1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright(c) 2023 Intel Corporation. All rights reserved. */
3 #include <linux/acpi.h>
4 #include <linux/xarray.h>
5 #include <linux/fw_table.h>
6 #include <linux/node.h>
7 #include <linux/overflow.h>
8 #include "cxlpci.h"
9 #include "cxlmem.h"
10 #include "core.h"
11 #include "cxl.h"
12
13 struct dsmas_entry {
14 struct range dpa_range;
15 u8 handle;
16 struct access_coordinate coord[ACCESS_COORDINATE_MAX];
17 struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
18 int entries;
19 int qos_class;
20 };
21
cdat_normalize(u16 entry,u64 base,u8 type)22 static u32 cdat_normalize(u16 entry, u64 base, u8 type)
23 {
24 u32 value;
25
26 /*
27 * Check for invalid and overflow values
28 */
29 if (entry == 0xffff || !entry)
30 return 0;
31 else if (base > (UINT_MAX / (entry)))
32 return 0;
33
34 /*
35 * CDAT fields follow the format of HMAT fields. See table 5 Device
36 * Scoped Latency and Bandwidth Information Structure in Coherent Device
37 * Attribute Table (CDAT) Specification v1.01.
38 */
39 value = entry * base;
40 switch (type) {
41 case ACPI_HMAT_ACCESS_LATENCY:
42 case ACPI_HMAT_READ_LATENCY:
43 case ACPI_HMAT_WRITE_LATENCY:
44 value = DIV_ROUND_UP(value, 1000);
45 break;
46 default:
47 break;
48 }
49 return value;
50 }
51
cdat_dsmas_handler(union acpi_subtable_headers * header,void * arg,const unsigned long end)52 static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
53 const unsigned long end)
54 {
55 struct acpi_cdat_header *hdr = &header->cdat;
56 struct acpi_cdat_dsmas *dsmas;
57 int size = sizeof(*hdr) + sizeof(*dsmas);
58 struct xarray *dsmas_xa = arg;
59 struct dsmas_entry *dent;
60 u16 len;
61 int rc;
62
63 len = le16_to_cpu((__force __le16)hdr->length);
64 if (len != size || (unsigned long)hdr + len > end) {
65 pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
66 return -EINVAL;
67 }
68
69 /* Skip common header */
70 dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
71
72 dent = kzalloc(sizeof(*dent), GFP_KERNEL);
73 if (!dent)
74 return -ENOMEM;
75
76 dent->handle = dsmas->dsmad_handle;
77 dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
78 dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
79 le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
80
81 rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
82 if (rc) {
83 kfree(dent);
84 return rc;
85 }
86
87 return 0;
88 }
89
__cxl_access_coordinate_set(struct access_coordinate * coord,int access,unsigned int val)90 static void __cxl_access_coordinate_set(struct access_coordinate *coord,
91 int access, unsigned int val)
92 {
93 switch (access) {
94 case ACPI_HMAT_ACCESS_LATENCY:
95 coord->read_latency = val;
96 coord->write_latency = val;
97 break;
98 case ACPI_HMAT_READ_LATENCY:
99 coord->read_latency = val;
100 break;
101 case ACPI_HMAT_WRITE_LATENCY:
102 coord->write_latency = val;
103 break;
104 case ACPI_HMAT_ACCESS_BANDWIDTH:
105 coord->read_bandwidth = val;
106 coord->write_bandwidth = val;
107 break;
108 case ACPI_HMAT_READ_BANDWIDTH:
109 coord->read_bandwidth = val;
110 break;
111 case ACPI_HMAT_WRITE_BANDWIDTH:
112 coord->write_bandwidth = val;
113 break;
114 }
115 }
116
cxl_access_coordinate_set(struct access_coordinate * coord,int access,unsigned int val)117 static void cxl_access_coordinate_set(struct access_coordinate *coord,
118 int access, unsigned int val)
119 {
120 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
121 __cxl_access_coordinate_set(&coord[i], access, val);
122 }
123
cdat_dslbis_handler(union acpi_subtable_headers * header,void * arg,const unsigned long end)124 static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
125 const unsigned long end)
126 {
127 struct acpi_cdat_header *hdr = &header->cdat;
128 struct acpi_cdat_dslbis *dslbis;
129 int size = sizeof(*hdr) + sizeof(*dslbis);
130 struct xarray *dsmas_xa = arg;
131 struct dsmas_entry *dent;
132 __le64 le_base;
133 __le16 le_val;
134 u64 val;
135 u16 len;
136
137 len = le16_to_cpu((__force __le16)hdr->length);
138 if (len != size || (unsigned long)hdr + len > end) {
139 pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
140 return -EINVAL;
141 }
142
143 /* Skip common header */
144 dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
145
146 /* Skip unrecognized data type */
147 if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
148 return 0;
149
150 /* Not a memory type, skip */
151 if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
152 return 0;
153
154 dent = xa_load(dsmas_xa, dslbis->handle);
155 if (!dent) {
156 pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
157 return 0;
158 }
159
160 le_base = (__force __le64)dslbis->entry_base_unit;
161 le_val = (__force __le16)dslbis->entry[0];
162 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
163 dslbis->data_type);
164
165 cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
166
167 return 0;
168 }
169
cdat_table_parse_output(int rc)170 static int cdat_table_parse_output(int rc)
171 {
172 if (rc < 0)
173 return rc;
174 if (rc == 0)
175 return -ENOENT;
176
177 return 0;
178 }
179
cxl_cdat_endpoint_process(struct cxl_port * port,struct xarray * dsmas_xa)180 static int cxl_cdat_endpoint_process(struct cxl_port *port,
181 struct xarray *dsmas_xa)
182 {
183 int rc;
184
185 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
186 dsmas_xa, port->cdat.table, port->cdat.length);
187 rc = cdat_table_parse_output(rc);
188 if (rc)
189 return rc;
190
191 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
192 dsmas_xa, port->cdat.table, port->cdat.length);
193 return cdat_table_parse_output(rc);
194 }
195
cxl_port_perf_data_calculate(struct cxl_port * port,struct xarray * dsmas_xa)196 static int cxl_port_perf_data_calculate(struct cxl_port *port,
197 struct xarray *dsmas_xa)
198 {
199 struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
200 struct dsmas_entry *dent;
201 int valid_entries = 0;
202 unsigned long index;
203 int rc;
204
205 rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
206 if (rc) {
207 dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
208 return rc;
209 }
210
211 struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
212
213 if (!cxl_root)
214 return -ENODEV;
215
216 if (!cxl_root->ops || !cxl_root->ops->qos_class)
217 return -EOPNOTSUPP;
218
219 xa_for_each(dsmas_xa, index, dent) {
220 int qos_class;
221
222 cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
223 dent->entries = 1;
224 rc = cxl_root->ops->qos_class(cxl_root,
225 &dent->coord[ACCESS_COORDINATE_CPU],
226 1, &qos_class);
227 if (rc != 1)
228 continue;
229
230 valid_entries++;
231 dent->qos_class = qos_class;
232 }
233
234 if (!valid_entries)
235 return -ENOENT;
236
237 return 0;
238 }
239
update_perf_entry(struct device * dev,struct dsmas_entry * dent,struct cxl_dpa_perf * dpa_perf)240 static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
241 struct cxl_dpa_perf *dpa_perf)
242 {
243 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
244 dpa_perf->coord[i] = dent->coord[i];
245 dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
246 }
247 dpa_perf->dpa_range = dent->dpa_range;
248 dpa_perf->qos_class = dent->qos_class;
249 dev_dbg(dev,
250 "DSMAS: dpa: %pra qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
251 &dent->dpa_range, dpa_perf->qos_class,
252 dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
253 dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
254 dent->coord[ACCESS_COORDINATE_CPU].read_latency,
255 dent->coord[ACCESS_COORDINATE_CPU].write_latency);
256 }
257
cxl_memdev_set_qos_class(struct cxl_dev_state * cxlds,struct xarray * dsmas_xa)258 static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
259 struct xarray *dsmas_xa)
260 {
261 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
262 struct device *dev = cxlds->dev;
263 struct range pmem_range = {
264 .start = cxlds->pmem_res.start,
265 .end = cxlds->pmem_res.end,
266 };
267 struct range ram_range = {
268 .start = cxlds->ram_res.start,
269 .end = cxlds->ram_res.end,
270 };
271 struct dsmas_entry *dent;
272 unsigned long index;
273
274 xa_for_each(dsmas_xa, index, dent) {
275 if (resource_size(&cxlds->ram_res) &&
276 range_contains(&ram_range, &dent->dpa_range))
277 update_perf_entry(dev, dent, &mds->ram_perf);
278 else if (resource_size(&cxlds->pmem_res) &&
279 range_contains(&pmem_range, &dent->dpa_range))
280 update_perf_entry(dev, dent, &mds->pmem_perf);
281 else
282 dev_dbg(dev, "no partition for dsmas dpa: %pra\n",
283 &dent->dpa_range);
284 }
285 }
286
match_cxlrd_qos_class(struct device * dev,void * data)287 static int match_cxlrd_qos_class(struct device *dev, void *data)
288 {
289 int dev_qos_class = *(int *)data;
290 struct cxl_root_decoder *cxlrd;
291
292 if (!is_root_decoder(dev))
293 return 0;
294
295 cxlrd = to_cxl_root_decoder(dev);
296 if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
297 return 0;
298
299 if (cxlrd->qos_class == dev_qos_class)
300 return 1;
301
302 return 0;
303 }
304
reset_dpa_perf(struct cxl_dpa_perf * dpa_perf)305 static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
306 {
307 *dpa_perf = (struct cxl_dpa_perf) {
308 .qos_class = CXL_QOS_CLASS_INVALID,
309 };
310 }
311
cxl_qos_match(struct cxl_port * root_port,struct cxl_dpa_perf * dpa_perf)312 static bool cxl_qos_match(struct cxl_port *root_port,
313 struct cxl_dpa_perf *dpa_perf)
314 {
315 if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
316 return false;
317
318 if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
319 match_cxlrd_qos_class))
320 return false;
321
322 return true;
323 }
324
match_cxlrd_hb(struct device * dev,void * data)325 static int match_cxlrd_hb(struct device *dev, void *data)
326 {
327 struct device *host_bridge = data;
328 struct cxl_switch_decoder *cxlsd;
329 struct cxl_root_decoder *cxlrd;
330
331 if (!is_root_decoder(dev))
332 return 0;
333
334 cxlrd = to_cxl_root_decoder(dev);
335 cxlsd = &cxlrd->cxlsd;
336
337 guard(rwsem_read)(&cxl_region_rwsem);
338 for (int i = 0; i < cxlsd->nr_targets; i++) {
339 if (host_bridge == cxlsd->target[i]->dport_dev)
340 return 1;
341 }
342
343 return 0;
344 }
345
cxl_qos_class_verify(struct cxl_memdev * cxlmd)346 static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
347 {
348 struct cxl_dev_state *cxlds = cxlmd->cxlds;
349 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
350 struct cxl_port *root_port;
351 int rc;
352
353 struct cxl_root *cxl_root __free(put_cxl_root) =
354 find_cxl_root(cxlmd->endpoint);
355
356 if (!cxl_root)
357 return -ENODEV;
358
359 root_port = &cxl_root->port;
360
361 /* Check that the QTG IDs are all sane between end device and root decoders */
362 if (!cxl_qos_match(root_port, &mds->ram_perf))
363 reset_dpa_perf(&mds->ram_perf);
364 if (!cxl_qos_match(root_port, &mds->pmem_perf))
365 reset_dpa_perf(&mds->pmem_perf);
366
367 /* Check to make sure that the device's host bridge is under a root decoder */
368 rc = device_for_each_child(&root_port->dev,
369 cxlmd->endpoint->host_bridge, match_cxlrd_hb);
370 if (!rc) {
371 reset_dpa_perf(&mds->ram_perf);
372 reset_dpa_perf(&mds->pmem_perf);
373 }
374
375 return rc;
376 }
377
discard_dsmas(struct xarray * xa)378 static void discard_dsmas(struct xarray *xa)
379 {
380 unsigned long index;
381 void *ent;
382
383 xa_for_each(xa, index, ent) {
384 xa_erase(xa, index);
385 kfree(ent);
386 }
387 xa_destroy(xa);
388 }
DEFINE_FREE(dsmas,struct xarray *,if (_T)discard_dsmas (_T))389 DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
390
391 void cxl_endpoint_parse_cdat(struct cxl_port *port)
392 {
393 struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
394 struct cxl_dev_state *cxlds = cxlmd->cxlds;
395 struct xarray __dsmas_xa;
396 struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
397 int rc;
398
399 xa_init(&__dsmas_xa);
400 if (!port->cdat.table)
401 return;
402
403 rc = cxl_cdat_endpoint_process(port, dsmas_xa);
404 if (rc < 0) {
405 dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
406 return;
407 }
408
409 rc = cxl_port_perf_data_calculate(port, dsmas_xa);
410 if (rc) {
411 dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
412 return;
413 }
414
415 cxl_memdev_set_qos_class(cxlds, dsmas_xa);
416 cxl_qos_class_verify(cxlmd);
417 cxl_memdev_update_perf(cxlmd);
418 }
419 EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, "CXL");
420
cdat_sslbis_handler(union acpi_subtable_headers * header,void * arg,const unsigned long end)421 static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
422 const unsigned long end)
423 {
424 struct acpi_cdat_sslbis_table {
425 struct acpi_cdat_header header;
426 struct acpi_cdat_sslbis sslbis_header;
427 struct acpi_cdat_sslbe entries[];
428 } *tbl = (struct acpi_cdat_sslbis_table *)header;
429 int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
430 struct acpi_cdat_sslbis *sslbis;
431 struct cxl_port *port = arg;
432 struct device *dev = &port->dev;
433 int remain, entries, i;
434 u16 len;
435
436 len = le16_to_cpu((__force __le16)header->cdat.length);
437 remain = len - size;
438 if (!remain || remain % sizeof(tbl->entries[0]) ||
439 (unsigned long)header + len > end) {
440 dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
441 return -EINVAL;
442 }
443
444 sslbis = &tbl->sslbis_header;
445 /* Unrecognized data type, we can skip */
446 if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
447 return 0;
448
449 entries = remain / sizeof(tbl->entries[0]);
450 if (struct_size(tbl, entries, entries) != len)
451 return -EINVAL;
452
453 for (i = 0; i < entries; i++) {
454 u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
455 u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
456 __le64 le_base;
457 __le16 le_val;
458 struct cxl_dport *dport;
459 unsigned long index;
460 u16 dsp_id;
461 u64 val;
462
463 switch (x) {
464 case ACPI_CDAT_SSLBIS_US_PORT:
465 dsp_id = y;
466 break;
467 case ACPI_CDAT_SSLBIS_ANY_PORT:
468 switch (y) {
469 case ACPI_CDAT_SSLBIS_US_PORT:
470 dsp_id = x;
471 break;
472 case ACPI_CDAT_SSLBIS_ANY_PORT:
473 dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
474 break;
475 default:
476 dsp_id = y;
477 break;
478 }
479 break;
480 default:
481 dsp_id = x;
482 break;
483 }
484
485 le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
486 le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
487 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
488 sslbis->data_type);
489
490 xa_for_each(&port->dports, index, dport) {
491 if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
492 dsp_id == dport->port_id) {
493 cxl_access_coordinate_set(dport->coord,
494 sslbis->data_type,
495 val);
496 }
497 }
498 }
499
500 return 0;
501 }
502
cxl_switch_parse_cdat(struct cxl_port * port)503 void cxl_switch_parse_cdat(struct cxl_port *port)
504 {
505 int rc;
506
507 if (!port->cdat.table)
508 return;
509
510 rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
511 port, port->cdat.table, port->cdat.length);
512 rc = cdat_table_parse_output(rc);
513 if (rc)
514 dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
515 }
516 EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, "CXL");
517
__cxl_coordinates_combine(struct access_coordinate * out,struct access_coordinate * c1,struct access_coordinate * c2)518 static void __cxl_coordinates_combine(struct access_coordinate *out,
519 struct access_coordinate *c1,
520 struct access_coordinate *c2)
521 {
522 if (c1->write_bandwidth && c2->write_bandwidth)
523 out->write_bandwidth = min(c1->write_bandwidth,
524 c2->write_bandwidth);
525 out->write_latency = c1->write_latency + c2->write_latency;
526
527 if (c1->read_bandwidth && c2->read_bandwidth)
528 out->read_bandwidth = min(c1->read_bandwidth,
529 c2->read_bandwidth);
530 out->read_latency = c1->read_latency + c2->read_latency;
531 }
532
533 /**
534 * cxl_coordinates_combine - Combine the two input coordinates
535 *
536 * @out: Output coordinate of c1 and c2 combined
537 * @c1: input coordinates
538 * @c2: input coordinates
539 */
cxl_coordinates_combine(struct access_coordinate * out,struct access_coordinate * c1,struct access_coordinate * c2)540 void cxl_coordinates_combine(struct access_coordinate *out,
541 struct access_coordinate *c1,
542 struct access_coordinate *c2)
543 {
544 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
545 __cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
546 }
547
548 MODULE_IMPORT_NS("CXL");
549
cxl_bandwidth_add(struct access_coordinate * coord,struct access_coordinate * c1,struct access_coordinate * c2)550 static void cxl_bandwidth_add(struct access_coordinate *coord,
551 struct access_coordinate *c1,
552 struct access_coordinate *c2)
553 {
554 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
555 coord[i].read_bandwidth = c1[i].read_bandwidth +
556 c2[i].read_bandwidth;
557 coord[i].write_bandwidth = c1[i].write_bandwidth +
558 c2[i].write_bandwidth;
559 }
560 }
561
dpa_perf_contains(struct cxl_dpa_perf * perf,struct resource * dpa_res)562 static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
563 struct resource *dpa_res)
564 {
565 struct range dpa = {
566 .start = dpa_res->start,
567 .end = dpa_res->end,
568 };
569
570 return range_contains(&perf->dpa_range, &dpa);
571 }
572
cxled_get_dpa_perf(struct cxl_endpoint_decoder * cxled,enum cxl_decoder_mode mode)573 static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled,
574 enum cxl_decoder_mode mode)
575 {
576 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
577 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds);
578 struct cxl_dpa_perf *perf;
579
580 switch (mode) {
581 case CXL_DECODER_RAM:
582 perf = &mds->ram_perf;
583 break;
584 case CXL_DECODER_PMEM:
585 perf = &mds->pmem_perf;
586 break;
587 default:
588 return ERR_PTR(-EINVAL);
589 }
590
591 if (!dpa_perf_contains(perf, cxled->dpa_res))
592 return ERR_PTR(-EINVAL);
593
594 return perf;
595 }
596
597 /*
598 * Transient context for containing the current calculation of bandwidth when
599 * doing walking the port hierarchy to deal with shared upstream link.
600 */
601 struct cxl_perf_ctx {
602 struct access_coordinate coord[ACCESS_COORDINATE_MAX];
603 struct cxl_port *port;
604 };
605
606 /**
607 * cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
608 * @cxlr: CXL region for the bandwidth calculation
609 * @cxled: endpoint decoder to start on
610 * @usp_xa: (output) the xarray that collects all the bandwidth coordinates
611 * indexed by the upstream device with data of 'struct cxl_perf_ctx'.
612 * @gp_is_root: (output) bool of whether the grandparent is cxl root.
613 *
614 * Return: 0 for success or -errno
615 *
616 * Collects aggregated endpoint bandwidth and store the bandwidth in
617 * an xarray indexed by the upstream device of the switch or the RP
618 * device. Each endpoint consists the minimum of the bandwidth from DSLBIS
619 * from the endpoint CDAT, the endpoint upstream link bandwidth, and the
620 * bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
621 * the downstream port that's associated with the endpoint. If the
622 * device is directly connected to a RP, then no SSLBIS is involved.
623 */
cxl_endpoint_gather_bandwidth(struct cxl_region * cxlr,struct cxl_endpoint_decoder * cxled,struct xarray * usp_xa,bool * gp_is_root)624 static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
625 struct cxl_endpoint_decoder *cxled,
626 struct xarray *usp_xa,
627 bool *gp_is_root)
628 {
629 struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
630 struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
631 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
632 struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
633 struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
634 struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
635 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
636 struct cxl_dev_state *cxlds = cxlmd->cxlds;
637 struct pci_dev *pdev = to_pci_dev(cxlds->dev);
638 struct cxl_perf_ctx *perf_ctx;
639 struct cxl_dpa_perf *perf;
640 unsigned long index;
641 void *ptr;
642 int rc;
643
644 if (!dev_is_pci(cxlds->dev))
645 return -ENODEV;
646
647 if (cxlds->rcd)
648 return -ENODEV;
649
650 perf = cxled_get_dpa_perf(cxled, cxlr->mode);
651 if (IS_ERR(perf))
652 return PTR_ERR(perf);
653
654 gp_port = to_cxl_port(parent_port->dev.parent);
655 *gp_is_root = is_cxl_root(gp_port);
656
657 /*
658 * If the grandparent is cxl root, then index is the root port,
659 * otherwise it's the parent switch upstream device.
660 */
661 if (*gp_is_root)
662 index = (unsigned long)endpoint->parent_dport->dport_dev;
663 else
664 index = (unsigned long)parent_port->uport_dev;
665
666 perf_ctx = xa_load(usp_xa, index);
667 if (!perf_ctx) {
668 struct cxl_perf_ctx *c __free(kfree) =
669 kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
670
671 if (!c)
672 return -ENOMEM;
673 ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
674 if (xa_is_err(ptr))
675 return xa_err(ptr);
676 perf_ctx = no_free_ptr(c);
677 perf_ctx->port = parent_port;
678 }
679
680 /* Direct upstream link from EP bandwidth */
681 rc = cxl_pci_get_bandwidth(pdev, pci_coord);
682 if (rc < 0)
683 return rc;
684
685 /*
686 * Min of upstream link bandwidth and Endpoint CDAT bandwidth from
687 * DSLBIS.
688 */
689 cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
690
691 /*
692 * If grandparent port is root, then there's no switch involved and
693 * the endpoint is connected to a root port.
694 */
695 if (!*gp_is_root) {
696 /*
697 * Retrieve the switch SSLBIS for switch downstream port
698 * associated with the endpoint bandwidth.
699 */
700 rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
701 if (rc)
702 return rc;
703
704 /*
705 * Min of the earlier coordinates with the switch SSLBIS
706 * bandwidth
707 */
708 cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
709 }
710
711 /*
712 * Aggregate the computed bandwidth with the current aggregated bandwidth
713 * of the endpoints with the same switch upstream device or RP.
714 */
715 cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
716
717 return 0;
718 }
719
free_perf_xa(struct xarray * xa)720 static void free_perf_xa(struct xarray *xa)
721 {
722 struct cxl_perf_ctx *ctx;
723 unsigned long index;
724
725 if (!xa)
726 return;
727
728 xa_for_each(xa, index, ctx)
729 kfree(ctx);
730 xa_destroy(xa);
731 kfree(xa);
732 }
DEFINE_FREE(free_perf_xa,struct xarray *,if (_T)free_perf_xa (_T))733 DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
734
735 /**
736 * cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
737 * @cxlr: The region being operated on
738 * @input_xa: xarray indexed by upstream device of a switch with data of 'struct
739 * cxl_perf_ctx'
740 * @gp_is_root: (output) bool of whether the grandparent is cxl root.
741 *
742 * Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
743 * or ERR_PTR(-errno)
744 *
745 * Iterate through the xarray. Take the minimum of the downstream calculated
746 * bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
747 * switch if exists. Sum the resulting bandwidth under the switch upstream
748 * device or a RP device. The function can be iterated over multiple switches
749 * if the switches are present.
750 */
751 static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
752 struct xarray *input_xa,
753 bool *gp_is_root)
754 {
755 struct xarray *res_xa __free(free_perf_xa) =
756 kzalloc(sizeof(*res_xa), GFP_KERNEL);
757 struct access_coordinate coords[ACCESS_COORDINATE_MAX];
758 struct cxl_perf_ctx *ctx, *us_ctx;
759 unsigned long index, us_index;
760 int dev_count = 0;
761 int gp_count = 0;
762 void *ptr;
763 int rc;
764
765 if (!res_xa)
766 return ERR_PTR(-ENOMEM);
767 xa_init(res_xa);
768
769 xa_for_each(input_xa, index, ctx) {
770 struct device *dev = (struct device *)index;
771 struct cxl_port *port = ctx->port;
772 struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
773 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
774 struct cxl_dport *dport = port->parent_dport;
775 bool is_root = false;
776
777 dev_count++;
778 if (is_cxl_root(gp_port)) {
779 is_root = true;
780 gp_count++;
781 }
782
783 /*
784 * If the grandparent is cxl root, then index is the root port,
785 * otherwise it's the parent switch upstream device.
786 */
787 if (is_root)
788 us_index = (unsigned long)port->parent_dport->dport_dev;
789 else
790 us_index = (unsigned long)parent_port->uport_dev;
791
792 us_ctx = xa_load(res_xa, us_index);
793 if (!us_ctx) {
794 struct cxl_perf_ctx *n __free(kfree) =
795 kzalloc(sizeof(*n), GFP_KERNEL);
796
797 if (!n)
798 return ERR_PTR(-ENOMEM);
799
800 ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
801 if (xa_is_err(ptr))
802 return ERR_PTR(xa_err(ptr));
803 us_ctx = no_free_ptr(n);
804 us_ctx->port = parent_port;
805 }
806
807 /*
808 * If the device isn't an upstream PCIe port, there's something
809 * wrong with the topology.
810 */
811 if (!dev_is_pci(dev))
812 return ERR_PTR(-EINVAL);
813
814 /* Retrieve the upstream link bandwidth */
815 rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
816 if (rc)
817 return ERR_PTR(-ENXIO);
818
819 /*
820 * Take the min of downstream bandwidth and the upstream link
821 * bandwidth.
822 */
823 cxl_coordinates_combine(coords, coords, ctx->coord);
824
825 /*
826 * Take the min of the calculated bandwdith and the upstream
827 * switch SSLBIS bandwidth if there's a parent switch
828 */
829 if (!is_root)
830 cxl_coordinates_combine(coords, coords, dport->coord);
831
832 /*
833 * Aggregate the calculated bandwidth common to an upstream
834 * switch.
835 */
836 cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
837 }
838
839 /* Asymmetric topology detected. */
840 if (gp_count) {
841 if (gp_count != dev_count) {
842 dev_dbg(&cxlr->dev,
843 "Asymmetric hierarchy detected, bandwidth not updated\n");
844 return ERR_PTR(-EOPNOTSUPP);
845 }
846 *gp_is_root = true;
847 }
848
849 return no_free_ptr(res_xa);
850 }
851
852 /**
853 * cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
854 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
855 * below each root port device.
856 *
857 * Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
858 */
cxl_rp_gather_bandwidth(struct xarray * xa)859 static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
860 {
861 struct xarray *hb_xa __free(free_perf_xa) =
862 kzalloc(sizeof(*hb_xa), GFP_KERNEL);
863 struct cxl_perf_ctx *ctx;
864 unsigned long index;
865
866 if (!hb_xa)
867 return ERR_PTR(-ENOMEM);
868 xa_init(hb_xa);
869
870 xa_for_each(xa, index, ctx) {
871 struct cxl_port *port = ctx->port;
872 unsigned long hb_index = (unsigned long)port->uport_dev;
873 struct cxl_perf_ctx *hb_ctx;
874 void *ptr;
875
876 hb_ctx = xa_load(hb_xa, hb_index);
877 if (!hb_ctx) {
878 struct cxl_perf_ctx *n __free(kfree) =
879 kzalloc(sizeof(*n), GFP_KERNEL);
880
881 if (!n)
882 return ERR_PTR(-ENOMEM);
883 ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
884 if (xa_is_err(ptr))
885 return ERR_PTR(xa_err(ptr));
886 hb_ctx = no_free_ptr(n);
887 hb_ctx->port = port;
888 }
889
890 cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
891 }
892
893 return no_free_ptr(hb_xa);
894 }
895
896 /**
897 * cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
898 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
899 * below each host bridge.
900 *
901 * Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
902 */
cxl_hb_gather_bandwidth(struct xarray * xa)903 static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
904 {
905 struct xarray *mw_xa __free(free_perf_xa) =
906 kzalloc(sizeof(*mw_xa), GFP_KERNEL);
907 struct cxl_perf_ctx *ctx;
908 unsigned long index;
909
910 if (!mw_xa)
911 return ERR_PTR(-ENOMEM);
912 xa_init(mw_xa);
913
914 xa_for_each(xa, index, ctx) {
915 struct cxl_port *port = ctx->port;
916 struct cxl_port *parent_port;
917 struct cxl_perf_ctx *mw_ctx;
918 struct cxl_dport *dport;
919 unsigned long mw_index;
920 void *ptr;
921
922 parent_port = to_cxl_port(port->dev.parent);
923 mw_index = (unsigned long)parent_port->uport_dev;
924
925 mw_ctx = xa_load(mw_xa, mw_index);
926 if (!mw_ctx) {
927 struct cxl_perf_ctx *n __free(kfree) =
928 kzalloc(sizeof(*n), GFP_KERNEL);
929
930 if (!n)
931 return ERR_PTR(-ENOMEM);
932 ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
933 if (xa_is_err(ptr))
934 return ERR_PTR(xa_err(ptr));
935 mw_ctx = no_free_ptr(n);
936 }
937
938 dport = port->parent_dport;
939 cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
940 cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
941 }
942
943 return no_free_ptr(mw_xa);
944 }
945
946 /**
947 * cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
948 * @cxlr: The region being operated on
949 * @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
950 */
cxl_region_update_bandwidth(struct cxl_region * cxlr,struct xarray * input_xa)951 static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
952 struct xarray *input_xa)
953 {
954 struct access_coordinate coord[ACCESS_COORDINATE_MAX];
955 struct cxl_perf_ctx *ctx;
956 unsigned long index;
957
958 memset(coord, 0, sizeof(coord));
959 xa_for_each(input_xa, index, ctx)
960 cxl_bandwidth_add(coord, coord, ctx->coord);
961
962 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
963 cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
964 cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
965 }
966 }
967
968 /**
969 * cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
970 * the region
971 * @cxlr: the cxl region to recalculate
972 *
973 * The function walks the topology from bottom up and calculates the bandwidth. It
974 * starts at the endpoints, processes at the switches if any, processes at the rootport
975 * level, at the host bridge level, and finally aggregates at the region.
976 */
cxl_region_shared_upstream_bandwidth_update(struct cxl_region * cxlr)977 void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
978 {
979 struct xarray *working_xa;
980 int root_count = 0;
981 bool is_root;
982 int rc;
983
984 lockdep_assert_held(&cxl_dpa_rwsem);
985
986 struct xarray *usp_xa __free(free_perf_xa) =
987 kzalloc(sizeof(*usp_xa), GFP_KERNEL);
988
989 if (!usp_xa)
990 return;
991
992 xa_init(usp_xa);
993
994 /* Collect bandwidth data from all the endpoints. */
995 for (int i = 0; i < cxlr->params.nr_targets; i++) {
996 struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
997
998 is_root = false;
999 rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
1000 if (rc)
1001 return;
1002 root_count += is_root;
1003 }
1004
1005 /* Detect asymmetric hierarchy with some direct attached endpoints. */
1006 if (root_count && root_count != cxlr->params.nr_targets) {
1007 dev_dbg(&cxlr->dev,
1008 "Asymmetric hierarchy detected, bandwidth not updated\n");
1009 return;
1010 }
1011
1012 /*
1013 * Walk up one or more switches to deal with the bandwidth of the
1014 * switches if they exist. Endpoints directly attached to RPs skip
1015 * over this part.
1016 */
1017 if (!root_count) {
1018 do {
1019 working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
1020 &is_root);
1021 if (IS_ERR(working_xa))
1022 return;
1023 free_perf_xa(usp_xa);
1024 usp_xa = working_xa;
1025 } while (!is_root);
1026 }
1027
1028 /* Handle the bandwidth at the root port of the hierarchy */
1029 working_xa = cxl_rp_gather_bandwidth(usp_xa);
1030 if (IS_ERR(working_xa))
1031 return;
1032 free_perf_xa(usp_xa);
1033 usp_xa = working_xa;
1034
1035 /* Handle the bandwidth at the host bridge of the hierarchy */
1036 working_xa = cxl_hb_gather_bandwidth(usp_xa);
1037 if (IS_ERR(working_xa))
1038 return;
1039 free_perf_xa(usp_xa);
1040 usp_xa = working_xa;
1041
1042 /*
1043 * Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
1044 * update the region bandwidth with the final calculated values.
1045 */
1046 cxl_region_update_bandwidth(cxlr, usp_xa);
1047 }
1048
cxl_region_perf_data_calculate(struct cxl_region * cxlr,struct cxl_endpoint_decoder * cxled)1049 void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
1050 struct cxl_endpoint_decoder *cxled)
1051 {
1052 struct cxl_dpa_perf *perf;
1053
1054 lockdep_assert_held(&cxl_dpa_rwsem);
1055
1056 perf = cxled_get_dpa_perf(cxled, cxlr->mode);
1057 if (IS_ERR(perf))
1058 return;
1059
1060 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
1061 /* Get total bandwidth and the worst latency for the cxl region */
1062 cxlr->coord[i].read_latency = max_t(unsigned int,
1063 cxlr->coord[i].read_latency,
1064 perf->coord[i].read_latency);
1065 cxlr->coord[i].write_latency = max_t(unsigned int,
1066 cxlr->coord[i].write_latency,
1067 perf->coord[i].write_latency);
1068 cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
1069 cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
1070 }
1071 }
1072
cxl_update_hmat_access_coordinates(int nid,struct cxl_region * cxlr,enum access_coordinate_class access)1073 int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
1074 enum access_coordinate_class access)
1075 {
1076 return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
1077 }
1078
cxl_need_node_perf_attrs_update(int nid)1079 bool cxl_need_node_perf_attrs_update(int nid)
1080 {
1081 return !acpi_node_backed_by_real_pxm(nid);
1082 }
1083