1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4
5 #include <linux/vfsdebug.h>
6 #include <linux/linkage.h>
7 #include <linux/wait_bit.h>
8 #include <linux/kdev_t.h>
9 #include <linux/dcache.h>
10 #include <linux/path.h>
11 #include <linux/stat.h>
12 #include <linux/cache.h>
13 #include <linux/list.h>
14 #include <linux/list_lru.h>
15 #include <linux/llist.h>
16 #include <linux/radix-tree.h>
17 #include <linux/xarray.h>
18 #include <linux/rbtree.h>
19 #include <linux/init.h>
20 #include <linux/pid.h>
21 #include <linux/bug.h>
22 #include <linux/mutex.h>
23 #include <linux/rwsem.h>
24 #include <linux/mm_types.h>
25 #include <linux/capability.h>
26 #include <linux/semaphore.h>
27 #include <linux/fcntl.h>
28 #include <linux/rculist_bl.h>
29 #include <linux/atomic.h>
30 #include <linux/shrinker.h>
31 #include <linux/migrate_mode.h>
32 #include <linux/uidgid.h>
33 #include <linux/lockdep.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/workqueue.h>
36 #include <linux/delayed_call.h>
37 #include <linux/uuid.h>
38 #include <linux/errseq.h>
39 #include <linux/ioprio.h>
40 #include <linux/fs_types.h>
41 #include <linux/build_bug.h>
42 #include <linux/stddef.h>
43 #include <linux/mount.h>
44 #include <linux/cred.h>
45 #include <linux/mnt_idmapping.h>
46 #include <linux/slab.h>
47 #include <linux/maple_tree.h>
48 #include <linux/rw_hint.h>
49 #include <linux/file_ref.h>
50 #include <linux/unicode.h>
51
52 #include <asm/byteorder.h>
53 #include <uapi/linux/fs.h>
54
55 struct backing_dev_info;
56 struct bdi_writeback;
57 struct bio;
58 struct io_comp_batch;
59 struct export_operations;
60 struct fiemap_extent_info;
61 struct hd_geometry;
62 struct iovec;
63 struct kiocb;
64 struct kobject;
65 struct pipe_inode_info;
66 struct poll_table_struct;
67 struct kstatfs;
68 struct vm_area_struct;
69 struct vfsmount;
70 struct cred;
71 struct swap_info_struct;
72 struct seq_file;
73 struct workqueue_struct;
74 struct iov_iter;
75 struct fscrypt_inode_info;
76 struct fscrypt_operations;
77 struct fsverity_info;
78 struct fsverity_operations;
79 struct fsnotify_mark_connector;
80 struct fsnotify_sb_info;
81 struct fs_context;
82 struct fs_parameter_spec;
83 struct file_kattr;
84 struct iomap_ops;
85
86 extern void __init inode_init(void);
87 extern void __init inode_init_early(void);
88 extern void __init files_init(void);
89 extern void __init files_maxfiles_init(void);
90
91 extern unsigned long get_max_files(void);
92 extern unsigned int sysctl_nr_open;
93
94 typedef __kernel_rwf_t rwf_t;
95
96 struct buffer_head;
97 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
98 struct buffer_head *bh_result, int create);
99 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
100 ssize_t bytes, void *private);
101
102 #define MAY_EXEC 0x00000001
103 #define MAY_WRITE 0x00000002
104 #define MAY_READ 0x00000004
105 #define MAY_APPEND 0x00000008
106 #define MAY_ACCESS 0x00000010
107 #define MAY_OPEN 0x00000020
108 #define MAY_CHDIR 0x00000040
109 /* called from RCU mode, don't block */
110 #define MAY_NOT_BLOCK 0x00000080
111
112 /*
113 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
114 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
115 */
116
117 /* file is open for reading */
118 #define FMODE_READ ((__force fmode_t)(1 << 0))
119 /* file is open for writing */
120 #define FMODE_WRITE ((__force fmode_t)(1 << 1))
121 /* file is seekable */
122 #define FMODE_LSEEK ((__force fmode_t)(1 << 2))
123 /* file can be accessed using pread */
124 #define FMODE_PREAD ((__force fmode_t)(1 << 3))
125 /* file can be accessed using pwrite */
126 #define FMODE_PWRITE ((__force fmode_t)(1 << 4))
127 /* File is opened for execution with sys_execve / sys_uselib */
128 #define FMODE_EXEC ((__force fmode_t)(1 << 5))
129 /* File writes are restricted (block device specific) */
130 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6))
131 /* File supports atomic writes */
132 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7))
133
134 /* FMODE_* bit 8 */
135
136 /* 32bit hashes as llseek() offset (for directories) */
137 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9))
138 /* 64bit hashes as llseek() offset (for directories) */
139 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10))
140
141 /*
142 * Don't update ctime and mtime.
143 *
144 * Currently a special hack for the XFS open_by_handle ioctl, but we'll
145 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
146 */
147 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11))
148
149 /* Expect random access pattern */
150 #define FMODE_RANDOM ((__force fmode_t)(1 << 12))
151
152 /* FMODE_* bit 13 */
153
154 /* File is opened with O_PATH; almost nothing can be done with it */
155 #define FMODE_PATH ((__force fmode_t)(1 << 14))
156
157 /* File needs atomic accesses to f_pos */
158 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15))
159 /* Write access to underlying fs */
160 #define FMODE_WRITER ((__force fmode_t)(1 << 16))
161 /* Has read method(s) */
162 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17))
163 /* Has write method(s) */
164 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18))
165
166 #define FMODE_OPENED ((__force fmode_t)(1 << 19))
167 #define FMODE_CREATED ((__force fmode_t)(1 << 20))
168
169 /* File is stream-like */
170 #define FMODE_STREAM ((__force fmode_t)(1 << 21))
171
172 /* File supports DIRECT IO */
173 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22))
174
175 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23))
176
177 /* File is embedded in backing_file object */
178 #define FMODE_BACKING ((__force fmode_t)(1 << 24))
179
180 /*
181 * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be
182 * generated (see below)
183 */
184 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 25))
185
186 /*
187 * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be
188 * generated (see below)
189 */
190 #define FMODE_NONOTIFY_PERM ((__force fmode_t)(1 << 26))
191
192 /* File is capable of returning -EAGAIN if I/O will block */
193 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27))
194
195 /* File represents mount that needs unmounting */
196 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28))
197
198 /* File does not contribute to nr_files count */
199 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29))
200
201 /*
202 * The two FMODE_NONOTIFY* define which fsnotify events should not be generated
203 * for a file. These are the possible values of (f->f_mode &
204 * FMODE_FSNOTIFY_MASK) and their meaning:
205 *
206 * FMODE_NONOTIFY - suppress all (incl. non-permission) events.
207 * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events.
208 * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only pre-content events.
209 */
210 #define FMODE_FSNOTIFY_MASK \
211 (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)
212
213 #define FMODE_FSNOTIFY_NONE(mode) \
214 ((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY)
215 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
216 #define FMODE_FSNOTIFY_PERM(mode) \
217 ((mode & FMODE_FSNOTIFY_MASK) == 0 || \
218 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM))
219 #define FMODE_FSNOTIFY_HSM(mode) \
220 ((mode & FMODE_FSNOTIFY_MASK) == 0)
221 #else
222 #define FMODE_FSNOTIFY_PERM(mode) 0
223 #define FMODE_FSNOTIFY_HSM(mode) 0
224 #endif
225
226 /*
227 * Attribute flags. These should be or-ed together to figure out what
228 * has been changed!
229 */
230 #define ATTR_MODE (1 << 0)
231 #define ATTR_UID (1 << 1)
232 #define ATTR_GID (1 << 2)
233 #define ATTR_SIZE (1 << 3)
234 #define ATTR_ATIME (1 << 4)
235 #define ATTR_MTIME (1 << 5)
236 #define ATTR_CTIME (1 << 6)
237 #define ATTR_ATIME_SET (1 << 7)
238 #define ATTR_MTIME_SET (1 << 8)
239 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
240 #define ATTR_KILL_SUID (1 << 11)
241 #define ATTR_KILL_SGID (1 << 12)
242 #define ATTR_FILE (1 << 13)
243 #define ATTR_KILL_PRIV (1 << 14)
244 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
245 #define ATTR_TIMES_SET (1 << 16)
246 #define ATTR_TOUCH (1 << 17)
247 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */
248
249 /*
250 * Whiteout is represented by a char device. The following constants define the
251 * mode and device number to use.
252 */
253 #define WHITEOUT_MODE 0
254 #define WHITEOUT_DEV 0
255
256 /*
257 * This is the Inode Attributes structure, used for notify_change(). It
258 * uses the above definitions as flags, to know which values have changed.
259 * Also, in this manner, a Filesystem can look at only the values it cares
260 * about. Basically, these are the attributes that the VFS layer can
261 * request to change from the FS layer.
262 *
263 * Derek Atkins <warlord@MIT.EDU> 94-10-20
264 */
265 struct iattr {
266 unsigned int ia_valid;
267 umode_t ia_mode;
268 /*
269 * The two anonymous unions wrap structures with the same member.
270 *
271 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
272 * are a dedicated type requiring the filesystem to use the dedicated
273 * helpers. Other filesystem can continue to use ia_{g,u}id until they
274 * have been ported.
275 *
276 * They always contain the same value. In other words FS_ALLOW_IDMAP
277 * pass down the same value on idmapped mounts as they would on regular
278 * mounts.
279 */
280 union {
281 kuid_t ia_uid;
282 vfsuid_t ia_vfsuid;
283 };
284 union {
285 kgid_t ia_gid;
286 vfsgid_t ia_vfsgid;
287 };
288 loff_t ia_size;
289 struct timespec64 ia_atime;
290 struct timespec64 ia_mtime;
291 struct timespec64 ia_ctime;
292
293 /*
294 * Not an attribute, but an auxiliary info for filesystems wanting to
295 * implement an ftruncate() like method. NOTE: filesystem should
296 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
297 */
298 struct file *ia_file;
299 };
300
301 /*
302 * Includes for diskquotas.
303 */
304 #include <linux/quota.h>
305
306 /*
307 * Maximum number of layers of fs stack. Needs to be limited to
308 * prevent kernel stack overflow
309 */
310 #define FILESYSTEM_MAX_STACK_DEPTH 2
311
312 /**
313 * enum positive_aop_returns - aop return codes with specific semantics
314 *
315 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
316 * completed, that the page is still locked, and
317 * should be considered active. The VM uses this hint
318 * to return the page to the active list -- it won't
319 * be a candidate for writeback again in the near
320 * future. Other callers must be careful to unlock
321 * the page if they get this return. Returned by
322 * writepage();
323 *
324 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
325 * unlocked it and the page might have been truncated.
326 * The caller should back up to acquiring a new page and
327 * trying again. The aop will be taking reasonable
328 * precautions not to livelock. If the caller held a page
329 * reference, it should drop it before retrying. Returned
330 * by read_folio().
331 *
332 * address_space_operation functions return these large constants to indicate
333 * special semantics to the caller. These are much larger than the bytes in a
334 * page to allow for functions that return the number of bytes operated on in a
335 * given page.
336 */
337
338 enum positive_aop_returns {
339 AOP_WRITEPAGE_ACTIVATE = 0x80000,
340 AOP_TRUNCATED_PAGE = 0x80001,
341 };
342
343 /*
344 * oh the beauties of C type declarations.
345 */
346 struct page;
347 struct address_space;
348 struct writeback_control;
349 struct readahead_control;
350
351 /* Match RWF_* bits to IOCB bits */
352 #define IOCB_HIPRI (__force int) RWF_HIPRI
353 #define IOCB_DSYNC (__force int) RWF_DSYNC
354 #define IOCB_SYNC (__force int) RWF_SYNC
355 #define IOCB_NOWAIT (__force int) RWF_NOWAIT
356 #define IOCB_APPEND (__force int) RWF_APPEND
357 #define IOCB_ATOMIC (__force int) RWF_ATOMIC
358 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE
359
360 /* non-RWF related bits - start at 16 */
361 #define IOCB_EVENTFD (1 << 16)
362 #define IOCB_DIRECT (1 << 17)
363 #define IOCB_WRITE (1 << 18)
364 /* iocb->ki_waitq is valid */
365 #define IOCB_WAITQ (1 << 19)
366 #define IOCB_NOIO (1 << 20)
367 /* can use bio alloc cache */
368 #define IOCB_ALLOC_CACHE (1 << 21)
369 /*
370 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
371 * iocb completion can be passed back to the owner for execution from a safe
372 * context rather than needing to be punted through a workqueue. If this
373 * flag is set, the bio completion handling may set iocb->dio_complete to a
374 * handler function and iocb->private to context information for that handler.
375 * The issuer should call the handler with that context information from task
376 * context to complete the processing of the iocb. Note that while this
377 * provides a task context for the dio_complete() callback, it should only be
378 * used on the completion side for non-IO generating completions. It's fine to
379 * call blocking functions from this callback, but they should not wait for
380 * unrelated IO (like cache flushing, new IO generation, etc).
381 */
382 #define IOCB_DIO_CALLER_COMP (1 << 22)
383 /* kiocb is a read or write operation submitted by fs/aio.c. */
384 #define IOCB_AIO_RW (1 << 23)
385 #define IOCB_HAS_METADATA (1 << 24)
386
387 /* for use in trace events */
388 #define TRACE_IOCB_STRINGS \
389 { IOCB_HIPRI, "HIPRI" }, \
390 { IOCB_DSYNC, "DSYNC" }, \
391 { IOCB_SYNC, "SYNC" }, \
392 { IOCB_NOWAIT, "NOWAIT" }, \
393 { IOCB_APPEND, "APPEND" }, \
394 { IOCB_ATOMIC, "ATOMIC" }, \
395 { IOCB_DONTCACHE, "DONTCACHE" }, \
396 { IOCB_EVENTFD, "EVENTFD"}, \
397 { IOCB_DIRECT, "DIRECT" }, \
398 { IOCB_WRITE, "WRITE" }, \
399 { IOCB_WAITQ, "WAITQ" }, \
400 { IOCB_NOIO, "NOIO" }, \
401 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \
402 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }, \
403 { IOCB_AIO_RW, "AIO_RW" }, \
404 { IOCB_HAS_METADATA, "AIO_HAS_METADATA" }
405
406 struct kiocb {
407 struct file *ki_filp;
408 loff_t ki_pos;
409 void (*ki_complete)(struct kiocb *iocb, long ret);
410 void *private;
411 int ki_flags;
412 u16 ki_ioprio; /* See linux/ioprio.h */
413 u8 ki_write_stream;
414 union {
415 /*
416 * Only used for async buffered reads, where it denotes the
417 * page waitqueue associated with completing the read. Valid
418 * IFF IOCB_WAITQ is set.
419 */
420 struct wait_page_queue *ki_waitq;
421 /*
422 * Can be used for O_DIRECT IO, where the completion handling
423 * is punted back to the issuer of the IO. May only be set
424 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
425 * must then check for presence of this handler when ki_complete
426 * is invoked. The data passed in to this handler must be
427 * assigned to ->private when dio_complete is assigned.
428 */
429 ssize_t (*dio_complete)(void *data);
430 };
431 };
432
is_sync_kiocb(struct kiocb * kiocb)433 static inline bool is_sync_kiocb(struct kiocb *kiocb)
434 {
435 return kiocb->ki_complete == NULL;
436 }
437
438 struct address_space_operations {
439 int (*read_folio)(struct file *, struct folio *);
440
441 /* Write back some dirty pages from this mapping. */
442 int (*writepages)(struct address_space *, struct writeback_control *);
443
444 /* Mark a folio dirty. Return true if this dirtied it */
445 bool (*dirty_folio)(struct address_space *, struct folio *);
446
447 void (*readahead)(struct readahead_control *);
448
449 int (*write_begin)(const struct kiocb *, struct address_space *mapping,
450 loff_t pos, unsigned len,
451 struct folio **foliop, void **fsdata);
452 int (*write_end)(const struct kiocb *, struct address_space *mapping,
453 loff_t pos, unsigned len, unsigned copied,
454 struct folio *folio, void *fsdata);
455
456 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
457 sector_t (*bmap)(struct address_space *, sector_t);
458 void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
459 bool (*release_folio)(struct folio *, gfp_t);
460 void (*free_folio)(struct folio *folio);
461 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
462 /*
463 * migrate the contents of a folio to the specified target. If
464 * migrate_mode is MIGRATE_ASYNC, it must not block.
465 */
466 int (*migrate_folio)(struct address_space *, struct folio *dst,
467 struct folio *src, enum migrate_mode);
468 int (*launder_folio)(struct folio *);
469 bool (*is_partially_uptodate) (struct folio *, size_t from,
470 size_t count);
471 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
472 int (*error_remove_folio)(struct address_space *, struct folio *);
473
474 /* swapfile support */
475 int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
476 sector_t *span);
477 void (*swap_deactivate)(struct file *file);
478 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
479 };
480
481 extern const struct address_space_operations empty_aops;
482
483 /**
484 * struct address_space - Contents of a cacheable, mappable object.
485 * @host: Owner, either the inode or the block_device.
486 * @i_pages: Cached pages.
487 * @invalidate_lock: Guards coherency between page cache contents and
488 * file offset->disk block mappings in the filesystem during invalidates.
489 * It is also used to block modification of page cache contents through
490 * memory mappings.
491 * @gfp_mask: Memory allocation flags to use for allocating pages.
492 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
493 * @nr_thps: Number of THPs in the pagecache (non-shmem only).
494 * @i_mmap: Tree of private and shared mappings.
495 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
496 * @nrpages: Number of page entries, protected by the i_pages lock.
497 * @writeback_index: Writeback starts here.
498 * @a_ops: Methods.
499 * @flags: Error bits and flags (AS_*).
500 * @wb_err: The most recent error which has occurred.
501 * @i_private_lock: For use by the owner of the address_space.
502 * @i_private_list: For use by the owner of the address_space.
503 * @i_private_data: For use by the owner of the address_space.
504 */
505 struct address_space {
506 struct inode *host;
507 struct xarray i_pages;
508 struct rw_semaphore invalidate_lock;
509 gfp_t gfp_mask;
510 atomic_t i_mmap_writable;
511 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
512 /* number of thp, only for non-shmem files */
513 atomic_t nr_thps;
514 #endif
515 struct rb_root_cached i_mmap;
516 unsigned long nrpages;
517 pgoff_t writeback_index;
518 const struct address_space_operations *a_ops;
519 unsigned long flags;
520 errseq_t wb_err;
521 spinlock_t i_private_lock;
522 struct list_head i_private_list;
523 struct rw_semaphore i_mmap_rwsem;
524 void * i_private_data;
525 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
526 /*
527 * On most architectures that alignment is already the case; but
528 * must be enforced here for CRIS, to let the least significant bit
529 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
530 */
531
532 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
533 #define PAGECACHE_TAG_DIRTY XA_MARK_0
534 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1
535 #define PAGECACHE_TAG_TOWRITE XA_MARK_2
536
537 /*
538 * Returns true if any of the pages in the mapping are marked with the tag.
539 */
mapping_tagged(struct address_space * mapping,xa_mark_t tag)540 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
541 {
542 return xa_marked(&mapping->i_pages, tag);
543 }
544
i_mmap_lock_write(struct address_space * mapping)545 static inline void i_mmap_lock_write(struct address_space *mapping)
546 {
547 down_write(&mapping->i_mmap_rwsem);
548 }
549
i_mmap_trylock_write(struct address_space * mapping)550 static inline int i_mmap_trylock_write(struct address_space *mapping)
551 {
552 return down_write_trylock(&mapping->i_mmap_rwsem);
553 }
554
i_mmap_unlock_write(struct address_space * mapping)555 static inline void i_mmap_unlock_write(struct address_space *mapping)
556 {
557 up_write(&mapping->i_mmap_rwsem);
558 }
559
i_mmap_trylock_read(struct address_space * mapping)560 static inline int i_mmap_trylock_read(struct address_space *mapping)
561 {
562 return down_read_trylock(&mapping->i_mmap_rwsem);
563 }
564
i_mmap_lock_read(struct address_space * mapping)565 static inline void i_mmap_lock_read(struct address_space *mapping)
566 {
567 down_read(&mapping->i_mmap_rwsem);
568 }
569
i_mmap_unlock_read(struct address_space * mapping)570 static inline void i_mmap_unlock_read(struct address_space *mapping)
571 {
572 up_read(&mapping->i_mmap_rwsem);
573 }
574
i_mmap_assert_locked(struct address_space * mapping)575 static inline void i_mmap_assert_locked(struct address_space *mapping)
576 {
577 lockdep_assert_held(&mapping->i_mmap_rwsem);
578 }
579
i_mmap_assert_write_locked(struct address_space * mapping)580 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
581 {
582 lockdep_assert_held_write(&mapping->i_mmap_rwsem);
583 }
584
585 /*
586 * Might pages of this file be mapped into userspace?
587 */
mapping_mapped(struct address_space * mapping)588 static inline int mapping_mapped(struct address_space *mapping)
589 {
590 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
591 }
592
593 /*
594 * Might pages of this file have been modified in userspace?
595 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
596 * marks vma as VM_SHARED if it is shared, and the file was opened for
597 * writing i.e. vma may be mprotected writable even if now readonly.
598 *
599 * If i_mmap_writable is negative, no new writable mappings are allowed. You
600 * can only deny writable mappings, if none exists right now.
601 */
mapping_writably_mapped(struct address_space * mapping)602 static inline int mapping_writably_mapped(struct address_space *mapping)
603 {
604 return atomic_read(&mapping->i_mmap_writable) > 0;
605 }
606
mapping_map_writable(struct address_space * mapping)607 static inline int mapping_map_writable(struct address_space *mapping)
608 {
609 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
610 0 : -EPERM;
611 }
612
mapping_unmap_writable(struct address_space * mapping)613 static inline void mapping_unmap_writable(struct address_space *mapping)
614 {
615 atomic_dec(&mapping->i_mmap_writable);
616 }
617
mapping_deny_writable(struct address_space * mapping)618 static inline int mapping_deny_writable(struct address_space *mapping)
619 {
620 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
621 0 : -EBUSY;
622 }
623
mapping_allow_writable(struct address_space * mapping)624 static inline void mapping_allow_writable(struct address_space *mapping)
625 {
626 atomic_inc(&mapping->i_mmap_writable);
627 }
628
629 /*
630 * Use sequence counter to get consistent i_size on 32-bit processors.
631 */
632 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
633 #include <linux/seqlock.h>
634 #define __NEED_I_SIZE_ORDERED
635 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
636 #else
637 #define i_size_ordered_init(inode) do { } while (0)
638 #endif
639
640 struct posix_acl;
641 #define ACL_NOT_CACHED ((void *)(-1))
642 /*
643 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
644 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU
645 * mode with the LOOKUP_RCU flag.
646 */
647 #define ACL_DONT_CACHE ((void *)(-3))
648
649 static inline struct posix_acl *
uncached_acl_sentinel(struct task_struct * task)650 uncached_acl_sentinel(struct task_struct *task)
651 {
652 return (void *)task + 1;
653 }
654
655 static inline bool
is_uncached_acl(struct posix_acl * acl)656 is_uncached_acl(struct posix_acl *acl)
657 {
658 return (long)acl & 1;
659 }
660
661 #define IOP_FASTPERM 0x0001
662 #define IOP_LOOKUP 0x0002
663 #define IOP_NOFOLLOW 0x0004
664 #define IOP_XATTR 0x0008
665 #define IOP_DEFAULT_READLINK 0x0010
666 #define IOP_MGTIME 0x0020
667 #define IOP_CACHED_LINK 0x0040
668
669 /*
670 * Keep mostly read-only and often accessed (especially for
671 * the RCU path lookup and 'stat' data) fields at the beginning
672 * of the 'struct inode'
673 */
674 struct inode {
675 umode_t i_mode;
676 unsigned short i_opflags;
677 kuid_t i_uid;
678 kgid_t i_gid;
679 unsigned int i_flags;
680
681 #ifdef CONFIG_FS_POSIX_ACL
682 struct posix_acl *i_acl;
683 struct posix_acl *i_default_acl;
684 #endif
685
686 const struct inode_operations *i_op;
687 struct super_block *i_sb;
688 struct address_space *i_mapping;
689
690 #ifdef CONFIG_SECURITY
691 void *i_security;
692 #endif
693
694 /* Stat data, not accessed from path walking */
695 unsigned long i_ino;
696 /*
697 * Filesystems may only read i_nlink directly. They shall use the
698 * following functions for modification:
699 *
700 * (set|clear|inc|drop)_nlink
701 * inode_(inc|dec)_link_count
702 */
703 union {
704 const unsigned int i_nlink;
705 unsigned int __i_nlink;
706 };
707 dev_t i_rdev;
708 loff_t i_size;
709 time64_t i_atime_sec;
710 time64_t i_mtime_sec;
711 time64_t i_ctime_sec;
712 u32 i_atime_nsec;
713 u32 i_mtime_nsec;
714 u32 i_ctime_nsec;
715 u32 i_generation;
716 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
717 unsigned short i_bytes;
718 u8 i_blkbits;
719 enum rw_hint i_write_hint;
720 blkcnt_t i_blocks;
721
722 #ifdef __NEED_I_SIZE_ORDERED
723 seqcount_t i_size_seqcount;
724 #endif
725
726 /* Misc */
727 u32 i_state;
728 /* 32-bit hole */
729 struct rw_semaphore i_rwsem;
730
731 unsigned long dirtied_when; /* jiffies of first dirtying */
732 unsigned long dirtied_time_when;
733
734 struct hlist_node i_hash;
735 struct list_head i_io_list; /* backing dev IO list */
736 #ifdef CONFIG_CGROUP_WRITEBACK
737 struct bdi_writeback *i_wb; /* the associated cgroup wb */
738
739 /* foreign inode detection, see wbc_detach_inode() */
740 int i_wb_frn_winner;
741 u16 i_wb_frn_avg_time;
742 u16 i_wb_frn_history;
743 #endif
744 struct list_head i_lru; /* inode LRU list */
745 struct list_head i_sb_list;
746 struct list_head i_wb_list; /* backing dev writeback list */
747 union {
748 struct hlist_head i_dentry;
749 struct rcu_head i_rcu;
750 };
751 atomic64_t i_version;
752 atomic64_t i_sequence; /* see futex */
753 atomic_t i_count;
754 atomic_t i_dio_count;
755 atomic_t i_writecount;
756 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
757 atomic_t i_readcount; /* struct files open RO */
758 #endif
759 union {
760 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
761 void (*free_inode)(struct inode *);
762 };
763 struct file_lock_context *i_flctx;
764 struct address_space i_data;
765 union {
766 struct list_head i_devices;
767 int i_linklen;
768 };
769 union {
770 struct pipe_inode_info *i_pipe;
771 struct cdev *i_cdev;
772 char *i_link;
773 unsigned i_dir_seq;
774 };
775
776
777 #ifdef CONFIG_FSNOTIFY
778 __u32 i_fsnotify_mask; /* all events this inode cares about */
779 /* 32-bit hole reserved for expanding i_fsnotify_mask */
780 struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
781 #endif
782
783 #ifdef CONFIG_FS_ENCRYPTION
784 struct fscrypt_inode_info *i_crypt_info;
785 #endif
786
787 #ifdef CONFIG_FS_VERITY
788 struct fsverity_info *i_verity_info;
789 #endif
790
791 void *i_private; /* fs or device private pointer */
792 } __randomize_layout;
793
inode_set_cached_link(struct inode * inode,char * link,int linklen)794 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
795 {
796 VFS_WARN_ON_INODE(strlen(link) != linklen, inode);
797 VFS_WARN_ON_INODE(inode->i_opflags & IOP_CACHED_LINK, inode);
798 inode->i_link = link;
799 inode->i_linklen = linklen;
800 inode->i_opflags |= IOP_CACHED_LINK;
801 }
802
803 /*
804 * Get bit address from inode->i_state to use with wait_var_event()
805 * infrastructre.
806 */
807 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
808
809 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
810 struct inode *inode, u32 bit);
811
inode_wake_up_bit(struct inode * inode,u32 bit)812 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
813 {
814 /* Caller is responsible for correct memory barriers. */
815 wake_up_var(inode_state_wait_address(inode, bit));
816 }
817
818 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
819
i_blocksize(const struct inode * node)820 static inline unsigned int i_blocksize(const struct inode *node)
821 {
822 return (1 << node->i_blkbits);
823 }
824
inode_unhashed(struct inode * inode)825 static inline int inode_unhashed(struct inode *inode)
826 {
827 return hlist_unhashed(&inode->i_hash);
828 }
829
830 /*
831 * __mark_inode_dirty expects inodes to be hashed. Since we don't
832 * want special inodes in the fileset inode space, we make them
833 * appear hashed, but do not put on any lists. hlist_del()
834 * will work fine and require no locking.
835 */
inode_fake_hash(struct inode * inode)836 static inline void inode_fake_hash(struct inode *inode)
837 {
838 hlist_add_fake(&inode->i_hash);
839 }
840
841 /*
842 * inode->i_rwsem nesting subclasses for the lock validator:
843 *
844 * 0: the object of the current VFS operation
845 * 1: parent
846 * 2: child/target
847 * 3: xattr
848 * 4: second non-directory
849 * 5: second parent (when locking independent directories in rename)
850 *
851 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
852 * non-directories at once.
853 *
854 * The locking order between these classes is
855 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
856 */
857 enum inode_i_mutex_lock_class
858 {
859 I_MUTEX_NORMAL,
860 I_MUTEX_PARENT,
861 I_MUTEX_CHILD,
862 I_MUTEX_XATTR,
863 I_MUTEX_NONDIR2,
864 I_MUTEX_PARENT2,
865 };
866
inode_lock(struct inode * inode)867 static inline void inode_lock(struct inode *inode)
868 {
869 down_write(&inode->i_rwsem);
870 }
871
inode_lock_killable(struct inode * inode)872 static inline __must_check int inode_lock_killable(struct inode *inode)
873 {
874 return down_write_killable(&inode->i_rwsem);
875 }
876
inode_unlock(struct inode * inode)877 static inline void inode_unlock(struct inode *inode)
878 {
879 up_write(&inode->i_rwsem);
880 }
881
inode_lock_shared(struct inode * inode)882 static inline void inode_lock_shared(struct inode *inode)
883 {
884 down_read(&inode->i_rwsem);
885 }
886
inode_lock_shared_killable(struct inode * inode)887 static inline __must_check int inode_lock_shared_killable(struct inode *inode)
888 {
889 return down_read_killable(&inode->i_rwsem);
890 }
891
inode_unlock_shared(struct inode * inode)892 static inline void inode_unlock_shared(struct inode *inode)
893 {
894 up_read(&inode->i_rwsem);
895 }
896
inode_trylock(struct inode * inode)897 static inline int inode_trylock(struct inode *inode)
898 {
899 return down_write_trylock(&inode->i_rwsem);
900 }
901
inode_trylock_shared(struct inode * inode)902 static inline int inode_trylock_shared(struct inode *inode)
903 {
904 return down_read_trylock(&inode->i_rwsem);
905 }
906
inode_is_locked(struct inode * inode)907 static inline int inode_is_locked(struct inode *inode)
908 {
909 return rwsem_is_locked(&inode->i_rwsem);
910 }
911
inode_lock_nested(struct inode * inode,unsigned subclass)912 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
913 {
914 down_write_nested(&inode->i_rwsem, subclass);
915 }
916
inode_lock_shared_nested(struct inode * inode,unsigned subclass)917 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
918 {
919 down_read_nested(&inode->i_rwsem, subclass);
920 }
921
filemap_invalidate_lock(struct address_space * mapping)922 static inline void filemap_invalidate_lock(struct address_space *mapping)
923 {
924 down_write(&mapping->invalidate_lock);
925 }
926
filemap_invalidate_unlock(struct address_space * mapping)927 static inline void filemap_invalidate_unlock(struct address_space *mapping)
928 {
929 up_write(&mapping->invalidate_lock);
930 }
931
filemap_invalidate_lock_shared(struct address_space * mapping)932 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
933 {
934 down_read(&mapping->invalidate_lock);
935 }
936
filemap_invalidate_trylock_shared(struct address_space * mapping)937 static inline int filemap_invalidate_trylock_shared(
938 struct address_space *mapping)
939 {
940 return down_read_trylock(&mapping->invalidate_lock);
941 }
942
filemap_invalidate_unlock_shared(struct address_space * mapping)943 static inline void filemap_invalidate_unlock_shared(
944 struct address_space *mapping)
945 {
946 up_read(&mapping->invalidate_lock);
947 }
948
949 void lock_two_nondirectories(struct inode *, struct inode*);
950 void unlock_two_nondirectories(struct inode *, struct inode*);
951
952 void filemap_invalidate_lock_two(struct address_space *mapping1,
953 struct address_space *mapping2);
954 void filemap_invalidate_unlock_two(struct address_space *mapping1,
955 struct address_space *mapping2);
956
957
958 /*
959 * NOTE: in a 32bit arch with a preemptable kernel and
960 * an UP compile the i_size_read/write must be atomic
961 * with respect to the local cpu (unlike with preempt disabled),
962 * but they don't need to be atomic with respect to other cpus like in
963 * true SMP (so they need either to either locally disable irq around
964 * the read or for example on x86 they can be still implemented as a
965 * cmpxchg8b without the need of the lock prefix). For SMP compiles
966 * and 64bit archs it makes no difference if preempt is enabled or not.
967 */
i_size_read(const struct inode * inode)968 static inline loff_t i_size_read(const struct inode *inode)
969 {
970 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
971 loff_t i_size;
972 unsigned int seq;
973
974 do {
975 seq = read_seqcount_begin(&inode->i_size_seqcount);
976 i_size = inode->i_size;
977 } while (read_seqcount_retry(&inode->i_size_seqcount, seq));
978 return i_size;
979 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
980 loff_t i_size;
981
982 preempt_disable();
983 i_size = inode->i_size;
984 preempt_enable();
985 return i_size;
986 #else
987 /* Pairs with smp_store_release() in i_size_write() */
988 return smp_load_acquire(&inode->i_size);
989 #endif
990 }
991
992 /*
993 * NOTE: unlike i_size_read(), i_size_write() does need locking around it
994 * (normally i_rwsem), otherwise on 32bit/SMP an update of i_size_seqcount
995 * can be lost, resulting in subsequent i_size_read() calls spinning forever.
996 */
i_size_write(struct inode * inode,loff_t i_size)997 static inline void i_size_write(struct inode *inode, loff_t i_size)
998 {
999 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
1000 preempt_disable();
1001 write_seqcount_begin(&inode->i_size_seqcount);
1002 inode->i_size = i_size;
1003 write_seqcount_end(&inode->i_size_seqcount);
1004 preempt_enable();
1005 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
1006 preempt_disable();
1007 inode->i_size = i_size;
1008 preempt_enable();
1009 #else
1010 /*
1011 * Pairs with smp_load_acquire() in i_size_read() to ensure
1012 * changes related to inode size (such as page contents) are
1013 * visible before we see the changed inode size.
1014 */
1015 smp_store_release(&inode->i_size, i_size);
1016 #endif
1017 }
1018
iminor(const struct inode * inode)1019 static inline unsigned iminor(const struct inode *inode)
1020 {
1021 return MINOR(inode->i_rdev);
1022 }
1023
imajor(const struct inode * inode)1024 static inline unsigned imajor(const struct inode *inode)
1025 {
1026 return MAJOR(inode->i_rdev);
1027 }
1028
1029 struct fown_struct {
1030 struct file *file; /* backpointer for security modules */
1031 rwlock_t lock; /* protects pid, uid, euid fields */
1032 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
1033 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
1034 kuid_t uid, euid; /* uid/euid of process setting the owner */
1035 int signum; /* posix.1b rt signal to be delivered on IO */
1036 };
1037
1038 /**
1039 * struct file_ra_state - Track a file's readahead state.
1040 * @start: Where the most recent readahead started.
1041 * @size: Number of pages read in the most recent readahead.
1042 * @async_size: Numer of pages that were/are not needed immediately
1043 * and so were/are genuinely "ahead". Start next readahead when
1044 * the first of these pages is accessed.
1045 * @ra_pages: Maximum size of a readahead request, copied from the bdi.
1046 * @mmap_miss: How many mmap accesses missed in the page cache.
1047 * @prev_pos: The last byte in the most recent read request.
1048 *
1049 * When this structure is passed to ->readahead(), the "most recent"
1050 * readahead means the current readahead.
1051 */
1052 struct file_ra_state {
1053 pgoff_t start;
1054 unsigned int size;
1055 unsigned int async_size;
1056 unsigned int ra_pages;
1057 unsigned int mmap_miss;
1058 loff_t prev_pos;
1059 };
1060
1061 /*
1062 * Check if @index falls in the readahead windows.
1063 */
ra_has_index(struct file_ra_state * ra,pgoff_t index)1064 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1065 {
1066 return (index >= ra->start &&
1067 index < ra->start + ra->size);
1068 }
1069
1070 /**
1071 * struct file - Represents a file
1072 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1073 * @f_mode: FMODE_* flags often used in hotpaths
1074 * @f_op: file operations
1075 * @f_mapping: Contents of a cacheable, mappable object.
1076 * @private_data: filesystem or driver specific data
1077 * @f_inode: cached inode
1078 * @f_flags: file flags
1079 * @f_iocb_flags: iocb flags
1080 * @f_cred: stashed credentials of creator/opener
1081 * @f_owner: file owner
1082 * @f_path: path of the file
1083 * @f_pos_lock: lock protecting file position
1084 * @f_pipe: specific to pipes
1085 * @f_pos: file position
1086 * @f_security: LSM security context of this file
1087 * @f_wb_err: writeback error
1088 * @f_sb_err: per sb writeback errors
1089 * @f_ep: link of all epoll hooks for this file
1090 * @f_task_work: task work entry point
1091 * @f_llist: work queue entrypoint
1092 * @f_ra: file's readahead state
1093 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1094 * @f_ref: reference count
1095 */
1096 struct file {
1097 spinlock_t f_lock;
1098 fmode_t f_mode;
1099 const struct file_operations *f_op;
1100 struct address_space *f_mapping;
1101 void *private_data;
1102 struct inode *f_inode;
1103 unsigned int f_flags;
1104 unsigned int f_iocb_flags;
1105 const struct cred *f_cred;
1106 struct fown_struct *f_owner;
1107 /* --- cacheline 1 boundary (64 bytes) --- */
1108 struct path f_path;
1109 union {
1110 /* regular files (with FMODE_ATOMIC_POS) and directories */
1111 struct mutex f_pos_lock;
1112 /* pipes */
1113 u64 f_pipe;
1114 };
1115 loff_t f_pos;
1116 #ifdef CONFIG_SECURITY
1117 void *f_security;
1118 #endif
1119 /* --- cacheline 2 boundary (128 bytes) --- */
1120 errseq_t f_wb_err;
1121 errseq_t f_sb_err;
1122 #ifdef CONFIG_EPOLL
1123 struct hlist_head *f_ep;
1124 #endif
1125 union {
1126 struct callback_head f_task_work;
1127 struct llist_node f_llist;
1128 struct file_ra_state f_ra;
1129 freeptr_t f_freeptr;
1130 };
1131 file_ref_t f_ref;
1132 /* --- cacheline 3 boundary (192 bytes) --- */
1133 } __randomize_layout
1134 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
1135
1136 struct file_handle {
1137 __u32 handle_bytes;
1138 int handle_type;
1139 /* file identifier */
1140 unsigned char f_handle[] __counted_by(handle_bytes);
1141 };
1142
get_file(struct file * f)1143 static inline struct file *get_file(struct file *f)
1144 {
1145 file_ref_inc(&f->f_ref);
1146 return f;
1147 }
1148
1149 struct file *get_file_rcu(struct file __rcu **f);
1150 struct file *get_file_active(struct file **f);
1151
1152 #define file_count(f) file_ref_read(&(f)->f_ref)
1153
1154 #define MAX_NON_LFS ((1UL<<31) - 1)
1155
1156 /* Page cache limit. The filesystems should put that into their s_maxbytes
1157 limits, otherwise bad things can happen in VM. */
1158 #if BITS_PER_LONG==32
1159 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
1160 #elif BITS_PER_LONG==64
1161 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
1162 #endif
1163
1164 /* legacy typedef, should eventually be removed */
1165 typedef void *fl_owner_t;
1166
1167 struct file_lock;
1168 struct file_lease;
1169
1170 /* The following constant reflects the upper bound of the file/locking space */
1171 #ifndef OFFSET_MAX
1172 #define OFFSET_MAX type_max(loff_t)
1173 #define OFFT_OFFSET_MAX type_max(off_t)
1174 #endif
1175
1176 int file_f_owner_allocate(struct file *file);
file_f_owner(const struct file * file)1177 static inline struct fown_struct *file_f_owner(const struct file *file)
1178 {
1179 return READ_ONCE(file->f_owner);
1180 }
1181
1182 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1183
file_inode(const struct file * f)1184 static inline struct inode *file_inode(const struct file *f)
1185 {
1186 return f->f_inode;
1187 }
1188
1189 /*
1190 * file_dentry() is a relic from the days that overlayfs was using files with a
1191 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1192 * In those days, file_dentry() was needed to get the underlying fs dentry that
1193 * matches f_inode.
1194 * Files with "fake" path should not exist nowadays, so use an assertion to make
1195 * sure that file_dentry() was not papering over filesystem bugs.
1196 */
file_dentry(const struct file * file)1197 static inline struct dentry *file_dentry(const struct file *file)
1198 {
1199 struct dentry *dentry = file->f_path.dentry;
1200
1201 WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1202 return dentry;
1203 }
1204
1205 struct fasync_struct {
1206 rwlock_t fa_lock;
1207 int magic;
1208 int fa_fd;
1209 struct fasync_struct *fa_next; /* singly linked list */
1210 struct file *fa_file;
1211 struct rcu_head fa_rcu;
1212 };
1213
1214 #define FASYNC_MAGIC 0x4601
1215
1216 /* SMP safe fasync helpers: */
1217 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1218 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1219 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1220 extern struct fasync_struct *fasync_alloc(void);
1221 extern void fasync_free(struct fasync_struct *);
1222
1223 /* can be called from interrupts */
1224 extern void kill_fasync(struct fasync_struct **, int, int);
1225
1226 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1227 extern int f_setown(struct file *filp, int who, int force);
1228 extern void f_delown(struct file *filp);
1229 extern pid_t f_getown(struct file *filp);
1230 extern int send_sigurg(struct file *file);
1231
1232 /*
1233 * sb->s_flags. Note that these mirror the equivalent MS_* flags where
1234 * represented in both.
1235 */
1236 #define SB_RDONLY BIT(0) /* Mount read-only */
1237 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
1238 #define SB_NODEV BIT(2) /* Disallow access to device special files */
1239 #define SB_NOEXEC BIT(3) /* Disallow program execution */
1240 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
1241 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
1242 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
1243 #define SB_NOATIME BIT(10) /* Do not update access times. */
1244 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */
1245 #define SB_SILENT BIT(15)
1246 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */
1247 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
1248 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
1249 #define SB_I_VERSION BIT(23) /* Update inode I_version field */
1250 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
1251
1252 /* These sb flags are internal to the kernel */
1253 #define SB_DEAD BIT(21)
1254 #define SB_DYING BIT(24)
1255 #define SB_FORCE BIT(27)
1256 #define SB_NOSEC BIT(28)
1257 #define SB_BORN BIT(29)
1258 #define SB_ACTIVE BIT(30)
1259 #define SB_NOUSER BIT(31)
1260
1261 /* These flags relate to encoding and casefolding */
1262 #define SB_ENC_STRICT_MODE_FL (1 << 0)
1263 #define SB_ENC_NO_COMPAT_FALLBACK_FL (1 << 1)
1264
1265 #define sb_has_strict_encoding(sb) \
1266 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1267
1268 #if IS_ENABLED(CONFIG_UNICODE)
1269 #define sb_no_casefold_compat_fallback(sb) \
1270 (sb->s_encoding_flags & SB_ENC_NO_COMPAT_FALLBACK_FL)
1271 #else
1272 #define sb_no_casefold_compat_fallback(sb) (1)
1273 #endif
1274
1275 /*
1276 * Umount options
1277 */
1278
1279 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
1280 #define MNT_DETACH 0x00000002 /* Just detach from the tree */
1281 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */
1282 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
1283 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
1284
1285 /* sb->s_iflags */
1286 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
1287 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
1288 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
1289 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
1290
1291 /* sb->s_iflags to limit user namespace mounts */
1292 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
1293 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
1294 #define SB_I_UNTRUSTED_MOUNTER 0x00000040
1295 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080
1296
1297 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
1298 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
1299 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1300 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
1301 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */
1302 #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */
1303 #define SB_I_ALLOW_HSM 0x00004000 /* Allow HSM events on this superblock */
1304
1305 /* Possible states of 'frozen' field */
1306 enum {
1307 SB_UNFROZEN = 0, /* FS is unfrozen */
1308 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
1309 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
1310 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
1311 * internal threads if needed) */
1312 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
1313 };
1314
1315 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1316
1317 struct sb_writers {
1318 unsigned short frozen; /* Is sb frozen? */
1319 int freeze_kcount; /* How many kernel freeze requests? */
1320 int freeze_ucount; /* How many userspace freeze requests? */
1321 const void *freeze_owner; /* Owner of the freeze */
1322 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
1323 };
1324
1325 struct super_block {
1326 struct list_head s_list; /* Keep this first */
1327 dev_t s_dev; /* search index; _not_ kdev_t */
1328 unsigned char s_blocksize_bits;
1329 unsigned long s_blocksize;
1330 loff_t s_maxbytes; /* Max file size */
1331 struct file_system_type *s_type;
1332 const struct super_operations *s_op;
1333 const struct dquot_operations *dq_op;
1334 const struct quotactl_ops *s_qcop;
1335 const struct export_operations *s_export_op;
1336 unsigned long s_flags;
1337 unsigned long s_iflags; /* internal SB_I_* flags */
1338 unsigned long s_magic;
1339 struct dentry *s_root;
1340 struct rw_semaphore s_umount;
1341 int s_count;
1342 atomic_t s_active;
1343 #ifdef CONFIG_SECURITY
1344 void *s_security;
1345 #endif
1346 const struct xattr_handler * const *s_xattr;
1347 #ifdef CONFIG_FS_ENCRYPTION
1348 const struct fscrypt_operations *s_cop;
1349 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
1350 #endif
1351 #ifdef CONFIG_FS_VERITY
1352 const struct fsverity_operations *s_vop;
1353 #endif
1354 #if IS_ENABLED(CONFIG_UNICODE)
1355 struct unicode_map *s_encoding;
1356 __u16 s_encoding_flags;
1357 #endif
1358 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
1359 struct list_head s_mounts; /* list of mounts; _not_ for fs use */
1360 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */
1361 struct file *s_bdev_file;
1362 struct backing_dev_info *s_bdi;
1363 struct mtd_info *s_mtd;
1364 struct hlist_node s_instances;
1365 unsigned int s_quota_types; /* Bitmask of supported quota types */
1366 struct quota_info s_dquot; /* Diskquota specific options */
1367
1368 struct sb_writers s_writers;
1369
1370 /*
1371 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1372 * s_fsnotify_info together for cache efficiency. They are frequently
1373 * accessed and rarely modified.
1374 */
1375 void *s_fs_info; /* Filesystem private info */
1376
1377 /* Granularity of c/m/atime in ns (cannot be worse than a second) */
1378 u32 s_time_gran;
1379 /* Time limits for c/m/atime in seconds */
1380 time64_t s_time_min;
1381 time64_t s_time_max;
1382 #ifdef CONFIG_FSNOTIFY
1383 u32 s_fsnotify_mask;
1384 struct fsnotify_sb_info *s_fsnotify_info;
1385 #endif
1386
1387 /*
1388 * q: why are s_id and s_sysfs_name not the same? both are human
1389 * readable strings that identify the filesystem
1390 * a: s_id is allowed to change at runtime; it's used in log messages,
1391 * and we want to when a device starts out as single device (s_id is dev
1392 * name) but then a device is hot added and we have to switch to
1393 * identifying it by UUID
1394 * but s_sysfs_name is a handle for programmatic access, and can't
1395 * change at runtime
1396 */
1397 char s_id[32]; /* Informational name */
1398 uuid_t s_uuid; /* UUID */
1399 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */
1400
1401 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1402 char s_sysfs_name[UUID_STRING_LEN + 1];
1403
1404 unsigned int s_max_links;
1405 unsigned int s_d_flags; /* default d_flags for dentries */
1406
1407 /*
1408 * The next field is for VFS *only*. No filesystems have any business
1409 * even looking at it. You had been warned.
1410 */
1411 struct mutex s_vfs_rename_mutex; /* Kludge */
1412
1413 /*
1414 * Filesystem subtype. If non-empty the filesystem type field
1415 * in /proc/mounts will be "type.subtype"
1416 */
1417 const char *s_subtype;
1418
1419 const struct dentry_operations *__s_d_op; /* default d_op for dentries */
1420
1421 struct shrinker *s_shrink; /* per-sb shrinker handle */
1422
1423 /* Number of inodes with nlink == 0 but still referenced */
1424 atomic_long_t s_remove_count;
1425
1426 /* Read-only state of the superblock is being changed */
1427 int s_readonly_remount;
1428
1429 /* per-sb errseq_t for reporting writeback errors via syncfs */
1430 errseq_t s_wb_err;
1431
1432 /* AIO completions deferred from interrupt context */
1433 struct workqueue_struct *s_dio_done_wq;
1434 struct hlist_head s_pins;
1435
1436 /*
1437 * Owning user namespace and default context in which to
1438 * interpret filesystem uids, gids, quotas, device nodes,
1439 * xattrs and security labels.
1440 */
1441 struct user_namespace *s_user_ns;
1442
1443 /*
1444 * The list_lru structure is essentially just a pointer to a table
1445 * of per-node lru lists, each of which has its own spinlock.
1446 * There is no need to put them into separate cachelines.
1447 */
1448 struct list_lru s_dentry_lru;
1449 struct list_lru s_inode_lru;
1450 struct rcu_head rcu;
1451 struct work_struct destroy_work;
1452
1453 struct mutex s_sync_lock; /* sync serialisation lock */
1454
1455 /*
1456 * Indicates how deep in a filesystem stack this SB is
1457 */
1458 int s_stack_depth;
1459
1460 /* s_inode_list_lock protects s_inodes */
1461 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
1462 struct list_head s_inodes; /* all inodes */
1463
1464 spinlock_t s_inode_wblist_lock;
1465 struct list_head s_inodes_wb; /* writeback inodes */
1466 } __randomize_layout;
1467
i_user_ns(const struct inode * inode)1468 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1469 {
1470 return inode->i_sb->s_user_ns;
1471 }
1472
1473 /* Helper functions so that in most cases filesystems will
1474 * not need to deal directly with kuid_t and kgid_t and can
1475 * instead deal with the raw numeric values that are stored
1476 * in the filesystem.
1477 */
i_uid_read(const struct inode * inode)1478 static inline uid_t i_uid_read(const struct inode *inode)
1479 {
1480 return from_kuid(i_user_ns(inode), inode->i_uid);
1481 }
1482
i_gid_read(const struct inode * inode)1483 static inline gid_t i_gid_read(const struct inode *inode)
1484 {
1485 return from_kgid(i_user_ns(inode), inode->i_gid);
1486 }
1487
i_uid_write(struct inode * inode,uid_t uid)1488 static inline void i_uid_write(struct inode *inode, uid_t uid)
1489 {
1490 inode->i_uid = make_kuid(i_user_ns(inode), uid);
1491 }
1492
i_gid_write(struct inode * inode,gid_t gid)1493 static inline void i_gid_write(struct inode *inode, gid_t gid)
1494 {
1495 inode->i_gid = make_kgid(i_user_ns(inode), gid);
1496 }
1497
1498 /**
1499 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1500 * @idmap: idmap of the mount the inode was found from
1501 * @inode: inode to map
1502 *
1503 * Return: whe inode's i_uid mapped down according to @idmap.
1504 * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1505 */
i_uid_into_vfsuid(struct mnt_idmap * idmap,const struct inode * inode)1506 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1507 const struct inode *inode)
1508 {
1509 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1510 }
1511
1512 /**
1513 * i_uid_needs_update - check whether inode's i_uid needs to be updated
1514 * @idmap: idmap of the mount the inode was found from
1515 * @attr: the new attributes of @inode
1516 * @inode: the inode to update
1517 *
1518 * Check whether the $inode's i_uid field needs to be updated taking idmapped
1519 * mounts into account if the filesystem supports it.
1520 *
1521 * Return: true if @inode's i_uid field needs to be updated, false if not.
1522 */
i_uid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1523 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1524 const struct iattr *attr,
1525 const struct inode *inode)
1526 {
1527 return ((attr->ia_valid & ATTR_UID) &&
1528 !vfsuid_eq(attr->ia_vfsuid,
1529 i_uid_into_vfsuid(idmap, inode)));
1530 }
1531
1532 /**
1533 * i_uid_update - update @inode's i_uid field
1534 * @idmap: idmap of the mount the inode was found from
1535 * @attr: the new attributes of @inode
1536 * @inode: the inode to update
1537 *
1538 * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1539 * mount into the filesystem kuid.
1540 */
i_uid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1541 static inline void i_uid_update(struct mnt_idmap *idmap,
1542 const struct iattr *attr,
1543 struct inode *inode)
1544 {
1545 if (attr->ia_valid & ATTR_UID)
1546 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1547 attr->ia_vfsuid);
1548 }
1549
1550 /**
1551 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1552 * @idmap: idmap of the mount the inode was found from
1553 * @inode: inode to map
1554 *
1555 * Return: the inode's i_gid mapped down according to @idmap.
1556 * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1557 */
i_gid_into_vfsgid(struct mnt_idmap * idmap,const struct inode * inode)1558 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1559 const struct inode *inode)
1560 {
1561 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1562 }
1563
1564 /**
1565 * i_gid_needs_update - check whether inode's i_gid needs to be updated
1566 * @idmap: idmap of the mount the inode was found from
1567 * @attr: the new attributes of @inode
1568 * @inode: the inode to update
1569 *
1570 * Check whether the $inode's i_gid field needs to be updated taking idmapped
1571 * mounts into account if the filesystem supports it.
1572 *
1573 * Return: true if @inode's i_gid field needs to be updated, false if not.
1574 */
i_gid_needs_update(struct mnt_idmap * idmap,const struct iattr * attr,const struct inode * inode)1575 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1576 const struct iattr *attr,
1577 const struct inode *inode)
1578 {
1579 return ((attr->ia_valid & ATTR_GID) &&
1580 !vfsgid_eq(attr->ia_vfsgid,
1581 i_gid_into_vfsgid(idmap, inode)));
1582 }
1583
1584 /**
1585 * i_gid_update - update @inode's i_gid field
1586 * @idmap: idmap of the mount the inode was found from
1587 * @attr: the new attributes of @inode
1588 * @inode: the inode to update
1589 *
1590 * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1591 * mount into the filesystem kgid.
1592 */
i_gid_update(struct mnt_idmap * idmap,const struct iattr * attr,struct inode * inode)1593 static inline void i_gid_update(struct mnt_idmap *idmap,
1594 const struct iattr *attr,
1595 struct inode *inode)
1596 {
1597 if (attr->ia_valid & ATTR_GID)
1598 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1599 attr->ia_vfsgid);
1600 }
1601
1602 /**
1603 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1604 * @inode: inode to initialize
1605 * @idmap: idmap of the mount the inode was found from
1606 *
1607 * Initialize the i_uid field of @inode. If the inode was found/created via
1608 * an idmapped mount map the caller's fsuid according to @idmap.
1609 */
inode_fsuid_set(struct inode * inode,struct mnt_idmap * idmap)1610 static inline void inode_fsuid_set(struct inode *inode,
1611 struct mnt_idmap *idmap)
1612 {
1613 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1614 }
1615
1616 /**
1617 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1618 * @inode: inode to initialize
1619 * @idmap: idmap of the mount the inode was found from
1620 *
1621 * Initialize the i_gid field of @inode. If the inode was found/created via
1622 * an idmapped mount map the caller's fsgid according to @idmap.
1623 */
inode_fsgid_set(struct inode * inode,struct mnt_idmap * idmap)1624 static inline void inode_fsgid_set(struct inode *inode,
1625 struct mnt_idmap *idmap)
1626 {
1627 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1628 }
1629
1630 /**
1631 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1632 * @sb: the superblock we want a mapping in
1633 * @idmap: idmap of the relevant mount
1634 *
1635 * Check whether the caller's fsuid and fsgid have a valid mapping in the
1636 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1637 * the caller's fsuid and fsgid according to the @idmap first.
1638 *
1639 * Return: true if fsuid and fsgid is mapped, false if not.
1640 */
fsuidgid_has_mapping(struct super_block * sb,struct mnt_idmap * idmap)1641 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1642 struct mnt_idmap *idmap)
1643 {
1644 struct user_namespace *fs_userns = sb->s_user_ns;
1645 kuid_t kuid;
1646 kgid_t kgid;
1647
1648 kuid = mapped_fsuid(idmap, fs_userns);
1649 if (!uid_valid(kuid))
1650 return false;
1651 kgid = mapped_fsgid(idmap, fs_userns);
1652 if (!gid_valid(kgid))
1653 return false;
1654 return kuid_has_mapping(fs_userns, kuid) &&
1655 kgid_has_mapping(fs_userns, kgid);
1656 }
1657
1658 struct timespec64 current_time(struct inode *inode);
1659 struct timespec64 inode_set_ctime_current(struct inode *inode);
1660 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1661 struct timespec64 update);
1662
inode_get_atime_sec(const struct inode * inode)1663 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1664 {
1665 return inode->i_atime_sec;
1666 }
1667
inode_get_atime_nsec(const struct inode * inode)1668 static inline long inode_get_atime_nsec(const struct inode *inode)
1669 {
1670 return inode->i_atime_nsec;
1671 }
1672
inode_get_atime(const struct inode * inode)1673 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1674 {
1675 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode),
1676 .tv_nsec = inode_get_atime_nsec(inode) };
1677
1678 return ts;
1679 }
1680
inode_set_atime_to_ts(struct inode * inode,struct timespec64 ts)1681 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1682 struct timespec64 ts)
1683 {
1684 inode->i_atime_sec = ts.tv_sec;
1685 inode->i_atime_nsec = ts.tv_nsec;
1686 return ts;
1687 }
1688
inode_set_atime(struct inode * inode,time64_t sec,long nsec)1689 static inline struct timespec64 inode_set_atime(struct inode *inode,
1690 time64_t sec, long nsec)
1691 {
1692 struct timespec64 ts = { .tv_sec = sec,
1693 .tv_nsec = nsec };
1694
1695 return inode_set_atime_to_ts(inode, ts);
1696 }
1697
inode_get_mtime_sec(const struct inode * inode)1698 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1699 {
1700 return inode->i_mtime_sec;
1701 }
1702
inode_get_mtime_nsec(const struct inode * inode)1703 static inline long inode_get_mtime_nsec(const struct inode *inode)
1704 {
1705 return inode->i_mtime_nsec;
1706 }
1707
inode_get_mtime(const struct inode * inode)1708 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1709 {
1710 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode),
1711 .tv_nsec = inode_get_mtime_nsec(inode) };
1712 return ts;
1713 }
1714
inode_set_mtime_to_ts(struct inode * inode,struct timespec64 ts)1715 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1716 struct timespec64 ts)
1717 {
1718 inode->i_mtime_sec = ts.tv_sec;
1719 inode->i_mtime_nsec = ts.tv_nsec;
1720 return ts;
1721 }
1722
inode_set_mtime(struct inode * inode,time64_t sec,long nsec)1723 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1724 time64_t sec, long nsec)
1725 {
1726 struct timespec64 ts = { .tv_sec = sec,
1727 .tv_nsec = nsec };
1728 return inode_set_mtime_to_ts(inode, ts);
1729 }
1730
1731 /*
1732 * Multigrain timestamps
1733 *
1734 * Conditionally use fine-grained ctime and mtime timestamps when there
1735 * are users actively observing them via getattr. The primary use-case
1736 * for this is NFS clients that use the ctime to distinguish between
1737 * different states of the file, and that are often fooled by multiple
1738 * operations that occur in the same coarse-grained timer tick.
1739 */
1740 #define I_CTIME_QUERIED ((u32)BIT(31))
1741
inode_get_ctime_sec(const struct inode * inode)1742 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1743 {
1744 return inode->i_ctime_sec;
1745 }
1746
inode_get_ctime_nsec(const struct inode * inode)1747 static inline long inode_get_ctime_nsec(const struct inode *inode)
1748 {
1749 return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1750 }
1751
inode_get_ctime(const struct inode * inode)1752 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1753 {
1754 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode),
1755 .tv_nsec = inode_get_ctime_nsec(inode) };
1756
1757 return ts;
1758 }
1759
1760 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1761
1762 /**
1763 * inode_set_ctime - set the ctime in the inode
1764 * @inode: inode in which to set the ctime
1765 * @sec: tv_sec value to set
1766 * @nsec: tv_nsec value to set
1767 *
1768 * Set the ctime in @inode to { @sec, @nsec }
1769 */
inode_set_ctime(struct inode * inode,time64_t sec,long nsec)1770 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1771 time64_t sec, long nsec)
1772 {
1773 struct timespec64 ts = { .tv_sec = sec,
1774 .tv_nsec = nsec };
1775
1776 return inode_set_ctime_to_ts(inode, ts);
1777 }
1778
1779 struct timespec64 simple_inode_init_ts(struct inode *inode);
1780
1781 /*
1782 * Snapshotting support.
1783 */
1784
1785 /*
1786 * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1787 * instead.
1788 */
__sb_end_write(struct super_block * sb,int level)1789 static inline void __sb_end_write(struct super_block *sb, int level)
1790 {
1791 percpu_up_read(sb->s_writers.rw_sem + level-1);
1792 }
1793
__sb_start_write(struct super_block * sb,int level)1794 static inline void __sb_start_write(struct super_block *sb, int level)
1795 {
1796 percpu_down_read_freezable(sb->s_writers.rw_sem + level - 1, true);
1797 }
1798
__sb_start_write_trylock(struct super_block * sb,int level)1799 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1800 {
1801 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1802 }
1803
1804 #define __sb_writers_acquired(sb, lev) \
1805 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1806 #define __sb_writers_release(sb, lev) \
1807 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1808
1809 /**
1810 * __sb_write_started - check if sb freeze level is held
1811 * @sb: the super we write to
1812 * @level: the freeze level
1813 *
1814 * * > 0 - sb freeze level is held
1815 * * 0 - sb freeze level is not held
1816 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1817 */
__sb_write_started(const struct super_block * sb,int level)1818 static inline int __sb_write_started(const struct super_block *sb, int level)
1819 {
1820 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1821 }
1822
1823 /**
1824 * sb_write_started - check if SB_FREEZE_WRITE is held
1825 * @sb: the super we write to
1826 *
1827 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1828 */
sb_write_started(const struct super_block * sb)1829 static inline bool sb_write_started(const struct super_block *sb)
1830 {
1831 return __sb_write_started(sb, SB_FREEZE_WRITE);
1832 }
1833
1834 /**
1835 * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1836 * @sb: the super we write to
1837 *
1838 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1839 */
sb_write_not_started(const struct super_block * sb)1840 static inline bool sb_write_not_started(const struct super_block *sb)
1841 {
1842 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1843 }
1844
1845 /**
1846 * file_write_started - check if SB_FREEZE_WRITE is held
1847 * @file: the file we write to
1848 *
1849 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1850 * May be false positive with !S_ISREG, because file_start_write() has
1851 * no effect on !S_ISREG.
1852 */
file_write_started(const struct file * file)1853 static inline bool file_write_started(const struct file *file)
1854 {
1855 if (!S_ISREG(file_inode(file)->i_mode))
1856 return true;
1857 return sb_write_started(file_inode(file)->i_sb);
1858 }
1859
1860 /**
1861 * file_write_not_started - check if SB_FREEZE_WRITE is not held
1862 * @file: the file we write to
1863 *
1864 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1865 * May be false positive with !S_ISREG, because file_start_write() has
1866 * no effect on !S_ISREG.
1867 */
file_write_not_started(const struct file * file)1868 static inline bool file_write_not_started(const struct file *file)
1869 {
1870 if (!S_ISREG(file_inode(file)->i_mode))
1871 return true;
1872 return sb_write_not_started(file_inode(file)->i_sb);
1873 }
1874
1875 /**
1876 * sb_end_write - drop write access to a superblock
1877 * @sb: the super we wrote to
1878 *
1879 * Decrement number of writers to the filesystem. Wake up possible waiters
1880 * wanting to freeze the filesystem.
1881 */
sb_end_write(struct super_block * sb)1882 static inline void sb_end_write(struct super_block *sb)
1883 {
1884 __sb_end_write(sb, SB_FREEZE_WRITE);
1885 }
1886
1887 /**
1888 * sb_end_pagefault - drop write access to a superblock from a page fault
1889 * @sb: the super we wrote to
1890 *
1891 * Decrement number of processes handling write page fault to the filesystem.
1892 * Wake up possible waiters wanting to freeze the filesystem.
1893 */
sb_end_pagefault(struct super_block * sb)1894 static inline void sb_end_pagefault(struct super_block *sb)
1895 {
1896 __sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1897 }
1898
1899 /**
1900 * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1901 * @sb: the super we wrote to
1902 *
1903 * Decrement fs-internal number of writers to the filesystem. Wake up possible
1904 * waiters wanting to freeze the filesystem.
1905 */
sb_end_intwrite(struct super_block * sb)1906 static inline void sb_end_intwrite(struct super_block *sb)
1907 {
1908 __sb_end_write(sb, SB_FREEZE_FS);
1909 }
1910
1911 /**
1912 * sb_start_write - get write access to a superblock
1913 * @sb: the super we write to
1914 *
1915 * When a process wants to write data or metadata to a file system (i.e. dirty
1916 * a page or an inode), it should embed the operation in a sb_start_write() -
1917 * sb_end_write() pair to get exclusion against file system freezing. This
1918 * function increments number of writers preventing freezing. If the file
1919 * system is already frozen, the function waits until the file system is
1920 * thawed.
1921 *
1922 * Since freeze protection behaves as a lock, users have to preserve
1923 * ordering of freeze protection and other filesystem locks. Generally,
1924 * freeze protection should be the outermost lock. In particular, we have:
1925 *
1926 * sb_start_write
1927 * -> i_rwsem (write path, truncate, directory ops, ...)
1928 * -> s_umount (freeze_super, thaw_super)
1929 */
sb_start_write(struct super_block * sb)1930 static inline void sb_start_write(struct super_block *sb)
1931 {
1932 __sb_start_write(sb, SB_FREEZE_WRITE);
1933 }
1934
sb_start_write_trylock(struct super_block * sb)1935 static inline bool sb_start_write_trylock(struct super_block *sb)
1936 {
1937 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1938 }
1939
1940 /**
1941 * sb_start_pagefault - get write access to a superblock from a page fault
1942 * @sb: the super we write to
1943 *
1944 * When a process starts handling write page fault, it should embed the
1945 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1946 * exclusion against file system freezing. This is needed since the page fault
1947 * is going to dirty a page. This function increments number of running page
1948 * faults preventing freezing. If the file system is already frozen, the
1949 * function waits until the file system is thawed.
1950 *
1951 * Since page fault freeze protection behaves as a lock, users have to preserve
1952 * ordering of freeze protection and other filesystem locks. It is advised to
1953 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1954 * handling code implies lock dependency:
1955 *
1956 * mmap_lock
1957 * -> sb_start_pagefault
1958 */
sb_start_pagefault(struct super_block * sb)1959 static inline void sb_start_pagefault(struct super_block *sb)
1960 {
1961 __sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1962 }
1963
1964 /**
1965 * sb_start_intwrite - get write access to a superblock for internal fs purposes
1966 * @sb: the super we write to
1967 *
1968 * This is the third level of protection against filesystem freezing. It is
1969 * free for use by a filesystem. The only requirement is that it must rank
1970 * below sb_start_pagefault.
1971 *
1972 * For example filesystem can call sb_start_intwrite() when starting a
1973 * transaction which somewhat eases handling of freezing for internal sources
1974 * of filesystem changes (internal fs threads, discarding preallocation on file
1975 * close, etc.).
1976 */
sb_start_intwrite(struct super_block * sb)1977 static inline void sb_start_intwrite(struct super_block *sb)
1978 {
1979 __sb_start_write(sb, SB_FREEZE_FS);
1980 }
1981
sb_start_intwrite_trylock(struct super_block * sb)1982 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1983 {
1984 return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1985 }
1986
1987 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1988 const struct inode *inode);
1989
1990 /*
1991 * VFS helper functions..
1992 */
1993 int vfs_create(struct mnt_idmap *, struct inode *,
1994 struct dentry *, umode_t, bool);
1995 struct dentry *vfs_mkdir(struct mnt_idmap *, struct inode *,
1996 struct dentry *, umode_t);
1997 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1998 umode_t, dev_t);
1999 int vfs_symlink(struct mnt_idmap *, struct inode *,
2000 struct dentry *, const char *);
2001 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
2002 struct dentry *, struct inode **);
2003 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
2004 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
2005 struct inode **);
2006
2007 /**
2008 * struct renamedata - contains all information required for renaming
2009 * @old_mnt_idmap: idmap of the old mount the inode was found from
2010 * @old_parent: parent of source
2011 * @old_dentry: source
2012 * @new_mnt_idmap: idmap of the new mount the inode was found from
2013 * @new_parent: parent of destination
2014 * @new_dentry: destination
2015 * @delegated_inode: returns an inode needing a delegation break
2016 * @flags: rename flags
2017 */
2018 struct renamedata {
2019 struct mnt_idmap *old_mnt_idmap;
2020 struct dentry *old_parent;
2021 struct dentry *old_dentry;
2022 struct mnt_idmap *new_mnt_idmap;
2023 struct dentry *new_parent;
2024 struct dentry *new_dentry;
2025 struct inode **delegated_inode;
2026 unsigned int flags;
2027 } __randomize_layout;
2028
2029 int vfs_rename(struct renamedata *);
2030
vfs_whiteout(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)2031 static inline int vfs_whiteout(struct mnt_idmap *idmap,
2032 struct inode *dir, struct dentry *dentry)
2033 {
2034 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
2035 WHITEOUT_DEV);
2036 }
2037
2038 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
2039 const struct path *parentpath,
2040 umode_t mode, int open_flag,
2041 const struct cred *cred);
2042 struct file *kernel_file_open(const struct path *path, int flags,
2043 const struct cred *cred);
2044
2045 int vfs_mkobj(struct dentry *, umode_t,
2046 int (*f)(struct dentry *, umode_t, void *),
2047 void *);
2048
2049 int vfs_fchown(struct file *file, uid_t user, gid_t group);
2050 int vfs_fchmod(struct file *file, umode_t mode);
2051 int vfs_utimes(const struct path *path, struct timespec64 *times);
2052
2053 int vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2054
2055 #ifdef CONFIG_COMPAT
2056 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2057 unsigned long arg);
2058 #else
2059 #define compat_ptr_ioctl NULL
2060 #endif
2061
2062 /*
2063 * VFS file helper functions.
2064 */
2065 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2066 const struct inode *dir, umode_t mode);
2067 extern bool may_open_dev(const struct path *path);
2068 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2069 const struct inode *dir, umode_t mode);
2070 bool in_group_or_capable(struct mnt_idmap *idmap,
2071 const struct inode *inode, vfsgid_t vfsgid);
2072
2073 /*
2074 * This is the "filldir" function type, used by readdir() to let
2075 * the kernel specify what kind of dirent layout it wants to have.
2076 * This allows the kernel to read directories into kernel space or
2077 * to have different dirent layouts depending on the binary type.
2078 * Return 'true' to keep going and 'false' if there are no more entries.
2079 */
2080 struct dir_context;
2081 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2082 unsigned);
2083
2084 struct dir_context {
2085 filldir_t actor;
2086 loff_t pos;
2087 /*
2088 * Filesystems MUST NOT MODIFY count, but may use as a hint:
2089 * 0 unknown
2090 * > 0 space in buffer (assume at least one entry)
2091 * INT_MAX unlimited
2092 */
2093 int count;
2094 };
2095
2096 /* If OR-ed with d_type, pending signals are not checked */
2097 #define FILLDIR_FLAG_NOINTR 0x1000
2098
2099 /*
2100 * These flags let !MMU mmap() govern direct device mapping vs immediate
2101 * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2102 *
2103 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
2104 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
2105 * NOMMU_MAP_READ: Can be mapped for reading
2106 * NOMMU_MAP_WRITE: Can be mapped for writing
2107 * NOMMU_MAP_EXEC: Can be mapped for execution
2108 */
2109 #define NOMMU_MAP_COPY 0x00000001
2110 #define NOMMU_MAP_DIRECT 0x00000008
2111 #define NOMMU_MAP_READ VM_MAYREAD
2112 #define NOMMU_MAP_WRITE VM_MAYWRITE
2113 #define NOMMU_MAP_EXEC VM_MAYEXEC
2114
2115 #define NOMMU_VMFLAGS \
2116 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2117
2118 /*
2119 * These flags control the behavior of the remap_file_range function pointer.
2120 * If it is called with len == 0 that means "remap to end of source file".
2121 * See Documentation/filesystems/vfs.rst for more details about this call.
2122 *
2123 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2124 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2125 */
2126 #define REMAP_FILE_DEDUP (1 << 0)
2127 #define REMAP_FILE_CAN_SHORTEN (1 << 1)
2128
2129 /*
2130 * These flags signal that the caller is ok with altering various aspects of
2131 * the behavior of the remap operation. The changes must be made by the
2132 * implementation; the vfs remap helper functions can take advantage of them.
2133 * Flags in this category exist to preserve the quirky behavior of the hoisted
2134 * btrfs clone/dedupe ioctls.
2135 */
2136 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
2137
2138 /*
2139 * These flags control the behavior of vfs_copy_file_range().
2140 * They are not available to the user via syscall.
2141 *
2142 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2143 */
2144 #define COPY_FILE_SPLICE (1 << 0)
2145
2146 struct iov_iter;
2147 struct io_uring_cmd;
2148 struct offset_ctx;
2149
2150 typedef unsigned int __bitwise fop_flags_t;
2151
2152 struct file_operations {
2153 struct module *owner;
2154 fop_flags_t fop_flags;
2155 loff_t (*llseek) (struct file *, loff_t, int);
2156 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2157 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2158 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2159 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2160 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2161 unsigned int flags);
2162 int (*iterate_shared) (struct file *, struct dir_context *);
2163 __poll_t (*poll) (struct file *, struct poll_table_struct *);
2164 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2165 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2166 int (*mmap) (struct file *, struct vm_area_struct *);
2167 int (*open) (struct inode *, struct file *);
2168 int (*flush) (struct file *, fl_owner_t id);
2169 int (*release) (struct inode *, struct file *);
2170 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2171 int (*fasync) (int, struct file *, int);
2172 int (*lock) (struct file *, int, struct file_lock *);
2173 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2174 int (*check_flags)(int);
2175 int (*flock) (struct file *, int, struct file_lock *);
2176 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2177 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2178 void (*splice_eof)(struct file *file);
2179 int (*setlease)(struct file *, int, struct file_lease **, void **);
2180 long (*fallocate)(struct file *file, int mode, loff_t offset,
2181 loff_t len);
2182 void (*show_fdinfo)(struct seq_file *m, struct file *f);
2183 #ifndef CONFIG_MMU
2184 unsigned (*mmap_capabilities)(struct file *);
2185 #endif
2186 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2187 loff_t, size_t, unsigned int);
2188 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2189 struct file *file_out, loff_t pos_out,
2190 loff_t len, unsigned int remap_flags);
2191 int (*fadvise)(struct file *, loff_t, loff_t, int);
2192 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2193 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2194 unsigned int poll_flags);
2195 int (*mmap_prepare)(struct vm_area_desc *);
2196 } __randomize_layout;
2197
2198 /* Supports async buffered reads */
2199 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0))
2200 /* Supports async buffered writes */
2201 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1))
2202 /* Supports synchronous page faults for mappings */
2203 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2))
2204 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2205 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3))
2206 /* Contains huge pages */
2207 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4))
2208 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2209 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5))
2210 /* Supports asynchronous lock callbacks */
2211 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6))
2212 /* File system supports uncached read/write buffered IO */
2213 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7))
2214
2215 /* Wrap a directory iterator that needs exclusive inode access */
2216 int wrap_directory_iterator(struct file *, struct dir_context *,
2217 int (*) (struct file *, struct dir_context *));
2218 #define WRAP_DIR_ITER(x) \
2219 static int shared_##x(struct file *file , struct dir_context *ctx) \
2220 { return wrap_directory_iterator(file, ctx, x); }
2221
2222 struct inode_operations {
2223 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2224 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2225 int (*permission) (struct mnt_idmap *, struct inode *, int);
2226 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2227
2228 int (*readlink) (struct dentry *, char __user *,int);
2229
2230 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2231 umode_t, bool);
2232 int (*link) (struct dentry *,struct inode *,struct dentry *);
2233 int (*unlink) (struct inode *,struct dentry *);
2234 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2235 const char *);
2236 struct dentry *(*mkdir) (struct mnt_idmap *, struct inode *,
2237 struct dentry *, umode_t);
2238 int (*rmdir) (struct inode *,struct dentry *);
2239 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2240 umode_t,dev_t);
2241 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2242 struct inode *, struct dentry *, unsigned int);
2243 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2244 int (*getattr) (struct mnt_idmap *, const struct path *,
2245 struct kstat *, u32, unsigned int);
2246 ssize_t (*listxattr) (struct dentry *, char *, size_t);
2247 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2248 u64 len);
2249 int (*update_time)(struct inode *, int);
2250 int (*atomic_open)(struct inode *, struct dentry *,
2251 struct file *, unsigned open_flag,
2252 umode_t create_mode);
2253 int (*tmpfile) (struct mnt_idmap *, struct inode *,
2254 struct file *, umode_t);
2255 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2256 int);
2257 int (*set_acl)(struct mnt_idmap *, struct dentry *,
2258 struct posix_acl *, int);
2259 int (*fileattr_set)(struct mnt_idmap *idmap,
2260 struct dentry *dentry, struct file_kattr *fa);
2261 int (*fileattr_get)(struct dentry *dentry, struct file_kattr *fa);
2262 struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2263 } ____cacheline_aligned;
2264
2265 /* Did the driver provide valid mmap hook configuration? */
can_mmap_file(struct file * file)2266 static inline bool can_mmap_file(struct file *file)
2267 {
2268 bool has_mmap = file->f_op->mmap;
2269 bool has_mmap_prepare = file->f_op->mmap_prepare;
2270
2271 /* Hooks are mutually exclusive. */
2272 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare))
2273 return false;
2274 if (!has_mmap && !has_mmap_prepare)
2275 return false;
2276
2277 return true;
2278 }
2279
2280 int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma);
2281
vfs_mmap(struct file * file,struct vm_area_struct * vma)2282 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma)
2283 {
2284 if (file->f_op->mmap_prepare)
2285 return compat_vma_mmap_prepare(file, vma);
2286
2287 return file->f_op->mmap(file, vma);
2288 }
2289
vfs_mmap_prepare(struct file * file,struct vm_area_desc * desc)2290 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc)
2291 {
2292 return file->f_op->mmap_prepare(desc);
2293 }
2294
2295 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2296 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2297 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2298 loff_t, size_t, unsigned int);
2299 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2300 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2301 struct file *file_out, loff_t pos_out,
2302 loff_t *len, unsigned int remap_flags,
2303 const struct iomap_ops *dax_read_ops);
2304 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2305 struct file *file_out, loff_t pos_out,
2306 loff_t *count, unsigned int remap_flags);
2307 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2308 struct file *file_out, loff_t pos_out,
2309 loff_t len, unsigned int remap_flags);
2310 extern int vfs_dedupe_file_range(struct file *file,
2311 struct file_dedupe_range *same);
2312 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2313 struct file *dst_file, loff_t dst_pos,
2314 loff_t len, unsigned int remap_flags);
2315
2316 /**
2317 * enum freeze_holder - holder of the freeze
2318 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2319 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2320 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2321 * @FREEZE_EXCL: a freeze that can only be undone by the owner
2322 *
2323 * Indicate who the owner of the freeze or thaw request is and whether
2324 * the freeze needs to be exclusive or can nest.
2325 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2326 * same holder aren't allowed. It is however allowed to hold a single
2327 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2328 * the same time. This is relied upon by some filesystems during online
2329 * repair or similar.
2330 */
2331 enum freeze_holder {
2332 FREEZE_HOLDER_KERNEL = (1U << 0),
2333 FREEZE_HOLDER_USERSPACE = (1U << 1),
2334 FREEZE_MAY_NEST = (1U << 2),
2335 FREEZE_EXCL = (1U << 3),
2336 };
2337
2338 struct super_operations {
2339 struct inode *(*alloc_inode)(struct super_block *sb);
2340 void (*destroy_inode)(struct inode *);
2341 void (*free_inode)(struct inode *);
2342
2343 void (*dirty_inode) (struct inode *, int flags);
2344 int (*write_inode) (struct inode *, struct writeback_control *wbc);
2345 int (*drop_inode) (struct inode *);
2346 void (*evict_inode) (struct inode *);
2347 void (*put_super) (struct super_block *);
2348 int (*sync_fs)(struct super_block *sb, int wait);
2349 int (*freeze_super) (struct super_block *, enum freeze_holder who, const void *owner);
2350 int (*freeze_fs) (struct super_block *);
2351 int (*thaw_super) (struct super_block *, enum freeze_holder who, const void *owner);
2352 int (*unfreeze_fs) (struct super_block *);
2353 int (*statfs) (struct dentry *, struct kstatfs *);
2354 int (*remount_fs) (struct super_block *, int *, char *);
2355 void (*umount_begin) (struct super_block *);
2356
2357 int (*show_options)(struct seq_file *, struct dentry *);
2358 int (*show_devname)(struct seq_file *, struct dentry *);
2359 int (*show_path)(struct seq_file *, struct dentry *);
2360 int (*show_stats)(struct seq_file *, struct dentry *);
2361 #ifdef CONFIG_QUOTA
2362 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2363 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2364 struct dquot __rcu **(*get_dquots)(struct inode *);
2365 #endif
2366 long (*nr_cached_objects)(struct super_block *,
2367 struct shrink_control *);
2368 long (*free_cached_objects)(struct super_block *,
2369 struct shrink_control *);
2370 /*
2371 * If a filesystem can support graceful removal of a device and
2372 * continue read-write operations, implement this callback.
2373 *
2374 * Return 0 if the filesystem can continue read-write.
2375 * Non-zero return value or no such callback means the fs will be shutdown
2376 * as usual.
2377 */
2378 int (*remove_bdev)(struct super_block *sb, struct block_device *bdev);
2379 void (*shutdown)(struct super_block *sb);
2380 };
2381
2382 /*
2383 * Inode flags - they have no relation to superblock flags now
2384 */
2385 #define S_SYNC (1 << 0) /* Writes are synced at once */
2386 #define S_NOATIME (1 << 1) /* Do not update access times */
2387 #define S_APPEND (1 << 2) /* Append-only file */
2388 #define S_IMMUTABLE (1 << 3) /* Immutable file */
2389 #define S_DEAD (1 << 4) /* removed, but still open directory */
2390 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
2391 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
2392 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
2393 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
2394 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */
2395 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */
2396 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
2397 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
2398 #ifdef CONFIG_FS_DAX
2399 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
2400 #else
2401 #define S_DAX 0 /* Make all the DAX code disappear */
2402 #endif
2403 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
2404 #define S_CASEFOLD (1 << 15) /* Casefolded file */
2405 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
2406 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2407 #define S_ANON_INODE (1 << 19) /* Inode is an anonymous inode */
2408
2409 /*
2410 * Note that nosuid etc flags are inode-specific: setting some file-system
2411 * flags just means all the inodes inherit those flags by default. It might be
2412 * possible to override it selectively if you really wanted to with some
2413 * ioctl() that is not currently implemented.
2414 *
2415 * Exception: SB_RDONLY is always applied to the entire file system.
2416 *
2417 * Unfortunately, it is possible to change a filesystems flags with it mounted
2418 * with files in use. This means that all of the inodes will not have their
2419 * i_flags updated. Hence, i_flags no longer inherit the superblock mount
2420 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2421 */
2422 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
2423
sb_rdonly(const struct super_block * sb)2424 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2425 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
2426 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
2427 ((inode)->i_flags & S_SYNC))
2428 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2429 ((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2430 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
2431 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2432 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
2433
2434 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
2435 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
2436 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
2437
2438 #ifdef CONFIG_FS_POSIX_ACL
2439 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
2440 #else
2441 #define IS_POSIXACL(inode) 0
2442 #endif
2443
2444 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
2445 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
2446
2447 #ifdef CONFIG_SWAP
2448 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
2449 #else
2450 #define IS_SWAPFILE(inode) ((void)(inode), 0U)
2451 #endif
2452
2453 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
2454 #define IS_IMA(inode) ((inode)->i_flags & S_IMA)
2455 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
2456 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
2457 #define IS_DAX(inode) ((inode)->i_flags & S_DAX)
2458 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
2459 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
2460 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
2461
2462 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
2463 (inode)->i_rdev == WHITEOUT_DEV)
2464 #define IS_ANON_FILE(inode) ((inode)->i_flags & S_ANON_INODE)
2465
HAS_UNMAPPED_ID(struct mnt_idmap * idmap,struct inode * inode)2466 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2467 struct inode *inode)
2468 {
2469 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2470 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2471 }
2472
init_sync_kiocb(struct kiocb * kiocb,struct file * filp)2473 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2474 {
2475 *kiocb = (struct kiocb) {
2476 .ki_filp = filp,
2477 .ki_flags = filp->f_iocb_flags,
2478 .ki_ioprio = get_current_ioprio(),
2479 };
2480 }
2481
kiocb_clone(struct kiocb * kiocb,struct kiocb * kiocb_src,struct file * filp)2482 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2483 struct file *filp)
2484 {
2485 *kiocb = (struct kiocb) {
2486 .ki_filp = filp,
2487 .ki_flags = kiocb_src->ki_flags,
2488 .ki_ioprio = kiocb_src->ki_ioprio,
2489 .ki_pos = kiocb_src->ki_pos,
2490 };
2491 }
2492
2493 /*
2494 * Inode state bits. Protected by inode->i_lock
2495 *
2496 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2497 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2498 *
2499 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
2500 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
2501 * various stages of removing an inode.
2502 *
2503 * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2504 *
2505 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
2506 * fdatasync() (unless I_DIRTY_DATASYNC is also set).
2507 * Timestamp updates are the usual cause.
2508 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
2509 * these changes separately from I_DIRTY_SYNC so that we
2510 * don't have to write inode on fdatasync() when only
2511 * e.g. the timestamps have changed.
2512 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
2513 * I_DIRTY_TIME The inode itself has dirty timestamps, and the
2514 * lazytime mount option is enabled. We keep track of this
2515 * separately from I_DIRTY_SYNC in order to implement
2516 * lazytime. This gets cleared if I_DIRTY_INODE
2517 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2518 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2519 * in place because writeback might already be in progress
2520 * and we don't want to lose the time update
2521 * I_NEW Serves as both a mutex and completion notification.
2522 * New inodes set I_NEW. If two processes both create
2523 * the same inode, one of them will release its inode and
2524 * wait for I_NEW to be released before returning.
2525 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2526 * also cause waiting on I_NEW, without I_NEW actually
2527 * being set. find_inode() uses this to prevent returning
2528 * nearly-dead inodes.
2529 * I_WILL_FREE Must be set when calling write_inode_now() if i_count
2530 * is zero. I_FREEING must be set when I_WILL_FREE is
2531 * cleared.
2532 * I_FREEING Set when inode is about to be freed but still has dirty
2533 * pages or buffers attached or the inode itself is still
2534 * dirty.
2535 * I_CLEAR Added by clear_inode(). In this state the inode is
2536 * clean and can be destroyed. Inode keeps I_FREEING.
2537 *
2538 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2539 * prohibited for many purposes. iget() must wait for
2540 * the inode to be completely released, then create it
2541 * anew. Other functions will just ignore such inodes,
2542 * if appropriate. I_NEW is used for waiting.
2543 *
2544 * I_SYNC Writeback of inode is running. The bit is set during
2545 * data writeback, and cleared with a wakeup on the bit
2546 * address once it is done. The bit is also used to pin
2547 * the inode in memory for flusher thread.
2548 *
2549 * I_REFERENCED Marks the inode as recently references on the LRU list.
2550 *
2551 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
2552 * synchronize competing switching instances and to tell
2553 * wb stat updates to grab the i_pages lock. See
2554 * inode_switch_wbs_work_fn() for details.
2555 *
2556 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
2557 * and work dirs among overlayfs mounts.
2558 *
2559 * I_CREATING New object's inode in the middle of setting up.
2560 *
2561 * I_DONTCACHE Evict inode as soon as it is not used anymore.
2562 *
2563 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
2564 * Used to detect that mark_inode_dirty() should not move
2565 * inode between dirty lists.
2566 *
2567 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
2568 *
2569 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding
2570 * i_count.
2571 *
2572 * Q: What is the difference between I_WILL_FREE and I_FREEING?
2573 *
2574 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2575 * upon. There's one free address left.
2576 */
2577 #define __I_NEW 0
2578 #define I_NEW (1 << __I_NEW)
2579 #define __I_SYNC 1
2580 #define I_SYNC (1 << __I_SYNC)
2581 #define __I_LRU_ISOLATING 2
2582 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING)
2583
2584 #define I_DIRTY_SYNC (1 << 3)
2585 #define I_DIRTY_DATASYNC (1 << 4)
2586 #define I_DIRTY_PAGES (1 << 5)
2587 #define I_WILL_FREE (1 << 6)
2588 #define I_FREEING (1 << 7)
2589 #define I_CLEAR (1 << 8)
2590 #define I_REFERENCED (1 << 9)
2591 #define I_LINKABLE (1 << 10)
2592 #define I_DIRTY_TIME (1 << 11)
2593 #define I_WB_SWITCH (1 << 12)
2594 #define I_OVL_INUSE (1 << 13)
2595 #define I_CREATING (1 << 14)
2596 #define I_DONTCACHE (1 << 15)
2597 #define I_SYNC_QUEUED (1 << 16)
2598 #define I_PINNING_NETFS_WB (1 << 17)
2599
2600 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2601 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2602 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2603
2604 extern void __mark_inode_dirty(struct inode *, int);
mark_inode_dirty(struct inode * inode)2605 static inline void mark_inode_dirty(struct inode *inode)
2606 {
2607 __mark_inode_dirty(inode, I_DIRTY);
2608 }
2609
mark_inode_dirty_sync(struct inode * inode)2610 static inline void mark_inode_dirty_sync(struct inode *inode)
2611 {
2612 __mark_inode_dirty(inode, I_DIRTY_SYNC);
2613 }
2614
2615 /*
2616 * Returns true if the given inode itself only has dirty timestamps (its pages
2617 * may still be dirty) and isn't currently being allocated or freed.
2618 * Filesystems should call this if when writing an inode when lazytime is
2619 * enabled, they want to opportunistically write the timestamps of other inodes
2620 * located very nearby on-disk, e.g. in the same inode block. This returns true
2621 * if the given inode is in need of such an opportunistic update. Requires
2622 * i_lock, or at least later re-checking under i_lock.
2623 */
inode_is_dirtytime_only(struct inode * inode)2624 static inline bool inode_is_dirtytime_only(struct inode *inode)
2625 {
2626 return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2627 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2628 }
2629
2630 extern void inc_nlink(struct inode *inode);
2631 extern void drop_nlink(struct inode *inode);
2632 extern void clear_nlink(struct inode *inode);
2633 extern void set_nlink(struct inode *inode, unsigned int nlink);
2634
inode_inc_link_count(struct inode * inode)2635 static inline void inode_inc_link_count(struct inode *inode)
2636 {
2637 inc_nlink(inode);
2638 mark_inode_dirty(inode);
2639 }
2640
inode_dec_link_count(struct inode * inode)2641 static inline void inode_dec_link_count(struct inode *inode)
2642 {
2643 drop_nlink(inode);
2644 mark_inode_dirty(inode);
2645 }
2646
2647 enum file_time_flags {
2648 S_ATIME = 1,
2649 S_MTIME = 2,
2650 S_CTIME = 4,
2651 S_VERSION = 8,
2652 };
2653
2654 extern bool atime_needs_update(const struct path *, struct inode *);
2655 extern void touch_atime(const struct path *);
2656 int inode_update_time(struct inode *inode, int flags);
2657
file_accessed(struct file * file)2658 static inline void file_accessed(struct file *file)
2659 {
2660 if (!(file->f_flags & O_NOATIME))
2661 touch_atime(&file->f_path);
2662 }
2663
2664 extern int file_modified(struct file *file);
2665 int kiocb_modified(struct kiocb *iocb);
2666
2667 int sync_inode_metadata(struct inode *inode, int wait);
2668
2669 struct file_system_type {
2670 const char *name;
2671 int fs_flags;
2672 #define FS_REQUIRES_DEV 1
2673 #define FS_BINARY_MOUNTDATA 2
2674 #define FS_HAS_SUBTYPE 4
2675 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
2676 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
2677 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
2678 #define FS_MGTIME 64 /* FS uses multigrain timestamps */
2679 #define FS_LBS 128 /* FS supports LBS */
2680 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
2681 int (*init_fs_context)(struct fs_context *);
2682 const struct fs_parameter_spec *parameters;
2683 struct dentry *(*mount) (struct file_system_type *, int,
2684 const char *, void *);
2685 void (*kill_sb) (struct super_block *);
2686 struct module *owner;
2687 struct file_system_type * next;
2688 struct hlist_head fs_supers;
2689
2690 struct lock_class_key s_lock_key;
2691 struct lock_class_key s_umount_key;
2692 struct lock_class_key s_vfs_rename_key;
2693 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2694
2695 struct lock_class_key i_lock_key;
2696 struct lock_class_key i_mutex_key;
2697 struct lock_class_key invalidate_lock_key;
2698 struct lock_class_key i_mutex_dir_key;
2699 };
2700
2701 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2702
2703 /**
2704 * is_mgtime: is this inode using multigrain timestamps
2705 * @inode: inode to test for multigrain timestamps
2706 *
2707 * Return true if the inode uses multigrain timestamps, false otherwise.
2708 */
is_mgtime(const struct inode * inode)2709 static inline bool is_mgtime(const struct inode *inode)
2710 {
2711 return inode->i_opflags & IOP_MGTIME;
2712 }
2713
2714 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2715 int flags, const char *dev_name, void *data,
2716 int (*fill_super)(struct super_block *, void *, int));
2717 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2718 int flags, void *data,
2719 int (*fill_super)(struct super_block *, void *, int));
2720 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2721 void retire_super(struct super_block *sb);
2722 void generic_shutdown_super(struct super_block *sb);
2723 void kill_block_super(struct super_block *sb);
2724 void kill_anon_super(struct super_block *sb);
2725 void kill_litter_super(struct super_block *sb);
2726 void deactivate_super(struct super_block *sb);
2727 void deactivate_locked_super(struct super_block *sb);
2728 int set_anon_super(struct super_block *s, void *data);
2729 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2730 int get_anon_bdev(dev_t *);
2731 void free_anon_bdev(dev_t);
2732 struct super_block *sget_fc(struct fs_context *fc,
2733 int (*test)(struct super_block *, struct fs_context *),
2734 int (*set)(struct super_block *, struct fs_context *));
2735 struct super_block *sget(struct file_system_type *type,
2736 int (*test)(struct super_block *,void *),
2737 int (*set)(struct super_block *,void *),
2738 int flags, void *data);
2739 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2740
2741 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2742 #define fops_get(fops) ({ \
2743 const struct file_operations *_fops = (fops); \
2744 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \
2745 })
2746
2747 #define fops_put(fops) ({ \
2748 const struct file_operations *_fops = (fops); \
2749 if (_fops) \
2750 module_put((_fops)->owner); \
2751 })
2752
2753 /*
2754 * This one is to be used *ONLY* from ->open() instances.
2755 * fops must be non-NULL, pinned down *and* module dependencies
2756 * should be sufficient to pin the caller down as well.
2757 */
2758 #define replace_fops(f, fops) \
2759 do { \
2760 struct file *__file = (f); \
2761 fops_put(__file->f_op); \
2762 BUG_ON(!(__file->f_op = (fops))); \
2763 } while(0)
2764
2765 extern int register_filesystem(struct file_system_type *);
2766 extern int unregister_filesystem(struct file_system_type *);
2767 extern int vfs_statfs(const struct path *, struct kstatfs *);
2768 extern int user_statfs(const char __user *, struct kstatfs *);
2769 extern int fd_statfs(int, struct kstatfs *);
2770 int freeze_super(struct super_block *super, enum freeze_holder who,
2771 const void *freeze_owner);
2772 int thaw_super(struct super_block *super, enum freeze_holder who,
2773 const void *freeze_owner);
2774 extern __printf(2, 3)
2775 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2776 extern int super_setup_bdi(struct super_block *sb);
2777
super_set_uuid(struct super_block * sb,const u8 * uuid,unsigned len)2778 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2779 {
2780 if (WARN_ON(len > sizeof(sb->s_uuid)))
2781 len = sizeof(sb->s_uuid);
2782 sb->s_uuid_len = len;
2783 memcpy(&sb->s_uuid, uuid, len);
2784 }
2785
2786 /* set sb sysfs name based on sb->s_bdev */
super_set_sysfs_name_bdev(struct super_block * sb)2787 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2788 {
2789 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2790 }
2791
2792 /* set sb sysfs name based on sb->s_uuid */
super_set_sysfs_name_uuid(struct super_block * sb)2793 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2794 {
2795 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2796 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2797 }
2798
2799 /* set sb sysfs name based on sb->s_id */
super_set_sysfs_name_id(struct super_block * sb)2800 static inline void super_set_sysfs_name_id(struct super_block *sb)
2801 {
2802 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2803 }
2804
2805 /* try to use something standard before you use this */
2806 __printf(2, 3)
super_set_sysfs_name_generic(struct super_block * sb,const char * fmt,...)2807 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2808 {
2809 va_list args;
2810
2811 va_start(args, fmt);
2812 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2813 va_end(args);
2814 }
2815
2816 extern int current_umask(void);
2817
2818 extern void ihold(struct inode * inode);
2819 extern void iput(struct inode *);
2820 int inode_update_timestamps(struct inode *inode, int flags);
2821 int generic_update_time(struct inode *, int);
2822
2823 /* /sys/fs */
2824 extern struct kobject *fs_kobj;
2825
2826 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2827
2828 /* fs/open.c */
2829 struct audit_names;
2830 struct filename {
2831 const char *name; /* pointer to actual string */
2832 const __user char *uptr; /* original userland pointer */
2833 atomic_t refcnt;
2834 struct audit_names *aname;
2835 const char iname[];
2836 };
2837 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2838
file_mnt_idmap(const struct file * file)2839 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2840 {
2841 return mnt_idmap(file->f_path.mnt);
2842 }
2843
2844 /**
2845 * is_idmapped_mnt - check whether a mount is mapped
2846 * @mnt: the mount to check
2847 *
2848 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2849 *
2850 * Return: true if mount is mapped, false if not.
2851 */
is_idmapped_mnt(const struct vfsmount * mnt)2852 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2853 {
2854 return mnt_idmap(mnt) != &nop_mnt_idmap;
2855 }
2856
2857 int vfs_truncate(const struct path *, loff_t);
2858 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2859 unsigned int time_attrs, struct file *filp);
2860 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2861 loff_t len);
2862 int do_sys_open(int dfd, const char __user *filename, int flags,
2863 umode_t mode);
2864 extern struct file *file_open_name(struct filename *, int, umode_t);
2865 extern struct file *filp_open(const char *, int, umode_t);
2866 extern struct file *file_open_root(const struct path *,
2867 const char *, int, umode_t);
file_open_root_mnt(struct vfsmount * mnt,const char * name,int flags,umode_t mode)2868 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2869 const char *name, int flags, umode_t mode)
2870 {
2871 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2872 name, flags, mode);
2873 }
2874 struct file *dentry_open(const struct path *path, int flags,
2875 const struct cred *creds);
2876 struct file *dentry_open_nonotify(const struct path *path, int flags,
2877 const struct cred *cred);
2878 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2879 const struct cred *cred);
2880 struct path *backing_file_user_path(const struct file *f);
2881
2882 /*
2883 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2884 * stored in ->vm_file is a backing file whose f_inode is on the underlying
2885 * filesystem. When the mapped file path and inode number are displayed to
2886 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2887 * path and inode number to display to the user, which is the path of the fd
2888 * that user has requested to map and the inode number that would be returned
2889 * by fstat() on that same fd.
2890 */
2891 /* Get the path to display in /proc/<pid>/maps */
file_user_path(const struct file * f)2892 static inline const struct path *file_user_path(const struct file *f)
2893 {
2894 if (unlikely(f->f_mode & FMODE_BACKING))
2895 return backing_file_user_path(f);
2896 return &f->f_path;
2897 }
2898 /* Get the inode whose inode number to display in /proc/<pid>/maps */
file_user_inode(const struct file * f)2899 static inline const struct inode *file_user_inode(const struct file *f)
2900 {
2901 if (unlikely(f->f_mode & FMODE_BACKING))
2902 return d_inode(backing_file_user_path(f)->dentry);
2903 return file_inode(f);
2904 }
2905
file_clone_open(struct file * file)2906 static inline struct file *file_clone_open(struct file *file)
2907 {
2908 return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2909 }
2910 extern int filp_close(struct file *, fl_owner_t id);
2911
2912 extern struct filename *getname_flags(const char __user *, int);
2913 extern struct filename *getname_uflags(const char __user *, int);
getname(const char __user * name)2914 static inline struct filename *getname(const char __user *name)
2915 {
2916 return getname_flags(name, 0);
2917 }
2918 extern struct filename *getname_kernel(const char *);
2919 extern struct filename *__getname_maybe_null(const char __user *);
getname_maybe_null(const char __user * name,int flags)2920 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2921 {
2922 if (!(flags & AT_EMPTY_PATH))
2923 return getname(name);
2924
2925 if (!name)
2926 return NULL;
2927 return __getname_maybe_null(name);
2928 }
2929 extern void putname(struct filename *name);
2930 DEFINE_FREE(putname, struct filename *, if (!IS_ERR_OR_NULL(_T)) putname(_T))
2931
refname(struct filename * name)2932 static inline struct filename *refname(struct filename *name)
2933 {
2934 atomic_inc(&name->refcnt);
2935 return name;
2936 }
2937
2938 extern int finish_open(struct file *file, struct dentry *dentry,
2939 int (*open)(struct inode *, struct file *));
2940 extern int finish_no_open(struct file *file, struct dentry *dentry);
2941
2942 /* Helper for the simple case when original dentry is used */
finish_open_simple(struct file * file,int error)2943 static inline int finish_open_simple(struct file *file, int error)
2944 {
2945 if (error)
2946 return error;
2947
2948 return finish_open(file, file->f_path.dentry, NULL);
2949 }
2950
2951 /* fs/dcache.c */
2952 extern void __init vfs_caches_init_early(void);
2953 extern void __init vfs_caches_init(void);
2954
2955 extern struct kmem_cache *names_cachep;
2956
2957 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
2958 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
2959
2960 extern struct super_block *blockdev_superblock;
sb_is_blkdev_sb(struct super_block * sb)2961 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2962 {
2963 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2964 }
2965
2966 void emergency_thaw_all(void);
2967 extern int sync_filesystem(struct super_block *);
2968 extern const struct file_operations def_blk_fops;
2969 extern const struct file_operations def_chr_fops;
2970
2971 /* fs/char_dev.c */
2972 #define CHRDEV_MAJOR_MAX 512
2973 /* Marks the bottom of the first segment of free char majors */
2974 #define CHRDEV_MAJOR_DYN_END 234
2975 /* Marks the top and bottom of the second segment of free char majors */
2976 #define CHRDEV_MAJOR_DYN_EXT_START 511
2977 #define CHRDEV_MAJOR_DYN_EXT_END 384
2978
2979 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2980 extern int register_chrdev_region(dev_t, unsigned, const char *);
2981 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2982 unsigned int count, const char *name,
2983 const struct file_operations *fops);
2984 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2985 unsigned int count, const char *name);
2986 extern void unregister_chrdev_region(dev_t, unsigned);
2987 extern void chrdev_show(struct seq_file *,off_t);
2988
register_chrdev(unsigned int major,const char * name,const struct file_operations * fops)2989 static inline int register_chrdev(unsigned int major, const char *name,
2990 const struct file_operations *fops)
2991 {
2992 return __register_chrdev(major, 0, 256, name, fops);
2993 }
2994
unregister_chrdev(unsigned int major,const char * name)2995 static inline void unregister_chrdev(unsigned int major, const char *name)
2996 {
2997 __unregister_chrdev(major, 0, 256, name);
2998 }
2999
3000 extern void init_special_inode(struct inode *, umode_t, dev_t);
3001
3002 /* Invalid inode operations -- fs/bad_inode.c */
3003 extern void make_bad_inode(struct inode *);
3004 extern bool is_bad_inode(struct inode *);
3005
3006 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
3007 loff_t lend);
3008 extern int __must_check file_check_and_advance_wb_err(struct file *file);
3009 extern int __must_check file_write_and_wait_range(struct file *file,
3010 loff_t start, loff_t end);
3011 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
3012 loff_t end);
3013
file_write_and_wait(struct file * file)3014 static inline int file_write_and_wait(struct file *file)
3015 {
3016 return file_write_and_wait_range(file, 0, LLONG_MAX);
3017 }
3018
3019 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
3020 int datasync);
3021 extern int vfs_fsync(struct file *file, int datasync);
3022
3023 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
3024 unsigned int flags);
3025
iocb_is_dsync(const struct kiocb * iocb)3026 static inline bool iocb_is_dsync(const struct kiocb *iocb)
3027 {
3028 return (iocb->ki_flags & IOCB_DSYNC) ||
3029 IS_SYNC(iocb->ki_filp->f_mapping->host);
3030 }
3031
3032 /*
3033 * Sync the bytes written if this was a synchronous write. Expect ki_pos
3034 * to already be updated for the write, and will return either the amount
3035 * of bytes passed in, or an error if syncing the file failed.
3036 */
generic_write_sync(struct kiocb * iocb,ssize_t count)3037 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
3038 {
3039 if (iocb_is_dsync(iocb)) {
3040 int ret = vfs_fsync_range(iocb->ki_filp,
3041 iocb->ki_pos - count, iocb->ki_pos - 1,
3042 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
3043 if (ret)
3044 return ret;
3045 } else if (iocb->ki_flags & IOCB_DONTCACHE) {
3046 struct address_space *mapping = iocb->ki_filp->f_mapping;
3047
3048 filemap_fdatawrite_range_kick(mapping, iocb->ki_pos - count,
3049 iocb->ki_pos - 1);
3050 }
3051
3052 return count;
3053 }
3054
3055 extern void emergency_sync(void);
3056 extern void emergency_remount(void);
3057
3058 #ifdef CONFIG_BLOCK
3059 extern int bmap(struct inode *inode, sector_t *block);
3060 #else
bmap(struct inode * inode,sector_t * block)3061 static inline int bmap(struct inode *inode, sector_t *block)
3062 {
3063 return -EINVAL;
3064 }
3065 #endif
3066
3067 int notify_change(struct mnt_idmap *, struct dentry *,
3068 struct iattr *, struct inode **);
3069 int inode_permission(struct mnt_idmap *, struct inode *, int);
3070 int generic_permission(struct mnt_idmap *, struct inode *, int);
file_permission(struct file * file,int mask)3071 static inline int file_permission(struct file *file, int mask)
3072 {
3073 return inode_permission(file_mnt_idmap(file),
3074 file_inode(file), mask);
3075 }
path_permission(const struct path * path,int mask)3076 static inline int path_permission(const struct path *path, int mask)
3077 {
3078 return inode_permission(mnt_idmap(path->mnt),
3079 d_inode(path->dentry), mask);
3080 }
3081 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3082 struct inode *inode);
3083
execute_ok(struct inode * inode)3084 static inline bool execute_ok(struct inode *inode)
3085 {
3086 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
3087 }
3088
inode_wrong_type(const struct inode * inode,umode_t mode)3089 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
3090 {
3091 return (inode->i_mode ^ mode) & S_IFMT;
3092 }
3093
3094 /**
3095 * file_start_write - get write access to a superblock for regular file io
3096 * @file: the file we want to write to
3097 *
3098 * This is a variant of sb_start_write() which is a noop on non-regualr file.
3099 * Should be matched with a call to file_end_write().
3100 */
file_start_write(struct file * file)3101 static inline void file_start_write(struct file *file)
3102 {
3103 if (!S_ISREG(file_inode(file)->i_mode))
3104 return;
3105 sb_start_write(file_inode(file)->i_sb);
3106 }
3107
file_start_write_trylock(struct file * file)3108 static inline bool file_start_write_trylock(struct file *file)
3109 {
3110 if (!S_ISREG(file_inode(file)->i_mode))
3111 return true;
3112 return sb_start_write_trylock(file_inode(file)->i_sb);
3113 }
3114
3115 /**
3116 * file_end_write - drop write access to a superblock of a regular file
3117 * @file: the file we wrote to
3118 *
3119 * Should be matched with a call to file_start_write().
3120 */
file_end_write(struct file * file)3121 static inline void file_end_write(struct file *file)
3122 {
3123 if (!S_ISREG(file_inode(file)->i_mode))
3124 return;
3125 sb_end_write(file_inode(file)->i_sb);
3126 }
3127
3128 /**
3129 * kiocb_start_write - get write access to a superblock for async file io
3130 * @iocb: the io context we want to submit the write with
3131 *
3132 * This is a variant of sb_start_write() for async io submission.
3133 * Should be matched with a call to kiocb_end_write().
3134 */
kiocb_start_write(struct kiocb * iocb)3135 static inline void kiocb_start_write(struct kiocb *iocb)
3136 {
3137 struct inode *inode = file_inode(iocb->ki_filp);
3138
3139 sb_start_write(inode->i_sb);
3140 /*
3141 * Fool lockdep by telling it the lock got released so that it
3142 * doesn't complain about the held lock when we return to userspace.
3143 */
3144 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3145 }
3146
3147 /**
3148 * kiocb_end_write - drop write access to a superblock after async file io
3149 * @iocb: the io context we sumbitted the write with
3150 *
3151 * Should be matched with a call to kiocb_start_write().
3152 */
kiocb_end_write(struct kiocb * iocb)3153 static inline void kiocb_end_write(struct kiocb *iocb)
3154 {
3155 struct inode *inode = file_inode(iocb->ki_filp);
3156
3157 /*
3158 * Tell lockdep we inherited freeze protection from submission thread.
3159 */
3160 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3161 sb_end_write(inode->i_sb);
3162 }
3163
3164 /*
3165 * This is used for regular files where some users -- especially the
3166 * currently executed binary in a process, previously handled via
3167 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3168 * read-write shared) accesses.
3169 *
3170 * get_write_access() gets write permission for a file.
3171 * put_write_access() releases this write permission.
3172 * deny_write_access() denies write access to a file.
3173 * allow_write_access() re-enables write access to a file.
3174 *
3175 * The i_writecount field of an inode can have the following values:
3176 * 0: no write access, no denied write access
3177 * < 0: (-i_writecount) users that denied write access to the file.
3178 * > 0: (i_writecount) users that have write access to the file.
3179 *
3180 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3181 * except for the cases where we don't hold i_writecount yet. Then we need to
3182 * use {get,deny}_write_access() - these functions check the sign and refuse
3183 * to do the change if sign is wrong.
3184 */
get_write_access(struct inode * inode)3185 static inline int get_write_access(struct inode *inode)
3186 {
3187 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3188 }
deny_write_access(struct file * file)3189 static inline int deny_write_access(struct file *file)
3190 {
3191 struct inode *inode = file_inode(file);
3192 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3193 }
put_write_access(struct inode * inode)3194 static inline void put_write_access(struct inode * inode)
3195 {
3196 atomic_dec(&inode->i_writecount);
3197 }
allow_write_access(struct file * file)3198 static inline void allow_write_access(struct file *file)
3199 {
3200 if (file)
3201 atomic_inc(&file_inode(file)->i_writecount);
3202 }
3203
3204 /*
3205 * Do not prevent write to executable file when watched by pre-content events.
3206 *
3207 * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at
3208 * the time of file open and remains constant for entire lifetime of the file,
3209 * so if pre-content watches are added post execution or removed before the end
3210 * of the execution, it will not cause i_writecount reference leak.
3211 */
exe_file_deny_write_access(struct file * exe_file)3212 static inline int exe_file_deny_write_access(struct file *exe_file)
3213 {
3214 if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3215 return 0;
3216 return deny_write_access(exe_file);
3217 }
exe_file_allow_write_access(struct file * exe_file)3218 static inline void exe_file_allow_write_access(struct file *exe_file)
3219 {
3220 if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3221 return;
3222 allow_write_access(exe_file);
3223 }
3224
file_set_fsnotify_mode(struct file * file,fmode_t mode)3225 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode)
3226 {
3227 file->f_mode &= ~FMODE_FSNOTIFY_MASK;
3228 file->f_mode |= mode;
3229 }
3230
inode_is_open_for_write(const struct inode * inode)3231 static inline bool inode_is_open_for_write(const struct inode *inode)
3232 {
3233 return atomic_read(&inode->i_writecount) > 0;
3234 }
3235
3236 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
i_readcount_dec(struct inode * inode)3237 static inline void i_readcount_dec(struct inode *inode)
3238 {
3239 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3240 }
i_readcount_inc(struct inode * inode)3241 static inline void i_readcount_inc(struct inode *inode)
3242 {
3243 atomic_inc(&inode->i_readcount);
3244 }
3245 #else
i_readcount_dec(struct inode * inode)3246 static inline void i_readcount_dec(struct inode *inode)
3247 {
3248 return;
3249 }
i_readcount_inc(struct inode * inode)3250 static inline void i_readcount_inc(struct inode *inode)
3251 {
3252 return;
3253 }
3254 #endif
3255 extern int do_pipe_flags(int *, int);
3256
3257 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3258 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3259 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3260 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3261 extern struct file * open_exec(const char *);
3262
3263 /* fs/dcache.c -- generic fs support functions */
3264 extern bool is_subdir(struct dentry *, struct dentry *);
3265 extern bool path_is_under(const struct path *, const struct path *);
3266
3267 extern char *file_path(struct file *, char *, int);
3268
3269 /**
3270 * is_dot_dotdot - returns true only if @name is "." or ".."
3271 * @name: file name to check
3272 * @len: length of file name, in bytes
3273 */
is_dot_dotdot(const char * name,size_t len)3274 static inline bool is_dot_dotdot(const char *name, size_t len)
3275 {
3276 return len && unlikely(name[0] == '.') &&
3277 (len == 1 || (len == 2 && name[1] == '.'));
3278 }
3279
3280 /**
3281 * name_contains_dotdot - check if a file name contains ".." path components
3282 *
3283 * Search for ".." surrounded by either '/' or start/end of string.
3284 */
name_contains_dotdot(const char * name)3285 static inline bool name_contains_dotdot(const char *name)
3286 {
3287 size_t name_len;
3288
3289 name_len = strlen(name);
3290 return strcmp(name, "..") == 0 ||
3291 strncmp(name, "../", 3) == 0 ||
3292 strstr(name, "/../") != NULL ||
3293 (name_len >= 3 && strcmp(name + name_len - 3, "/..") == 0);
3294 }
3295
3296 #include <linux/err.h>
3297
3298 /* needed for stackable file system support */
3299 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3300
3301 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3302
3303 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
inode_init_always(struct super_block * sb,struct inode * inode)3304 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3305 {
3306 return inode_init_always_gfp(sb, inode, GFP_NOFS);
3307 }
3308
3309 extern void inode_init_once(struct inode *);
3310 extern void address_space_init_once(struct address_space *mapping);
3311 extern struct inode * igrab(struct inode *);
3312 extern ino_t iunique(struct super_block *, ino_t);
3313 extern int inode_needs_sync(struct inode *inode);
3314 extern int generic_delete_inode(struct inode *inode);
generic_drop_inode(struct inode * inode)3315 static inline int generic_drop_inode(struct inode *inode)
3316 {
3317 return !inode->i_nlink || inode_unhashed(inode);
3318 }
3319 extern void d_mark_dontcache(struct inode *inode);
3320
3321 extern struct inode *ilookup5_nowait(struct super_block *sb,
3322 unsigned long hashval, int (*test)(struct inode *, void *),
3323 void *data);
3324 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3325 int (*test)(struct inode *, void *), void *data);
3326 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3327
3328 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3329 int (*test)(struct inode *, void *),
3330 int (*set)(struct inode *, void *),
3331 void *data);
3332 struct inode *iget5_locked(struct super_block *, unsigned long,
3333 int (*test)(struct inode *, void *),
3334 int (*set)(struct inode *, void *), void *);
3335 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3336 int (*test)(struct inode *, void *),
3337 int (*set)(struct inode *, void *), void *);
3338 extern struct inode * iget_locked(struct super_block *, unsigned long);
3339 extern struct inode *find_inode_nowait(struct super_block *,
3340 unsigned long,
3341 int (*match)(struct inode *,
3342 unsigned long, void *),
3343 void *data);
3344 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3345 int (*)(struct inode *, void *), void *);
3346 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3347 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3348 extern int insert_inode_locked(struct inode *);
3349 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3350 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3351 #else
lockdep_annotate_inode_mutex_key(struct inode * inode)3352 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3353 #endif
3354 extern void unlock_new_inode(struct inode *);
3355 extern void discard_new_inode(struct inode *);
3356 extern unsigned int get_next_ino(void);
3357 extern void evict_inodes(struct super_block *sb);
3358 void dump_mapping(const struct address_space *);
3359
3360 /*
3361 * Userspace may rely on the inode number being non-zero. For example, glibc
3362 * simply ignores files with zero i_ino in unlink() and other places.
3363 *
3364 * As an additional complication, if userspace was compiled with
3365 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3366 * lower 32 bits, so we need to check that those aren't zero explicitly. With
3367 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3368 * better safe than sorry.
3369 */
is_zero_ino(ino_t ino)3370 static inline bool is_zero_ino(ino_t ino)
3371 {
3372 return (u32)ino == 0;
3373 }
3374
3375 /*
3376 * inode->i_lock must be held
3377 */
__iget(struct inode * inode)3378 static inline void __iget(struct inode *inode)
3379 {
3380 atomic_inc(&inode->i_count);
3381 }
3382
3383 extern void iget_failed(struct inode *);
3384 extern void clear_inode(struct inode *);
3385 extern void __destroy_inode(struct inode *);
3386 struct inode *alloc_inode(struct super_block *sb);
new_inode_pseudo(struct super_block * sb)3387 static inline struct inode *new_inode_pseudo(struct super_block *sb)
3388 {
3389 return alloc_inode(sb);
3390 }
3391 extern struct inode *new_inode(struct super_block *sb);
3392 extern void free_inode_nonrcu(struct inode *inode);
3393 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3394 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3395 extern int file_remove_privs(struct file *);
3396 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3397 const struct inode *inode);
3398
3399 /*
3400 * This must be used for allocating filesystems specific inodes to set
3401 * up the inode reclaim context correctly.
3402 */
3403 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3404
3405 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
insert_inode_hash(struct inode * inode)3406 static inline void insert_inode_hash(struct inode *inode)
3407 {
3408 __insert_inode_hash(inode, inode->i_ino);
3409 }
3410
3411 extern void __remove_inode_hash(struct inode *);
remove_inode_hash(struct inode * inode)3412 static inline void remove_inode_hash(struct inode *inode)
3413 {
3414 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3415 __remove_inode_hash(inode);
3416 }
3417
3418 extern void inode_sb_list_add(struct inode *inode);
3419 extern void inode_add_lru(struct inode *inode);
3420
3421 extern int sb_set_blocksize(struct super_block *, int);
3422 extern int sb_min_blocksize(struct super_block *, int);
3423
3424 int generic_file_mmap(struct file *, struct vm_area_struct *);
3425 int generic_file_mmap_prepare(struct vm_area_desc *desc);
3426 int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3427 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc);
3428 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3429 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3430 extern int generic_write_check_limits(struct file *file, loff_t pos,
3431 loff_t *count);
3432 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3433 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3434 ssize_t already_read);
3435 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3436 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3437 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3438 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3439 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3440 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3441 ssize_t direct_written, ssize_t buffered_written);
3442
3443 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3444 rwf_t flags);
3445 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3446 rwf_t flags);
3447 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3448 struct iov_iter *iter);
3449 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3450 struct iov_iter *iter);
3451
3452 /* fs/splice.c */
3453 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3454 struct pipe_inode_info *pipe,
3455 size_t len, unsigned int flags);
3456 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3457 struct pipe_inode_info *pipe,
3458 size_t len, unsigned int flags);
3459 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3460 struct file *, loff_t *, size_t, unsigned int);
3461
3462
3463 extern void
3464 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3465 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3466 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3467 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3468 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3469 int whence, loff_t maxsize, loff_t eof);
3470 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3471 u64 *cookie);
3472 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3473 int whence, loff_t size);
3474 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3475 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3476 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3477 extern int generic_file_open(struct inode * inode, struct file * filp);
3478 extern int nonseekable_open(struct inode * inode, struct file * filp);
3479 extern int stream_open(struct inode * inode, struct file * filp);
3480
3481 #ifdef CONFIG_BLOCK
3482 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3483 loff_t file_offset);
3484
3485 enum {
3486 /* need locking between buffered and direct access */
3487 DIO_LOCKING = 0x01,
3488
3489 /* filesystem does not support filling holes */
3490 DIO_SKIP_HOLES = 0x02,
3491 };
3492
3493 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3494 struct block_device *bdev, struct iov_iter *iter,
3495 get_block_t get_block,
3496 dio_iodone_t end_io,
3497 int flags);
3498
blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct iov_iter * iter,get_block_t get_block)3499 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3500 struct inode *inode,
3501 struct iov_iter *iter,
3502 get_block_t get_block)
3503 {
3504 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3505 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3506 }
3507 #endif
3508
3509 bool inode_dio_finished(const struct inode *inode);
3510 void inode_dio_wait(struct inode *inode);
3511 void inode_dio_wait_interruptible(struct inode *inode);
3512
3513 /**
3514 * inode_dio_begin - signal start of a direct I/O requests
3515 * @inode: inode the direct I/O happens on
3516 *
3517 * This is called once we've finished processing a direct I/O request,
3518 * and is used to wake up callers waiting for direct I/O to be quiesced.
3519 */
inode_dio_begin(struct inode * inode)3520 static inline void inode_dio_begin(struct inode *inode)
3521 {
3522 atomic_inc(&inode->i_dio_count);
3523 }
3524
3525 /**
3526 * inode_dio_end - signal finish of a direct I/O requests
3527 * @inode: inode the direct I/O happens on
3528 *
3529 * This is called once we've finished processing a direct I/O request,
3530 * and is used to wake up callers waiting for direct I/O to be quiesced.
3531 */
inode_dio_end(struct inode * inode)3532 static inline void inode_dio_end(struct inode *inode)
3533 {
3534 if (atomic_dec_and_test(&inode->i_dio_count))
3535 wake_up_var(&inode->i_dio_count);
3536 }
3537
3538 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3539 unsigned int mask);
3540
3541 extern const struct file_operations generic_ro_fops;
3542
3543 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3544
3545 extern int readlink_copy(char __user *, int, const char *, int);
3546 extern int page_readlink(struct dentry *, char __user *, int);
3547 extern const char *page_get_link_raw(struct dentry *, struct inode *,
3548 struct delayed_call *);
3549 extern const char *page_get_link(struct dentry *, struct inode *,
3550 struct delayed_call *);
3551 extern void page_put_link(void *);
3552 extern int page_symlink(struct inode *inode, const char *symname, int len);
3553 extern const struct inode_operations page_symlink_inode_operations;
3554 extern void kfree_link(void *);
3555 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3556 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3557 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3558 void generic_fill_statx_atomic_writes(struct kstat *stat,
3559 unsigned int unit_min,
3560 unsigned int unit_max,
3561 unsigned int unit_max_opt);
3562 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3563 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3564 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3565 void inode_add_bytes(struct inode *inode, loff_t bytes);
3566 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3567 void inode_sub_bytes(struct inode *inode, loff_t bytes);
__inode_get_bytes(struct inode * inode)3568 static inline loff_t __inode_get_bytes(struct inode *inode)
3569 {
3570 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3571 }
3572 loff_t inode_get_bytes(struct inode *inode);
3573 void inode_set_bytes(struct inode *inode, loff_t bytes);
3574 const char *simple_get_link(struct dentry *, struct inode *,
3575 struct delayed_call *);
3576 extern const struct inode_operations simple_symlink_inode_operations;
3577
3578 extern int iterate_dir(struct file *, struct dir_context *);
3579
3580 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3581 int flags);
3582 int vfs_fstat(int fd, struct kstat *stat);
3583
vfs_stat(const char __user * filename,struct kstat * stat)3584 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3585 {
3586 return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3587 }
vfs_lstat(const char __user * name,struct kstat * stat)3588 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3589 {
3590 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3591 }
3592
3593 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3594 extern int vfs_readlink(struct dentry *, char __user *, int);
3595
3596 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3597 extern void put_filesystem(struct file_system_type *fs);
3598 extern struct file_system_type *get_fs_type(const char *name);
3599 extern void drop_super(struct super_block *sb);
3600 extern void drop_super_exclusive(struct super_block *sb);
3601 extern void iterate_supers(void (*f)(struct super_block *, void *), void *arg);
3602 extern void iterate_supers_type(struct file_system_type *,
3603 void (*)(struct super_block *, void *), void *);
3604 void filesystems_freeze(void);
3605 void filesystems_thaw(void);
3606
3607 extern int dcache_dir_open(struct inode *, struct file *);
3608 extern int dcache_dir_close(struct inode *, struct file *);
3609 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3610 extern int dcache_readdir(struct file *, struct dir_context *);
3611 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3612 struct iattr *);
3613 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3614 struct kstat *, u32, unsigned int);
3615 extern int simple_statfs(struct dentry *, struct kstatfs *);
3616 extern int simple_open(struct inode *inode, struct file *file);
3617 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3618 extern int simple_unlink(struct inode *, struct dentry *);
3619 extern int simple_rmdir(struct inode *, struct dentry *);
3620 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3621 struct inode *new_dir, struct dentry *new_dentry);
3622 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3623 struct inode *new_dir, struct dentry *new_dentry);
3624 extern int simple_rename(struct mnt_idmap *, struct inode *,
3625 struct dentry *, struct inode *, struct dentry *,
3626 unsigned int);
3627 extern void simple_recursive_removal(struct dentry *,
3628 void (*callback)(struct dentry *));
3629 extern void locked_recursive_removal(struct dentry *,
3630 void (*callback)(struct dentry *));
3631 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3632 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3633 extern int simple_empty(struct dentry *);
3634 extern int simple_write_begin(const struct kiocb *iocb,
3635 struct address_space *mapping,
3636 loff_t pos, unsigned len,
3637 struct folio **foliop, void **fsdata);
3638 extern const struct address_space_operations ram_aops;
3639 extern int always_delete_dentry(const struct dentry *);
3640 extern struct inode *alloc_anon_inode(struct super_block *);
3641 struct inode *anon_inode_make_secure_inode(struct super_block *sb, const char *name,
3642 const struct inode *context_inode);
3643 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3644
3645 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3646 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3647 extern const struct file_operations simple_dir_operations;
3648 extern const struct inode_operations simple_dir_inode_operations;
3649 extern void make_empty_dir_inode(struct inode *inode);
3650 extern bool is_empty_dir_inode(struct inode *inode);
3651 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3652 struct dentry *d_alloc_name(struct dentry *, const char *);
3653 extern int simple_fill_super(struct super_block *, unsigned long,
3654 const struct tree_descr *);
3655 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3656 extern void simple_release_fs(struct vfsmount **mount, int *count);
3657 struct dentry *simple_start_creating(struct dentry *, const char *);
3658
3659 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3660 loff_t *ppos, const void *from, size_t available);
3661 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3662 const void __user *from, size_t count);
3663
3664 struct offset_ctx {
3665 struct maple_tree mt;
3666 unsigned long next_offset;
3667 };
3668
3669 void simple_offset_init(struct offset_ctx *octx);
3670 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3671 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3672 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3673 struct inode *new_dir, struct dentry *new_dentry);
3674 int simple_offset_rename_exchange(struct inode *old_dir,
3675 struct dentry *old_dentry,
3676 struct inode *new_dir,
3677 struct dentry *new_dentry);
3678 void simple_offset_destroy(struct offset_ctx *octx);
3679
3680 extern const struct file_operations simple_offset_dir_operations;
3681
3682 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3683 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3684
3685 extern int generic_check_addressable(unsigned, u64);
3686
3687 extern void generic_set_sb_d_ops(struct super_block *sb);
3688 extern int generic_ci_match(const struct inode *parent,
3689 const struct qstr *name,
3690 const struct qstr *folded_name,
3691 const u8 *de_name, u32 de_name_len);
3692
3693 #if IS_ENABLED(CONFIG_UNICODE)
3694 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3695 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3696 const char *str, const struct qstr *name);
3697
3698 /**
3699 * generic_ci_validate_strict_name - Check if a given name is suitable
3700 * for a directory
3701 *
3702 * This functions checks if the proposed filename is valid for the
3703 * parent directory. That means that only valid UTF-8 filenames will be
3704 * accepted for casefold directories from filesystems created with the
3705 * strict encoding flag. That also means that any name will be
3706 * accepted for directories that doesn't have casefold enabled, or
3707 * aren't being strict with the encoding.
3708 *
3709 * @dir: inode of the directory where the new file will be created
3710 * @name: name of the new file
3711 *
3712 * Return:
3713 * * True: if the filename is suitable for this directory. It can be
3714 * true if a given name is not suitable for a strict encoding
3715 * directory, but the directory being used isn't strict
3716 * * False if the filename isn't suitable for this directory. This only
3717 * happens when a directory is casefolded and the filesystem is strict
3718 * about its encoding.
3719 */
generic_ci_validate_strict_name(struct inode * dir,struct qstr * name)3720 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3721 {
3722 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3723 return true;
3724
3725 /*
3726 * A casefold dir must have a encoding set, unless the filesystem
3727 * is corrupted
3728 */
3729 if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3730 return true;
3731
3732 return !utf8_validate(dir->i_sb->s_encoding, name);
3733 }
3734 #else
generic_ci_validate_strict_name(struct inode * dir,struct qstr * name)3735 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3736 {
3737 return true;
3738 }
3739 #endif
3740
sb_has_encoding(const struct super_block * sb)3741 static inline bool sb_has_encoding(const struct super_block *sb)
3742 {
3743 #if IS_ENABLED(CONFIG_UNICODE)
3744 return !!sb->s_encoding;
3745 #else
3746 return false;
3747 #endif
3748 }
3749
3750 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3751 unsigned int ia_valid);
3752 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3753 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3754 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3755 const struct iattr *attr);
3756
3757 extern int file_update_time(struct file *file);
3758
vma_is_dax(const struct vm_area_struct * vma)3759 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3760 {
3761 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3762 }
3763
vma_is_fsdax(struct vm_area_struct * vma)3764 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3765 {
3766 struct inode *inode;
3767
3768 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3769 return false;
3770 if (!vma_is_dax(vma))
3771 return false;
3772 inode = file_inode(vma->vm_file);
3773 if (S_ISCHR(inode->i_mode))
3774 return false; /* device-dax */
3775 return true;
3776 }
3777
iocb_flags(struct file * file)3778 static inline int iocb_flags(struct file *file)
3779 {
3780 int res = 0;
3781 if (file->f_flags & O_APPEND)
3782 res |= IOCB_APPEND;
3783 if (file->f_flags & O_DIRECT)
3784 res |= IOCB_DIRECT;
3785 if (file->f_flags & O_DSYNC)
3786 res |= IOCB_DSYNC;
3787 if (file->f_flags & __O_SYNC)
3788 res |= IOCB_SYNC;
3789 return res;
3790 }
3791
kiocb_set_rw_flags(struct kiocb * ki,rwf_t flags,int rw_type)3792 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3793 int rw_type)
3794 {
3795 int kiocb_flags = 0;
3796
3797 /* make sure there's no overlap between RWF and private IOCB flags */
3798 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3799
3800 if (!flags)
3801 return 0;
3802 if (unlikely(flags & ~RWF_SUPPORTED))
3803 return -EOPNOTSUPP;
3804 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3805 return -EINVAL;
3806
3807 if (flags & RWF_NOWAIT) {
3808 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3809 return -EOPNOTSUPP;
3810 }
3811 if (flags & RWF_ATOMIC) {
3812 if (rw_type != WRITE)
3813 return -EOPNOTSUPP;
3814 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3815 return -EOPNOTSUPP;
3816 }
3817 if (flags & RWF_DONTCACHE) {
3818 /* file system must support it */
3819 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3820 return -EOPNOTSUPP;
3821 /* DAX mappings not supported */
3822 if (IS_DAX(ki->ki_filp->f_mapping->host))
3823 return -EOPNOTSUPP;
3824 }
3825 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3826 if (flags & RWF_SYNC)
3827 kiocb_flags |= IOCB_DSYNC;
3828
3829 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3830 if (IS_APPEND(file_inode(ki->ki_filp)))
3831 return -EPERM;
3832 ki->ki_flags &= ~IOCB_APPEND;
3833 }
3834
3835 ki->ki_flags |= kiocb_flags;
3836 return 0;
3837 }
3838
3839 /* Transaction based IO helpers */
3840
3841 /*
3842 * An argresp is stored in an allocated page and holds the
3843 * size of the argument or response, along with its content
3844 */
3845 struct simple_transaction_argresp {
3846 ssize_t size;
3847 char data[];
3848 };
3849
3850 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3851
3852 char *simple_transaction_get(struct file *file, const char __user *buf,
3853 size_t size);
3854 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3855 size_t size, loff_t *pos);
3856 int simple_transaction_release(struct inode *inode, struct file *file);
3857
3858 void simple_transaction_set(struct file *file, size_t n);
3859
3860 /*
3861 * simple attribute files
3862 *
3863 * These attributes behave similar to those in sysfs:
3864 *
3865 * Writing to an attribute immediately sets a value, an open file can be
3866 * written to multiple times.
3867 *
3868 * Reading from an attribute creates a buffer from the value that might get
3869 * read with multiple read calls. When the attribute has been read
3870 * completely, no further read calls are possible until the file is opened
3871 * again.
3872 *
3873 * All attributes contain a text representation of a numeric value
3874 * that are accessed with the get() and set() functions.
3875 */
3876 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
3877 static int __fops ## _open(struct inode *inode, struct file *file) \
3878 { \
3879 __simple_attr_check_format(__fmt, 0ull); \
3880 return simple_attr_open(inode, file, __get, __set, __fmt); \
3881 } \
3882 static const struct file_operations __fops = { \
3883 .owner = THIS_MODULE, \
3884 .open = __fops ## _open, \
3885 .release = simple_attr_release, \
3886 .read = simple_attr_read, \
3887 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
3888 .llseek = generic_file_llseek, \
3889 }
3890
3891 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
3892 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3893
3894 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
3895 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3896
3897 static inline __printf(1, 2)
__simple_attr_check_format(const char * fmt,...)3898 void __simple_attr_check_format(const char *fmt, ...)
3899 {
3900 /* don't do anything, just let the compiler check the arguments; */
3901 }
3902
3903 int simple_attr_open(struct inode *inode, struct file *file,
3904 int (*get)(void *, u64 *), int (*set)(void *, u64),
3905 const char *fmt);
3906 int simple_attr_release(struct inode *inode, struct file *file);
3907 ssize_t simple_attr_read(struct file *file, char __user *buf,
3908 size_t len, loff_t *ppos);
3909 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3910 size_t len, loff_t *ppos);
3911 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3912 size_t len, loff_t *ppos);
3913
3914 struct ctl_table;
3915 int __init list_bdev_fs_names(char *buf, size_t size);
3916
3917 #define __FMODE_EXEC ((__force int) FMODE_EXEC)
3918
3919 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3920 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE))
3921
is_sxid(umode_t mode)3922 static inline bool is_sxid(umode_t mode)
3923 {
3924 return mode & (S_ISUID | S_ISGID);
3925 }
3926
check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3927 static inline int check_sticky(struct mnt_idmap *idmap,
3928 struct inode *dir, struct inode *inode)
3929 {
3930 if (!(dir->i_mode & S_ISVTX))
3931 return 0;
3932
3933 return __check_sticky(idmap, dir, inode);
3934 }
3935
inode_has_no_xattr(struct inode * inode)3936 static inline void inode_has_no_xattr(struct inode *inode)
3937 {
3938 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3939 inode->i_flags |= S_NOSEC;
3940 }
3941
is_root_inode(struct inode * inode)3942 static inline bool is_root_inode(struct inode *inode)
3943 {
3944 return inode == inode->i_sb->s_root->d_inode;
3945 }
3946
dir_emit(struct dir_context * ctx,const char * name,int namelen,u64 ino,unsigned type)3947 static inline bool dir_emit(struct dir_context *ctx,
3948 const char *name, int namelen,
3949 u64 ino, unsigned type)
3950 {
3951 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3952 }
dir_emit_dot(struct file * file,struct dir_context * ctx)3953 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3954 {
3955 return ctx->actor(ctx, ".", 1, ctx->pos,
3956 file->f_path.dentry->d_inode->i_ino, DT_DIR);
3957 }
dir_emit_dotdot(struct file * file,struct dir_context * ctx)3958 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3959 {
3960 return ctx->actor(ctx, "..", 2, ctx->pos,
3961 d_parent_ino(file->f_path.dentry), DT_DIR);
3962 }
dir_emit_dots(struct file * file,struct dir_context * ctx)3963 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3964 {
3965 if (ctx->pos == 0) {
3966 if (!dir_emit_dot(file, ctx))
3967 return false;
3968 ctx->pos = 1;
3969 }
3970 if (ctx->pos == 1) {
3971 if (!dir_emit_dotdot(file, ctx))
3972 return false;
3973 ctx->pos = 2;
3974 }
3975 return true;
3976 }
dir_relax(struct inode * inode)3977 static inline bool dir_relax(struct inode *inode)
3978 {
3979 inode_unlock(inode);
3980 inode_lock(inode);
3981 return !IS_DEADDIR(inode);
3982 }
3983
dir_relax_shared(struct inode * inode)3984 static inline bool dir_relax_shared(struct inode *inode)
3985 {
3986 inode_unlock_shared(inode);
3987 inode_lock_shared(inode);
3988 return !IS_DEADDIR(inode);
3989 }
3990
3991 extern bool path_noexec(const struct path *path);
3992 extern void inode_nohighmem(struct inode *inode);
3993
3994 /* mm/fadvise.c */
3995 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3996 int advice);
3997 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3998 int advice);
3999
vfs_empty_path(int dfd,const char __user * path)4000 static inline bool vfs_empty_path(int dfd, const char __user *path)
4001 {
4002 char c;
4003
4004 if (dfd < 0)
4005 return false;
4006
4007 /* We now allow NULL to be used for empty path. */
4008 if (!path)
4009 return true;
4010
4011 if (unlikely(get_user(c, path)))
4012 return false;
4013
4014 return !c;
4015 }
4016
4017 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
4018
4019 #endif /* _LINUX_FS_H */
4020