xref: /linux/fs/inode.c (revision 2bfe3e0da6e619dbf6157dfad896307ab6b9a58a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29 
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37  * Inode LRU list locks protect:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode->i_sb->s_inode_list_lock protects:
40  *   inode->i_sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *     Inode LRU list locks
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode->i_sb->s_inode_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 /*
69  * Empty aops. Can be used for the cases where the user does not
70  * define any of the address_space operations.
71  */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __ro_after_init;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110 
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 	unsigned long sum = 0;
114 	int i;
115 
116 	for_each_possible_cpu(i)
117 		sum += data_race(per_cpu(mg_ctime_updates, i));
118 	return sum;
119 }
120 
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 	unsigned long sum = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i)
127 		sum += data_race(per_cpu(mg_fine_stamps, i));
128 	return sum;
129 }
130 
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 	unsigned long sum = 0;
134 	int i;
135 
136 	for_each_possible_cpu(i)
137 		sum += data_race(per_cpu(mg_ctime_swaps, i));
138 	return sum;
139 }
140 
141 #define mgtime_counter_inc(__var)	this_cpu_inc(__var)
142 
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 	unsigned long ctime_updates = get_mg_ctime_updates();
146 	unsigned long ctime_swaps = get_mg_ctime_swaps();
147 	unsigned long fine_stamps = get_mg_fine_stamps();
148 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149 
150 	seq_printf(s, "%lu %lu %lu %lu\n",
151 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 	return 0;
153 }
154 
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156 
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 	return 0;
161 }
162 late_initcall(mg_debugfs_init);
163 
164 #else /* ! CONFIG_DEBUG_FS */
165 
166 #define mgtime_counter_inc(__var)	do { } while (0)
167 
168 #endif /* CONFIG_DEBUG_FS */
169 
170 /*
171  * Handle nr_inode sysctl
172  */
173 #ifdef CONFIG_SYSCTL
174 /*
175  * Statistics gathering..
176  */
177 static struct inodes_stat_t inodes_stat;
178 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 			  size_t *lenp, loff_t *ppos)
181 {
182 	inodes_stat.nr_inodes = get_nr_inodes();
183 	inodes_stat.nr_unused = get_nr_inodes_unused();
184 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186 
187 static const struct ctl_table inodes_sysctls[] = {
188 	{
189 		.procname	= "inode-nr",
190 		.data		= &inodes_stat,
191 		.maxlen		= 2*sizeof(long),
192 		.mode		= 0444,
193 		.proc_handler	= proc_nr_inodes,
194 	},
195 	{
196 		.procname	= "inode-state",
197 		.data		= &inodes_stat,
198 		.maxlen		= 7*sizeof(long),
199 		.mode		= 0444,
200 		.proc_handler	= proc_nr_inodes,
201 	},
202 };
203 
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 	register_sysctl_init("fs", inodes_sysctls);
207 	return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211 
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 	return -ENXIO;
215 }
216 
217 /**
218  * inode_init_always_gfp - perform inode structure initialisation
219  * @sb: superblock inode belongs to
220  * @inode: inode to initialise
221  * @gfp: allocation flags
222  *
223  * These are initializations that need to be done on every inode
224  * allocation as the fields are not initialised by slab allocation.
225  * If there are additional allocations required @gfp is used.
226  */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 	static const struct inode_operations empty_iops;
230 	static const struct file_operations no_open_fops = {.open = no_open};
231 	struct address_space *const mapping = &inode->i_data;
232 
233 	inode->i_sb = sb;
234 	inode->i_blkbits = sb->s_blocksize_bits;
235 	inode->i_flags = 0;
236 	inode_state_assign_raw(inode, 0);
237 	atomic64_set(&inode->i_sequence, 0);
238 	atomic_set(&inode->i_count, 1);
239 	inode->i_op = &empty_iops;
240 	inode->i_fop = &no_open_fops;
241 	inode->i_ino = 0;
242 	inode->__i_nlink = 1;
243 	inode->i_opflags = 0;
244 	if (sb->s_xattr)
245 		inode->i_opflags |= IOP_XATTR;
246 	if (sb->s_type->fs_flags & FS_MGTIME)
247 		inode->i_opflags |= IOP_MGTIME;
248 	i_uid_write(inode, 0);
249 	i_gid_write(inode, 0);
250 	atomic_set(&inode->i_writecount, 0);
251 	inode->i_size = 0;
252 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 	inode->i_blocks = 0;
254 	inode->i_bytes = 0;
255 	inode->i_generation = 0;
256 	inode->i_pipe = NULL;
257 	inode->i_cdev = NULL;
258 	inode->i_link = NULL;
259 	inode->i_dir_seq = 0;
260 	inode->i_rdev = 0;
261 	inode->dirtied_when = 0;
262 
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	inode->i_wb_frn_winner = 0;
265 	inode->i_wb_frn_avg_time = 0;
266 	inode->i_wb_frn_history = 0;
267 #endif
268 
269 	spin_lock_init(&inode->i_lock);
270 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271 
272 	init_rwsem(&inode->i_rwsem);
273 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274 
275 	atomic_set(&inode->i_dio_count, 0);
276 
277 	mapping->a_ops = &empty_aops;
278 	mapping->host = inode;
279 	mapping->flags = 0;
280 	mapping->wb_err = 0;
281 	atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 	atomic_set(&mapping->nr_thps, 0);
284 #endif
285 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 	mapping->i_private_data = NULL;
287 	mapping->writeback_index = 0;
288 	init_rwsem(&mapping->invalidate_lock);
289 	lockdep_set_class_and_name(&mapping->invalidate_lock,
290 				   &sb->s_type->invalidate_lock_key,
291 				   "mapping.invalidate_lock");
292 	if (sb->s_iflags & SB_I_STABLE_WRITES)
293 		mapping_set_stable_writes(mapping);
294 	inode->i_private = NULL;
295 	inode->i_mapping = mapping;
296 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300 
301 #ifdef CONFIG_FSNOTIFY
302 	inode->i_fsnotify_mask = 0;
303 #endif
304 	inode->i_flctx = NULL;
305 
306 	if (unlikely(security_inode_alloc(inode, gfp)))
307 		return -ENOMEM;
308 
309 	this_cpu_inc(nr_inodes);
310 
311 	return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314 
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 	kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320 
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 	struct inode *inode = container_of(head, struct inode, i_rcu);
324 	if (inode->free_inode)
325 		inode->free_inode(inode);
326 	else
327 		free_inode_nonrcu(inode);
328 }
329 
330 /**
331  *	alloc_inode 	- obtain an inode
332  *	@sb: superblock
333  *
334  *	Allocates a new inode for given superblock.
335  *	Inode wont be chained in superblock s_inodes list
336  *	This means :
337  *	- fs can't be unmount
338  *	- quotas, fsnotify, writeback can't work
339  */
alloc_inode(struct super_block * sb)340 struct inode *alloc_inode(struct super_block *sb)
341 {
342 	const struct super_operations *ops = sb->s_op;
343 	struct inode *inode;
344 
345 	if (ops->alloc_inode)
346 		inode = ops->alloc_inode(sb);
347 	else
348 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349 
350 	if (!inode)
351 		return NULL;
352 
353 	if (unlikely(inode_init_always(sb, inode))) {
354 		if (ops->destroy_inode) {
355 			ops->destroy_inode(inode);
356 			if (!ops->free_inode)
357 				return NULL;
358 		}
359 		inode->free_inode = ops->free_inode;
360 		i_callback(&inode->i_rcu);
361 		return NULL;
362 	}
363 
364 	return inode;
365 }
366 
__destroy_inode(struct inode * inode)367 void __destroy_inode(struct inode *inode)
368 {
369 	BUG_ON(inode_has_buffers(inode));
370 	inode_detach_wb(inode);
371 	security_inode_free(inode);
372 	fsnotify_inode_delete(inode);
373 	locks_free_lock_context(inode);
374 	if (!inode->i_nlink) {
375 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 		atomic_long_dec(&inode->i_sb->s_remove_count);
377 	}
378 
379 #ifdef CONFIG_FS_POSIX_ACL
380 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
381 		posix_acl_release(inode->i_acl);
382 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
383 		posix_acl_release(inode->i_default_acl);
384 #endif
385 	this_cpu_dec(nr_inodes);
386 }
387 EXPORT_SYMBOL(__destroy_inode);
388 
destroy_inode(struct inode * inode)389 static void destroy_inode(struct inode *inode)
390 {
391 	const struct super_operations *ops = inode->i_sb->s_op;
392 
393 	BUG_ON(!list_empty(&inode->i_lru));
394 	__destroy_inode(inode);
395 	if (ops->destroy_inode) {
396 		ops->destroy_inode(inode);
397 		if (!ops->free_inode)
398 			return;
399 	}
400 	inode->free_inode = ops->free_inode;
401 	call_rcu(&inode->i_rcu, i_callback);
402 }
403 
404 /**
405  * drop_nlink - directly drop an inode's link count
406  * @inode: inode
407  *
408  * This is a low-level filesystem helper to replace any
409  * direct filesystem manipulation of i_nlink.  In cases
410  * where we are attempting to track writes to the
411  * filesystem, a decrement to zero means an imminent
412  * write when the file is truncated and actually unlinked
413  * on the filesystem.
414  */
drop_nlink(struct inode * inode)415 void drop_nlink(struct inode *inode)
416 {
417 	WARN_ON(inode->i_nlink == 0);
418 	inode->__i_nlink--;
419 	if (!inode->i_nlink)
420 		atomic_long_inc(&inode->i_sb->s_remove_count);
421 }
422 EXPORT_SYMBOL(drop_nlink);
423 
424 /**
425  * clear_nlink - directly zero an inode's link count
426  * @inode: inode
427  *
428  * This is a low-level filesystem helper to replace any
429  * direct filesystem manipulation of i_nlink.  See
430  * drop_nlink() for why we care about i_nlink hitting zero.
431  */
clear_nlink(struct inode * inode)432 void clear_nlink(struct inode *inode)
433 {
434 	if (inode->i_nlink) {
435 		inode->__i_nlink = 0;
436 		atomic_long_inc(&inode->i_sb->s_remove_count);
437 	}
438 }
439 EXPORT_SYMBOL(clear_nlink);
440 
441 /**
442  * set_nlink - directly set an inode's link count
443  * @inode: inode
444  * @nlink: new nlink (should be non-zero)
445  *
446  * This is a low-level filesystem helper to replace any
447  * direct filesystem manipulation of i_nlink.
448  */
set_nlink(struct inode * inode,unsigned int nlink)449 void set_nlink(struct inode *inode, unsigned int nlink)
450 {
451 	if (!nlink) {
452 		clear_nlink(inode);
453 	} else {
454 		/* Yes, some filesystems do change nlink from zero to one */
455 		if (inode->i_nlink == 0)
456 			atomic_long_dec(&inode->i_sb->s_remove_count);
457 
458 		inode->__i_nlink = nlink;
459 	}
460 }
461 EXPORT_SYMBOL(set_nlink);
462 
463 /**
464  * inc_nlink - directly increment an inode's link count
465  * @inode: inode
466  *
467  * This is a low-level filesystem helper to replace any
468  * direct filesystem manipulation of i_nlink.  Currently,
469  * it is only here for parity with dec_nlink().
470  */
inc_nlink(struct inode * inode)471 void inc_nlink(struct inode *inode)
472 {
473 	if (unlikely(inode->i_nlink == 0)) {
474 		WARN_ON(!(inode_state_read_once(inode) & I_LINKABLE));
475 		atomic_long_dec(&inode->i_sb->s_remove_count);
476 	}
477 
478 	inode->__i_nlink++;
479 }
480 EXPORT_SYMBOL(inc_nlink);
481 
__address_space_init_once(struct address_space * mapping)482 static void __address_space_init_once(struct address_space *mapping)
483 {
484 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 	init_rwsem(&mapping->i_mmap_rwsem);
486 	INIT_LIST_HEAD(&mapping->i_private_list);
487 	spin_lock_init(&mapping->i_private_lock);
488 	mapping->i_mmap = RB_ROOT_CACHED;
489 }
490 
address_space_init_once(struct address_space * mapping)491 void address_space_init_once(struct address_space *mapping)
492 {
493 	memset(mapping, 0, sizeof(*mapping));
494 	__address_space_init_once(mapping);
495 }
496 EXPORT_SYMBOL(address_space_init_once);
497 
498 /*
499  * These are initializations that only need to be done
500  * once, because the fields are idempotent across use
501  * of the inode, so let the slab aware of that.
502  */
inode_init_once(struct inode * inode)503 void inode_init_once(struct inode *inode)
504 {
505 	memset(inode, 0, sizeof(*inode));
506 	INIT_HLIST_NODE(&inode->i_hash);
507 	INIT_LIST_HEAD(&inode->i_devices);
508 	INIT_LIST_HEAD(&inode->i_io_list);
509 	INIT_LIST_HEAD(&inode->i_wb_list);
510 	INIT_LIST_HEAD(&inode->i_lru);
511 	INIT_LIST_HEAD(&inode->i_sb_list);
512 	__address_space_init_once(&inode->i_data);
513 	i_size_ordered_init(inode);
514 }
515 EXPORT_SYMBOL(inode_init_once);
516 
init_once(void * foo)517 static void init_once(void *foo)
518 {
519 	struct inode *inode = (struct inode *) foo;
520 
521 	inode_init_once(inode);
522 }
523 
524 /*
525  * get additional reference to inode; caller must already hold one.
526  */
ihold(struct inode * inode)527 void ihold(struct inode *inode)
528 {
529 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530 }
531 EXPORT_SYMBOL(ihold);
532 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)533 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
534 					    struct inode *inode, u32 bit)
535 {
536 	void *bit_address;
537 
538 	bit_address = inode_state_wait_address(inode, bit);
539 	init_wait_var_entry(wqe, bit_address, 0);
540 	return __var_waitqueue(bit_address);
541 }
542 EXPORT_SYMBOL(inode_bit_waitqueue);
543 
wait_on_new_inode(struct inode * inode)544 void wait_on_new_inode(struct inode *inode)
545 {
546 	struct wait_bit_queue_entry wqe;
547 	struct wait_queue_head *wq_head;
548 
549 	spin_lock(&inode->i_lock);
550 	if (!(inode_state_read(inode) & I_NEW)) {
551 		spin_unlock(&inode->i_lock);
552 		return;
553 	}
554 
555 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
556 	for (;;) {
557 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
558 		if (!(inode_state_read(inode) & I_NEW))
559 			break;
560 		spin_unlock(&inode->i_lock);
561 		schedule();
562 		spin_lock(&inode->i_lock);
563 	}
564 	finish_wait(wq_head, &wqe.wq_entry);
565 	WARN_ON(inode_state_read(inode) & I_NEW);
566 	spin_unlock(&inode->i_lock);
567 }
568 EXPORT_SYMBOL(wait_on_new_inode);
569 
__inode_lru_list_add(struct inode * inode,bool rotate)570 static void __inode_lru_list_add(struct inode *inode, bool rotate)
571 {
572 	lockdep_assert_held(&inode->i_lock);
573 
574 	if (inode_state_read(inode) & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
575 		return;
576 	if (icount_read(inode))
577 		return;
578 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
579 		return;
580 	if (!mapping_shrinkable(&inode->i_data))
581 		return;
582 
583 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
584 		this_cpu_inc(nr_unused);
585 	else if (rotate)
586 		inode_state_set(inode, I_REFERENCED);
587 }
588 
589 /*
590  * Add inode to LRU if needed (inode is unused and clean).
591  */
inode_lru_list_add(struct inode * inode)592 void inode_lru_list_add(struct inode *inode)
593 {
594 	__inode_lru_list_add(inode, false);
595 }
596 
inode_lru_list_del(struct inode * inode)597 static void inode_lru_list_del(struct inode *inode)
598 {
599 	if (list_empty(&inode->i_lru))
600 		return;
601 
602 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
603 		this_cpu_dec(nr_unused);
604 }
605 
inode_pin_lru_isolating(struct inode * inode)606 static void inode_pin_lru_isolating(struct inode *inode)
607 {
608 	lockdep_assert_held(&inode->i_lock);
609 	WARN_ON(inode_state_read(inode) & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
610 	inode_state_set(inode, I_LRU_ISOLATING);
611 }
612 
inode_unpin_lru_isolating(struct inode * inode)613 static void inode_unpin_lru_isolating(struct inode *inode)
614 {
615 	spin_lock(&inode->i_lock);
616 	WARN_ON(!(inode_state_read(inode) & I_LRU_ISOLATING));
617 	inode_state_clear(inode, I_LRU_ISOLATING);
618 	/* Called with inode->i_lock which ensures memory ordering. */
619 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
620 	spin_unlock(&inode->i_lock);
621 }
622 
inode_wait_for_lru_isolating(struct inode * inode)623 static void inode_wait_for_lru_isolating(struct inode *inode)
624 {
625 	struct wait_bit_queue_entry wqe;
626 	struct wait_queue_head *wq_head;
627 
628 	lockdep_assert_held(&inode->i_lock);
629 	if (!(inode_state_read(inode) & I_LRU_ISOLATING))
630 		return;
631 
632 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
633 	for (;;) {
634 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
635 		/*
636 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
637 		 * memory ordering.
638 		 */
639 		if (!(inode_state_read(inode) & I_LRU_ISOLATING))
640 			break;
641 		spin_unlock(&inode->i_lock);
642 		schedule();
643 		spin_lock(&inode->i_lock);
644 	}
645 	finish_wait(wq_head, &wqe.wq_entry);
646 	WARN_ON(inode_state_read(inode) & I_LRU_ISOLATING);
647 }
648 
649 /**
650  * inode_sb_list_add - add inode to the superblock list of inodes
651  * @inode: inode to add
652  */
inode_sb_list_add(struct inode * inode)653 void inode_sb_list_add(struct inode *inode)
654 {
655 	struct super_block *sb = inode->i_sb;
656 
657 	spin_lock(&sb->s_inode_list_lock);
658 	list_add(&inode->i_sb_list, &sb->s_inodes);
659 	spin_unlock(&sb->s_inode_list_lock);
660 }
661 EXPORT_SYMBOL_GPL(inode_sb_list_add);
662 
inode_sb_list_del(struct inode * inode)663 static inline void inode_sb_list_del(struct inode *inode)
664 {
665 	struct super_block *sb = inode->i_sb;
666 
667 	if (!list_empty(&inode->i_sb_list)) {
668 		spin_lock(&sb->s_inode_list_lock);
669 		list_del_init(&inode->i_sb_list);
670 		spin_unlock(&sb->s_inode_list_lock);
671 	}
672 }
673 
hash(struct super_block * sb,unsigned long hashval)674 static unsigned long hash(struct super_block *sb, unsigned long hashval)
675 {
676 	unsigned long tmp;
677 
678 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
679 			L1_CACHE_BYTES;
680 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
681 	return tmp & i_hash_mask;
682 }
683 
684 /**
685  *	__insert_inode_hash - hash an inode
686  *	@inode: unhashed inode
687  *	@hashval: unsigned long value used to locate this object in the
688  *		inode_hashtable.
689  *
690  *	Add an inode to the inode hash for this superblock.
691  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)692 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
693 {
694 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
695 
696 	spin_lock(&inode_hash_lock);
697 	spin_lock(&inode->i_lock);
698 	hlist_add_head_rcu(&inode->i_hash, b);
699 	spin_unlock(&inode->i_lock);
700 	spin_unlock(&inode_hash_lock);
701 }
702 EXPORT_SYMBOL(__insert_inode_hash);
703 
704 /**
705  *	__remove_inode_hash - remove an inode from the hash
706  *	@inode: inode to unhash
707  *
708  *	Remove an inode from the superblock.
709  */
__remove_inode_hash(struct inode * inode)710 void __remove_inode_hash(struct inode *inode)
711 {
712 	spin_lock(&inode_hash_lock);
713 	spin_lock(&inode->i_lock);
714 	hlist_del_init_rcu(&inode->i_hash);
715 	spin_unlock(&inode->i_lock);
716 	spin_unlock(&inode_hash_lock);
717 }
718 EXPORT_SYMBOL(__remove_inode_hash);
719 
dump_mapping(const struct address_space * mapping)720 void dump_mapping(const struct address_space *mapping)
721 {
722 	struct inode *host;
723 	const struct address_space_operations *a_ops;
724 	struct hlist_node *dentry_first;
725 	struct dentry *dentry_ptr;
726 	struct dentry dentry;
727 	char fname[64] = {};
728 	unsigned long ino;
729 
730 	/*
731 	 * If mapping is an invalid pointer, we don't want to crash
732 	 * accessing it, so probe everything depending on it carefully.
733 	 */
734 	if (get_kernel_nofault(host, &mapping->host) ||
735 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
736 		pr_warn("invalid mapping:%px\n", mapping);
737 		return;
738 	}
739 
740 	if (!host) {
741 		pr_warn("aops:%ps\n", a_ops);
742 		return;
743 	}
744 
745 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
746 	    get_kernel_nofault(ino, &host->i_ino)) {
747 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
748 		return;
749 	}
750 
751 	if (!dentry_first) {
752 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
753 		return;
754 	}
755 
756 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
757 	if (get_kernel_nofault(dentry, dentry_ptr) ||
758 	    !dentry.d_parent || !dentry.d_name.name) {
759 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
760 				a_ops, ino, dentry_ptr);
761 		return;
762 	}
763 
764 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
765 		strscpy(fname, "<invalid>");
766 	/*
767 	 * Even if strncpy_from_kernel_nofault() succeeded,
768 	 * the fname could be unreliable
769 	 */
770 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
771 		a_ops, ino, fname);
772 }
773 
clear_inode(struct inode * inode)774 void clear_inode(struct inode *inode)
775 {
776 	/*
777 	 * We have to cycle the i_pages lock here because reclaim can be in the
778 	 * process of removing the last page (in __filemap_remove_folio())
779 	 * and we must not free the mapping under it.
780 	 */
781 	xa_lock_irq(&inode->i_data.i_pages);
782 	BUG_ON(inode->i_data.nrpages);
783 	/*
784 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
785 	 * two known and long-standing ways in which nodes may get left behind
786 	 * (when deep radix-tree node allocation failed partway; or when THP
787 	 * collapse_file() failed). Until those two known cases are cleaned up,
788 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
789 	 * nor even WARN_ON(!mapping_empty).
790 	 */
791 	xa_unlock_irq(&inode->i_data.i_pages);
792 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
793 	BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
794 	BUG_ON(inode_state_read_once(inode) & I_CLEAR);
795 	BUG_ON(!list_empty(&inode->i_wb_list));
796 	/* don't need i_lock here, no concurrent mods to i_state */
797 	inode_state_assign_raw(inode, I_FREEING | I_CLEAR);
798 }
799 EXPORT_SYMBOL(clear_inode);
800 
801 /*
802  * Free the inode passed in, removing it from the lists it is still connected
803  * to. We remove any pages still attached to the inode and wait for any IO that
804  * is still in progress before finally destroying the inode.
805  *
806  * An inode must already be marked I_FREEING so that we avoid the inode being
807  * moved back onto lists if we race with other code that manipulates the lists
808  * (e.g. writeback_single_inode). The caller is responsible for setting this.
809  *
810  * An inode must already be removed from the LRU list before being evicted from
811  * the cache. This should occur atomically with setting the I_FREEING state
812  * flag, so no inodes here should ever be on the LRU when being evicted.
813  */
evict(struct inode * inode)814 static void evict(struct inode *inode)
815 {
816 	const struct super_operations *op = inode->i_sb->s_op;
817 
818 	BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
819 	BUG_ON(!list_empty(&inode->i_lru));
820 
821 	inode_io_list_del(inode);
822 	inode_sb_list_del(inode);
823 
824 	spin_lock(&inode->i_lock);
825 	inode_wait_for_lru_isolating(inode);
826 
827 	/*
828 	 * Wait for flusher thread to be done with the inode so that filesystem
829 	 * does not start destroying it while writeback is still running. Since
830 	 * the inode has I_FREEING set, flusher thread won't start new work on
831 	 * the inode.  We just have to wait for running writeback to finish.
832 	 */
833 	inode_wait_for_writeback(inode);
834 	spin_unlock(&inode->i_lock);
835 
836 	if (op->evict_inode) {
837 		op->evict_inode(inode);
838 	} else {
839 		truncate_inode_pages_final(&inode->i_data);
840 		clear_inode(inode);
841 	}
842 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
843 		cd_forget(inode);
844 
845 	remove_inode_hash(inode);
846 
847 	/*
848 	 * Wake up waiters in __wait_on_freeing_inode().
849 	 *
850 	 * It is an invariant that any thread we need to wake up is already
851 	 * accounted for before remove_inode_hash() acquires ->i_lock -- both
852 	 * sides take the lock and sleep is aborted if the inode is found
853 	 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
854 	 * wins and the sleeper aborts after testing with the lock.
855 	 *
856 	 * This also means we don't need any fences for the call below.
857 	 */
858 	inode_wake_up_bit(inode, __I_NEW);
859 	BUG_ON(inode_state_read_once(inode) != (I_FREEING | I_CLEAR));
860 
861 	destroy_inode(inode);
862 }
863 
864 /*
865  * dispose_list - dispose of the contents of a local list
866  * @head: the head of the list to free
867  *
868  * Dispose-list gets a local list with local inodes in it, so it doesn't
869  * need to worry about list corruption and SMP locks.
870  */
dispose_list(struct list_head * head)871 static void dispose_list(struct list_head *head)
872 {
873 	while (!list_empty(head)) {
874 		struct inode *inode;
875 
876 		inode = list_first_entry(head, struct inode, i_lru);
877 		list_del_init(&inode->i_lru);
878 
879 		evict(inode);
880 		cond_resched();
881 	}
882 }
883 
884 /**
885  * evict_inodes	- evict all evictable inodes for a superblock
886  * @sb:		superblock to operate on
887  *
888  * Make sure that no inodes with zero refcount are retained.  This is
889  * called by superblock shutdown after having SB_ACTIVE flag removed,
890  * so any inode reaching zero refcount during or after that call will
891  * be immediately evicted.
892  */
evict_inodes(struct super_block * sb)893 void evict_inodes(struct super_block *sb)
894 {
895 	struct inode *inode;
896 	LIST_HEAD(dispose);
897 
898 again:
899 	spin_lock(&sb->s_inode_list_lock);
900 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
901 		if (icount_read(inode))
902 			continue;
903 
904 		spin_lock(&inode->i_lock);
905 		if (icount_read(inode)) {
906 			spin_unlock(&inode->i_lock);
907 			continue;
908 		}
909 		if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) {
910 			spin_unlock(&inode->i_lock);
911 			continue;
912 		}
913 
914 		inode_state_set(inode, I_FREEING);
915 		inode_lru_list_del(inode);
916 		spin_unlock(&inode->i_lock);
917 		list_add(&inode->i_lru, &dispose);
918 
919 		/*
920 		 * We can have a ton of inodes to evict at unmount time given
921 		 * enough memory, check to see if we need to go to sleep for a
922 		 * bit so we don't livelock.
923 		 */
924 		if (need_resched()) {
925 			spin_unlock(&sb->s_inode_list_lock);
926 			cond_resched();
927 			dispose_list(&dispose);
928 			goto again;
929 		}
930 	}
931 	spin_unlock(&sb->s_inode_list_lock);
932 
933 	dispose_list(&dispose);
934 }
935 EXPORT_SYMBOL_GPL(evict_inodes);
936 
937 /*
938  * Isolate the inode from the LRU in preparation for freeing it.
939  *
940  * If the inode has the I_REFERENCED flag set, then it means that it has been
941  * used recently - the flag is set in iput_final(). When we encounter such an
942  * inode, clear the flag and move it to the back of the LRU so it gets another
943  * pass through the LRU before it gets reclaimed. This is necessary because of
944  * the fact we are doing lazy LRU updates to minimise lock contention so the
945  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
946  * with this flag set because they are the inodes that are out of order.
947  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)948 static enum lru_status inode_lru_isolate(struct list_head *item,
949 		struct list_lru_one *lru, void *arg)
950 {
951 	struct list_head *freeable = arg;
952 	struct inode	*inode = container_of(item, struct inode, i_lru);
953 
954 	/*
955 	 * We are inverting the lru lock/inode->i_lock here, so use a
956 	 * trylock. If we fail to get the lock, just skip it.
957 	 */
958 	if (!spin_trylock(&inode->i_lock))
959 		return LRU_SKIP;
960 
961 	/*
962 	 * Inodes can get referenced, redirtied, or repopulated while
963 	 * they're already on the LRU, and this can make them
964 	 * unreclaimable for a while. Remove them lazily here; iput,
965 	 * sync, or the last page cache deletion will requeue them.
966 	 */
967 	if (icount_read(inode) ||
968 	    (inode_state_read(inode) & ~I_REFERENCED) ||
969 	    !mapping_shrinkable(&inode->i_data)) {
970 		list_lru_isolate(lru, &inode->i_lru);
971 		spin_unlock(&inode->i_lock);
972 		this_cpu_dec(nr_unused);
973 		return LRU_REMOVED;
974 	}
975 
976 	/* Recently referenced inodes get one more pass */
977 	if (inode_state_read(inode) & I_REFERENCED) {
978 		inode_state_clear(inode, I_REFERENCED);
979 		spin_unlock(&inode->i_lock);
980 		return LRU_ROTATE;
981 	}
982 
983 	/*
984 	 * On highmem systems, mapping_shrinkable() permits dropping
985 	 * page cache in order to free up struct inodes: lowmem might
986 	 * be under pressure before the cache inside the highmem zone.
987 	 */
988 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
989 		inode_pin_lru_isolating(inode);
990 		spin_unlock(&inode->i_lock);
991 		spin_unlock(&lru->lock);
992 		if (remove_inode_buffers(inode)) {
993 			unsigned long reap;
994 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
995 			if (current_is_kswapd())
996 				__count_vm_events(KSWAPD_INODESTEAL, reap);
997 			else
998 				__count_vm_events(PGINODESTEAL, reap);
999 			mm_account_reclaimed_pages(reap);
1000 		}
1001 		inode_unpin_lru_isolating(inode);
1002 		return LRU_RETRY;
1003 	}
1004 
1005 	WARN_ON(inode_state_read(inode) & I_NEW);
1006 	inode_state_set(inode, I_FREEING);
1007 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
1008 	spin_unlock(&inode->i_lock);
1009 
1010 	this_cpu_dec(nr_unused);
1011 	return LRU_REMOVED;
1012 }
1013 
1014 /*
1015  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1016  * This is called from the superblock shrinker function with a number of inodes
1017  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1018  * then are freed outside inode_lock by dispose_list().
1019  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)1020 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
1021 {
1022 	LIST_HEAD(freeable);
1023 	long freed;
1024 
1025 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
1026 				     inode_lru_isolate, &freeable);
1027 	dispose_list(&freeable);
1028 	return freed;
1029 }
1030 
1031 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1032 /*
1033  * Called with the inode lock held.
1034  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked,bool * isnew)1035 static struct inode *find_inode(struct super_block *sb,
1036 				struct hlist_head *head,
1037 				int (*test)(struct inode *, void *),
1038 				void *data, bool is_inode_hash_locked,
1039 				bool *isnew)
1040 {
1041 	struct inode *inode = NULL;
1042 
1043 	if (is_inode_hash_locked)
1044 		lockdep_assert_held(&inode_hash_lock);
1045 	else
1046 		lockdep_assert_not_held(&inode_hash_lock);
1047 
1048 	rcu_read_lock();
1049 repeat:
1050 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1051 		if (inode->i_sb != sb)
1052 			continue;
1053 		if (!test(inode, data))
1054 			continue;
1055 		spin_lock(&inode->i_lock);
1056 		if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1057 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1058 			goto repeat;
1059 		}
1060 		if (unlikely(inode_state_read(inode) & I_CREATING)) {
1061 			spin_unlock(&inode->i_lock);
1062 			rcu_read_unlock();
1063 			return ERR_PTR(-ESTALE);
1064 		}
1065 		__iget(inode);
1066 		*isnew = !!(inode_state_read(inode) & I_NEW);
1067 		spin_unlock(&inode->i_lock);
1068 		rcu_read_unlock();
1069 		return inode;
1070 	}
1071 	rcu_read_unlock();
1072 	return NULL;
1073 }
1074 
1075 /*
1076  * find_inode_fast is the fast path version of find_inode, see the comment at
1077  * iget_locked for details.
1078  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked,bool * isnew)1079 static struct inode *find_inode_fast(struct super_block *sb,
1080 				struct hlist_head *head, unsigned long ino,
1081 				bool is_inode_hash_locked, bool *isnew)
1082 {
1083 	struct inode *inode = NULL;
1084 
1085 	if (is_inode_hash_locked)
1086 		lockdep_assert_held(&inode_hash_lock);
1087 	else
1088 		lockdep_assert_not_held(&inode_hash_lock);
1089 
1090 	rcu_read_lock();
1091 repeat:
1092 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1093 		if (inode->i_ino != ino)
1094 			continue;
1095 		if (inode->i_sb != sb)
1096 			continue;
1097 		spin_lock(&inode->i_lock);
1098 		if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1099 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1100 			goto repeat;
1101 		}
1102 		if (unlikely(inode_state_read(inode) & I_CREATING)) {
1103 			spin_unlock(&inode->i_lock);
1104 			rcu_read_unlock();
1105 			return ERR_PTR(-ESTALE);
1106 		}
1107 		__iget(inode);
1108 		*isnew = !!(inode_state_read(inode) & I_NEW);
1109 		spin_unlock(&inode->i_lock);
1110 		rcu_read_unlock();
1111 		return inode;
1112 	}
1113 	rcu_read_unlock();
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * Each cpu owns a range of LAST_INO_BATCH numbers.
1119  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1120  * to renew the exhausted range.
1121  *
1122  * This does not significantly increase overflow rate because every CPU can
1123  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1124  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1125  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1126  * overflow rate by 2x, which does not seem too significant.
1127  *
1128  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1129  * error if st_ino won't fit in target struct field. Use 32bit counter
1130  * here to attempt to avoid that.
1131  */
1132 #define LAST_INO_BATCH 1024
1133 static DEFINE_PER_CPU(unsigned int, last_ino);
1134 
get_next_ino(void)1135 unsigned int get_next_ino(void)
1136 {
1137 	unsigned int *p = &get_cpu_var(last_ino);
1138 	unsigned int res = *p;
1139 
1140 #ifdef CONFIG_SMP
1141 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1142 		static atomic_t shared_last_ino;
1143 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1144 
1145 		res = next - LAST_INO_BATCH;
1146 	}
1147 #endif
1148 
1149 	res++;
1150 	/* get_next_ino should not provide a 0 inode number */
1151 	if (unlikely(!res))
1152 		res++;
1153 	*p = res;
1154 	put_cpu_var(last_ino);
1155 	return res;
1156 }
1157 EXPORT_SYMBOL(get_next_ino);
1158 
1159 /**
1160  *	new_inode 	- obtain an inode
1161  *	@sb: superblock
1162  *
1163  *	Allocates a new inode for given superblock. The default gfp_mask
1164  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1165  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1166  *	for the page cache are not reclaimable or migratable,
1167  *	mapping_set_gfp_mask() must be called with suitable flags on the
1168  *	newly created inode's mapping
1169  *
1170  */
new_inode(struct super_block * sb)1171 struct inode *new_inode(struct super_block *sb)
1172 {
1173 	struct inode *inode;
1174 
1175 	inode = alloc_inode(sb);
1176 	if (inode)
1177 		inode_sb_list_add(inode);
1178 	return inode;
1179 }
1180 EXPORT_SYMBOL(new_inode);
1181 
1182 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1183 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1184 {
1185 	if (S_ISDIR(inode->i_mode)) {
1186 		struct file_system_type *type = inode->i_sb->s_type;
1187 
1188 		/* Set new key only if filesystem hasn't already changed it */
1189 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1190 			/*
1191 			 * ensure nobody is actually holding i_rwsem
1192 			 */
1193 			init_rwsem(&inode->i_rwsem);
1194 			lockdep_set_class(&inode->i_rwsem,
1195 					  &type->i_mutex_dir_key);
1196 		}
1197 	}
1198 }
1199 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1200 #endif
1201 
1202 /**
1203  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1204  * @inode:	new inode to unlock
1205  *
1206  * Called when the inode is fully initialised to clear the new state of the
1207  * inode and wake up anyone waiting for the inode to finish initialisation.
1208  */
unlock_new_inode(struct inode * inode)1209 void unlock_new_inode(struct inode *inode)
1210 {
1211 	lockdep_annotate_inode_mutex_key(inode);
1212 	spin_lock(&inode->i_lock);
1213 	WARN_ON(!(inode_state_read(inode) & I_NEW));
1214 	inode_state_clear(inode, I_NEW | I_CREATING);
1215 	inode_wake_up_bit(inode, __I_NEW);
1216 	spin_unlock(&inode->i_lock);
1217 }
1218 EXPORT_SYMBOL(unlock_new_inode);
1219 
discard_new_inode(struct inode * inode)1220 void discard_new_inode(struct inode *inode)
1221 {
1222 	lockdep_annotate_inode_mutex_key(inode);
1223 	spin_lock(&inode->i_lock);
1224 	WARN_ON(!(inode_state_read(inode) & I_NEW));
1225 	inode_state_clear(inode, I_NEW);
1226 	inode_wake_up_bit(inode, __I_NEW);
1227 	spin_unlock(&inode->i_lock);
1228 	iput(inode);
1229 }
1230 EXPORT_SYMBOL(discard_new_inode);
1231 
1232 /**
1233  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1234  *
1235  * Lock any non-NULL argument. Passed objects must not be directories.
1236  * Zero, one or two objects may be locked by this function.
1237  *
1238  * @inode1: first inode to lock
1239  * @inode2: second inode to lock
1240  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1241 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1242 {
1243 	if (inode1)
1244 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1245 	if (inode2)
1246 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1247 	if (inode1 > inode2)
1248 		swap(inode1, inode2);
1249 	if (inode1)
1250 		inode_lock(inode1);
1251 	if (inode2 && inode2 != inode1)
1252 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1253 }
1254 EXPORT_SYMBOL(lock_two_nondirectories);
1255 
1256 /**
1257  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1258  * @inode1: first inode to unlock
1259  * @inode2: second inode to unlock
1260  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1261 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1262 {
1263 	if (inode1) {
1264 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1265 		inode_unlock(inode1);
1266 	}
1267 	if (inode2 && inode2 != inode1) {
1268 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1269 		inode_unlock(inode2);
1270 	}
1271 }
1272 EXPORT_SYMBOL(unlock_two_nondirectories);
1273 
1274 /**
1275  * inode_insert5 - obtain an inode from a mounted file system
1276  * @inode:	pre-allocated inode to use for insert to cache
1277  * @hashval:	hash value (usually inode number) to get
1278  * @test:	callback used for comparisons between inodes
1279  * @set:	callback used to initialize a new struct inode
1280  * @data:	opaque data pointer to pass to @test and @set
1281  * @isnew:	pointer to a bool which will indicate whether I_NEW is set
1282  *
1283  * Search for the inode specified by @hashval and @data in the inode cache,
1284  * and if present return it with an increased reference count. This is a
1285  * variant of iget5_locked() that doesn't allocate an inode.
1286  *
1287  * If the inode is not present in the cache, insert the pre-allocated inode and
1288  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1289  * to fill it in before unlocking it via unlock_new_inode().
1290  *
1291  * Note that both @test and @set are called with the inode_hash_lock held, so
1292  * they can't sleep.
1293  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1294 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1295 			    int (*test)(struct inode *, void *),
1296 			    int (*set)(struct inode *, void *), void *data)
1297 {
1298 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1299 	struct inode *old;
1300 	bool isnew;
1301 
1302 	might_sleep();
1303 
1304 again:
1305 	spin_lock(&inode_hash_lock);
1306 	old = find_inode(inode->i_sb, head, test, data, true, &isnew);
1307 	if (unlikely(old)) {
1308 		/*
1309 		 * Uhhuh, somebody else created the same inode under us.
1310 		 * Use the old inode instead of the preallocated one.
1311 		 */
1312 		spin_unlock(&inode_hash_lock);
1313 		if (IS_ERR(old))
1314 			return NULL;
1315 		if (unlikely(isnew))
1316 			wait_on_new_inode(old);
1317 		if (unlikely(inode_unhashed(old))) {
1318 			iput(old);
1319 			goto again;
1320 		}
1321 		return old;
1322 	}
1323 
1324 	if (set && unlikely(set(inode, data))) {
1325 		spin_unlock(&inode_hash_lock);
1326 		return NULL;
1327 	}
1328 
1329 	/*
1330 	 * Return the locked inode with I_NEW set, the
1331 	 * caller is responsible for filling in the contents
1332 	 */
1333 	spin_lock(&inode->i_lock);
1334 	inode_state_set(inode, I_NEW);
1335 	hlist_add_head_rcu(&inode->i_hash, head);
1336 	spin_unlock(&inode->i_lock);
1337 
1338 	spin_unlock(&inode_hash_lock);
1339 
1340 	/*
1341 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1342 	 * point, so it should be safe to test i_sb_list locklessly.
1343 	 */
1344 	if (list_empty(&inode->i_sb_list))
1345 		inode_sb_list_add(inode);
1346 
1347 	return inode;
1348 }
1349 EXPORT_SYMBOL(inode_insert5);
1350 
1351 /**
1352  * iget5_locked - obtain an inode from a mounted file system
1353  * @sb:		super block of file system
1354  * @hashval:	hash value (usually inode number) to get
1355  * @test:	callback used for comparisons between inodes
1356  * @set:	callback used to initialize a new struct inode
1357  * @data:	opaque data pointer to pass to @test and @set
1358  *
1359  * Search for the inode specified by @hashval and @data in the inode cache,
1360  * and if present return it with an increased reference count. This is a
1361  * generalized version of iget_locked() for file systems where the inode
1362  * number is not sufficient for unique identification of an inode.
1363  *
1364  * If the inode is not present in the cache, allocate and insert a new inode
1365  * and return it locked, hashed, and with the I_NEW flag set. The file system
1366  * gets to fill it in before unlocking it via unlock_new_inode().
1367  *
1368  * Note that both @test and @set are called with the inode_hash_lock held, so
1369  * they can't sleep.
1370  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1371 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1372 		int (*test)(struct inode *, void *),
1373 		int (*set)(struct inode *, void *), void *data)
1374 {
1375 	struct inode *inode = ilookup5(sb, hashval, test, data);
1376 
1377 	if (!inode) {
1378 		struct inode *new = alloc_inode(sb);
1379 
1380 		if (new) {
1381 			inode = inode_insert5(new, hashval, test, set, data);
1382 			if (unlikely(inode != new))
1383 				destroy_inode(new);
1384 		}
1385 	}
1386 	return inode;
1387 }
1388 EXPORT_SYMBOL(iget5_locked);
1389 
1390 /**
1391  * iget5_locked_rcu - obtain an inode from a mounted file system
1392  * @sb:		super block of file system
1393  * @hashval:	hash value (usually inode number) to get
1394  * @test:	callback used for comparisons between inodes
1395  * @set:	callback used to initialize a new struct inode
1396  * @data:	opaque data pointer to pass to @test and @set
1397  *
1398  * This is equivalent to iget5_locked, except the @test callback must
1399  * tolerate the inode not being stable, including being mid-teardown.
1400  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1401 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1402 		int (*test)(struct inode *, void *),
1403 		int (*set)(struct inode *, void *), void *data)
1404 {
1405 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1406 	struct inode *inode, *new;
1407 	bool isnew;
1408 
1409 	might_sleep();
1410 
1411 again:
1412 	inode = find_inode(sb, head, test, data, false, &isnew);
1413 	if (inode) {
1414 		if (IS_ERR(inode))
1415 			return NULL;
1416 		if (unlikely(isnew))
1417 			wait_on_new_inode(inode);
1418 		if (unlikely(inode_unhashed(inode))) {
1419 			iput(inode);
1420 			goto again;
1421 		}
1422 		return inode;
1423 	}
1424 
1425 	new = alloc_inode(sb);
1426 	if (new) {
1427 		inode = inode_insert5(new, hashval, test, set, data);
1428 		if (unlikely(inode != new))
1429 			destroy_inode(new);
1430 	}
1431 	return inode;
1432 }
1433 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1434 
1435 /**
1436  * iget_locked - obtain an inode from a mounted file system
1437  * @sb:		super block of file system
1438  * @ino:	inode number to get
1439  *
1440  * Search for the inode specified by @ino in the inode cache and if present
1441  * return it with an increased reference count. This is for file systems
1442  * where the inode number is sufficient for unique identification of an inode.
1443  *
1444  * If the inode is not in cache, allocate a new inode and return it locked,
1445  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1446  * before unlocking it via unlock_new_inode().
1447  */
iget_locked(struct super_block * sb,unsigned long ino)1448 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1449 {
1450 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1451 	struct inode *inode;
1452 	bool isnew;
1453 
1454 	might_sleep();
1455 
1456 again:
1457 	inode = find_inode_fast(sb, head, ino, false, &isnew);
1458 	if (inode) {
1459 		if (IS_ERR(inode))
1460 			return NULL;
1461 		if (unlikely(isnew))
1462 			wait_on_new_inode(inode);
1463 		if (unlikely(inode_unhashed(inode))) {
1464 			iput(inode);
1465 			goto again;
1466 		}
1467 		return inode;
1468 	}
1469 
1470 	inode = alloc_inode(sb);
1471 	if (inode) {
1472 		struct inode *old;
1473 
1474 		spin_lock(&inode_hash_lock);
1475 		/* We released the lock, so.. */
1476 		old = find_inode_fast(sb, head, ino, true, &isnew);
1477 		if (!old) {
1478 			inode->i_ino = ino;
1479 			spin_lock(&inode->i_lock);
1480 			inode_state_assign(inode, I_NEW);
1481 			hlist_add_head_rcu(&inode->i_hash, head);
1482 			spin_unlock(&inode->i_lock);
1483 			spin_unlock(&inode_hash_lock);
1484 			inode_sb_list_add(inode);
1485 
1486 			/* Return the locked inode with I_NEW set, the
1487 			 * caller is responsible for filling in the contents
1488 			 */
1489 			return inode;
1490 		}
1491 
1492 		/*
1493 		 * Uhhuh, somebody else created the same inode under
1494 		 * us. Use the old inode instead of the one we just
1495 		 * allocated.
1496 		 */
1497 		spin_unlock(&inode_hash_lock);
1498 		destroy_inode(inode);
1499 		if (IS_ERR(old))
1500 			return NULL;
1501 		inode = old;
1502 		if (unlikely(isnew))
1503 			wait_on_new_inode(inode);
1504 		if (unlikely(inode_unhashed(inode))) {
1505 			iput(inode);
1506 			goto again;
1507 		}
1508 	}
1509 	return inode;
1510 }
1511 EXPORT_SYMBOL(iget_locked);
1512 
1513 /*
1514  * search the inode cache for a matching inode number.
1515  * If we find one, then the inode number we are trying to
1516  * allocate is not unique and so we should not use it.
1517  *
1518  * Returns 1 if the inode number is unique, 0 if it is not.
1519  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1520 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1521 {
1522 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1523 	struct inode *inode;
1524 
1525 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1526 		if (inode->i_ino == ino && inode->i_sb == sb)
1527 			return 0;
1528 	}
1529 	return 1;
1530 }
1531 
1532 /**
1533  *	iunique - get a unique inode number
1534  *	@sb: superblock
1535  *	@max_reserved: highest reserved inode number
1536  *
1537  *	Obtain an inode number that is unique on the system for a given
1538  *	superblock. This is used by file systems that have no natural
1539  *	permanent inode numbering system. An inode number is returned that
1540  *	is higher than the reserved limit but unique.
1541  *
1542  *	BUGS:
1543  *	With a large number of inodes live on the file system this function
1544  *	currently becomes quite slow.
1545  */
iunique(struct super_block * sb,ino_t max_reserved)1546 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1547 {
1548 	/*
1549 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1550 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1551 	 * here to attempt to avoid that.
1552 	 */
1553 	static DEFINE_SPINLOCK(iunique_lock);
1554 	static unsigned int counter;
1555 	ino_t res;
1556 
1557 	rcu_read_lock();
1558 	spin_lock(&iunique_lock);
1559 	do {
1560 		if (counter <= max_reserved)
1561 			counter = max_reserved + 1;
1562 		res = counter++;
1563 	} while (!test_inode_iunique(sb, res));
1564 	spin_unlock(&iunique_lock);
1565 	rcu_read_unlock();
1566 
1567 	return res;
1568 }
1569 EXPORT_SYMBOL(iunique);
1570 
igrab(struct inode * inode)1571 struct inode *igrab(struct inode *inode)
1572 {
1573 	spin_lock(&inode->i_lock);
1574 	if (!(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) {
1575 		__iget(inode);
1576 		spin_unlock(&inode->i_lock);
1577 	} else {
1578 		spin_unlock(&inode->i_lock);
1579 		/*
1580 		 * Handle the case where s_op->clear_inode is not been
1581 		 * called yet, and somebody is calling igrab
1582 		 * while the inode is getting freed.
1583 		 */
1584 		inode = NULL;
1585 	}
1586 	return inode;
1587 }
1588 EXPORT_SYMBOL(igrab);
1589 
1590 /**
1591  * ilookup5_nowait - search for an inode in the inode cache
1592  * @sb:		super block of file system to search
1593  * @hashval:	hash value (usually inode number) to search for
1594  * @test:	callback used for comparisons between inodes
1595  * @data:	opaque data pointer to pass to @test
1596  * @isnew:	return argument telling whether I_NEW was set when
1597  *		the inode was found in hash (the caller needs to
1598  *		wait for I_NEW to clear)
1599  *
1600  * Search for the inode specified by @hashval and @data in the inode cache.
1601  * If the inode is in the cache, the inode is returned with an incremented
1602  * reference count.
1603  *
1604  * Note: I_NEW is not waited upon so you have to be very careful what you do
1605  * with the returned inode.  You probably should be using ilookup5() instead.
1606  *
1607  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1608  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data,bool * isnew)1609 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1610 		int (*test)(struct inode *, void *), void *data, bool *isnew)
1611 {
1612 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1613 	struct inode *inode;
1614 
1615 	spin_lock(&inode_hash_lock);
1616 	inode = find_inode(sb, head, test, data, true, isnew);
1617 	spin_unlock(&inode_hash_lock);
1618 
1619 	return IS_ERR(inode) ? NULL : inode;
1620 }
1621 EXPORT_SYMBOL(ilookup5_nowait);
1622 
1623 /**
1624  * ilookup5 - search for an inode in the inode cache
1625  * @sb:		super block of file system to search
1626  * @hashval:	hash value (usually inode number) to search for
1627  * @test:	callback used for comparisons between inodes
1628  * @data:	opaque data pointer to pass to @test
1629  *
1630  * Search for the inode specified by @hashval and @data in the inode cache,
1631  * and if the inode is in the cache, return the inode with an incremented
1632  * reference count.  Waits on I_NEW before returning the inode.
1633  * returned with an incremented reference count.
1634  *
1635  * This is a generalized version of ilookup() for file systems where the
1636  * inode number is not sufficient for unique identification of an inode.
1637  *
1638  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1639  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1640 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1641 		int (*test)(struct inode *, void *), void *data)
1642 {
1643 	struct inode *inode;
1644 	bool isnew;
1645 
1646 	might_sleep();
1647 
1648 again:
1649 	inode = ilookup5_nowait(sb, hashval, test, data, &isnew);
1650 	if (inode) {
1651 		if (unlikely(isnew))
1652 			wait_on_new_inode(inode);
1653 		if (unlikely(inode_unhashed(inode))) {
1654 			iput(inode);
1655 			goto again;
1656 		}
1657 	}
1658 	return inode;
1659 }
1660 EXPORT_SYMBOL(ilookup5);
1661 
1662 /**
1663  * ilookup - search for an inode in the inode cache
1664  * @sb:		super block of file system to search
1665  * @ino:	inode number to search for
1666  *
1667  * Search for the inode @ino in the inode cache, and if the inode is in the
1668  * cache, the inode is returned with an incremented reference count.
1669  */
ilookup(struct super_block * sb,unsigned long ino)1670 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1671 {
1672 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1673 	struct inode *inode;
1674 	bool isnew;
1675 
1676 	might_sleep();
1677 
1678 again:
1679 	inode = find_inode_fast(sb, head, ino, false, &isnew);
1680 
1681 	if (inode) {
1682 		if (IS_ERR(inode))
1683 			return NULL;
1684 		if (unlikely(isnew))
1685 			wait_on_new_inode(inode);
1686 		if (unlikely(inode_unhashed(inode))) {
1687 			iput(inode);
1688 			goto again;
1689 		}
1690 	}
1691 	return inode;
1692 }
1693 EXPORT_SYMBOL(ilookup);
1694 
1695 /**
1696  * find_inode_nowait - find an inode in the inode cache
1697  * @sb:		super block of file system to search
1698  * @hashval:	hash value (usually inode number) to search for
1699  * @match:	callback used for comparisons between inodes
1700  * @data:	opaque data pointer to pass to @match
1701  *
1702  * Search for the inode specified by @hashval and @data in the inode
1703  * cache, where the helper function @match will return 0 if the inode
1704  * does not match, 1 if the inode does match, and -1 if the search
1705  * should be stopped.  The @match function must be responsible for
1706  * taking the i_lock spin_lock and checking i_state for an inode being
1707  * freed or being initialized, and incrementing the reference count
1708  * before returning 1.  It also must not sleep, since it is called with
1709  * the inode_hash_lock spinlock held.
1710  *
1711  * This is a even more generalized version of ilookup5() when the
1712  * function must never block --- find_inode() can block in
1713  * __wait_on_freeing_inode() --- or when the caller can not increment
1714  * the reference count because the resulting iput() might cause an
1715  * inode eviction.  The tradeoff is that the @match funtion must be
1716  * very carefully implemented.
1717  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1718 struct inode *find_inode_nowait(struct super_block *sb,
1719 				unsigned long hashval,
1720 				int (*match)(struct inode *, unsigned long,
1721 					     void *),
1722 				void *data)
1723 {
1724 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1725 	struct inode *inode, *ret_inode = NULL;
1726 	int mval;
1727 
1728 	spin_lock(&inode_hash_lock);
1729 	hlist_for_each_entry(inode, head, i_hash) {
1730 		if (inode->i_sb != sb)
1731 			continue;
1732 		mval = match(inode, hashval, data);
1733 		if (mval == 0)
1734 			continue;
1735 		if (mval == 1)
1736 			ret_inode = inode;
1737 		goto out;
1738 	}
1739 out:
1740 	spin_unlock(&inode_hash_lock);
1741 	return ret_inode;
1742 }
1743 EXPORT_SYMBOL(find_inode_nowait);
1744 
1745 /**
1746  * find_inode_rcu - find an inode in the inode cache
1747  * @sb:		Super block of file system to search
1748  * @hashval:	Key to hash
1749  * @test:	Function to test match on an inode
1750  * @data:	Data for test function
1751  *
1752  * Search for the inode specified by @hashval and @data in the inode cache,
1753  * where the helper function @test will return 0 if the inode does not match
1754  * and 1 if it does.  The @test function must be responsible for taking the
1755  * i_lock spin_lock and checking i_state for an inode being freed or being
1756  * initialized.
1757  *
1758  * If successful, this will return the inode for which the @test function
1759  * returned 1 and NULL otherwise.
1760  *
1761  * The @test function is not permitted to take a ref on any inode presented.
1762  * It is also not permitted to sleep.
1763  *
1764  * The caller must hold the RCU read lock.
1765  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1766 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1767 			     int (*test)(struct inode *, void *), void *data)
1768 {
1769 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1770 	struct inode *inode;
1771 
1772 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1773 			 "suspicious find_inode_rcu() usage");
1774 
1775 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1776 		if (inode->i_sb == sb &&
1777 		    !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)) &&
1778 		    test(inode, data))
1779 			return inode;
1780 	}
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL(find_inode_rcu);
1784 
1785 /**
1786  * find_inode_by_ino_rcu - Find an inode in the inode cache
1787  * @sb:		Super block of file system to search
1788  * @ino:	The inode number to match
1789  *
1790  * Search for the inode specified by @hashval and @data in the inode cache,
1791  * where the helper function @test will return 0 if the inode does not match
1792  * and 1 if it does.  The @test function must be responsible for taking the
1793  * i_lock spin_lock and checking i_state for an inode being freed or being
1794  * initialized.
1795  *
1796  * If successful, this will return the inode for which the @test function
1797  * returned 1 and NULL otherwise.
1798  *
1799  * The @test function is not permitted to take a ref on any inode presented.
1800  * It is also not permitted to sleep.
1801  *
1802  * The caller must hold the RCU read lock.
1803  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1804 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1805 				    unsigned long ino)
1806 {
1807 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1808 	struct inode *inode;
1809 
1810 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1811 			 "suspicious find_inode_by_ino_rcu() usage");
1812 
1813 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1814 		if (inode->i_ino == ino &&
1815 		    inode->i_sb == sb &&
1816 		    !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)))
1817 		    return inode;
1818 	}
1819 	return NULL;
1820 }
1821 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1822 
insert_inode_locked(struct inode * inode)1823 int insert_inode_locked(struct inode *inode)
1824 {
1825 	struct super_block *sb = inode->i_sb;
1826 	ino_t ino = inode->i_ino;
1827 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1828 	bool isnew;
1829 
1830 	might_sleep();
1831 
1832 	while (1) {
1833 		struct inode *old = NULL;
1834 		spin_lock(&inode_hash_lock);
1835 		hlist_for_each_entry(old, head, i_hash) {
1836 			if (old->i_ino != ino)
1837 				continue;
1838 			if (old->i_sb != sb)
1839 				continue;
1840 			spin_lock(&old->i_lock);
1841 			if (inode_state_read(old) & (I_FREEING | I_WILL_FREE)) {
1842 				spin_unlock(&old->i_lock);
1843 				continue;
1844 			}
1845 			break;
1846 		}
1847 		if (likely(!old)) {
1848 			spin_lock(&inode->i_lock);
1849 			inode_state_set(inode, I_NEW | I_CREATING);
1850 			hlist_add_head_rcu(&inode->i_hash, head);
1851 			spin_unlock(&inode->i_lock);
1852 			spin_unlock(&inode_hash_lock);
1853 			return 0;
1854 		}
1855 		if (unlikely(inode_state_read(old) & I_CREATING)) {
1856 			spin_unlock(&old->i_lock);
1857 			spin_unlock(&inode_hash_lock);
1858 			return -EBUSY;
1859 		}
1860 		__iget(old);
1861 		isnew = !!(inode_state_read(old) & I_NEW);
1862 		spin_unlock(&old->i_lock);
1863 		spin_unlock(&inode_hash_lock);
1864 		if (isnew)
1865 			wait_on_new_inode(old);
1866 		if (unlikely(!inode_unhashed(old))) {
1867 			iput(old);
1868 			return -EBUSY;
1869 		}
1870 		iput(old);
1871 	}
1872 }
1873 EXPORT_SYMBOL(insert_inode_locked);
1874 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1875 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1876 		int (*test)(struct inode *, void *), void *data)
1877 {
1878 	struct inode *old;
1879 
1880 	might_sleep();
1881 
1882 	inode_state_set_raw(inode, I_CREATING);
1883 	old = inode_insert5(inode, hashval, test, NULL, data);
1884 
1885 	if (old != inode) {
1886 		iput(old);
1887 		return -EBUSY;
1888 	}
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL(insert_inode_locked4);
1892 
1893 
inode_just_drop(struct inode * inode)1894 int inode_just_drop(struct inode *inode)
1895 {
1896 	return 1;
1897 }
1898 EXPORT_SYMBOL(inode_just_drop);
1899 
1900 /*
1901  * Called when we're dropping the last reference
1902  * to an inode.
1903  *
1904  * Call the FS "drop_inode()" function, defaulting to
1905  * the legacy UNIX filesystem behaviour.  If it tells
1906  * us to evict inode, do so.  Otherwise, retain inode
1907  * in cache if fs is alive, sync and evict if fs is
1908  * shutting down.
1909  */
iput_final(struct inode * inode)1910 static void iput_final(struct inode *inode)
1911 {
1912 	struct super_block *sb = inode->i_sb;
1913 	const struct super_operations *op = inode->i_sb->s_op;
1914 	int drop;
1915 
1916 	WARN_ON(inode_state_read(inode) & I_NEW);
1917 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1918 
1919 	if (op->drop_inode)
1920 		drop = op->drop_inode(inode);
1921 	else
1922 		drop = inode_generic_drop(inode);
1923 
1924 	if (!drop &&
1925 	    !(inode_state_read(inode) & I_DONTCACHE) &&
1926 	    (sb->s_flags & SB_ACTIVE)) {
1927 		__inode_lru_list_add(inode, true);
1928 		spin_unlock(&inode->i_lock);
1929 		return;
1930 	}
1931 
1932 	/*
1933 	 * Re-check ->i_count in case the ->drop_inode() hooks played games.
1934 	 * Note we only execute this if the verdict was to drop the inode.
1935 	 */
1936 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1937 
1938 	if (drop) {
1939 		inode_state_set(inode, I_FREEING);
1940 	} else {
1941 		inode_state_set(inode, I_WILL_FREE);
1942 		spin_unlock(&inode->i_lock);
1943 
1944 		write_inode_now(inode, 1);
1945 
1946 		spin_lock(&inode->i_lock);
1947 		WARN_ON(inode_state_read(inode) & I_NEW);
1948 		inode_state_replace(inode, I_WILL_FREE, I_FREEING);
1949 	}
1950 
1951 	inode_lru_list_del(inode);
1952 	spin_unlock(&inode->i_lock);
1953 
1954 	evict(inode);
1955 }
1956 
1957 /**
1958  *	iput	- put an inode
1959  *	@inode: inode to put
1960  *
1961  *	Puts an inode, dropping its usage count. If the inode use count hits
1962  *	zero, the inode is then freed and may also be destroyed.
1963  *
1964  *	Consequently, iput() can sleep.
1965  */
iput(struct inode * inode)1966 void iput(struct inode *inode)
1967 {
1968 	might_sleep();
1969 	if (unlikely(!inode))
1970 		return;
1971 
1972 retry:
1973 	lockdep_assert_not_held(&inode->i_lock);
1974 	VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode);
1975 	/*
1976 	 * Note this assert is technically racy as if the count is bogusly
1977 	 * equal to one, then two CPUs racing to further drop it can both
1978 	 * conclude it's fine.
1979 	 */
1980 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode);
1981 
1982 	if (atomic_add_unless(&inode->i_count, -1, 1))
1983 		return;
1984 
1985 	if ((inode_state_read_once(inode) & I_DIRTY_TIME) && inode->i_nlink) {
1986 		trace_writeback_lazytime_iput(inode);
1987 		mark_inode_dirty_sync(inode);
1988 		goto retry;
1989 	}
1990 
1991 	spin_lock(&inode->i_lock);
1992 	if (unlikely((inode_state_read(inode) & I_DIRTY_TIME) && inode->i_nlink)) {
1993 		spin_unlock(&inode->i_lock);
1994 		goto retry;
1995 	}
1996 
1997 	if (!atomic_dec_and_test(&inode->i_count)) {
1998 		spin_unlock(&inode->i_lock);
1999 		return;
2000 	}
2001 
2002 	/*
2003 	 * iput_final() drops ->i_lock, we can't assert on it as the inode may
2004 	 * be deallocated by the time the call returns.
2005 	 */
2006 	iput_final(inode);
2007 }
2008 EXPORT_SYMBOL(iput);
2009 
2010 /**
2011  *	iput_not_last	- put an inode assuming this is not the last reference
2012  *	@inode: inode to put
2013  */
iput_not_last(struct inode * inode)2014 void iput_not_last(struct inode *inode)
2015 {
2016 	VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode);
2017 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 2, inode);
2018 
2019 	WARN_ON(atomic_sub_return(1, &inode->i_count) == 0);
2020 }
2021 EXPORT_SYMBOL(iput_not_last);
2022 
2023 #ifdef CONFIG_BLOCK
2024 /**
2025  *	bmap	- find a block number in a file
2026  *	@inode:  inode owning the block number being requested
2027  *	@block: pointer containing the block to find
2028  *
2029  *	Replaces the value in ``*block`` with the block number on the device holding
2030  *	corresponding to the requested block number in the file.
2031  *	That is, asked for block 4 of inode 1 the function will replace the
2032  *	4 in ``*block``, with disk block relative to the disk start that holds that
2033  *	block of the file.
2034  *
2035  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
2036  *	hole, returns 0 and ``*block`` is also set to 0.
2037  */
bmap(struct inode * inode,sector_t * block)2038 int bmap(struct inode *inode, sector_t *block)
2039 {
2040 	if (!inode->i_mapping->a_ops->bmap)
2041 		return -EINVAL;
2042 
2043 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
2044 	return 0;
2045 }
2046 EXPORT_SYMBOL(bmap);
2047 #endif
2048 
2049 /*
2050  * With relative atime, only update atime if the previous atime is
2051  * earlier than or equal to either the ctime or mtime,
2052  * or if at least a day has passed since the last atime update.
2053  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)2054 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2055 			     struct timespec64 now)
2056 {
2057 	struct timespec64 atime, mtime, ctime;
2058 
2059 	if (!(mnt->mnt_flags & MNT_RELATIME))
2060 		return true;
2061 	/*
2062 	 * Is mtime younger than or equal to atime? If yes, update atime:
2063 	 */
2064 	atime = inode_get_atime(inode);
2065 	mtime = inode_get_mtime(inode);
2066 	if (timespec64_compare(&mtime, &atime) >= 0)
2067 		return true;
2068 	/*
2069 	 * Is ctime younger than or equal to atime? If yes, update atime:
2070 	 */
2071 	ctime = inode_get_ctime(inode);
2072 	if (timespec64_compare(&ctime, &atime) >= 0)
2073 		return true;
2074 
2075 	/*
2076 	 * Is the previous atime value older than a day? If yes,
2077 	 * update atime:
2078 	 */
2079 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2080 		return true;
2081 	/*
2082 	 * Good, we can skip the atime update:
2083 	 */
2084 	return false;
2085 }
2086 
2087 /**
2088  * inode_update_timestamps - update the timestamps on the inode
2089  * @inode: inode to be updated
2090  * @flags: S_* flags that needed to be updated
2091  *
2092  * The update_time function is called when an inode's timestamps need to be
2093  * updated for a read or write operation. This function handles updating the
2094  * actual timestamps. It's up to the caller to ensure that the inode is marked
2095  * dirty appropriately.
2096  *
2097  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2098  * attempt to update all three of them. S_ATIME updates can be handled
2099  * independently of the rest.
2100  *
2101  * Returns a set of S_* flags indicating which values changed.
2102  */
inode_update_timestamps(struct inode * inode,int flags)2103 int inode_update_timestamps(struct inode *inode, int flags)
2104 {
2105 	int updated = 0;
2106 	struct timespec64 now;
2107 
2108 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2109 		struct timespec64 ctime = inode_get_ctime(inode);
2110 		struct timespec64 mtime = inode_get_mtime(inode);
2111 
2112 		now = inode_set_ctime_current(inode);
2113 		if (!timespec64_equal(&now, &ctime))
2114 			updated |= S_CTIME;
2115 		if (!timespec64_equal(&now, &mtime)) {
2116 			inode_set_mtime_to_ts(inode, now);
2117 			updated |= S_MTIME;
2118 		}
2119 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2120 			updated |= S_VERSION;
2121 	} else {
2122 		now = current_time(inode);
2123 	}
2124 
2125 	if (flags & S_ATIME) {
2126 		struct timespec64 atime = inode_get_atime(inode);
2127 
2128 		if (!timespec64_equal(&now, &atime)) {
2129 			inode_set_atime_to_ts(inode, now);
2130 			updated |= S_ATIME;
2131 		}
2132 	}
2133 	return updated;
2134 }
2135 EXPORT_SYMBOL(inode_update_timestamps);
2136 
2137 /**
2138  * generic_update_time - update the timestamps on the inode
2139  * @inode: inode to be updated
2140  * @flags: S_* flags that needed to be updated
2141  *
2142  * The update_time function is called when an inode's timestamps need to be
2143  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2144  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2145  * updates can be handled done independently of the rest.
2146  *
2147  * Returns a S_* mask indicating which fields were updated.
2148  */
generic_update_time(struct inode * inode,int flags)2149 int generic_update_time(struct inode *inode, int flags)
2150 {
2151 	int updated = inode_update_timestamps(inode, flags);
2152 	int dirty_flags = 0;
2153 
2154 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2155 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2156 	if (updated & S_VERSION)
2157 		dirty_flags |= I_DIRTY_SYNC;
2158 	__mark_inode_dirty(inode, dirty_flags);
2159 	return updated;
2160 }
2161 EXPORT_SYMBOL(generic_update_time);
2162 
2163 /*
2164  * This does the actual work of updating an inodes time or version.  Must have
2165  * had called mnt_want_write() before calling this.
2166  */
inode_update_time(struct inode * inode,int flags)2167 int inode_update_time(struct inode *inode, int flags)
2168 {
2169 	if (inode->i_op->update_time)
2170 		return inode->i_op->update_time(inode, flags);
2171 	generic_update_time(inode, flags);
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL(inode_update_time);
2175 
2176 /**
2177  *	atime_needs_update	-	update the access time
2178  *	@path: the &struct path to update
2179  *	@inode: inode to update
2180  *
2181  *	Update the accessed time on an inode and mark it for writeback.
2182  *	This function automatically handles read only file systems and media,
2183  *	as well as the "noatime" flag and inode specific "noatime" markers.
2184  */
atime_needs_update(const struct path * path,struct inode * inode)2185 bool atime_needs_update(const struct path *path, struct inode *inode)
2186 {
2187 	struct vfsmount *mnt = path->mnt;
2188 	struct timespec64 now, atime;
2189 
2190 	if (inode->i_flags & S_NOATIME)
2191 		return false;
2192 
2193 	/* Atime updates will likely cause i_uid and i_gid to be written
2194 	 * back improprely if their true value is unknown to the vfs.
2195 	 */
2196 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2197 		return false;
2198 
2199 	if (IS_NOATIME(inode))
2200 		return false;
2201 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2202 		return false;
2203 
2204 	if (mnt->mnt_flags & MNT_NOATIME)
2205 		return false;
2206 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2207 		return false;
2208 
2209 	now = current_time(inode);
2210 
2211 	if (!relatime_need_update(mnt, inode, now))
2212 		return false;
2213 
2214 	atime = inode_get_atime(inode);
2215 	if (timespec64_equal(&atime, &now))
2216 		return false;
2217 
2218 	return true;
2219 }
2220 
touch_atime(const struct path * path)2221 void touch_atime(const struct path *path)
2222 {
2223 	struct vfsmount *mnt = path->mnt;
2224 	struct inode *inode = d_inode(path->dentry);
2225 
2226 	if (!atime_needs_update(path, inode))
2227 		return;
2228 
2229 	if (!sb_start_write_trylock(inode->i_sb))
2230 		return;
2231 
2232 	if (mnt_get_write_access(mnt) != 0)
2233 		goto skip_update;
2234 	/*
2235 	 * File systems can error out when updating inodes if they need to
2236 	 * allocate new space to modify an inode (such is the case for
2237 	 * Btrfs), but since we touch atime while walking down the path we
2238 	 * really don't care if we failed to update the atime of the file,
2239 	 * so just ignore the return value.
2240 	 * We may also fail on filesystems that have the ability to make parts
2241 	 * of the fs read only, e.g. subvolumes in Btrfs.
2242 	 */
2243 	inode_update_time(inode, S_ATIME);
2244 	mnt_put_write_access(mnt);
2245 skip_update:
2246 	sb_end_write(inode->i_sb);
2247 }
2248 EXPORT_SYMBOL(touch_atime);
2249 
2250 /*
2251  * Return mask of changes for notify_change() that need to be done as a
2252  * response to write or truncate. Return 0 if nothing has to be changed.
2253  * Negative value on error (change should be denied).
2254  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2255 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2256 			      struct dentry *dentry)
2257 {
2258 	struct inode *inode = d_inode(dentry);
2259 	int mask = 0;
2260 	int ret;
2261 
2262 	if (IS_NOSEC(inode))
2263 		return 0;
2264 
2265 	mask = setattr_should_drop_suidgid(idmap, inode);
2266 	ret = security_inode_need_killpriv(dentry);
2267 	if (ret < 0)
2268 		return ret;
2269 	if (ret)
2270 		mask |= ATTR_KILL_PRIV;
2271 	return mask;
2272 }
2273 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2274 static int __remove_privs(struct mnt_idmap *idmap,
2275 			  struct dentry *dentry, int kill)
2276 {
2277 	struct iattr newattrs;
2278 
2279 	newattrs.ia_valid = ATTR_FORCE | kill;
2280 	/*
2281 	 * Note we call this on write, so notify_change will not
2282 	 * encounter any conflicting delegations:
2283 	 */
2284 	return notify_change(idmap, dentry, &newattrs, NULL);
2285 }
2286 
file_remove_privs_flags(struct file * file,unsigned int flags)2287 static int file_remove_privs_flags(struct file *file, unsigned int flags)
2288 {
2289 	struct dentry *dentry = file_dentry(file);
2290 	struct inode *inode = file_inode(file);
2291 	int error = 0;
2292 	int kill;
2293 
2294 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2295 		return 0;
2296 
2297 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2298 	if (kill < 0)
2299 		return kill;
2300 
2301 	if (kill) {
2302 		if (flags & IOCB_NOWAIT)
2303 			return -EAGAIN;
2304 
2305 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2306 	}
2307 
2308 	if (!error)
2309 		inode_has_no_xattr(inode);
2310 	return error;
2311 }
2312 
2313 /**
2314  * file_remove_privs - remove special file privileges (suid, capabilities)
2315  * @file: file to remove privileges from
2316  *
2317  * When file is modified by a write or truncation ensure that special
2318  * file privileges are removed.
2319  *
2320  * Return: 0 on success, negative errno on failure.
2321  */
file_remove_privs(struct file * file)2322 int file_remove_privs(struct file *file)
2323 {
2324 	return file_remove_privs_flags(file, 0);
2325 }
2326 EXPORT_SYMBOL(file_remove_privs);
2327 
2328 /**
2329  * current_time - Return FS time (possibly fine-grained)
2330  * @inode: inode.
2331  *
2332  * Return the current time truncated to the time granularity supported by
2333  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2334  * as having been QUERIED, get a fine-grained timestamp, but don't update
2335  * the floor.
2336  *
2337  * For a multigrain inode, this is effectively an estimate of the timestamp
2338  * that a file would receive. An actual update must go through
2339  * inode_set_ctime_current().
2340  */
current_time(struct inode * inode)2341 struct timespec64 current_time(struct inode *inode)
2342 {
2343 	struct timespec64 now;
2344 	u32 cns;
2345 
2346 	ktime_get_coarse_real_ts64_mg(&now);
2347 
2348 	if (!is_mgtime(inode))
2349 		goto out;
2350 
2351 	/* If nothing has queried it, then coarse time is fine */
2352 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2353 	if (cns & I_CTIME_QUERIED) {
2354 		/*
2355 		 * If there is no apparent change, then get a fine-grained
2356 		 * timestamp.
2357 		 */
2358 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2359 			ktime_get_real_ts64(&now);
2360 	}
2361 out:
2362 	return timestamp_truncate(now, inode);
2363 }
2364 EXPORT_SYMBOL(current_time);
2365 
file_update_time_flags(struct file * file,unsigned int flags)2366 static int file_update_time_flags(struct file *file, unsigned int flags)
2367 {
2368 	struct inode *inode = file_inode(file);
2369 	struct timespec64 now, ts;
2370 	int sync_mode = 0;
2371 	int ret = 0;
2372 
2373 	/* First try to exhaust all avenues to not sync */
2374 	if (IS_NOCMTIME(inode))
2375 		return 0;
2376 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2377 		return 0;
2378 
2379 	now = current_time(inode);
2380 
2381 	ts = inode_get_mtime(inode);
2382 	if (!timespec64_equal(&ts, &now))
2383 		sync_mode |= S_MTIME;
2384 	ts = inode_get_ctime(inode);
2385 	if (!timespec64_equal(&ts, &now))
2386 		sync_mode |= S_CTIME;
2387 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2388 		sync_mode |= S_VERSION;
2389 
2390 	if (!sync_mode)
2391 		return 0;
2392 
2393 	if (flags & IOCB_NOWAIT)
2394 		return -EAGAIN;
2395 
2396 	if (mnt_get_write_access_file(file))
2397 		return 0;
2398 	ret = inode_update_time(inode, sync_mode);
2399 	mnt_put_write_access_file(file);
2400 	return ret;
2401 }
2402 
2403 /**
2404  * file_update_time - update mtime and ctime time
2405  * @file: file accessed
2406  *
2407  * Update the mtime and ctime members of an inode and mark the inode for
2408  * writeback. Note that this function is meant exclusively for usage in
2409  * the file write path of filesystems, and filesystems may choose to
2410  * explicitly ignore updates via this function with the _NOCMTIME inode
2411  * flag, e.g. for network filesystem where these imestamps are handled
2412  * by the server. This can return an error for file systems who need to
2413  * allocate space in order to update an inode.
2414  *
2415  * Return: 0 on success, negative errno on failure.
2416  */
file_update_time(struct file * file)2417 int file_update_time(struct file *file)
2418 {
2419 	return file_update_time_flags(file, 0);
2420 }
2421 EXPORT_SYMBOL(file_update_time);
2422 
2423 /**
2424  * file_modified_flags - handle mandated vfs changes when modifying a file
2425  * @file: file that was modified
2426  * @flags: kiocb flags
2427  *
2428  * When file has been modified ensure that special
2429  * file privileges are removed and time settings are updated.
2430  *
2431  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2432  * time settings will not be updated. It will return -EAGAIN.
2433  *
2434  * Context: Caller must hold the file's inode lock.
2435  *
2436  * Return: 0 on success, negative errno on failure.
2437  */
file_modified_flags(struct file * file,int flags)2438 static int file_modified_flags(struct file *file, int flags)
2439 {
2440 	int ret;
2441 
2442 	/*
2443 	 * Clear the security bits if the process is not being run by root.
2444 	 * This keeps people from modifying setuid and setgid binaries.
2445 	 */
2446 	ret = file_remove_privs_flags(file, flags);
2447 	if (ret)
2448 		return ret;
2449 	return file_update_time_flags(file, flags);
2450 }
2451 
2452 /**
2453  * file_modified - handle mandated vfs changes when modifying a file
2454  * @file: file that was modified
2455  *
2456  * When file has been modified ensure that special
2457  * file privileges are removed and time settings are updated.
2458  *
2459  * Context: Caller must hold the file's inode lock.
2460  *
2461  * Return: 0 on success, negative errno on failure.
2462  */
file_modified(struct file * file)2463 int file_modified(struct file *file)
2464 {
2465 	return file_modified_flags(file, 0);
2466 }
2467 EXPORT_SYMBOL(file_modified);
2468 
2469 /**
2470  * kiocb_modified - handle mandated vfs changes when modifying a file
2471  * @iocb: iocb that was modified
2472  *
2473  * When file has been modified ensure that special
2474  * file privileges are removed and time settings are updated.
2475  *
2476  * Context: Caller must hold the file's inode lock.
2477  *
2478  * Return: 0 on success, negative errno on failure.
2479  */
kiocb_modified(struct kiocb * iocb)2480 int kiocb_modified(struct kiocb *iocb)
2481 {
2482 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2483 }
2484 EXPORT_SYMBOL_GPL(kiocb_modified);
2485 
inode_needs_sync(struct inode * inode)2486 int inode_needs_sync(struct inode *inode)
2487 {
2488 	if (IS_SYNC(inode))
2489 		return 1;
2490 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2491 		return 1;
2492 	return 0;
2493 }
2494 EXPORT_SYMBOL(inode_needs_sync);
2495 
2496 /*
2497  * If we try to find an inode in the inode hash while it is being
2498  * deleted, we have to wait until the filesystem completes its
2499  * deletion before reporting that it isn't found.  This function waits
2500  * until the deletion _might_ have completed.  Callers are responsible
2501  * to recheck inode state.
2502  *
2503  * It doesn't matter if I_NEW is not set initially, a call to
2504  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2505  * will DTRT.
2506  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2507 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2508 {
2509 	struct wait_bit_queue_entry wqe;
2510 	struct wait_queue_head *wq_head;
2511 
2512 	/*
2513 	 * Handle racing against evict(), see that routine for more details.
2514 	 */
2515 	if (unlikely(inode_unhashed(inode))) {
2516 		WARN_ON(is_inode_hash_locked);
2517 		spin_unlock(&inode->i_lock);
2518 		return;
2519 	}
2520 
2521 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2522 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2523 	spin_unlock(&inode->i_lock);
2524 	rcu_read_unlock();
2525 	if (is_inode_hash_locked)
2526 		spin_unlock(&inode_hash_lock);
2527 	schedule();
2528 	finish_wait(wq_head, &wqe.wq_entry);
2529 	if (is_inode_hash_locked)
2530 		spin_lock(&inode_hash_lock);
2531 	rcu_read_lock();
2532 }
2533 
2534 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2535 static int __init set_ihash_entries(char *str)
2536 {
2537 	if (!str)
2538 		return 0;
2539 	ihash_entries = simple_strtoul(str, &str, 0);
2540 	return 1;
2541 }
2542 __setup("ihash_entries=", set_ihash_entries);
2543 
2544 /*
2545  * Initialize the waitqueues and inode hash table.
2546  */
inode_init_early(void)2547 void __init inode_init_early(void)
2548 {
2549 	/* If hashes are distributed across NUMA nodes, defer
2550 	 * hash allocation until vmalloc space is available.
2551 	 */
2552 	if (hashdist)
2553 		return;
2554 
2555 	inode_hashtable =
2556 		alloc_large_system_hash("Inode-cache",
2557 					sizeof(struct hlist_head),
2558 					ihash_entries,
2559 					14,
2560 					HASH_EARLY | HASH_ZERO,
2561 					&i_hash_shift,
2562 					&i_hash_mask,
2563 					0,
2564 					0);
2565 }
2566 
inode_init(void)2567 void __init inode_init(void)
2568 {
2569 	/* inode slab cache */
2570 	inode_cachep = kmem_cache_create("inode_cache",
2571 					 sizeof(struct inode),
2572 					 0,
2573 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2574 					 SLAB_ACCOUNT),
2575 					 init_once);
2576 
2577 	/* Hash may have been set up in inode_init_early */
2578 	if (!hashdist)
2579 		return;
2580 
2581 	inode_hashtable =
2582 		alloc_large_system_hash("Inode-cache",
2583 					sizeof(struct hlist_head),
2584 					ihash_entries,
2585 					14,
2586 					HASH_ZERO,
2587 					&i_hash_shift,
2588 					&i_hash_mask,
2589 					0,
2590 					0);
2591 }
2592 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2593 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2594 {
2595 	inode->i_mode = mode;
2596 	switch (inode->i_mode & S_IFMT) {
2597 	case S_IFCHR:
2598 		inode->i_fop = &def_chr_fops;
2599 		inode->i_rdev = rdev;
2600 		break;
2601 	case S_IFBLK:
2602 		if (IS_ENABLED(CONFIG_BLOCK))
2603 			inode->i_fop = &def_blk_fops;
2604 		inode->i_rdev = rdev;
2605 		break;
2606 	case S_IFIFO:
2607 		inode->i_fop = &pipefifo_fops;
2608 		break;
2609 	case S_IFSOCK:
2610 		/* leave it no_open_fops */
2611 		break;
2612 	default:
2613 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2614 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2615 				  inode->i_ino);
2616 		break;
2617 	}
2618 }
2619 EXPORT_SYMBOL(init_special_inode);
2620 
2621 /**
2622  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2623  * @idmap: idmap of the mount the inode was created from
2624  * @inode: New inode
2625  * @dir: Directory inode
2626  * @mode: mode of the new inode
2627  *
2628  * If the inode has been created through an idmapped mount the idmap of
2629  * the vfsmount must be passed through @idmap. This function will then take
2630  * care to map the inode according to @idmap before checking permissions
2631  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2632  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2633  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2634 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2635 		      const struct inode *dir, umode_t mode)
2636 {
2637 	inode_fsuid_set(inode, idmap);
2638 	if (dir && dir->i_mode & S_ISGID) {
2639 		inode->i_gid = dir->i_gid;
2640 
2641 		/* Directories are special, and always inherit S_ISGID */
2642 		if (S_ISDIR(mode))
2643 			mode |= S_ISGID;
2644 	} else
2645 		inode_fsgid_set(inode, idmap);
2646 	inode->i_mode = mode;
2647 }
2648 EXPORT_SYMBOL(inode_init_owner);
2649 
2650 /**
2651  * inode_owner_or_capable - check current task permissions to inode
2652  * @idmap: idmap of the mount the inode was found from
2653  * @inode: inode being checked
2654  *
2655  * Return true if current either has CAP_FOWNER in a namespace with the
2656  * inode owner uid mapped, or owns the file.
2657  *
2658  * If the inode has been found through an idmapped mount the idmap of
2659  * the vfsmount must be passed through @idmap. This function will then take
2660  * care to map the inode according to @idmap before checking permissions.
2661  * On non-idmapped mounts or if permission checking is to be performed on the
2662  * raw inode simply pass @nop_mnt_idmap.
2663  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2664 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2665 			    const struct inode *inode)
2666 {
2667 	vfsuid_t vfsuid;
2668 	struct user_namespace *ns;
2669 
2670 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2671 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2672 		return true;
2673 
2674 	ns = current_user_ns();
2675 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2676 		return true;
2677 	return false;
2678 }
2679 EXPORT_SYMBOL(inode_owner_or_capable);
2680 
2681 /*
2682  * Direct i/o helper functions
2683  */
inode_dio_finished(const struct inode * inode)2684 bool inode_dio_finished(const struct inode *inode)
2685 {
2686 	return atomic_read(&inode->i_dio_count) == 0;
2687 }
2688 EXPORT_SYMBOL(inode_dio_finished);
2689 
2690 /**
2691  * inode_dio_wait - wait for outstanding DIO requests to finish
2692  * @inode: inode to wait for
2693  *
2694  * Waits for all pending direct I/O requests to finish so that we can
2695  * proceed with a truncate or equivalent operation.
2696  *
2697  * Must be called under a lock that serializes taking new references
2698  * to i_dio_count, usually by inode->i_rwsem.
2699  */
inode_dio_wait(struct inode * inode)2700 void inode_dio_wait(struct inode *inode)
2701 {
2702 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2703 }
2704 EXPORT_SYMBOL(inode_dio_wait);
2705 
inode_dio_wait_interruptible(struct inode * inode)2706 void inode_dio_wait_interruptible(struct inode *inode)
2707 {
2708 	wait_var_event_interruptible(&inode->i_dio_count,
2709 				     inode_dio_finished(inode));
2710 }
2711 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2712 
2713 /*
2714  * inode_set_flags - atomically set some inode flags
2715  *
2716  * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2717  * they have exclusive access to the inode structure (i.e., while the
2718  * inode is being instantiated).  The reason for the cmpxchg() loop
2719  * --- which wouldn't be necessary if all code paths which modify
2720  * i_flags actually followed this rule, is that there is at least one
2721  * code path which doesn't today so we use cmpxchg() out of an abundance
2722  * of caution.
2723  *
2724  * In the long run, i_rwsem is overkill, and we should probably look
2725  * at using the i_lock spinlock to protect i_flags, and then make sure
2726  * it is so documented in include/linux/fs.h and that all code follows
2727  * the locking convention!!
2728  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2729 void inode_set_flags(struct inode *inode, unsigned int flags,
2730 		     unsigned int mask)
2731 {
2732 	WARN_ON_ONCE(flags & ~mask);
2733 	set_mask_bits(&inode->i_flags, mask, flags);
2734 }
2735 EXPORT_SYMBOL(inode_set_flags);
2736 
inode_nohighmem(struct inode * inode)2737 void inode_nohighmem(struct inode *inode)
2738 {
2739 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2740 }
2741 EXPORT_SYMBOL(inode_nohighmem);
2742 
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2743 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2744 {
2745 	trace_inode_set_ctime_to_ts(inode, &ts);
2746 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2747 	inode->i_ctime_sec = ts.tv_sec;
2748 	inode->i_ctime_nsec = ts.tv_nsec;
2749 	return ts;
2750 }
2751 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2752 
2753 /**
2754  * timestamp_truncate - Truncate timespec to a granularity
2755  * @t: Timespec
2756  * @inode: inode being updated
2757  *
2758  * Truncate a timespec to the granularity supported by the fs
2759  * containing the inode. Always rounds down. gran must
2760  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2761  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2762 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2763 {
2764 	struct super_block *sb = inode->i_sb;
2765 	unsigned int gran = sb->s_time_gran;
2766 
2767 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2768 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2769 		t.tv_nsec = 0;
2770 
2771 	/* Avoid division in the common cases 1 ns and 1 s. */
2772 	if (gran == 1)
2773 		; /* nothing */
2774 	else if (gran == NSEC_PER_SEC)
2775 		t.tv_nsec = 0;
2776 	else if (gran > 1 && gran < NSEC_PER_SEC)
2777 		t.tv_nsec -= t.tv_nsec % gran;
2778 	else
2779 		WARN(1, "invalid file time granularity: %u", gran);
2780 	return t;
2781 }
2782 EXPORT_SYMBOL(timestamp_truncate);
2783 
2784 /**
2785  * inode_set_ctime_current - set the ctime to current_time
2786  * @inode: inode
2787  *
2788  * Set the inode's ctime to the current value for the inode. Returns the
2789  * current value that was assigned. If this is not a multigrain inode, then we
2790  * set it to the later of the coarse time and floor value.
2791  *
2792  * If it is multigrain, then we first see if the coarse-grained timestamp is
2793  * distinct from what is already there. If so, then use that. Otherwise, get a
2794  * fine-grained timestamp.
2795  *
2796  * After that, try to swap the new value into i_ctime_nsec. Accept the
2797  * resulting ctime, regardless of the outcome of the swap. If it has
2798  * already been replaced, then that timestamp is later than the earlier
2799  * unacceptable one, and is thus acceptable.
2800  */
inode_set_ctime_current(struct inode * inode)2801 struct timespec64 inode_set_ctime_current(struct inode *inode)
2802 {
2803 	struct timespec64 now;
2804 	u32 cns, cur;
2805 
2806 	ktime_get_coarse_real_ts64_mg(&now);
2807 	now = timestamp_truncate(now, inode);
2808 
2809 	/* Just return that if this is not a multigrain fs */
2810 	if (!is_mgtime(inode)) {
2811 		inode_set_ctime_to_ts(inode, now);
2812 		goto out;
2813 	}
2814 
2815 	/*
2816 	 * A fine-grained time is only needed if someone has queried
2817 	 * for timestamps, and the current coarse grained time isn't
2818 	 * later than what's already there.
2819 	 */
2820 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2821 	if (cns & I_CTIME_QUERIED) {
2822 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2823 					    .tv_nsec = cns & ~I_CTIME_QUERIED };
2824 
2825 		if (timespec64_compare(&now, &ctime) <= 0) {
2826 			ktime_get_real_ts64_mg(&now);
2827 			now = timestamp_truncate(now, inode);
2828 			mgtime_counter_inc(mg_fine_stamps);
2829 		}
2830 	}
2831 	mgtime_counter_inc(mg_ctime_updates);
2832 
2833 	/* No need to cmpxchg if it's exactly the same */
2834 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2835 		trace_ctime_xchg_skip(inode, &now);
2836 		goto out;
2837 	}
2838 	cur = cns;
2839 retry:
2840 	/* Try to swap the nsec value into place. */
2841 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2842 		/* If swap occurred, then we're (mostly) done */
2843 		inode->i_ctime_sec = now.tv_sec;
2844 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2845 		mgtime_counter_inc(mg_ctime_swaps);
2846 	} else {
2847 		/*
2848 		 * Was the change due to someone marking the old ctime QUERIED?
2849 		 * If so then retry the swap. This can only happen once since
2850 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2851 		 * with a new ctime.
2852 		 */
2853 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2854 			cns = cur;
2855 			goto retry;
2856 		}
2857 		/* Otherwise, keep the existing ctime */
2858 		now.tv_sec = inode->i_ctime_sec;
2859 		now.tv_nsec = cur & ~I_CTIME_QUERIED;
2860 	}
2861 out:
2862 	return now;
2863 }
2864 EXPORT_SYMBOL(inode_set_ctime_current);
2865 
2866 /**
2867  * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2868  * @inode: inode to update
2869  * @update: timespec64 to set the ctime
2870  *
2871  * Attempt to atomically update the ctime on behalf of a delegation holder.
2872  *
2873  * The nfs server can call back the holder of a delegation to get updated
2874  * inode attributes, including the mtime. When updating the mtime, update
2875  * the ctime to a value at least equal to that.
2876  *
2877  * This can race with concurrent updates to the inode, in which
2878  * case the update is skipped.
2879  *
2880  * Note that this works even when multigrain timestamps are not enabled,
2881  * so it is used in either case.
2882  */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2883 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2884 {
2885 	struct timespec64 now, cur_ts;
2886 	u32 cur, old;
2887 
2888 	/* pairs with try_cmpxchg below */
2889 	cur = smp_load_acquire(&inode->i_ctime_nsec);
2890 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2891 	cur_ts.tv_sec = inode->i_ctime_sec;
2892 
2893 	/* If the update is older than the existing value, skip it. */
2894 	if (timespec64_compare(&update, &cur_ts) <= 0)
2895 		return cur_ts;
2896 
2897 	ktime_get_coarse_real_ts64_mg(&now);
2898 
2899 	/* Clamp the update to "now" if it's in the future */
2900 	if (timespec64_compare(&update, &now) > 0)
2901 		update = now;
2902 
2903 	update = timestamp_truncate(update, inode);
2904 
2905 	/* No need to update if the values are already the same */
2906 	if (timespec64_equal(&update, &cur_ts))
2907 		return cur_ts;
2908 
2909 	/*
2910 	 * Try to swap the nsec value into place. If it fails, that means
2911 	 * it raced with an update due to a write or similar activity. That
2912 	 * stamp takes precedence, so just skip the update.
2913 	 */
2914 retry:
2915 	old = cur;
2916 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2917 		inode->i_ctime_sec = update.tv_sec;
2918 		mgtime_counter_inc(mg_ctime_swaps);
2919 		return update;
2920 	}
2921 
2922 	/*
2923 	 * Was the change due to another task marking the old ctime QUERIED?
2924 	 *
2925 	 * If so, then retry the swap. This can only happen once since
2926 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2927 	 * with a new ctime.
2928 	 */
2929 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2930 		goto retry;
2931 
2932 	/* Otherwise, it was a new timestamp. */
2933 	cur_ts.tv_sec = inode->i_ctime_sec;
2934 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2935 	return cur_ts;
2936 }
2937 EXPORT_SYMBOL(inode_set_ctime_deleg);
2938 
2939 /**
2940  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2941  * @idmap:	idmap of the mount @inode was found from
2942  * @inode:	inode to check
2943  * @vfsgid:	the new/current vfsgid of @inode
2944  *
2945  * Check whether @vfsgid is in the caller's group list or if the caller is
2946  * privileged with CAP_FSETID over @inode. This can be used to determine
2947  * whether the setgid bit can be kept or must be dropped.
2948  *
2949  * Return: true if the caller is sufficiently privileged, false if not.
2950  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2951 bool in_group_or_capable(struct mnt_idmap *idmap,
2952 			 const struct inode *inode, vfsgid_t vfsgid)
2953 {
2954 	if (vfsgid_in_group_p(vfsgid))
2955 		return true;
2956 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2957 		return true;
2958 	return false;
2959 }
2960 EXPORT_SYMBOL(in_group_or_capable);
2961 
2962 /**
2963  * mode_strip_sgid - handle the sgid bit for non-directories
2964  * @idmap: idmap of the mount the inode was created from
2965  * @dir: parent directory inode
2966  * @mode: mode of the file to be created in @dir
2967  *
2968  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2969  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2970  * either in the group of the parent directory or they have CAP_FSETID
2971  * in their user namespace and are privileged over the parent directory.
2972  * In all other cases, strip the S_ISGID bit from @mode.
2973  *
2974  * Return: the new mode to use for the file
2975  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2976 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2977 			const struct inode *dir, umode_t mode)
2978 {
2979 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2980 		return mode;
2981 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2982 		return mode;
2983 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2984 		return mode;
2985 	return mode & ~S_ISGID;
2986 }
2987 EXPORT_SYMBOL(mode_strip_sgid);
2988 
2989 #ifdef CONFIG_DEBUG_VFS
2990 /*
2991  * Dump an inode.
2992  *
2993  * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2994  * ground.
2995  *
2996  * TODO: handle getting to fs type with get_kernel_nofault()?
2997  * See dump_mapping() above.
2998  */
dump_inode(struct inode * inode,const char * reason)2999 void dump_inode(struct inode *inode, const char *reason)
3000 {
3001 	struct super_block *sb = inode->i_sb;
3002 
3003 	pr_warn("%s encountered for inode %px\n"
3004 		"fs %s mode %ho opflags 0x%hx flags 0x%x state 0x%x count %d\n",
3005 		reason, inode, sb->s_type->name, inode->i_mode, inode->i_opflags,
3006 		inode->i_flags, inode_state_read_once(inode), atomic_read(&inode->i_count));
3007 }
3008 
3009 EXPORT_SYMBOL(dump_inode);
3010 #endif
3011