xref: /linux/fs/fs-writeback.c (revision 592329e5e94e26080f4815c6cc6cd0f487a91064)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/fs-writeback.c
4   *
5   * Copyright (C) 2002, Linus Torvalds.
6   *
7   * Contains all the functions related to writing back and waiting
8   * upon dirty inodes against superblocks, and writing back dirty
9   * pages against inodes.  ie: data writeback.  Writeout of the
10   * inode itself is not handled here.
11   *
12   * 10Apr2002	Andrew Morton
13   *		Split out of fs/inode.c
14   *		Additions for address_space-based writeback
15   */
16  
17  #include <linux/kernel.h>
18  #include <linux/export.h>
19  #include <linux/spinlock.h>
20  #include <linux/slab.h>
21  #include <linux/sched.h>
22  #include <linux/fs.h>
23  #include <linux/mm.h>
24  #include <linux/pagemap.h>
25  #include <linux/kthread.h>
26  #include <linux/writeback.h>
27  #include <linux/blkdev.h>
28  #include <linux/backing-dev.h>
29  #include <linux/tracepoint.h>
30  #include <linux/device.h>
31  #include <linux/memcontrol.h>
32  #include "internal.h"
33  
34  /*
35   * 4MB minimal write chunk size
36   */
37  #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38  
39  /*
40   * Passed into wb_writeback(), essentially a subset of writeback_control
41   */
42  struct wb_writeback_work {
43  	long nr_pages;
44  	struct super_block *sb;
45  	enum writeback_sync_modes sync_mode;
46  	unsigned int tagged_writepages:1;
47  	unsigned int for_kupdate:1;
48  	unsigned int range_cyclic:1;
49  	unsigned int for_background:1;
50  	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51  	unsigned int auto_free:1;	/* free on completion */
52  	enum wb_reason reason;		/* why was writeback initiated? */
53  
54  	struct list_head list;		/* pending work list */
55  	struct wb_completion *done;	/* set if the caller waits */
56  };
57  
58  /*
59   * If an inode is constantly having its pages dirtied, but then the
60   * updates stop dirtytime_expire_interval seconds in the past, it's
61   * possible for the worst case time between when an inode has its
62   * timestamps updated and when they finally get written out to be two
63   * dirtytime_expire_intervals.  We set the default to 12 hours (in
64   * seconds), which means most of the time inodes will have their
65   * timestamps written to disk after 12 hours, but in the worst case a
66   * few inodes might not their timestamps updated for 24 hours.
67   */
68  static unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69  
wb_inode(struct list_head * head)70  static inline struct inode *wb_inode(struct list_head *head)
71  {
72  	return list_entry(head, struct inode, i_io_list);
73  }
74  
75  /*
76   * Include the creation of the trace points after defining the
77   * wb_writeback_work structure and inline functions so that the definition
78   * remains local to this file.
79   */
80  #define CREATE_TRACE_POINTS
81  #include <trace/events/writeback.h>
82  
83  EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84  
wb_io_lists_populated(struct bdi_writeback * wb)85  static bool wb_io_lists_populated(struct bdi_writeback *wb)
86  {
87  	if (wb_has_dirty_io(wb)) {
88  		return false;
89  	} else {
90  		set_bit(WB_has_dirty_io, &wb->state);
91  		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92  		atomic_long_add(wb->avg_write_bandwidth,
93  				&wb->bdi->tot_write_bandwidth);
94  		return true;
95  	}
96  }
97  
wb_io_lists_depopulated(struct bdi_writeback * wb)98  static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99  {
100  	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101  	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102  		clear_bit(WB_has_dirty_io, &wb->state);
103  		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104  					&wb->bdi->tot_write_bandwidth) < 0);
105  	}
106  }
107  
108  /**
109   * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110   * @inode: inode to be moved
111   * @wb: target bdi_writeback
112   * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113   *
114   * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115   * Returns %true if @inode is the first occupant of the !dirty_time IO
116   * lists; otherwise, %false.
117   */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118  static bool inode_io_list_move_locked(struct inode *inode,
119  				      struct bdi_writeback *wb,
120  				      struct list_head *head)
121  {
122  	assert_spin_locked(&wb->list_lock);
123  	assert_spin_locked(&inode->i_lock);
124  	WARN_ON_ONCE(inode->i_state & I_FREEING);
125  
126  	list_move(&inode->i_io_list, head);
127  
128  	/* dirty_time doesn't count as dirty_io until expiration */
129  	if (head != &wb->b_dirty_time)
130  		return wb_io_lists_populated(wb);
131  
132  	wb_io_lists_depopulated(wb);
133  	return false;
134  }
135  
wb_wakeup(struct bdi_writeback * wb)136  static void wb_wakeup(struct bdi_writeback *wb)
137  {
138  	spin_lock_irq(&wb->work_lock);
139  	if (test_bit(WB_registered, &wb->state))
140  		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141  	spin_unlock_irq(&wb->work_lock);
142  }
143  
144  /*
145   * This function is used when the first inode for this wb is marked dirty. It
146   * wakes-up the corresponding bdi thread which should then take care of the
147   * periodic background write-out of dirty inodes. Since the write-out would
148   * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149   * set up a timer which wakes the bdi thread up later.
150   *
151   * Note, we wouldn't bother setting up the timer, but this function is on the
152   * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153   * by delaying the wake-up.
154   *
155   * We have to be careful not to postpone flush work if it is scheduled for
156   * earlier. Thus we use queue_delayed_work().
157   */
wb_wakeup_delayed(struct bdi_writeback * wb)158  static void wb_wakeup_delayed(struct bdi_writeback *wb)
159  {
160  	unsigned long timeout;
161  
162  	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163  	spin_lock_irq(&wb->work_lock);
164  	if (test_bit(WB_registered, &wb->state))
165  		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166  	spin_unlock_irq(&wb->work_lock);
167  }
168  
finish_writeback_work(struct wb_writeback_work * work)169  static void finish_writeback_work(struct wb_writeback_work *work)
170  {
171  	struct wb_completion *done = work->done;
172  
173  	if (work->auto_free)
174  		kfree(work);
175  	if (done) {
176  		wait_queue_head_t *waitq = done->waitq;
177  
178  		/* @done can't be accessed after the following dec */
179  		if (atomic_dec_and_test(&done->cnt))
180  			wake_up_all(waitq);
181  	}
182  }
183  
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)184  static void wb_queue_work(struct bdi_writeback *wb,
185  			  struct wb_writeback_work *work)
186  {
187  	trace_writeback_queue(wb, work);
188  
189  	if (work->done)
190  		atomic_inc(&work->done->cnt);
191  
192  	spin_lock_irq(&wb->work_lock);
193  
194  	if (test_bit(WB_registered, &wb->state)) {
195  		list_add_tail(&work->list, &wb->work_list);
196  		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197  	} else
198  		finish_writeback_work(work);
199  
200  	spin_unlock_irq(&wb->work_lock);
201  }
202  
203  /**
204   * wb_wait_for_completion - wait for completion of bdi_writeback_works
205   * @done: target wb_completion
206   *
207   * Wait for one or more work items issued to @bdi with their ->done field
208   * set to @done, which should have been initialized with
209   * DEFINE_WB_COMPLETION().  This function returns after all such work items
210   * are completed.  Work items which are waited upon aren't freed
211   * automatically on completion.
212   */
wb_wait_for_completion(struct wb_completion * done)213  void wb_wait_for_completion(struct wb_completion *done)
214  {
215  	atomic_dec(&done->cnt);		/* put down the initial count */
216  	wait_event(*done->waitq, !atomic_read(&done->cnt));
217  }
218  
219  #ifdef CONFIG_CGROUP_WRITEBACK
220  
221  /*
222   * Parameters for foreign inode detection, see wbc_detach_inode() to see
223   * how they're used.
224   *
225   * These paramters are inherently heuristical as the detection target
226   * itself is fuzzy.  All we want to do is detaching an inode from the
227   * current owner if it's being written to by some other cgroups too much.
228   *
229   * The current cgroup writeback is built on the assumption that multiple
230   * cgroups writing to the same inode concurrently is very rare and a mode
231   * of operation which isn't well supported.  As such, the goal is not
232   * taking too long when a different cgroup takes over an inode while
233   * avoiding too aggressive flip-flops from occasional foreign writes.
234   *
235   * We record, very roughly, 2s worth of IO time history and if more than
236   * half of that is foreign, trigger the switch.  The recording is quantized
237   * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238   * writes smaller than 1/8 of avg size are ignored.
239   */
240  #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241  #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242  #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243  #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244  
245  #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246  #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247  					/* each slot's duration is 2s / 16 */
248  #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249  					/* if foreign slots >= 8, switch */
250  #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251  					/* one round can affect upto 5 slots */
252  #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253  
254  /*
255   * Maximum inodes per isw.  A specific value has been chosen to make
256   * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257   */
258  #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                  / sizeof(struct inode *))
260  
261  static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262  static struct workqueue_struct *isw_wq;
263  
__inode_attach_wb(struct inode * inode,struct folio * folio)264  void __inode_attach_wb(struct inode *inode, struct folio *folio)
265  {
266  	struct backing_dev_info *bdi = inode_to_bdi(inode);
267  	struct bdi_writeback *wb = NULL;
268  
269  	if (inode_cgwb_enabled(inode)) {
270  		struct cgroup_subsys_state *memcg_css;
271  
272  		if (folio) {
273  			memcg_css = mem_cgroup_css_from_folio(folio);
274  			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275  		} else {
276  			/* must pin memcg_css, see wb_get_create() */
277  			memcg_css = task_get_css(current, memory_cgrp_id);
278  			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279  			css_put(memcg_css);
280  		}
281  	}
282  
283  	if (!wb)
284  		wb = &bdi->wb;
285  
286  	/*
287  	 * There may be multiple instances of this function racing to
288  	 * update the same inode.  Use cmpxchg() to tell the winner.
289  	 */
290  	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291  		wb_put(wb);
292  }
293  
294  /**
295   * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
296   * @inode: inode of interest with i_lock held
297   * @wb: target bdi_writeback
298   *
299   * Remove the inode from wb's io lists and if necessarily put onto b_attached
300   * list.  Only inodes attached to cgwb's are kept on this list.
301   */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)302  static void inode_cgwb_move_to_attached(struct inode *inode,
303  					struct bdi_writeback *wb)
304  {
305  	assert_spin_locked(&wb->list_lock);
306  	assert_spin_locked(&inode->i_lock);
307  	WARN_ON_ONCE(inode->i_state & I_FREEING);
308  
309  	inode->i_state &= ~I_SYNC_QUEUED;
310  	if (wb != &wb->bdi->wb)
311  		list_move(&inode->i_io_list, &wb->b_attached);
312  	else
313  		list_del_init(&inode->i_io_list);
314  	wb_io_lists_depopulated(wb);
315  }
316  
317  /**
318   * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
319   * @inode: inode of interest with i_lock held
320   *
321   * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
322   * held on entry and is released on return.  The returned wb is guaranteed
323   * to stay @inode's associated wb until its list_lock is released.
324   */
325  static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)326  locked_inode_to_wb_and_lock_list(struct inode *inode)
327  	__releases(&inode->i_lock)
328  	__acquires(&wb->list_lock)
329  {
330  	while (true) {
331  		struct bdi_writeback *wb = inode_to_wb(inode);
332  
333  		/*
334  		 * inode_to_wb() association is protected by both
335  		 * @inode->i_lock and @wb->list_lock but list_lock nests
336  		 * outside i_lock.  Drop i_lock and verify that the
337  		 * association hasn't changed after acquiring list_lock.
338  		 */
339  		wb_get(wb);
340  		spin_unlock(&inode->i_lock);
341  		spin_lock(&wb->list_lock);
342  
343  		/* i_wb may have changed inbetween, can't use inode_to_wb() */
344  		if (likely(wb == inode->i_wb)) {
345  			wb_put(wb);	/* @inode already has ref */
346  			return wb;
347  		}
348  
349  		spin_unlock(&wb->list_lock);
350  		wb_put(wb);
351  		cpu_relax();
352  		spin_lock(&inode->i_lock);
353  	}
354  }
355  
356  /**
357   * inode_to_wb_and_lock_list - determine an inode's wb and lock it
358   * @inode: inode of interest
359   *
360   * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
361   * on entry.
362   */
inode_to_wb_and_lock_list(struct inode * inode)363  static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
364  	__acquires(&wb->list_lock)
365  {
366  	spin_lock(&inode->i_lock);
367  	return locked_inode_to_wb_and_lock_list(inode);
368  }
369  
370  struct inode_switch_wbs_context {
371  	struct rcu_work		work;
372  
373  	/*
374  	 * Multiple inodes can be switched at once.  The switching procedure
375  	 * consists of two parts, separated by a RCU grace period.  To make
376  	 * sure that the second part is executed for each inode gone through
377  	 * the first part, all inode pointers are placed into a NULL-terminated
378  	 * array embedded into struct inode_switch_wbs_context.  Otherwise
379  	 * an inode could be left in a non-consistent state.
380  	 */
381  	struct bdi_writeback	*new_wb;
382  	struct inode		*inodes[];
383  };
384  
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)385  static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
386  {
387  	down_write(&bdi->wb_switch_rwsem);
388  }
389  
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)390  static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
391  {
392  	up_write(&bdi->wb_switch_rwsem);
393  }
394  
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)395  static bool inode_do_switch_wbs(struct inode *inode,
396  				struct bdi_writeback *old_wb,
397  				struct bdi_writeback *new_wb)
398  {
399  	struct address_space *mapping = inode->i_mapping;
400  	XA_STATE(xas, &mapping->i_pages, 0);
401  	struct folio *folio;
402  	bool switched = false;
403  
404  	spin_lock(&inode->i_lock);
405  	xa_lock_irq(&mapping->i_pages);
406  
407  	/*
408  	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
409  	 * path owns the inode and we shouldn't modify ->i_io_list.
410  	 */
411  	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
412  		goto skip_switch;
413  
414  	trace_inode_switch_wbs(inode, old_wb, new_wb);
415  
416  	/*
417  	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
418  	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
419  	 * folios actually under writeback.
420  	 */
421  	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
422  		if (folio_test_dirty(folio)) {
423  			long nr = folio_nr_pages(folio);
424  			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
425  			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
426  		}
427  	}
428  
429  	xas_set(&xas, 0);
430  	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
431  		long nr = folio_nr_pages(folio);
432  		WARN_ON_ONCE(!folio_test_writeback(folio));
433  		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
434  		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
435  	}
436  
437  	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
438  		atomic_dec(&old_wb->writeback_inodes);
439  		atomic_inc(&new_wb->writeback_inodes);
440  	}
441  
442  	wb_get(new_wb);
443  
444  	/*
445  	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
446  	 * the specific list @inode was on is ignored and the @inode is put on
447  	 * ->b_dirty which is always correct including from ->b_dirty_time.
448  	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
449  	 * was clean, it means it was on the b_attached list, so move it onto
450  	 * the b_attached list of @new_wb.
451  	 */
452  	if (!list_empty(&inode->i_io_list)) {
453  		inode->i_wb = new_wb;
454  
455  		if (inode->i_state & I_DIRTY_ALL) {
456  			struct inode *pos;
457  
458  			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
459  				if (time_after_eq(inode->dirtied_when,
460  						  pos->dirtied_when))
461  					break;
462  			inode_io_list_move_locked(inode, new_wb,
463  						  pos->i_io_list.prev);
464  		} else {
465  			inode_cgwb_move_to_attached(inode, new_wb);
466  		}
467  	} else {
468  		inode->i_wb = new_wb;
469  	}
470  
471  	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
472  	inode->i_wb_frn_winner = 0;
473  	inode->i_wb_frn_avg_time = 0;
474  	inode->i_wb_frn_history = 0;
475  	switched = true;
476  skip_switch:
477  	/*
478  	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
479  	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
480  	 */
481  	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
482  
483  	xa_unlock_irq(&mapping->i_pages);
484  	spin_unlock(&inode->i_lock);
485  
486  	return switched;
487  }
488  
inode_switch_wbs_work_fn(struct work_struct * work)489  static void inode_switch_wbs_work_fn(struct work_struct *work)
490  {
491  	struct inode_switch_wbs_context *isw =
492  		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
493  	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
494  	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
495  	struct bdi_writeback *new_wb = isw->new_wb;
496  	unsigned long nr_switched = 0;
497  	struct inode **inodep;
498  
499  	/*
500  	 * If @inode switches cgwb membership while sync_inodes_sb() is
501  	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
502  	 */
503  	down_read(&bdi->wb_switch_rwsem);
504  
505  	/*
506  	 * By the time control reaches here, RCU grace period has passed
507  	 * since I_WB_SWITCH assertion and all wb stat update transactions
508  	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
509  	 * synchronizing against the i_pages lock.
510  	 *
511  	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
512  	 * gives us exclusion against all wb related operations on @inode
513  	 * including IO list manipulations and stat updates.
514  	 */
515  	if (old_wb < new_wb) {
516  		spin_lock(&old_wb->list_lock);
517  		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
518  	} else {
519  		spin_lock(&new_wb->list_lock);
520  		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
521  	}
522  
523  	for (inodep = isw->inodes; *inodep; inodep++) {
524  		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
525  		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
526  			nr_switched++;
527  	}
528  
529  	spin_unlock(&new_wb->list_lock);
530  	spin_unlock(&old_wb->list_lock);
531  
532  	up_read(&bdi->wb_switch_rwsem);
533  
534  	if (nr_switched) {
535  		wb_wakeup(new_wb);
536  		wb_put_many(old_wb, nr_switched);
537  	}
538  
539  	for (inodep = isw->inodes; *inodep; inodep++)
540  		iput(*inodep);
541  	wb_put(new_wb);
542  	kfree(isw);
543  	atomic_dec(&isw_nr_in_flight);
544  }
545  
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)546  static bool inode_prepare_wbs_switch(struct inode *inode,
547  				     struct bdi_writeback *new_wb)
548  {
549  	/*
550  	 * Paired with smp_mb() in cgroup_writeback_umount().
551  	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
552  	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
553  	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
554  	 */
555  	smp_mb();
556  
557  	if (IS_DAX(inode))
558  		return false;
559  
560  	/* while holding I_WB_SWITCH, no one else can update the association */
561  	spin_lock(&inode->i_lock);
562  	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
563  	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
564  	    inode_to_wb(inode) == new_wb) {
565  		spin_unlock(&inode->i_lock);
566  		return false;
567  	}
568  	inode->i_state |= I_WB_SWITCH;
569  	__iget(inode);
570  	spin_unlock(&inode->i_lock);
571  
572  	return true;
573  }
574  
575  /**
576   * inode_switch_wbs - change the wb association of an inode
577   * @inode: target inode
578   * @new_wb_id: ID of the new wb
579   *
580   * Switch @inode's wb association to the wb identified by @new_wb_id.  The
581   * switching is performed asynchronously and may fail silently.
582   */
inode_switch_wbs(struct inode * inode,int new_wb_id)583  static void inode_switch_wbs(struct inode *inode, int new_wb_id)
584  {
585  	struct backing_dev_info *bdi = inode_to_bdi(inode);
586  	struct cgroup_subsys_state *memcg_css;
587  	struct inode_switch_wbs_context *isw;
588  
589  	/* noop if seems to be already in progress */
590  	if (inode->i_state & I_WB_SWITCH)
591  		return;
592  
593  	/* avoid queueing a new switch if too many are already in flight */
594  	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
595  		return;
596  
597  	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
598  	if (!isw)
599  		return;
600  
601  	atomic_inc(&isw_nr_in_flight);
602  
603  	/* find and pin the new wb */
604  	rcu_read_lock();
605  	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
606  	if (memcg_css && !css_tryget(memcg_css))
607  		memcg_css = NULL;
608  	rcu_read_unlock();
609  	if (!memcg_css)
610  		goto out_free;
611  
612  	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
613  	css_put(memcg_css);
614  	if (!isw->new_wb)
615  		goto out_free;
616  
617  	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
618  		goto out_free;
619  
620  	isw->inodes[0] = inode;
621  
622  	/*
623  	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
624  	 * the RCU protected stat update paths to grab the i_page
625  	 * lock so that stat transfer can synchronize against them.
626  	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
627  	 */
628  	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
629  	queue_rcu_work(isw_wq, &isw->work);
630  	return;
631  
632  out_free:
633  	atomic_dec(&isw_nr_in_flight);
634  	if (isw->new_wb)
635  		wb_put(isw->new_wb);
636  	kfree(isw);
637  }
638  
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)639  static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
640  				   struct list_head *list, int *nr)
641  {
642  	struct inode *inode;
643  
644  	list_for_each_entry(inode, list, i_io_list) {
645  		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
646  			continue;
647  
648  		isw->inodes[*nr] = inode;
649  		(*nr)++;
650  
651  		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
652  			return true;
653  	}
654  	return false;
655  }
656  
657  /**
658   * cleanup_offline_cgwb - detach associated inodes
659   * @wb: target wb
660   *
661   * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
662   * to eventually release the dying @wb.  Returns %true if not all inodes were
663   * switched and the function has to be restarted.
664   */
cleanup_offline_cgwb(struct bdi_writeback * wb)665  bool cleanup_offline_cgwb(struct bdi_writeback *wb)
666  {
667  	struct cgroup_subsys_state *memcg_css;
668  	struct inode_switch_wbs_context *isw;
669  	int nr;
670  	bool restart = false;
671  
672  	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
673  		      GFP_KERNEL);
674  	if (!isw)
675  		return restart;
676  
677  	atomic_inc(&isw_nr_in_flight);
678  
679  	for (memcg_css = wb->memcg_css->parent; memcg_css;
680  	     memcg_css = memcg_css->parent) {
681  		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
682  		if (isw->new_wb)
683  			break;
684  	}
685  	if (unlikely(!isw->new_wb))
686  		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
687  
688  	nr = 0;
689  	spin_lock(&wb->list_lock);
690  	/*
691  	 * In addition to the inodes that have completed writeback, also switch
692  	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
693  	 * inodes won't be written back for a long time when lazytime is
694  	 * enabled, and thus pinning the dying cgwbs. It won't break the
695  	 * bandwidth restrictions, as writeback of inode metadata is not
696  	 * accounted for.
697  	 */
698  	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
699  	if (!restart)
700  		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
701  	spin_unlock(&wb->list_lock);
702  
703  	/* no attached inodes? bail out */
704  	if (nr == 0) {
705  		atomic_dec(&isw_nr_in_flight);
706  		wb_put(isw->new_wb);
707  		kfree(isw);
708  		return restart;
709  	}
710  
711  	/*
712  	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
713  	 * the RCU protected stat update paths to grab the i_page
714  	 * lock so that stat transfer can synchronize against them.
715  	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
716  	 */
717  	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
718  	queue_rcu_work(isw_wq, &isw->work);
719  
720  	return restart;
721  }
722  
723  /**
724   * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
725   * @wbc: writeback_control of interest
726   * @inode: target inode
727   *
728   * @inode is locked and about to be written back under the control of @wbc.
729   * Record @inode's writeback context into @wbc and unlock the i_lock.  On
730   * writeback completion, wbc_detach_inode() should be called.  This is used
731   * to track the cgroup writeback context.
732   */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)733  static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
734  		struct inode *inode)
735  	__releases(&inode->i_lock)
736  {
737  	if (!inode_cgwb_enabled(inode)) {
738  		spin_unlock(&inode->i_lock);
739  		return;
740  	}
741  
742  	wbc->wb = inode_to_wb(inode);
743  	wbc->inode = inode;
744  
745  	wbc->wb_id = wbc->wb->memcg_css->id;
746  	wbc->wb_lcand_id = inode->i_wb_frn_winner;
747  	wbc->wb_tcand_id = 0;
748  	wbc->wb_bytes = 0;
749  	wbc->wb_lcand_bytes = 0;
750  	wbc->wb_tcand_bytes = 0;
751  
752  	wb_get(wbc->wb);
753  	spin_unlock(&inode->i_lock);
754  
755  	/*
756  	 * A dying wb indicates that either the blkcg associated with the
757  	 * memcg changed or the associated memcg is dying.  In the first
758  	 * case, a replacement wb should already be available and we should
759  	 * refresh the wb immediately.  In the second case, trying to
760  	 * refresh will keep failing.
761  	 */
762  	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763  		inode_switch_wbs(inode, wbc->wb_id);
764  }
765  
766  /**
767   * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
768   * @wbc: writeback_control of interest
769   * @inode: target inode
770   *
771   * This function is to be used by __filemap_fdatawrite_range(), which is an
772   * alternative entry point into writeback code, and first ensures @inode is
773   * associated with a bdi_writeback and attaches it to @wbc.
774   */
wbc_attach_fdatawrite_inode(struct writeback_control * wbc,struct inode * inode)775  void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
776  		struct inode *inode)
777  {
778  	spin_lock(&inode->i_lock);
779  	inode_attach_wb(inode, NULL);
780  	wbc_attach_and_unlock_inode(wbc, inode);
781  }
782  EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
783  
784  /**
785   * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
786   * @wbc: writeback_control of the just finished writeback
787   *
788   * To be called after a writeback attempt of an inode finishes and undoes
789   * wbc_attach_and_unlock_inode().  Can be called under any context.
790   *
791   * As concurrent write sharing of an inode is expected to be very rare and
792   * memcg only tracks page ownership on first-use basis severely confining
793   * the usefulness of such sharing, cgroup writeback tracks ownership
794   * per-inode.  While the support for concurrent write sharing of an inode
795   * is deemed unnecessary, an inode being written to by different cgroups at
796   * different points in time is a lot more common, and, more importantly,
797   * charging only by first-use can too readily lead to grossly incorrect
798   * behaviors (single foreign page can lead to gigabytes of writeback to be
799   * incorrectly attributed).
800   *
801   * To resolve this issue, cgroup writeback detects the majority dirtier of
802   * an inode and transfers the ownership to it.  To avoid unnecessary
803   * oscillation, the detection mechanism keeps track of history and gives
804   * out the switch verdict only if the foreign usage pattern is stable over
805   * a certain amount of time and/or writeback attempts.
806   *
807   * On each writeback attempt, @wbc tries to detect the majority writer
808   * using Boyer-Moore majority vote algorithm.  In addition to the byte
809   * count from the majority voting, it also counts the bytes written for the
810   * current wb and the last round's winner wb (max of last round's current
811   * wb, the winner from two rounds ago, and the last round's majority
812   * candidate).  Keeping track of the historical winner helps the algorithm
813   * to semi-reliably detect the most active writer even when it's not the
814   * absolute majority.
815   *
816   * Once the winner of the round is determined, whether the winner is
817   * foreign or not and how much IO time the round consumed is recorded in
818   * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
819   * over a certain threshold, the switch verdict is given.
820   */
wbc_detach_inode(struct writeback_control * wbc)821  void wbc_detach_inode(struct writeback_control *wbc)
822  {
823  	struct bdi_writeback *wb = wbc->wb;
824  	struct inode *inode = wbc->inode;
825  	unsigned long avg_time, max_bytes, max_time;
826  	u16 history;
827  	int max_id;
828  
829  	if (!wb)
830  		return;
831  
832  	history = inode->i_wb_frn_history;
833  	avg_time = inode->i_wb_frn_avg_time;
834  
835  	/* pick the winner of this round */
836  	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
837  	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
838  		max_id = wbc->wb_id;
839  		max_bytes = wbc->wb_bytes;
840  	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
841  		max_id = wbc->wb_lcand_id;
842  		max_bytes = wbc->wb_lcand_bytes;
843  	} else {
844  		max_id = wbc->wb_tcand_id;
845  		max_bytes = wbc->wb_tcand_bytes;
846  	}
847  
848  	/*
849  	 * Calculate the amount of IO time the winner consumed and fold it
850  	 * into the running average kept per inode.  If the consumed IO
851  	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
852  	 * deciding whether to switch or not.  This is to prevent one-off
853  	 * small dirtiers from skewing the verdict.
854  	 */
855  	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
856  				wb->avg_write_bandwidth);
857  	if (avg_time)
858  		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
859  			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
860  	else
861  		avg_time = max_time;	/* immediate catch up on first run */
862  
863  	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
864  		int slots;
865  
866  		/*
867  		 * The switch verdict is reached if foreign wb's consume
868  		 * more than a certain proportion of IO time in a
869  		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
870  		 * history mask where each bit represents one sixteenth of
871  		 * the period.  Determine the number of slots to shift into
872  		 * history from @max_time.
873  		 */
874  		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
875  			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
876  		history <<= slots;
877  		if (wbc->wb_id != max_id)
878  			history |= (1U << slots) - 1;
879  
880  		if (history)
881  			trace_inode_foreign_history(inode, wbc, history);
882  
883  		/*
884  		 * Switch if the current wb isn't the consistent winner.
885  		 * If there are multiple closely competing dirtiers, the
886  		 * inode may switch across them repeatedly over time, which
887  		 * is okay.  The main goal is avoiding keeping an inode on
888  		 * the wrong wb for an extended period of time.
889  		 */
890  		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
891  			inode_switch_wbs(inode, max_id);
892  	}
893  
894  	/*
895  	 * Multiple instances of this function may race to update the
896  	 * following fields but we don't mind occassional inaccuracies.
897  	 */
898  	inode->i_wb_frn_winner = max_id;
899  	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
900  	inode->i_wb_frn_history = history;
901  
902  	wb_put(wbc->wb);
903  	wbc->wb = NULL;
904  }
905  EXPORT_SYMBOL_GPL(wbc_detach_inode);
906  
907  /**
908   * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
909   * @wbc: writeback_control of the writeback in progress
910   * @folio: folio being written out
911   * @bytes: number of bytes being written out
912   *
913   * @bytes from @folio are about to written out during the writeback
914   * controlled by @wbc.  Keep the book for foreign inode detection.  See
915   * wbc_detach_inode().
916   */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct folio * folio,size_t bytes)917  void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
918  			      size_t bytes)
919  {
920  	struct cgroup_subsys_state *css;
921  	int id;
922  
923  	/*
924  	 * pageout() path doesn't attach @wbc to the inode being written
925  	 * out.  This is intentional as we don't want the function to block
926  	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
927  	 * regular writeback instead of writing things out itself.
928  	 */
929  	if (!wbc->wb || wbc->no_cgroup_owner)
930  		return;
931  
932  	css = mem_cgroup_css_from_folio(folio);
933  	/* dead cgroups shouldn't contribute to inode ownership arbitration */
934  	if (!(css->flags & CSS_ONLINE))
935  		return;
936  
937  	id = css->id;
938  
939  	if (id == wbc->wb_id) {
940  		wbc->wb_bytes += bytes;
941  		return;
942  	}
943  
944  	if (id == wbc->wb_lcand_id)
945  		wbc->wb_lcand_bytes += bytes;
946  
947  	/* Boyer-Moore majority vote algorithm */
948  	if (!wbc->wb_tcand_bytes)
949  		wbc->wb_tcand_id = id;
950  	if (id == wbc->wb_tcand_id)
951  		wbc->wb_tcand_bytes += bytes;
952  	else
953  		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
954  }
955  EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
956  
957  /**
958   * wb_split_bdi_pages - split nr_pages to write according to bandwidth
959   * @wb: target bdi_writeback to split @nr_pages to
960   * @nr_pages: number of pages to write for the whole bdi
961   *
962   * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
963   * relation to the total write bandwidth of all wb's w/ dirty inodes on
964   * @wb->bdi.
965   */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)966  static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
967  {
968  	unsigned long this_bw = wb->avg_write_bandwidth;
969  	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
970  
971  	if (nr_pages == LONG_MAX)
972  		return LONG_MAX;
973  
974  	/*
975  	 * This may be called on clean wb's and proportional distribution
976  	 * may not make sense, just use the original @nr_pages in those
977  	 * cases.  In general, we wanna err on the side of writing more.
978  	 */
979  	if (!tot_bw || this_bw >= tot_bw)
980  		return nr_pages;
981  	else
982  		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
983  }
984  
985  /**
986   * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
987   * @bdi: target backing_dev_info
988   * @base_work: wb_writeback_work to issue
989   * @skip_if_busy: skip wb's which already have writeback in progress
990   *
991   * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
992   * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
993   * distributed to the busy wbs according to each wb's proportion in the
994   * total active write bandwidth of @bdi.
995   */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)996  static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
997  				  struct wb_writeback_work *base_work,
998  				  bool skip_if_busy)
999  {
1000  	struct bdi_writeback *last_wb = NULL;
1001  	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1002  					      struct bdi_writeback, bdi_node);
1003  
1004  	might_sleep();
1005  restart:
1006  	rcu_read_lock();
1007  	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1008  		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1009  		struct wb_writeback_work fallback_work;
1010  		struct wb_writeback_work *work;
1011  		long nr_pages;
1012  
1013  		if (last_wb) {
1014  			wb_put(last_wb);
1015  			last_wb = NULL;
1016  		}
1017  
1018  		/* SYNC_ALL writes out I_DIRTY_TIME too */
1019  		if (!wb_has_dirty_io(wb) &&
1020  		    (base_work->sync_mode == WB_SYNC_NONE ||
1021  		     list_empty(&wb->b_dirty_time)))
1022  			continue;
1023  		if (skip_if_busy && writeback_in_progress(wb))
1024  			continue;
1025  
1026  		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1027  
1028  		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1029  		if (work) {
1030  			*work = *base_work;
1031  			work->nr_pages = nr_pages;
1032  			work->auto_free = 1;
1033  			wb_queue_work(wb, work);
1034  			continue;
1035  		}
1036  
1037  		/*
1038  		 * If wb_tryget fails, the wb has been shutdown, skip it.
1039  		 *
1040  		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1041  		 * continuing iteration from @wb after dropping and
1042  		 * regrabbing rcu read lock.
1043  		 */
1044  		if (!wb_tryget(wb))
1045  			continue;
1046  
1047  		/* alloc failed, execute synchronously using on-stack fallback */
1048  		work = &fallback_work;
1049  		*work = *base_work;
1050  		work->nr_pages = nr_pages;
1051  		work->auto_free = 0;
1052  		work->done = &fallback_work_done;
1053  
1054  		wb_queue_work(wb, work);
1055  		last_wb = wb;
1056  
1057  		rcu_read_unlock();
1058  		wb_wait_for_completion(&fallback_work_done);
1059  		goto restart;
1060  	}
1061  	rcu_read_unlock();
1062  
1063  	if (last_wb)
1064  		wb_put(last_wb);
1065  }
1066  
1067  /**
1068   * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1069   * @bdi_id: target bdi id
1070   * @memcg_id: target memcg css id
1071   * @reason: reason why some writeback work initiated
1072   * @done: target wb_completion
1073   *
1074   * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1075   * with the specified parameters.
1076   */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1077  int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1078  			   enum wb_reason reason, struct wb_completion *done)
1079  {
1080  	struct backing_dev_info *bdi;
1081  	struct cgroup_subsys_state *memcg_css;
1082  	struct bdi_writeback *wb;
1083  	struct wb_writeback_work *work;
1084  	unsigned long dirty;
1085  	int ret;
1086  
1087  	/* lookup bdi and memcg */
1088  	bdi = bdi_get_by_id(bdi_id);
1089  	if (!bdi)
1090  		return -ENOENT;
1091  
1092  	rcu_read_lock();
1093  	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1094  	if (memcg_css && !css_tryget(memcg_css))
1095  		memcg_css = NULL;
1096  	rcu_read_unlock();
1097  	if (!memcg_css) {
1098  		ret = -ENOENT;
1099  		goto out_bdi_put;
1100  	}
1101  
1102  	/*
1103  	 * And find the associated wb.  If the wb isn't there already
1104  	 * there's nothing to flush, don't create one.
1105  	 */
1106  	wb = wb_get_lookup(bdi, memcg_css);
1107  	if (!wb) {
1108  		ret = -ENOENT;
1109  		goto out_css_put;
1110  	}
1111  
1112  	/*
1113  	 * The caller is attempting to write out most of
1114  	 * the currently dirty pages.  Let's take the current dirty page
1115  	 * count and inflate it by 25% which should be large enough to
1116  	 * flush out most dirty pages while avoiding getting livelocked by
1117  	 * concurrent dirtiers.
1118  	 *
1119  	 * BTW the memcg stats are flushed periodically and this is best-effort
1120  	 * estimation, so some potential error is ok.
1121  	 */
1122  	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1123  	dirty = dirty * 10 / 8;
1124  
1125  	/* issue the writeback work */
1126  	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1127  	if (work) {
1128  		work->nr_pages = dirty;
1129  		work->sync_mode = WB_SYNC_NONE;
1130  		work->range_cyclic = 1;
1131  		work->reason = reason;
1132  		work->done = done;
1133  		work->auto_free = 1;
1134  		wb_queue_work(wb, work);
1135  		ret = 0;
1136  	} else {
1137  		ret = -ENOMEM;
1138  	}
1139  
1140  	wb_put(wb);
1141  out_css_put:
1142  	css_put(memcg_css);
1143  out_bdi_put:
1144  	bdi_put(bdi);
1145  	return ret;
1146  }
1147  
1148  /**
1149   * cgroup_writeback_umount - flush inode wb switches for umount
1150   * @sb: target super_block
1151   *
1152   * This function is called when a super_block is about to be destroyed and
1153   * flushes in-flight inode wb switches.  An inode wb switch goes through
1154   * RCU and then workqueue, so the two need to be flushed in order to ensure
1155   * that all previously scheduled switches are finished.  As wb switches are
1156   * rare occurrences and synchronize_rcu() can take a while, perform
1157   * flushing iff wb switches are in flight.
1158   */
cgroup_writeback_umount(struct super_block * sb)1159  void cgroup_writeback_umount(struct super_block *sb)
1160  {
1161  
1162  	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1163  		return;
1164  
1165  	/*
1166  	 * SB_ACTIVE should be reliably cleared before checking
1167  	 * isw_nr_in_flight, see generic_shutdown_super().
1168  	 */
1169  	smp_mb();
1170  
1171  	if (atomic_read(&isw_nr_in_flight)) {
1172  		/*
1173  		 * Use rcu_barrier() to wait for all pending callbacks to
1174  		 * ensure that all in-flight wb switches are in the workqueue.
1175  		 */
1176  		rcu_barrier();
1177  		flush_workqueue(isw_wq);
1178  	}
1179  }
1180  
cgroup_writeback_init(void)1181  static int __init cgroup_writeback_init(void)
1182  {
1183  	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1184  	if (!isw_wq)
1185  		return -ENOMEM;
1186  	return 0;
1187  }
1188  fs_initcall(cgroup_writeback_init);
1189  
1190  #else	/* CONFIG_CGROUP_WRITEBACK */
1191  
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1192  static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1193  static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1194  
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1195  static void inode_cgwb_move_to_attached(struct inode *inode,
1196  					struct bdi_writeback *wb)
1197  {
1198  	assert_spin_locked(&wb->list_lock);
1199  	assert_spin_locked(&inode->i_lock);
1200  	WARN_ON_ONCE(inode->i_state & I_FREEING);
1201  
1202  	inode->i_state &= ~I_SYNC_QUEUED;
1203  	list_del_init(&inode->i_io_list);
1204  	wb_io_lists_depopulated(wb);
1205  }
1206  
1207  static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1208  locked_inode_to_wb_and_lock_list(struct inode *inode)
1209  	__releases(&inode->i_lock)
1210  	__acquires(&wb->list_lock)
1211  {
1212  	struct bdi_writeback *wb = inode_to_wb(inode);
1213  
1214  	spin_unlock(&inode->i_lock);
1215  	spin_lock(&wb->list_lock);
1216  	return wb;
1217  }
1218  
inode_to_wb_and_lock_list(struct inode * inode)1219  static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1220  	__acquires(&wb->list_lock)
1221  {
1222  	struct bdi_writeback *wb = inode_to_wb(inode);
1223  
1224  	spin_lock(&wb->list_lock);
1225  	return wb;
1226  }
1227  
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1228  static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1229  {
1230  	return nr_pages;
1231  }
1232  
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1233  static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1234  				  struct wb_writeback_work *base_work,
1235  				  bool skip_if_busy)
1236  {
1237  	might_sleep();
1238  
1239  	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1240  		base_work->auto_free = 0;
1241  		wb_queue_work(&bdi->wb, base_work);
1242  	}
1243  }
1244  
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)1245  static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1246  					       struct inode *inode)
1247  	__releases(&inode->i_lock)
1248  {
1249  	spin_unlock(&inode->i_lock);
1250  }
1251  
1252  #endif	/* CONFIG_CGROUP_WRITEBACK */
1253  
1254  /*
1255   * Add in the number of potentially dirty inodes, because each inode
1256   * write can dirty pagecache in the underlying blockdev.
1257   */
get_nr_dirty_pages(void)1258  static unsigned long get_nr_dirty_pages(void)
1259  {
1260  	return global_node_page_state(NR_FILE_DIRTY) +
1261  		get_nr_dirty_inodes();
1262  }
1263  
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1264  static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1265  {
1266  	if (!wb_has_dirty_io(wb))
1267  		return;
1268  
1269  	/*
1270  	 * All callers of this function want to start writeback of all
1271  	 * dirty pages. Places like vmscan can call this at a very
1272  	 * high frequency, causing pointless allocations of tons of
1273  	 * work items and keeping the flusher threads busy retrieving
1274  	 * that work. Ensure that we only allow one of them pending and
1275  	 * inflight at the time.
1276  	 */
1277  	if (test_bit(WB_start_all, &wb->state) ||
1278  	    test_and_set_bit(WB_start_all, &wb->state))
1279  		return;
1280  
1281  	wb->start_all_reason = reason;
1282  	wb_wakeup(wb);
1283  }
1284  
1285  /**
1286   * wb_start_background_writeback - start background writeback
1287   * @wb: bdi_writback to write from
1288   *
1289   * Description:
1290   *   This makes sure WB_SYNC_NONE background writeback happens. When
1291   *   this function returns, it is only guaranteed that for given wb
1292   *   some IO is happening if we are over background dirty threshold.
1293   *   Caller need not hold sb s_umount semaphore.
1294   */
wb_start_background_writeback(struct bdi_writeback * wb)1295  void wb_start_background_writeback(struct bdi_writeback *wb)
1296  {
1297  	/*
1298  	 * We just wake up the flusher thread. It will perform background
1299  	 * writeback as soon as there is no other work to do.
1300  	 */
1301  	trace_writeback_wake_background(wb);
1302  	wb_wakeup(wb);
1303  }
1304  
1305  /*
1306   * Remove the inode from the writeback list it is on.
1307   */
inode_io_list_del(struct inode * inode)1308  void inode_io_list_del(struct inode *inode)
1309  {
1310  	struct bdi_writeback *wb;
1311  
1312  	wb = inode_to_wb_and_lock_list(inode);
1313  	spin_lock(&inode->i_lock);
1314  
1315  	inode->i_state &= ~I_SYNC_QUEUED;
1316  	list_del_init(&inode->i_io_list);
1317  	wb_io_lists_depopulated(wb);
1318  
1319  	spin_unlock(&inode->i_lock);
1320  	spin_unlock(&wb->list_lock);
1321  }
1322  EXPORT_SYMBOL(inode_io_list_del);
1323  
1324  /*
1325   * mark an inode as under writeback on the sb
1326   */
sb_mark_inode_writeback(struct inode * inode)1327  void sb_mark_inode_writeback(struct inode *inode)
1328  {
1329  	struct super_block *sb = inode->i_sb;
1330  	unsigned long flags;
1331  
1332  	if (list_empty(&inode->i_wb_list)) {
1333  		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1334  		if (list_empty(&inode->i_wb_list)) {
1335  			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1336  			trace_sb_mark_inode_writeback(inode);
1337  		}
1338  		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1339  	}
1340  }
1341  
1342  /*
1343   * clear an inode as under writeback on the sb
1344   */
sb_clear_inode_writeback(struct inode * inode)1345  void sb_clear_inode_writeback(struct inode *inode)
1346  {
1347  	struct super_block *sb = inode->i_sb;
1348  	unsigned long flags;
1349  
1350  	if (!list_empty(&inode->i_wb_list)) {
1351  		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1352  		if (!list_empty(&inode->i_wb_list)) {
1353  			list_del_init(&inode->i_wb_list);
1354  			trace_sb_clear_inode_writeback(inode);
1355  		}
1356  		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1357  	}
1358  }
1359  
1360  /*
1361   * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1362   * furthest end of its superblock's dirty-inode list.
1363   *
1364   * Before stamping the inode's ->dirtied_when, we check to see whether it is
1365   * already the most-recently-dirtied inode on the b_dirty list.  If that is
1366   * the case then the inode must have been redirtied while it was being written
1367   * out and we don't reset its dirtied_when.
1368   */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1369  static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1370  {
1371  	assert_spin_locked(&inode->i_lock);
1372  
1373  	inode->i_state &= ~I_SYNC_QUEUED;
1374  	/*
1375  	 * When the inode is being freed just don't bother with dirty list
1376  	 * tracking. Flush worker will ignore this inode anyway and it will
1377  	 * trigger assertions in inode_io_list_move_locked().
1378  	 */
1379  	if (inode->i_state & I_FREEING) {
1380  		list_del_init(&inode->i_io_list);
1381  		wb_io_lists_depopulated(wb);
1382  		return;
1383  	}
1384  	if (!list_empty(&wb->b_dirty)) {
1385  		struct inode *tail;
1386  
1387  		tail = wb_inode(wb->b_dirty.next);
1388  		if (time_before(inode->dirtied_when, tail->dirtied_when))
1389  			inode->dirtied_when = jiffies;
1390  	}
1391  	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1392  }
1393  
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1394  static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1395  {
1396  	spin_lock(&inode->i_lock);
1397  	redirty_tail_locked(inode, wb);
1398  	spin_unlock(&inode->i_lock);
1399  }
1400  
1401  /*
1402   * requeue inode for re-scanning after bdi->b_io list is exhausted.
1403   */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1404  static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1405  {
1406  	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1407  }
1408  
inode_sync_complete(struct inode * inode)1409  static void inode_sync_complete(struct inode *inode)
1410  {
1411  	assert_spin_locked(&inode->i_lock);
1412  
1413  	inode->i_state &= ~I_SYNC;
1414  	/* If inode is clean an unused, put it into LRU now... */
1415  	inode_add_lru(inode);
1416  	/* Called with inode->i_lock which ensures memory ordering. */
1417  	inode_wake_up_bit(inode, __I_SYNC);
1418  }
1419  
inode_dirtied_after(struct inode * inode,unsigned long t)1420  static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1421  {
1422  	bool ret = time_after(inode->dirtied_when, t);
1423  #ifndef CONFIG_64BIT
1424  	/*
1425  	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1426  	 * It _appears_ to be in the future, but is actually in distant past.
1427  	 * This test is necessary to prevent such wrapped-around relative times
1428  	 * from permanently stopping the whole bdi writeback.
1429  	 */
1430  	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1431  #endif
1432  	return ret;
1433  }
1434  
1435  /*
1436   * Move expired (dirtied before dirtied_before) dirty inodes from
1437   * @delaying_queue to @dispatch_queue.
1438   */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1439  static int move_expired_inodes(struct list_head *delaying_queue,
1440  			       struct list_head *dispatch_queue,
1441  			       unsigned long dirtied_before)
1442  {
1443  	LIST_HEAD(tmp);
1444  	struct list_head *pos, *node;
1445  	struct super_block *sb = NULL;
1446  	struct inode *inode;
1447  	int do_sb_sort = 0;
1448  	int moved = 0;
1449  
1450  	while (!list_empty(delaying_queue)) {
1451  		inode = wb_inode(delaying_queue->prev);
1452  		if (inode_dirtied_after(inode, dirtied_before))
1453  			break;
1454  		spin_lock(&inode->i_lock);
1455  		list_move(&inode->i_io_list, &tmp);
1456  		moved++;
1457  		inode->i_state |= I_SYNC_QUEUED;
1458  		spin_unlock(&inode->i_lock);
1459  		if (sb_is_blkdev_sb(inode->i_sb))
1460  			continue;
1461  		if (sb && sb != inode->i_sb)
1462  			do_sb_sort = 1;
1463  		sb = inode->i_sb;
1464  	}
1465  
1466  	/* just one sb in list, splice to dispatch_queue and we're done */
1467  	if (!do_sb_sort) {
1468  		list_splice(&tmp, dispatch_queue);
1469  		goto out;
1470  	}
1471  
1472  	/*
1473  	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1474  	 * we don't take inode->i_lock here because it is just a pointless overhead.
1475  	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1476  	 * fully under our control.
1477  	 */
1478  	while (!list_empty(&tmp)) {
1479  		sb = wb_inode(tmp.prev)->i_sb;
1480  		list_for_each_prev_safe(pos, node, &tmp) {
1481  			inode = wb_inode(pos);
1482  			if (inode->i_sb == sb)
1483  				list_move(&inode->i_io_list, dispatch_queue);
1484  		}
1485  	}
1486  out:
1487  	return moved;
1488  }
1489  
1490  /*
1491   * Queue all expired dirty inodes for io, eldest first.
1492   * Before
1493   *         newly dirtied     b_dirty    b_io    b_more_io
1494   *         =============>    gf         edc     BA
1495   * After
1496   *         newly dirtied     b_dirty    b_io    b_more_io
1497   *         =============>    g          fBAedc
1498   *                                           |
1499   *                                           +--> dequeue for IO
1500   */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1501  static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1502  		     unsigned long dirtied_before)
1503  {
1504  	int moved;
1505  	unsigned long time_expire_jif = dirtied_before;
1506  
1507  	assert_spin_locked(&wb->list_lock);
1508  	list_splice_init(&wb->b_more_io, &wb->b_io);
1509  	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1510  	if (!work->for_sync)
1511  		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1512  	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1513  				     time_expire_jif);
1514  	if (moved)
1515  		wb_io_lists_populated(wb);
1516  	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1517  }
1518  
write_inode(struct inode * inode,struct writeback_control * wbc)1519  static int write_inode(struct inode *inode, struct writeback_control *wbc)
1520  {
1521  	int ret;
1522  
1523  	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1524  		trace_writeback_write_inode_start(inode, wbc);
1525  		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1526  		trace_writeback_write_inode(inode, wbc);
1527  		return ret;
1528  	}
1529  	return 0;
1530  }
1531  
1532  /*
1533   * Wait for writeback on an inode to complete. Called with i_lock held.
1534   * Caller must make sure inode cannot go away when we drop i_lock.
1535   */
inode_wait_for_writeback(struct inode * inode)1536  void inode_wait_for_writeback(struct inode *inode)
1537  {
1538  	struct wait_bit_queue_entry wqe;
1539  	struct wait_queue_head *wq_head;
1540  
1541  	assert_spin_locked(&inode->i_lock);
1542  
1543  	if (!(inode->i_state & I_SYNC))
1544  		return;
1545  
1546  	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1547  	for (;;) {
1548  		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1549  		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1550  		if (!(inode->i_state & I_SYNC))
1551  			break;
1552  		spin_unlock(&inode->i_lock);
1553  		schedule();
1554  		spin_lock(&inode->i_lock);
1555  	}
1556  	finish_wait(wq_head, &wqe.wq_entry);
1557  }
1558  
1559  /*
1560   * Sleep until I_SYNC is cleared. This function must be called with i_lock
1561   * held and drops it. It is aimed for callers not holding any inode reference
1562   * so once i_lock is dropped, inode can go away.
1563   */
inode_sleep_on_writeback(struct inode * inode)1564  static void inode_sleep_on_writeback(struct inode *inode)
1565  	__releases(inode->i_lock)
1566  {
1567  	struct wait_bit_queue_entry wqe;
1568  	struct wait_queue_head *wq_head;
1569  	bool sleep;
1570  
1571  	assert_spin_locked(&inode->i_lock);
1572  
1573  	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1574  	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1575  	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1576  	sleep = !!(inode->i_state & I_SYNC);
1577  	spin_unlock(&inode->i_lock);
1578  	if (sleep)
1579  		schedule();
1580  	finish_wait(wq_head, &wqe.wq_entry);
1581  }
1582  
1583  /*
1584   * Find proper writeback list for the inode depending on its current state and
1585   * possibly also change of its state while we were doing writeback.  Here we
1586   * handle things such as livelock prevention or fairness of writeback among
1587   * inodes. This function can be called only by flusher thread - noone else
1588   * processes all inodes in writeback lists and requeueing inodes behind flusher
1589   * thread's back can have unexpected consequences.
1590   */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1591  static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1592  			  struct writeback_control *wbc,
1593  			  unsigned long dirtied_before)
1594  {
1595  	if (inode->i_state & I_FREEING)
1596  		return;
1597  
1598  	/*
1599  	 * Sync livelock prevention. Each inode is tagged and synced in one
1600  	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1601  	 * the dirty time to prevent enqueue and sync it again.
1602  	 */
1603  	if ((inode->i_state & I_DIRTY) &&
1604  	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1605  		inode->dirtied_when = jiffies;
1606  
1607  	if (wbc->pages_skipped) {
1608  		/*
1609  		 * Writeback is not making progress due to locked buffers.
1610  		 * Skip this inode for now. Although having skipped pages
1611  		 * is odd for clean inodes, it can happen for some
1612  		 * filesystems so handle that gracefully.
1613  		 */
1614  		if (inode->i_state & I_DIRTY_ALL)
1615  			redirty_tail_locked(inode, wb);
1616  		else
1617  			inode_cgwb_move_to_attached(inode, wb);
1618  		return;
1619  	}
1620  
1621  	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1622  		/*
1623  		 * We didn't write back all the pages.  nfs_writepages()
1624  		 * sometimes bales out without doing anything.
1625  		 */
1626  		if (wbc->nr_to_write <= 0 &&
1627  		    !inode_dirtied_after(inode, dirtied_before)) {
1628  			/* Slice used up. Queue for next turn. */
1629  			requeue_io(inode, wb);
1630  		} else {
1631  			/*
1632  			 * Writeback blocked by something other than
1633  			 * congestion. Delay the inode for some time to
1634  			 * avoid spinning on the CPU (100% iowait)
1635  			 * retrying writeback of the dirty page/inode
1636  			 * that cannot be performed immediately.
1637  			 */
1638  			redirty_tail_locked(inode, wb);
1639  		}
1640  	} else if (inode->i_state & I_DIRTY) {
1641  		/*
1642  		 * Filesystems can dirty the inode during writeback operations,
1643  		 * such as delayed allocation during submission or metadata
1644  		 * updates after data IO completion.
1645  		 */
1646  		redirty_tail_locked(inode, wb);
1647  	} else if (inode->i_state & I_DIRTY_TIME) {
1648  		inode->dirtied_when = jiffies;
1649  		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1650  		inode->i_state &= ~I_SYNC_QUEUED;
1651  	} else {
1652  		/* The inode is clean. Remove from writeback lists. */
1653  		inode_cgwb_move_to_attached(inode, wb);
1654  	}
1655  }
1656  
1657  /*
1658   * Write out an inode and its dirty pages (or some of its dirty pages, depending
1659   * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1660   *
1661   * This doesn't remove the inode from the writeback list it is on, except
1662   * potentially to move it from b_dirty_time to b_dirty due to timestamp
1663   * expiration.  The caller is otherwise responsible for writeback list handling.
1664   *
1665   * The caller is also responsible for setting the I_SYNC flag beforehand and
1666   * calling inode_sync_complete() to clear it afterwards.
1667   */
1668  static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1669  __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1670  {
1671  	struct address_space *mapping = inode->i_mapping;
1672  	long nr_to_write = wbc->nr_to_write;
1673  	unsigned dirty;
1674  	int ret;
1675  
1676  	WARN_ON(!(inode->i_state & I_SYNC));
1677  
1678  	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1679  
1680  	ret = do_writepages(mapping, wbc);
1681  
1682  	/*
1683  	 * Make sure to wait on the data before writing out the metadata.
1684  	 * This is important for filesystems that modify metadata on data
1685  	 * I/O completion. We don't do it for sync(2) writeback because it has a
1686  	 * separate, external IO completion path and ->sync_fs for guaranteeing
1687  	 * inode metadata is written back correctly.
1688  	 */
1689  	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1690  		int err = filemap_fdatawait(mapping);
1691  		if (ret == 0)
1692  			ret = err;
1693  	}
1694  
1695  	/*
1696  	 * If the inode has dirty timestamps and we need to write them, call
1697  	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1698  	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1699  	 */
1700  	if ((inode->i_state & I_DIRTY_TIME) &&
1701  	    (wbc->sync_mode == WB_SYNC_ALL ||
1702  	     time_after(jiffies, inode->dirtied_time_when +
1703  			dirtytime_expire_interval * HZ))) {
1704  		trace_writeback_lazytime(inode);
1705  		mark_inode_dirty_sync(inode);
1706  	}
1707  
1708  	/*
1709  	 * Get and clear the dirty flags from i_state.  This needs to be done
1710  	 * after calling writepages because some filesystems may redirty the
1711  	 * inode during writepages due to delalloc.  It also needs to be done
1712  	 * after handling timestamp expiration, as that may dirty the inode too.
1713  	 */
1714  	spin_lock(&inode->i_lock);
1715  	dirty = inode->i_state & I_DIRTY;
1716  	inode->i_state &= ~dirty;
1717  
1718  	/*
1719  	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1720  	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1721  	 * either they see the I_DIRTY bits cleared or we see the dirtied
1722  	 * inode.
1723  	 *
1724  	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1725  	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1726  	 * necessary.  This guarantees that either __mark_inode_dirty()
1727  	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1728  	 */
1729  	smp_mb();
1730  
1731  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1732  		inode->i_state |= I_DIRTY_PAGES;
1733  	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1734  		if (!(inode->i_state & I_DIRTY_PAGES)) {
1735  			inode->i_state &= ~I_PINNING_NETFS_WB;
1736  			wbc->unpinned_netfs_wb = true;
1737  			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1738  		}
1739  	}
1740  
1741  	spin_unlock(&inode->i_lock);
1742  
1743  	/* Don't write the inode if only I_DIRTY_PAGES was set */
1744  	if (dirty & ~I_DIRTY_PAGES) {
1745  		int err = write_inode(inode, wbc);
1746  		if (ret == 0)
1747  			ret = err;
1748  	}
1749  	wbc->unpinned_netfs_wb = false;
1750  	trace_writeback_single_inode(inode, wbc, nr_to_write);
1751  	return ret;
1752  }
1753  
1754  /*
1755   * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1756   * the regular batched writeback done by the flusher threads in
1757   * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1758   * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1759   *
1760   * To prevent the inode from going away, either the caller must have a reference
1761   * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1762   */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1763  static int writeback_single_inode(struct inode *inode,
1764  				  struct writeback_control *wbc)
1765  {
1766  	struct bdi_writeback *wb;
1767  	int ret = 0;
1768  
1769  	spin_lock(&inode->i_lock);
1770  	if (!atomic_read(&inode->i_count))
1771  		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1772  	else
1773  		WARN_ON(inode->i_state & I_WILL_FREE);
1774  
1775  	if (inode->i_state & I_SYNC) {
1776  		/*
1777  		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1778  		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1779  		 * must wait for the existing writeback to complete, then do
1780  		 * writeback again if there's anything left.
1781  		 */
1782  		if (wbc->sync_mode != WB_SYNC_ALL)
1783  			goto out;
1784  		inode_wait_for_writeback(inode);
1785  	}
1786  	WARN_ON(inode->i_state & I_SYNC);
1787  	/*
1788  	 * If the inode is already fully clean, then there's nothing to do.
1789  	 *
1790  	 * For data-integrity syncs we also need to check whether any pages are
1791  	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1792  	 * there are any such pages, we'll need to wait for them.
1793  	 */
1794  	if (!(inode->i_state & I_DIRTY_ALL) &&
1795  	    (wbc->sync_mode != WB_SYNC_ALL ||
1796  	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1797  		goto out;
1798  	inode->i_state |= I_SYNC;
1799  	wbc_attach_and_unlock_inode(wbc, inode);
1800  
1801  	ret = __writeback_single_inode(inode, wbc);
1802  
1803  	wbc_detach_inode(wbc);
1804  
1805  	wb = inode_to_wb_and_lock_list(inode);
1806  	spin_lock(&inode->i_lock);
1807  	/*
1808  	 * If the inode is freeing, its i_io_list shoudn't be updated
1809  	 * as it can be finally deleted at this moment.
1810  	 */
1811  	if (!(inode->i_state & I_FREEING)) {
1812  		/*
1813  		 * If the inode is now fully clean, then it can be safely
1814  		 * removed from its writeback list (if any). Otherwise the
1815  		 * flusher threads are responsible for the writeback lists.
1816  		 */
1817  		if (!(inode->i_state & I_DIRTY_ALL))
1818  			inode_cgwb_move_to_attached(inode, wb);
1819  		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1820  			if ((inode->i_state & I_DIRTY))
1821  				redirty_tail_locked(inode, wb);
1822  			else if (inode->i_state & I_DIRTY_TIME) {
1823  				inode->dirtied_when = jiffies;
1824  				inode_io_list_move_locked(inode,
1825  							  wb,
1826  							  &wb->b_dirty_time);
1827  			}
1828  		}
1829  	}
1830  
1831  	spin_unlock(&wb->list_lock);
1832  	inode_sync_complete(inode);
1833  out:
1834  	spin_unlock(&inode->i_lock);
1835  	return ret;
1836  }
1837  
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1838  static long writeback_chunk_size(struct bdi_writeback *wb,
1839  				 struct wb_writeback_work *work)
1840  {
1841  	long pages;
1842  
1843  	/*
1844  	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1845  	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1846  	 * here avoids calling into writeback_inodes_wb() more than once.
1847  	 *
1848  	 * The intended call sequence for WB_SYNC_ALL writeback is:
1849  	 *
1850  	 *      wb_writeback()
1851  	 *          writeback_sb_inodes()       <== called only once
1852  	 *              write_cache_pages()     <== called once for each inode
1853  	 *                   (quickly) tag currently dirty pages
1854  	 *                   (maybe slowly) sync all tagged pages
1855  	 */
1856  	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1857  		pages = LONG_MAX;
1858  	else {
1859  		pages = min(wb->avg_write_bandwidth / 2,
1860  			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1861  		pages = min(pages, work->nr_pages);
1862  		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1863  				   MIN_WRITEBACK_PAGES);
1864  	}
1865  
1866  	return pages;
1867  }
1868  
1869  /*
1870   * Write a portion of b_io inodes which belong to @sb.
1871   *
1872   * Return the number of pages and/or inodes written.
1873   *
1874   * NOTE! This is called with wb->list_lock held, and will
1875   * unlock and relock that for each inode it ends up doing
1876   * IO for.
1877   */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1878  static long writeback_sb_inodes(struct super_block *sb,
1879  				struct bdi_writeback *wb,
1880  				struct wb_writeback_work *work)
1881  {
1882  	struct writeback_control wbc = {
1883  		.sync_mode		= work->sync_mode,
1884  		.tagged_writepages	= work->tagged_writepages,
1885  		.for_kupdate		= work->for_kupdate,
1886  		.for_background		= work->for_background,
1887  		.for_sync		= work->for_sync,
1888  		.range_cyclic		= work->range_cyclic,
1889  		.range_start		= 0,
1890  		.range_end		= LLONG_MAX,
1891  	};
1892  	unsigned long start_time = jiffies;
1893  	long write_chunk;
1894  	long total_wrote = 0;  /* count both pages and inodes */
1895  	unsigned long dirtied_before = jiffies;
1896  
1897  	if (work->for_kupdate)
1898  		dirtied_before = jiffies -
1899  			msecs_to_jiffies(dirty_expire_interval * 10);
1900  
1901  	while (!list_empty(&wb->b_io)) {
1902  		struct inode *inode = wb_inode(wb->b_io.prev);
1903  		struct bdi_writeback *tmp_wb;
1904  		long wrote;
1905  
1906  		if (inode->i_sb != sb) {
1907  			if (work->sb) {
1908  				/*
1909  				 * We only want to write back data for this
1910  				 * superblock, move all inodes not belonging
1911  				 * to it back onto the dirty list.
1912  				 */
1913  				redirty_tail(inode, wb);
1914  				continue;
1915  			}
1916  
1917  			/*
1918  			 * The inode belongs to a different superblock.
1919  			 * Bounce back to the caller to unpin this and
1920  			 * pin the next superblock.
1921  			 */
1922  			break;
1923  		}
1924  
1925  		/*
1926  		 * Don't bother with new inodes or inodes being freed, first
1927  		 * kind does not need periodic writeout yet, and for the latter
1928  		 * kind writeout is handled by the freer.
1929  		 */
1930  		spin_lock(&inode->i_lock);
1931  		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1932  			redirty_tail_locked(inode, wb);
1933  			spin_unlock(&inode->i_lock);
1934  			continue;
1935  		}
1936  		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1937  			/*
1938  			 * If this inode is locked for writeback and we are not
1939  			 * doing writeback-for-data-integrity, move it to
1940  			 * b_more_io so that writeback can proceed with the
1941  			 * other inodes on s_io.
1942  			 *
1943  			 * We'll have another go at writing back this inode
1944  			 * when we completed a full scan of b_io.
1945  			 */
1946  			requeue_io(inode, wb);
1947  			spin_unlock(&inode->i_lock);
1948  			trace_writeback_sb_inodes_requeue(inode);
1949  			continue;
1950  		}
1951  		spin_unlock(&wb->list_lock);
1952  
1953  		/*
1954  		 * We already requeued the inode if it had I_SYNC set and we
1955  		 * are doing WB_SYNC_NONE writeback. So this catches only the
1956  		 * WB_SYNC_ALL case.
1957  		 */
1958  		if (inode->i_state & I_SYNC) {
1959  			/* Wait for I_SYNC. This function drops i_lock... */
1960  			inode_sleep_on_writeback(inode);
1961  			/* Inode may be gone, start again */
1962  			spin_lock(&wb->list_lock);
1963  			continue;
1964  		}
1965  		inode->i_state |= I_SYNC;
1966  		wbc_attach_and_unlock_inode(&wbc, inode);
1967  
1968  		write_chunk = writeback_chunk_size(wb, work);
1969  		wbc.nr_to_write = write_chunk;
1970  		wbc.pages_skipped = 0;
1971  
1972  		/*
1973  		 * We use I_SYNC to pin the inode in memory. While it is set
1974  		 * evict_inode() will wait so the inode cannot be freed.
1975  		 */
1976  		__writeback_single_inode(inode, &wbc);
1977  
1978  		wbc_detach_inode(&wbc);
1979  		work->nr_pages -= write_chunk - wbc.nr_to_write;
1980  		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1981  		wrote = wrote < 0 ? 0 : wrote;
1982  		total_wrote += wrote;
1983  
1984  		if (need_resched()) {
1985  			/*
1986  			 * We're trying to balance between building up a nice
1987  			 * long list of IOs to improve our merge rate, and
1988  			 * getting those IOs out quickly for anyone throttling
1989  			 * in balance_dirty_pages().  cond_resched() doesn't
1990  			 * unplug, so get our IOs out the door before we
1991  			 * give up the CPU.
1992  			 */
1993  			blk_flush_plug(current->plug, false);
1994  			cond_resched();
1995  		}
1996  
1997  		/*
1998  		 * Requeue @inode if still dirty.  Be careful as @inode may
1999  		 * have been switched to another wb in the meantime.
2000  		 */
2001  		tmp_wb = inode_to_wb_and_lock_list(inode);
2002  		spin_lock(&inode->i_lock);
2003  		if (!(inode->i_state & I_DIRTY_ALL))
2004  			total_wrote++;
2005  		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2006  		inode_sync_complete(inode);
2007  		spin_unlock(&inode->i_lock);
2008  
2009  		if (unlikely(tmp_wb != wb)) {
2010  			spin_unlock(&tmp_wb->list_lock);
2011  			spin_lock(&wb->list_lock);
2012  		}
2013  
2014  		/*
2015  		 * bail out to wb_writeback() often enough to check
2016  		 * background threshold and other termination conditions.
2017  		 */
2018  		if (total_wrote) {
2019  			if (time_is_before_jiffies(start_time + HZ / 10UL))
2020  				break;
2021  			if (work->nr_pages <= 0)
2022  				break;
2023  		}
2024  	}
2025  	return total_wrote;
2026  }
2027  
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2028  static long __writeback_inodes_wb(struct bdi_writeback *wb,
2029  				  struct wb_writeback_work *work)
2030  {
2031  	unsigned long start_time = jiffies;
2032  	long wrote = 0;
2033  
2034  	while (!list_empty(&wb->b_io)) {
2035  		struct inode *inode = wb_inode(wb->b_io.prev);
2036  		struct super_block *sb = inode->i_sb;
2037  
2038  		if (!super_trylock_shared(sb)) {
2039  			/*
2040  			 * super_trylock_shared() may fail consistently due to
2041  			 * s_umount being grabbed by someone else. Don't use
2042  			 * requeue_io() to avoid busy retrying the inode/sb.
2043  			 */
2044  			redirty_tail(inode, wb);
2045  			continue;
2046  		}
2047  		wrote += writeback_sb_inodes(sb, wb, work);
2048  		up_read(&sb->s_umount);
2049  
2050  		/* refer to the same tests at the end of writeback_sb_inodes */
2051  		if (wrote) {
2052  			if (time_is_before_jiffies(start_time + HZ / 10UL))
2053  				break;
2054  			if (work->nr_pages <= 0)
2055  				break;
2056  		}
2057  	}
2058  	/* Leave any unwritten inodes on b_io */
2059  	return wrote;
2060  }
2061  
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2062  static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2063  				enum wb_reason reason)
2064  {
2065  	struct wb_writeback_work work = {
2066  		.nr_pages	= nr_pages,
2067  		.sync_mode	= WB_SYNC_NONE,
2068  		.range_cyclic	= 1,
2069  		.reason		= reason,
2070  	};
2071  	struct blk_plug plug;
2072  
2073  	blk_start_plug(&plug);
2074  	spin_lock(&wb->list_lock);
2075  	if (list_empty(&wb->b_io))
2076  		queue_io(wb, &work, jiffies);
2077  	__writeback_inodes_wb(wb, &work);
2078  	spin_unlock(&wb->list_lock);
2079  	blk_finish_plug(&plug);
2080  
2081  	return nr_pages - work.nr_pages;
2082  }
2083  
2084  /*
2085   * Explicit flushing or periodic writeback of "old" data.
2086   *
2087   * Define "old": the first time one of an inode's pages is dirtied, we mark the
2088   * dirtying-time in the inode's address_space.  So this periodic writeback code
2089   * just walks the superblock inode list, writing back any inodes which are
2090   * older than a specific point in time.
2091   *
2092   * Try to run once per dirty_writeback_interval.  But if a writeback event
2093   * takes longer than a dirty_writeback_interval interval, then leave a
2094   * one-second gap.
2095   *
2096   * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2097   * all dirty pages if they are all attached to "old" mappings.
2098   */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2099  static long wb_writeback(struct bdi_writeback *wb,
2100  			 struct wb_writeback_work *work)
2101  {
2102  	long nr_pages = work->nr_pages;
2103  	unsigned long dirtied_before = jiffies;
2104  	struct inode *inode;
2105  	long progress;
2106  	struct blk_plug plug;
2107  	bool queued = false;
2108  
2109  	blk_start_plug(&plug);
2110  	for (;;) {
2111  		/*
2112  		 * Stop writeback when nr_pages has been consumed
2113  		 */
2114  		if (work->nr_pages <= 0)
2115  			break;
2116  
2117  		/*
2118  		 * Background writeout and kupdate-style writeback may
2119  		 * run forever. Stop them if there is other work to do
2120  		 * so that e.g. sync can proceed. They'll be restarted
2121  		 * after the other works are all done.
2122  		 */
2123  		if ((work->for_background || work->for_kupdate) &&
2124  		    !list_empty(&wb->work_list))
2125  			break;
2126  
2127  		/*
2128  		 * For background writeout, stop when we are below the
2129  		 * background dirty threshold
2130  		 */
2131  		if (work->for_background && !wb_over_bg_thresh(wb))
2132  			break;
2133  
2134  
2135  		spin_lock(&wb->list_lock);
2136  
2137  		trace_writeback_start(wb, work);
2138  		if (list_empty(&wb->b_io)) {
2139  			/*
2140  			 * Kupdate and background works are special and we want
2141  			 * to include all inodes that need writing. Livelock
2142  			 * avoidance is handled by these works yielding to any
2143  			 * other work so we are safe.
2144  			 */
2145  			if (work->for_kupdate) {
2146  				dirtied_before = jiffies -
2147  					msecs_to_jiffies(dirty_expire_interval *
2148  							 10);
2149  			} else if (work->for_background)
2150  				dirtied_before = jiffies;
2151  
2152  			queue_io(wb, work, dirtied_before);
2153  			queued = true;
2154  		}
2155  		if (work->sb)
2156  			progress = writeback_sb_inodes(work->sb, wb, work);
2157  		else
2158  			progress = __writeback_inodes_wb(wb, work);
2159  		trace_writeback_written(wb, work);
2160  
2161  		/*
2162  		 * Did we write something? Try for more
2163  		 *
2164  		 * Dirty inodes are moved to b_io for writeback in batches.
2165  		 * The completion of the current batch does not necessarily
2166  		 * mean the overall work is done. So we keep looping as long
2167  		 * as made some progress on cleaning pages or inodes.
2168  		 */
2169  		if (progress || !queued) {
2170  			spin_unlock(&wb->list_lock);
2171  			continue;
2172  		}
2173  
2174  		/*
2175  		 * No more inodes for IO, bail
2176  		 */
2177  		if (list_empty(&wb->b_more_io)) {
2178  			spin_unlock(&wb->list_lock);
2179  			break;
2180  		}
2181  
2182  		/*
2183  		 * Nothing written. Wait for some inode to
2184  		 * become available for writeback. Otherwise
2185  		 * we'll just busyloop.
2186  		 */
2187  		trace_writeback_wait(wb, work);
2188  		inode = wb_inode(wb->b_more_io.prev);
2189  		spin_lock(&inode->i_lock);
2190  		spin_unlock(&wb->list_lock);
2191  		/* This function drops i_lock... */
2192  		inode_sleep_on_writeback(inode);
2193  	}
2194  	blk_finish_plug(&plug);
2195  
2196  	return nr_pages - work->nr_pages;
2197  }
2198  
2199  /*
2200   * Return the next wb_writeback_work struct that hasn't been processed yet.
2201   */
get_next_work_item(struct bdi_writeback * wb)2202  static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2203  {
2204  	struct wb_writeback_work *work = NULL;
2205  
2206  	spin_lock_irq(&wb->work_lock);
2207  	if (!list_empty(&wb->work_list)) {
2208  		work = list_entry(wb->work_list.next,
2209  				  struct wb_writeback_work, list);
2210  		list_del_init(&work->list);
2211  	}
2212  	spin_unlock_irq(&wb->work_lock);
2213  	return work;
2214  }
2215  
wb_check_background_flush(struct bdi_writeback * wb)2216  static long wb_check_background_flush(struct bdi_writeback *wb)
2217  {
2218  	if (wb_over_bg_thresh(wb)) {
2219  
2220  		struct wb_writeback_work work = {
2221  			.nr_pages	= LONG_MAX,
2222  			.sync_mode	= WB_SYNC_NONE,
2223  			.for_background	= 1,
2224  			.range_cyclic	= 1,
2225  			.reason		= WB_REASON_BACKGROUND,
2226  		};
2227  
2228  		return wb_writeback(wb, &work);
2229  	}
2230  
2231  	return 0;
2232  }
2233  
wb_check_old_data_flush(struct bdi_writeback * wb)2234  static long wb_check_old_data_flush(struct bdi_writeback *wb)
2235  {
2236  	unsigned long expired;
2237  	long nr_pages;
2238  
2239  	/*
2240  	 * When set to zero, disable periodic writeback
2241  	 */
2242  	if (!dirty_writeback_interval)
2243  		return 0;
2244  
2245  	expired = wb->last_old_flush +
2246  			msecs_to_jiffies(dirty_writeback_interval * 10);
2247  	if (time_before(jiffies, expired))
2248  		return 0;
2249  
2250  	wb->last_old_flush = jiffies;
2251  	nr_pages = get_nr_dirty_pages();
2252  
2253  	if (nr_pages) {
2254  		struct wb_writeback_work work = {
2255  			.nr_pages	= nr_pages,
2256  			.sync_mode	= WB_SYNC_NONE,
2257  			.for_kupdate	= 1,
2258  			.range_cyclic	= 1,
2259  			.reason		= WB_REASON_PERIODIC,
2260  		};
2261  
2262  		return wb_writeback(wb, &work);
2263  	}
2264  
2265  	return 0;
2266  }
2267  
wb_check_start_all(struct bdi_writeback * wb)2268  static long wb_check_start_all(struct bdi_writeback *wb)
2269  {
2270  	long nr_pages;
2271  
2272  	if (!test_bit(WB_start_all, &wb->state))
2273  		return 0;
2274  
2275  	nr_pages = get_nr_dirty_pages();
2276  	if (nr_pages) {
2277  		struct wb_writeback_work work = {
2278  			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2279  			.sync_mode	= WB_SYNC_NONE,
2280  			.range_cyclic	= 1,
2281  			.reason		= wb->start_all_reason,
2282  		};
2283  
2284  		nr_pages = wb_writeback(wb, &work);
2285  	}
2286  
2287  	clear_bit(WB_start_all, &wb->state);
2288  	return nr_pages;
2289  }
2290  
2291  
2292  /*
2293   * Retrieve work items and do the writeback they describe
2294   */
wb_do_writeback(struct bdi_writeback * wb)2295  static long wb_do_writeback(struct bdi_writeback *wb)
2296  {
2297  	struct wb_writeback_work *work;
2298  	long wrote = 0;
2299  
2300  	set_bit(WB_writeback_running, &wb->state);
2301  	while ((work = get_next_work_item(wb)) != NULL) {
2302  		trace_writeback_exec(wb, work);
2303  		wrote += wb_writeback(wb, work);
2304  		finish_writeback_work(work);
2305  	}
2306  
2307  	/*
2308  	 * Check for a flush-everything request
2309  	 */
2310  	wrote += wb_check_start_all(wb);
2311  
2312  	/*
2313  	 * Check for periodic writeback, kupdated() style
2314  	 */
2315  	wrote += wb_check_old_data_flush(wb);
2316  	wrote += wb_check_background_flush(wb);
2317  	clear_bit(WB_writeback_running, &wb->state);
2318  
2319  	return wrote;
2320  }
2321  
2322  /*
2323   * Handle writeback of dirty data for the device backed by this bdi. Also
2324   * reschedules periodically and does kupdated style flushing.
2325   */
wb_workfn(struct work_struct * work)2326  void wb_workfn(struct work_struct *work)
2327  {
2328  	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2329  						struct bdi_writeback, dwork);
2330  	long pages_written;
2331  
2332  	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2333  
2334  	if (likely(!current_is_workqueue_rescuer() ||
2335  		   !test_bit(WB_registered, &wb->state))) {
2336  		/*
2337  		 * The normal path.  Keep writing back @wb until its
2338  		 * work_list is empty.  Note that this path is also taken
2339  		 * if @wb is shutting down even when we're running off the
2340  		 * rescuer as work_list needs to be drained.
2341  		 */
2342  		do {
2343  			pages_written = wb_do_writeback(wb);
2344  			trace_writeback_pages_written(pages_written);
2345  		} while (!list_empty(&wb->work_list));
2346  	} else {
2347  		/*
2348  		 * bdi_wq can't get enough workers and we're running off
2349  		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2350  		 * enough for efficient IO.
2351  		 */
2352  		pages_written = writeback_inodes_wb(wb, 1024,
2353  						    WB_REASON_FORKER_THREAD);
2354  		trace_writeback_pages_written(pages_written);
2355  	}
2356  
2357  	if (!list_empty(&wb->work_list))
2358  		wb_wakeup(wb);
2359  	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2360  		wb_wakeup_delayed(wb);
2361  }
2362  
2363  /*
2364   * Start writeback of all dirty pages on this bdi.
2365   */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2366  static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2367  					 enum wb_reason reason)
2368  {
2369  	struct bdi_writeback *wb;
2370  
2371  	if (!bdi_has_dirty_io(bdi))
2372  		return;
2373  
2374  	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2375  		wb_start_writeback(wb, reason);
2376  }
2377  
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2378  void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2379  				enum wb_reason reason)
2380  {
2381  	rcu_read_lock();
2382  	__wakeup_flusher_threads_bdi(bdi, reason);
2383  	rcu_read_unlock();
2384  }
2385  
2386  /*
2387   * Wakeup the flusher threads to start writeback of all currently dirty pages
2388   */
wakeup_flusher_threads(enum wb_reason reason)2389  void wakeup_flusher_threads(enum wb_reason reason)
2390  {
2391  	struct backing_dev_info *bdi;
2392  
2393  	/*
2394  	 * If we are expecting writeback progress we must submit plugged IO.
2395  	 */
2396  	blk_flush_plug(current->plug, true);
2397  
2398  	rcu_read_lock();
2399  	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2400  		__wakeup_flusher_threads_bdi(bdi, reason);
2401  	rcu_read_unlock();
2402  }
2403  
2404  /*
2405   * Wake up bdi's periodically to make sure dirtytime inodes gets
2406   * written back periodically.  We deliberately do *not* check the
2407   * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2408   * kernel to be constantly waking up once there are any dirtytime
2409   * inodes on the system.  So instead we define a separate delayed work
2410   * function which gets called much more rarely.  (By default, only
2411   * once every 12 hours.)
2412   *
2413   * If there is any other write activity going on in the file system,
2414   * this function won't be necessary.  But if the only thing that has
2415   * happened on the file system is a dirtytime inode caused by an atime
2416   * update, we need this infrastructure below to make sure that inode
2417   * eventually gets pushed out to disk.
2418   */
2419  static void wakeup_dirtytime_writeback(struct work_struct *w);
2420  static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2421  
wakeup_dirtytime_writeback(struct work_struct * w)2422  static void wakeup_dirtytime_writeback(struct work_struct *w)
2423  {
2424  	struct backing_dev_info *bdi;
2425  
2426  	rcu_read_lock();
2427  	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2428  		struct bdi_writeback *wb;
2429  
2430  		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2431  			if (!list_empty(&wb->b_dirty_time))
2432  				wb_wakeup(wb);
2433  	}
2434  	rcu_read_unlock();
2435  	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2436  }
2437  
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2438  static int dirtytime_interval_handler(const struct ctl_table *table, int write,
2439  			       void *buffer, size_t *lenp, loff_t *ppos)
2440  {
2441  	int ret;
2442  
2443  	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2444  	if (ret == 0 && write)
2445  		mod_delayed_work(system_wq, &dirtytime_work, 0);
2446  	return ret;
2447  }
2448  
2449  static const struct ctl_table vm_fs_writeback_table[] = {
2450  	{
2451  		.procname	= "dirtytime_expire_seconds",
2452  		.data		= &dirtytime_expire_interval,
2453  		.maxlen		= sizeof(dirtytime_expire_interval),
2454  		.mode		= 0644,
2455  		.proc_handler	= dirtytime_interval_handler,
2456  		.extra1		= SYSCTL_ZERO,
2457  	},
2458  };
2459  
start_dirtytime_writeback(void)2460  static int __init start_dirtytime_writeback(void)
2461  {
2462  	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2463  	register_sysctl_init("vm", vm_fs_writeback_table);
2464  	return 0;
2465  }
2466  __initcall(start_dirtytime_writeback);
2467  
2468  /**
2469   * __mark_inode_dirty -	internal function to mark an inode dirty
2470   *
2471   * @inode: inode to mark
2472   * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2473   *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2474   *	   with I_DIRTY_PAGES.
2475   *
2476   * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2477   * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2478   *
2479   * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2480   * instead of calling this directly.
2481   *
2482   * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2483   * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2484   * even if they are later hashed, as they will have been marked dirty already.
2485   *
2486   * In short, ensure you hash any inodes _before_ you start marking them dirty.
2487   *
2488   * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2489   * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2490   * the kernel-internal blockdev inode represents the dirtying time of the
2491   * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2492   * page->mapping->host, so the page-dirtying time is recorded in the internal
2493   * blockdev inode.
2494   */
__mark_inode_dirty(struct inode * inode,int flags)2495  void __mark_inode_dirty(struct inode *inode, int flags)
2496  {
2497  	struct super_block *sb = inode->i_sb;
2498  	int dirtytime = 0;
2499  	struct bdi_writeback *wb = NULL;
2500  
2501  	trace_writeback_mark_inode_dirty(inode, flags);
2502  
2503  	if (flags & I_DIRTY_INODE) {
2504  		/*
2505  		 * Inode timestamp update will piggback on this dirtying.
2506  		 * We tell ->dirty_inode callback that timestamps need to
2507  		 * be updated by setting I_DIRTY_TIME in flags.
2508  		 */
2509  		if (inode->i_state & I_DIRTY_TIME) {
2510  			spin_lock(&inode->i_lock);
2511  			if (inode->i_state & I_DIRTY_TIME) {
2512  				inode->i_state &= ~I_DIRTY_TIME;
2513  				flags |= I_DIRTY_TIME;
2514  			}
2515  			spin_unlock(&inode->i_lock);
2516  		}
2517  
2518  		/*
2519  		 * Notify the filesystem about the inode being dirtied, so that
2520  		 * (if needed) it can update on-disk fields and journal the
2521  		 * inode.  This is only needed when the inode itself is being
2522  		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2523  		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2524  		 */
2525  		trace_writeback_dirty_inode_start(inode, flags);
2526  		if (sb->s_op->dirty_inode)
2527  			sb->s_op->dirty_inode(inode,
2528  				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2529  		trace_writeback_dirty_inode(inode, flags);
2530  
2531  		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2532  		flags &= ~I_DIRTY_TIME;
2533  	} else {
2534  		/*
2535  		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2536  		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2537  		 * in one call to __mark_inode_dirty().)
2538  		 */
2539  		dirtytime = flags & I_DIRTY_TIME;
2540  		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2541  	}
2542  
2543  	/*
2544  	 * Paired with smp_mb() in __writeback_single_inode() for the
2545  	 * following lockless i_state test.  See there for details.
2546  	 */
2547  	smp_mb();
2548  
2549  	if ((inode->i_state & flags) == flags)
2550  		return;
2551  
2552  	spin_lock(&inode->i_lock);
2553  	if ((inode->i_state & flags) != flags) {
2554  		const int was_dirty = inode->i_state & I_DIRTY;
2555  
2556  		inode_attach_wb(inode, NULL);
2557  
2558  		inode->i_state |= flags;
2559  
2560  		/*
2561  		 * Grab inode's wb early because it requires dropping i_lock and we
2562  		 * need to make sure following checks happen atomically with dirty
2563  		 * list handling so that we don't move inodes under flush worker's
2564  		 * hands.
2565  		 */
2566  		if (!was_dirty) {
2567  			wb = locked_inode_to_wb_and_lock_list(inode);
2568  			spin_lock(&inode->i_lock);
2569  		}
2570  
2571  		/*
2572  		 * If the inode is queued for writeback by flush worker, just
2573  		 * update its dirty state. Once the flush worker is done with
2574  		 * the inode it will place it on the appropriate superblock
2575  		 * list, based upon its state.
2576  		 */
2577  		if (inode->i_state & I_SYNC_QUEUED)
2578  			goto out_unlock;
2579  
2580  		/*
2581  		 * Only add valid (hashed) inodes to the superblock's
2582  		 * dirty list.  Add blockdev inodes as well.
2583  		 */
2584  		if (!S_ISBLK(inode->i_mode)) {
2585  			if (inode_unhashed(inode))
2586  				goto out_unlock;
2587  		}
2588  		if (inode->i_state & I_FREEING)
2589  			goto out_unlock;
2590  
2591  		/*
2592  		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2593  		 * reposition it (that would break b_dirty time-ordering).
2594  		 */
2595  		if (!was_dirty) {
2596  			struct list_head *dirty_list;
2597  			bool wakeup_bdi = false;
2598  
2599  			inode->dirtied_when = jiffies;
2600  			if (dirtytime)
2601  				inode->dirtied_time_when = jiffies;
2602  
2603  			if (inode->i_state & I_DIRTY)
2604  				dirty_list = &wb->b_dirty;
2605  			else
2606  				dirty_list = &wb->b_dirty_time;
2607  
2608  			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2609  							       dirty_list);
2610  
2611  			spin_unlock(&wb->list_lock);
2612  			spin_unlock(&inode->i_lock);
2613  			trace_writeback_dirty_inode_enqueue(inode);
2614  
2615  			/*
2616  			 * If this is the first dirty inode for this bdi,
2617  			 * we have to wake-up the corresponding bdi thread
2618  			 * to make sure background write-back happens
2619  			 * later.
2620  			 */
2621  			if (wakeup_bdi &&
2622  			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2623  				wb_wakeup_delayed(wb);
2624  			return;
2625  		}
2626  	}
2627  out_unlock:
2628  	if (wb)
2629  		spin_unlock(&wb->list_lock);
2630  	spin_unlock(&inode->i_lock);
2631  }
2632  EXPORT_SYMBOL(__mark_inode_dirty);
2633  
2634  /*
2635   * The @s_sync_lock is used to serialise concurrent sync operations
2636   * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2637   * Concurrent callers will block on the s_sync_lock rather than doing contending
2638   * walks. The queueing maintains sync(2) required behaviour as all the IO that
2639   * has been issued up to the time this function is enter is guaranteed to be
2640   * completed by the time we have gained the lock and waited for all IO that is
2641   * in progress regardless of the order callers are granted the lock.
2642   */
wait_sb_inodes(struct super_block * sb)2643  static void wait_sb_inodes(struct super_block *sb)
2644  {
2645  	LIST_HEAD(sync_list);
2646  
2647  	/*
2648  	 * We need to be protected against the filesystem going from
2649  	 * r/o to r/w or vice versa.
2650  	 */
2651  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2652  
2653  	mutex_lock(&sb->s_sync_lock);
2654  
2655  	/*
2656  	 * Splice the writeback list onto a temporary list to avoid waiting on
2657  	 * inodes that have started writeback after this point.
2658  	 *
2659  	 * Use rcu_read_lock() to keep the inodes around until we have a
2660  	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2661  	 * the local list because inodes can be dropped from either by writeback
2662  	 * completion.
2663  	 */
2664  	rcu_read_lock();
2665  	spin_lock_irq(&sb->s_inode_wblist_lock);
2666  	list_splice_init(&sb->s_inodes_wb, &sync_list);
2667  
2668  	/*
2669  	 * Data integrity sync. Must wait for all pages under writeback, because
2670  	 * there may have been pages dirtied before our sync call, but which had
2671  	 * writeout started before we write it out.  In which case, the inode
2672  	 * may not be on the dirty list, but we still have to wait for that
2673  	 * writeout.
2674  	 */
2675  	while (!list_empty(&sync_list)) {
2676  		struct inode *inode = list_first_entry(&sync_list, struct inode,
2677  						       i_wb_list);
2678  		struct address_space *mapping = inode->i_mapping;
2679  
2680  		/*
2681  		 * Move each inode back to the wb list before we drop the lock
2682  		 * to preserve consistency between i_wb_list and the mapping
2683  		 * writeback tag. Writeback completion is responsible to remove
2684  		 * the inode from either list once the writeback tag is cleared.
2685  		 */
2686  		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2687  
2688  		/*
2689  		 * The mapping can appear untagged while still on-list since we
2690  		 * do not have the mapping lock. Skip it here, wb completion
2691  		 * will remove it.
2692  		 */
2693  		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2694  			continue;
2695  
2696  		spin_unlock_irq(&sb->s_inode_wblist_lock);
2697  
2698  		spin_lock(&inode->i_lock);
2699  		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2700  			spin_unlock(&inode->i_lock);
2701  
2702  			spin_lock_irq(&sb->s_inode_wblist_lock);
2703  			continue;
2704  		}
2705  		__iget(inode);
2706  		spin_unlock(&inode->i_lock);
2707  		rcu_read_unlock();
2708  
2709  		/*
2710  		 * We keep the error status of individual mapping so that
2711  		 * applications can catch the writeback error using fsync(2).
2712  		 * See filemap_fdatawait_keep_errors() for details.
2713  		 */
2714  		filemap_fdatawait_keep_errors(mapping);
2715  
2716  		cond_resched();
2717  
2718  		iput(inode);
2719  
2720  		rcu_read_lock();
2721  		spin_lock_irq(&sb->s_inode_wblist_lock);
2722  	}
2723  	spin_unlock_irq(&sb->s_inode_wblist_lock);
2724  	rcu_read_unlock();
2725  	mutex_unlock(&sb->s_sync_lock);
2726  }
2727  
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2728  static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2729  				     enum wb_reason reason, bool skip_if_busy)
2730  {
2731  	struct backing_dev_info *bdi = sb->s_bdi;
2732  	DEFINE_WB_COMPLETION(done, bdi);
2733  	struct wb_writeback_work work = {
2734  		.sb			= sb,
2735  		.sync_mode		= WB_SYNC_NONE,
2736  		.tagged_writepages	= 1,
2737  		.done			= &done,
2738  		.nr_pages		= nr,
2739  		.reason			= reason,
2740  	};
2741  
2742  	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2743  		return;
2744  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2745  
2746  	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2747  	wb_wait_for_completion(&done);
2748  }
2749  
2750  /**
2751   * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2752   * @sb: the superblock
2753   * @nr: the number of pages to write
2754   * @reason: reason why some writeback work initiated
2755   *
2756   * Start writeback on some inodes on this super_block. No guarantees are made
2757   * on how many (if any) will be written, and this function does not wait
2758   * for IO completion of submitted IO.
2759   */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2760  void writeback_inodes_sb_nr(struct super_block *sb,
2761  			    unsigned long nr,
2762  			    enum wb_reason reason)
2763  {
2764  	__writeback_inodes_sb_nr(sb, nr, reason, false);
2765  }
2766  EXPORT_SYMBOL(writeback_inodes_sb_nr);
2767  
2768  /**
2769   * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2770   * @sb: the superblock
2771   * @reason: reason why some writeback work was initiated
2772   *
2773   * Start writeback on some inodes on this super_block. No guarantees are made
2774   * on how many (if any) will be written, and this function does not wait
2775   * for IO completion of submitted IO.
2776   */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2777  void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2778  {
2779  	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2780  }
2781  EXPORT_SYMBOL(writeback_inodes_sb);
2782  
2783  /**
2784   * try_to_writeback_inodes_sb - try to start writeback if none underway
2785   * @sb: the superblock
2786   * @reason: reason why some writeback work was initiated
2787   *
2788   * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2789   */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2790  void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2791  {
2792  	if (!down_read_trylock(&sb->s_umount))
2793  		return;
2794  
2795  	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2796  	up_read(&sb->s_umount);
2797  }
2798  EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2799  
2800  /**
2801   * sync_inodes_sb	-	sync sb inode pages
2802   * @sb: the superblock
2803   *
2804   * This function writes and waits on any dirty inode belonging to this
2805   * super_block.
2806   */
sync_inodes_sb(struct super_block * sb)2807  void sync_inodes_sb(struct super_block *sb)
2808  {
2809  	struct backing_dev_info *bdi = sb->s_bdi;
2810  	DEFINE_WB_COMPLETION(done, bdi);
2811  	struct wb_writeback_work work = {
2812  		.sb		= sb,
2813  		.sync_mode	= WB_SYNC_ALL,
2814  		.nr_pages	= LONG_MAX,
2815  		.range_cyclic	= 0,
2816  		.done		= &done,
2817  		.reason		= WB_REASON_SYNC,
2818  		.for_sync	= 1,
2819  	};
2820  
2821  	/*
2822  	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2823  	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2824  	 * bdi_has_dirty() need to be written out too.
2825  	 */
2826  	if (bdi == &noop_backing_dev_info)
2827  		return;
2828  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2829  
2830  	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2831  	bdi_down_write_wb_switch_rwsem(bdi);
2832  	bdi_split_work_to_wbs(bdi, &work, false);
2833  	wb_wait_for_completion(&done);
2834  	bdi_up_write_wb_switch_rwsem(bdi);
2835  
2836  	wait_sb_inodes(sb);
2837  }
2838  EXPORT_SYMBOL(sync_inodes_sb);
2839  
2840  /**
2841   * write_inode_now	-	write an inode to disk
2842   * @inode: inode to write to disk
2843   * @sync: whether the write should be synchronous or not
2844   *
2845   * This function commits an inode to disk immediately if it is dirty. This is
2846   * primarily needed by knfsd.
2847   *
2848   * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2849   */
write_inode_now(struct inode * inode,int sync)2850  int write_inode_now(struct inode *inode, int sync)
2851  {
2852  	struct writeback_control wbc = {
2853  		.nr_to_write = LONG_MAX,
2854  		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2855  		.range_start = 0,
2856  		.range_end = LLONG_MAX,
2857  	};
2858  
2859  	if (!mapping_can_writeback(inode->i_mapping))
2860  		wbc.nr_to_write = 0;
2861  
2862  	might_sleep();
2863  	return writeback_single_inode(inode, &wbc);
2864  }
2865  EXPORT_SYMBOL(write_inode_now);
2866  
2867  /**
2868   * sync_inode_metadata - write an inode to disk
2869   * @inode: the inode to sync
2870   * @wait: wait for I/O to complete.
2871   *
2872   * Write an inode to disk and adjust its dirty state after completion.
2873   *
2874   * Note: only writes the actual inode, no associated data or other metadata.
2875   */
sync_inode_metadata(struct inode * inode,int wait)2876  int sync_inode_metadata(struct inode *inode, int wait)
2877  {
2878  	struct writeback_control wbc = {
2879  		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2880  		.nr_to_write = 0, /* metadata-only */
2881  	};
2882  
2883  	return writeback_single_inode(inode, &wbc);
2884  }
2885  EXPORT_SYMBOL(sync_inode_metadata);
2886