_config;
8081 x86_pmu.get_event_constraints = hsw_get_event_constraints;
8082 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8083 hsw_format_attr : nhm_format_attr;
8084 extra_skl_attr = skl_format_attr;
8085 td_attr = hsw_events_attrs;
8086 mem_attr = hsw_mem_events_attrs;
8087 tsx_attr = hsw_tsx_events_attrs;
8088 intel_pmu_pebs_data_source_skl(pmem);
8089
8090 /*
8091 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
8092 * TSX force abort hooks are not required on these systems. Only deploy
8093 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
8094 */
8095 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
8096 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
8097 x86_pmu.flags |= PMU_FL_TFA;
8098 x86_pmu.get_event_constraints = tfa_get_event_constraints;
8099 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
8100 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
8101 }
8102
8103 pr_cont("Skylake events, ");
8104 name = "skylake";
8105 break;
8106
8107 case INTEL_ICELAKE_X:
8108 case INTEL_ICELAKE_D:
8109 x86_pmu.pebs_ept = 1;
8110 pmem = true;
8111 fallthrough;
8112 case INTEL_ICELAKE_L:
8113 case INTEL_ICELAKE:
8114 case INTEL_TIGERLAKE_L:
8115 case INTEL_TIGERLAKE:
8116 case INTEL_ROCKETLAKE:
8117 x86_pmu.late_ack = true;
8118 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8119 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8120 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
8121 intel_pmu_lbr_init_skl();
8122
8123 x86_pmu.event_constraints = intel_icl_event_constraints;
8124 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
8125 x86_pmu.extra_regs = intel_icl_extra_regs;
8126 x86_pmu.pebs_aliases = NULL;
8127 x86_pmu.pebs_prec_dist = true;
8128 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8129 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8130
8131 x86_pmu.hw_config = hsw_hw_config;
8132 x86_pmu.get_event_constraints = icl_get_event_constraints;
8133 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8134 hsw_format_attr : nhm_format_attr;
8135 extra_skl_attr = skl_format_attr;
8136 mem_attr = icl_events_attrs;
8137 td_attr = icl_td_events_attrs;
8138 tsx_attr = icl_tsx_events_attrs;
8139 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
8140 x86_pmu.lbr_pt_coexist = true;
8141 intel_pmu_pebs_data_source_skl(pmem);
8142 x86_pmu.num_topdown_events = 4;
8143 static_call_update(intel_pmu_update_topdown_event,
8144 &icl_update_topdown_event);
8145 static_call_update(intel_pmu_set_topdown_event_period,
8146 &icl_set_topdown_event_period);
8147 pr_cont("Icelake events, ");
8148 name = "icelake";
8149 break;
8150
8151 case INTEL_SAPPHIRERAPIDS_X:
8152 case INTEL_EMERALDRAPIDS_X:
8153 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
8154 x86_pmu.extra_regs = intel_glc_extra_regs;
8155 pr_cont("Sapphire Rapids events, ");
8156 name = "sapphire_rapids";
8157 goto glc_common;
8158
8159 case INTEL_GRANITERAPIDS_X:
8160 case INTEL_GRANITERAPIDS_D:
8161 x86_pmu.extra_regs = intel_rwc_extra_regs;
8162 pr_cont("Granite Rapids events, ");
8163 name = "granite_rapids";
8164 goto glc_common;
8165
8166 case INTEL_DIAMONDRAPIDS_X:
8167 intel_pmu_init_pnc(NULL);
8168 x86_pmu.pebs_latency_data = pnc_latency_data;
8169
8170 pr_cont("Panthercove events, ");
8171 name = "panthercove";
8172 goto glc_base;
8173
8174 glc_common:
8175 intel_pmu_init_glc(NULL);
8176 intel_pmu_pebs_data_source_skl(true);
8177
8178 glc_base:
8179 x86_pmu.pebs_ept = 1;
8180 x86_pmu.hw_config = hsw_hw_config;
8181 x86_pmu.get_event_constraints = glc_get_event_constraints;
8182 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8183 hsw_format_attr : nhm_format_attr;
8184 extra_skl_attr = skl_format_attr;
8185 mem_attr = glc_events_attrs;
8186 td_attr = glc_td_events_attrs;
8187 tsx_attr = glc_tsx_events_attrs;
8188 break;
8189
8190 case INTEL_ALDERLAKE:
8191 case INTEL_ALDERLAKE_L:
8192 case INTEL_RAPTORLAKE:
8193 case INTEL_RAPTORLAKE_P:
8194 case INTEL_RAPTORLAKE_S:
8195 /*
8196 * Alder Lake has 2 types of CPU, core and atom.
8197 *
8198 * Initialize the common PerfMon capabilities here.
8199 */
8200 intel_pmu_init_hybrid(hybrid_big_small);
8201
8202 x86_pmu.pebs_latency_data = grt_latency_data;
8203 x86_pmu.get_event_constraints = adl_get_event_constraints;
8204 x86_pmu.hw_config = adl_hw_config;
8205 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
8206
8207 td_attr = adl_hybrid_events_attrs;
8208 mem_attr = adl_hybrid_mem_attrs;
8209 tsx_attr = adl_hybrid_tsx_attrs;
8210 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8211 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
8212
8213 /* Initialize big core specific PerfMon capabilities.*/
8214 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8215 intel_pmu_init_glc(&pmu->pmu);
8216 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
8217 pmu->cntr_mask64 <<= 2;
8218 pmu->cntr_mask64 |= 0x3;
8219 pmu->fixed_cntr_mask64 <<= 1;
8220 pmu->fixed_cntr_mask64 |= 0x1;
8221 } else {
8222 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
8223 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
8224 }
8225
8226 /*
8227 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
8228 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
8229 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
8230 * mistakenly add extra counters for P-cores. Correct the number of
8231 * counters here.
8232 */
8233 if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
8234 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
8235 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
8236 }
8237
8238 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
8239 pmu->unconstrained = (struct event_constraint)
8240 __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
8241 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
8242
8243 pmu->extra_regs = intel_glc_extra_regs;
8244
8245 /* Initialize Atom core specific PerfMon capabilities.*/
8246 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8247 intel_pmu_init_grt(&pmu->pmu);
8248
8249 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
8250 intel_pmu_pebs_data_source_adl();
8251 pr_cont("Alderlake Hybrid events, ");
8252 name = "alderlake_hybrid";
8253 break;
8254
8255 case INTEL_METEORLAKE:
8256 case INTEL_METEORLAKE_L:
8257 case INTEL_ARROWLAKE_U:
8258 intel_pmu_init_hybrid(hybrid_big_small);
8259
8260 x86_pmu.pebs_latency_data = cmt_latency_data;
8261 x86_pmu.get_event_constraints = mtl_get_event_constraints;
8262 x86_pmu.hw_config = adl_hw_config;
8263
8264 td_attr = adl_hybrid_events_attrs;
8265 mem_attr = mtl_hybrid_mem_attrs;
8266 tsx_attr = adl_hybrid_tsx_attrs;
8267 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8268 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8269
8270 /* Initialize big core specific PerfMon capabilities.*/
8271 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8272 intel_pmu_init_glc(&pmu->pmu);
8273 pmu->extra_regs = intel_rwc_extra_regs;
8274
8275 /* Initialize Atom core specific PerfMon capabilities.*/
8276 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8277 intel_pmu_init_grt(&pmu->pmu);
8278 pmu->extra_regs = intel_cmt_extra_regs;
8279
8280 intel_pmu_pebs_data_source_mtl();
8281 pr_cont("Meteorlake Hybrid events, ");
8282 name = "meteorlake_hybrid";
8283 break;
8284
8285 case INTEL_PANTHERLAKE_L:
8286 case INTEL_WILDCATLAKE_L:
8287 pr_cont("Pantherlake Hybrid events, ");
8288 name = "pantherlake_hybrid";
8289 goto lnl_common;
8290
8291 case INTEL_LUNARLAKE_M:
8292 case INTEL_ARROWLAKE:
8293 pr_cont("Lunarlake Hybrid events, ");
8294 name = "lunarlake_hybrid";
8295
8296 lnl_common:
8297 intel_pmu_init_hybrid(hybrid_big_small);
8298
8299 x86_pmu.pebs_latency_data = lnl_latency_data;
8300 x86_pmu.get_event_constraints = mtl_get_event_constraints;
8301 x86_pmu.hw_config = adl_hw_config;
8302
8303 td_attr = lnl_hybrid_events_attrs;
8304 mem_attr = mtl_hybrid_mem_attrs;
8305 tsx_attr = adl_hybrid_tsx_attrs;
8306 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8307 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8308
8309 /* Initialize big core specific PerfMon capabilities.*/
8310 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8311 intel_pmu_init_lnc(&pmu->pmu);
8312
8313 /* Initialize Atom core specific PerfMon capabilities.*/
8314 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8315 intel_pmu_init_skt(&pmu->pmu);
8316
8317 intel_pmu_pebs_data_source_lnl();
8318 break;
8319
8320 case INTEL_ARROWLAKE_H:
8321 intel_pmu_init_hybrid(hybrid_big_small_tiny);
8322
8323 x86_pmu.pebs_latency_data = arl_h_latency_data;
8324 x86_pmu.get_event_constraints = arl_h_get_event_constraints;
8325 x86_pmu.hw_config = arl_h_hw_config;
8326
8327 td_attr = arl_h_hybrid_events_attrs;
8328 mem_attr = arl_h_hybrid_mem_attrs;
8329 tsx_attr = adl_hybrid_tsx_attrs;
8330 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8331 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8332
8333 /* Initialize big core specific PerfMon capabilities. */
8334 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8335 intel_pmu_init_lnc(&pmu->pmu);
8336
8337 /* Initialize Atom core specific PerfMon capabilities. */
8338 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8339 intel_pmu_init_skt(&pmu->pmu);
8340
8341 /* Initialize Lower Power Atom specific PerfMon capabilities. */
8342 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
8343 intel_pmu_init_grt(&pmu->pmu);
8344 pmu->extra_regs = intel_cmt_extra_regs;
8345
8346 intel_pmu_pebs_data_source_arl_h();
8347 pr_cont("ArrowLake-H Hybrid events, ");
8348 name = "arrowlake_h_hybrid";
8349 break;
8350
8351 case INTEL_NOVALAKE:
8352 case INTEL_NOVALAKE_L:
8353 pr_cont("Novalake Hybrid events, ");
8354 name = "novalake_hybrid";
8355 intel_pmu_init_hybrid(hybrid_big_small);
8356
8357 x86_pmu.pebs_latency_data = nvl_latency_data;
8358 x86_pmu.get_event_constraints = mtl_get_event_constraints;
8359 x86_pmu.hw_config = adl_hw_config;
8360
8361 td_attr = lnl_hybrid_events_attrs;
8362 mem_attr = mtl_hybrid_mem_attrs;
8363 tsx_attr = adl_hybrid_tsx_attrs;
8364 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8365 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8366
8367 /* Initialize big core specific PerfMon capabilities.*/
8368 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8369 intel_pmu_init_pnc(&pmu->pmu);
8370
8371 /* Initialize Atom core specific PerfMon capabilities.*/
8372 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8373 intel_pmu_init_arw(&pmu->pmu);
8374
8375 intel_pmu_pebs_data_source_lnl();
8376 break;
8377
8378 default:
8379 switch (x86_pmu.version) {
8380 case 1:
8381 x86_pmu.event_constraints = intel_v1_event_constraints;
8382 pr_cont("generic architected perfmon v1, ");
8383 name = "generic_arch_v1";
8384 break;
8385 case 2:
8386 case 3:
8387 case 4:
8388 /*
8389 * default constraints for v2 and up
8390 */
8391 x86_pmu.event_constraints = intel_gen_event_constraints;
8392 pr_cont("generic architected perfmon, ");
8393 name = "generic_arch_v2+";
8394 break;
8395 default:
8396 /*
8397 * The default constraints for v5 and up can support up to
8398 * 16 fixed counters. For the fixed counters 4 and later,
8399 * the pseudo-encoding is applied.
8400 * The constraints may be cut according to the CPUID enumeration
8401 * by inserting the EVENT_CONSTRAINT_END.
8402 */
8403 if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
8404 x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
8405 intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
8406 x86_pmu.event_constraints = intel_v5_gen_event_constraints;
8407 pr_cont("generic architected perfmon, ");
8408 name = "generic_arch_v5+";
8409 break;
8410 }
8411 }
8412
8413 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
8414
8415 if (!is_hybrid()) {
8416 group_events_td.attrs = td_attr;
8417 group_events_mem.attrs = mem_attr;
8418 group_events_tsx.attrs = tsx_attr;
8419 group_format_extra.attrs = extra_attr;
8420 group_format_extra_skl.attrs = extra_skl_attr;
8421
8422 x86_pmu.attr_update = attr_update;
8423 } else {
8424 hybrid_group_events_td.attrs = td_attr;
8425 hybrid_group_events_mem.attrs = mem_attr;
8426 hybrid_group_events_tsx.attrs = tsx_attr;
8427 hybrid_group_format_extra.attrs = extra_attr;
8428
8429 x86_pmu.attr_update = hybrid_attr_update;
8430 }
8431
8432 /*
8433 * The archPerfmonExt (0x23) includes an enhanced enumeration of
8434 * PMU architectural features with a per-core view. For non-hybrid,
8435 * each core has the same PMU capabilities. It's good enough to
8436 * update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
8437 * is used to keep the common capabilities. Still keep the values
8438 * from the leaf 0xa. The core specific update will be done later
8439 * when a new type is online.
8440 */
8441 if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
8442 update_pmu_cap(NULL);
8443
8444 if (x86_pmu.arch_pebs) {
8445 static_call_update(intel_pmu_disable_event_ext,
8446 intel_pmu_disable_event_ext);
8447 static_call_update(intel_pmu_enable_event_ext,
8448 intel_pmu_enable_event_ext);
8449 pr_cont("Architectural PEBS, ");
8450 }
8451
8452 intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
8453 &x86_pmu.fixed_cntr_mask64,
8454 &x86_pmu.intel_ctrl);
8455
8456 /* AnyThread may be deprecated on arch perfmon v5 or later */
8457 if (x86_pmu.intel_cap.anythread_deprecated)
8458 x86_pmu.format_attrs = intel_arch_formats_attr;
8459
8460 intel_pmu_check_event_constraints_all(NULL);
8461
8462 /*
8463 * Access LBR MSR may cause #GP under certain circumstances.
8464 * Check all LBR MSR here.
8465 * Disable LBR access if any LBR MSRs can not be accessed.
8466 */
8467 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
8468 x86_pmu.lbr_nr = 0;
8469 for (i = 0; i < x86_pmu.lbr_nr; i++) {
8470 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
8471 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
8472 x86_pmu.lbr_nr = 0;
8473 }
8474
8475 if (x86_pmu.lbr_nr) {
8476 intel_pmu_lbr_init();
8477
8478 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
8479
8480 /* only support branch_stack snapshot for perfmon >= v2 */
8481 if (x86_pmu.disable_all == intel_pmu_disable_all) {
8482 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
8483 static_call_update(perf_snapshot_branch_stack,
8484 intel_pmu_snapshot_arch_branch_stack);
8485 } else {
8486 static_call_update(perf_snapshot_branch_stack,
8487 intel_pmu_snapshot_branch_stack);
8488 }
8489 }
8490 }
8491
8492 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
8493
8494 /* Support full width counters using alternative MSR range */
8495 if (x86_pmu.intel_cap.full_width_write) {
8496 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
8497 x86_pmu.perfctr = MSR_IA32_PMC0;
8498 pr_cont("full-width counters, ");
8499 }
8500
8501 /* Support V6+ MSR Aliasing */
8502 if (x86_pmu.version >= 6) {
8503 x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
8504 x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
8505 x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
8506 x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
8507 }
8508
8509 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
8510 x86_pmu.intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
8511
8512 if (x86_pmu.intel_cap.pebs_timing_info)
8513 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
8514
8515 intel_aux_output_init();
8516
8517 return 0;
8518 }
8519
8520 /*
8521 * HT bug: phase 2 init
8522 * Called once we have valid topology information to check
8523 * whether or not HT is enabled
8524 * If HT is off, then we disable the workaround
8525 */
fixup_ht_bug(void)8526 static __init int fixup_ht_bug(void)
8527 {
8528 int c;
8529 /*
8530 * problem not present on this CPU model, nothing to do
8531 */
8532 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
8533 return 0;
8534
8535 if (topology_max_smt_threads() > 1) {
8536 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
8537 return 0;
8538 }
8539
8540 cpus_read_lock();
8541
8542 hardlockup_detector_perf_stop();
8543
8544 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
8545
8546 x86_pmu.start_scheduling = NULL;
8547 x86_pmu.commit_scheduling = NULL;
8548 x86_pmu.stop_scheduling = NULL;
8549
8550 hardlockup_detector_perf_restart();
8551
8552 for_each_online_cpu(c)
8553 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
8554
8555 cpus_read_unlock();
8556 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
8557 return 0;
8558 }
8559 subsys_initcall(fixup_ht_bug)
8560