1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/async.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/acpi.h>
14 #include <linux/acpi_iort.h>
15 #include <linux/acpi_rimt.h>
16 #include <linux/acpi_viot.h>
17 #include <linux/iommu.h>
18 #include <linux/signal.h>
19 #include <linux/kthread.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/platform_data/x86/apple.h>
23 #include <linux/pgtable.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-direct.h>
26
27 #include "internal.h"
28 #include "sleep.h"
29
30 #define ACPI_BUS_CLASS "system_bus"
31 #define ACPI_BUS_HID "LNXSYBUS"
32 #define ACPI_BUS_DEVICE_NAME "System Bus"
33
34 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
35
36 static const char *dummy_hid = "device";
37
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46 static LIST_HEAD(acpi_scan_system_dev_list);
47
48 /*
49 * The UART device described by the SPCR table is the only object which needs
50 * special-casing. Everything else is covered by ACPI namespace paths in STAO
51 * table.
52 */
53 static u64 spcr_uart_addr;
54
acpi_scan_lock_acquire(void)55 void acpi_scan_lock_acquire(void)
56 {
57 mutex_lock(&acpi_scan_lock);
58 }
59 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
60
acpi_scan_lock_release(void)61 void acpi_scan_lock_release(void)
62 {
63 mutex_unlock(&acpi_scan_lock);
64 }
65 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
66
acpi_lock_hp_context(void)67 void acpi_lock_hp_context(void)
68 {
69 mutex_lock(&acpi_hp_context_lock);
70 }
71
acpi_unlock_hp_context(void)72 void acpi_unlock_hp_context(void)
73 {
74 mutex_unlock(&acpi_hp_context_lock);
75 }
76
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,acpi_hp_notify notify,acpi_hp_uevent uevent)77 void acpi_initialize_hp_context(struct acpi_device *adev,
78 struct acpi_hotplug_context *hp,
79 acpi_hp_notify notify, acpi_hp_uevent uevent)
80 {
81 acpi_lock_hp_context();
82 hp->notify = notify;
83 hp->uevent = uevent;
84 acpi_set_hp_context(adev, hp);
85 acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88
acpi_scan_add_handler(struct acpi_scan_handler * handler)89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 if (!handler)
92 return -EINVAL;
93
94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 return 0;
96 }
97
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 const char *hotplug_profile_name)
100 {
101 int error;
102
103 error = acpi_scan_add_handler(handler);
104 if (error)
105 return error;
106
107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 return 0;
109 }
110
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 struct acpi_device_physical_node *pn;
114 bool offline = true;
115 char *envp[] = { "EVENT=offline", NULL };
116
117 /*
118 * acpi_container_offline() calls this for all of the container's
119 * children under the container's physical_node_lock lock.
120 */
121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122
123 list_for_each_entry(pn, &adev->physical_node_list, node)
124 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 if (uevent)
126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127
128 offline = false;
129 break;
130 }
131
132 mutex_unlock(&adev->physical_node_lock);
133 return offline;
134 }
135
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 void **ret_p)
138 {
139 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 struct acpi_device_physical_node *pn;
141 bool second_pass = (bool)data;
142 acpi_status status = AE_OK;
143
144 if (!device)
145 return AE_OK;
146
147 if (device->handler && !device->handler->hotplug.enabled) {
148 *ret_p = &device->dev;
149 return AE_SUPPORT;
150 }
151
152 mutex_lock(&device->physical_node_lock);
153
154 list_for_each_entry(pn, &device->physical_node_list, node) {
155 int ret;
156
157 if (second_pass) {
158 /* Skip devices offlined by the first pass. */
159 if (pn->put_online)
160 continue;
161 } else {
162 pn->put_online = false;
163 }
164 ret = device_offline(pn->dev);
165 if (ret >= 0) {
166 pn->put_online = !ret;
167 } else {
168 *ret_p = pn->dev;
169 if (second_pass) {
170 status = AE_ERROR;
171 break;
172 }
173 }
174 }
175
176 mutex_unlock(&device->physical_node_lock);
177
178 return status;
179 }
180
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 void **ret_p)
183 {
184 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 struct acpi_device_physical_node *pn;
186
187 if (!device)
188 return AE_OK;
189
190 mutex_lock(&device->physical_node_lock);
191
192 list_for_each_entry(pn, &device->physical_node_list, node)
193 if (pn->put_online) {
194 device_online(pn->dev);
195 pn->put_online = false;
196 }
197
198 mutex_unlock(&device->physical_node_lock);
199
200 return AE_OK;
201 }
202
acpi_scan_try_to_offline(struct acpi_device * device)203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 acpi_handle handle = device->handle;
206 struct device *errdev = NULL;
207 acpi_status status;
208
209 /*
210 * Carry out two passes here and ignore errors in the first pass,
211 * because if the devices in question are memory blocks and
212 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 * that the other blocks depend on, but it is not known in advance which
214 * block holds them.
215 *
216 * If the first pass is successful, the second one isn't needed, though.
217 */
218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 NULL, acpi_bus_offline, (void *)false,
220 (void **)&errdev);
221 if (status == AE_SUPPORT) {
222 dev_warn(errdev, "Offline disabled.\n");
223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 acpi_bus_online, NULL, NULL, NULL);
225 return -EPERM;
226 }
227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 if (errdev) {
229 errdev = NULL;
230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 NULL, acpi_bus_offline, (void *)true,
232 (void **)&errdev);
233 if (!errdev)
234 acpi_bus_offline(handle, 0, (void *)true,
235 (void **)&errdev);
236
237 if (errdev) {
238 dev_warn(errdev, "Offline failed.\n");
239 acpi_bus_online(handle, 0, NULL, NULL);
240 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 ACPI_UINT32_MAX, acpi_bus_online,
242 NULL, NULL, NULL);
243 return -EBUSY;
244 }
245 }
246 return 0;
247 }
248
249 #define ACPI_SCAN_CHECK_FLAG_STATUS BIT(0)
250 #define ACPI_SCAN_CHECK_FLAG_EJECT BIT(1)
251
acpi_scan_check_and_detach(struct acpi_device * adev,void * p)252 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
253 {
254 struct acpi_scan_handler *handler = adev->handler;
255 uintptr_t flags = (uintptr_t)p;
256
257 acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
258
259 if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
260 acpi_bus_get_status(adev);
261 /*
262 * Skip devices that are still there and take the enabled
263 * flag into account.
264 */
265 if (acpi_device_is_enabled(adev))
266 return 0;
267
268 /* Skip device that have not been enumerated. */
269 if (!acpi_device_enumerated(adev)) {
270 dev_dbg(&adev->dev, "Still not enumerated\n");
271 return 0;
272 }
273 }
274
275 adev->flags.match_driver = false;
276 if (handler) {
277 if (handler->detach)
278 handler->detach(adev);
279 } else {
280 device_release_driver(&adev->dev);
281 }
282 /*
283 * Most likely, the device is going away, so put it into D3cold before
284 * that.
285 */
286 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
287 adev->flags.initialized = false;
288
289 /* For eject this is deferred to acpi_bus_post_eject() */
290 if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
291 adev->handler = NULL;
292 acpi_device_clear_enumerated(adev);
293 }
294 return 0;
295 }
296
acpi_bus_post_eject(struct acpi_device * adev,void * not_used)297 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
298 {
299 struct acpi_scan_handler *handler = adev->handler;
300
301 acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
302
303 if (handler) {
304 if (handler->post_eject)
305 handler->post_eject(adev);
306
307 adev->handler = NULL;
308 }
309
310 acpi_device_clear_enumerated(adev);
311
312 return 0;
313 }
314
acpi_scan_check_subtree(struct acpi_device * adev)315 static void acpi_scan_check_subtree(struct acpi_device *adev)
316 {
317 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
318
319 acpi_scan_check_and_detach(adev, (void *)flags);
320 }
321
acpi_scan_hot_remove(struct acpi_device * device)322 static int acpi_scan_hot_remove(struct acpi_device *device)
323 {
324 acpi_handle handle = device->handle;
325 unsigned long long sta;
326 acpi_status status;
327 uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
328
329 if (device->handler && device->handler->hotplug.demand_offline) {
330 if (!acpi_scan_is_offline(device, true))
331 return -EBUSY;
332 } else {
333 int error = acpi_scan_try_to_offline(device);
334 if (error)
335 return error;
336 }
337
338 acpi_handle_debug(handle, "Ejecting\n");
339
340 acpi_scan_check_and_detach(device, (void *)flags);
341
342 acpi_evaluate_lck(handle, 0);
343 /*
344 * TBD: _EJD support.
345 */
346 status = acpi_evaluate_ej0(handle);
347 if (status == AE_NOT_FOUND)
348 return -ENODEV;
349 else if (ACPI_FAILURE(status))
350 return -EIO;
351
352 /*
353 * Verify if eject was indeed successful. If not, log an error
354 * message. No need to call _OST since _EJ0 call was made OK.
355 */
356 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
357 if (ACPI_FAILURE(status)) {
358 acpi_handle_warn(handle,
359 "Status check after eject failed (0x%x)\n", status);
360 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
361 acpi_handle_warn(handle,
362 "Eject incomplete - status 0x%llx\n", sta);
363 } else {
364 acpi_bus_post_eject(device, NULL);
365 }
366
367 return 0;
368 }
369
acpi_scan_rescan_bus(struct acpi_device * adev)370 static int acpi_scan_rescan_bus(struct acpi_device *adev)
371 {
372 struct acpi_scan_handler *handler = adev->handler;
373 int ret;
374
375 if (handler && handler->hotplug.scan_dependent)
376 ret = handler->hotplug.scan_dependent(adev);
377 else
378 ret = acpi_bus_scan(adev->handle);
379
380 if (ret)
381 dev_info(&adev->dev, "Namespace scan failure\n");
382
383 return ret;
384 }
385
acpi_scan_device_check(struct acpi_device * adev)386 static int acpi_scan_device_check(struct acpi_device *adev)
387 {
388 struct acpi_device *parent;
389
390 acpi_scan_check_subtree(adev);
391
392 if (!acpi_device_is_present(adev))
393 return 0;
394
395 /*
396 * This function is only called for device objects for which matching
397 * scan handlers exist. The only situation in which the scan handler
398 * is not attached to this device object yet is when the device has
399 * just appeared (either it wasn't present at all before or it was
400 * removed and then added again).
401 */
402 if (adev->handler) {
403 dev_dbg(&adev->dev, "Already enumerated\n");
404 return 0;
405 }
406
407 parent = acpi_dev_parent(adev);
408 if (!parent)
409 parent = adev;
410
411 return acpi_scan_rescan_bus(parent);
412 }
413
acpi_scan_bus_check(struct acpi_device * adev)414 static int acpi_scan_bus_check(struct acpi_device *adev)
415 {
416 acpi_scan_check_subtree(adev);
417
418 return acpi_scan_rescan_bus(adev);
419 }
420
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)421 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
422 {
423 switch (type) {
424 case ACPI_NOTIFY_BUS_CHECK:
425 return acpi_scan_bus_check(adev);
426 case ACPI_NOTIFY_DEVICE_CHECK:
427 return acpi_scan_device_check(adev);
428 case ACPI_NOTIFY_EJECT_REQUEST:
429 case ACPI_OST_EC_OSPM_EJECT:
430 if (adev->handler && !adev->handler->hotplug.enabled) {
431 dev_info(&adev->dev, "Eject disabled\n");
432 return -EPERM;
433 }
434 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
435 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
436 return acpi_scan_hot_remove(adev);
437 }
438 return -EINVAL;
439 }
440
acpi_device_hotplug(struct acpi_device * adev,u32 src)441 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
442 {
443 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
444 int error = -ENODEV;
445
446 lock_device_hotplug();
447 mutex_lock(&acpi_scan_lock);
448
449 /*
450 * The device object's ACPI handle cannot become invalid as long as we
451 * are holding acpi_scan_lock, but it might have become invalid before
452 * that lock was acquired.
453 */
454 if (adev->handle == INVALID_ACPI_HANDLE)
455 goto err_out;
456
457 if (adev->flags.is_dock_station) {
458 error = dock_notify(adev, src);
459 } else if (adev->flags.hotplug_notify) {
460 error = acpi_generic_hotplug_event(adev, src);
461 } else {
462 acpi_hp_notify notify;
463
464 acpi_lock_hp_context();
465 notify = adev->hp ? adev->hp->notify : NULL;
466 acpi_unlock_hp_context();
467 /*
468 * There may be additional notify handlers for device objects
469 * without the .event() callback, so ignore them here.
470 */
471 if (notify)
472 error = notify(adev, src);
473 else
474 goto out;
475 }
476 switch (error) {
477 case 0:
478 ost_code = ACPI_OST_SC_SUCCESS;
479 break;
480 case -EPERM:
481 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
482 break;
483 case -EBUSY:
484 ost_code = ACPI_OST_SC_DEVICE_BUSY;
485 break;
486 default:
487 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
488 break;
489 }
490
491 err_out:
492 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
493
494 out:
495 acpi_put_acpi_dev(adev);
496 mutex_unlock(&acpi_scan_lock);
497 unlock_device_hotplug();
498 }
499
acpi_free_power_resources_lists(struct acpi_device * device)500 static void acpi_free_power_resources_lists(struct acpi_device *device)
501 {
502 int i;
503
504 if (device->wakeup.flags.valid)
505 acpi_power_resources_list_free(&device->wakeup.resources);
506
507 if (!device->power.flags.power_resources)
508 return;
509
510 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
511 struct acpi_device_power_state *ps = &device->power.states[i];
512 acpi_power_resources_list_free(&ps->resources);
513 }
514 }
515
acpi_device_release(struct device * dev)516 static void acpi_device_release(struct device *dev)
517 {
518 struct acpi_device *acpi_dev = to_acpi_device(dev);
519
520 acpi_free_properties(acpi_dev);
521 acpi_free_pnp_ids(&acpi_dev->pnp);
522 acpi_free_power_resources_lists(acpi_dev);
523 kfree(acpi_dev);
524 }
525
acpi_device_del(struct acpi_device * device)526 static void acpi_device_del(struct acpi_device *device)
527 {
528 struct acpi_device_bus_id *acpi_device_bus_id;
529
530 mutex_lock(&acpi_device_lock);
531
532 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
533 if (!strcmp(acpi_device_bus_id->bus_id,
534 acpi_device_hid(device))) {
535 ida_free(&acpi_device_bus_id->instance_ida,
536 device->pnp.instance_no);
537 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
538 list_del(&acpi_device_bus_id->node);
539 kfree_const(acpi_device_bus_id->bus_id);
540 kfree(acpi_device_bus_id);
541 }
542 break;
543 }
544
545 list_del(&device->wakeup_list);
546
547 mutex_unlock(&acpi_device_lock);
548
549 acpi_power_add_remove_device(device, false);
550 acpi_device_remove_files(device);
551 if (device->remove)
552 device->remove(device);
553
554 device_del(&device->dev);
555 }
556
557 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
558
559 static LIST_HEAD(acpi_device_del_list);
560 static DEFINE_MUTEX(acpi_device_del_lock);
561
acpi_device_del_work_fn(struct work_struct * work_not_used)562 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
563 {
564 for (;;) {
565 struct acpi_device *adev;
566
567 mutex_lock(&acpi_device_del_lock);
568
569 if (list_empty(&acpi_device_del_list)) {
570 mutex_unlock(&acpi_device_del_lock);
571 break;
572 }
573 adev = list_first_entry(&acpi_device_del_list,
574 struct acpi_device, del_list);
575 list_del(&adev->del_list);
576
577 mutex_unlock(&acpi_device_del_lock);
578
579 blocking_notifier_call_chain(&acpi_reconfig_chain,
580 ACPI_RECONFIG_DEVICE_REMOVE, adev);
581
582 acpi_device_del(adev);
583 /*
584 * Drop references to all power resources that might have been
585 * used by the device.
586 */
587 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
588 acpi_dev_put(adev);
589 }
590 }
591
592 /**
593 * acpi_scan_drop_device - Drop an ACPI device object.
594 * @handle: Handle of an ACPI namespace node, not used.
595 * @context: Address of the ACPI device object to drop.
596 *
597 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
598 * namespace node the device object pointed to by @context is attached to.
599 *
600 * The unregistration is carried out asynchronously to avoid running
601 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
602 * ensure the correct ordering (the device objects must be unregistered in the
603 * same order in which the corresponding namespace nodes are deleted).
604 */
acpi_scan_drop_device(acpi_handle handle,void * context)605 static void acpi_scan_drop_device(acpi_handle handle, void *context)
606 {
607 static DECLARE_WORK(work, acpi_device_del_work_fn);
608 struct acpi_device *adev = context;
609
610 mutex_lock(&acpi_device_del_lock);
611
612 /*
613 * Use the ACPI hotplug workqueue which is ordered, so this work item
614 * won't run after any hotplug work items submitted subsequently. That
615 * prevents attempts to register device objects identical to those being
616 * deleted from happening concurrently (such attempts result from
617 * hotplug events handled via the ACPI hotplug workqueue). It also will
618 * run after all of the work items submitted previously, which helps
619 * those work items to ensure that they are not accessing stale device
620 * objects.
621 */
622 if (list_empty(&acpi_device_del_list))
623 acpi_queue_hotplug_work(&work);
624
625 list_add_tail(&adev->del_list, &acpi_device_del_list);
626 /* Make acpi_ns_validate_handle() return NULL for this handle. */
627 adev->handle = INVALID_ACPI_HANDLE;
628
629 mutex_unlock(&acpi_device_del_lock);
630 }
631
handle_to_device(acpi_handle handle,void (* callback)(void *))632 static struct acpi_device *handle_to_device(acpi_handle handle,
633 void (*callback)(void *))
634 {
635 struct acpi_device *adev = NULL;
636 acpi_status status;
637
638 status = acpi_get_data_full(handle, acpi_scan_drop_device,
639 (void **)&adev, callback);
640 if (ACPI_FAILURE(status) || !adev) {
641 acpi_handle_debug(handle, "No context!\n");
642 return NULL;
643 }
644 return adev;
645 }
646
647 /**
648 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
649 * @handle: ACPI handle associated with the requested ACPI device object.
650 *
651 * Return a pointer to the ACPI device object associated with @handle, if
652 * present, or NULL otherwise.
653 */
acpi_fetch_acpi_dev(acpi_handle handle)654 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
655 {
656 return handle_to_device(handle, NULL);
657 }
658 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
659
get_acpi_device(void * dev)660 static void get_acpi_device(void *dev)
661 {
662 acpi_dev_get(dev);
663 }
664
665 /**
666 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
667 * @handle: ACPI handle associated with the requested ACPI device object.
668 *
669 * Return a pointer to the ACPI device object associated with @handle and bump
670 * up that object's reference counter (under the ACPI Namespace lock), if
671 * present, or return NULL otherwise.
672 *
673 * The ACPI device object reference acquired by this function needs to be
674 * dropped via acpi_dev_put().
675 */
acpi_get_acpi_dev(acpi_handle handle)676 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
677 {
678 return handle_to_device(handle, get_acpi_device);
679 }
680 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
681
acpi_device_bus_id_match(const char * dev_id)682 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
683 {
684 struct acpi_device_bus_id *acpi_device_bus_id;
685
686 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
687 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
688 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
689 return acpi_device_bus_id;
690 }
691 return NULL;
692 }
693
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)694 static int acpi_device_set_name(struct acpi_device *device,
695 struct acpi_device_bus_id *acpi_device_bus_id)
696 {
697 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
698 int result;
699
700 result = ida_alloc(instance_ida, GFP_KERNEL);
701 if (result < 0)
702 return result;
703
704 device->pnp.instance_no = result;
705 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
706 return 0;
707 }
708
acpi_tie_acpi_dev(struct acpi_device * adev)709 int acpi_tie_acpi_dev(struct acpi_device *adev)
710 {
711 acpi_handle handle = adev->handle;
712 acpi_status status;
713
714 if (!handle)
715 return 0;
716
717 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
718 if (ACPI_FAILURE(status)) {
719 acpi_handle_err(handle, "Unable to attach device data\n");
720 return -ENODEV;
721 }
722
723 return 0;
724 }
725
acpi_store_pld_crc(struct acpi_device * adev)726 static void acpi_store_pld_crc(struct acpi_device *adev)
727 {
728 struct acpi_pld_info *pld;
729
730 if (!acpi_get_physical_device_location(adev->handle, &pld))
731 return;
732
733 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
734 ACPI_FREE(pld);
735 }
736
acpi_device_add(struct acpi_device * device)737 int acpi_device_add(struct acpi_device *device)
738 {
739 struct acpi_device_bus_id *acpi_device_bus_id;
740 int result;
741
742 /*
743 * Linkage
744 * -------
745 * Link this device to its parent and siblings.
746 */
747 INIT_LIST_HEAD(&device->wakeup_list);
748 INIT_LIST_HEAD(&device->physical_node_list);
749 INIT_LIST_HEAD(&device->del_list);
750 mutex_init(&device->physical_node_lock);
751
752 mutex_lock(&acpi_device_lock);
753
754 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
755 if (acpi_device_bus_id) {
756 result = acpi_device_set_name(device, acpi_device_bus_id);
757 if (result)
758 goto err_unlock;
759 } else {
760 acpi_device_bus_id = kzalloc_obj(*acpi_device_bus_id,
761 GFP_KERNEL);
762 if (!acpi_device_bus_id) {
763 result = -ENOMEM;
764 goto err_unlock;
765 }
766 acpi_device_bus_id->bus_id =
767 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
768 if (!acpi_device_bus_id->bus_id) {
769 kfree(acpi_device_bus_id);
770 result = -ENOMEM;
771 goto err_unlock;
772 }
773
774 ida_init(&acpi_device_bus_id->instance_ida);
775
776 result = acpi_device_set_name(device, acpi_device_bus_id);
777 if (result) {
778 kfree_const(acpi_device_bus_id->bus_id);
779 kfree(acpi_device_bus_id);
780 goto err_unlock;
781 }
782
783 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
784 }
785
786 if (device->wakeup.flags.valid)
787 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
788
789 acpi_store_pld_crc(device);
790
791 mutex_unlock(&acpi_device_lock);
792
793 result = device_add(&device->dev);
794 if (result) {
795 dev_err(&device->dev, "Error registering device\n");
796 goto err;
797 }
798
799 acpi_device_setup_files(device);
800
801 return 0;
802
803 err:
804 mutex_lock(&acpi_device_lock);
805
806 list_del(&device->wakeup_list);
807
808 err_unlock:
809 mutex_unlock(&acpi_device_lock);
810
811 acpi_detach_data(device->handle, acpi_scan_drop_device);
812
813 return result;
814 }
815
816 /* --------------------------------------------------------------------------
817 Device Enumeration
818 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])819 static bool acpi_info_matches_ids(struct acpi_device_info *info,
820 const char * const ids[])
821 {
822 struct acpi_pnp_device_id_list *cid_list = NULL;
823 int i, index;
824
825 if (!(info->valid & ACPI_VALID_HID))
826 return false;
827
828 index = match_string(ids, -1, info->hardware_id.string);
829 if (index >= 0)
830 return true;
831
832 if (info->valid & ACPI_VALID_CID)
833 cid_list = &info->compatible_id_list;
834
835 if (!cid_list)
836 return false;
837
838 for (i = 0; i < cid_list->count; i++) {
839 index = match_string(ids, -1, cid_list->ids[i].string);
840 if (index >= 0)
841 return true;
842 }
843
844 return false;
845 }
846
847 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
848 static const char * const acpi_ignore_dep_ids[] = {
849 "PNP0D80", /* Windows-compatible System Power Management Controller */
850 "INT33BD", /* Intel Baytrail Mailbox Device */
851 "INTC10DE", /* Intel CVS LNL */
852 "INTC10E0", /* Intel CVS ARL */
853 "LATT2021", /* Lattice FW Update Client Driver */
854 NULL
855 };
856
857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
858 static const char * const acpi_honor_dep_ids[] = {
859 "INT3472", /* Camera sensor PMIC / clk and regulator info */
860 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
861 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
862 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
863 "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
864 "RSCV0001", /* RISC-V PLIC */
865 "RSCV0002", /* RISC-V APLIC */
866 "RSCV0005", /* RISC-V SBI MPXY MBOX */
867 "RSCV0006", /* RISC-V RPMI SYSMSI */
868 "PNP0C0F", /* PCI Link Device */
869 NULL
870 };
871
acpi_find_parent_acpi_dev(acpi_handle handle)872 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
873 {
874 struct acpi_device *adev;
875
876 /*
877 * Fixed hardware devices do not appear in the namespace and do not
878 * have handles, but we fabricate acpi_devices for them, so we have
879 * to deal with them specially.
880 */
881 if (!handle)
882 return acpi_root;
883
884 do {
885 acpi_status status;
886
887 status = acpi_get_parent(handle, &handle);
888 if (ACPI_FAILURE(status)) {
889 if (status != AE_NULL_ENTRY)
890 return acpi_root;
891
892 return NULL;
893 }
894 adev = acpi_fetch_acpi_dev(handle);
895 } while (!adev);
896 return adev;
897 }
898
899 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)900 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
901 {
902 acpi_status status;
903 acpi_handle tmp;
904 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
905 union acpi_object *obj;
906
907 status = acpi_get_handle(handle, "_EJD", &tmp);
908 if (ACPI_FAILURE(status))
909 return status;
910
911 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
912 if (ACPI_SUCCESS(status)) {
913 obj = buffer.pointer;
914 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
915 ejd);
916 kfree(buffer.pointer);
917 }
918 return status;
919 }
920 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
921
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)922 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
923 {
924 acpi_handle handle = dev->handle;
925 struct acpi_device_wakeup *wakeup = &dev->wakeup;
926 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
927 union acpi_object *package = NULL;
928 union acpi_object *element = NULL;
929 acpi_status status;
930 int err = -ENODATA;
931
932 INIT_LIST_HEAD(&wakeup->resources);
933
934 /* _PRW */
935 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
936 if (ACPI_FAILURE(status)) {
937 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
938 acpi_format_exception(status));
939 return err;
940 }
941
942 package = (union acpi_object *)buffer.pointer;
943
944 if (!package || package->package.count < 2)
945 goto out;
946
947 element = &(package->package.elements[0]);
948 if (!element)
949 goto out;
950
951 if (element->type == ACPI_TYPE_PACKAGE) {
952 if ((element->package.count < 2) ||
953 (element->package.elements[0].type !=
954 ACPI_TYPE_LOCAL_REFERENCE)
955 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
956 goto out;
957
958 wakeup->gpe_device =
959 element->package.elements[0].reference.handle;
960 wakeup->gpe_number =
961 (u32) element->package.elements[1].integer.value;
962 } else if (element->type == ACPI_TYPE_INTEGER) {
963 wakeup->gpe_device = NULL;
964 wakeup->gpe_number = element->integer.value;
965 } else {
966 goto out;
967 }
968
969 element = &(package->package.elements[1]);
970 if (element->type != ACPI_TYPE_INTEGER)
971 goto out;
972
973 wakeup->sleep_state = element->integer.value;
974
975 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
976 if (err)
977 goto out;
978
979 if (!list_empty(&wakeup->resources)) {
980 int sleep_state;
981
982 err = acpi_power_wakeup_list_init(&wakeup->resources,
983 &sleep_state);
984 if (err) {
985 acpi_handle_warn(handle, "Retrieving current states "
986 "of wakeup power resources failed\n");
987 acpi_power_resources_list_free(&wakeup->resources);
988 goto out;
989 }
990 if (sleep_state < wakeup->sleep_state) {
991 acpi_handle_warn(handle, "Overriding _PRW sleep state "
992 "(S%d) by S%d from power resources\n",
993 (int)wakeup->sleep_state, sleep_state);
994 wakeup->sleep_state = sleep_state;
995 }
996 }
997
998 out:
999 kfree(buffer.pointer);
1000 return err;
1001 }
1002
acpi_wakeup_gpe_init(struct acpi_device * device)1003 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1004 {
1005 static const struct acpi_device_id button_device_ids[] = {
1006 {"PNP0C0D", 0}, /* Lid */
1007 {"PNP0C0E", 0}, /* Sleep button */
1008 {"", 0},
1009 };
1010 struct acpi_device_wakeup *wakeup = &device->wakeup;
1011 const struct acpi_device_id *match;
1012 acpi_status status;
1013
1014 wakeup->flags.notifier_present = 0;
1015
1016 match = acpi_match_acpi_device(button_device_ids, device);
1017 if (match && wakeup->sleep_state == ACPI_STATE_S5)
1018 wakeup->sleep_state = ACPI_STATE_S4;
1019
1020 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1021 wakeup->gpe_number);
1022 return ACPI_SUCCESS(status);
1023 }
1024
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)1025 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1026 {
1027 int err;
1028
1029 /* Presence of _PRW indicates wake capable */
1030 if (!acpi_has_method(device->handle, "_PRW"))
1031 return;
1032
1033 err = acpi_bus_extract_wakeup_device_power_package(device);
1034 if (err) {
1035 dev_err(&device->dev, "Unable to extract wakeup power resources");
1036 return;
1037 }
1038
1039 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1040 device->wakeup.prepare_count = 0;
1041 /*
1042 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1043 * system for the ACPI device with the _PRW object.
1044 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1045 * So it is necessary to call _DSW object first. Only when it is not
1046 * present will the _PSW object used.
1047 */
1048 err = acpi_device_sleep_wake(device, 0, 0, 0);
1049 if (err)
1050 pr_debug("error in _DSW or _PSW evaluation\n");
1051 }
1052
acpi_bus_init_power_state(struct acpi_device * device,int state)1053 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1054 {
1055 struct acpi_device_power_state *ps = &device->power.states[state];
1056 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1057 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1058 acpi_status status;
1059
1060 INIT_LIST_HEAD(&ps->resources);
1061
1062 /* Evaluate "_PRx" to get referenced power resources */
1063 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1064 if (ACPI_SUCCESS(status)) {
1065 union acpi_object *package = buffer.pointer;
1066
1067 if (buffer.length && package
1068 && package->type == ACPI_TYPE_PACKAGE
1069 && package->package.count)
1070 acpi_extract_power_resources(package, 0, &ps->resources);
1071
1072 ACPI_FREE(buffer.pointer);
1073 }
1074
1075 /* Evaluate "_PSx" to see if we can do explicit sets */
1076 pathname[2] = 'S';
1077 if (acpi_has_method(device->handle, pathname))
1078 ps->flags.explicit_set = 1;
1079
1080 /* State is valid if there are means to put the device into it. */
1081 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1082 ps->flags.valid = 1;
1083
1084 ps->power = -1; /* Unknown - driver assigned */
1085 ps->latency = -1; /* Unknown - driver assigned */
1086 }
1087
acpi_bus_get_power_flags(struct acpi_device * device)1088 static void acpi_bus_get_power_flags(struct acpi_device *device)
1089 {
1090 unsigned long long dsc = ACPI_STATE_D0;
1091 u32 i;
1092
1093 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1094 if (!acpi_has_method(device->handle, "_PS0") &&
1095 !acpi_has_method(device->handle, "_PR0"))
1096 return;
1097
1098 device->flags.power_manageable = 1;
1099
1100 /*
1101 * Power Management Flags
1102 */
1103 if (acpi_has_method(device->handle, "_PSC"))
1104 device->power.flags.explicit_get = 1;
1105
1106 if (acpi_has_method(device->handle, "_IRC"))
1107 device->power.flags.inrush_current = 1;
1108
1109 if (acpi_has_method(device->handle, "_DSW"))
1110 device->power.flags.dsw_present = 1;
1111
1112 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1113 device->power.state_for_enumeration = dsc;
1114
1115 /*
1116 * Enumerate supported power management states
1117 */
1118 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1119 acpi_bus_init_power_state(device, i);
1120
1121 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1122
1123 /* Set the defaults for D0 and D3hot (always supported). */
1124 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1125 device->power.states[ACPI_STATE_D0].power = 100;
1126 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1127
1128 /*
1129 * Use power resources only if the D0 list of them is populated, because
1130 * some platforms may provide _PR3 only to indicate D3cold support and
1131 * in those cases the power resources list returned by it may be bogus.
1132 */
1133 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1134 device->power.flags.power_resources = 1;
1135 /*
1136 * D3cold is supported if the D3hot list of power resources is
1137 * not empty.
1138 */
1139 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1140 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1141 }
1142
1143 if (acpi_bus_init_power(device))
1144 device->flags.power_manageable = 0;
1145 }
1146
acpi_bus_get_flags(struct acpi_device * device)1147 static void acpi_bus_get_flags(struct acpi_device *device)
1148 {
1149 /* Presence of _STA indicates 'dynamic_status' */
1150 if (acpi_has_method(device->handle, "_STA"))
1151 device->flags.dynamic_status = 1;
1152
1153 /* Presence of _RMV indicates 'removable' */
1154 if (acpi_has_method(device->handle, "_RMV"))
1155 device->flags.removable = 1;
1156
1157 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1158 if (acpi_has_method(device->handle, "_EJD") ||
1159 acpi_has_method(device->handle, "_EJ0"))
1160 device->flags.ejectable = 1;
1161 }
1162
acpi_device_get_busid(struct acpi_device * device)1163 static void acpi_device_get_busid(struct acpi_device *device)
1164 {
1165 char bus_id[5] = { '?', 0 };
1166 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1167 int i = 0;
1168
1169 /*
1170 * Bus ID
1171 * ------
1172 * The device's Bus ID is simply the object name.
1173 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1174 */
1175 if (!acpi_dev_parent(device)) {
1176 strscpy(device->pnp.bus_id, "ACPI");
1177 return;
1178 }
1179
1180 switch (device->device_type) {
1181 case ACPI_BUS_TYPE_POWER_BUTTON:
1182 strscpy(device->pnp.bus_id, "PWRF");
1183 break;
1184 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1185 strscpy(device->pnp.bus_id, "SLPF");
1186 break;
1187 case ACPI_BUS_TYPE_ECDT_EC:
1188 strscpy(device->pnp.bus_id, "ECDT");
1189 break;
1190 default:
1191 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1192 /* Clean up trailing underscores (if any) */
1193 for (i = 3; i > 1; i--) {
1194 if (bus_id[i] == '_')
1195 bus_id[i] = '\0';
1196 else
1197 break;
1198 }
1199 strscpy(device->pnp.bus_id, bus_id);
1200 break;
1201 }
1202 }
1203
1204 /*
1205 * acpi_ata_match - see if an acpi object is an ATA device
1206 *
1207 * If an acpi object has one of the ACPI ATA methods defined,
1208 * then we can safely call it an ATA device.
1209 */
acpi_ata_match(acpi_handle handle)1210 bool acpi_ata_match(acpi_handle handle)
1211 {
1212 return acpi_has_method(handle, "_GTF") ||
1213 acpi_has_method(handle, "_GTM") ||
1214 acpi_has_method(handle, "_STM") ||
1215 acpi_has_method(handle, "_SDD");
1216 }
1217
1218 /*
1219 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1220 *
1221 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1222 * then we can safely call it an ejectable drive bay
1223 */
acpi_bay_match(acpi_handle handle)1224 bool acpi_bay_match(acpi_handle handle)
1225 {
1226 acpi_handle phandle;
1227
1228 if (!acpi_has_method(handle, "_EJ0"))
1229 return false;
1230 if (acpi_ata_match(handle))
1231 return true;
1232 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1233 return false;
1234
1235 return acpi_ata_match(phandle);
1236 }
1237
acpi_device_is_battery(struct acpi_device * adev)1238 bool acpi_device_is_battery(struct acpi_device *adev)
1239 {
1240 struct acpi_hardware_id *hwid;
1241
1242 list_for_each_entry(hwid, &adev->pnp.ids, list)
1243 if (!strcmp("PNP0C0A", hwid->id))
1244 return true;
1245
1246 return false;
1247 }
1248
is_ejectable_bay(struct acpi_device * adev)1249 static bool is_ejectable_bay(struct acpi_device *adev)
1250 {
1251 acpi_handle handle = adev->handle;
1252
1253 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1254 return true;
1255
1256 return acpi_bay_match(handle);
1257 }
1258
1259 /*
1260 * acpi_dock_match - see if an acpi object has a _DCK method
1261 */
acpi_dock_match(acpi_handle handle)1262 bool acpi_dock_match(acpi_handle handle)
1263 {
1264 return acpi_has_method(handle, "_DCK");
1265 }
1266
1267 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1268 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1269 void **return_value)
1270 {
1271 long *cap = context;
1272
1273 if (acpi_has_method(handle, "_BCM") &&
1274 acpi_has_method(handle, "_BCL")) {
1275 acpi_handle_debug(handle, "Found generic backlight support\n");
1276 *cap |= ACPI_VIDEO_BACKLIGHT;
1277 /* We have backlight support, no need to scan further */
1278 return AE_CTRL_TERMINATE;
1279 }
1280 return 0;
1281 }
1282
1283 /* Returns true if the ACPI object is a video device which can be
1284 * handled by video.ko.
1285 * The device will get a Linux specific CID added in scan.c to
1286 * identify the device as an ACPI graphics device
1287 * Be aware that the graphics device may not be physically present
1288 */
acpi_is_video_device(acpi_handle handle)1289 long acpi_is_video_device(acpi_handle handle)
1290 {
1291 long video_caps = 0;
1292
1293 /* Is this device able to support video switching ? */
1294 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1295 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1296
1297 /* Is this device able to retrieve a video ROM ? */
1298 if (acpi_has_method(handle, "_ROM"))
1299 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1300
1301 /* Is this device able to configure which video head to be POSTed ? */
1302 if (acpi_has_method(handle, "_VPO") &&
1303 acpi_has_method(handle, "_GPD") &&
1304 acpi_has_method(handle, "_SPD"))
1305 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1306
1307 /* Only check for backlight functionality if one of the above hit. */
1308 if (video_caps)
1309 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1310 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1311 &video_caps, NULL);
1312
1313 return video_caps;
1314 }
1315 EXPORT_SYMBOL(acpi_is_video_device);
1316
acpi_device_hid(struct acpi_device * device)1317 const char *acpi_device_hid(struct acpi_device *device)
1318 {
1319 struct acpi_hardware_id *hid;
1320
1321 hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1322 if (!hid)
1323 return dummy_hid;
1324
1325 return hid->id;
1326 }
1327 EXPORT_SYMBOL(acpi_device_hid);
1328
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1329 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1330 {
1331 struct acpi_hardware_id *id;
1332
1333 id = kmalloc_obj(*id, GFP_KERNEL);
1334 if (!id)
1335 return;
1336
1337 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1338 if (!id->id) {
1339 kfree(id);
1340 return;
1341 }
1342
1343 list_add_tail(&id->list, &pnp->ids);
1344 pnp->type.hardware_id = 1;
1345 }
1346
1347 /*
1348 * Old IBM workstations have a DSDT bug wherein the SMBus object
1349 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1350 * prefix. Work around this.
1351 */
acpi_ibm_smbus_match(acpi_handle handle)1352 static bool acpi_ibm_smbus_match(acpi_handle handle)
1353 {
1354 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1355 struct acpi_buffer path = { sizeof(node_name), node_name };
1356
1357 if (!dmi_name_in_vendors("IBM"))
1358 return false;
1359
1360 /* Look for SMBS object */
1361 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1362 strcmp("SMBS", path.pointer))
1363 return false;
1364
1365 /* Does it have the necessary (but misnamed) methods? */
1366 if (acpi_has_method(handle, "SBI") &&
1367 acpi_has_method(handle, "SBR") &&
1368 acpi_has_method(handle, "SBW"))
1369 return true;
1370
1371 return false;
1372 }
1373
acpi_object_is_system_bus(acpi_handle handle)1374 static bool acpi_object_is_system_bus(acpi_handle handle)
1375 {
1376 acpi_handle tmp;
1377
1378 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1379 tmp == handle)
1380 return true;
1381 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1382 tmp == handle)
1383 return true;
1384
1385 return false;
1386 }
1387
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1388 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1389 int device_type)
1390 {
1391 struct acpi_device_info *info = NULL;
1392 struct acpi_pnp_device_id_list *cid_list;
1393 int i;
1394
1395 switch (device_type) {
1396 case ACPI_BUS_TYPE_DEVICE:
1397 if (handle == ACPI_ROOT_OBJECT) {
1398 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1399 break;
1400 }
1401
1402 acpi_get_object_info(handle, &info);
1403 if (!info) {
1404 pr_err("%s: Error reading device info\n", __func__);
1405 return;
1406 }
1407
1408 if (info->valid & ACPI_VALID_HID) {
1409 acpi_add_id(pnp, info->hardware_id.string);
1410 pnp->type.platform_id = 1;
1411 }
1412 if (info->valid & ACPI_VALID_CID) {
1413 cid_list = &info->compatible_id_list;
1414 for (i = 0; i < cid_list->count; i++)
1415 acpi_add_id(pnp, cid_list->ids[i].string);
1416 }
1417 if (info->valid & ACPI_VALID_ADR) {
1418 pnp->bus_address = info->address;
1419 pnp->type.bus_address = 1;
1420 }
1421 if (info->valid & ACPI_VALID_UID)
1422 pnp->unique_id = kstrdup(info->unique_id.string,
1423 GFP_KERNEL);
1424 if (info->valid & ACPI_VALID_CLS)
1425 acpi_add_id(pnp, info->class_code.string);
1426
1427 kfree(info);
1428
1429 /*
1430 * Some devices don't reliably have _HIDs & _CIDs, so add
1431 * synthetic HIDs to make sure drivers can find them.
1432 */
1433 if (acpi_is_video_device(handle)) {
1434 acpi_add_id(pnp, ACPI_VIDEO_HID);
1435 pnp->type.backlight = 1;
1436 break;
1437 }
1438 if (acpi_bay_match(handle))
1439 acpi_add_id(pnp, ACPI_BAY_HID);
1440 else if (acpi_dock_match(handle))
1441 acpi_add_id(pnp, ACPI_DOCK_HID);
1442 else if (acpi_ibm_smbus_match(handle))
1443 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1444 else if (list_empty(&pnp->ids) &&
1445 acpi_object_is_system_bus(handle)) {
1446 /* \_SB, \_TZ, LNXSYBUS */
1447 acpi_add_id(pnp, ACPI_BUS_HID);
1448 strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1449 strscpy(pnp->device_class, ACPI_BUS_CLASS);
1450 }
1451
1452 break;
1453 case ACPI_BUS_TYPE_POWER:
1454 acpi_add_id(pnp, ACPI_POWER_HID);
1455 break;
1456 case ACPI_BUS_TYPE_PROCESSOR:
1457 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1458 break;
1459 case ACPI_BUS_TYPE_THERMAL:
1460 acpi_add_id(pnp, ACPI_THERMAL_HID);
1461 pnp->type.platform_id = 1;
1462 break;
1463 case ACPI_BUS_TYPE_POWER_BUTTON:
1464 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1465 break;
1466 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1467 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1468 break;
1469 case ACPI_BUS_TYPE_ECDT_EC:
1470 acpi_add_id(pnp, ACPI_ECDT_HID);
1471 break;
1472 }
1473 }
1474
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1475 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1476 {
1477 struct acpi_hardware_id *id, *tmp;
1478
1479 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1480 kfree_const(id->id);
1481 kfree(id);
1482 }
1483 kfree(pnp->unique_id);
1484 }
1485
1486 /**
1487 * acpi_dma_supported - Check DMA support for the specified device.
1488 * @adev: The pointer to acpi device
1489 *
1490 * Return false if DMA is not supported. Otherwise, return true
1491 */
acpi_dma_supported(const struct acpi_device * adev)1492 bool acpi_dma_supported(const struct acpi_device *adev)
1493 {
1494 if (!adev)
1495 return false;
1496
1497 if (adev->flags.cca_seen)
1498 return true;
1499
1500 /*
1501 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1502 * DMA on "Intel platforms". Presumably that includes all x86 and
1503 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1504 */
1505 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1506 return true;
1507
1508 return false;
1509 }
1510
1511 /**
1512 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1513 * @adev: The pointer to acpi device
1514 *
1515 * Return enum dev_dma_attr.
1516 */
acpi_get_dma_attr(struct acpi_device * adev)1517 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1518 {
1519 if (!acpi_dma_supported(adev))
1520 return DEV_DMA_NOT_SUPPORTED;
1521
1522 if (adev->flags.coherent_dma)
1523 return DEV_DMA_COHERENT;
1524 else
1525 return DEV_DMA_NON_COHERENT;
1526 }
1527
1528 /**
1529 * acpi_dma_get_range() - Get device DMA parameters.
1530 *
1531 * @dev: device to configure
1532 * @map: pointer to DMA ranges result
1533 *
1534 * Evaluate DMA regions and return pointer to DMA regions on
1535 * parsing success; it does not update the passed in values on failure.
1536 *
1537 * Return 0 on success, < 0 on failure.
1538 */
acpi_dma_get_range(struct device * dev,const struct bus_dma_region ** map)1539 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1540 {
1541 struct acpi_device *adev;
1542 LIST_HEAD(list);
1543 struct resource_entry *rentry;
1544 int ret;
1545 struct device *dma_dev = dev;
1546 struct bus_dma_region *r;
1547
1548 /*
1549 * Walk the device tree chasing an ACPI companion with a _DMA
1550 * object while we go. Stop if we find a device with an ACPI
1551 * companion containing a _DMA method.
1552 */
1553 do {
1554 adev = ACPI_COMPANION(dma_dev);
1555 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1556 break;
1557
1558 dma_dev = dma_dev->parent;
1559 } while (dma_dev);
1560
1561 if (!dma_dev)
1562 return -ENODEV;
1563
1564 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1565 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1566 return -EINVAL;
1567 }
1568
1569 ret = acpi_dev_get_dma_resources(adev, &list);
1570 if (ret > 0) {
1571 r = kzalloc_objs(*r, ret + 1, GFP_KERNEL);
1572 if (!r) {
1573 ret = -ENOMEM;
1574 goto out;
1575 }
1576
1577 *map = r;
1578
1579 list_for_each_entry(rentry, &list, node) {
1580 if (rentry->res->start >= rentry->res->end) {
1581 kfree(*map);
1582 *map = NULL;
1583 ret = -EINVAL;
1584 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1585 goto out;
1586 }
1587
1588 r->cpu_start = rentry->res->start;
1589 r->dma_start = rentry->res->start - rentry->offset;
1590 r->size = resource_size(rentry->res);
1591 r++;
1592 }
1593 }
1594 out:
1595 acpi_dev_free_resource_list(&list);
1596
1597 return ret >= 0 ? 0 : ret;
1598 }
1599
1600 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode)1601 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1602 struct fwnode_handle *fwnode)
1603 {
1604 int ret;
1605
1606 ret = iommu_fwspec_init(dev, fwnode);
1607 if (ret)
1608 return ret;
1609
1610 return iommu_fwspec_add_ids(dev, &id, 1);
1611 }
1612
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1613 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1614 {
1615 int err;
1616
1617 /* Serialise to make dev->iommu stable under our potential fwspec */
1618 mutex_lock(&iommu_probe_device_lock);
1619 /* If we already translated the fwspec there is nothing left to do */
1620 if (dev_iommu_fwspec_get(dev)) {
1621 mutex_unlock(&iommu_probe_device_lock);
1622 return 0;
1623 }
1624
1625 err = iort_iommu_configure_id(dev, id_in);
1626 if (err && err != -EPROBE_DEFER)
1627 err = rimt_iommu_configure_id(dev, id_in);
1628 if (err && err != -EPROBE_DEFER)
1629 err = viot_iommu_configure(dev);
1630
1631 mutex_unlock(&iommu_probe_device_lock);
1632
1633 return err;
1634 }
1635
1636 #else /* !CONFIG_IOMMU_API */
1637
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode)1638 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1639 struct fwnode_handle *fwnode)
1640 {
1641 return -ENODEV;
1642 }
1643
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1644 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1645 {
1646 return -ENODEV;
1647 }
1648
1649 #endif /* !CONFIG_IOMMU_API */
1650
1651 /**
1652 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1653 * @dev: The pointer to the device
1654 * @attr: device dma attributes
1655 * @input_id: input device id const value pointer
1656 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1657 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1658 const u32 *input_id)
1659 {
1660 int ret;
1661
1662 if (attr == DEV_DMA_NOT_SUPPORTED) {
1663 set_dma_ops(dev, &dma_dummy_ops);
1664 return 0;
1665 }
1666
1667 acpi_arch_dma_setup(dev);
1668
1669 /* Ignore all other errors apart from EPROBE_DEFER */
1670 ret = acpi_iommu_configure_id(dev, input_id);
1671 if (ret == -EPROBE_DEFER)
1672 return -EPROBE_DEFER;
1673 if (ret)
1674 dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1675
1676 arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1677
1678 return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1681
acpi_init_coherency(struct acpi_device * adev)1682 static void acpi_init_coherency(struct acpi_device *adev)
1683 {
1684 unsigned long long cca = 0;
1685 acpi_status status;
1686 struct acpi_device *parent = acpi_dev_parent(adev);
1687
1688 if (parent && parent->flags.cca_seen) {
1689 /*
1690 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1691 * already saw one.
1692 */
1693 adev->flags.cca_seen = 1;
1694 cca = parent->flags.coherent_dma;
1695 } else {
1696 status = acpi_evaluate_integer(adev->handle, "_CCA",
1697 NULL, &cca);
1698 if (ACPI_SUCCESS(status))
1699 adev->flags.cca_seen = 1;
1700 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1701 /*
1702 * If architecture does not specify that _CCA is
1703 * required for DMA-able devices (e.g. x86),
1704 * we default to _CCA=1.
1705 */
1706 cca = 1;
1707 else
1708 acpi_handle_debug(adev->handle,
1709 "ACPI device is missing _CCA.\n");
1710 }
1711
1712 adev->flags.coherent_dma = cca;
1713 }
1714
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1715 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1716 {
1717 bool *is_serial_bus_slave_p = data;
1718
1719 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1720 return 1;
1721
1722 *is_serial_bus_slave_p = true;
1723
1724 /* no need to do more checking */
1725 return -1;
1726 }
1727
acpi_is_indirect_io_slave(struct acpi_device * device)1728 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1729 {
1730 struct acpi_device *parent = acpi_dev_parent(device);
1731 static const struct acpi_device_id indirect_io_hosts[] = {
1732 {"HISI0191", 0},
1733 {}
1734 };
1735
1736 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1737 }
1738
acpi_device_enumeration_by_parent(struct acpi_device * device)1739 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1740 {
1741 struct list_head resource_list;
1742 bool is_serial_bus_slave = false;
1743 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1744 /*
1745 * These devices have multiple SerialBus resources and a client
1746 * device must be instantiated for each of them, each with
1747 * its own device id.
1748 * Normally we only instantiate one client device for the first
1749 * resource, using the ACPI HID as id. These special cases are handled
1750 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1751 * knows which client device id to use for each resource.
1752 */
1753 {"BSG1160", },
1754 {"BSG2150", },
1755 {"CSC3551", },
1756 {"CSC3554", },
1757 {"CSC3556", },
1758 {"CSC3557", },
1759 {"INT33FE", },
1760 {"INT3515", },
1761 {"TXNW2781", },
1762 /* Non-conforming _HID for Cirrus Logic already released */
1763 {"CLSA0100", },
1764 {"CLSA0101", },
1765 /*
1766 * Some ACPI devs contain SerialBus resources even though they are not
1767 * attached to a serial bus at all.
1768 */
1769 {ACPI_VIDEO_HID, },
1770 {"MSHW0028", },
1771 /*
1772 * HIDs of device with an UartSerialBusV2 resource for which userspace
1773 * expects a regular tty cdev to be created (instead of the in kernel
1774 * serdev) and which have a kernel driver which expects a platform_dev
1775 * such as the rfkill-gpio driver.
1776 */
1777 {"BCM4752", },
1778 {"LNV4752", },
1779 {}
1780 };
1781
1782 if (acpi_is_indirect_io_slave(device))
1783 return true;
1784
1785 /* Macs use device properties in lieu of _CRS resources */
1786 if (x86_apple_machine &&
1787 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1788 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1789 fwnode_property_present(&device->fwnode, "baud")))
1790 return true;
1791
1792 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1793 return false;
1794
1795 INIT_LIST_HEAD(&resource_list);
1796 acpi_dev_get_resources(device, &resource_list,
1797 acpi_check_serial_bus_slave,
1798 &is_serial_bus_slave);
1799 acpi_dev_free_resource_list(&resource_list);
1800
1801 return is_serial_bus_slave;
1802 }
1803
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type,void (* release)(struct device *))1804 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1805 int type, void (*release)(struct device *))
1806 {
1807 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1808
1809 INIT_LIST_HEAD(&device->pnp.ids);
1810 device->device_type = type;
1811 device->handle = handle;
1812 device->dev.parent = parent ? &parent->dev : NULL;
1813 device->dev.release = release;
1814 device->dev.bus = &acpi_bus_type;
1815 device->dev.groups = acpi_groups;
1816 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1817 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1818 acpi_device_get_busid(device);
1819 acpi_set_pnp_ids(handle, &device->pnp, type);
1820 acpi_init_properties(device);
1821 acpi_bus_get_flags(device);
1822 device->flags.match_driver = false;
1823 device->flags.initialized = true;
1824 device->flags.enumeration_by_parent =
1825 acpi_device_enumeration_by_parent(device);
1826 acpi_device_clear_enumerated(device);
1827 device_initialize(&device->dev);
1828 dev_set_uevent_suppress(&device->dev, true);
1829 acpi_init_coherency(device);
1830 }
1831
acpi_scan_dep_init(struct acpi_device * adev)1832 static void acpi_scan_dep_init(struct acpi_device *adev)
1833 {
1834 struct acpi_dep_data *dep;
1835
1836 list_for_each_entry(dep, &acpi_dep_list, node) {
1837 if (dep->consumer == adev->handle) {
1838 if (dep->honor_dep)
1839 adev->flags.honor_deps = 1;
1840
1841 if (!dep->met)
1842 adev->dep_unmet++;
1843 }
1844 }
1845 }
1846
acpi_device_add_finalize(struct acpi_device * device)1847 void acpi_device_add_finalize(struct acpi_device *device)
1848 {
1849 dev_set_uevent_suppress(&device->dev, false);
1850 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1851 }
1852
acpi_scan_init_status(struct acpi_device * adev)1853 static void acpi_scan_init_status(struct acpi_device *adev)
1854 {
1855 if (acpi_bus_get_status(adev))
1856 acpi_set_device_status(adev, 0);
1857 }
1858
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1859 static int acpi_add_single_object(struct acpi_device **child,
1860 acpi_handle handle, int type, bool dep_init)
1861 {
1862 struct acpi_device *device;
1863 bool release_dep_lock = false;
1864 int result;
1865
1866 device = kzalloc_obj(struct acpi_device, GFP_KERNEL);
1867 if (!device)
1868 return -ENOMEM;
1869
1870 acpi_init_device_object(device, handle, type, acpi_device_release);
1871 /*
1872 * Getting the status is delayed till here so that we can call
1873 * acpi_bus_get_status() and use its quirk handling. Note that
1874 * this must be done before the get power-/wakeup_dev-flags calls.
1875 */
1876 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1877 if (dep_init) {
1878 mutex_lock(&acpi_dep_list_lock);
1879 /*
1880 * Hold the lock until the acpi_tie_acpi_dev() call
1881 * below to prevent concurrent acpi_scan_clear_dep()
1882 * from deleting a dependency list entry without
1883 * updating dep_unmet for the device.
1884 */
1885 release_dep_lock = true;
1886 acpi_scan_dep_init(device);
1887 }
1888 acpi_scan_init_status(device);
1889 }
1890
1891 acpi_bus_get_power_flags(device);
1892 acpi_bus_get_wakeup_device_flags(device);
1893
1894 result = acpi_tie_acpi_dev(device);
1895
1896 if (release_dep_lock)
1897 mutex_unlock(&acpi_dep_list_lock);
1898
1899 if (!result)
1900 result = acpi_device_add(device);
1901
1902 if (result) {
1903 acpi_device_release(&device->dev);
1904 return result;
1905 }
1906
1907 acpi_power_add_remove_device(device, true);
1908 acpi_device_add_finalize(device);
1909
1910 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1911 dev_name(&device->dev), device->dev.parent ?
1912 dev_name(device->dev.parent) : "(null)");
1913
1914 *child = device;
1915 return 0;
1916 }
1917
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1918 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1919 void *context)
1920 {
1921 struct resource *res = context;
1922
1923 if (acpi_dev_resource_memory(ares, res))
1924 return AE_CTRL_TERMINATE;
1925
1926 return AE_OK;
1927 }
1928
acpi_device_should_be_hidden(acpi_handle handle)1929 static bool acpi_device_should_be_hidden(acpi_handle handle)
1930 {
1931 acpi_status status;
1932 struct resource res;
1933
1934 /* Check if it should ignore the UART device */
1935 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1936 return false;
1937
1938 /*
1939 * The UART device described in SPCR table is assumed to have only one
1940 * memory resource present. So we only look for the first one here.
1941 */
1942 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1943 acpi_get_resource_memory, &res);
1944 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1945 return false;
1946
1947 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1948 &res.start);
1949
1950 return true;
1951 }
1952
acpi_device_is_present(const struct acpi_device * adev)1953 bool acpi_device_is_present(const struct acpi_device *adev)
1954 {
1955 return adev->status.present || adev->status.functional;
1956 }
1957
acpi_device_is_enabled(const struct acpi_device * adev)1958 bool acpi_device_is_enabled(const struct acpi_device *adev)
1959 {
1960 return adev->status.enabled;
1961 }
1962
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1963 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1964 const char *idstr,
1965 const struct acpi_device_id **matchid)
1966 {
1967 const struct acpi_device_id *devid;
1968
1969 if (handler->match)
1970 return handler->match(idstr, matchid);
1971
1972 for (devid = handler->ids; devid->id[0]; devid++)
1973 if (!strcmp((char *)devid->id, idstr)) {
1974 if (matchid)
1975 *matchid = devid;
1976
1977 return true;
1978 }
1979
1980 return false;
1981 }
1982
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1983 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1984 const struct acpi_device_id **matchid)
1985 {
1986 struct acpi_scan_handler *handler;
1987
1988 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1989 if (acpi_scan_handler_matching(handler, idstr, matchid))
1990 return handler;
1991
1992 return NULL;
1993 }
1994
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1995 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1996 {
1997 if (!!hotplug->enabled == !!val)
1998 return;
1999
2000 mutex_lock(&acpi_scan_lock);
2001
2002 hotplug->enabled = val;
2003
2004 mutex_unlock(&acpi_scan_lock);
2005 }
2006
acpi_scan_add_dep(acpi_handle handle,struct acpi_handle_list * dep_devices)2007 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2008 {
2009 u32 count;
2010 int i;
2011
2012 for (count = 0, i = 0; i < dep_devices->count; i++) {
2013 struct acpi_device_info *info;
2014 struct acpi_dep_data *dep;
2015 bool skip, honor_dep;
2016 acpi_status status;
2017
2018 status = acpi_get_object_info(dep_devices->handles[i], &info);
2019 if (ACPI_FAILURE(status)) {
2020 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2021 continue;
2022 }
2023
2024 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2025 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2026 kfree(info);
2027
2028 if (skip)
2029 continue;
2030
2031 dep = kzalloc_obj(*dep, GFP_KERNEL);
2032 if (!dep)
2033 continue;
2034
2035 count++;
2036
2037 dep->supplier = dep_devices->handles[i];
2038 dep->consumer = handle;
2039 dep->honor_dep = honor_dep;
2040
2041 mutex_lock(&acpi_dep_list_lock);
2042 list_add_tail(&dep->node, &acpi_dep_list);
2043 mutex_unlock(&acpi_dep_list_lock);
2044 }
2045
2046 acpi_handle_list_free(dep_devices);
2047 return count;
2048 }
2049
acpi_scan_init_hotplug(struct acpi_device * adev)2050 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2051 {
2052 struct acpi_hardware_id *hwid;
2053
2054 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2055 acpi_dock_add(adev);
2056 return;
2057 }
2058 list_for_each_entry(hwid, &adev->pnp.ids, list) {
2059 struct acpi_scan_handler *handler;
2060
2061 handler = acpi_scan_match_handler(hwid->id, NULL);
2062 if (handler) {
2063 adev->flags.hotplug_notify = true;
2064 break;
2065 }
2066 }
2067 }
2068
arch_acpi_add_auto_dep(acpi_handle handle)2069 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2070
acpi_scan_check_dep(acpi_handle handle)2071 static u32 acpi_scan_check_dep(acpi_handle handle)
2072 {
2073 struct acpi_handle_list dep_devices;
2074 u32 count = 0;
2075
2076 /*
2077 * Some architectures like RISC-V need to add dependencies for
2078 * all devices which use GSI to the interrupt controller so that
2079 * interrupt controller is probed before any of those devices.
2080 * Instead of mandating _DEP on all the devices, detect the
2081 * dependency and add automatically.
2082 */
2083 count += arch_acpi_add_auto_dep(handle);
2084
2085 /*
2086 * Check for _HID here to avoid deferring the enumeration of:
2087 * 1. PCI devices.
2088 * 2. ACPI nodes describing USB ports.
2089 * Still, checking for _HID catches more then just these cases ...
2090 */
2091 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2092 return count;
2093
2094 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2095 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2096 return count;
2097 }
2098
2099 count += acpi_scan_add_dep(handle, &dep_devices);
2100 return count;
2101 }
2102
acpi_scan_check_crs_csi2_cb(acpi_handle handle,u32 a,void * b,void ** c)2103 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2104 {
2105 acpi_mipi_check_crs_csi2(handle);
2106 return AE_OK;
2107 }
2108
acpi_bus_check_add(acpi_handle handle,bool first_pass,struct acpi_device ** adev_p)2109 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2110 struct acpi_device **adev_p)
2111 {
2112 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2113 acpi_object_type acpi_type;
2114 int type;
2115
2116 if (device)
2117 goto out;
2118
2119 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2120 return AE_OK;
2121
2122 switch (acpi_type) {
2123 case ACPI_TYPE_DEVICE:
2124 if (acpi_device_should_be_hidden(handle))
2125 return AE_OK;
2126
2127 if (first_pass) {
2128 acpi_mipi_check_crs_csi2(handle);
2129
2130 /* Bail out if there are dependencies. */
2131 if (acpi_scan_check_dep(handle) > 0) {
2132 /*
2133 * The entire CSI-2 connection graph needs to be
2134 * extracted before any drivers or scan handlers
2135 * are bound to struct device objects, so scan
2136 * _CRS CSI-2 resource descriptors for all
2137 * devices below the current handle.
2138 */
2139 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2140 ACPI_UINT32_MAX,
2141 acpi_scan_check_crs_csi2_cb,
2142 NULL, NULL, NULL);
2143 return AE_CTRL_DEPTH;
2144 }
2145 }
2146
2147 fallthrough;
2148 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2149 type = ACPI_BUS_TYPE_DEVICE;
2150 break;
2151
2152 case ACPI_TYPE_PROCESSOR:
2153 type = ACPI_BUS_TYPE_PROCESSOR;
2154 break;
2155
2156 case ACPI_TYPE_THERMAL:
2157 type = ACPI_BUS_TYPE_THERMAL;
2158 break;
2159
2160 case ACPI_TYPE_POWER:
2161 acpi_add_power_resource(handle);
2162 fallthrough;
2163 default:
2164 return AE_OK;
2165 }
2166
2167 /*
2168 * If first_pass is true at this point, the device has no dependencies,
2169 * or the creation of the device object would have been postponed above.
2170 */
2171 acpi_add_single_object(&device, handle, type, !first_pass);
2172 if (!device)
2173 return AE_CTRL_DEPTH;
2174
2175 acpi_scan_init_hotplug(device);
2176
2177 out:
2178 if (!*adev_p)
2179 *adev_p = device;
2180
2181 return AE_OK;
2182 }
2183
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2184 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2185 void *not_used, void **ret_p)
2186 {
2187 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2188 }
2189
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2190 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2191 void *not_used, void **ret_p)
2192 {
2193 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2194 }
2195
2196 struct acpi_scan_system_dev {
2197 struct list_head node;
2198 struct acpi_device *adev;
2199 };
2200
2201 static const char * const acpi_system_dev_ids[] = {
2202 "PNP0C01", /* Memory controller */
2203 "PNP0C02", /* Motherboard resource */
2204 NULL
2205 };
2206
acpi_default_enumeration(struct acpi_device * device)2207 static void acpi_default_enumeration(struct acpi_device *device)
2208 {
2209 /*
2210 * Do not enumerate devices with enumeration_by_parent flag set as
2211 * they will be enumerated by their respective parents.
2212 */
2213 if (device->flags.enumeration_by_parent) {
2214 blocking_notifier_call_chain(&acpi_reconfig_chain,
2215 ACPI_RECONFIG_DEVICE_ADD, device);
2216 return;
2217 }
2218 if (match_string(acpi_system_dev_ids, -1, acpi_device_hid(device)) >= 0) {
2219 struct acpi_scan_system_dev *sd;
2220
2221 /*
2222 * This is a generic system device, so there is no need to
2223 * create a platform device for it, but its resources need to be
2224 * reserved. However, that needs to be done after all of the
2225 * other device objects have been processed and PCI has claimed
2226 * BARs in case there are resource conflicts.
2227 */
2228 sd = kmalloc_obj(*sd, GFP_KERNEL);
2229 if (sd) {
2230 sd->adev = device;
2231 list_add_tail(&sd->node, &acpi_scan_system_dev_list);
2232 }
2233 } else {
2234 /* For a regular device object, create a platform device. */
2235 acpi_create_platform_device(device, NULL);
2236 }
2237 acpi_device_set_enumerated(device);
2238 }
2239
2240 static const struct acpi_device_id generic_device_ids[] = {
2241 {ACPI_DT_NAMESPACE_HID, },
2242 {"", },
2243 };
2244
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2245 static int acpi_generic_device_attach(struct acpi_device *adev,
2246 const struct acpi_device_id *not_used)
2247 {
2248 /*
2249 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2250 * below can be unconditional.
2251 */
2252 if (adev->data.of_compatible)
2253 acpi_default_enumeration(adev);
2254
2255 return 1;
2256 }
2257
2258 static struct acpi_scan_handler generic_device_handler = {
2259 .ids = generic_device_ids,
2260 .attach = acpi_generic_device_attach,
2261 };
2262
acpi_scan_attach_handler(struct acpi_device * device)2263 static int acpi_scan_attach_handler(struct acpi_device *device)
2264 {
2265 struct acpi_hardware_id *hwid;
2266 int ret = 0;
2267
2268 list_for_each_entry(hwid, &device->pnp.ids, list) {
2269 const struct acpi_device_id *devid;
2270 struct acpi_scan_handler *handler;
2271
2272 handler = acpi_scan_match_handler(hwid->id, &devid);
2273 if (handler) {
2274 if (!handler->attach) {
2275 device->pnp.type.platform_id = 0;
2276 continue;
2277 }
2278 device->handler = handler;
2279 ret = handler->attach(device, devid);
2280 if (ret > 0)
2281 break;
2282
2283 device->handler = NULL;
2284 if (ret < 0)
2285 break;
2286 }
2287 }
2288
2289 return ret;
2290 }
2291
acpi_bus_attach(struct acpi_device * device,void * first_pass)2292 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2293 {
2294 bool skip = !first_pass && device->flags.visited;
2295 acpi_handle ejd;
2296 int ret;
2297
2298 if (skip)
2299 goto ok;
2300
2301 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2302 register_dock_dependent_device(device, ejd);
2303
2304 acpi_bus_get_status(device);
2305 /* Skip devices that are not ready for enumeration (e.g. not present) */
2306 if (!acpi_dev_ready_for_enumeration(device)) {
2307 device->flags.initialized = false;
2308 acpi_device_clear_enumerated(device);
2309 device->flags.power_manageable = 0;
2310 return 0;
2311 }
2312 if (device->handler)
2313 goto ok;
2314
2315 acpi_ec_register_opregions(device);
2316
2317 if (!device->flags.initialized) {
2318 device->flags.power_manageable =
2319 device->power.states[ACPI_STATE_D0].flags.valid;
2320 if (acpi_bus_init_power(device))
2321 device->flags.power_manageable = 0;
2322
2323 device->flags.initialized = true;
2324 } else if (device->flags.visited) {
2325 goto ok;
2326 }
2327
2328 ret = acpi_scan_attach_handler(device);
2329 if (ret < 0)
2330 return 0;
2331
2332 device->flags.match_driver = true;
2333 if (ret > 0 && !device->flags.enumeration_by_parent) {
2334 acpi_device_set_enumerated(device);
2335 goto ok;
2336 }
2337
2338 ret = device_attach(&device->dev);
2339 if (ret < 0)
2340 return 0;
2341
2342 if (device->pnp.type.platform_id || device->pnp.type.backlight ||
2343 device->flags.enumeration_by_parent)
2344 acpi_default_enumeration(device);
2345 else
2346 acpi_device_set_enumerated(device);
2347
2348 ok:
2349 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2350
2351 if (!skip && device->handler && device->handler->hotplug.notify_online)
2352 device->handler->hotplug.notify_online(device);
2353
2354 return 0;
2355 }
2356
acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2357 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2358 {
2359 struct acpi_device **adev_p = data;
2360 struct acpi_device *adev = *adev_p;
2361
2362 /*
2363 * If we're passed a 'previous' consumer device then we need to skip
2364 * any consumers until we meet the previous one, and then NULL @data
2365 * so the next one can be returned.
2366 */
2367 if (adev) {
2368 if (dep->consumer == adev->handle)
2369 *adev_p = NULL;
2370
2371 return 0;
2372 }
2373
2374 adev = acpi_get_acpi_dev(dep->consumer);
2375 if (adev) {
2376 *(struct acpi_device **)data = adev;
2377 return 1;
2378 }
2379 /* Continue parsing if the device object is not present. */
2380 return 0;
2381 }
2382
acpi_scan_clear_dep_fn(void * dev,async_cookie_t cookie)2383 static void acpi_scan_clear_dep_fn(void *dev, async_cookie_t cookie)
2384 {
2385 struct acpi_device *adev = to_acpi_device(dev);
2386
2387 acpi_scan_lock_acquire();
2388 acpi_bus_attach(adev, (void *)true);
2389 acpi_scan_lock_release();
2390
2391 acpi_dev_put(adev);
2392 }
2393
acpi_scan_clear_dep_queue(struct acpi_device * adev)2394 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2395 {
2396 if (adev->dep_unmet)
2397 return false;
2398
2399 /*
2400 * Async schedule the deferred acpi_scan_clear_dep_fn() since:
2401 * - acpi_bus_attach() needs to hold acpi_scan_lock which cannot
2402 * be acquired under acpi_dep_list_lock (held here)
2403 * - the deferred work at boot stage is ensured to be finished
2404 * before userspace init task by the async_synchronize_full()
2405 * barrier
2406 *
2407 * Use _nocall variant since it'll return on failure instead of
2408 * run the function synchronously.
2409 */
2410 return async_schedule_dev_nocall(acpi_scan_clear_dep_fn, &adev->dev);
2411 }
2412
acpi_scan_delete_dep_data(struct acpi_dep_data * dep)2413 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2414 {
2415 list_del(&dep->node);
2416 kfree(dep);
2417 }
2418
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2419 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2420 {
2421 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2422
2423 if (adev) {
2424 adev->dep_unmet--;
2425 if (!acpi_scan_clear_dep_queue(adev))
2426 acpi_dev_put(adev);
2427 }
2428
2429 if (dep->free_when_met)
2430 acpi_scan_delete_dep_data(dep);
2431 else
2432 dep->met = true;
2433
2434 return 0;
2435 }
2436
2437 /**
2438 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2439 * @handle: The ACPI handle of the supplier device
2440 * @callback: Pointer to the callback function to apply
2441 * @data: Pointer to some data to pass to the callback
2442 *
2443 * The return value of the callback determines this function's behaviour. If 0
2444 * is returned we continue to iterate over acpi_dep_list. If a positive value
2445 * is returned then the loop is broken but this function returns 0. If a
2446 * negative value is returned by the callback then the loop is broken and that
2447 * value is returned as the final error.
2448 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2449 static int acpi_walk_dep_device_list(acpi_handle handle,
2450 int (*callback)(struct acpi_dep_data *, void *),
2451 void *data)
2452 {
2453 struct acpi_dep_data *dep, *tmp;
2454 int ret = 0;
2455
2456 mutex_lock(&acpi_dep_list_lock);
2457 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2458 if (dep->supplier == handle) {
2459 ret = callback(dep, data);
2460 if (ret)
2461 break;
2462 }
2463 }
2464 mutex_unlock(&acpi_dep_list_lock);
2465
2466 return ret > 0 ? 0 : ret;
2467 }
2468
2469 /**
2470 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2471 * @supplier: Pointer to the supplier &struct acpi_device
2472 *
2473 * Clear dependencies on the given device.
2474 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2475 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2476 {
2477 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2480
2481 /**
2482 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2483 * @device: Pointer to the &struct acpi_device to check
2484 *
2485 * Check if the device is present and has no unmet dependencies.
2486 *
2487 * Return true if the device is ready for enumeratino. Otherwise, return false.
2488 */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2489 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2490 {
2491 if (device->flags.honor_deps && device->dep_unmet)
2492 return false;
2493
2494 return acpi_device_is_present(device);
2495 }
2496 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2497
2498 /**
2499 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2500 * @supplier: Pointer to the dependee device
2501 * @start: Pointer to the current dependent device
2502 *
2503 * Returns the next &struct acpi_device which declares itself dependent on
2504 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2505 *
2506 * If the returned adev is not passed as @start to this function, the caller is
2507 * responsible for putting the reference to adev when it is no longer needed.
2508 */
acpi_dev_get_next_consumer_dev(struct acpi_device * supplier,struct acpi_device * start)2509 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2510 struct acpi_device *start)
2511 {
2512 struct acpi_device *adev = start;
2513
2514 acpi_walk_dep_device_list(supplier->handle,
2515 acpi_dev_get_next_consumer_dev_cb, &adev);
2516
2517 acpi_dev_put(start);
2518
2519 if (adev == start)
2520 return NULL;
2521
2522 return adev;
2523 }
2524 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2525
acpi_scan_postponed_branch(acpi_handle handle)2526 static void acpi_scan_postponed_branch(acpi_handle handle)
2527 {
2528 struct acpi_device *adev = NULL;
2529
2530 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2531 return;
2532
2533 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2534 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2535
2536 /*
2537 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2538 * have been added above.
2539 */
2540 acpi_mipi_init_crs_csi2_swnodes();
2541
2542 acpi_bus_attach(adev, NULL);
2543 }
2544
acpi_scan_postponed(void)2545 static void acpi_scan_postponed(void)
2546 {
2547 struct acpi_dep_data *dep, *tmp;
2548
2549 mutex_lock(&acpi_dep_list_lock);
2550
2551 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2552 acpi_handle handle = dep->consumer;
2553
2554 /*
2555 * In case there are multiple acpi_dep_list entries with the
2556 * same consumer, skip the current entry if the consumer device
2557 * object corresponding to it is present already.
2558 */
2559 if (!acpi_fetch_acpi_dev(handle)) {
2560 /*
2561 * Even though the lock is released here, tmp is
2562 * guaranteed to be valid, because none of the list
2563 * entries following dep is marked as "free when met"
2564 * and so they cannot be deleted.
2565 */
2566 mutex_unlock(&acpi_dep_list_lock);
2567
2568 acpi_scan_postponed_branch(handle);
2569
2570 mutex_lock(&acpi_dep_list_lock);
2571 }
2572
2573 if (dep->met)
2574 acpi_scan_delete_dep_data(dep);
2575 else
2576 dep->free_when_met = true;
2577 }
2578
2579 mutex_unlock(&acpi_dep_list_lock);
2580 }
2581
acpi_scan_claim_resources(struct acpi_device * adev)2582 static void acpi_scan_claim_resources(struct acpi_device *adev)
2583 {
2584 struct resource_entry *rentry;
2585 LIST_HEAD(resource_list);
2586 unsigned int count = 0;
2587 const char *regionid;
2588
2589 if (acpi_dev_get_resources(adev, &resource_list, NULL, NULL) <= 0)
2590 return;
2591
2592 regionid = kstrdup(dev_name(&adev->dev), GFP_KERNEL);
2593 if (!regionid)
2594 goto exit;
2595
2596 list_for_each_entry(rentry, &resource_list, node) {
2597 struct resource *res = rentry->res;
2598 struct resource *r;
2599
2600 /* Skip disabled and invalid resources. */
2601 if ((res->flags & IORESOURCE_DISABLED) || res->end < res->start)
2602 continue;
2603
2604 if (resource_type(res) == IORESOURCE_IO) {
2605 /*
2606 * Follow the PNP system driver and on x86 skip I/O
2607 * resources that start below 0x100 (the "standard PC
2608 * hardware" boundary).
2609 */
2610 if (IS_ENABLED(CONFIG_X86) && res->start < 0x100) {
2611 dev_info(&adev->dev, "Skipped %pR\n", res);
2612 continue;
2613 }
2614 r = request_region(res->start, resource_size(res), regionid);
2615 } else if (resource_type(res) == IORESOURCE_MEM) {
2616 r = request_mem_region(res->start, resource_size(res), regionid);
2617 } else {
2618 continue;
2619 }
2620
2621 if (r) {
2622 r->flags &= ~IORESOURCE_BUSY;
2623 dev_info(&adev->dev, "Reserved %pR\n", r);
2624 count++;
2625 } else {
2626 /*
2627 * Failures at this point are usually harmless. PCI
2628 * quirks, for example, reserve resources they know
2629 * about too, so there may well be double reservations.
2630 */
2631 dev_info(&adev->dev, "Could not reserve %pR\n", res);
2632 }
2633 }
2634
2635 if (!count)
2636 kfree(regionid);
2637
2638 exit:
2639 acpi_dev_free_resource_list(&resource_list);
2640 }
2641
acpi_reserve_motherboard_resources(void)2642 static int __init acpi_reserve_motherboard_resources(void)
2643 {
2644 struct acpi_scan_system_dev *sd, *tmp;
2645
2646 guard(mutex)(&acpi_scan_lock);
2647
2648 list_for_each_entry_safe(sd, tmp, &acpi_scan_system_dev_list, node) {
2649 acpi_scan_claim_resources(sd->adev);
2650 list_del(&sd->node);
2651 kfree(sd);
2652 }
2653
2654 return 0;
2655 }
2656
2657 /*
2658 * Reserve motherboard resources after PCI claims BARs, but before PCI assigns
2659 * resources for uninitialized PCI devices.
2660 */
2661 fs_initcall(acpi_reserve_motherboard_resources);
2662
2663 /**
2664 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2665 * @handle: Root of the namespace scope to scan.
2666 *
2667 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2668 * found devices.
2669 *
2670 * If no devices were found, -ENODEV is returned, but it does not mean that
2671 * there has been a real error. There just have been no suitable ACPI objects
2672 * in the table trunk from which the kernel could create a device and add an
2673 * appropriate driver.
2674 *
2675 * Must be called under acpi_scan_lock.
2676 */
acpi_bus_scan(acpi_handle handle)2677 int acpi_bus_scan(acpi_handle handle)
2678 {
2679 struct acpi_device *device = NULL;
2680
2681 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2682
2683 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2684 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2685 acpi_bus_check_add_1, NULL, NULL,
2686 (void **)&device);
2687
2688 if (!device)
2689 return -ENODEV;
2690
2691 /*
2692 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2693 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2694 * walk above and MIPI DisCo for Imaging device properties.
2695 */
2696 acpi_mipi_scan_crs_csi2();
2697 acpi_mipi_init_crs_csi2_swnodes();
2698
2699 acpi_bus_attach(device, (void *)true);
2700
2701 /* Pass 2: Enumerate all of the remaining devices. */
2702
2703 acpi_scan_postponed();
2704
2705 acpi_mipi_crs_csi2_cleanup();
2706
2707 return 0;
2708 }
2709 EXPORT_SYMBOL(acpi_bus_scan);
2710
2711 /**
2712 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2713 * @adev: Root of the ACPI namespace scope to walk.
2714 *
2715 * Must be called under acpi_scan_lock.
2716 */
acpi_bus_trim(struct acpi_device * adev)2717 void acpi_bus_trim(struct acpi_device *adev)
2718 {
2719 uintptr_t flags = 0;
2720
2721 acpi_scan_check_and_detach(adev, (void *)flags);
2722 }
2723 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2724
acpi_bus_register_early_device(int type)2725 int acpi_bus_register_early_device(int type)
2726 {
2727 struct acpi_device *device = NULL;
2728 int result;
2729
2730 result = acpi_add_single_object(&device, NULL, type, false);
2731 if (result)
2732 return result;
2733
2734 acpi_default_enumeration(device);
2735 return 0;
2736 }
2737 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2738
acpi_bus_add_fixed_device_object(enum acpi_bus_device_type type)2739 static void acpi_bus_add_fixed_device_object(enum acpi_bus_device_type type)
2740 {
2741 struct acpi_device *adev = NULL;
2742
2743 acpi_add_single_object(&adev, NULL, type, false);
2744 if (adev)
2745 acpi_default_enumeration(adev);
2746 }
2747
acpi_bus_scan_fixed(void)2748 static void acpi_bus_scan_fixed(void)
2749 {
2750 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON))
2751 acpi_bus_add_fixed_device_object(ACPI_BUS_TYPE_POWER_BUTTON);
2752
2753 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON))
2754 acpi_bus_add_fixed_device_object(ACPI_BUS_TYPE_SLEEP_BUTTON);
2755 }
2756
acpi_get_spcr_uart_addr(void)2757 static void __init acpi_get_spcr_uart_addr(void)
2758 {
2759 acpi_status status;
2760 struct acpi_table_spcr *spcr_ptr;
2761
2762 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2763 (struct acpi_table_header **)&spcr_ptr);
2764 if (ACPI_FAILURE(status)) {
2765 pr_warn("STAO table present, but SPCR is missing\n");
2766 return;
2767 }
2768
2769 spcr_uart_addr = spcr_ptr->serial_port.address;
2770 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2771 }
2772
2773 static bool acpi_scan_initialized;
2774
acpi_scan_init(void)2775 void __init acpi_scan_init(void)
2776 {
2777 acpi_status status;
2778 struct acpi_table_stao *stao_ptr;
2779
2780 acpi_pci_root_init();
2781 acpi_pci_link_init();
2782 acpi_processor_init();
2783 acpi_platform_init();
2784 acpi_lpss_init();
2785 acpi_apd_init();
2786 acpi_cmos_rtc_init();
2787 acpi_container_init();
2788 acpi_memory_hotplug_init();
2789 acpi_watchdog_init();
2790 acpi_pnp_init();
2791 acpi_power_resources_init();
2792 acpi_init_lpit();
2793
2794 acpi_scan_add_handler(&generic_device_handler);
2795
2796 /*
2797 * If there is STAO table, check whether it needs to ignore the UART
2798 * device in SPCR table.
2799 */
2800 status = acpi_get_table(ACPI_SIG_STAO, 0,
2801 (struct acpi_table_header **)&stao_ptr);
2802 if (ACPI_SUCCESS(status)) {
2803 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2804 pr_info("STAO Name List not yet supported.\n");
2805
2806 if (stao_ptr->ignore_uart)
2807 acpi_get_spcr_uart_addr();
2808
2809 acpi_put_table((struct acpi_table_header *)stao_ptr);
2810 }
2811
2812 acpi_gpe_apply_masked_gpes();
2813 acpi_update_all_gpes();
2814
2815 /*
2816 * Although we call __add_memory() that is documented to require the
2817 * device_hotplug_lock, it is not necessary here because this is an
2818 * early code when userspace or any other code path cannot trigger
2819 * hotplug/hotunplug operations.
2820 */
2821 mutex_lock(&acpi_scan_lock);
2822 /*
2823 * Enumerate devices in the ACPI namespace.
2824 */
2825 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2826 goto unlock;
2827
2828 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2829 if (!acpi_root)
2830 goto unlock;
2831
2832 /* Fixed feature devices do not exist on HW-reduced platform */
2833 if (!acpi_gbl_reduced_hardware)
2834 acpi_bus_scan_fixed();
2835
2836 acpi_turn_off_unused_power_resources();
2837
2838 acpi_scan_initialized = true;
2839
2840 unlock:
2841 mutex_unlock(&acpi_scan_lock);
2842 }
2843
2844 static struct acpi_probe_entry *ape;
2845 static int acpi_probe_count;
2846 static DEFINE_MUTEX(acpi_probe_mutex);
2847
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2848 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2849 const unsigned long end)
2850 {
2851 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2852 if (!ape->probe_subtbl(header, end))
2853 acpi_probe_count++;
2854
2855 return 0;
2856 }
2857
arch_sort_irqchip_probe(struct acpi_probe_entry * ap_head,int nr)2858 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2859
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2860 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2861 {
2862 int count = 0;
2863
2864 if (acpi_disabled)
2865 return 0;
2866
2867 mutex_lock(&acpi_probe_mutex);
2868 arch_sort_irqchip_probe(ap_head, nr);
2869 for (ape = ap_head; nr; ape++, nr--) {
2870 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2871 acpi_probe_count = 0;
2872 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2873 count += acpi_probe_count;
2874 } else {
2875 int res;
2876 res = acpi_table_parse(ape->id, ape->probe_table);
2877 if (!res)
2878 count++;
2879 }
2880 }
2881 mutex_unlock(&acpi_probe_mutex);
2882
2883 return count;
2884 }
2885
acpi_table_events_fn(struct work_struct * work)2886 static void acpi_table_events_fn(struct work_struct *work)
2887 {
2888 acpi_scan_lock_acquire();
2889 acpi_bus_scan(ACPI_ROOT_OBJECT);
2890 acpi_scan_lock_release();
2891
2892 kfree(work);
2893 }
2894
acpi_scan_table_notify(void)2895 void acpi_scan_table_notify(void)
2896 {
2897 struct work_struct *work;
2898
2899 if (!acpi_scan_initialized)
2900 return;
2901
2902 work = kmalloc_obj(*work, GFP_KERNEL);
2903 if (!work)
2904 return;
2905
2906 INIT_WORK(work, acpi_table_events_fn);
2907 schedule_work(work);
2908 }
2909
acpi_reconfig_notifier_register(struct notifier_block * nb)2910 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2911 {
2912 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2913 }
2914 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2915
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2916 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2917 {
2918 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2919 }
2920 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2921