1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ADXL345 3-Axis Digital Accelerometer IIO core driver
4 *
5 * Copyright (c) 2017 Eva Rachel Retuya <eraretuya@gmail.com>
6 *
7 * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
8 */
9
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/property.h>
15 #include <linux/regmap.h>
16 #include <linux/units.h>
17
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/kfifo_buf.h>
23
24 #include "adxl345.h"
25
26 #define ADXL345_FIFO_BYPASS 0
27 #define ADXL345_FIFO_FIFO 1
28 #define ADXL345_FIFO_STREAM 2
29
30 #define ADXL345_DIRS 3
31
32 #define ADXL345_INT_NONE 0xff
33 #define ADXL345_INT1 0
34 #define ADXL345_INT2 1
35
36 #define ADXL345_REG_TAP_AXIS_MSK GENMASK(2, 0)
37 #define ADXL345_REG_TAP_SUPPRESS_MSK BIT(3)
38 #define ADXL345_REG_TAP_SUPPRESS BIT(3)
39
40 #define ADXL345_TAP_Z_EN BIT(0)
41 #define ADXL345_TAP_Y_EN BIT(1)
42 #define ADXL345_TAP_X_EN BIT(2)
43
44 /* single/double tap */
45 enum adxl345_tap_type {
46 ADXL345_SINGLE_TAP,
47 ADXL345_DOUBLE_TAP,
48 };
49
50 static const unsigned int adxl345_tap_int_reg[] = {
51 [ADXL345_SINGLE_TAP] = ADXL345_INT_SINGLE_TAP,
52 [ADXL345_DOUBLE_TAP] = ADXL345_INT_DOUBLE_TAP,
53 };
54
55 enum adxl345_tap_time_type {
56 ADXL345_TAP_TIME_LATENT,
57 ADXL345_TAP_TIME_WINDOW,
58 ADXL345_TAP_TIME_DUR,
59 };
60
61 static const unsigned int adxl345_tap_time_reg[] = {
62 [ADXL345_TAP_TIME_LATENT] = ADXL345_REG_LATENT,
63 [ADXL345_TAP_TIME_WINDOW] = ADXL345_REG_WINDOW,
64 [ADXL345_TAP_TIME_DUR] = ADXL345_REG_DUR,
65 };
66
67 struct adxl345_state {
68 const struct adxl345_chip_info *info;
69 struct regmap *regmap;
70 bool fifo_delay; /* delay: delay is needed for SPI */
71 int irq;
72 u8 watermark;
73 u8 fifo_mode;
74
75 u32 tap_duration_us;
76 u32 tap_latent_us;
77 u32 tap_window_us;
78
79 __le16 fifo_buf[ADXL345_DIRS * ADXL345_FIFO_SIZE + 1] __aligned(IIO_DMA_MINALIGN);
80 };
81
82 static struct iio_event_spec adxl345_events[] = {
83 {
84 /* single tap */
85 .type = IIO_EV_TYPE_GESTURE,
86 .dir = IIO_EV_DIR_SINGLETAP,
87 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
88 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
89 BIT(IIO_EV_INFO_TIMEOUT),
90 },
91 {
92 /* double tap */
93 .type = IIO_EV_TYPE_GESTURE,
94 .dir = IIO_EV_DIR_DOUBLETAP,
95 .mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
96 BIT(IIO_EV_INFO_RESET_TIMEOUT) |
97 BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
98 },
99 };
100
101 #define ADXL345_CHANNEL(index, reg, axis) { \
102 .type = IIO_ACCEL, \
103 .modified = 1, \
104 .channel2 = IIO_MOD_##axis, \
105 .address = (reg), \
106 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
107 BIT(IIO_CHAN_INFO_CALIBBIAS), \
108 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
109 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
110 .scan_index = (index), \
111 .scan_type = { \
112 .sign = 's', \
113 .realbits = 13, \
114 .storagebits = 16, \
115 .endianness = IIO_LE, \
116 }, \
117 .event_spec = adxl345_events, \
118 .num_event_specs = ARRAY_SIZE(adxl345_events), \
119 }
120
121 enum adxl345_chans {
122 chan_x, chan_y, chan_z,
123 };
124
125 static const struct iio_chan_spec adxl345_channels[] = {
126 ADXL345_CHANNEL(0, chan_x, X),
127 ADXL345_CHANNEL(1, chan_y, Y),
128 ADXL345_CHANNEL(2, chan_z, Z),
129 };
130
131 static const unsigned long adxl345_scan_masks[] = {
132 BIT(chan_x) | BIT(chan_y) | BIT(chan_z),
133 0
134 };
135
adxl345_is_volatile_reg(struct device * dev,unsigned int reg)136 bool adxl345_is_volatile_reg(struct device *dev, unsigned int reg)
137 {
138 switch (reg) {
139 case ADXL345_REG_DATA_AXIS(0):
140 case ADXL345_REG_DATA_AXIS(1):
141 case ADXL345_REG_DATA_AXIS(2):
142 case ADXL345_REG_DATA_AXIS(3):
143 case ADXL345_REG_DATA_AXIS(4):
144 case ADXL345_REG_DATA_AXIS(5):
145 case ADXL345_REG_ACT_TAP_STATUS:
146 case ADXL345_REG_FIFO_STATUS:
147 case ADXL345_REG_INT_SOURCE:
148 return true;
149 default:
150 return false;
151 }
152 }
153 EXPORT_SYMBOL_NS_GPL(adxl345_is_volatile_reg, "IIO_ADXL345");
154
155 /**
156 * adxl345_set_measure_en() - Enable and disable measuring.
157 *
158 * @st: The device data.
159 * @en: Enable measurements, else standby mode.
160 *
161 * For lowest power operation, standby mode can be used. In standby mode,
162 * current consumption is supposed to be reduced to 0.1uA (typical). In this
163 * mode no measurements are made. Placing the device into standby mode
164 * preserves the contents of FIFO.
165 *
166 * Return: Returns 0 if successful, or a negative error value.
167 */
adxl345_set_measure_en(struct adxl345_state * st,bool en)168 static int adxl345_set_measure_en(struct adxl345_state *st, bool en)
169 {
170 unsigned int val = en ? ADXL345_POWER_CTL_MEASURE : ADXL345_POWER_CTL_STANDBY;
171
172 return regmap_write(st->regmap, ADXL345_REG_POWER_CTL, val);
173 }
174
175 /* tap */
176
_adxl345_set_tap_int(struct adxl345_state * st,enum adxl345_tap_type type,bool state)177 static int _adxl345_set_tap_int(struct adxl345_state *st,
178 enum adxl345_tap_type type, bool state)
179 {
180 unsigned int int_map = 0x00;
181 unsigned int tap_threshold;
182 bool axis_valid;
183 bool singletap_args_valid = false;
184 bool doubletap_args_valid = false;
185 bool en = false;
186 u32 axis_ctrl;
187 int ret;
188
189 ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
190 if (ret)
191 return ret;
192
193 axis_valid = FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) > 0;
194
195 ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP, &tap_threshold);
196 if (ret)
197 return ret;
198
199 /*
200 * Note: A value of 0 for threshold and/or dur may result in undesirable
201 * behavior if single tap/double tap interrupts are enabled.
202 */
203 singletap_args_valid = tap_threshold > 0 && st->tap_duration_us > 0;
204
205 if (type == ADXL345_SINGLE_TAP) {
206 en = axis_valid && singletap_args_valid;
207 } else {
208 /* doubletap: Window must be equal or greater than latent! */
209 doubletap_args_valid = st->tap_latent_us > 0 &&
210 st->tap_window_us > 0 &&
211 st->tap_window_us >= st->tap_latent_us;
212
213 en = axis_valid && singletap_args_valid && doubletap_args_valid;
214 }
215
216 if (state && en)
217 int_map |= adxl345_tap_int_reg[type];
218
219 return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
220 adxl345_tap_int_reg[type], int_map);
221 }
222
adxl345_is_tap_en(struct adxl345_state * st,enum iio_modifier axis,enum adxl345_tap_type type,bool * en)223 static int adxl345_is_tap_en(struct adxl345_state *st,
224 enum iio_modifier axis,
225 enum adxl345_tap_type type, bool *en)
226 {
227 unsigned int regval;
228 u32 axis_ctrl;
229 int ret;
230
231 ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
232 if (ret)
233 return ret;
234
235 /* Verify if axis is enabled for the tap detection. */
236 switch (axis) {
237 case IIO_MOD_X:
238 *en = FIELD_GET(ADXL345_TAP_X_EN, axis_ctrl);
239 break;
240 case IIO_MOD_Y:
241 *en = FIELD_GET(ADXL345_TAP_Y_EN, axis_ctrl);
242 break;
243 case IIO_MOD_Z:
244 *en = FIELD_GET(ADXL345_TAP_Z_EN, axis_ctrl);
245 break;
246 default:
247 *en = false;
248 return -EINVAL;
249 }
250
251 if (*en) {
252 /*
253 * If axis allow for tap detection, verify if the interrupt is
254 * enabled for tap detection.
255 */
256 ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, ®val);
257 if (ret)
258 return ret;
259
260 *en = adxl345_tap_int_reg[type] & regval;
261 }
262
263 return 0;
264 }
265
adxl345_set_singletap_en(struct adxl345_state * st,enum iio_modifier axis,bool en)266 static int adxl345_set_singletap_en(struct adxl345_state *st,
267 enum iio_modifier axis, bool en)
268 {
269 int ret;
270 u32 axis_ctrl;
271
272 switch (axis) {
273 case IIO_MOD_X:
274 axis_ctrl = ADXL345_TAP_X_EN;
275 break;
276 case IIO_MOD_Y:
277 axis_ctrl = ADXL345_TAP_Y_EN;
278 break;
279 case IIO_MOD_Z:
280 axis_ctrl = ADXL345_TAP_Z_EN;
281 break;
282 default:
283 return -EINVAL;
284 }
285
286 if (en)
287 ret = regmap_set_bits(st->regmap, ADXL345_REG_TAP_AXIS,
288 axis_ctrl);
289 else
290 ret = regmap_clear_bits(st->regmap, ADXL345_REG_TAP_AXIS,
291 axis_ctrl);
292 if (ret)
293 return ret;
294
295 return _adxl345_set_tap_int(st, ADXL345_SINGLE_TAP, en);
296 }
297
adxl345_set_doubletap_en(struct adxl345_state * st,bool en)298 static int adxl345_set_doubletap_en(struct adxl345_state *st, bool en)
299 {
300 int ret;
301
302 /*
303 * Generally suppress detection of spikes during the latency period as
304 * double taps here, this is fully optional for double tap detection
305 */
306 ret = regmap_update_bits(st->regmap, ADXL345_REG_TAP_AXIS,
307 ADXL345_REG_TAP_SUPPRESS_MSK,
308 en ? ADXL345_REG_TAP_SUPPRESS : 0x00);
309 if (ret)
310 return ret;
311
312 return _adxl345_set_tap_int(st, ADXL345_DOUBLE_TAP, en);
313 }
314
_adxl345_set_tap_time(struct adxl345_state * st,enum adxl345_tap_time_type type,u32 val_us)315 static int _adxl345_set_tap_time(struct adxl345_state *st,
316 enum adxl345_tap_time_type type, u32 val_us)
317 {
318 unsigned int regval;
319
320 switch (type) {
321 case ADXL345_TAP_TIME_WINDOW:
322 st->tap_window_us = val_us;
323 break;
324 case ADXL345_TAP_TIME_LATENT:
325 st->tap_latent_us = val_us;
326 break;
327 case ADXL345_TAP_TIME_DUR:
328 st->tap_duration_us = val_us;
329 break;
330 }
331
332 /*
333 * The scale factor is 1250us / LSB for tap_window_us and tap_latent_us.
334 * For tap_duration_us the scale factor is 625us / LSB.
335 */
336 if (type == ADXL345_TAP_TIME_DUR)
337 regval = DIV_ROUND_CLOSEST(val_us, 625);
338 else
339 regval = DIV_ROUND_CLOSEST(val_us, 1250);
340
341 return regmap_write(st->regmap, adxl345_tap_time_reg[type], regval);
342 }
343
adxl345_set_tap_duration(struct adxl345_state * st,u32 val_int,u32 val_fract_us)344 static int adxl345_set_tap_duration(struct adxl345_state *st, u32 val_int,
345 u32 val_fract_us)
346 {
347 /*
348 * Max value is 255 * 625 us = 0.159375 seconds
349 *
350 * Note: the scaling is similar to the scaling in the ADXL380
351 */
352 if (val_int || val_fract_us > 159375)
353 return -EINVAL;
354
355 return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_DUR, val_fract_us);
356 }
357
adxl345_set_tap_window(struct adxl345_state * st,u32 val_int,u32 val_fract_us)358 static int adxl345_set_tap_window(struct adxl345_state *st, u32 val_int,
359 u32 val_fract_us)
360 {
361 /*
362 * Max value is 255 * 1250 us = 0.318750 seconds
363 *
364 * Note: the scaling is similar to the scaling in the ADXL380
365 */
366 if (val_int || val_fract_us > 318750)
367 return -EINVAL;
368
369 return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_WINDOW, val_fract_us);
370 }
371
adxl345_set_tap_latent(struct adxl345_state * st,u32 val_int,u32 val_fract_us)372 static int adxl345_set_tap_latent(struct adxl345_state *st, u32 val_int,
373 u32 val_fract_us)
374 {
375 /*
376 * Max value is 255 * 1250 us = 0.318750 seconds
377 *
378 * Note: the scaling is similar to the scaling in the ADXL380
379 */
380 if (val_int || val_fract_us > 318750)
381 return -EINVAL;
382
383 return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_LATENT, val_fract_us);
384 }
385
adxl345_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)386 static int adxl345_read_raw(struct iio_dev *indio_dev,
387 struct iio_chan_spec const *chan,
388 int *val, int *val2, long mask)
389 {
390 struct adxl345_state *st = iio_priv(indio_dev);
391 __le16 accel;
392 long long samp_freq_nhz;
393 unsigned int regval;
394 int ret;
395
396 switch (mask) {
397 case IIO_CHAN_INFO_RAW:
398 /*
399 * Data is stored in adjacent registers:
400 * ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte
401 * and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte
402 */
403 ret = regmap_bulk_read(st->regmap,
404 ADXL345_REG_DATA_AXIS(chan->address),
405 &accel, sizeof(accel));
406 if (ret)
407 return ret;
408
409 *val = sign_extend32(le16_to_cpu(accel), 12);
410 return IIO_VAL_INT;
411 case IIO_CHAN_INFO_SCALE:
412 *val = 0;
413 *val2 = st->info->uscale;
414 return IIO_VAL_INT_PLUS_MICRO;
415 case IIO_CHAN_INFO_CALIBBIAS:
416 ret = regmap_read(st->regmap,
417 ADXL345_REG_OFS_AXIS(chan->address), ®val);
418 if (ret)
419 return ret;
420 /*
421 * 8-bit resolution at +/- 2g, that is 4x accel data scale
422 * factor
423 */
424 *val = sign_extend32(regval, 7) * 4;
425
426 return IIO_VAL_INT;
427 case IIO_CHAN_INFO_SAMP_FREQ:
428 ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, ®val);
429 if (ret)
430 return ret;
431
432 samp_freq_nhz = ADXL345_BASE_RATE_NANO_HZ <<
433 (regval & ADXL345_BW_RATE);
434 *val = div_s64_rem(samp_freq_nhz, NANOHZ_PER_HZ, val2);
435
436 return IIO_VAL_INT_PLUS_NANO;
437 }
438
439 return -EINVAL;
440 }
441
adxl345_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)442 static int adxl345_write_raw(struct iio_dev *indio_dev,
443 struct iio_chan_spec const *chan,
444 int val, int val2, long mask)
445 {
446 struct adxl345_state *st = iio_priv(indio_dev);
447 s64 n;
448
449 switch (mask) {
450 case IIO_CHAN_INFO_CALIBBIAS:
451 /*
452 * 8-bit resolution at +/- 2g, that is 4x accel data scale
453 * factor
454 */
455 return regmap_write(st->regmap,
456 ADXL345_REG_OFS_AXIS(chan->address),
457 val / 4);
458 case IIO_CHAN_INFO_SAMP_FREQ:
459 n = div_s64(val * NANOHZ_PER_HZ + val2,
460 ADXL345_BASE_RATE_NANO_HZ);
461
462 return regmap_update_bits(st->regmap, ADXL345_REG_BW_RATE,
463 ADXL345_BW_RATE,
464 clamp_val(ilog2(n), 0,
465 ADXL345_BW_RATE));
466 }
467
468 return -EINVAL;
469 }
470
adxl345_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)471 static int adxl345_read_event_config(struct iio_dev *indio_dev,
472 const struct iio_chan_spec *chan,
473 enum iio_event_type type,
474 enum iio_event_direction dir)
475 {
476 struct adxl345_state *st = iio_priv(indio_dev);
477 bool int_en;
478 int ret;
479
480 switch (type) {
481 case IIO_EV_TYPE_GESTURE:
482 switch (dir) {
483 case IIO_EV_DIR_SINGLETAP:
484 ret = adxl345_is_tap_en(st, chan->channel2,
485 ADXL345_SINGLE_TAP, &int_en);
486 if (ret)
487 return ret;
488 return int_en;
489 case IIO_EV_DIR_DOUBLETAP:
490 ret = adxl345_is_tap_en(st, chan->channel2,
491 ADXL345_DOUBLE_TAP, &int_en);
492 if (ret)
493 return ret;
494 return int_en;
495 default:
496 return -EINVAL;
497 }
498 default:
499 return -EINVAL;
500 }
501 }
502
adxl345_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)503 static int adxl345_write_event_config(struct iio_dev *indio_dev,
504 const struct iio_chan_spec *chan,
505 enum iio_event_type type,
506 enum iio_event_direction dir,
507 bool state)
508 {
509 struct adxl345_state *st = iio_priv(indio_dev);
510
511 switch (type) {
512 case IIO_EV_TYPE_GESTURE:
513 switch (dir) {
514 case IIO_EV_DIR_SINGLETAP:
515 return adxl345_set_singletap_en(st, chan->channel2, state);
516 case IIO_EV_DIR_DOUBLETAP:
517 return adxl345_set_doubletap_en(st, state);
518 default:
519 return -EINVAL;
520 }
521 default:
522 return -EINVAL;
523 }
524 }
525
adxl345_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)526 static int adxl345_read_event_value(struct iio_dev *indio_dev,
527 const struct iio_chan_spec *chan,
528 enum iio_event_type type,
529 enum iio_event_direction dir,
530 enum iio_event_info info,
531 int *val, int *val2)
532 {
533 struct adxl345_state *st = iio_priv(indio_dev);
534 unsigned int tap_threshold;
535 int ret;
536
537 switch (type) {
538 case IIO_EV_TYPE_GESTURE:
539 switch (info) {
540 case IIO_EV_INFO_VALUE:
541 /*
542 * The scale factor would be 62.5mg/LSB (i.e. 0xFF = 16g) but
543 * not applied here. In context of this general purpose sensor,
544 * what imports is rather signal intensity than the absolute
545 * measured g value.
546 */
547 ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP,
548 &tap_threshold);
549 if (ret)
550 return ret;
551 *val = sign_extend32(tap_threshold, 7);
552 return IIO_VAL_INT;
553 case IIO_EV_INFO_TIMEOUT:
554 *val = st->tap_duration_us;
555 *val2 = 1000000;
556 return IIO_VAL_FRACTIONAL;
557 case IIO_EV_INFO_RESET_TIMEOUT:
558 *val = st->tap_window_us;
559 *val2 = 1000000;
560 return IIO_VAL_FRACTIONAL;
561 case IIO_EV_INFO_TAP2_MIN_DELAY:
562 *val = st->tap_latent_us;
563 *val2 = 1000000;
564 return IIO_VAL_FRACTIONAL;
565 default:
566 return -EINVAL;
567 }
568 default:
569 return -EINVAL;
570 }
571 }
572
adxl345_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)573 static int adxl345_write_event_value(struct iio_dev *indio_dev,
574 const struct iio_chan_spec *chan,
575 enum iio_event_type type,
576 enum iio_event_direction dir,
577 enum iio_event_info info,
578 int val, int val2)
579 {
580 struct adxl345_state *st = iio_priv(indio_dev);
581 int ret;
582
583 ret = adxl345_set_measure_en(st, false);
584 if (ret)
585 return ret;
586
587 switch (type) {
588 case IIO_EV_TYPE_GESTURE:
589 switch (info) {
590 case IIO_EV_INFO_VALUE:
591 ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP,
592 min(val, 0xFF));
593 if (ret)
594 return ret;
595 break;
596 case IIO_EV_INFO_TIMEOUT:
597 ret = adxl345_set_tap_duration(st, val, val2);
598 if (ret)
599 return ret;
600 break;
601 case IIO_EV_INFO_RESET_TIMEOUT:
602 ret = adxl345_set_tap_window(st, val, val2);
603 if (ret)
604 return ret;
605 break;
606 case IIO_EV_INFO_TAP2_MIN_DELAY:
607 ret = adxl345_set_tap_latent(st, val, val2);
608 if (ret)
609 return ret;
610 break;
611 default:
612 return -EINVAL;
613 }
614 break;
615 default:
616 return -EINVAL;
617 }
618
619 return adxl345_set_measure_en(st, true);
620 }
621
adxl345_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)622 static int adxl345_reg_access(struct iio_dev *indio_dev, unsigned int reg,
623 unsigned int writeval, unsigned int *readval)
624 {
625 struct adxl345_state *st = iio_priv(indio_dev);
626
627 if (readval)
628 return regmap_read(st->regmap, reg, readval);
629 return regmap_write(st->regmap, reg, writeval);
630 }
631
adxl345_set_watermark(struct iio_dev * indio_dev,unsigned int value)632 static int adxl345_set_watermark(struct iio_dev *indio_dev, unsigned int value)
633 {
634 struct adxl345_state *st = iio_priv(indio_dev);
635 const unsigned int fifo_mask = 0x1F, watermark_mask = 0x02;
636 int ret;
637
638 value = min(value, ADXL345_FIFO_SIZE - 1);
639
640 ret = regmap_update_bits(st->regmap, ADXL345_REG_FIFO_CTL, fifo_mask, value);
641 if (ret)
642 return ret;
643
644 st->watermark = value;
645 return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
646 watermark_mask, ADXL345_INT_WATERMARK);
647 }
648
adxl345_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)649 static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev,
650 struct iio_chan_spec const *chan,
651 long mask)
652 {
653 switch (mask) {
654 case IIO_CHAN_INFO_CALIBBIAS:
655 return IIO_VAL_INT;
656 case IIO_CHAN_INFO_SAMP_FREQ:
657 return IIO_VAL_INT_PLUS_NANO;
658 default:
659 return -EINVAL;
660 }
661 }
662
adxl345_powerdown(void * ptr)663 static void adxl345_powerdown(void *ptr)
664 {
665 struct adxl345_state *st = ptr;
666
667 adxl345_set_measure_en(st, false);
668 }
669
670 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
671 "0.09765625 0.1953125 0.390625 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600 3200"
672 );
673
674 static struct attribute *adxl345_attrs[] = {
675 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
676 NULL
677 };
678
679 static const struct attribute_group adxl345_attrs_group = {
680 .attrs = adxl345_attrs,
681 };
682
adxl345_set_fifo(struct adxl345_state * st)683 static int adxl345_set_fifo(struct adxl345_state *st)
684 {
685 unsigned int intio;
686 int ret;
687
688 /* FIFO should only be configured while in standby mode */
689 ret = adxl345_set_measure_en(st, false);
690 if (ret)
691 return ret;
692
693 ret = regmap_read(st->regmap, ADXL345_REG_INT_MAP, &intio);
694 if (ret)
695 return ret;
696
697 ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
698 FIELD_PREP(ADXL345_FIFO_CTL_SAMPLES_MSK,
699 st->watermark) |
700 FIELD_PREP(ADXL345_FIFO_CTL_TRIGGER_MSK, intio) |
701 FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
702 st->fifo_mode));
703 if (ret)
704 return ret;
705
706 return adxl345_set_measure_en(st, true);
707 }
708
709 /**
710 * adxl345_get_samples() - Read number of FIFO entries.
711 * @st: The initialized state instance of this driver.
712 *
713 * The sensor does not support treating any axis individually, or exclude them
714 * from measuring.
715 *
716 * Return: negative error, or value.
717 */
adxl345_get_samples(struct adxl345_state * st)718 static int adxl345_get_samples(struct adxl345_state *st)
719 {
720 unsigned int regval = 0;
721 int ret;
722
723 ret = regmap_read(st->regmap, ADXL345_REG_FIFO_STATUS, ®val);
724 if (ret)
725 return ret;
726
727 return FIELD_GET(ADXL345_REG_FIFO_STATUS_MSK, regval);
728 }
729
730 /**
731 * adxl345_fifo_transfer() - Read samples number of elements.
732 * @st: The instance of the state object of this sensor.
733 * @samples: The number of lines in the FIFO referred to as fifo_entry.
734 *
735 * It is recommended that a multiple-byte read of all registers be performed to
736 * prevent a change in data between reads of sequential registers. That is to
737 * read out the data registers X0, X1, Y0, Y1, Z0, Z1, i.e. 6 bytes at once.
738 *
739 * Return: 0 or error value.
740 */
adxl345_fifo_transfer(struct adxl345_state * st,int samples)741 static int adxl345_fifo_transfer(struct adxl345_state *st, int samples)
742 {
743 size_t count;
744 int i, ret = 0;
745
746 /* count is the 3x the fifo_buf element size, hence 6B */
747 count = sizeof(st->fifo_buf[0]) * ADXL345_DIRS;
748 for (i = 0; i < samples; i++) {
749 /* read 3x 2 byte elements from base address into next fifo_buf position */
750 ret = regmap_bulk_read(st->regmap, ADXL345_REG_XYZ_BASE,
751 st->fifo_buf + (i * count / 2), count);
752 if (ret)
753 return ret;
754
755 /*
756 * To ensure that the FIFO has completely popped, there must be at least 5
757 * us between the end of reading the data registers, signified by the
758 * transition to register 0x38 from 0x37 or the CS pin going high, and the
759 * start of new reads of the FIFO or reading the FIFO_STATUS register. For
760 * SPI operation at 1.5 MHz or lower, the register addressing portion of the
761 * transmission is sufficient delay to ensure the FIFO has completely
762 * popped. It is necessary for SPI operation greater than 1.5 MHz to
763 * de-assert the CS pin to ensure a total of 5 us, which is at most 3.4 us
764 * at 5 MHz operation.
765 */
766 if (st->fifo_delay && samples > 1)
767 udelay(3);
768 }
769 return ret;
770 }
771
772 /**
773 * adxl345_fifo_reset() - Empty the FIFO in error condition.
774 * @st: The instance to the state object of the sensor.
775 *
776 * Read all elements of the FIFO. Reading the interrupt source register
777 * resets the sensor.
778 */
adxl345_fifo_reset(struct adxl345_state * st)779 static void adxl345_fifo_reset(struct adxl345_state *st)
780 {
781 int regval;
782 int samples;
783
784 adxl345_set_measure_en(st, false);
785
786 samples = adxl345_get_samples(st);
787 if (samples > 0)
788 adxl345_fifo_transfer(st, samples);
789
790 regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, ®val);
791
792 adxl345_set_measure_en(st, true);
793 }
794
adxl345_buffer_postenable(struct iio_dev * indio_dev)795 static int adxl345_buffer_postenable(struct iio_dev *indio_dev)
796 {
797 struct adxl345_state *st = iio_priv(indio_dev);
798
799 st->fifo_mode = ADXL345_FIFO_STREAM;
800 return adxl345_set_fifo(st);
801 }
802
adxl345_buffer_predisable(struct iio_dev * indio_dev)803 static int adxl345_buffer_predisable(struct iio_dev *indio_dev)
804 {
805 struct adxl345_state *st = iio_priv(indio_dev);
806 int ret;
807
808 st->fifo_mode = ADXL345_FIFO_BYPASS;
809 ret = adxl345_set_fifo(st);
810 if (ret)
811 return ret;
812
813 return regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
814 }
815
816 static const struct iio_buffer_setup_ops adxl345_buffer_ops = {
817 .postenable = adxl345_buffer_postenable,
818 .predisable = adxl345_buffer_predisable,
819 };
820
adxl345_fifo_push(struct iio_dev * indio_dev,int samples)821 static int adxl345_fifo_push(struct iio_dev *indio_dev,
822 int samples)
823 {
824 struct adxl345_state *st = iio_priv(indio_dev);
825 int i, ret;
826
827 if (samples <= 0)
828 return -EINVAL;
829
830 ret = adxl345_fifo_transfer(st, samples);
831 if (ret)
832 return ret;
833
834 for (i = 0; i < ADXL345_DIRS * samples; i += ADXL345_DIRS)
835 iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
836
837 return 0;
838 }
839
adxl345_push_event(struct iio_dev * indio_dev,int int_stat,enum iio_modifier tap_dir)840 static int adxl345_push_event(struct iio_dev *indio_dev, int int_stat,
841 enum iio_modifier tap_dir)
842 {
843 s64 ts = iio_get_time_ns(indio_dev);
844 struct adxl345_state *st = iio_priv(indio_dev);
845 int samples;
846 int ret = -ENOENT;
847
848 if (FIELD_GET(ADXL345_INT_SINGLE_TAP, int_stat)) {
849 ret = iio_push_event(indio_dev,
850 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
851 IIO_EV_TYPE_GESTURE,
852 IIO_EV_DIR_SINGLETAP),
853 ts);
854 if (ret)
855 return ret;
856 }
857
858 if (FIELD_GET(ADXL345_INT_DOUBLE_TAP, int_stat)) {
859 ret = iio_push_event(indio_dev,
860 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
861 IIO_EV_TYPE_GESTURE,
862 IIO_EV_DIR_DOUBLETAP),
863 ts);
864 if (ret)
865 return ret;
866 }
867
868 if (FIELD_GET(ADXL345_INT_WATERMARK, int_stat)) {
869 samples = adxl345_get_samples(st);
870 if (samples < 0)
871 return -EINVAL;
872
873 if (adxl345_fifo_push(indio_dev, samples) < 0)
874 return -EINVAL;
875
876 ret = 0;
877 }
878
879 return ret;
880 }
881
882 /**
883 * adxl345_irq_handler() - Handle irqs of the ADXL345.
884 * @irq: The irq being handled.
885 * @p: The struct iio_device pointer for the device.
886 *
887 * Return: The interrupt was handled.
888 */
adxl345_irq_handler(int irq,void * p)889 static irqreturn_t adxl345_irq_handler(int irq, void *p)
890 {
891 struct iio_dev *indio_dev = p;
892 struct adxl345_state *st = iio_priv(indio_dev);
893 unsigned int regval;
894 enum iio_modifier tap_dir = IIO_NO_MOD;
895 u32 axis_ctrl;
896 int int_stat;
897 int ret;
898
899 ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
900 if (ret)
901 return IRQ_NONE;
902
903 if (FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl)) {
904 ret = regmap_read(st->regmap, ADXL345_REG_ACT_TAP_STATUS, ®val);
905 if (ret)
906 return IRQ_NONE;
907
908 if (FIELD_GET(ADXL345_TAP_Z_EN, regval))
909 tap_dir = IIO_MOD_Z;
910 else if (FIELD_GET(ADXL345_TAP_Y_EN, regval))
911 tap_dir = IIO_MOD_Y;
912 else if (FIELD_GET(ADXL345_TAP_X_EN, regval))
913 tap_dir = IIO_MOD_X;
914 }
915
916 if (regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &int_stat))
917 return IRQ_NONE;
918
919 if (adxl345_push_event(indio_dev, int_stat, tap_dir))
920 goto err;
921
922 if (FIELD_GET(ADXL345_INT_OVERRUN, int_stat))
923 goto err;
924
925 return IRQ_HANDLED;
926
927 err:
928 adxl345_fifo_reset(st);
929
930 return IRQ_HANDLED;
931 }
932
933 static const struct iio_info adxl345_info = {
934 .attrs = &adxl345_attrs_group,
935 .read_raw = adxl345_read_raw,
936 .write_raw = adxl345_write_raw,
937 .write_raw_get_fmt = adxl345_write_raw_get_fmt,
938 .read_event_config = adxl345_read_event_config,
939 .write_event_config = adxl345_write_event_config,
940 .read_event_value = adxl345_read_event_value,
941 .write_event_value = adxl345_write_event_value,
942 .debugfs_reg_access = &adxl345_reg_access,
943 .hwfifo_set_watermark = adxl345_set_watermark,
944 };
945
946 /**
947 * adxl345_core_probe() - Probe and setup for the accelerometer.
948 * @dev: Driver model representation of the device
949 * @regmap: Regmap instance for the device
950 * @fifo_delay_default: Using FIFO with SPI needs delay
951 * @setup: Setup routine to be executed right before the standard device
952 * setup
953 *
954 * For SPI operation greater than 1.6 MHz, it is necessary to deassert the CS
955 * pin to ensure a total delay of 5 us; otherwise, the delay is not sufficient.
956 * The total delay necessary for 5 MHz operation is at most 3.4 us. This is not
957 * a concern when using I2C mode because the communication rate is low enough
958 * to ensure a sufficient delay between FIFO reads.
959 * Ref: "Retrieving Data from FIFO", p. 21 of 36, Data Sheet ADXL345 Rev. G
960 *
961 * Return: 0 on success, negative errno on error
962 */
adxl345_core_probe(struct device * dev,struct regmap * regmap,bool fifo_delay_default,int (* setup)(struct device *,struct regmap *))963 int adxl345_core_probe(struct device *dev, struct regmap *regmap,
964 bool fifo_delay_default,
965 int (*setup)(struct device*, struct regmap*))
966 {
967 struct adxl345_state *st;
968 struct iio_dev *indio_dev;
969 u32 regval;
970 u8 intio = ADXL345_INT1;
971 unsigned int data_format_mask = (ADXL345_DATA_FORMAT_RANGE |
972 ADXL345_DATA_FORMAT_JUSTIFY |
973 ADXL345_DATA_FORMAT_FULL_RES |
974 ADXL345_DATA_FORMAT_SELF_TEST);
975 unsigned int tap_threshold;
976 int ret;
977
978 indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
979 if (!indio_dev)
980 return -ENOMEM;
981
982 st = iio_priv(indio_dev);
983 st->regmap = regmap;
984 st->info = device_get_match_data(dev);
985 if (!st->info)
986 return -ENODEV;
987 st->fifo_delay = fifo_delay_default;
988
989 /* Init with reasonable values */
990 tap_threshold = 48; /* 48 [0x30] -> ~3g */
991 st->tap_duration_us = 16; /* 16 [0x10] -> .010 */
992 st->tap_window_us = 64; /* 64 [0x40] -> .080 */
993 st->tap_latent_us = 16; /* 16 [0x10] -> .020 */
994
995 indio_dev->name = st->info->name;
996 indio_dev->info = &adxl345_info;
997 indio_dev->modes = INDIO_DIRECT_MODE;
998 indio_dev->channels = adxl345_channels;
999 indio_dev->num_channels = ARRAY_SIZE(adxl345_channels);
1000 indio_dev->available_scan_masks = adxl345_scan_masks;
1001
1002 /* Reset interrupts at start up */
1003 ret = regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
1004 if (ret)
1005 return ret;
1006
1007 if (setup) {
1008 /* Perform optional initial bus specific configuration */
1009 ret = setup(dev, st->regmap);
1010 if (ret)
1011 return ret;
1012
1013 /* Enable full-resolution mode */
1014 ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT,
1015 data_format_mask,
1016 ADXL345_DATA_FORMAT_FULL_RES);
1017 if (ret)
1018 return dev_err_probe(dev, ret,
1019 "Failed to set data range\n");
1020
1021 } else {
1022 /* Enable full-resolution mode (init all data_format bits) */
1023 ret = regmap_write(st->regmap, ADXL345_REG_DATA_FORMAT,
1024 ADXL345_DATA_FORMAT_FULL_RES);
1025 if (ret)
1026 return dev_err_probe(dev, ret,
1027 "Failed to set data range\n");
1028 }
1029
1030 ret = regmap_read(st->regmap, ADXL345_REG_DEVID, ®val);
1031 if (ret)
1032 return dev_err_probe(dev, ret, "Error reading device ID\n");
1033
1034 if (regval != ADXL345_DEVID)
1035 return dev_err_probe(dev, -ENODEV, "Invalid device ID: %x, expected %x\n",
1036 regval, ADXL345_DEVID);
1037
1038 /* Enable measurement mode */
1039 ret = adxl345_set_measure_en(st, true);
1040 if (ret)
1041 return dev_err_probe(dev, ret, "Failed to enable measurement mode\n");
1042
1043 ret = devm_add_action_or_reset(dev, adxl345_powerdown, st);
1044 if (ret)
1045 return ret;
1046
1047 st->irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
1048 if (st->irq < 0) {
1049 intio = ADXL345_INT2;
1050 st->irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT2");
1051 if (st->irq < 0)
1052 intio = ADXL345_INT_NONE;
1053 }
1054
1055 if (intio != ADXL345_INT_NONE) {
1056 /*
1057 * Any bits set to 0 in the INT map register send their respective
1058 * interrupts to the INT1 pin, whereas bits set to 1 send their respective
1059 * interrupts to the INT2 pin. The intio shall convert this accordingly.
1060 */
1061 regval = intio ? 0xff : 0;
1062
1063 ret = regmap_write(st->regmap, ADXL345_REG_INT_MAP, regval);
1064 if (ret)
1065 return ret;
1066
1067 ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP, tap_threshold);
1068 if (ret)
1069 return ret;
1070
1071 /* FIFO_STREAM mode is going to be activated later */
1072 ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &adxl345_buffer_ops);
1073 if (ret)
1074 return ret;
1075
1076 ret = devm_request_threaded_irq(dev, st->irq, NULL,
1077 &adxl345_irq_handler,
1078 IRQF_SHARED | IRQF_ONESHOT,
1079 indio_dev->name, indio_dev);
1080 if (ret)
1081 return ret;
1082 } else {
1083 ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
1084 FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
1085 ADXL345_FIFO_BYPASS));
1086 if (ret)
1087 return ret;
1088 }
1089
1090 return devm_iio_device_register(dev, indio_dev);
1091 }
1092 EXPORT_SYMBOL_NS_GPL(adxl345_core_probe, "IIO_ADXL345");
1093
1094 MODULE_AUTHOR("Eva Rachel Retuya <eraretuya@gmail.com>");
1095 MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver");
1096 MODULE_LICENSE("GPL v2");
1097