1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 #include <linux/hmm.h>
38 #include <linux/hmm-dma.h>
39 #include <linux/pci-p2pdma.h>
40
41 #include "mlx5_ib.h"
42 #include "cmd.h"
43 #include "umr.h"
44 #include "qp.h"
45
46 #include <linux/mlx5/eq.h>
47
48 /* Contains the details of a pagefault. */
49 struct mlx5_pagefault {
50 u32 bytes_committed;
51 u64 token;
52 u8 event_subtype;
53 u8 type;
54 union {
55 /* Initiator or send message responder pagefault details. */
56 struct {
57 /* Received packet size, only valid for responders. */
58 u32 packet_size;
59 /*
60 * Number of resource holding WQE, depends on type.
61 */
62 u32 wq_num;
63 /*
64 * WQE index. Refers to either the send queue or
65 * receive queue, according to event_subtype.
66 */
67 u16 wqe_index;
68 } wqe;
69 /* RDMA responder pagefault details */
70 struct {
71 u32 r_key;
72 /*
73 * Received packet size, minimal size page fault
74 * resolution required for forward progress.
75 */
76 u32 packet_size;
77 u32 rdma_op_len;
78 u64 rdma_va;
79 } rdma;
80 struct {
81 u64 va;
82 u32 mkey;
83 u32 fault_byte_count;
84 u32 prefetch_before_byte_count;
85 u32 prefetch_after_byte_count;
86 u8 flags;
87 } memory;
88 };
89
90 struct mlx5_ib_pf_eq *eq;
91 struct work_struct work;
92 };
93
94 #define MAX_PREFETCH_LEN (4*1024*1024U)
95
96 /* Timeout in ms to wait for an active mmu notifier to complete when handling
97 * a pagefault. */
98 #define MMU_NOTIFIER_TIMEOUT 1000
99
100 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
101 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
102 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
103 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
104 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
105
106 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
107
108 static u64 mlx5_imr_ksm_entries;
109
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)110 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
111 struct mlx5_ib_mr *imr, int flags)
112 {
113 struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
114 struct mlx5_klm *end = pklm + nentries;
115 int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
116 __be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
117 cpu_to_be32(imr->null_mmkey.key) :
118 mr_to_mdev(imr)->mkeys.null_mkey;
119 u64 va =
120 MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
121
122 if (flags & MLX5_IB_UPD_XLT_ZAP) {
123 for (; pklm != end; pklm++, idx++, va += step) {
124 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
125 pklm->key = key;
126 pklm->va = cpu_to_be64(va);
127 }
128 return;
129 }
130
131 /*
132 * The locking here is pretty subtle. Ideally the implicit_children
133 * xarray would be protected by the umem_mutex, however that is not
134 * possible. Instead this uses a weaker update-then-lock pattern:
135 *
136 * xa_store()
137 * mutex_lock(umem_mutex)
138 * mlx5r_umr_update_xlt()
139 * mutex_unlock(umem_mutex)
140 * destroy lkey
141 *
142 * ie any change the xarray must be followed by the locked update_xlt
143 * before destroying.
144 *
145 * The umem_mutex provides the acquire/release semantic needed to make
146 * the xa_store() visible to a racing thread.
147 */
148 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
149
150 for (; pklm != end; pklm++, idx++, va += step) {
151 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
152
153 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
154 if (mtt) {
155 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
156 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
157 } else {
158 pklm->key = key;
159 pklm->va = cpu_to_be64(va);
160 }
161 }
162 }
163
populate_mtt(__be64 * pas,size_t start,size_t nentries,struct mlx5_ib_mr * mr,int flags)164 static int populate_mtt(__be64 *pas, size_t start, size_t nentries,
165 struct mlx5_ib_mr *mr, int flags)
166 {
167 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
168 bool downgrade = flags & MLX5_IB_UPD_XLT_DOWNGRADE;
169 struct pci_p2pdma_map_state p2pdma_state = {};
170 struct ib_device *dev = odp->umem.ibdev;
171 size_t i;
172
173 if (flags & MLX5_IB_UPD_XLT_ZAP)
174 return 0;
175
176 for (i = 0; i < nentries; i++) {
177 unsigned long pfn = odp->map.pfn_list[start + i];
178 dma_addr_t dma_addr;
179
180 pfn = odp->map.pfn_list[start + i];
181 if (!(pfn & HMM_PFN_VALID))
182 /* ODP initialization */
183 continue;
184
185 dma_addr = hmm_dma_map_pfn(dev->dma_device, &odp->map,
186 start + i, &p2pdma_state);
187 if (ib_dma_mapping_error(dev, dma_addr))
188 return -EFAULT;
189
190 dma_addr |= MLX5_IB_MTT_READ;
191 if ((pfn & HMM_PFN_WRITE) && !downgrade)
192 dma_addr |= MLX5_IB_MTT_WRITE;
193
194 pas[i] = cpu_to_be64(dma_addr);
195 odp->npages++;
196 }
197 return 0;
198 }
199
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)200 int mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
201 struct mlx5_ib_mr *mr, int flags)
202 {
203 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
204 populate_klm(xlt, idx, nentries, mr, flags);
205 return 0;
206 } else {
207 return populate_mtt(xlt, idx, nentries, mr, flags);
208 }
209 }
210
211 /*
212 * This must be called after the mr has been removed from implicit_children.
213 * NOTE: The MR does not necessarily have to be
214 * empty here, parallel page faults could have raced with the free process and
215 * added pages to it.
216 */
free_implicit_child_mr_work(struct work_struct * work)217 static void free_implicit_child_mr_work(struct work_struct *work)
218 {
219 struct mlx5_ib_mr *mr =
220 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
221 struct mlx5_ib_mr *imr = mr->parent;
222 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
223 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
224
225 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
226
227 mutex_lock(&odp_imr->umem_mutex);
228 mlx5r_umr_update_xlt(mr->parent,
229 ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
230 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
231 mutex_unlock(&odp_imr->umem_mutex);
232 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
233
234 mlx5r_deref_odp_mkey(&imr->mmkey);
235 }
236
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)237 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
238 {
239 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
240 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
241 struct mlx5_ib_mr *imr = mr->parent;
242
243 /*
244 * If userspace is racing freeing the parent implicit ODP MR then we can
245 * loose the race with parent destruction. In this case
246 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
247 * xarray so NOP is fine. This child MR cannot be destroyed here because
248 * we are under its umem_mutex.
249 */
250 if (!refcount_inc_not_zero(&imr->mmkey.usecount))
251 return;
252
253 xa_lock(&imr->implicit_children);
254 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
255 mr) {
256 xa_unlock(&imr->implicit_children);
257 mlx5r_deref_odp_mkey(&imr->mmkey);
258 return;
259 }
260
261 if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
262 __xa_erase(&mr_to_mdev(mr)->odp_mkeys,
263 mlx5_base_mkey(mr->mmkey.key));
264 xa_unlock(&imr->implicit_children);
265
266 /* Freeing a MR is a sleeping operation, so bounce to a work queue */
267 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
268 queue_work(system_unbound_wq, &mr->odp_destroy.work);
269 }
270
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)271 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
272 const struct mmu_notifier_range *range,
273 unsigned long cur_seq)
274 {
275 struct ib_umem_odp *umem_odp =
276 container_of(mni, struct ib_umem_odp, notifier);
277 struct mlx5_ib_mr *mr;
278 const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
279 u64 idx = 0, blk_start_idx = 0;
280 u64 invalidations = 0;
281 unsigned long start;
282 unsigned long end;
283 int in_block = 0;
284 u64 addr;
285
286 if (!mmu_notifier_range_blockable(range))
287 return false;
288
289 mutex_lock(&umem_odp->umem_mutex);
290 mmu_interval_set_seq(mni, cur_seq);
291 /*
292 * If npages is zero then umem_odp->private may not be setup yet. This
293 * does not complete until after the first page is mapped for DMA.
294 */
295 if (!umem_odp->npages)
296 goto out;
297 mr = umem_odp->private;
298 if (!mr)
299 goto out;
300
301 start = max_t(u64, ib_umem_start(umem_odp), range->start);
302 end = min_t(u64, ib_umem_end(umem_odp), range->end);
303
304 /*
305 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
306 * while we are doing the invalidation, no page fault will attempt to
307 * overwrite the same MTTs. Concurent invalidations might race us,
308 * but they will write 0s as well, so no difference in the end result.
309 */
310 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
311 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
312 /*
313 * Strive to write the MTTs in chunks, but avoid overwriting
314 * non-existing MTTs. The huristic here can be improved to
315 * estimate the cost of another UMR vs. the cost of bigger
316 * UMR.
317 */
318 if (umem_odp->map.pfn_list[idx] & HMM_PFN_VALID) {
319 if (!in_block) {
320 blk_start_idx = idx;
321 in_block = 1;
322 }
323 } else {
324 u64 umr_offset = idx & umr_block_mask;
325
326 if (in_block && umr_offset == 0) {
327 mlx5r_umr_update_xlt(mr, blk_start_idx,
328 idx - blk_start_idx, 0,
329 MLX5_IB_UPD_XLT_ZAP |
330 MLX5_IB_UPD_XLT_ATOMIC);
331 in_block = 0;
332 /* Count page invalidations */
333 invalidations += idx - blk_start_idx + 1;
334 }
335 }
336 }
337 if (in_block) {
338 mlx5r_umr_update_xlt(mr, blk_start_idx,
339 idx - blk_start_idx + 1, 0,
340 MLX5_IB_UPD_XLT_ZAP |
341 MLX5_IB_UPD_XLT_ATOMIC);
342 /* Count page invalidations */
343 invalidations += idx - blk_start_idx + 1;
344 }
345
346 mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
347
348 /*
349 * We are now sure that the device will not access the
350 * memory. We can safely unmap it, and mark it as dirty if
351 * needed.
352 */
353
354 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
355
356 if (unlikely(!umem_odp->npages && mr->parent))
357 destroy_unused_implicit_child_mr(mr);
358 out:
359 mutex_unlock(&umem_odp->umem_mutex);
360 return true;
361 }
362
363 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
364 .invalidate = mlx5_ib_invalidate_range,
365 };
366
internal_fill_odp_caps(struct mlx5_ib_dev * dev)367 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
368 {
369 struct ib_odp_caps *caps = &dev->odp_caps;
370
371 memset(caps, 0, sizeof(*caps));
372
373 if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
374 return;
375
376 caps->general_caps = IB_ODP_SUPPORT;
377
378 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
379 dev->odp_max_size = U64_MAX;
380 else
381 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
382
383 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
384 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
385
386 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
387 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
388
389 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
390 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
391
392 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
393 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
394
395 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
396 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
397
398 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
399 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
400
401 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
402 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
403
404 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
405 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
406
407 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
408 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
409
410 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
411 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
412
413 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
414 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
415
416 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
417 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
418
419 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
420 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
421
422 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
423 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
424
425 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
426 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
427 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
428 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
429 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
430 }
431
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)432 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
433 struct mlx5_pagefault *pfault,
434 int error)
435 {
436 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
437 pfault->wqe.wq_num : pfault->token;
438 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
439 void *info;
440 int err;
441
442 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
443
444 if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
445 info = MLX5_ADDR_OF(page_fault_resume_in, in,
446 page_fault_info.mem_page_fault_info);
447 MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
448 pfault->token & 0xffffffff);
449 MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
450 (pfault->token >> 32) & 0xffff);
451 MLX5_SET(mem_page_fault_info, info, error, !!error);
452 } else {
453 info = MLX5_ADDR_OF(page_fault_resume_in, in,
454 page_fault_info.trans_page_fault_info);
455 MLX5_SET(trans_page_fault_info, info, page_fault_type,
456 pfault->type);
457 MLX5_SET(trans_page_fault_info, info, fault_token,
458 pfault->token);
459 MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
460 MLX5_SET(trans_page_fault_info, info, error, !!error);
461 }
462
463 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
464 if (err)
465 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
466 wq_num, err);
467 }
468
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)469 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
470 unsigned long idx)
471 {
472 struct mlx5_ib_dev *dev = mr_to_mdev(imr);
473 struct ib_umem_odp *odp;
474 struct mlx5_ib_mr *mr;
475 struct mlx5_ib_mr *ret;
476 int err;
477
478 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
479 idx * MLX5_IMR_MTT_SIZE,
480 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
481 if (IS_ERR(odp))
482 return ERR_CAST(odp);
483
484 mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
485 MLX5_MKC_ACCESS_MODE_MTT,
486 MLX5_IMR_MTT_ENTRIES);
487 if (IS_ERR(mr)) {
488 ib_umem_odp_release(odp);
489 return mr;
490 }
491
492 mr->access_flags = imr->access_flags;
493 mr->ibmr.pd = imr->ibmr.pd;
494 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
495 mr->umem = &odp->umem;
496 mr->ibmr.lkey = mr->mmkey.key;
497 mr->ibmr.rkey = mr->mmkey.key;
498 mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
499 mr->parent = imr;
500 odp->private = mr;
501
502 /*
503 * First refcount is owned by the xarray and second refconut
504 * is returned to the caller.
505 */
506 refcount_set(&mr->mmkey.usecount, 2);
507
508 err = mlx5r_umr_update_xlt(mr, 0,
509 MLX5_IMR_MTT_ENTRIES,
510 PAGE_SHIFT,
511 MLX5_IB_UPD_XLT_ZAP |
512 MLX5_IB_UPD_XLT_ENABLE);
513 if (err) {
514 ret = ERR_PTR(err);
515 goto out_mr;
516 }
517
518 xa_lock(&imr->implicit_children);
519 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
520 GFP_KERNEL);
521 if (unlikely(ret)) {
522 if (xa_is_err(ret)) {
523 ret = ERR_PTR(xa_err(ret));
524 goto out_lock;
525 }
526 /*
527 * Another thread beat us to creating the child mr, use
528 * theirs.
529 */
530 refcount_inc(&ret->mmkey.usecount);
531 goto out_lock;
532 }
533
534 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
535 ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
536 &mr->mmkey, GFP_KERNEL);
537 if (xa_is_err(ret)) {
538 ret = ERR_PTR(xa_err(ret));
539 __xa_erase(&imr->implicit_children, idx);
540 goto out_lock;
541 }
542 mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
543 }
544 xa_unlock(&imr->implicit_children);
545 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
546 return mr;
547
548 out_lock:
549 xa_unlock(&imr->implicit_children);
550 out_mr:
551 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
552 return ret;
553 }
554
555 /*
556 * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
557 * and each implicit MR needs to assign a private null mkey to get the page
558 * faults on.
559 * The null mkey is created with the properties to enable getting the page
560 * fault for every time it is accessed and having all relevant access flags.
561 */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)562 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
563 struct mlx5_ib_mr *imr,
564 struct mlx5_ib_pd *pd)
565 {
566 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
567 void *mkc;
568 u32 *in;
569 int err;
570
571 in = kzalloc(inlen, GFP_KERNEL);
572 if (!in)
573 return -ENOMEM;
574
575 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
576 MLX5_SET(create_mkey_in, in, pg_access, 1);
577
578 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
579 MLX5_SET(mkc, mkc, a, 1);
580 MLX5_SET(mkc, mkc, rw, 1);
581 MLX5_SET(mkc, mkc, rr, 1);
582 MLX5_SET(mkc, mkc, lw, 1);
583 MLX5_SET(mkc, mkc, lr, 1);
584 MLX5_SET(mkc, mkc, free, 0);
585 MLX5_SET(mkc, mkc, umr_en, 0);
586 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
587
588 MLX5_SET(mkc, mkc, translations_octword_size, 4);
589 MLX5_SET(mkc, mkc, log_page_size, 61);
590 MLX5_SET(mkc, mkc, length64, 1);
591 MLX5_SET(mkc, mkc, pd, pd->pdn);
592 MLX5_SET64(mkc, mkc, start_addr, 0);
593 MLX5_SET(mkc, mkc, qpn, 0xffffff);
594
595 err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
596 if (err)
597 goto free_in;
598
599 imr->null_mmkey.type = MLX5_MKEY_NULL;
600
601 free_in:
602 kfree(in);
603 return err;
604 }
605
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)606 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
607 int access_flags)
608 {
609 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
610 struct ib_umem_odp *umem_odp;
611 struct mlx5_ib_mr *imr;
612 int err;
613
614 if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
615 return ERR_PTR(-EOPNOTSUPP);
616
617 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
618 if (IS_ERR(umem_odp))
619 return ERR_CAST(umem_odp);
620
621 imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
622 mlx5_imr_ksm_entries);
623 if (IS_ERR(imr)) {
624 ib_umem_odp_release(umem_odp);
625 return imr;
626 }
627
628 imr->access_flags = access_flags;
629 imr->ibmr.pd = &pd->ibpd;
630 imr->ibmr.iova = 0;
631 imr->umem = &umem_odp->umem;
632 imr->ibmr.lkey = imr->mmkey.key;
633 imr->ibmr.rkey = imr->mmkey.key;
634 imr->ibmr.device = &dev->ib_dev;
635 imr->is_odp_implicit = true;
636 xa_init(&imr->implicit_children);
637
638 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
639 err = alloc_implicit_mr_null_mkey(dev, imr, pd);
640 if (err)
641 goto out_mr;
642
643 err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
644 if (err)
645 goto out_mr;
646 }
647
648 err = mlx5r_umr_update_xlt(imr, 0,
649 mlx5_imr_ksm_entries,
650 MLX5_KSM_PAGE_SHIFT,
651 MLX5_IB_UPD_XLT_INDIRECT |
652 MLX5_IB_UPD_XLT_ZAP |
653 MLX5_IB_UPD_XLT_ENABLE);
654 if (err)
655 goto out_mr;
656
657 err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
658 if (err)
659 goto out_mr;
660
661 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
662 return imr;
663 out_mr:
664 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
665 mlx5_ib_dereg_mr(&imr->ibmr, NULL);
666 return ERR_PTR(err);
667 }
668
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)669 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
670 {
671 struct mlx5_ib_mr *mtt;
672 unsigned long idx;
673
674 /*
675 * If this is an implicit MR it is already invalidated so we can just
676 * delete the children mkeys.
677 */
678 xa_for_each(&mr->implicit_children, idx, mtt) {
679 xa_erase(&mr->implicit_children, idx);
680 mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
681 }
682
683 if (mr->null_mmkey.key) {
684 xa_erase(&mr_to_mdev(mr)->odp_mkeys,
685 mlx5_base_mkey(mr->null_mmkey.key));
686
687 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
688 mr->null_mmkey.key);
689 }
690 }
691
692 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
693 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
694 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)695 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
696 u64 user_va, size_t bcnt, u32 *bytes_mapped,
697 u32 flags)
698 {
699 int page_shift, ret, np;
700 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
701 u64 access_mask = 0;
702 u64 start_idx;
703 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
704 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
705
706 if (flags & MLX5_PF_FLAGS_ENABLE)
707 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
708
709 if (flags & MLX5_PF_FLAGS_DOWNGRADE)
710 xlt_flags |= MLX5_IB_UPD_XLT_DOWNGRADE;
711
712 page_shift = odp->page_shift;
713 start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
714
715 if (odp->umem.writable && !downgrade)
716 access_mask |= HMM_PFN_WRITE;
717
718 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
719 if (np < 0)
720 return np;
721
722 /*
723 * No need to check whether the MTTs really belong to this MR, since
724 * ib_umem_odp_map_dma_and_lock already checks this.
725 */
726 ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
727 mutex_unlock(&odp->umem_mutex);
728
729 if (ret < 0) {
730 if (ret != -EAGAIN)
731 mlx5_ib_err(mr_to_mdev(mr),
732 "Failed to update mkey page tables\n");
733 goto out;
734 }
735
736 if (bytes_mapped) {
737 u32 new_mappings = (np << page_shift) -
738 (user_va - round_down(user_va, 1 << page_shift));
739
740 *bytes_mapped += min_t(u32, new_mappings, bcnt);
741 }
742
743 return np << (page_shift - PAGE_SHIFT);
744
745 out:
746 return ret;
747 }
748
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)749 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
750 struct ib_umem_odp *odp_imr, u64 user_va,
751 size_t bcnt, u32 *bytes_mapped, u32 flags)
752 {
753 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
754 unsigned long upd_start_idx = end_idx + 1;
755 unsigned long upd_len = 0;
756 unsigned long npages = 0;
757 int err;
758 int ret;
759
760 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
761 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
762 return -EFAULT;
763
764 /* Fault each child mr that intersects with our interval. */
765 while (bcnt) {
766 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
767 struct ib_umem_odp *umem_odp;
768 struct mlx5_ib_mr *mtt;
769 u64 len;
770
771 xa_lock(&imr->implicit_children);
772 mtt = xa_load(&imr->implicit_children, idx);
773 if (unlikely(!mtt)) {
774 xa_unlock(&imr->implicit_children);
775 mtt = implicit_get_child_mr(imr, idx);
776 if (IS_ERR(mtt)) {
777 ret = PTR_ERR(mtt);
778 goto out;
779 }
780 upd_start_idx = min(upd_start_idx, idx);
781 upd_len = idx - upd_start_idx + 1;
782 } else {
783 refcount_inc(&mtt->mmkey.usecount);
784 xa_unlock(&imr->implicit_children);
785 }
786
787 umem_odp = to_ib_umem_odp(mtt->umem);
788 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
789 user_va;
790
791 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
792 bytes_mapped, flags);
793
794 mlx5r_deref_odp_mkey(&mtt->mmkey);
795
796 if (ret < 0)
797 goto out;
798 user_va += len;
799 bcnt -= len;
800 npages += ret;
801 }
802
803 ret = npages;
804
805 /*
806 * Any time the implicit_children are changed we must perform an
807 * update of the xlt before exiting to ensure the HW and the
808 * implicit_children remains synchronized.
809 */
810 out:
811 if (likely(!upd_len))
812 return ret;
813
814 /*
815 * Notice this is not strictly ordered right, the KSM is updated after
816 * the implicit_children is updated, so a parallel page fault could
817 * see a MR that is not yet visible in the KSM. This is similar to a
818 * parallel page fault seeing a MR that is being concurrently removed
819 * from the KSM. Both of these improbable situations are resolved
820 * safely by resuming the HW and then taking another page fault. The
821 * next pagefault handler will see the new information.
822 */
823 mutex_lock(&odp_imr->umem_mutex);
824 err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
825 MLX5_IB_UPD_XLT_INDIRECT |
826 MLX5_IB_UPD_XLT_ATOMIC);
827 mutex_unlock(&odp_imr->umem_mutex);
828 if (err) {
829 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
830 return err;
831 }
832 return ret;
833 }
834
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)835 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
836 u32 *bytes_mapped, u32 flags)
837 {
838 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
839 u32 xlt_flags = 0;
840 int err;
841 unsigned long page_size;
842
843 if (flags & MLX5_PF_FLAGS_ENABLE)
844 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
845
846 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
847 err = ib_umem_dmabuf_map_pages(umem_dmabuf);
848 if (err) {
849 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
850 return err;
851 }
852
853 page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
854 if (!page_size) {
855 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
856 err = -EINVAL;
857 } else {
858 if (mr->data_direct)
859 err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
860 else
861 err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
862 }
863 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
864
865 if (err)
866 return err;
867
868 if (bytes_mapped)
869 *bytes_mapped += bcnt;
870
871 return ib_umem_num_pages(mr->umem);
872 }
873
874 /*
875 * Returns:
876 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
877 * not accessible, or the MR is no longer valid.
878 * -EAGAIN/-ENOMEM: The operation should be retried
879 *
880 * -EINVAL/others: General internal malfunction
881 * >0: Number of pages mapped
882 */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)883 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
884 u32 *bytes_mapped, u32 flags, bool permissive_fault)
885 {
886 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
887
888 if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
889 return -EFAULT;
890
891 if (mr->umem->is_dmabuf)
892 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
893
894 if (!odp->is_implicit_odp) {
895 u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
896 u64 user_va;
897
898 if (check_add_overflow(offset, (u64)odp->umem.address,
899 &user_va))
900 return -EFAULT;
901
902 if (permissive_fault) {
903 if (user_va < ib_umem_start(odp))
904 user_va = ib_umem_start(odp);
905 if ((user_va + bcnt) > ib_umem_end(odp))
906 bcnt = ib_umem_end(odp) - user_va;
907 } else if (unlikely(user_va >= ib_umem_end(odp) ||
908 ib_umem_end(odp) - user_va < bcnt))
909 return -EFAULT;
910 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
911 flags);
912 }
913 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
914 flags);
915 }
916
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)917 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
918 {
919 int ret;
920
921 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
922 mr->umem->length, NULL,
923 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
924 return ret >= 0 ? 0 : ret;
925 }
926
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)927 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
928 {
929 int ret;
930
931 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
932 MLX5_PF_FLAGS_ENABLE);
933
934 return ret >= 0 ? 0 : ret;
935 }
936
937 struct pf_frame {
938 struct pf_frame *next;
939 u32 key;
940 u64 io_virt;
941 size_t bcnt;
942 int depth;
943 };
944
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)945 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
946 {
947 if (!mmkey)
948 return false;
949 if (mmkey->type == MLX5_MKEY_MW ||
950 mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
951 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
952 return mmkey->key == key;
953 }
954
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)955 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
956 {
957 struct mlx5_ib_mkey *mmkey;
958
959 xa_lock(&dev->odp_mkeys);
960 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
961 if (!mmkey) {
962 mmkey = ERR_PTR(-ENOENT);
963 goto out;
964 }
965 if (!mkey_is_eq(mmkey, key)) {
966 mmkey = ERR_PTR(-EFAULT);
967 goto out;
968 }
969 refcount_inc(&mmkey->usecount);
970 out:
971 xa_unlock(&dev->odp_mkeys);
972
973 return mmkey;
974 }
975
976 /*
977 * Handle a single data segment in a page-fault WQE or RDMA region.
978 *
979 * Returns zero on success. The caller may continue to the next data segment.
980 * Can return the following error codes:
981 * -EAGAIN to designate a temporary error. The caller will abort handling the
982 * page fault and resolve it.
983 * -EFAULT when there's an error mapping the requested pages. The caller will
984 * abort the page fault handling.
985 */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)986 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
987 struct ib_pd *pd, u32 key,
988 u64 io_virt, size_t bcnt,
989 u32 *bytes_committed,
990 u32 *bytes_mapped)
991 {
992 int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
993 struct pf_frame *head = NULL, *frame;
994 struct mlx5_ib_mkey *mmkey;
995 struct mlx5_ib_mr *mr;
996 struct mlx5_klm *pklm;
997 u32 *out = NULL;
998 size_t offset;
999
1000 io_virt += *bytes_committed;
1001 bcnt -= *bytes_committed;
1002 next_mr:
1003 mmkey = find_odp_mkey(dev, key);
1004 if (IS_ERR(mmkey)) {
1005 ret = PTR_ERR(mmkey);
1006 if (ret == -ENOENT) {
1007 mlx5_ib_dbg(
1008 dev,
1009 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
1010 key);
1011 if (bytes_mapped)
1012 *bytes_mapped += bcnt;
1013 /*
1014 * The user could specify a SGL with multiple lkeys and
1015 * only some of them are ODP. Treat the non-ODP ones as
1016 * fully faulted.
1017 */
1018 ret = 0;
1019 }
1020 goto end;
1021 }
1022
1023 switch (mmkey->type) {
1024 case MLX5_MKEY_MR:
1025 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1026
1027 pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1028 (io_virt & PAGE_MASK)) >>
1029 PAGE_SHIFT;
1030 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1031 if (ret < 0)
1032 goto end;
1033
1034 mlx5_update_odp_stats_with_handled(mr, faults, ret);
1035
1036 if (ret < pages_in_range) {
1037 ret = -EFAULT;
1038 goto end;
1039 }
1040
1041 ret = 0;
1042 break;
1043
1044 case MLX5_MKEY_MW:
1045 case MLX5_MKEY_INDIRECT_DEVX:
1046 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1047 mlx5_ib_dbg(dev, "indirection level exceeded\n");
1048 ret = -EFAULT;
1049 goto end;
1050 }
1051
1052 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1053 sizeof(*pklm) * (mmkey->ndescs - 2);
1054
1055 if (outlen > cur_outlen) {
1056 kfree(out);
1057 out = kzalloc(outlen, GFP_KERNEL);
1058 if (!out) {
1059 ret = -ENOMEM;
1060 goto end;
1061 }
1062 cur_outlen = outlen;
1063 }
1064
1065 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1066 bsf0_klm0_pas_mtt0_1);
1067
1068 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1069 if (ret)
1070 goto end;
1071
1072 offset = io_virt - MLX5_GET64(query_mkey_out, out,
1073 memory_key_mkey_entry.start_addr);
1074
1075 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1076 if (offset >= be32_to_cpu(pklm->bcount)) {
1077 offset -= be32_to_cpu(pklm->bcount);
1078 continue;
1079 }
1080
1081 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1082 if (!frame) {
1083 ret = -ENOMEM;
1084 goto end;
1085 }
1086
1087 frame->key = be32_to_cpu(pklm->key);
1088 frame->io_virt = be64_to_cpu(pklm->va) + offset;
1089 frame->bcnt = min_t(size_t, bcnt,
1090 be32_to_cpu(pklm->bcount) - offset);
1091 frame->depth = depth + 1;
1092 frame->next = head;
1093 head = frame;
1094
1095 bcnt -= frame->bcnt;
1096 offset = 0;
1097 }
1098 break;
1099
1100 default:
1101 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1102 ret = -EFAULT;
1103 goto end;
1104 }
1105
1106 if (head) {
1107 frame = head;
1108 head = frame->next;
1109
1110 key = frame->key;
1111 io_virt = frame->io_virt;
1112 bcnt = frame->bcnt;
1113 depth = frame->depth;
1114 kfree(frame);
1115
1116 mlx5r_deref_odp_mkey(mmkey);
1117 goto next_mr;
1118 }
1119
1120 end:
1121 if (!IS_ERR(mmkey))
1122 mlx5r_deref_odp_mkey(mmkey);
1123 while (head) {
1124 frame = head;
1125 head = frame->next;
1126 kfree(frame);
1127 }
1128 kfree(out);
1129
1130 *bytes_committed = 0;
1131 return ret;
1132 }
1133
1134 /*
1135 * Parse a series of data segments for page fault handling.
1136 *
1137 * @dev: Pointer to mlx5 IB device
1138 * @pfault: contains page fault information.
1139 * @wqe: points at the first data segment in the WQE.
1140 * @wqe_end: points after the end of the WQE.
1141 * @bytes_mapped: receives the number of bytes that the function was able to
1142 * map. This allows the caller to decide intelligently whether
1143 * enough memory was mapped to resolve the page fault
1144 * successfully (e.g. enough for the next MTU, or the entire
1145 * WQE).
1146 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1147 * the committed bytes).
1148 * @receive_queue: receive WQE end of sg list
1149 *
1150 * Returns zero for success or a negative error code.
1151 */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1152 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1153 struct mlx5_pagefault *pfault,
1154 void *wqe,
1155 void *wqe_end, u32 *bytes_mapped,
1156 u32 *total_wqe_bytes, bool receive_queue)
1157 {
1158 int ret = 0;
1159 u64 io_virt;
1160 __be32 key;
1161 u32 byte_count;
1162 size_t bcnt;
1163 int inline_segment;
1164
1165 if (bytes_mapped)
1166 *bytes_mapped = 0;
1167 if (total_wqe_bytes)
1168 *total_wqe_bytes = 0;
1169
1170 while (wqe < wqe_end) {
1171 struct mlx5_wqe_data_seg *dseg = wqe;
1172
1173 io_virt = be64_to_cpu(dseg->addr);
1174 key = dseg->lkey;
1175 byte_count = be32_to_cpu(dseg->byte_count);
1176 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
1177 bcnt = byte_count & ~MLX5_INLINE_SEG;
1178
1179 if (inline_segment) {
1180 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1181 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1182 16);
1183 } else {
1184 wqe += sizeof(*dseg);
1185 }
1186
1187 /* receive WQE end of sg list. */
1188 if (receive_queue && bcnt == 0 &&
1189 key == dev->mkeys.terminate_scatter_list_mkey &&
1190 io_virt == 0)
1191 break;
1192
1193 if (!inline_segment && total_wqe_bytes) {
1194 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1195 pfault->bytes_committed);
1196 }
1197
1198 /* A zero length data segment designates a length of 2GB. */
1199 if (bcnt == 0)
1200 bcnt = 1U << 31;
1201
1202 if (inline_segment || bcnt <= pfault->bytes_committed) {
1203 pfault->bytes_committed -=
1204 min_t(size_t, bcnt,
1205 pfault->bytes_committed);
1206 continue;
1207 }
1208
1209 ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1210 io_virt, bcnt,
1211 &pfault->bytes_committed,
1212 bytes_mapped);
1213 if (ret < 0)
1214 break;
1215 }
1216
1217 return ret;
1218 }
1219
1220 /*
1221 * Parse initiator WQE. Advances the wqe pointer to point at the
1222 * scatter-gather list, and set wqe_end to the end of the WQE.
1223 */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1224 static int mlx5_ib_mr_initiator_pfault_handler(
1225 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1226 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1227 {
1228 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1229 u16 wqe_index = pfault->wqe.wqe_index;
1230 struct mlx5_base_av *av;
1231 unsigned ds, opcode;
1232 u32 qpn = qp->trans_qp.base.mqp.qpn;
1233
1234 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1235 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1236 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1237 ds, wqe_length);
1238 return -EFAULT;
1239 }
1240
1241 if (ds == 0) {
1242 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1243 wqe_index, qpn);
1244 return -EFAULT;
1245 }
1246
1247 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1248 *wqe += sizeof(*ctrl);
1249
1250 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1251 MLX5_WQE_CTRL_OPCODE_MASK;
1252
1253 if (qp->type == IB_QPT_XRC_INI)
1254 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1255
1256 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1257 av = *wqe;
1258 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1259 *wqe += sizeof(struct mlx5_av);
1260 else
1261 *wqe += sizeof(struct mlx5_base_av);
1262 }
1263
1264 switch (opcode) {
1265 case MLX5_OPCODE_RDMA_WRITE:
1266 case MLX5_OPCODE_RDMA_WRITE_IMM:
1267 case MLX5_OPCODE_RDMA_READ:
1268 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1269 break;
1270 case MLX5_OPCODE_ATOMIC_CS:
1271 case MLX5_OPCODE_ATOMIC_FA:
1272 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1273 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1274 break;
1275 }
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * Parse responder WQE and set wqe_end to the end of the WQE.
1282 */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1283 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1284 struct mlx5_ib_srq *srq,
1285 void **wqe, void **wqe_end,
1286 int wqe_length)
1287 {
1288 int wqe_size = 1 << srq->msrq.wqe_shift;
1289
1290 if (wqe_size > wqe_length) {
1291 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1292 return -EFAULT;
1293 }
1294
1295 *wqe_end = *wqe + wqe_size;
1296 *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1297
1298 return 0;
1299 }
1300
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1301 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1302 struct mlx5_ib_qp *qp,
1303 void *wqe, void **wqe_end,
1304 int wqe_length)
1305 {
1306 struct mlx5_ib_wq *wq = &qp->rq;
1307 int wqe_size = 1 << wq->wqe_shift;
1308
1309 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1310 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1311 return -EFAULT;
1312 }
1313
1314 if (wqe_size > wqe_length) {
1315 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1316 return -EFAULT;
1317 }
1318
1319 *wqe_end = wqe + wqe_size;
1320
1321 return 0;
1322 }
1323
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1324 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1325 u32 wq_num, int pf_type)
1326 {
1327 struct mlx5_core_rsc_common *common = NULL;
1328 struct mlx5_core_srq *srq;
1329
1330 switch (pf_type) {
1331 case MLX5_WQE_PF_TYPE_RMP:
1332 srq = mlx5_cmd_get_srq(dev, wq_num);
1333 if (srq)
1334 common = &srq->common;
1335 break;
1336 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1337 case MLX5_WQE_PF_TYPE_RESP:
1338 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1339 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1340 break;
1341 default:
1342 break;
1343 }
1344
1345 return common;
1346 }
1347
res_to_qp(struct mlx5_core_rsc_common * res)1348 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1349 {
1350 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1351
1352 return to_mibqp(mqp);
1353 }
1354
res_to_srq(struct mlx5_core_rsc_common * res)1355 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1356 {
1357 struct mlx5_core_srq *msrq =
1358 container_of(res, struct mlx5_core_srq, common);
1359
1360 return to_mibsrq(msrq);
1361 }
1362
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1363 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1364 struct mlx5_pagefault *pfault)
1365 {
1366 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1367 u16 wqe_index = pfault->wqe.wqe_index;
1368 void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1369 u32 bytes_mapped, total_wqe_bytes;
1370 struct mlx5_core_rsc_common *res;
1371 int resume_with_error = 1;
1372 struct mlx5_ib_qp *qp;
1373 size_t bytes_copied;
1374 int ret = 0;
1375
1376 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1377 if (!res) {
1378 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1379 return;
1380 }
1381
1382 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1383 res->res != MLX5_RES_XSRQ) {
1384 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1385 pfault->type);
1386 goto resolve_page_fault;
1387 }
1388
1389 wqe_start = (void *)__get_free_page(GFP_KERNEL);
1390 if (!wqe_start) {
1391 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1392 goto resolve_page_fault;
1393 }
1394
1395 wqe = wqe_start;
1396 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1397 if (qp && sq) {
1398 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1399 &bytes_copied);
1400 if (ret)
1401 goto read_user;
1402 ret = mlx5_ib_mr_initiator_pfault_handler(
1403 dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1404 } else if (qp && !sq) {
1405 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1406 &bytes_copied);
1407 if (ret)
1408 goto read_user;
1409 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1410 dev, qp, wqe, &wqe_end, bytes_copied);
1411 } else if (!qp) {
1412 struct mlx5_ib_srq *srq = res_to_srq(res);
1413
1414 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1415 &bytes_copied);
1416 if (ret)
1417 goto read_user;
1418 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1419 dev, srq, &wqe, &wqe_end, bytes_copied);
1420 }
1421
1422 if (ret < 0 || wqe >= wqe_end)
1423 goto resolve_page_fault;
1424
1425 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1426 &total_wqe_bytes, !sq);
1427 if (ret == -EAGAIN)
1428 goto out;
1429
1430 if (ret < 0 || total_wqe_bytes > bytes_mapped)
1431 goto resolve_page_fault;
1432
1433 out:
1434 ret = 0;
1435 resume_with_error = 0;
1436
1437 read_user:
1438 if (ret)
1439 mlx5_ib_err(
1440 dev,
1441 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1442 ret, wqe_index, pfault->token);
1443
1444 resolve_page_fault:
1445 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1446 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1447 pfault->wqe.wq_num, resume_with_error,
1448 pfault->type);
1449 mlx5_core_res_put(res);
1450 free_page((unsigned long)wqe_start);
1451 }
1452
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1453 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1454 struct mlx5_pagefault *pfault)
1455 {
1456 u64 address;
1457 u32 length;
1458 u32 prefetch_len = pfault->bytes_committed;
1459 int prefetch_activated = 0;
1460 u32 rkey = pfault->rdma.r_key;
1461 int ret;
1462
1463 /* The RDMA responder handler handles the page fault in two parts.
1464 * First it brings the necessary pages for the current packet
1465 * (and uses the pfault context), and then (after resuming the QP)
1466 * prefetches more pages. The second operation cannot use the pfault
1467 * context and therefore uses the dummy_pfault context allocated on
1468 * the stack */
1469 pfault->rdma.rdma_va += pfault->bytes_committed;
1470 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1471 pfault->rdma.rdma_op_len);
1472 pfault->bytes_committed = 0;
1473
1474 address = pfault->rdma.rdma_va;
1475 length = pfault->rdma.rdma_op_len;
1476
1477 /* For some operations, the hardware cannot tell the exact message
1478 * length, and in those cases it reports zero. Use prefetch
1479 * logic. */
1480 if (length == 0) {
1481 prefetch_activated = 1;
1482 length = pfault->rdma.packet_size;
1483 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1484 }
1485
1486 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1487 &pfault->bytes_committed, NULL);
1488 if (ret == -EAGAIN) {
1489 /* We're racing with an invalidation, don't prefetch */
1490 prefetch_activated = 0;
1491 } else if (ret < 0) {
1492 mlx5_ib_page_fault_resume(dev, pfault, 1);
1493 if (ret != -ENOENT)
1494 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1495 ret, pfault->token, pfault->type);
1496 return;
1497 }
1498
1499 mlx5_ib_page_fault_resume(dev, pfault, 0);
1500 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1501 pfault->token, pfault->type,
1502 prefetch_activated);
1503
1504 /* At this point, there might be a new pagefault already arriving in
1505 * the eq, switch to the dummy pagefault for the rest of the
1506 * processing. We're still OK with the objects being alive as the
1507 * work-queue is being fenced. */
1508
1509 if (prefetch_activated) {
1510 u32 bytes_committed = 0;
1511
1512 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1513 prefetch_len,
1514 &bytes_committed, NULL);
1515 if (ret < 0 && ret != -EAGAIN) {
1516 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1517 ret, pfault->token, address, prefetch_len);
1518 }
1519 }
1520 }
1521
1522 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1523 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1524 struct mlx5_pagefault *pfault)
1525 {
1526 u64 prefetch_va =
1527 pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1528 size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1529 pfault->memory.fault_byte_count +
1530 pfault->memory.prefetch_after_byte_count;
1531 struct mlx5_ib_mkey *mmkey;
1532 struct mlx5_ib_mr *mr, *child_mr;
1533 int ret = 0;
1534
1535 mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1536 if (IS_ERR(mmkey))
1537 goto err;
1538
1539 switch (mmkey->type) {
1540 case MLX5_MKEY_IMPLICIT_CHILD:
1541 child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1542 mr = child_mr->parent;
1543 break;
1544 case MLX5_MKEY_NULL:
1545 mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1546 break;
1547 default:
1548 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1549 break;
1550 }
1551
1552 /* If prefetch fails, handle only demanded page fault */
1553 ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1554 if (ret < 0) {
1555 ret = pagefault_mr(mr, pfault->memory.va,
1556 pfault->memory.fault_byte_count, NULL, 0,
1557 true);
1558 if (ret < 0)
1559 goto err;
1560 }
1561
1562 mlx5_update_odp_stats_with_handled(mr, faults, ret);
1563 mlx5r_deref_odp_mkey(mmkey);
1564
1565 if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1566 mlx5_ib_page_fault_resume(dev, pfault, 0);
1567
1568 mlx5_ib_dbg(
1569 dev,
1570 "PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1571 pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1572 "" :
1573 "without resume cmd",
1574 pfault->token, pfault->memory.mkey, pfault->memory.va,
1575 pfault->memory.fault_byte_count);
1576
1577 return;
1578
1579 err:
1580 if (!IS_ERR(mmkey))
1581 mlx5r_deref_odp_mkey(mmkey);
1582 mlx5_ib_page_fault_resume(dev, pfault, 1);
1583 mlx5_ib_dbg(
1584 dev,
1585 "PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1586 pfault->token, pfault->memory.mkey, pfault->memory.va,
1587 pfault->memory.fault_byte_count, ret);
1588 }
1589
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1590 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1591 {
1592 u8 event_subtype = pfault->event_subtype;
1593
1594 switch (event_subtype) {
1595 case MLX5_PFAULT_SUBTYPE_WQE:
1596 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1597 break;
1598 case MLX5_PFAULT_SUBTYPE_RDMA:
1599 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1600 break;
1601 case MLX5_PFAULT_SUBTYPE_MEMORY:
1602 mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1603 break;
1604 default:
1605 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1606 event_subtype);
1607 mlx5_ib_page_fault_resume(dev, pfault, 1);
1608 }
1609 }
1610
mlx5_ib_eqe_pf_action(struct work_struct * work)1611 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1612 {
1613 struct mlx5_pagefault *pfault = container_of(work,
1614 struct mlx5_pagefault,
1615 work);
1616 struct mlx5_ib_pf_eq *eq = pfault->eq;
1617
1618 mlx5_ib_pfault(eq->dev, pfault);
1619 mempool_free(pfault, eq->pool);
1620 }
1621
1622 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1623 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1624 {
1625 struct mlx5_eqe_page_fault *pf_eqe;
1626 struct mlx5_pagefault *pfault;
1627 struct mlx5_eqe *eqe;
1628 int cc = 0;
1629
1630 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1631 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1632 if (!pfault) {
1633 schedule_work(&eq->work);
1634 break;
1635 }
1636
1637 pf_eqe = &eqe->data.page_fault;
1638 pfault->event_subtype = eqe->sub_type;
1639
1640 switch (eqe->sub_type) {
1641 case MLX5_PFAULT_SUBTYPE_RDMA:
1642 /* RDMA based event */
1643 pfault->bytes_committed =
1644 be32_to_cpu(pf_eqe->rdma.bytes_committed);
1645 pfault->type =
1646 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1647 pfault->token =
1648 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1649 MLX5_24BIT_MASK;
1650 pfault->rdma.r_key =
1651 be32_to_cpu(pf_eqe->rdma.r_key);
1652 pfault->rdma.packet_size =
1653 be16_to_cpu(pf_eqe->rdma.packet_length);
1654 pfault->rdma.rdma_op_len =
1655 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1656 pfault->rdma.rdma_va =
1657 be64_to_cpu(pf_eqe->rdma.rdma_va);
1658 mlx5_ib_dbg(
1659 eq->dev,
1660 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1661 eqe->sub_type, pfault->bytes_committed,
1662 pfault->type, pfault->token,
1663 pfault->rdma.r_key);
1664 mlx5_ib_dbg(eq->dev,
1665 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1666 pfault->rdma.rdma_op_len,
1667 pfault->rdma.rdma_va);
1668 break;
1669
1670 case MLX5_PFAULT_SUBTYPE_WQE:
1671 /* WQE based event */
1672 pfault->bytes_committed =
1673 be32_to_cpu(pf_eqe->wqe.bytes_committed);
1674 pfault->type =
1675 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1676 pfault->token =
1677 be32_to_cpu(pf_eqe->wqe.token);
1678 pfault->wqe.wq_num =
1679 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1680 MLX5_24BIT_MASK;
1681 pfault->wqe.wqe_index =
1682 be16_to_cpu(pf_eqe->wqe.wqe_index);
1683 pfault->wqe.packet_size =
1684 be16_to_cpu(pf_eqe->wqe.packet_length);
1685 mlx5_ib_dbg(
1686 eq->dev,
1687 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1688 eqe->sub_type, pfault->bytes_committed,
1689 pfault->type, pfault->token, pfault->wqe.wq_num,
1690 pfault->wqe.wqe_index);
1691 break;
1692
1693 case MLX5_PFAULT_SUBTYPE_MEMORY:
1694 /* Memory based event */
1695 pfault->bytes_committed = 0;
1696 pfault->token =
1697 be32_to_cpu(pf_eqe->memory.token31_0) |
1698 ((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1699 << 32);
1700 pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1701 pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1702 pfault->memory.fault_byte_count = (be32_to_cpu(
1703 pf_eqe->memory.demand_fault_pages) >> 12) *
1704 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1705 pfault->memory.prefetch_before_byte_count =
1706 be16_to_cpu(
1707 pf_eqe->memory.pre_demand_fault_pages) *
1708 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1709 pfault->memory.prefetch_after_byte_count =
1710 be16_to_cpu(
1711 pf_eqe->memory.post_demand_fault_pages) *
1712 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1713 pfault->memory.flags = pf_eqe->memory.flags;
1714 mlx5_ib_dbg(
1715 eq->dev,
1716 "PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1717 eqe->sub_type, pfault->token,
1718 pfault->memory.mkey,
1719 pfault->memory.fault_byte_count,
1720 pfault->memory.va, pfault->memory.flags);
1721 mlx5_ib_dbg(
1722 eq->dev,
1723 "PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1724 pfault->memory.prefetch_before_byte_count,
1725 pfault->memory.prefetch_after_byte_count);
1726 break;
1727
1728 default:
1729 mlx5_ib_warn(eq->dev,
1730 "Unsupported page fault event sub-type: 0x%02hhx\n",
1731 eqe->sub_type);
1732 /* Unsupported page faults should still be
1733 * resolved by the page fault handler
1734 */
1735 }
1736
1737 pfault->eq = eq;
1738 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1739 queue_work(eq->wq, &pfault->work);
1740
1741 cc = mlx5_eq_update_cc(eq->core, ++cc);
1742 }
1743
1744 mlx5_eq_update_ci(eq->core, cc, 1);
1745 }
1746
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1747 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1748 void *data)
1749 {
1750 struct mlx5_ib_pf_eq *eq =
1751 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1752 unsigned long flags;
1753
1754 if (spin_trylock_irqsave(&eq->lock, flags)) {
1755 mlx5_ib_eq_pf_process(eq);
1756 spin_unlock_irqrestore(&eq->lock, flags);
1757 } else {
1758 schedule_work(&eq->work);
1759 }
1760
1761 return IRQ_HANDLED;
1762 }
1763
1764 /* mempool_refill() was proposed but unfortunately wasn't accepted
1765 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1766 * Cheap workaround.
1767 */
mempool_refill(mempool_t * pool)1768 static void mempool_refill(mempool_t *pool)
1769 {
1770 while (pool->curr_nr < pool->min_nr)
1771 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1772 }
1773
mlx5_ib_eq_pf_action(struct work_struct * work)1774 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1775 {
1776 struct mlx5_ib_pf_eq *eq =
1777 container_of(work, struct mlx5_ib_pf_eq, work);
1778
1779 mempool_refill(eq->pool);
1780
1781 spin_lock_irq(&eq->lock);
1782 mlx5_ib_eq_pf_process(eq);
1783 spin_unlock_irq(&eq->lock);
1784 }
1785
1786 enum {
1787 MLX5_IB_NUM_PF_EQE = 0x1000,
1788 MLX5_IB_NUM_PF_DRAIN = 64,
1789 };
1790
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1791 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1792 {
1793 struct mlx5_eq_param param = {};
1794 int err = 0;
1795
1796 mutex_lock(&dev->odp_eq_mutex);
1797 if (eq->core)
1798 goto unlock;
1799 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1800 spin_lock_init(&eq->lock);
1801 eq->dev = dev;
1802
1803 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1804 sizeof(struct mlx5_pagefault));
1805 if (!eq->pool) {
1806 err = -ENOMEM;
1807 goto unlock;
1808 }
1809
1810 eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1811 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1812 MLX5_NUM_CMD_EQE);
1813 if (!eq->wq) {
1814 err = -ENOMEM;
1815 goto err_mempool;
1816 }
1817
1818 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1819 param = (struct mlx5_eq_param) {
1820 .nent = MLX5_IB_NUM_PF_EQE,
1821 };
1822 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1823 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m);
1824 if (IS_ERR(eq->core)) {
1825 err = PTR_ERR(eq->core);
1826 goto err_wq;
1827 }
1828 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1829 if (err) {
1830 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1831 goto err_eq;
1832 }
1833
1834 mutex_unlock(&dev->odp_eq_mutex);
1835 return 0;
1836 err_eq:
1837 mlx5_eq_destroy_generic(dev->mdev, eq->core);
1838 err_wq:
1839 eq->core = NULL;
1840 destroy_workqueue(eq->wq);
1841 err_mempool:
1842 mempool_destroy(eq->pool);
1843 unlock:
1844 mutex_unlock(&dev->odp_eq_mutex);
1845 return err;
1846 }
1847
1848 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1849 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1850 {
1851 int err;
1852
1853 if (!eq->core)
1854 return 0;
1855 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1856 err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1857 cancel_work_sync(&eq->work);
1858 destroy_workqueue(eq->wq);
1859 mempool_destroy(eq->pool);
1860
1861 return err;
1862 }
1863
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1864 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1865 {
1866 struct mlx5r_cache_rb_key rb_key = {
1867 .access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1868 .ndescs = mlx5_imr_ksm_entries,
1869 };
1870 struct mlx5_cache_ent *ent;
1871
1872 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1873 return 0;
1874
1875 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1876 if (IS_ERR(ent))
1877 return PTR_ERR(ent);
1878
1879 return 0;
1880 }
1881
1882 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1883 .advise_mr = mlx5_ib_advise_mr,
1884 };
1885
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1886 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1887 {
1888 internal_fill_odp_caps(dev);
1889
1890 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1891 return 0;
1892
1893 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1894
1895 mutex_init(&dev->odp_eq_mutex);
1896 return 0;
1897 }
1898
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1899 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1900 {
1901 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1902 return;
1903
1904 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1905 }
1906
mlx5_ib_odp_init(void)1907 int mlx5_ib_odp_init(void)
1908 {
1909 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1910 MLX5_IMR_MTT_BITS);
1911
1912 return 0;
1913 }
1914
1915 struct prefetch_mr_work {
1916 struct work_struct work;
1917 u32 pf_flags;
1918 u32 num_sge;
1919 struct {
1920 u64 io_virt;
1921 struct mlx5_ib_mr *mr;
1922 size_t length;
1923 } frags[];
1924 };
1925
destroy_prefetch_work(struct prefetch_mr_work * work)1926 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1927 {
1928 u32 i;
1929
1930 for (i = 0; i < work->num_sge; ++i)
1931 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1932
1933 kvfree(work);
1934 }
1935
1936 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1937 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1938 u32 lkey)
1939 {
1940 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1941 struct mlx5_ib_mr *mr = NULL;
1942 struct mlx5_ib_mkey *mmkey;
1943
1944 xa_lock(&dev->odp_mkeys);
1945 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1946 if (!mmkey || mmkey->key != lkey) {
1947 mr = ERR_PTR(-ENOENT);
1948 goto end;
1949 }
1950 if (mmkey->type != MLX5_MKEY_MR) {
1951 mr = ERR_PTR(-EINVAL);
1952 goto end;
1953 }
1954
1955 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1956
1957 if (mr->ibmr.pd != pd) {
1958 mr = ERR_PTR(-EPERM);
1959 goto end;
1960 }
1961
1962 /* prefetch with write-access must be supported by the MR */
1963 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1964 !mr->umem->writable) {
1965 mr = ERR_PTR(-EPERM);
1966 goto end;
1967 }
1968
1969 refcount_inc(&mmkey->usecount);
1970 end:
1971 xa_unlock(&dev->odp_mkeys);
1972 return mr;
1973 }
1974
mlx5_ib_prefetch_mr_work(struct work_struct * w)1975 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1976 {
1977 struct prefetch_mr_work *work =
1978 container_of(w, struct prefetch_mr_work, work);
1979 u32 bytes_mapped = 0;
1980 int ret;
1981 u32 i;
1982
1983 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1984 WARN_ON(!work->num_sge);
1985 for (i = 0; i < work->num_sge; ++i) {
1986 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1987 work->frags[i].length, &bytes_mapped,
1988 work->pf_flags, false);
1989 if (ret <= 0)
1990 continue;
1991 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1992 }
1993
1994 destroy_prefetch_work(work);
1995 }
1996
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)1997 static int init_prefetch_work(struct ib_pd *pd,
1998 enum ib_uverbs_advise_mr_advice advice,
1999 u32 pf_flags, struct prefetch_mr_work *work,
2000 struct ib_sge *sg_list, u32 num_sge)
2001 {
2002 u32 i;
2003
2004 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
2005 work->pf_flags = pf_flags;
2006
2007 for (i = 0; i < num_sge; ++i) {
2008 struct mlx5_ib_mr *mr;
2009
2010 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2011 if (IS_ERR(mr)) {
2012 work->num_sge = i;
2013 return PTR_ERR(mr);
2014 }
2015 work->frags[i].io_virt = sg_list[i].addr;
2016 work->frags[i].length = sg_list[i].length;
2017 work->frags[i].mr = mr;
2018 }
2019 work->num_sge = num_sge;
2020 return 0;
2021 }
2022
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2023 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2024 enum ib_uverbs_advise_mr_advice advice,
2025 u32 pf_flags, struct ib_sge *sg_list,
2026 u32 num_sge)
2027 {
2028 u32 bytes_mapped = 0;
2029 int ret = 0;
2030 u32 i;
2031
2032 for (i = 0; i < num_sge; ++i) {
2033 struct mlx5_ib_mr *mr;
2034
2035 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2036 if (IS_ERR(mr))
2037 return PTR_ERR(mr);
2038 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2039 &bytes_mapped, pf_flags, false);
2040 if (ret < 0) {
2041 mlx5r_deref_odp_mkey(&mr->mmkey);
2042 return ret;
2043 }
2044 mlx5_update_odp_stats(mr, prefetch, ret);
2045 mlx5r_deref_odp_mkey(&mr->mmkey);
2046 }
2047
2048 return 0;
2049 }
2050
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2051 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2052 enum ib_uverbs_advise_mr_advice advice,
2053 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2054 {
2055 u32 pf_flags = 0;
2056 struct prefetch_mr_work *work;
2057 int rc;
2058
2059 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2060 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2061
2062 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2063 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2064
2065 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2066 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2067 num_sge);
2068
2069 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2070 if (!work)
2071 return -ENOMEM;
2072
2073 rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2074 if (rc) {
2075 destroy_prefetch_work(work);
2076 return rc;
2077 }
2078 queue_work(system_unbound_wq, &work->work);
2079 return 0;
2080 }
2081