xref: /linux/drivers/acpi/scan.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/async.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/acpi.h>
14 #include <linux/acpi_iort.h>
15 #include <linux/acpi_rimt.h>
16 #include <linux/acpi_viot.h>
17 #include <linux/iommu.h>
18 #include <linux/signal.h>
19 #include <linux/kthread.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/platform_data/x86/apple.h>
23 #include <linux/pgtable.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-direct.h>
26 
27 #include "internal.h"
28 #include "sleep.h"
29 
30 #define ACPI_BUS_CLASS			"system_bus"
31 #define ACPI_BUS_HID			"LNXSYBUS"
32 #define ACPI_BUS_DEVICE_NAME		"System Bus"
33 
34 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
35 
36 static const char *dummy_hid = "device";
37 
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46 static LIST_HEAD(acpi_scan_system_dev_list);
47 
48 /*
49  * The UART device described by the SPCR table is the only object which needs
50  * special-casing. Everything else is covered by ACPI namespace paths in STAO
51  * table.
52  */
53 static u64 spcr_uart_addr;
54 
acpi_scan_lock_acquire(void)55 void acpi_scan_lock_acquire(void)
56 {
57 	mutex_lock(&acpi_scan_lock);
58 }
59 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
60 
acpi_scan_lock_release(void)61 void acpi_scan_lock_release(void)
62 {
63 	mutex_unlock(&acpi_scan_lock);
64 }
65 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
66 
acpi_lock_hp_context(void)67 void acpi_lock_hp_context(void)
68 {
69 	mutex_lock(&acpi_hp_context_lock);
70 }
71 
acpi_unlock_hp_context(void)72 void acpi_unlock_hp_context(void)
73 {
74 	mutex_unlock(&acpi_hp_context_lock);
75 }
76 
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,acpi_hp_notify notify,acpi_hp_uevent uevent)77 void acpi_initialize_hp_context(struct acpi_device *adev,
78 				struct acpi_hotplug_context *hp,
79 				acpi_hp_notify notify, acpi_hp_uevent uevent)
80 {
81 	acpi_lock_hp_context();
82 	hp->notify = notify;
83 	hp->uevent = uevent;
84 	acpi_set_hp_context(adev, hp);
85 	acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88 
acpi_scan_add_handler(struct acpi_scan_handler * handler)89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 	if (!handler)
92 		return -EINVAL;
93 
94 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 	return 0;
96 }
97 
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 				       const char *hotplug_profile_name)
100 {
101 	int error;
102 
103 	error = acpi_scan_add_handler(handler);
104 	if (error)
105 		return error;
106 
107 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 	return 0;
109 }
110 
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 	struct acpi_device_physical_node *pn;
114 	bool offline = true;
115 	char *envp[] = { "EVENT=offline", NULL };
116 
117 	/*
118 	 * acpi_container_offline() calls this for all of the container's
119 	 * children under the container's physical_node_lock lock.
120 	 */
121 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122 
123 	list_for_each_entry(pn, &adev->physical_node_list, node)
124 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 			if (uevent)
126 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127 
128 			offline = false;
129 			break;
130 		}
131 
132 	mutex_unlock(&adev->physical_node_lock);
133 	return offline;
134 }
135 
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 				    void **ret_p)
138 {
139 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 	struct acpi_device_physical_node *pn;
141 	bool second_pass = (bool)data;
142 	acpi_status status = AE_OK;
143 
144 	if (!device)
145 		return AE_OK;
146 
147 	if (device->handler && !device->handler->hotplug.enabled) {
148 		*ret_p = &device->dev;
149 		return AE_SUPPORT;
150 	}
151 
152 	mutex_lock(&device->physical_node_lock);
153 
154 	list_for_each_entry(pn, &device->physical_node_list, node) {
155 		int ret;
156 
157 		if (second_pass) {
158 			/* Skip devices offlined by the first pass. */
159 			if (pn->put_online)
160 				continue;
161 		} else {
162 			pn->put_online = false;
163 		}
164 		ret = device_offline(pn->dev);
165 		if (ret >= 0) {
166 			pn->put_online = !ret;
167 		} else {
168 			*ret_p = pn->dev;
169 			if (second_pass) {
170 				status = AE_ERROR;
171 				break;
172 			}
173 		}
174 	}
175 
176 	mutex_unlock(&device->physical_node_lock);
177 
178 	return status;
179 }
180 
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 				   void **ret_p)
183 {
184 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 	struct acpi_device_physical_node *pn;
186 
187 	if (!device)
188 		return AE_OK;
189 
190 	mutex_lock(&device->physical_node_lock);
191 
192 	list_for_each_entry(pn, &device->physical_node_list, node)
193 		if (pn->put_online) {
194 			device_online(pn->dev);
195 			pn->put_online = false;
196 		}
197 
198 	mutex_unlock(&device->physical_node_lock);
199 
200 	return AE_OK;
201 }
202 
acpi_scan_try_to_offline(struct acpi_device * device)203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 	acpi_handle handle = device->handle;
206 	struct device *errdev = NULL;
207 	acpi_status status;
208 
209 	/*
210 	 * Carry out two passes here and ignore errors in the first pass,
211 	 * because if the devices in question are memory blocks and
212 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 	 * that the other blocks depend on, but it is not known in advance which
214 	 * block holds them.
215 	 *
216 	 * If the first pass is successful, the second one isn't needed, though.
217 	 */
218 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 				     NULL, acpi_bus_offline, (void *)false,
220 				     (void **)&errdev);
221 	if (status == AE_SUPPORT) {
222 		dev_warn(errdev, "Offline disabled.\n");
223 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 				    acpi_bus_online, NULL, NULL, NULL);
225 		return -EPERM;
226 	}
227 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 	if (errdev) {
229 		errdev = NULL;
230 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 				    NULL, acpi_bus_offline, (void *)true,
232 				    (void **)&errdev);
233 		if (!errdev)
234 			acpi_bus_offline(handle, 0, (void *)true,
235 					 (void **)&errdev);
236 
237 		if (errdev) {
238 			dev_warn(errdev, "Offline failed.\n");
239 			acpi_bus_online(handle, 0, NULL, NULL);
240 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 					    ACPI_UINT32_MAX, acpi_bus_online,
242 					    NULL, NULL, NULL);
243 			return -EBUSY;
244 		}
245 	}
246 	return 0;
247 }
248 
249 #define ACPI_SCAN_CHECK_FLAG_STATUS	BIT(0)
250 #define ACPI_SCAN_CHECK_FLAG_EJECT	BIT(1)
251 
acpi_scan_check_and_detach(struct acpi_device * adev,void * p)252 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *p)
253 {
254 	struct acpi_scan_handler *handler = adev->handler;
255 	uintptr_t flags = (uintptr_t)p;
256 
257 	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, p);
258 
259 	if (flags & ACPI_SCAN_CHECK_FLAG_STATUS) {
260 		acpi_bus_get_status(adev);
261 		/*
262 		 * Skip devices that are still there and take the enabled
263 		 * flag into account.
264 		 */
265 		if (acpi_device_is_enabled(adev))
266 			return 0;
267 
268 		/* Skip device that have not been enumerated. */
269 		if (!acpi_device_enumerated(adev)) {
270 			dev_dbg(&adev->dev, "Still not enumerated\n");
271 			return 0;
272 		}
273 	}
274 
275 	adev->flags.match_driver = false;
276 	if (handler) {
277 		if (handler->detach)
278 			handler->detach(adev);
279 	} else {
280 		device_release_driver(&adev->dev);
281 	}
282 	/*
283 	 * Most likely, the device is going away, so put it into D3cold before
284 	 * that.
285 	 */
286 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
287 	adev->flags.initialized = false;
288 
289 	/* For eject this is deferred to acpi_bus_post_eject() */
290 	if (!(flags & ACPI_SCAN_CHECK_FLAG_EJECT)) {
291 		adev->handler = NULL;
292 		acpi_device_clear_enumerated(adev);
293 	}
294 	return 0;
295 }
296 
acpi_bus_post_eject(struct acpi_device * adev,void * not_used)297 static int acpi_bus_post_eject(struct acpi_device *adev, void *not_used)
298 {
299 	struct acpi_scan_handler *handler = adev->handler;
300 
301 	acpi_dev_for_each_child_reverse(adev, acpi_bus_post_eject, NULL);
302 
303 	if (handler) {
304 		if (handler->post_eject)
305 			handler->post_eject(adev);
306 
307 		adev->handler = NULL;
308 	}
309 
310 	acpi_device_clear_enumerated(adev);
311 
312 	return 0;
313 }
314 
acpi_scan_check_subtree(struct acpi_device * adev)315 static void acpi_scan_check_subtree(struct acpi_device *adev)
316 {
317 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_STATUS;
318 
319 	acpi_scan_check_and_detach(adev, (void *)flags);
320 }
321 
acpi_scan_hot_remove(struct acpi_device * device)322 static int acpi_scan_hot_remove(struct acpi_device *device)
323 {
324 	acpi_handle handle = device->handle;
325 	unsigned long long sta;
326 	acpi_status status;
327 	uintptr_t flags = ACPI_SCAN_CHECK_FLAG_EJECT;
328 
329 	if (device->handler && device->handler->hotplug.demand_offline) {
330 		if (!acpi_scan_is_offline(device, true))
331 			return -EBUSY;
332 	} else {
333 		int error = acpi_scan_try_to_offline(device);
334 		if (error)
335 			return error;
336 	}
337 
338 	acpi_handle_debug(handle, "Ejecting\n");
339 
340 	acpi_scan_check_and_detach(device, (void *)flags);
341 
342 	acpi_evaluate_lck(handle, 0);
343 	/*
344 	 * TBD: _EJD support.
345 	 */
346 	status = acpi_evaluate_ej0(handle);
347 	if (status == AE_NOT_FOUND)
348 		return -ENODEV;
349 	else if (ACPI_FAILURE(status))
350 		return -EIO;
351 
352 	/*
353 	 * Verify if eject was indeed successful.  If not, log an error
354 	 * message.  No need to call _OST since _EJ0 call was made OK.
355 	 */
356 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
357 	if (ACPI_FAILURE(status)) {
358 		acpi_handle_warn(handle,
359 			"Status check after eject failed (0x%x)\n", status);
360 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
361 		acpi_handle_warn(handle,
362 			"Eject incomplete - status 0x%llx\n", sta);
363 	} else {
364 		acpi_bus_post_eject(device, NULL);
365 	}
366 
367 	return 0;
368 }
369 
acpi_scan_rescan_bus(struct acpi_device * adev)370 static int acpi_scan_rescan_bus(struct acpi_device *adev)
371 {
372 	struct acpi_scan_handler *handler = adev->handler;
373 	int ret;
374 
375 	if (handler && handler->hotplug.scan_dependent)
376 		ret = handler->hotplug.scan_dependent(adev);
377 	else
378 		ret = acpi_bus_scan(adev->handle);
379 
380 	if (ret)
381 		dev_info(&adev->dev, "Namespace scan failure\n");
382 
383 	return ret;
384 }
385 
acpi_scan_device_check(struct acpi_device * adev)386 static int acpi_scan_device_check(struct acpi_device *adev)
387 {
388 	struct acpi_device *parent;
389 
390 	acpi_scan_check_subtree(adev);
391 
392 	if (!acpi_device_is_present(adev))
393 		return 0;
394 
395 	/*
396 	 * This function is only called for device objects for which matching
397 	 * scan handlers exist.  The only situation in which the scan handler
398 	 * is not attached to this device object yet is when the device has
399 	 * just appeared (either it wasn't present at all before or it was
400 	 * removed and then added again).
401 	 */
402 	if (adev->handler) {
403 		dev_dbg(&adev->dev, "Already enumerated\n");
404 		return 0;
405 	}
406 
407 	parent = acpi_dev_parent(adev);
408 	if (!parent)
409 		parent = adev;
410 
411 	return acpi_scan_rescan_bus(parent);
412 }
413 
acpi_scan_bus_check(struct acpi_device * adev)414 static int acpi_scan_bus_check(struct acpi_device *adev)
415 {
416 	acpi_scan_check_subtree(adev);
417 
418 	return acpi_scan_rescan_bus(adev);
419 }
420 
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)421 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
422 {
423 	switch (type) {
424 	case ACPI_NOTIFY_BUS_CHECK:
425 		return acpi_scan_bus_check(adev);
426 	case ACPI_NOTIFY_DEVICE_CHECK:
427 		return acpi_scan_device_check(adev);
428 	case ACPI_NOTIFY_EJECT_REQUEST:
429 	case ACPI_OST_EC_OSPM_EJECT:
430 		if (adev->handler && !adev->handler->hotplug.enabled) {
431 			dev_info(&adev->dev, "Eject disabled\n");
432 			return -EPERM;
433 		}
434 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
435 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
436 		return acpi_scan_hot_remove(adev);
437 	}
438 	return -EINVAL;
439 }
440 
acpi_device_hotplug(struct acpi_device * adev,u32 src)441 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
442 {
443 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
444 	int error = -ENODEV;
445 
446 	lock_device_hotplug();
447 	mutex_lock(&acpi_scan_lock);
448 
449 	/*
450 	 * The device object's ACPI handle cannot become invalid as long as we
451 	 * are holding acpi_scan_lock, but it might have become invalid before
452 	 * that lock was acquired.
453 	 */
454 	if (adev->handle == INVALID_ACPI_HANDLE)
455 		goto err_out;
456 
457 	if (adev->flags.is_dock_station) {
458 		error = dock_notify(adev, src);
459 	} else if (adev->flags.hotplug_notify) {
460 		error = acpi_generic_hotplug_event(adev, src);
461 	} else {
462 		acpi_hp_notify notify;
463 
464 		acpi_lock_hp_context();
465 		notify = adev->hp ? adev->hp->notify : NULL;
466 		acpi_unlock_hp_context();
467 		/*
468 		 * There may be additional notify handlers for device objects
469 		 * without the .event() callback, so ignore them here.
470 		 */
471 		if (notify)
472 			error = notify(adev, src);
473 		else
474 			goto out;
475 	}
476 	switch (error) {
477 	case 0:
478 		ost_code = ACPI_OST_SC_SUCCESS;
479 		break;
480 	case -EPERM:
481 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
482 		break;
483 	case -EBUSY:
484 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
485 		break;
486 	default:
487 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
488 		break;
489 	}
490 
491  err_out:
492 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
493 
494  out:
495 	acpi_put_acpi_dev(adev);
496 	mutex_unlock(&acpi_scan_lock);
497 	unlock_device_hotplug();
498 }
499 
acpi_free_power_resources_lists(struct acpi_device * device)500 static void acpi_free_power_resources_lists(struct acpi_device *device)
501 {
502 	int i;
503 
504 	if (device->wakeup.flags.valid)
505 		acpi_power_resources_list_free(&device->wakeup.resources);
506 
507 	if (!device->power.flags.power_resources)
508 		return;
509 
510 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
511 		struct acpi_device_power_state *ps = &device->power.states[i];
512 		acpi_power_resources_list_free(&ps->resources);
513 	}
514 }
515 
acpi_device_release(struct device * dev)516 static void acpi_device_release(struct device *dev)
517 {
518 	struct acpi_device *acpi_dev = to_acpi_device(dev);
519 
520 	acpi_free_properties(acpi_dev);
521 	acpi_free_pnp_ids(&acpi_dev->pnp);
522 	acpi_free_power_resources_lists(acpi_dev);
523 	kfree(acpi_dev);
524 }
525 
acpi_device_del(struct acpi_device * device)526 static void acpi_device_del(struct acpi_device *device)
527 {
528 	struct acpi_device_bus_id *acpi_device_bus_id;
529 
530 	mutex_lock(&acpi_device_lock);
531 
532 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
533 		if (!strcmp(acpi_device_bus_id->bus_id,
534 			    acpi_device_hid(device))) {
535 			ida_free(&acpi_device_bus_id->instance_ida,
536 				 device->pnp.instance_no);
537 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
538 				list_del(&acpi_device_bus_id->node);
539 				kfree_const(acpi_device_bus_id->bus_id);
540 				kfree(acpi_device_bus_id);
541 			}
542 			break;
543 		}
544 
545 	list_del(&device->wakeup_list);
546 
547 	mutex_unlock(&acpi_device_lock);
548 
549 	acpi_power_add_remove_device(device, false);
550 	acpi_device_remove_files(device);
551 	if (device->remove)
552 		device->remove(device);
553 
554 	device_del(&device->dev);
555 }
556 
557 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
558 
559 static LIST_HEAD(acpi_device_del_list);
560 static DEFINE_MUTEX(acpi_device_del_lock);
561 
acpi_device_del_work_fn(struct work_struct * work_not_used)562 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
563 {
564 	for (;;) {
565 		struct acpi_device *adev;
566 
567 		mutex_lock(&acpi_device_del_lock);
568 
569 		if (list_empty(&acpi_device_del_list)) {
570 			mutex_unlock(&acpi_device_del_lock);
571 			break;
572 		}
573 		adev = list_first_entry(&acpi_device_del_list,
574 					struct acpi_device, del_list);
575 		list_del(&adev->del_list);
576 
577 		mutex_unlock(&acpi_device_del_lock);
578 
579 		blocking_notifier_call_chain(&acpi_reconfig_chain,
580 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
581 
582 		acpi_device_del(adev);
583 		/*
584 		 * Drop references to all power resources that might have been
585 		 * used by the device.
586 		 */
587 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
588 		acpi_dev_put(adev);
589 	}
590 }
591 
592 /**
593  * acpi_scan_drop_device - Drop an ACPI device object.
594  * @handle: Handle of an ACPI namespace node, not used.
595  * @context: Address of the ACPI device object to drop.
596  *
597  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
598  * namespace node the device object pointed to by @context is attached to.
599  *
600  * The unregistration is carried out asynchronously to avoid running
601  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
602  * ensure the correct ordering (the device objects must be unregistered in the
603  * same order in which the corresponding namespace nodes are deleted).
604  */
acpi_scan_drop_device(acpi_handle handle,void * context)605 static void acpi_scan_drop_device(acpi_handle handle, void *context)
606 {
607 	static DECLARE_WORK(work, acpi_device_del_work_fn);
608 	struct acpi_device *adev = context;
609 
610 	mutex_lock(&acpi_device_del_lock);
611 
612 	/*
613 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
614 	 * won't run after any hotplug work items submitted subsequently.  That
615 	 * prevents attempts to register device objects identical to those being
616 	 * deleted from happening concurrently (such attempts result from
617 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
618 	 * run after all of the work items submitted previously, which helps
619 	 * those work items to ensure that they are not accessing stale device
620 	 * objects.
621 	 */
622 	if (list_empty(&acpi_device_del_list))
623 		acpi_queue_hotplug_work(&work);
624 
625 	list_add_tail(&adev->del_list, &acpi_device_del_list);
626 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
627 	adev->handle = INVALID_ACPI_HANDLE;
628 
629 	mutex_unlock(&acpi_device_del_lock);
630 }
631 
handle_to_device(acpi_handle handle,void (* callback)(void *))632 static struct acpi_device *handle_to_device(acpi_handle handle,
633 					    void (*callback)(void *))
634 {
635 	struct acpi_device *adev = NULL;
636 	acpi_status status;
637 
638 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
639 				    (void **)&adev, callback);
640 	if (ACPI_FAILURE(status) || !adev) {
641 		acpi_handle_debug(handle, "No context!\n");
642 		return NULL;
643 	}
644 	return adev;
645 }
646 
647 /**
648  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
649  * @handle: ACPI handle associated with the requested ACPI device object.
650  *
651  * Return a pointer to the ACPI device object associated with @handle, if
652  * present, or NULL otherwise.
653  */
acpi_fetch_acpi_dev(acpi_handle handle)654 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
655 {
656 	return handle_to_device(handle, NULL);
657 }
658 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
659 
get_acpi_device(void * dev)660 static void get_acpi_device(void *dev)
661 {
662 	acpi_dev_get(dev);
663 }
664 
665 /**
666  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
667  * @handle: ACPI handle associated with the requested ACPI device object.
668  *
669  * Return a pointer to the ACPI device object associated with @handle and bump
670  * up that object's reference counter (under the ACPI Namespace lock), if
671  * present, or return NULL otherwise.
672  *
673  * The ACPI device object reference acquired by this function needs to be
674  * dropped via acpi_dev_put().
675  */
acpi_get_acpi_dev(acpi_handle handle)676 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
677 {
678 	return handle_to_device(handle, get_acpi_device);
679 }
680 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
681 
acpi_device_bus_id_match(const char * dev_id)682 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
683 {
684 	struct acpi_device_bus_id *acpi_device_bus_id;
685 
686 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
687 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
688 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
689 			return acpi_device_bus_id;
690 	}
691 	return NULL;
692 }
693 
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)694 static int acpi_device_set_name(struct acpi_device *device,
695 				struct acpi_device_bus_id *acpi_device_bus_id)
696 {
697 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
698 	int result;
699 
700 	result = ida_alloc(instance_ida, GFP_KERNEL);
701 	if (result < 0)
702 		return result;
703 
704 	device->pnp.instance_no = result;
705 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
706 	return 0;
707 }
708 
acpi_tie_acpi_dev(struct acpi_device * adev)709 int acpi_tie_acpi_dev(struct acpi_device *adev)
710 {
711 	acpi_handle handle = adev->handle;
712 	acpi_status status;
713 
714 	if (!handle)
715 		return 0;
716 
717 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
718 	if (ACPI_FAILURE(status)) {
719 		acpi_handle_err(handle, "Unable to attach device data\n");
720 		return -ENODEV;
721 	}
722 
723 	return 0;
724 }
725 
acpi_store_pld_crc(struct acpi_device * adev)726 static void acpi_store_pld_crc(struct acpi_device *adev)
727 {
728 	struct acpi_pld_info *pld;
729 
730 	if (!acpi_get_physical_device_location(adev->handle, &pld))
731 		return;
732 
733 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
734 	ACPI_FREE(pld);
735 }
736 
acpi_device_add(struct acpi_device * device)737 int acpi_device_add(struct acpi_device *device)
738 {
739 	struct acpi_device_bus_id *acpi_device_bus_id;
740 	int result;
741 
742 	/*
743 	 * Linkage
744 	 * -------
745 	 * Link this device to its parent and siblings.
746 	 */
747 	INIT_LIST_HEAD(&device->wakeup_list);
748 	INIT_LIST_HEAD(&device->physical_node_list);
749 	INIT_LIST_HEAD(&device->del_list);
750 	mutex_init(&device->physical_node_lock);
751 
752 	mutex_lock(&acpi_device_lock);
753 
754 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
755 	if (acpi_device_bus_id) {
756 		result = acpi_device_set_name(device, acpi_device_bus_id);
757 		if (result)
758 			goto err_unlock;
759 	} else {
760 		acpi_device_bus_id = kzalloc_obj(*acpi_device_bus_id,
761 						 GFP_KERNEL);
762 		if (!acpi_device_bus_id) {
763 			result = -ENOMEM;
764 			goto err_unlock;
765 		}
766 		acpi_device_bus_id->bus_id =
767 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
768 		if (!acpi_device_bus_id->bus_id) {
769 			kfree(acpi_device_bus_id);
770 			result = -ENOMEM;
771 			goto err_unlock;
772 		}
773 
774 		ida_init(&acpi_device_bus_id->instance_ida);
775 
776 		result = acpi_device_set_name(device, acpi_device_bus_id);
777 		if (result) {
778 			kfree_const(acpi_device_bus_id->bus_id);
779 			kfree(acpi_device_bus_id);
780 			goto err_unlock;
781 		}
782 
783 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
784 	}
785 
786 	if (device->wakeup.flags.valid)
787 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
788 
789 	acpi_store_pld_crc(device);
790 
791 	mutex_unlock(&acpi_device_lock);
792 
793 	result = device_add(&device->dev);
794 	if (result) {
795 		dev_err(&device->dev, "Error registering device\n");
796 		goto err;
797 	}
798 
799 	acpi_device_setup_files(device);
800 
801 	return 0;
802 
803 err:
804 	mutex_lock(&acpi_device_lock);
805 
806 	list_del(&device->wakeup_list);
807 
808 err_unlock:
809 	mutex_unlock(&acpi_device_lock);
810 
811 	acpi_detach_data(device->handle, acpi_scan_drop_device);
812 
813 	return result;
814 }
815 
816 /* --------------------------------------------------------------------------
817                                  Device Enumeration
818    -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])819 static bool acpi_info_matches_ids(struct acpi_device_info *info,
820 				  const char * const ids[])
821 {
822 	struct acpi_pnp_device_id_list *cid_list = NULL;
823 	int i, index;
824 
825 	if (!(info->valid & ACPI_VALID_HID))
826 		return false;
827 
828 	index = match_string(ids, -1, info->hardware_id.string);
829 	if (index >= 0)
830 		return true;
831 
832 	if (info->valid & ACPI_VALID_CID)
833 		cid_list = &info->compatible_id_list;
834 
835 	if (!cid_list)
836 		return false;
837 
838 	for (i = 0; i < cid_list->count; i++) {
839 		index = match_string(ids, -1, cid_list->ids[i].string);
840 		if (index >= 0)
841 			return true;
842 	}
843 
844 	return false;
845 }
846 
847 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
848 static const char * const acpi_ignore_dep_ids[] = {
849 	"PNP0D80", /* Windows-compatible System Power Management Controller */
850 	"INT33BD", /* Intel Baytrail Mailbox Device */
851 	"INTC10DE", /* Intel CVS LNL */
852 	"INTC10E0", /* Intel CVS ARL */
853 	"LATT2021", /* Lattice FW Update Client Driver */
854 	NULL
855 };
856 
857 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
858 static const char * const acpi_honor_dep_ids[] = {
859 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
860 	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
861 	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
862 	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
863 	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
864 	"RSCV0001", /* RISC-V PLIC */
865 	"RSCV0002", /* RISC-V APLIC */
866 	"RSCV0005", /* RISC-V SBI MPXY MBOX */
867 	"RSCV0006", /* RISC-V RPMI SYSMSI */
868 	"PNP0C0F",  /* PCI Link Device */
869 	NULL
870 };
871 
acpi_find_parent_acpi_dev(acpi_handle handle)872 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
873 {
874 	struct acpi_device *adev;
875 
876 	/*
877 	 * Fixed hardware devices do not appear in the namespace and do not
878 	 * have handles, but we fabricate acpi_devices for them, so we have
879 	 * to deal with them specially.
880 	 */
881 	if (!handle)
882 		return acpi_root;
883 
884 	do {
885 		acpi_status status;
886 
887 		status = acpi_get_parent(handle, &handle);
888 		if (ACPI_FAILURE(status)) {
889 			if (status != AE_NULL_ENTRY)
890 				return acpi_root;
891 
892 			return NULL;
893 		}
894 		adev = acpi_fetch_acpi_dev(handle);
895 	} while (!adev);
896 	return adev;
897 }
898 
899 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)900 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
901 {
902 	acpi_status status;
903 	acpi_handle tmp;
904 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
905 	union acpi_object *obj;
906 
907 	status = acpi_get_handle(handle, "_EJD", &tmp);
908 	if (ACPI_FAILURE(status))
909 		return status;
910 
911 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
912 	if (ACPI_SUCCESS(status)) {
913 		obj = buffer.pointer;
914 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
915 					 ejd);
916 		kfree(buffer.pointer);
917 	}
918 	return status;
919 }
920 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
921 
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)922 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
923 {
924 	acpi_handle handle = dev->handle;
925 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
926 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
927 	union acpi_object *package = NULL;
928 	union acpi_object *element = NULL;
929 	acpi_status status;
930 	int err = -ENODATA;
931 
932 	INIT_LIST_HEAD(&wakeup->resources);
933 
934 	/* _PRW */
935 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
936 	if (ACPI_FAILURE(status)) {
937 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
938 				 acpi_format_exception(status));
939 		return err;
940 	}
941 
942 	package = (union acpi_object *)buffer.pointer;
943 
944 	if (!package || package->package.count < 2)
945 		goto out;
946 
947 	element = &(package->package.elements[0]);
948 	if (!element)
949 		goto out;
950 
951 	if (element->type == ACPI_TYPE_PACKAGE) {
952 		if ((element->package.count < 2) ||
953 		    (element->package.elements[0].type !=
954 		     ACPI_TYPE_LOCAL_REFERENCE)
955 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
956 			goto out;
957 
958 		wakeup->gpe_device =
959 		    element->package.elements[0].reference.handle;
960 		wakeup->gpe_number =
961 		    (u32) element->package.elements[1].integer.value;
962 	} else if (element->type == ACPI_TYPE_INTEGER) {
963 		wakeup->gpe_device = NULL;
964 		wakeup->gpe_number = element->integer.value;
965 	} else {
966 		goto out;
967 	}
968 
969 	element = &(package->package.elements[1]);
970 	if (element->type != ACPI_TYPE_INTEGER)
971 		goto out;
972 
973 	wakeup->sleep_state = element->integer.value;
974 
975 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
976 	if (err)
977 		goto out;
978 
979 	if (!list_empty(&wakeup->resources)) {
980 		int sleep_state;
981 
982 		err = acpi_power_wakeup_list_init(&wakeup->resources,
983 						  &sleep_state);
984 		if (err) {
985 			acpi_handle_warn(handle, "Retrieving current states "
986 					 "of wakeup power resources failed\n");
987 			acpi_power_resources_list_free(&wakeup->resources);
988 			goto out;
989 		}
990 		if (sleep_state < wakeup->sleep_state) {
991 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
992 					 "(S%d) by S%d from power resources\n",
993 					 (int)wakeup->sleep_state, sleep_state);
994 			wakeup->sleep_state = sleep_state;
995 		}
996 	}
997 
998  out:
999 	kfree(buffer.pointer);
1000 	return err;
1001 }
1002 
acpi_wakeup_gpe_init(struct acpi_device * device)1003 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
1004 {
1005 	static const struct acpi_device_id button_device_ids[] = {
1006 		{"PNP0C0D", 0},	/* Lid */
1007 		{"PNP0C0E", 0},	/* Sleep button */
1008 		{"", 0},
1009 	};
1010 	struct acpi_device_wakeup *wakeup = &device->wakeup;
1011 	const struct acpi_device_id *match;
1012 	acpi_status status;
1013 
1014 	wakeup->flags.notifier_present = 0;
1015 
1016 	match = acpi_match_acpi_device(button_device_ids, device);
1017 	if (match && wakeup->sleep_state == ACPI_STATE_S5)
1018 		wakeup->sleep_state = ACPI_STATE_S4;
1019 
1020 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
1021 					 wakeup->gpe_number);
1022 	return ACPI_SUCCESS(status);
1023 }
1024 
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)1025 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1026 {
1027 	int err;
1028 
1029 	/* Presence of _PRW indicates wake capable */
1030 	if (!acpi_has_method(device->handle, "_PRW"))
1031 		return;
1032 
1033 	err = acpi_bus_extract_wakeup_device_power_package(device);
1034 	if (err) {
1035 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1036 		return;
1037 	}
1038 
1039 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1040 	device->wakeup.prepare_count = 0;
1041 	/*
1042 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1043 	 * system for the ACPI device with the _PRW object.
1044 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1045 	 * So it is necessary to call _DSW object first. Only when it is not
1046 	 * present will the _PSW object used.
1047 	 */
1048 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1049 	if (err)
1050 		pr_debug("error in _DSW or _PSW evaluation\n");
1051 }
1052 
acpi_bus_init_power_state(struct acpi_device * device,int state)1053 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1054 {
1055 	struct acpi_device_power_state *ps = &device->power.states[state];
1056 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1057 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1058 	acpi_status status;
1059 
1060 	INIT_LIST_HEAD(&ps->resources);
1061 
1062 	/* Evaluate "_PRx" to get referenced power resources */
1063 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1064 	if (ACPI_SUCCESS(status)) {
1065 		union acpi_object *package = buffer.pointer;
1066 
1067 		if (buffer.length && package
1068 		    && package->type == ACPI_TYPE_PACKAGE
1069 		    && package->package.count)
1070 			acpi_extract_power_resources(package, 0, &ps->resources);
1071 
1072 		ACPI_FREE(buffer.pointer);
1073 	}
1074 
1075 	/* Evaluate "_PSx" to see if we can do explicit sets */
1076 	pathname[2] = 'S';
1077 	if (acpi_has_method(device->handle, pathname))
1078 		ps->flags.explicit_set = 1;
1079 
1080 	/* State is valid if there are means to put the device into it. */
1081 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1082 		ps->flags.valid = 1;
1083 
1084 	ps->power = -1;		/* Unknown - driver assigned */
1085 	ps->latency = -1;	/* Unknown - driver assigned */
1086 }
1087 
acpi_bus_get_power_flags(struct acpi_device * device)1088 static void acpi_bus_get_power_flags(struct acpi_device *device)
1089 {
1090 	unsigned long long dsc = ACPI_STATE_D0;
1091 	u32 i;
1092 
1093 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1094 	if (!acpi_has_method(device->handle, "_PS0") &&
1095 	    !acpi_has_method(device->handle, "_PR0"))
1096 		return;
1097 
1098 	device->flags.power_manageable = 1;
1099 
1100 	/*
1101 	 * Power Management Flags
1102 	 */
1103 	if (acpi_has_method(device->handle, "_PSC"))
1104 		device->power.flags.explicit_get = 1;
1105 
1106 	if (acpi_has_method(device->handle, "_IRC"))
1107 		device->power.flags.inrush_current = 1;
1108 
1109 	if (acpi_has_method(device->handle, "_DSW"))
1110 		device->power.flags.dsw_present = 1;
1111 
1112 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1113 	device->power.state_for_enumeration = dsc;
1114 
1115 	/*
1116 	 * Enumerate supported power management states
1117 	 */
1118 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1119 		acpi_bus_init_power_state(device, i);
1120 
1121 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1122 
1123 	/* Set the defaults for D0 and D3hot (always supported). */
1124 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1125 	device->power.states[ACPI_STATE_D0].power = 100;
1126 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1127 
1128 	/*
1129 	 * Use power resources only if the D0 list of them is populated, because
1130 	 * some platforms may provide _PR3 only to indicate D3cold support and
1131 	 * in those cases the power resources list returned by it may be bogus.
1132 	 */
1133 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1134 		device->power.flags.power_resources = 1;
1135 		/*
1136 		 * D3cold is supported if the D3hot list of power resources is
1137 		 * not empty.
1138 		 */
1139 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1140 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1141 	}
1142 
1143 	if (acpi_bus_init_power(device))
1144 		device->flags.power_manageable = 0;
1145 }
1146 
acpi_bus_get_flags(struct acpi_device * device)1147 static void acpi_bus_get_flags(struct acpi_device *device)
1148 {
1149 	/* Presence of _STA indicates 'dynamic_status' */
1150 	if (acpi_has_method(device->handle, "_STA"))
1151 		device->flags.dynamic_status = 1;
1152 
1153 	/* Presence of _RMV indicates 'removable' */
1154 	if (acpi_has_method(device->handle, "_RMV"))
1155 		device->flags.removable = 1;
1156 
1157 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1158 	if (acpi_has_method(device->handle, "_EJD") ||
1159 	    acpi_has_method(device->handle, "_EJ0"))
1160 		device->flags.ejectable = 1;
1161 }
1162 
acpi_device_get_busid(struct acpi_device * device)1163 static void acpi_device_get_busid(struct acpi_device *device)
1164 {
1165 	char bus_id[5] = { '?', 0 };
1166 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1167 	int i = 0;
1168 
1169 	/*
1170 	 * Bus ID
1171 	 * ------
1172 	 * The device's Bus ID is simply the object name.
1173 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1174 	 */
1175 	if (!acpi_dev_parent(device)) {
1176 		strscpy(device->pnp.bus_id, "ACPI");
1177 		return;
1178 	}
1179 
1180 	switch (device->device_type) {
1181 	case ACPI_BUS_TYPE_POWER_BUTTON:
1182 		strscpy(device->pnp.bus_id, "PWRF");
1183 		break;
1184 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1185 		strscpy(device->pnp.bus_id, "SLPF");
1186 		break;
1187 	case ACPI_BUS_TYPE_ECDT_EC:
1188 		strscpy(device->pnp.bus_id, "ECDT");
1189 		break;
1190 	default:
1191 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1192 		/* Clean up trailing underscores (if any) */
1193 		for (i = 3; i > 1; i--) {
1194 			if (bus_id[i] == '_')
1195 				bus_id[i] = '\0';
1196 			else
1197 				break;
1198 		}
1199 		strscpy(device->pnp.bus_id, bus_id);
1200 		break;
1201 	}
1202 }
1203 
1204 /*
1205  * acpi_ata_match - see if an acpi object is an ATA device
1206  *
1207  * If an acpi object has one of the ACPI ATA methods defined,
1208  * then we can safely call it an ATA device.
1209  */
acpi_ata_match(acpi_handle handle)1210 bool acpi_ata_match(acpi_handle handle)
1211 {
1212 	return acpi_has_method(handle, "_GTF") ||
1213 	       acpi_has_method(handle, "_GTM") ||
1214 	       acpi_has_method(handle, "_STM") ||
1215 	       acpi_has_method(handle, "_SDD");
1216 }
1217 
1218 /*
1219  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1220  *
1221  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1222  * then we can safely call it an ejectable drive bay
1223  */
acpi_bay_match(acpi_handle handle)1224 bool acpi_bay_match(acpi_handle handle)
1225 {
1226 	acpi_handle phandle;
1227 
1228 	if (!acpi_has_method(handle, "_EJ0"))
1229 		return false;
1230 	if (acpi_ata_match(handle))
1231 		return true;
1232 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1233 		return false;
1234 
1235 	return acpi_ata_match(phandle);
1236 }
1237 
acpi_device_is_battery(struct acpi_device * adev)1238 bool acpi_device_is_battery(struct acpi_device *adev)
1239 {
1240 	struct acpi_hardware_id *hwid;
1241 
1242 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1243 		if (!strcmp("PNP0C0A", hwid->id))
1244 			return true;
1245 
1246 	return false;
1247 }
1248 
is_ejectable_bay(struct acpi_device * adev)1249 static bool is_ejectable_bay(struct acpi_device *adev)
1250 {
1251 	acpi_handle handle = adev->handle;
1252 
1253 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1254 		return true;
1255 
1256 	return acpi_bay_match(handle);
1257 }
1258 
1259 /*
1260  * acpi_dock_match - see if an acpi object has a _DCK method
1261  */
acpi_dock_match(acpi_handle handle)1262 bool acpi_dock_match(acpi_handle handle)
1263 {
1264 	return acpi_has_method(handle, "_DCK");
1265 }
1266 
1267 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1268 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1269 			  void **return_value)
1270 {
1271 	long *cap = context;
1272 
1273 	if (acpi_has_method(handle, "_BCM") &&
1274 	    acpi_has_method(handle, "_BCL")) {
1275 		acpi_handle_debug(handle, "Found generic backlight support\n");
1276 		*cap |= ACPI_VIDEO_BACKLIGHT;
1277 		/* We have backlight support, no need to scan further */
1278 		return AE_CTRL_TERMINATE;
1279 	}
1280 	return 0;
1281 }
1282 
1283 /* Returns true if the ACPI object is a video device which can be
1284  * handled by video.ko.
1285  * The device will get a Linux specific CID added in scan.c to
1286  * identify the device as an ACPI graphics device
1287  * Be aware that the graphics device may not be physically present
1288  */
acpi_is_video_device(acpi_handle handle)1289 long acpi_is_video_device(acpi_handle handle)
1290 {
1291 	long video_caps = 0;
1292 
1293 	/* Is this device able to support video switching ? */
1294 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1295 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1296 
1297 	/* Is this device able to retrieve a video ROM ? */
1298 	if (acpi_has_method(handle, "_ROM"))
1299 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1300 
1301 	/* Is this device able to configure which video head to be POSTed ? */
1302 	if (acpi_has_method(handle, "_VPO") &&
1303 	    acpi_has_method(handle, "_GPD") &&
1304 	    acpi_has_method(handle, "_SPD"))
1305 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1306 
1307 	/* Only check for backlight functionality if one of the above hit. */
1308 	if (video_caps)
1309 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1310 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1311 				    &video_caps, NULL);
1312 
1313 	return video_caps;
1314 }
1315 EXPORT_SYMBOL(acpi_is_video_device);
1316 
acpi_device_hid(struct acpi_device * device)1317 const char *acpi_device_hid(struct acpi_device *device)
1318 {
1319 	struct acpi_hardware_id *hid;
1320 
1321 	hid = list_first_entry_or_null(&device->pnp.ids, struct acpi_hardware_id, list);
1322 	if (!hid)
1323 		return dummy_hid;
1324 
1325 	return hid->id;
1326 }
1327 EXPORT_SYMBOL(acpi_device_hid);
1328 
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1329 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1330 {
1331 	struct acpi_hardware_id *id;
1332 
1333 	id = kmalloc_obj(*id, GFP_KERNEL);
1334 	if (!id)
1335 		return;
1336 
1337 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1338 	if (!id->id) {
1339 		kfree(id);
1340 		return;
1341 	}
1342 
1343 	list_add_tail(&id->list, &pnp->ids);
1344 	pnp->type.hardware_id = 1;
1345 }
1346 
1347 /*
1348  * Old IBM workstations have a DSDT bug wherein the SMBus object
1349  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1350  * prefix.  Work around this.
1351  */
acpi_ibm_smbus_match(acpi_handle handle)1352 static bool acpi_ibm_smbus_match(acpi_handle handle)
1353 {
1354 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1355 	struct acpi_buffer path = { sizeof(node_name), node_name };
1356 
1357 	if (!dmi_name_in_vendors("IBM"))
1358 		return false;
1359 
1360 	/* Look for SMBS object */
1361 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1362 	    strcmp("SMBS", path.pointer))
1363 		return false;
1364 
1365 	/* Does it have the necessary (but misnamed) methods? */
1366 	if (acpi_has_method(handle, "SBI") &&
1367 	    acpi_has_method(handle, "SBR") &&
1368 	    acpi_has_method(handle, "SBW"))
1369 		return true;
1370 
1371 	return false;
1372 }
1373 
acpi_object_is_system_bus(acpi_handle handle)1374 static bool acpi_object_is_system_bus(acpi_handle handle)
1375 {
1376 	acpi_handle tmp;
1377 
1378 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1379 	    tmp == handle)
1380 		return true;
1381 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1382 	    tmp == handle)
1383 		return true;
1384 
1385 	return false;
1386 }
1387 
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1388 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1389 			     int device_type)
1390 {
1391 	struct acpi_device_info *info = NULL;
1392 	struct acpi_pnp_device_id_list *cid_list;
1393 	int i;
1394 
1395 	switch (device_type) {
1396 	case ACPI_BUS_TYPE_DEVICE:
1397 		if (handle == ACPI_ROOT_OBJECT) {
1398 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1399 			break;
1400 		}
1401 
1402 		acpi_get_object_info(handle, &info);
1403 		if (!info) {
1404 			pr_err("%s: Error reading device info\n", __func__);
1405 			return;
1406 		}
1407 
1408 		if (info->valid & ACPI_VALID_HID) {
1409 			acpi_add_id(pnp, info->hardware_id.string);
1410 			pnp->type.platform_id = 1;
1411 		}
1412 		if (info->valid & ACPI_VALID_CID) {
1413 			cid_list = &info->compatible_id_list;
1414 			for (i = 0; i < cid_list->count; i++)
1415 				acpi_add_id(pnp, cid_list->ids[i].string);
1416 		}
1417 		if (info->valid & ACPI_VALID_ADR) {
1418 			pnp->bus_address = info->address;
1419 			pnp->type.bus_address = 1;
1420 		}
1421 		if (info->valid & ACPI_VALID_UID)
1422 			pnp->unique_id = kstrdup(info->unique_id.string,
1423 							GFP_KERNEL);
1424 		if (info->valid & ACPI_VALID_CLS)
1425 			acpi_add_id(pnp, info->class_code.string);
1426 
1427 		kfree(info);
1428 
1429 		/*
1430 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1431 		 * synthetic HIDs to make sure drivers can find them.
1432 		 */
1433 		if (acpi_is_video_device(handle)) {
1434 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1435 			pnp->type.backlight = 1;
1436 			break;
1437 		}
1438 		if (acpi_bay_match(handle))
1439 			acpi_add_id(pnp, ACPI_BAY_HID);
1440 		else if (acpi_dock_match(handle))
1441 			acpi_add_id(pnp, ACPI_DOCK_HID);
1442 		else if (acpi_ibm_smbus_match(handle))
1443 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1444 		else if (list_empty(&pnp->ids) &&
1445 			 acpi_object_is_system_bus(handle)) {
1446 			/* \_SB, \_TZ, LNXSYBUS */
1447 			acpi_add_id(pnp, ACPI_BUS_HID);
1448 			strscpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1449 			strscpy(pnp->device_class, ACPI_BUS_CLASS);
1450 		}
1451 
1452 		break;
1453 	case ACPI_BUS_TYPE_POWER:
1454 		acpi_add_id(pnp, ACPI_POWER_HID);
1455 		break;
1456 	case ACPI_BUS_TYPE_PROCESSOR:
1457 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1458 		break;
1459 	case ACPI_BUS_TYPE_THERMAL:
1460 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1461 		pnp->type.platform_id = 1;
1462 		break;
1463 	case ACPI_BUS_TYPE_POWER_BUTTON:
1464 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1465 		break;
1466 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1467 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1468 		break;
1469 	case ACPI_BUS_TYPE_ECDT_EC:
1470 		acpi_add_id(pnp, ACPI_ECDT_HID);
1471 		break;
1472 	}
1473 }
1474 
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1475 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1476 {
1477 	struct acpi_hardware_id *id, *tmp;
1478 
1479 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1480 		kfree_const(id->id);
1481 		kfree(id);
1482 	}
1483 	kfree(pnp->unique_id);
1484 }
1485 
1486 /**
1487  * acpi_dma_supported - Check DMA support for the specified device.
1488  * @adev: The pointer to acpi device
1489  *
1490  * Return false if DMA is not supported. Otherwise, return true
1491  */
acpi_dma_supported(const struct acpi_device * adev)1492 bool acpi_dma_supported(const struct acpi_device *adev)
1493 {
1494 	if (!adev)
1495 		return false;
1496 
1497 	if (adev->flags.cca_seen)
1498 		return true;
1499 
1500 	/*
1501 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1502 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1503 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1504 	*/
1505 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1506 		return true;
1507 
1508 	return false;
1509 }
1510 
1511 /**
1512  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1513  * @adev: The pointer to acpi device
1514  *
1515  * Return enum dev_dma_attr.
1516  */
acpi_get_dma_attr(struct acpi_device * adev)1517 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1518 {
1519 	if (!acpi_dma_supported(adev))
1520 		return DEV_DMA_NOT_SUPPORTED;
1521 
1522 	if (adev->flags.coherent_dma)
1523 		return DEV_DMA_COHERENT;
1524 	else
1525 		return DEV_DMA_NON_COHERENT;
1526 }
1527 
1528 /**
1529  * acpi_dma_get_range() - Get device DMA parameters.
1530  *
1531  * @dev: device to configure
1532  * @map: pointer to DMA ranges result
1533  *
1534  * Evaluate DMA regions and return pointer to DMA regions on
1535  * parsing success; it does not update the passed in values on failure.
1536  *
1537  * Return 0 on success, < 0 on failure.
1538  */
acpi_dma_get_range(struct device * dev,const struct bus_dma_region ** map)1539 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1540 {
1541 	struct acpi_device *adev;
1542 	LIST_HEAD(list);
1543 	struct resource_entry *rentry;
1544 	int ret;
1545 	struct device *dma_dev = dev;
1546 	struct bus_dma_region *r;
1547 
1548 	/*
1549 	 * Walk the device tree chasing an ACPI companion with a _DMA
1550 	 * object while we go. Stop if we find a device with an ACPI
1551 	 * companion containing a _DMA method.
1552 	 */
1553 	do {
1554 		adev = ACPI_COMPANION(dma_dev);
1555 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1556 			break;
1557 
1558 		dma_dev = dma_dev->parent;
1559 	} while (dma_dev);
1560 
1561 	if (!dma_dev)
1562 		return -ENODEV;
1563 
1564 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1565 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1566 		return -EINVAL;
1567 	}
1568 
1569 	ret = acpi_dev_get_dma_resources(adev, &list);
1570 	if (ret > 0) {
1571 		r = kzalloc_objs(*r, ret + 1, GFP_KERNEL);
1572 		if (!r) {
1573 			ret = -ENOMEM;
1574 			goto out;
1575 		}
1576 
1577 		*map = r;
1578 
1579 		list_for_each_entry(rentry, &list, node) {
1580 			if (rentry->res->start >= rentry->res->end) {
1581 				kfree(*map);
1582 				*map = NULL;
1583 				ret = -EINVAL;
1584 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1585 				goto out;
1586 			}
1587 
1588 			r->cpu_start = rentry->res->start;
1589 			r->dma_start = rentry->res->start - rentry->offset;
1590 			r->size = resource_size(rentry->res);
1591 			r++;
1592 		}
1593 	}
1594  out:
1595 	acpi_dev_free_resource_list(&list);
1596 
1597 	return ret >= 0 ? 0 : ret;
1598 }
1599 
1600 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode)1601 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1602 			   struct fwnode_handle *fwnode)
1603 {
1604 	int ret;
1605 
1606 	ret = iommu_fwspec_init(dev, fwnode);
1607 	if (ret)
1608 		return ret;
1609 
1610 	return iommu_fwspec_add_ids(dev, &id, 1);
1611 }
1612 
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1613 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1614 {
1615 	int err;
1616 
1617 	/* Serialise to make dev->iommu stable under our potential fwspec */
1618 	mutex_lock(&iommu_probe_device_lock);
1619 	/* If we already translated the fwspec there is nothing left to do */
1620 	if (dev_iommu_fwspec_get(dev)) {
1621 		mutex_unlock(&iommu_probe_device_lock);
1622 		return 0;
1623 	}
1624 
1625 	err = iort_iommu_configure_id(dev, id_in);
1626 	if (err && err != -EPROBE_DEFER)
1627 		err = rimt_iommu_configure_id(dev, id_in);
1628 	if (err && err != -EPROBE_DEFER)
1629 		err = viot_iommu_configure(dev);
1630 
1631 	mutex_unlock(&iommu_probe_device_lock);
1632 
1633 	return err;
1634 }
1635 
1636 #else /* !CONFIG_IOMMU_API */
1637 
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode)1638 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1639 			   struct fwnode_handle *fwnode)
1640 {
1641 	return -ENODEV;
1642 }
1643 
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1644 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1645 {
1646 	return -ENODEV;
1647 }
1648 
1649 #endif /* !CONFIG_IOMMU_API */
1650 
1651 /**
1652  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1653  * @dev: The pointer to the device
1654  * @attr: device dma attributes
1655  * @input_id: input device id const value pointer
1656  */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1657 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1658 			  const u32 *input_id)
1659 {
1660 	int ret;
1661 
1662 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1663 		set_dma_ops(dev, &dma_dummy_ops);
1664 		return 0;
1665 	}
1666 
1667 	acpi_arch_dma_setup(dev);
1668 
1669 	/* Ignore all other errors apart from EPROBE_DEFER */
1670 	ret = acpi_iommu_configure_id(dev, input_id);
1671 	if (ret == -EPROBE_DEFER)
1672 		return -EPROBE_DEFER;
1673 	if (ret)
1674 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", ret);
1675 
1676 	arch_setup_dma_ops(dev, attr == DEV_DMA_COHERENT);
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1681 
acpi_init_coherency(struct acpi_device * adev)1682 static void acpi_init_coherency(struct acpi_device *adev)
1683 {
1684 	unsigned long long cca = 0;
1685 	acpi_status status;
1686 	struct acpi_device *parent = acpi_dev_parent(adev);
1687 
1688 	if (parent && parent->flags.cca_seen) {
1689 		/*
1690 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1691 		 * already saw one.
1692 		 */
1693 		adev->flags.cca_seen = 1;
1694 		cca = parent->flags.coherent_dma;
1695 	} else {
1696 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1697 					       NULL, &cca);
1698 		if (ACPI_SUCCESS(status))
1699 			adev->flags.cca_seen = 1;
1700 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1701 			/*
1702 			 * If architecture does not specify that _CCA is
1703 			 * required for DMA-able devices (e.g. x86),
1704 			 * we default to _CCA=1.
1705 			 */
1706 			cca = 1;
1707 		else
1708 			acpi_handle_debug(adev->handle,
1709 					  "ACPI device is missing _CCA.\n");
1710 	}
1711 
1712 	adev->flags.coherent_dma = cca;
1713 }
1714 
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1715 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1716 {
1717 	bool *is_serial_bus_slave_p = data;
1718 
1719 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1720 		return 1;
1721 
1722 	*is_serial_bus_slave_p = true;
1723 
1724 	 /* no need to do more checking */
1725 	return -1;
1726 }
1727 
acpi_is_indirect_io_slave(struct acpi_device * device)1728 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1729 {
1730 	struct acpi_device *parent = acpi_dev_parent(device);
1731 	static const struct acpi_device_id indirect_io_hosts[] = {
1732 		{"HISI0191", 0},
1733 		{}
1734 	};
1735 
1736 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1737 }
1738 
acpi_device_enumeration_by_parent(struct acpi_device * device)1739 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1740 {
1741 	struct list_head resource_list;
1742 	bool is_serial_bus_slave = false;
1743 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1744 	/*
1745 	 * These devices have multiple SerialBus resources and a client
1746 	 * device must be instantiated for each of them, each with
1747 	 * its own device id.
1748 	 * Normally we only instantiate one client device for the first
1749 	 * resource, using the ACPI HID as id. These special cases are handled
1750 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1751 	 * knows which client device id to use for each resource.
1752 	 */
1753 		{"BSG1160", },
1754 		{"BSG2150", },
1755 		{"CSC3551", },
1756 		{"CSC3554", },
1757 		{"CSC3556", },
1758 		{"CSC3557", },
1759 		{"INT33FE", },
1760 		{"INT3515", },
1761 		{"TXNW2781", },
1762 		/* Non-conforming _HID for Cirrus Logic already released */
1763 		{"CLSA0100", },
1764 		{"CLSA0101", },
1765 	/*
1766 	 * Some ACPI devs contain SerialBus resources even though they are not
1767 	 * attached to a serial bus at all.
1768 	 */
1769 		{ACPI_VIDEO_HID, },
1770 		{"MSHW0028", },
1771 	/*
1772 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1773 	 * expects a regular tty cdev to be created (instead of the in kernel
1774 	 * serdev) and which have a kernel driver which expects a platform_dev
1775 	 * such as the rfkill-gpio driver.
1776 	 */
1777 		{"BCM4752", },
1778 		{"LNV4752", },
1779 		{}
1780 	};
1781 
1782 	if (acpi_is_indirect_io_slave(device))
1783 		return true;
1784 
1785 	/* Macs use device properties in lieu of _CRS resources */
1786 	if (x86_apple_machine &&
1787 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1788 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1789 	     fwnode_property_present(&device->fwnode, "baud")))
1790 		return true;
1791 
1792 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1793 		return false;
1794 
1795 	INIT_LIST_HEAD(&resource_list);
1796 	acpi_dev_get_resources(device, &resource_list,
1797 			       acpi_check_serial_bus_slave,
1798 			       &is_serial_bus_slave);
1799 	acpi_dev_free_resource_list(&resource_list);
1800 
1801 	return is_serial_bus_slave;
1802 }
1803 
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type,void (* release)(struct device *))1804 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1805 			     int type, void (*release)(struct device *))
1806 {
1807 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1808 
1809 	INIT_LIST_HEAD(&device->pnp.ids);
1810 	device->device_type = type;
1811 	device->handle = handle;
1812 	device->dev.parent = parent ? &parent->dev : NULL;
1813 	device->dev.release = release;
1814 	device->dev.bus = &acpi_bus_type;
1815 	device->dev.groups = acpi_groups;
1816 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1817 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1818 	acpi_device_get_busid(device);
1819 	acpi_set_pnp_ids(handle, &device->pnp, type);
1820 	acpi_init_properties(device);
1821 	acpi_bus_get_flags(device);
1822 	device->flags.match_driver = false;
1823 	device->flags.initialized = true;
1824 	device->flags.enumeration_by_parent =
1825 		acpi_device_enumeration_by_parent(device);
1826 	acpi_device_clear_enumerated(device);
1827 	device_initialize(&device->dev);
1828 	dev_set_uevent_suppress(&device->dev, true);
1829 	acpi_init_coherency(device);
1830 }
1831 
acpi_scan_dep_init(struct acpi_device * adev)1832 static void acpi_scan_dep_init(struct acpi_device *adev)
1833 {
1834 	struct acpi_dep_data *dep;
1835 
1836 	list_for_each_entry(dep, &acpi_dep_list, node) {
1837 		if (dep->consumer == adev->handle) {
1838 			if (dep->honor_dep)
1839 				adev->flags.honor_deps = 1;
1840 
1841 			if (!dep->met)
1842 				adev->dep_unmet++;
1843 		}
1844 	}
1845 }
1846 
acpi_device_add_finalize(struct acpi_device * device)1847 void acpi_device_add_finalize(struct acpi_device *device)
1848 {
1849 	dev_set_uevent_suppress(&device->dev, false);
1850 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1851 }
1852 
acpi_scan_init_status(struct acpi_device * adev)1853 static void acpi_scan_init_status(struct acpi_device *adev)
1854 {
1855 	if (acpi_bus_get_status(adev))
1856 		acpi_set_device_status(adev, 0);
1857 }
1858 
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1859 static int acpi_add_single_object(struct acpi_device **child,
1860 				  acpi_handle handle, int type, bool dep_init)
1861 {
1862 	struct acpi_device *device;
1863 	bool release_dep_lock = false;
1864 	int result;
1865 
1866 	device = kzalloc_obj(struct acpi_device, GFP_KERNEL);
1867 	if (!device)
1868 		return -ENOMEM;
1869 
1870 	acpi_init_device_object(device, handle, type, acpi_device_release);
1871 	/*
1872 	 * Getting the status is delayed till here so that we can call
1873 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1874 	 * this must be done before the get power-/wakeup_dev-flags calls.
1875 	 */
1876 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1877 		if (dep_init) {
1878 			mutex_lock(&acpi_dep_list_lock);
1879 			/*
1880 			 * Hold the lock until the acpi_tie_acpi_dev() call
1881 			 * below to prevent concurrent acpi_scan_clear_dep()
1882 			 * from deleting a dependency list entry without
1883 			 * updating dep_unmet for the device.
1884 			 */
1885 			release_dep_lock = true;
1886 			acpi_scan_dep_init(device);
1887 		}
1888 		acpi_scan_init_status(device);
1889 	}
1890 
1891 	acpi_bus_get_power_flags(device);
1892 	acpi_bus_get_wakeup_device_flags(device);
1893 
1894 	result = acpi_tie_acpi_dev(device);
1895 
1896 	if (release_dep_lock)
1897 		mutex_unlock(&acpi_dep_list_lock);
1898 
1899 	if (!result)
1900 		result = acpi_device_add(device);
1901 
1902 	if (result) {
1903 		acpi_device_release(&device->dev);
1904 		return result;
1905 	}
1906 
1907 	acpi_power_add_remove_device(device, true);
1908 	acpi_device_add_finalize(device);
1909 
1910 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1911 			  dev_name(&device->dev), device->dev.parent ?
1912 				dev_name(device->dev.parent) : "(null)");
1913 
1914 	*child = device;
1915 	return 0;
1916 }
1917 
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1918 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1919 					    void *context)
1920 {
1921 	struct resource *res = context;
1922 
1923 	if (acpi_dev_resource_memory(ares, res))
1924 		return AE_CTRL_TERMINATE;
1925 
1926 	return AE_OK;
1927 }
1928 
acpi_device_should_be_hidden(acpi_handle handle)1929 static bool acpi_device_should_be_hidden(acpi_handle handle)
1930 {
1931 	acpi_status status;
1932 	struct resource res;
1933 
1934 	/* Check if it should ignore the UART device */
1935 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1936 		return false;
1937 
1938 	/*
1939 	 * The UART device described in SPCR table is assumed to have only one
1940 	 * memory resource present. So we only look for the first one here.
1941 	 */
1942 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1943 				     acpi_get_resource_memory, &res);
1944 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1945 		return false;
1946 
1947 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1948 			 &res.start);
1949 
1950 	return true;
1951 }
1952 
acpi_device_is_present(const struct acpi_device * adev)1953 bool acpi_device_is_present(const struct acpi_device *adev)
1954 {
1955 	return adev->status.present || adev->status.functional;
1956 }
1957 
acpi_device_is_enabled(const struct acpi_device * adev)1958 bool acpi_device_is_enabled(const struct acpi_device *adev)
1959 {
1960 	return adev->status.enabled;
1961 }
1962 
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1963 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1964 				       const char *idstr,
1965 				       const struct acpi_device_id **matchid)
1966 {
1967 	const struct acpi_device_id *devid;
1968 
1969 	if (handler->match)
1970 		return handler->match(idstr, matchid);
1971 
1972 	for (devid = handler->ids; devid->id[0]; devid++)
1973 		if (!strcmp((char *)devid->id, idstr)) {
1974 			if (matchid)
1975 				*matchid = devid;
1976 
1977 			return true;
1978 		}
1979 
1980 	return false;
1981 }
1982 
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1983 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1984 					const struct acpi_device_id **matchid)
1985 {
1986 	struct acpi_scan_handler *handler;
1987 
1988 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1989 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1990 			return handler;
1991 
1992 	return NULL;
1993 }
1994 
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1995 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1996 {
1997 	if (!!hotplug->enabled == !!val)
1998 		return;
1999 
2000 	mutex_lock(&acpi_scan_lock);
2001 
2002 	hotplug->enabled = val;
2003 
2004 	mutex_unlock(&acpi_scan_lock);
2005 }
2006 
acpi_scan_add_dep(acpi_handle handle,struct acpi_handle_list * dep_devices)2007 int acpi_scan_add_dep(acpi_handle handle, struct acpi_handle_list *dep_devices)
2008 {
2009 	u32 count;
2010 	int i;
2011 
2012 	for (count = 0, i = 0; i < dep_devices->count; i++) {
2013 		struct acpi_device_info *info;
2014 		struct acpi_dep_data *dep;
2015 		bool skip, honor_dep;
2016 		acpi_status status;
2017 
2018 		status = acpi_get_object_info(dep_devices->handles[i], &info);
2019 		if (ACPI_FAILURE(status)) {
2020 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2021 			continue;
2022 		}
2023 
2024 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2025 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2026 		kfree(info);
2027 
2028 		if (skip)
2029 			continue;
2030 
2031 		dep = kzalloc_obj(*dep, GFP_KERNEL);
2032 		if (!dep)
2033 			continue;
2034 
2035 		count++;
2036 
2037 		dep->supplier = dep_devices->handles[i];
2038 		dep->consumer = handle;
2039 		dep->honor_dep = honor_dep;
2040 
2041 		mutex_lock(&acpi_dep_list_lock);
2042 		list_add_tail(&dep->node, &acpi_dep_list);
2043 		mutex_unlock(&acpi_dep_list_lock);
2044 	}
2045 
2046 	acpi_handle_list_free(dep_devices);
2047 	return count;
2048 }
2049 
acpi_scan_init_hotplug(struct acpi_device * adev)2050 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2051 {
2052 	struct acpi_hardware_id *hwid;
2053 
2054 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2055 		acpi_dock_add(adev);
2056 		return;
2057 	}
2058 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2059 		struct acpi_scan_handler *handler;
2060 
2061 		handler = acpi_scan_match_handler(hwid->id, NULL);
2062 		if (handler) {
2063 			adev->flags.hotplug_notify = true;
2064 			break;
2065 		}
2066 	}
2067 }
2068 
arch_acpi_add_auto_dep(acpi_handle handle)2069 u32 __weak arch_acpi_add_auto_dep(acpi_handle handle) { return 0; }
2070 
acpi_scan_check_dep(acpi_handle handle)2071 static u32 acpi_scan_check_dep(acpi_handle handle)
2072 {
2073 	struct acpi_handle_list dep_devices;
2074 	u32 count = 0;
2075 
2076 	/*
2077 	 * Some architectures like RISC-V need to add dependencies for
2078 	 * all devices which use GSI to the interrupt controller so that
2079 	 * interrupt controller is probed before any of those devices.
2080 	 * Instead of mandating _DEP on all the devices, detect the
2081 	 * dependency and add automatically.
2082 	 */
2083 	count += arch_acpi_add_auto_dep(handle);
2084 
2085 	/*
2086 	 * Check for _HID here to avoid deferring the enumeration of:
2087 	 * 1. PCI devices.
2088 	 * 2. ACPI nodes describing USB ports.
2089 	 * Still, checking for _HID catches more then just these cases ...
2090 	 */
2091 	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2092 		return count;
2093 
2094 	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2095 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2096 		return count;
2097 	}
2098 
2099 	count += acpi_scan_add_dep(handle, &dep_devices);
2100 	return count;
2101 }
2102 
acpi_scan_check_crs_csi2_cb(acpi_handle handle,u32 a,void * b,void ** c)2103 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2104 {
2105 	acpi_mipi_check_crs_csi2(handle);
2106 	return AE_OK;
2107 }
2108 
acpi_bus_check_add(acpi_handle handle,bool first_pass,struct acpi_device ** adev_p)2109 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2110 				      struct acpi_device **adev_p)
2111 {
2112 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2113 	acpi_object_type acpi_type;
2114 	int type;
2115 
2116 	if (device)
2117 		goto out;
2118 
2119 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2120 		return AE_OK;
2121 
2122 	switch (acpi_type) {
2123 	case ACPI_TYPE_DEVICE:
2124 		if (acpi_device_should_be_hidden(handle))
2125 			return AE_OK;
2126 
2127 		if (first_pass) {
2128 			acpi_mipi_check_crs_csi2(handle);
2129 
2130 			/* Bail out if there are dependencies. */
2131 			if (acpi_scan_check_dep(handle) > 0) {
2132 				/*
2133 				 * The entire CSI-2 connection graph needs to be
2134 				 * extracted before any drivers or scan handlers
2135 				 * are bound to struct device objects, so scan
2136 				 * _CRS CSI-2 resource descriptors for all
2137 				 * devices below the current handle.
2138 				 */
2139 				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2140 						    ACPI_UINT32_MAX,
2141 						    acpi_scan_check_crs_csi2_cb,
2142 						    NULL, NULL, NULL);
2143 				return AE_CTRL_DEPTH;
2144 			}
2145 		}
2146 
2147 		fallthrough;
2148 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2149 		type = ACPI_BUS_TYPE_DEVICE;
2150 		break;
2151 
2152 	case ACPI_TYPE_PROCESSOR:
2153 		type = ACPI_BUS_TYPE_PROCESSOR;
2154 		break;
2155 
2156 	case ACPI_TYPE_THERMAL:
2157 		type = ACPI_BUS_TYPE_THERMAL;
2158 		break;
2159 
2160 	case ACPI_TYPE_POWER:
2161 		acpi_add_power_resource(handle);
2162 		fallthrough;
2163 	default:
2164 		return AE_OK;
2165 	}
2166 
2167 	/*
2168 	 * If first_pass is true at this point, the device has no dependencies,
2169 	 * or the creation of the device object would have been postponed above.
2170 	 */
2171 	acpi_add_single_object(&device, handle, type, !first_pass);
2172 	if (!device)
2173 		return AE_CTRL_DEPTH;
2174 
2175 	acpi_scan_init_hotplug(device);
2176 
2177 out:
2178 	if (!*adev_p)
2179 		*adev_p = device;
2180 
2181 	return AE_OK;
2182 }
2183 
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2184 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2185 					void *not_used, void **ret_p)
2186 {
2187 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2188 }
2189 
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2190 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2191 					void *not_used, void **ret_p)
2192 {
2193 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2194 }
2195 
2196 struct acpi_scan_system_dev {
2197 	struct list_head node;
2198 	struct acpi_device *adev;
2199 };
2200 
2201 static const char * const acpi_system_dev_ids[] = {
2202 	"PNP0C01", /* Memory controller */
2203 	"PNP0C02", /* Motherboard resource */
2204 	NULL
2205 };
2206 
acpi_default_enumeration(struct acpi_device * device)2207 static void acpi_default_enumeration(struct acpi_device *device)
2208 {
2209 	/*
2210 	 * Do not enumerate devices with enumeration_by_parent flag set as
2211 	 * they will be enumerated by their respective parents.
2212 	 */
2213 	if (device->flags.enumeration_by_parent) {
2214 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2215 					     ACPI_RECONFIG_DEVICE_ADD, device);
2216 		return;
2217 	}
2218 	if (match_string(acpi_system_dev_ids, -1, acpi_device_hid(device)) >= 0) {
2219 		struct acpi_scan_system_dev *sd;
2220 
2221 		/*
2222 		 * This is a generic system device, so there is no need to
2223 		 * create a platform device for it, but its resources need to be
2224 		 * reserved.  However, that needs to be done after all of the
2225 		 * other device objects have been processed and PCI has claimed
2226 		 * BARs in case there are resource conflicts.
2227 		 */
2228 		sd = kmalloc_obj(*sd, GFP_KERNEL);
2229 		if (sd) {
2230 			sd->adev = device;
2231 			list_add_tail(&sd->node, &acpi_scan_system_dev_list);
2232 		}
2233 	} else {
2234 		/* For a regular device object, create a platform device. */
2235 		acpi_create_platform_device(device, NULL);
2236 	}
2237 	acpi_device_set_enumerated(device);
2238 }
2239 
2240 static const struct acpi_device_id generic_device_ids[] = {
2241 	{ACPI_DT_NAMESPACE_HID, },
2242 	{"", },
2243 };
2244 
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2245 static int acpi_generic_device_attach(struct acpi_device *adev,
2246 				      const struct acpi_device_id *not_used)
2247 {
2248 	/*
2249 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2250 	 * below can be unconditional.
2251 	 */
2252 	if (adev->data.of_compatible)
2253 		acpi_default_enumeration(adev);
2254 
2255 	return 1;
2256 }
2257 
2258 static struct acpi_scan_handler generic_device_handler = {
2259 	.ids = generic_device_ids,
2260 	.attach = acpi_generic_device_attach,
2261 };
2262 
acpi_scan_attach_handler(struct acpi_device * device)2263 static int acpi_scan_attach_handler(struct acpi_device *device)
2264 {
2265 	struct acpi_hardware_id *hwid;
2266 	int ret = 0;
2267 
2268 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2269 		const struct acpi_device_id *devid;
2270 		struct acpi_scan_handler *handler;
2271 
2272 		handler = acpi_scan_match_handler(hwid->id, &devid);
2273 		if (handler) {
2274 			if (!handler->attach) {
2275 				device->pnp.type.platform_id = 0;
2276 				continue;
2277 			}
2278 			device->handler = handler;
2279 			ret = handler->attach(device, devid);
2280 			if (ret > 0)
2281 				break;
2282 
2283 			device->handler = NULL;
2284 			if (ret < 0)
2285 				break;
2286 		}
2287 	}
2288 
2289 	return ret;
2290 }
2291 
acpi_bus_attach(struct acpi_device * device,void * first_pass)2292 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2293 {
2294 	bool skip = !first_pass && device->flags.visited;
2295 	acpi_handle ejd;
2296 	int ret;
2297 
2298 	if (skip)
2299 		goto ok;
2300 
2301 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2302 		register_dock_dependent_device(device, ejd);
2303 
2304 	acpi_bus_get_status(device);
2305 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2306 	if (!acpi_dev_ready_for_enumeration(device)) {
2307 		device->flags.initialized = false;
2308 		acpi_device_clear_enumerated(device);
2309 		device->flags.power_manageable = 0;
2310 		return 0;
2311 	}
2312 	if (device->handler)
2313 		goto ok;
2314 
2315 	acpi_ec_register_opregions(device);
2316 
2317 	if (!device->flags.initialized) {
2318 		device->flags.power_manageable =
2319 			device->power.states[ACPI_STATE_D0].flags.valid;
2320 		if (acpi_bus_init_power(device))
2321 			device->flags.power_manageable = 0;
2322 
2323 		device->flags.initialized = true;
2324 	} else if (device->flags.visited) {
2325 		goto ok;
2326 	}
2327 
2328 	ret = acpi_scan_attach_handler(device);
2329 	if (ret < 0)
2330 		return 0;
2331 
2332 	device->flags.match_driver = true;
2333 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2334 		acpi_device_set_enumerated(device);
2335 		goto ok;
2336 	}
2337 
2338 	ret = device_attach(&device->dev);
2339 	if (ret < 0)
2340 		return 0;
2341 
2342 	if (device->pnp.type.platform_id || device->pnp.type.backlight ||
2343 	    device->flags.enumeration_by_parent)
2344 		acpi_default_enumeration(device);
2345 	else
2346 		acpi_device_set_enumerated(device);
2347 
2348 ok:
2349 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2350 
2351 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2352 		device->handler->hotplug.notify_online(device);
2353 
2354 	return 0;
2355 }
2356 
acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2357 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2358 {
2359 	struct acpi_device **adev_p = data;
2360 	struct acpi_device *adev = *adev_p;
2361 
2362 	/*
2363 	 * If we're passed a 'previous' consumer device then we need to skip
2364 	 * any consumers until we meet the previous one, and then NULL @data
2365 	 * so the next one can be returned.
2366 	 */
2367 	if (adev) {
2368 		if (dep->consumer == adev->handle)
2369 			*adev_p = NULL;
2370 
2371 		return 0;
2372 	}
2373 
2374 	adev = acpi_get_acpi_dev(dep->consumer);
2375 	if (adev) {
2376 		*(struct acpi_device **)data = adev;
2377 		return 1;
2378 	}
2379 	/* Continue parsing if the device object is not present. */
2380 	return 0;
2381 }
2382 
acpi_scan_clear_dep_fn(void * dev,async_cookie_t cookie)2383 static void acpi_scan_clear_dep_fn(void *dev, async_cookie_t cookie)
2384 {
2385 	struct acpi_device *adev = to_acpi_device(dev);
2386 
2387 	acpi_scan_lock_acquire();
2388 	acpi_bus_attach(adev, (void *)true);
2389 	acpi_scan_lock_release();
2390 
2391 	acpi_dev_put(adev);
2392 }
2393 
acpi_scan_clear_dep_queue(struct acpi_device * adev)2394 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2395 {
2396 	if (adev->dep_unmet)
2397 		return false;
2398 
2399 	/*
2400 	 * Async schedule the deferred acpi_scan_clear_dep_fn() since:
2401 	 * - acpi_bus_attach() needs to hold acpi_scan_lock which cannot
2402 	 *   be acquired under acpi_dep_list_lock (held here)
2403 	 * - the deferred work at boot stage is ensured to be finished
2404 	 *   before userspace init task by the async_synchronize_full()
2405 	 *   barrier
2406 	 *
2407 	 * Use _nocall variant since it'll return on failure instead of
2408 	 * run the function synchronously.
2409 	 */
2410 	return async_schedule_dev_nocall(acpi_scan_clear_dep_fn, &adev->dev);
2411 }
2412 
acpi_scan_delete_dep_data(struct acpi_dep_data * dep)2413 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2414 {
2415 	list_del(&dep->node);
2416 	kfree(dep);
2417 }
2418 
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2419 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2420 {
2421 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2422 
2423 	if (adev) {
2424 		adev->dep_unmet--;
2425 		if (!acpi_scan_clear_dep_queue(adev))
2426 			acpi_dev_put(adev);
2427 	}
2428 
2429 	if (dep->free_when_met)
2430 		acpi_scan_delete_dep_data(dep);
2431 	else
2432 		dep->met = true;
2433 
2434 	return 0;
2435 }
2436 
2437 /**
2438  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2439  * @handle:	The ACPI handle of the supplier device
2440  * @callback:	Pointer to the callback function to apply
2441  * @data:	Pointer to some data to pass to the callback
2442  *
2443  * The return value of the callback determines this function's behaviour. If 0
2444  * is returned we continue to iterate over acpi_dep_list. If a positive value
2445  * is returned then the loop is broken but this function returns 0. If a
2446  * negative value is returned by the callback then the loop is broken and that
2447  * value is returned as the final error.
2448  */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2449 static int acpi_walk_dep_device_list(acpi_handle handle,
2450 				int (*callback)(struct acpi_dep_data *, void *),
2451 				void *data)
2452 {
2453 	struct acpi_dep_data *dep, *tmp;
2454 	int ret = 0;
2455 
2456 	mutex_lock(&acpi_dep_list_lock);
2457 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2458 		if (dep->supplier == handle) {
2459 			ret = callback(dep, data);
2460 			if (ret)
2461 				break;
2462 		}
2463 	}
2464 	mutex_unlock(&acpi_dep_list_lock);
2465 
2466 	return ret > 0 ? 0 : ret;
2467 }
2468 
2469 /**
2470  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2471  * @supplier: Pointer to the supplier &struct acpi_device
2472  *
2473  * Clear dependencies on the given device.
2474  */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2475 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2476 {
2477 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2480 
2481 /**
2482  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2483  * @device: Pointer to the &struct acpi_device to check
2484  *
2485  * Check if the device is present and has no unmet dependencies.
2486  *
2487  * Return true if the device is ready for enumeratino. Otherwise, return false.
2488  */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2489 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2490 {
2491 	if (device->flags.honor_deps && device->dep_unmet)
2492 		return false;
2493 
2494 	return acpi_device_is_present(device);
2495 }
2496 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2497 
2498 /**
2499  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2500  * @supplier: Pointer to the dependee device
2501  * @start: Pointer to the current dependent device
2502  *
2503  * Returns the next &struct acpi_device which declares itself dependent on
2504  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2505  *
2506  * If the returned adev is not passed as @start to this function, the caller is
2507  * responsible for putting the reference to adev when it is no longer needed.
2508  */
acpi_dev_get_next_consumer_dev(struct acpi_device * supplier,struct acpi_device * start)2509 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2510 						   struct acpi_device *start)
2511 {
2512 	struct acpi_device *adev = start;
2513 
2514 	acpi_walk_dep_device_list(supplier->handle,
2515 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2516 
2517 	acpi_dev_put(start);
2518 
2519 	if (adev == start)
2520 		return NULL;
2521 
2522 	return adev;
2523 }
2524 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2525 
acpi_scan_postponed_branch(acpi_handle handle)2526 static void acpi_scan_postponed_branch(acpi_handle handle)
2527 {
2528 	struct acpi_device *adev = NULL;
2529 
2530 	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2531 		return;
2532 
2533 	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2534 			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2535 
2536 	/*
2537 	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2538 	 * have been added above.
2539 	 */
2540 	acpi_mipi_init_crs_csi2_swnodes();
2541 
2542 	acpi_bus_attach(adev, NULL);
2543 }
2544 
acpi_scan_postponed(void)2545 static void acpi_scan_postponed(void)
2546 {
2547 	struct acpi_dep_data *dep, *tmp;
2548 
2549 	mutex_lock(&acpi_dep_list_lock);
2550 
2551 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2552 		acpi_handle handle = dep->consumer;
2553 
2554 		/*
2555 		 * In case there are multiple acpi_dep_list entries with the
2556 		 * same consumer, skip the current entry if the consumer device
2557 		 * object corresponding to it is present already.
2558 		 */
2559 		if (!acpi_fetch_acpi_dev(handle)) {
2560 			/*
2561 			 * Even though the lock is released here, tmp is
2562 			 * guaranteed to be valid, because none of the list
2563 			 * entries following dep is marked as "free when met"
2564 			 * and so they cannot be deleted.
2565 			 */
2566 			mutex_unlock(&acpi_dep_list_lock);
2567 
2568 			acpi_scan_postponed_branch(handle);
2569 
2570 			mutex_lock(&acpi_dep_list_lock);
2571 		}
2572 
2573 		if (dep->met)
2574 			acpi_scan_delete_dep_data(dep);
2575 		else
2576 			dep->free_when_met = true;
2577 	}
2578 
2579 	mutex_unlock(&acpi_dep_list_lock);
2580 }
2581 
acpi_scan_claim_resources(struct acpi_device * adev)2582 static void acpi_scan_claim_resources(struct acpi_device *adev)
2583 {
2584 	struct resource_entry *rentry;
2585 	LIST_HEAD(resource_list);
2586 	unsigned int count = 0;
2587 	const char *regionid;
2588 
2589 	if (acpi_dev_get_resources(adev, &resource_list, NULL, NULL) <= 0)
2590 		return;
2591 
2592 	regionid = kstrdup(dev_name(&adev->dev), GFP_KERNEL);
2593 	if (!regionid)
2594 		goto exit;
2595 
2596 	list_for_each_entry(rentry, &resource_list, node) {
2597 		struct resource *res = rentry->res;
2598 		struct resource *r;
2599 
2600 		/* Skip disabled and invalid resources. */
2601 		if ((res->flags & IORESOURCE_DISABLED) || res->end < res->start)
2602 			continue;
2603 
2604 		if (resource_type(res) == IORESOURCE_IO) {
2605 			/*
2606 			 * Follow the PNP system driver and on x86 skip I/O
2607 			 * resources that start below 0x100 (the "standard PC
2608 			 * hardware" boundary).
2609 			 */
2610 			if (IS_ENABLED(CONFIG_X86) && res->start < 0x100) {
2611 				dev_info(&adev->dev, "Skipped %pR\n", res);
2612 				continue;
2613 			}
2614 			r = request_region(res->start, resource_size(res), regionid);
2615 		} else if (resource_type(res) == IORESOURCE_MEM) {
2616 			r = request_mem_region(res->start, resource_size(res), regionid);
2617 		} else {
2618 			continue;
2619 		}
2620 
2621 		if (r) {
2622 			r->flags &= ~IORESOURCE_BUSY;
2623 			dev_info(&adev->dev, "Reserved %pR\n", r);
2624 			count++;
2625 		} else {
2626 			/*
2627 			 * Failures at this point are usually harmless. PCI
2628 			 * quirks, for example, reserve resources they know
2629 			 * about too, so there may well be double reservations.
2630 			 */
2631 			dev_info(&adev->dev, "Could not reserve %pR\n", res);
2632 		}
2633 	}
2634 
2635 	if (!count)
2636 		kfree(regionid);
2637 
2638 exit:
2639 	acpi_dev_free_resource_list(&resource_list);
2640 }
2641 
acpi_reserve_motherboard_resources(void)2642 static int __init acpi_reserve_motherboard_resources(void)
2643 {
2644 	struct acpi_scan_system_dev *sd, *tmp;
2645 
2646 	guard(mutex)(&acpi_scan_lock);
2647 
2648 	list_for_each_entry_safe(sd, tmp, &acpi_scan_system_dev_list, node) {
2649 		acpi_scan_claim_resources(sd->adev);
2650 		list_del(&sd->node);
2651 		kfree(sd);
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 /*
2658  * Reserve motherboard resources after PCI claims BARs, but before PCI assigns
2659  * resources for uninitialized PCI devices.
2660  */
2661 fs_initcall(acpi_reserve_motherboard_resources);
2662 
2663 /**
2664  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2665  * @handle: Root of the namespace scope to scan.
2666  *
2667  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2668  * found devices.
2669  *
2670  * If no devices were found, -ENODEV is returned, but it does not mean that
2671  * there has been a real error.  There just have been no suitable ACPI objects
2672  * in the table trunk from which the kernel could create a device and add an
2673  * appropriate driver.
2674  *
2675  * Must be called under acpi_scan_lock.
2676  */
acpi_bus_scan(acpi_handle handle)2677 int acpi_bus_scan(acpi_handle handle)
2678 {
2679 	struct acpi_device *device = NULL;
2680 
2681 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2682 
2683 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2684 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2685 				    acpi_bus_check_add_1, NULL, NULL,
2686 				    (void **)&device);
2687 
2688 	if (!device)
2689 		return -ENODEV;
2690 
2691 	/*
2692 	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2693 	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2694 	 * walk above and MIPI DisCo for Imaging device properties.
2695 	 */
2696 	acpi_mipi_scan_crs_csi2();
2697 	acpi_mipi_init_crs_csi2_swnodes();
2698 
2699 	acpi_bus_attach(device, (void *)true);
2700 
2701 	/* Pass 2: Enumerate all of the remaining devices. */
2702 
2703 	acpi_scan_postponed();
2704 
2705 	acpi_mipi_crs_csi2_cleanup();
2706 
2707 	return 0;
2708 }
2709 EXPORT_SYMBOL(acpi_bus_scan);
2710 
2711 /**
2712  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2713  * @adev: Root of the ACPI namespace scope to walk.
2714  *
2715  * Must be called under acpi_scan_lock.
2716  */
acpi_bus_trim(struct acpi_device * adev)2717 void acpi_bus_trim(struct acpi_device *adev)
2718 {
2719 	uintptr_t flags = 0;
2720 
2721 	acpi_scan_check_and_detach(adev, (void *)flags);
2722 }
2723 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2724 
acpi_bus_register_early_device(int type)2725 int acpi_bus_register_early_device(int type)
2726 {
2727 	struct acpi_device *device = NULL;
2728 	int result;
2729 
2730 	result = acpi_add_single_object(&device, NULL, type, false);
2731 	if (result)
2732 		return result;
2733 
2734 	acpi_default_enumeration(device);
2735 	return 0;
2736 }
2737 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2738 
acpi_bus_add_fixed_device_object(enum acpi_bus_device_type type)2739 static void acpi_bus_add_fixed_device_object(enum acpi_bus_device_type type)
2740 {
2741 	struct acpi_device *adev = NULL;
2742 
2743 	acpi_add_single_object(&adev, NULL, type, false);
2744 	if (adev)
2745 		acpi_default_enumeration(adev);
2746 }
2747 
acpi_bus_scan_fixed(void)2748 static void acpi_bus_scan_fixed(void)
2749 {
2750 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON))
2751 		acpi_bus_add_fixed_device_object(ACPI_BUS_TYPE_POWER_BUTTON);
2752 
2753 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON))
2754 		acpi_bus_add_fixed_device_object(ACPI_BUS_TYPE_SLEEP_BUTTON);
2755 }
2756 
acpi_get_spcr_uart_addr(void)2757 static void __init acpi_get_spcr_uart_addr(void)
2758 {
2759 	acpi_status status;
2760 	struct acpi_table_spcr *spcr_ptr;
2761 
2762 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2763 				(struct acpi_table_header **)&spcr_ptr);
2764 	if (ACPI_FAILURE(status)) {
2765 		pr_warn("STAO table present, but SPCR is missing\n");
2766 		return;
2767 	}
2768 
2769 	spcr_uart_addr = spcr_ptr->serial_port.address;
2770 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2771 }
2772 
2773 static bool acpi_scan_initialized;
2774 
acpi_scan_init(void)2775 void __init acpi_scan_init(void)
2776 {
2777 	acpi_status status;
2778 	struct acpi_table_stao *stao_ptr;
2779 
2780 	acpi_pci_root_init();
2781 	acpi_pci_link_init();
2782 	acpi_processor_init();
2783 	acpi_platform_init();
2784 	acpi_lpss_init();
2785 	acpi_apd_init();
2786 	acpi_cmos_rtc_init();
2787 	acpi_container_init();
2788 	acpi_memory_hotplug_init();
2789 	acpi_watchdog_init();
2790 	acpi_pnp_init();
2791 	acpi_power_resources_init();
2792 	acpi_init_lpit();
2793 
2794 	acpi_scan_add_handler(&generic_device_handler);
2795 
2796 	/*
2797 	 * If there is STAO table, check whether it needs to ignore the UART
2798 	 * device in SPCR table.
2799 	 */
2800 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2801 				(struct acpi_table_header **)&stao_ptr);
2802 	if (ACPI_SUCCESS(status)) {
2803 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2804 			pr_info("STAO Name List not yet supported.\n");
2805 
2806 		if (stao_ptr->ignore_uart)
2807 			acpi_get_spcr_uart_addr();
2808 
2809 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2810 	}
2811 
2812 	acpi_gpe_apply_masked_gpes();
2813 	acpi_update_all_gpes();
2814 
2815 	/*
2816 	 * Although we call __add_memory() that is documented to require the
2817 	 * device_hotplug_lock, it is not necessary here because this is an
2818 	 * early code when userspace or any other code path cannot trigger
2819 	 * hotplug/hotunplug operations.
2820 	 */
2821 	mutex_lock(&acpi_scan_lock);
2822 	/*
2823 	 * Enumerate devices in the ACPI namespace.
2824 	 */
2825 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2826 		goto unlock;
2827 
2828 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2829 	if (!acpi_root)
2830 		goto unlock;
2831 
2832 	/* Fixed feature devices do not exist on HW-reduced platform */
2833 	if (!acpi_gbl_reduced_hardware)
2834 		acpi_bus_scan_fixed();
2835 
2836 	acpi_turn_off_unused_power_resources();
2837 
2838 	acpi_scan_initialized = true;
2839 
2840 unlock:
2841 	mutex_unlock(&acpi_scan_lock);
2842 }
2843 
2844 static struct acpi_probe_entry *ape;
2845 static int acpi_probe_count;
2846 static DEFINE_MUTEX(acpi_probe_mutex);
2847 
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2848 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2849 				  const unsigned long end)
2850 {
2851 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2852 		if (!ape->probe_subtbl(header, end))
2853 			acpi_probe_count++;
2854 
2855 	return 0;
2856 }
2857 
arch_sort_irqchip_probe(struct acpi_probe_entry * ap_head,int nr)2858 void __weak arch_sort_irqchip_probe(struct acpi_probe_entry *ap_head, int nr) { }
2859 
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2860 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2861 {
2862 	int count = 0;
2863 
2864 	if (acpi_disabled)
2865 		return 0;
2866 
2867 	mutex_lock(&acpi_probe_mutex);
2868 	arch_sort_irqchip_probe(ap_head, nr);
2869 	for (ape = ap_head; nr; ape++, nr--) {
2870 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2871 			acpi_probe_count = 0;
2872 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2873 			count += acpi_probe_count;
2874 		} else {
2875 			int res;
2876 			res = acpi_table_parse(ape->id, ape->probe_table);
2877 			if (!res)
2878 				count++;
2879 		}
2880 	}
2881 	mutex_unlock(&acpi_probe_mutex);
2882 
2883 	return count;
2884 }
2885 
acpi_table_events_fn(struct work_struct * work)2886 static void acpi_table_events_fn(struct work_struct *work)
2887 {
2888 	acpi_scan_lock_acquire();
2889 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2890 	acpi_scan_lock_release();
2891 
2892 	kfree(work);
2893 }
2894 
acpi_scan_table_notify(void)2895 void acpi_scan_table_notify(void)
2896 {
2897 	struct work_struct *work;
2898 
2899 	if (!acpi_scan_initialized)
2900 		return;
2901 
2902 	work = kmalloc_obj(*work, GFP_KERNEL);
2903 	if (!work)
2904 		return;
2905 
2906 	INIT_WORK(work, acpi_table_events_fn);
2907 	schedule_work(work);
2908 }
2909 
acpi_reconfig_notifier_register(struct notifier_block * nb)2910 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2911 {
2912 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2913 }
2914 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2915 
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2916 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2917 {
2918 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2919 }
2920 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2921