xref: /linux/arch/x86/mm/tlb.c (revision ba6ec09911b805778a2fed6d626bfe77b011a717)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/perf_event.h>
23 #include <asm/tlb.h>
24 
25 #include "mm_internal.h"
26 
27 #ifdef CONFIG_PARAVIRT
28 # define STATIC_NOPV
29 #else
30 # define STATIC_NOPV			static
31 # define __flush_tlb_local		native_flush_tlb_local
32 # define __flush_tlb_global		native_flush_tlb_global
33 # define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
34 # define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
35 #endif
36 
37 /*
38  *	TLB flushing, formerly SMP-only
39  *		c/o Linus Torvalds.
40  *
41  *	These mean you can really definitely utterly forget about
42  *	writing to user space from interrupts. (Its not allowed anyway).
43  *
44  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
45  *
46  *	More scalable flush, from Andi Kleen
47  *
48  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
49  */
50 
51 /*
52  * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
53  * stored in cpu_tlb_state.last_user_mm_spec.
54  */
55 #define LAST_USER_MM_IBPB	0x1UL
56 #define LAST_USER_MM_L1D_FLUSH	0x2UL
57 #define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
58 
59 /* Bits to set when tlbstate and flush is (re)initialized */
60 #define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
61 
62 /*
63  * The x86 feature is called PCID (Process Context IDentifier). It is similar
64  * to what is traditionally called ASID on the RISC processors.
65  *
66  * We don't use the traditional ASID implementation, where each process/mm gets
67  * its own ASID and flush/restart when we run out of ASID space.
68  *
69  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
70  * that came by on this CPU, allowing cheaper switch_mm between processes on
71  * this CPU.
72  *
73  * We end up with different spaces for different things. To avoid confusion we
74  * use different names for each of them:
75  *
76  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
77  *         the canonical identifier for an mm, dynamically allocated on each CPU
78  *         [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
79  *         the canonical, global identifier for an mm, identical across all CPUs
80  *
81  * kPCID - [1, MAX_ASID_AVAILABLE]
82  *         the value we write into the PCID part of CR3; corresponds to the
83  *         ASID+1, because PCID 0 is special.
84  *
85  * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
86  *         for KPTI each mm has two address spaces and thus needs two
87  *         PCID values, but we can still do with a single ASID denomination
88  *         for each mm. Corresponds to kPCID + 2048.
89  *
90  */
91 
92 /*
93  * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
94  * user/kernel switches
95  */
96 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
97 # define PTI_CONSUMED_PCID_BITS	1
98 #else
99 # define PTI_CONSUMED_PCID_BITS	0
100 #endif
101 
102 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
103 
104 /*
105  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
106  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
107  * use by non-PCID-aware users.
108  */
109 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
110 
111 /*
112  * Given @asid, compute kPCID
113  */
kern_pcid(u16 asid)114 static inline u16 kern_pcid(u16 asid)
115 {
116 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
117 
118 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
119 	/*
120 	 * Make sure that the dynamic ASID space does not conflict with the
121 	 * bit we are using to switch between user and kernel ASIDs.
122 	 */
123 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
124 
125 	/*
126 	 * The ASID being passed in here should have respected the
127 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
128 	 */
129 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
130 #endif
131 	/*
132 	 * The dynamically-assigned ASIDs that get passed in are small
133 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
134 	 * so do not bother to clear it.
135 	 *
136 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
137 	 * PCID bits.  This serves two purposes.  It prevents a nasty
138 	 * situation in which PCID-unaware code saves CR3, loads some other
139 	 * value (with PCID == 0), and then restores CR3, thus corrupting
140 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
141 	 * that any bugs involving loading a PCID-enabled CR3 with
142 	 * CR4.PCIDE off will trigger deterministically.
143 	 */
144 	return asid + 1;
145 }
146 
147 /*
148  * Given @asid, compute uPCID
149  */
user_pcid(u16 asid)150 static inline u16 user_pcid(u16 asid)
151 {
152 	u16 ret = kern_pcid(asid);
153 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
154 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
155 #endif
156 	return ret;
157 }
158 
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)159 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
160 {
161 	unsigned long cr3 = __sme_pa(pgd) | lam;
162 
163 	if (static_cpu_has(X86_FEATURE_PCID)) {
164 		cr3 |= kern_pcid(asid);
165 	} else {
166 		VM_WARN_ON_ONCE(asid != 0);
167 	}
168 
169 	return cr3;
170 }
171 
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)172 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
173 					      unsigned long lam)
174 {
175 	/*
176 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
177 	 * might be called during early boot. This should work even after
178 	 * boot because all CPU's the have same capabilities:
179 	 */
180 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
181 	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
182 }
183 
184 /*
185  * We get here when we do something requiring a TLB invalidation
186  * but could not go invalidate all of the contexts.  We do the
187  * necessary invalidation by clearing out the 'ctx_id' which
188  * forces a TLB flush when the context is loaded.
189  */
clear_asid_other(void)190 static void clear_asid_other(void)
191 {
192 	u16 asid;
193 
194 	/*
195 	 * This is only expected to be set if we have disabled
196 	 * kernel _PAGE_GLOBAL pages.
197 	 */
198 	if (!static_cpu_has(X86_FEATURE_PTI)) {
199 		WARN_ON_ONCE(1);
200 		return;
201 	}
202 
203 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
204 		/* Do not need to flush the current asid */
205 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
206 			continue;
207 		/*
208 		 * Make sure the next time we go to switch to
209 		 * this asid, we do a flush:
210 		 */
211 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
212 	}
213 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
214 }
215 
216 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
217 
218 
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)219 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
220 			    u16 *new_asid, bool *need_flush)
221 {
222 	u16 asid;
223 
224 	if (!static_cpu_has(X86_FEATURE_PCID)) {
225 		*new_asid = 0;
226 		*need_flush = true;
227 		return;
228 	}
229 
230 	/*
231 	 * TLB consistency for global ASIDs is maintained with hardware assisted
232 	 * remote TLB flushing. Global ASIDs are always up to date.
233 	 */
234 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
235 		u16 global_asid = mm_global_asid(next);
236 
237 		if (global_asid) {
238 			*new_asid = global_asid;
239 			*need_flush = false;
240 			return;
241 		}
242 	}
243 
244 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
245 		clear_asid_other();
246 
247 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
248 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
249 		    next->context.ctx_id)
250 			continue;
251 
252 		*new_asid = asid;
253 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
254 			       next_tlb_gen);
255 		return;
256 	}
257 
258 	/*
259 	 * We don't currently own an ASID slot on this CPU.
260 	 * Allocate a slot.
261 	 */
262 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
263 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
264 		*new_asid = 0;
265 		this_cpu_write(cpu_tlbstate.next_asid, 1);
266 	}
267 	*need_flush = true;
268 }
269 
270 /*
271  * Global ASIDs are allocated for multi-threaded processes that are
272  * active on multiple CPUs simultaneously, giving each of those
273  * processes the same PCID on every CPU, for use with hardware-assisted
274  * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
275  *
276  * These global ASIDs are held for the lifetime of the process.
277  */
278 static DEFINE_RAW_SPINLOCK(global_asid_lock);
279 static u16 last_global_asid = MAX_ASID_AVAILABLE;
280 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
281 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
282 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
283 
284 /*
285  * When the search for a free ASID in the global ASID space reaches
286  * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
287  * freed global ASIDs are safe to re-use.
288  *
289  * This way the global flush only needs to happen at ASID rollover
290  * time, and not at ASID allocation time.
291  */
reset_global_asid_space(void)292 static void reset_global_asid_space(void)
293 {
294 	lockdep_assert_held(&global_asid_lock);
295 
296 	invlpgb_flush_all_nonglobals();
297 
298 	/*
299 	 * The TLB flush above makes it safe to re-use the previously
300 	 * freed global ASIDs.
301 	 */
302 	bitmap_andnot(global_asid_used, global_asid_used,
303 			global_asid_freed, MAX_ASID_AVAILABLE);
304 	bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
305 
306 	/* Restart the search from the start of global ASID space. */
307 	last_global_asid = TLB_NR_DYN_ASIDS;
308 }
309 
allocate_global_asid(void)310 static u16 allocate_global_asid(void)
311 {
312 	u16 asid;
313 
314 	lockdep_assert_held(&global_asid_lock);
315 
316 	/* The previous allocation hit the edge of available address space */
317 	if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
318 		reset_global_asid_space();
319 
320 	asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
321 
322 	if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
323 		/* This should never happen. */
324 		VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
325 				global_asid_available);
326 		return 0;
327 	}
328 
329 	/* Claim this global ASID. */
330 	__set_bit(asid, global_asid_used);
331 	last_global_asid = asid;
332 	global_asid_available--;
333 	return asid;
334 }
335 
336 /*
337  * Check whether a process is currently active on more than @threshold CPUs.
338  * This is a cheap estimation on whether or not it may make sense to assign
339  * a global ASID to this process, and use broadcast TLB invalidation.
340  */
mm_active_cpus_exceeds(struct mm_struct * mm,int threshold)341 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
342 {
343 	int count = 0;
344 	int cpu;
345 
346 	/* This quick check should eliminate most single threaded programs. */
347 	if (cpumask_weight(mm_cpumask(mm)) <= threshold)
348 		return false;
349 
350 	/* Slower check to make sure. */
351 	for_each_cpu(cpu, mm_cpumask(mm)) {
352 		/* Skip the CPUs that aren't really running this process. */
353 		if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
354 			continue;
355 
356 		if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
357 			continue;
358 
359 		if (++count > threshold)
360 			return true;
361 	}
362 	return false;
363 }
364 
365 /*
366  * Assign a global ASID to the current process, protecting against
367  * races between multiple threads in the process.
368  */
use_global_asid(struct mm_struct * mm)369 static void use_global_asid(struct mm_struct *mm)
370 {
371 	u16 asid;
372 
373 	guard(raw_spinlock_irqsave)(&global_asid_lock);
374 
375 	/* This process is already using broadcast TLB invalidation. */
376 	if (mm_global_asid(mm))
377 		return;
378 
379 	/*
380 	 * The last global ASID was consumed while waiting for the lock.
381 	 *
382 	 * If this fires, a more aggressive ASID reuse scheme might be
383 	 * needed.
384 	 */
385 	if (!global_asid_available) {
386 		VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
387 		return;
388 	}
389 
390 	asid = allocate_global_asid();
391 	if (!asid)
392 		return;
393 
394 	mm_assign_global_asid(mm, asid);
395 }
396 
mm_free_global_asid(struct mm_struct * mm)397 void mm_free_global_asid(struct mm_struct *mm)
398 {
399 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
400 		return;
401 
402 	if (!mm_global_asid(mm))
403 		return;
404 
405 	guard(raw_spinlock_irqsave)(&global_asid_lock);
406 
407 	/* The global ASID can be re-used only after flush at wrap-around. */
408 #ifdef CONFIG_BROADCAST_TLB_FLUSH
409 	__set_bit(mm->context.global_asid, global_asid_freed);
410 
411 	mm->context.global_asid = 0;
412 	global_asid_available++;
413 #endif
414 }
415 
416 /*
417  * Is the mm transitioning from a CPU-local ASID to a global ASID?
418  */
mm_needs_global_asid(struct mm_struct * mm,u16 asid)419 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
420 {
421 	u16 global_asid = mm_global_asid(mm);
422 
423 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
424 		return false;
425 
426 	/* Process is transitioning to a global ASID */
427 	if (global_asid && asid != global_asid)
428 		return true;
429 
430 	return false;
431 }
432 
433 /*
434  * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
435  * systems have over 8k CPUs. Because of this potential ASID shortage,
436  * global ASIDs are handed out to processes that have frequent TLB
437  * flushes and are active on 4 or more CPUs simultaneously.
438  */
consider_global_asid(struct mm_struct * mm)439 static void consider_global_asid(struct mm_struct *mm)
440 {
441 	if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
442 		return;
443 
444 	/* Check every once in a while. */
445 	if ((current->pid & 0x1f) != (jiffies & 0x1f))
446 		return;
447 
448 	/*
449 	 * Assign a global ASID if the process is active on
450 	 * 4 or more CPUs simultaneously.
451 	 */
452 	if (mm_active_cpus_exceeds(mm, 3))
453 		use_global_asid(mm);
454 }
455 
finish_asid_transition(struct flush_tlb_info * info)456 static void finish_asid_transition(struct flush_tlb_info *info)
457 {
458 	struct mm_struct *mm = info->mm;
459 	int bc_asid = mm_global_asid(mm);
460 	int cpu;
461 
462 	if (!mm_in_asid_transition(mm))
463 		return;
464 
465 	for_each_cpu(cpu, mm_cpumask(mm)) {
466 		/*
467 		 * The remote CPU is context switching. Wait for that to
468 		 * finish, to catch the unlikely case of it switching to
469 		 * the target mm with an out of date ASID.
470 		 */
471 		while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
472 			cpu_relax();
473 
474 		if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
475 			continue;
476 
477 		/*
478 		 * If at least one CPU is not using the global ASID yet,
479 		 * send a TLB flush IPI. The IPI should cause stragglers
480 		 * to transition soon.
481 		 *
482 		 * This can race with the CPU switching to another task;
483 		 * that results in a (harmless) extra IPI.
484 		 */
485 		if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
486 			flush_tlb_multi(mm_cpumask(info->mm), info);
487 			return;
488 		}
489 	}
490 
491 	/* All the CPUs running this process are using the global ASID. */
492 	mm_clear_asid_transition(mm);
493 }
494 
broadcast_tlb_flush(struct flush_tlb_info * info)495 static void broadcast_tlb_flush(struct flush_tlb_info *info)
496 {
497 	bool pmd = info->stride_shift == PMD_SHIFT;
498 	unsigned long asid = mm_global_asid(info->mm);
499 	unsigned long addr = info->start;
500 
501 	/*
502 	 * TLB flushes with INVLPGB are kicked off asynchronously.
503 	 * The inc_mm_tlb_gen() guarantees page table updates are done
504 	 * before these TLB flushes happen.
505 	 */
506 	if (info->end == TLB_FLUSH_ALL) {
507 		invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
508 		/* Do any CPUs supporting INVLPGB need PTI? */
509 		if (cpu_feature_enabled(X86_FEATURE_PTI))
510 			invlpgb_flush_single_pcid_nosync(user_pcid(asid));
511 	} else do {
512 		unsigned long nr = 1;
513 
514 		if (info->stride_shift <= PMD_SHIFT) {
515 			nr = (info->end - addr) >> info->stride_shift;
516 			nr = clamp_val(nr, 1, invlpgb_count_max);
517 		}
518 
519 		invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
520 		if (cpu_feature_enabled(X86_FEATURE_PTI))
521 			invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
522 
523 		addr += nr << info->stride_shift;
524 	} while (addr < info->end);
525 
526 	finish_asid_transition(info);
527 
528 	/* Wait for the INVLPGBs kicked off above to finish. */
529 	__tlbsync();
530 }
531 
532 /*
533  * Given an ASID, flush the corresponding user ASID.  We can delay this
534  * until the next time we switch to it.
535  *
536  * See SWITCH_TO_USER_CR3.
537  */
invalidate_user_asid(u16 asid)538 static inline void invalidate_user_asid(u16 asid)
539 {
540 	/* There is no user ASID if address space separation is off */
541 	if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
542 		return;
543 
544 	/*
545 	 * We only have a single ASID if PCID is off and the CR3
546 	 * write will have flushed it.
547 	 */
548 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
549 		return;
550 
551 	if (!static_cpu_has(X86_FEATURE_PTI))
552 		return;
553 
554 	__set_bit(kern_pcid(asid),
555 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
556 }
557 
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)558 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
559 			    bool need_flush)
560 {
561 	unsigned long new_mm_cr3;
562 
563 	if (need_flush) {
564 		invalidate_user_asid(new_asid);
565 		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
566 	} else {
567 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
568 	}
569 
570 	/*
571 	 * Caution: many callers of this function expect
572 	 * that load_cr3() is serializing and orders TLB
573 	 * fills with respect to the mm_cpumask writes.
574 	 */
575 	write_cr3(new_mm_cr3);
576 }
577 
leave_mm(void)578 void leave_mm(void)
579 {
580 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
581 
582 	/*
583 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
584 	 * If so, our callers still expect us to flush the TLB, but there
585 	 * aren't any user TLB entries in init_mm to worry about.
586 	 *
587 	 * This needs to happen before any other sanity checks due to
588 	 * intel_idle's shenanigans.
589 	 */
590 	if (loaded_mm == &init_mm)
591 		return;
592 
593 	/* Warn if we're not lazy. */
594 	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
595 
596 	switch_mm(NULL, &init_mm, NULL);
597 }
598 EXPORT_SYMBOL_GPL(leave_mm);
599 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)600 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
601 	       struct task_struct *tsk)
602 {
603 	unsigned long flags;
604 
605 	local_irq_save(flags);
606 	switch_mm_irqs_off(NULL, next, tsk);
607 	local_irq_restore(flags);
608 }
609 
610 /*
611  * Invoked from return to user/guest by a task that opted-in to L1D
612  * flushing but ended up running on an SMT enabled core due to wrong
613  * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
614  * contract which this task requested.
615  */
l1d_flush_force_sigbus(struct callback_head * ch)616 static void l1d_flush_force_sigbus(struct callback_head *ch)
617 {
618 	force_sig(SIGBUS);
619 }
620 
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)621 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
622 				struct task_struct *next)
623 {
624 	/* Flush L1D if the outgoing task requests it */
625 	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
626 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
627 
628 	/* Check whether the incoming task opted in for L1D flush */
629 	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
630 		return;
631 
632 	/*
633 	 * Validate that it is not running on an SMT sibling as this would
634 	 * make the exercise pointless because the siblings share L1D. If
635 	 * it runs on a SMT sibling, notify it with SIGBUS on return to
636 	 * user/guest
637 	 */
638 	if (this_cpu_read(cpu_info.smt_active)) {
639 		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
640 		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
641 		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
642 	}
643 }
644 
mm_mangle_tif_spec_bits(struct task_struct * next)645 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
646 {
647 	unsigned long next_tif = read_task_thread_flags(next);
648 	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
649 
650 	/*
651 	 * Ensure that the bit shift above works as expected and the two flags
652 	 * end up in bit 0 and 1.
653 	 */
654 	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
655 
656 	return (unsigned long)next->mm | spec_bits;
657 }
658 
cond_mitigation(struct task_struct * next)659 static void cond_mitigation(struct task_struct *next)
660 {
661 	unsigned long prev_mm, next_mm;
662 
663 	if (!next || !next->mm)
664 		return;
665 
666 	next_mm = mm_mangle_tif_spec_bits(next);
667 	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
668 
669 	/*
670 	 * Avoid user/user BTB poisoning by flushing the branch predictor
671 	 * when switching between processes. This stops one process from
672 	 * doing Spectre-v2 attacks on another.
673 	 *
674 	 * Both, the conditional and the always IBPB mode use the mm
675 	 * pointer to avoid the IBPB when switching between tasks of the
676 	 * same process. Using the mm pointer instead of mm->context.ctx_id
677 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
678 	 * less impossible to control by an attacker. Aside of that it
679 	 * would only affect the first schedule so the theoretically
680 	 * exposed data is not really interesting.
681 	 */
682 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
683 		/*
684 		 * This is a bit more complex than the always mode because
685 		 * it has to handle two cases:
686 		 *
687 		 * 1) Switch from a user space task (potential attacker)
688 		 *    which has TIF_SPEC_IB set to a user space task
689 		 *    (potential victim) which has TIF_SPEC_IB not set.
690 		 *
691 		 * 2) Switch from a user space task (potential attacker)
692 		 *    which has TIF_SPEC_IB not set to a user space task
693 		 *    (potential victim) which has TIF_SPEC_IB set.
694 		 *
695 		 * This could be done by unconditionally issuing IBPB when
696 		 * a task which has TIF_SPEC_IB set is either scheduled in
697 		 * or out. Though that results in two flushes when:
698 		 *
699 		 * - the same user space task is scheduled out and later
700 		 *   scheduled in again and only a kernel thread ran in
701 		 *   between.
702 		 *
703 		 * - a user space task belonging to the same process is
704 		 *   scheduled in after a kernel thread ran in between
705 		 *
706 		 * - a user space task belonging to the same process is
707 		 *   scheduled in immediately.
708 		 *
709 		 * Optimize this with reasonably small overhead for the
710 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
711 		 * pointer of the incoming task which is stored in
712 		 * cpu_tlbstate.last_user_mm_spec for comparison.
713 		 *
714 		 * Issue IBPB only if the mm's are different and one or
715 		 * both have the IBPB bit set.
716 		 */
717 		if (next_mm != prev_mm &&
718 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
719 			indirect_branch_prediction_barrier();
720 	}
721 
722 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
723 		/*
724 		 * Only flush when switching to a user space task with a
725 		 * different context than the user space task which ran
726 		 * last on this CPU.
727 		 */
728 		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
729 			indirect_branch_prediction_barrier();
730 	}
731 
732 	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
733 		/*
734 		 * Flush L1D when the outgoing task requested it and/or
735 		 * check whether the incoming task requested L1D flushing
736 		 * and ended up on an SMT sibling.
737 		 */
738 		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
739 			l1d_flush_evaluate(prev_mm, next_mm, next);
740 	}
741 
742 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
743 }
744 
745 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)746 static inline void cr4_update_pce_mm(struct mm_struct *mm)
747 {
748 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
749 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
750 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
751 		/*
752 		 * Clear the existing dirty counters to
753 		 * prevent the leak for an RDPMC task.
754 		 */
755 		perf_clear_dirty_counters();
756 		cr4_set_bits_irqsoff(X86_CR4_PCE);
757 	} else
758 		cr4_clear_bits_irqsoff(X86_CR4_PCE);
759 }
760 
cr4_update_pce(void * ignored)761 void cr4_update_pce(void *ignored)
762 {
763 	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
764 }
765 
766 #else
cr4_update_pce_mm(struct mm_struct * mm)767 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
768 #endif
769 
770 /*
771  * This optimizes when not actually switching mm's.  Some architectures use the
772  * 'unused' argument for this optimization, but x86 must use
773  * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
774  * 'current->active_mm' up to date.
775  */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)776 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
777 			struct task_struct *tsk)
778 {
779 	struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
780 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
781 	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
782 	unsigned cpu = smp_processor_id();
783 	unsigned long new_lam;
784 	u64 next_tlb_gen;
785 	bool need_flush;
786 	u16 new_asid;
787 
788 	/* We don't want flush_tlb_func() to run concurrently with us. */
789 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
790 		WARN_ON_ONCE(!irqs_disabled());
791 
792 	/*
793 	 * Verify that CR3 is what we think it is.  This will catch
794 	 * hypothetical buggy code that directly switches to swapper_pg_dir
795 	 * without going through leave_mm() / switch_mm_irqs_off() or that
796 	 * does something like write_cr3(read_cr3_pa()).
797 	 *
798 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
799 	 * isn't free.
800 	 */
801 #ifdef CONFIG_DEBUG_VM
802 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
803 						   tlbstate_lam_cr3_mask()))) {
804 		/*
805 		 * If we were to BUG here, we'd be very likely to kill
806 		 * the system so hard that we don't see the call trace.
807 		 * Try to recover instead by ignoring the error and doing
808 		 * a global flush to minimize the chance of corruption.
809 		 *
810 		 * (This is far from being a fully correct recovery.
811 		 *  Architecturally, the CPU could prefetch something
812 		 *  back into an incorrect ASID slot and leave it there
813 		 *  to cause trouble down the road.  It's better than
814 		 *  nothing, though.)
815 		 */
816 		__flush_tlb_all();
817 	}
818 #endif
819 	if (was_lazy)
820 		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
821 
822 	/*
823 	 * The membarrier system call requires a full memory barrier and
824 	 * core serialization before returning to user-space, after
825 	 * storing to rq->curr, when changing mm.  This is because
826 	 * membarrier() sends IPIs to all CPUs that are in the target mm
827 	 * to make them issue memory barriers.  However, if another CPU
828 	 * switches to/from the target mm concurrently with
829 	 * membarrier(), it can cause that CPU not to receive an IPI
830 	 * when it really should issue a memory barrier.  Writing to CR3
831 	 * provides that full memory barrier and core serializing
832 	 * instruction.
833 	 */
834 	if (prev == next) {
835 		/* Not actually switching mm's */
836 		VM_WARN_ON(is_dyn_asid(prev_asid) &&
837 			   this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
838 			   next->context.ctx_id);
839 
840 		/*
841 		 * If this races with another thread that enables lam, 'new_lam'
842 		 * might not match tlbstate_lam_cr3_mask().
843 		 */
844 
845 		/*
846 		 * Even in lazy TLB mode, the CPU should stay set in the
847 		 * mm_cpumask. The TLB shootdown code can figure out from
848 		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
849 		 */
850 		if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
851 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
852 			cpumask_set_cpu(cpu, mm_cpumask(next));
853 
854 		/* Check if the current mm is transitioning to a global ASID */
855 		if (mm_needs_global_asid(next, prev_asid)) {
856 			next_tlb_gen = atomic64_read(&next->context.tlb_gen);
857 			choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
858 			goto reload_tlb;
859 		}
860 
861 		/*
862 		 * Broadcast TLB invalidation keeps this ASID up to date
863 		 * all the time.
864 		 */
865 		if (is_global_asid(prev_asid))
866 			return;
867 
868 		/*
869 		 * If the CPU is not in lazy TLB mode, we are just switching
870 		 * from one thread in a process to another thread in the same
871 		 * process. No TLB flush required.
872 		 */
873 		if (!was_lazy)
874 			return;
875 
876 		/*
877 		 * Read the tlb_gen to check whether a flush is needed.
878 		 * If the TLB is up to date, just use it.
879 		 * The barrier synchronizes with the tlb_gen increment in
880 		 * the TLB shootdown code.
881 		 */
882 		smp_mb();
883 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
884 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
885 				next_tlb_gen)
886 			return;
887 
888 		/*
889 		 * TLB contents went out of date while we were in lazy
890 		 * mode. Fall through to the TLB switching code below.
891 		 */
892 		new_asid = prev_asid;
893 		need_flush = true;
894 	} else {
895 		/*
896 		 * Apply process to process speculation vulnerability
897 		 * mitigations if applicable.
898 		 */
899 		cond_mitigation(tsk);
900 
901 		/*
902 		 * Let nmi_uaccess_okay() and finish_asid_transition()
903 		 * know that CR3 is changing.
904 		 */
905 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
906 		barrier();
907 
908 		/*
909 		 * Leave this CPU in prev's mm_cpumask. Atomic writes to
910 		 * mm_cpumask can be expensive under contention. The CPU
911 		 * will be removed lazily at TLB flush time.
912 		 */
913 		VM_WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu,
914 				mm_cpumask(prev)));
915 
916 		/* Start receiving IPIs and then read tlb_gen (and LAM below) */
917 		if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
918 			cpumask_set_cpu(cpu, mm_cpumask(next));
919 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
920 
921 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
922 	}
923 
924 reload_tlb:
925 	new_lam = mm_lam_cr3_mask(next);
926 	if (need_flush) {
927 		VM_WARN_ON_ONCE(is_global_asid(new_asid));
928 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
929 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
930 		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
931 
932 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
933 	} else {
934 		/* The new ASID is already up to date. */
935 		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
936 
937 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
938 	}
939 
940 	/* Make sure we write CR3 before loaded_mm. */
941 	barrier();
942 
943 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
944 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
945 	cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
946 
947 	if (next != prev) {
948 		cr4_update_pce_mm(next);
949 		switch_ldt(prev, next);
950 	}
951 }
952 
953 /*
954  * Please ignore the name of this function.  It should be called
955  * switch_to_kernel_thread().
956  *
957  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
958  * kernel thread or other context without an mm.  Acceptable implementations
959  * include doing nothing whatsoever, switching to init_mm, or various clever
960  * lazy tricks to try to minimize TLB flushes.
961  *
962  * The scheduler reserves the right to call enter_lazy_tlb() several times
963  * in a row.  It will notify us that we're going back to a real mm by
964  * calling switch_mm_irqs_off().
965  */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)966 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
967 {
968 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
969 		return;
970 
971 	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
972 }
973 
974 /*
975  * Call this when reinitializing a CPU.  It fixes the following potential
976  * problems:
977  *
978  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
979  *   because the CPU was taken down and came back up with CR3's PCID
980  *   bits clear.  CPU hotplug can do this.
981  *
982  * - The TLB contains junk in slots corresponding to inactive ASIDs.
983  *
984  * - The CPU went so far out to lunch that it may have missed a TLB
985  *   flush.
986  */
initialize_tlbstate_and_flush(void)987 void initialize_tlbstate_and_flush(void)
988 {
989 	int i;
990 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
991 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
992 	unsigned long lam = mm_lam_cr3_mask(mm);
993 	unsigned long cr3 = __read_cr3();
994 
995 	/* Assert that CR3 already references the right mm. */
996 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
997 
998 	/* LAM expected to be disabled */
999 	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
1000 	WARN_ON(lam);
1001 
1002 	/*
1003 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
1004 	 * doesn't work like other CR4 bits because it can only be set from
1005 	 * long mode.)
1006 	 */
1007 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
1008 		!(cr4_read_shadow() & X86_CR4_PCIDE));
1009 
1010 	/* Disable LAM, force ASID 0 and force a TLB flush. */
1011 	write_cr3(build_cr3(mm->pgd, 0, 0));
1012 
1013 	/* Reinitialize tlbstate. */
1014 	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
1015 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
1016 	this_cpu_write(cpu_tlbstate.next_asid, 1);
1017 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
1018 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
1019 	cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
1020 
1021 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
1022 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
1023 }
1024 
1025 /*
1026  * flush_tlb_func()'s memory ordering requirement is that any
1027  * TLB fills that happen after we flush the TLB are ordered after we
1028  * read active_mm's tlb_gen.  We don't need any explicit barriers
1029  * because all x86 flush operations are serializing and the
1030  * atomic64_read operation won't be reordered by the compiler.
1031  */
flush_tlb_func(void * info)1032 static void flush_tlb_func(void *info)
1033 {
1034 	/*
1035 	 * We have three different tlb_gen values in here.  They are:
1036 	 *
1037 	 * - mm_tlb_gen:     the latest generation.
1038 	 * - local_tlb_gen:  the generation that this CPU has already caught
1039 	 *                   up to.
1040 	 * - f->new_tlb_gen: the generation that the requester of the flush
1041 	 *                   wants us to catch up to.
1042 	 */
1043 	const struct flush_tlb_info *f = info;
1044 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1045 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1046 	u64 local_tlb_gen;
1047 	bool local = smp_processor_id() == f->initiating_cpu;
1048 	unsigned long nr_invalidate = 0;
1049 	u64 mm_tlb_gen;
1050 
1051 	/* This code cannot presently handle being reentered. */
1052 	VM_WARN_ON(!irqs_disabled());
1053 
1054 	if (!local) {
1055 		inc_irq_stat(irq_tlb_count);
1056 		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1057 	}
1058 
1059 	/* The CPU was left in the mm_cpumask of the target mm. Clear it. */
1060 	if (f->mm && f->mm != loaded_mm) {
1061 		cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm));
1062 		trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0);
1063 		return;
1064 	}
1065 
1066 	if (unlikely(loaded_mm == &init_mm))
1067 		return;
1068 
1069 	/* Reload the ASID if transitioning into or out of a global ASID */
1070 	if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
1071 		switch_mm_irqs_off(NULL, loaded_mm, NULL);
1072 		loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1073 	}
1074 
1075 	/* Broadcast ASIDs are always kept up to date with INVLPGB. */
1076 	if (is_global_asid(loaded_mm_asid))
1077 		return;
1078 
1079 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
1080 		   loaded_mm->context.ctx_id);
1081 
1082 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
1083 		/*
1084 		 * We're in lazy mode.  We need to at least flush our
1085 		 * paging-structure cache to avoid speculatively reading
1086 		 * garbage into our TLB.  Since switching to init_mm is barely
1087 		 * slower than a minimal flush, just switch to init_mm.
1088 		 *
1089 		 * This should be rare, with native_flush_tlb_multi() skipping
1090 		 * IPIs to lazy TLB mode CPUs.
1091 		 */
1092 		switch_mm_irqs_off(NULL, &init_mm, NULL);
1093 		return;
1094 	}
1095 
1096 	local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
1097 
1098 	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
1099 		     f->new_tlb_gen <= local_tlb_gen)) {
1100 		/*
1101 		 * The TLB is already up to date in respect to f->new_tlb_gen.
1102 		 * While the core might be still behind mm_tlb_gen, checking
1103 		 * mm_tlb_gen unnecessarily would have negative caching effects
1104 		 * so avoid it.
1105 		 */
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * Defer mm_tlb_gen reading as long as possible to avoid cache
1111 	 * contention.
1112 	 */
1113 	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
1114 
1115 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
1116 		/*
1117 		 * There's nothing to do: we're already up to date.  This can
1118 		 * happen if two concurrent flushes happen -- the first flush to
1119 		 * be handled can catch us all the way up, leaving no work for
1120 		 * the second flush.
1121 		 */
1122 		goto done;
1123 	}
1124 
1125 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
1126 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
1127 
1128 	/*
1129 	 * If we get to this point, we know that our TLB is out of date.
1130 	 * This does not strictly imply that we need to flush (it's
1131 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
1132 	 * going to need to flush in the very near future, so we might
1133 	 * as well get it over with.
1134 	 *
1135 	 * The only question is whether to do a full or partial flush.
1136 	 *
1137 	 * We do a partial flush if requested and two extra conditions
1138 	 * are met:
1139 	 *
1140 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
1141 	 *    we've always done all needed flushes to catch up to
1142 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
1143 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
1144 	 *    us up to date for tlb_gen 3 is the partial flush we're
1145 	 *    processing.
1146 	 *
1147 	 *    As an example of why this check is needed, suppose that there
1148 	 *    are two concurrent flushes.  The first is a full flush that
1149 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
1150 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
1151 	 *    processed on this CPU in reverse order, we'll see
1152 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1153 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
1154 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
1155 	 *    1 without the full flush that's needed for tlb_gen 2.
1156 	 *
1157 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
1158 	 *    Partial TLB flushes are not all that much cheaper than full TLB
1159 	 *    flushes, so it seems unlikely that it would be a performance win
1160 	 *    to do a partial flush if that won't bring our TLB fully up to
1161 	 *    date.  By doing a full flush instead, we can increase
1162 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
1163 	 *    avoid another flush in the very near future.
1164 	 */
1165 	if (f->end != TLB_FLUSH_ALL &&
1166 	    f->new_tlb_gen == local_tlb_gen + 1 &&
1167 	    f->new_tlb_gen == mm_tlb_gen) {
1168 		/* Partial flush */
1169 		unsigned long addr = f->start;
1170 
1171 		/* Partial flush cannot have invalid generations */
1172 		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
1173 
1174 		/* Partial flush must have valid mm */
1175 		VM_WARN_ON(f->mm == NULL);
1176 
1177 		nr_invalidate = (f->end - f->start) >> f->stride_shift;
1178 
1179 		while (addr < f->end) {
1180 			flush_tlb_one_user(addr);
1181 			addr += 1UL << f->stride_shift;
1182 		}
1183 		if (local)
1184 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
1185 	} else {
1186 		/* Full flush. */
1187 		nr_invalidate = TLB_FLUSH_ALL;
1188 
1189 		flush_tlb_local();
1190 		if (local)
1191 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1192 	}
1193 
1194 	/* Both paths above update our state to mm_tlb_gen. */
1195 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
1196 
1197 	/* Tracing is done in a unified manner to reduce the code size */
1198 done:
1199 	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
1200 				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
1201 						  TLB_LOCAL_MM_SHOOTDOWN,
1202 			nr_invalidate);
1203 }
1204 
should_flush_tlb(int cpu,void * data)1205 static bool should_flush_tlb(int cpu, void *data)
1206 {
1207 	struct flush_tlb_info *info = data;
1208 
1209 	/* Lazy TLB will get flushed at the next context switch. */
1210 	if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
1211 		return false;
1212 
1213 	/* No mm means kernel memory flush. */
1214 	if (!info->mm)
1215 		return true;
1216 
1217 	/* The target mm is loaded, and the CPU is not lazy. */
1218 	if (per_cpu(cpu_tlbstate.loaded_mm, cpu) == info->mm)
1219 		return true;
1220 
1221 	/* In cpumask, but not the loaded mm? Periodically remove by flushing. */
1222 	if (info->trim_cpumask)
1223 		return true;
1224 
1225 	return false;
1226 }
1227 
should_trim_cpumask(struct mm_struct * mm)1228 static bool should_trim_cpumask(struct mm_struct *mm)
1229 {
1230 	if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
1231 		WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
1232 		return true;
1233 	}
1234 	return false;
1235 }
1236 
1237 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
1238 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
1239 
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1240 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
1241 					 const struct flush_tlb_info *info)
1242 {
1243 	/*
1244 	 * Do accounting and tracing. Note that there are (and have always been)
1245 	 * cases in which a remote TLB flush will be traced, but eventually
1246 	 * would not happen.
1247 	 */
1248 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1249 	if (info->end == TLB_FLUSH_ALL)
1250 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
1251 	else
1252 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
1253 				(info->end - info->start) >> PAGE_SHIFT);
1254 
1255 	/*
1256 	 * If no page tables were freed, we can skip sending IPIs to
1257 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
1258 	 * at the next context switch.
1259 	 *
1260 	 * However, if page tables are getting freed, we need to send the
1261 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
1262 	 * up on the new contents of what used to be page tables, while
1263 	 * doing a speculative memory access.
1264 	 */
1265 	if (info->freed_tables || mm_in_asid_transition(info->mm))
1266 		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
1267 	else
1268 		on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
1269 				(void *)info, 1, cpumask);
1270 }
1271 
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1272 void flush_tlb_multi(const struct cpumask *cpumask,
1273 		      const struct flush_tlb_info *info)
1274 {
1275 	__flush_tlb_multi(cpumask, info);
1276 }
1277 
1278 /*
1279  * See Documentation/arch/x86/tlb.rst for details.  We choose 33
1280  * because it is large enough to cover the vast majority (at
1281  * least 95%) of allocations, and is small enough that we are
1282  * confident it will not cause too much overhead.  Each single
1283  * flush is about 100 ns, so this caps the maximum overhead at
1284  * _about_ 3,000 ns.
1285  *
1286  * This is in units of pages.
1287  */
1288 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1289 
1290 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1291 
1292 #ifdef CONFIG_DEBUG_VM
1293 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1294 #endif
1295 
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1296 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1297 			unsigned long start, unsigned long end,
1298 			unsigned int stride_shift, bool freed_tables,
1299 			u64 new_tlb_gen)
1300 {
1301 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1302 
1303 #ifdef CONFIG_DEBUG_VM
1304 	/*
1305 	 * Ensure that the following code is non-reentrant and flush_tlb_info
1306 	 * is not overwritten. This means no TLB flushing is initiated by
1307 	 * interrupt handlers and machine-check exception handlers.
1308 	 */
1309 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1310 #endif
1311 
1312 	/*
1313 	 * If the number of flushes is so large that a full flush
1314 	 * would be faster, do a full flush.
1315 	 */
1316 	if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
1317 		start = 0;
1318 		end = TLB_FLUSH_ALL;
1319 	}
1320 
1321 	info->start		= start;
1322 	info->end		= end;
1323 	info->mm		= mm;
1324 	info->stride_shift	= stride_shift;
1325 	info->freed_tables	= freed_tables;
1326 	info->new_tlb_gen	= new_tlb_gen;
1327 	info->initiating_cpu	= smp_processor_id();
1328 	info->trim_cpumask	= 0;
1329 
1330 	return info;
1331 }
1332 
put_flush_tlb_info(void)1333 static void put_flush_tlb_info(void)
1334 {
1335 #ifdef CONFIG_DEBUG_VM
1336 	/* Complete reentrancy prevention checks */
1337 	barrier();
1338 	this_cpu_dec(flush_tlb_info_idx);
1339 #endif
1340 }
1341 
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1342 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1343 				unsigned long end, unsigned int stride_shift,
1344 				bool freed_tables)
1345 {
1346 	struct flush_tlb_info *info;
1347 	int cpu = get_cpu();
1348 	u64 new_tlb_gen;
1349 
1350 	/* This is also a barrier that synchronizes with switch_mm(). */
1351 	new_tlb_gen = inc_mm_tlb_gen(mm);
1352 
1353 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1354 				  new_tlb_gen);
1355 
1356 	/*
1357 	 * flush_tlb_multi() is not optimized for the common case in which only
1358 	 * a local TLB flush is needed. Optimize this use-case by calling
1359 	 * flush_tlb_func_local() directly in this case.
1360 	 */
1361 	if (mm_global_asid(mm)) {
1362 		broadcast_tlb_flush(info);
1363 	} else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1364 		info->trim_cpumask = should_trim_cpumask(mm);
1365 		flush_tlb_multi(mm_cpumask(mm), info);
1366 		consider_global_asid(mm);
1367 	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1368 		lockdep_assert_irqs_enabled();
1369 		local_irq_disable();
1370 		flush_tlb_func(info);
1371 		local_irq_enable();
1372 	}
1373 
1374 	put_flush_tlb_info();
1375 	put_cpu();
1376 	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1377 }
1378 
do_flush_tlb_all(void * info)1379 static void do_flush_tlb_all(void *info)
1380 {
1381 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1382 	__flush_tlb_all();
1383 }
1384 
flush_tlb_all(void)1385 void flush_tlb_all(void)
1386 {
1387 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1388 
1389 	/* First try (faster) hardware-assisted TLB invalidation. */
1390 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1391 		invlpgb_flush_all();
1392 	else
1393 		/* Fall back to the IPI-based invalidation. */
1394 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1395 }
1396 
1397 /* Flush an arbitrarily large range of memory with INVLPGB. */
invlpgb_kernel_range_flush(struct flush_tlb_info * info)1398 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
1399 {
1400 	unsigned long addr, nr;
1401 
1402 	for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
1403 		nr = (info->end - addr) >> PAGE_SHIFT;
1404 
1405 		/*
1406 		 * INVLPGB has a limit on the size of ranges it can
1407 		 * flush. Break up large flushes.
1408 		 */
1409 		nr = clamp_val(nr, 1, invlpgb_count_max);
1410 
1411 		invlpgb_flush_addr_nosync(addr, nr);
1412 	}
1413 	__tlbsync();
1414 }
1415 
do_kernel_range_flush(void * info)1416 static void do_kernel_range_flush(void *info)
1417 {
1418 	struct flush_tlb_info *f = info;
1419 	unsigned long addr;
1420 
1421 	/* flush range by one by one 'invlpg' */
1422 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1423 		flush_tlb_one_kernel(addr);
1424 }
1425 
kernel_tlb_flush_all(struct flush_tlb_info * info)1426 static void kernel_tlb_flush_all(struct flush_tlb_info *info)
1427 {
1428 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1429 		invlpgb_flush_all();
1430 	else
1431 		on_each_cpu(do_flush_tlb_all, NULL, 1);
1432 }
1433 
kernel_tlb_flush_range(struct flush_tlb_info * info)1434 static void kernel_tlb_flush_range(struct flush_tlb_info *info)
1435 {
1436 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1437 		invlpgb_kernel_range_flush(info);
1438 	else
1439 		on_each_cpu(do_kernel_range_flush, info, 1);
1440 }
1441 
flush_tlb_kernel_range(unsigned long start,unsigned long end)1442 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1443 {
1444 	struct flush_tlb_info *info;
1445 
1446 	guard(preempt)();
1447 
1448 	info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
1449 				  TLB_GENERATION_INVALID);
1450 
1451 	if (info->end == TLB_FLUSH_ALL)
1452 		kernel_tlb_flush_all(info);
1453 	else
1454 		kernel_tlb_flush_range(info);
1455 
1456 	put_flush_tlb_info();
1457 }
1458 
1459 /*
1460  * This can be used from process context to figure out what the value of
1461  * CR3 is without needing to do a (slow) __read_cr3().
1462  *
1463  * It's intended to be used for code like KVM that sneakily changes CR3
1464  * and needs to restore it.  It needs to be used very carefully.
1465  */
__get_current_cr3_fast(void)1466 unsigned long __get_current_cr3_fast(void)
1467 {
1468 	unsigned long cr3 =
1469 		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1470 			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1471 			  tlbstate_lam_cr3_mask());
1472 
1473 	/* For now, be very restrictive about when this can be called. */
1474 	VM_WARN_ON(in_nmi() || preemptible());
1475 
1476 	VM_BUG_ON(cr3 != __read_cr3());
1477 	return cr3;
1478 }
1479 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1480 
1481 /*
1482  * Flush one page in the kernel mapping
1483  */
flush_tlb_one_kernel(unsigned long addr)1484 void flush_tlb_one_kernel(unsigned long addr)
1485 {
1486 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1487 
1488 	/*
1489 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1490 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1491 	 * use PCID if we also use global PTEs for the kernel mapping, and
1492 	 * INVLPG flushes global translations across all address spaces.
1493 	 *
1494 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1495 	 * __flush_tlb_one_user() will flush the given address for the current
1496 	 * kernel address space and for its usermode counterpart, but it does
1497 	 * not flush it for other address spaces.
1498 	 */
1499 	flush_tlb_one_user(addr);
1500 
1501 	if (!static_cpu_has(X86_FEATURE_PTI))
1502 		return;
1503 
1504 	/*
1505 	 * See above.  We need to propagate the flush to all other address
1506 	 * spaces.  In principle, we only need to propagate it to kernelmode
1507 	 * address spaces, but the extra bookkeeping we would need is not
1508 	 * worth it.
1509 	 */
1510 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1511 }
1512 
1513 /*
1514  * Flush one page in the user mapping
1515  */
native_flush_tlb_one_user(unsigned long addr)1516 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1517 {
1518 	u32 loaded_mm_asid;
1519 	bool cpu_pcide;
1520 
1521 	/* Flush 'addr' from the kernel PCID: */
1522 	invlpg(addr);
1523 
1524 	/* If PTI is off there is no user PCID and nothing to flush. */
1525 	if (!static_cpu_has(X86_FEATURE_PTI))
1526 		return;
1527 
1528 	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1529 	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1530 
1531 	/*
1532 	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1533 	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1534 	 * #GP's even if called before CR4.PCIDE has been initialized.
1535 	 */
1536 	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1537 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1538 	else
1539 		invalidate_user_asid(loaded_mm_asid);
1540 }
1541 
flush_tlb_one_user(unsigned long addr)1542 void flush_tlb_one_user(unsigned long addr)
1543 {
1544 	__flush_tlb_one_user(addr);
1545 }
1546 
1547 /*
1548  * Flush everything
1549  */
native_flush_tlb_global(void)1550 STATIC_NOPV void native_flush_tlb_global(void)
1551 {
1552 	unsigned long flags;
1553 
1554 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1555 		/*
1556 		 * Using INVPCID is considerably faster than a pair of writes
1557 		 * to CR4 sandwiched inside an IRQ flag save/restore.
1558 		 *
1559 		 * Note, this works with CR4.PCIDE=0 or 1.
1560 		 */
1561 		invpcid_flush_all();
1562 		return;
1563 	}
1564 
1565 	/*
1566 	 * Read-modify-write to CR4 - protect it from preemption and
1567 	 * from interrupts. (Use the raw variant because this code can
1568 	 * be called from deep inside debugging code.)
1569 	 */
1570 	raw_local_irq_save(flags);
1571 
1572 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1573 
1574 	raw_local_irq_restore(flags);
1575 }
1576 
1577 /*
1578  * Flush the entire current user mapping
1579  */
native_flush_tlb_local(void)1580 STATIC_NOPV void native_flush_tlb_local(void)
1581 {
1582 	/*
1583 	 * Preemption or interrupts must be disabled to protect the access
1584 	 * to the per CPU variable and to prevent being preempted between
1585 	 * read_cr3() and write_cr3().
1586 	 */
1587 	WARN_ON_ONCE(preemptible());
1588 
1589 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1590 
1591 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1592 	native_write_cr3(__native_read_cr3());
1593 }
1594 
flush_tlb_local(void)1595 void flush_tlb_local(void)
1596 {
1597 	__flush_tlb_local();
1598 }
1599 
1600 /*
1601  * Flush everything
1602  */
__flush_tlb_all(void)1603 void __flush_tlb_all(void)
1604 {
1605 	/*
1606 	 * This is to catch users with enabled preemption and the PGE feature
1607 	 * and don't trigger the warning in __native_flush_tlb().
1608 	 */
1609 	VM_WARN_ON_ONCE(preemptible());
1610 
1611 	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1612 		__flush_tlb_global();
1613 	} else {
1614 		/*
1615 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1616 		 */
1617 		flush_tlb_local();
1618 	}
1619 }
1620 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1621 
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1622 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1623 {
1624 	struct flush_tlb_info *info;
1625 
1626 	int cpu = get_cpu();
1627 
1628 	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1629 				  TLB_GENERATION_INVALID);
1630 	/*
1631 	 * flush_tlb_multi() is not optimized for the common case in which only
1632 	 * a local TLB flush is needed. Optimize this use-case by calling
1633 	 * flush_tlb_func_local() directly in this case.
1634 	 */
1635 	if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
1636 		invlpgb_flush_all_nonglobals();
1637 		batch->unmapped_pages = false;
1638 	} else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1639 		flush_tlb_multi(&batch->cpumask, info);
1640 	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1641 		lockdep_assert_irqs_enabled();
1642 		local_irq_disable();
1643 		flush_tlb_func(info);
1644 		local_irq_enable();
1645 	}
1646 
1647 	cpumask_clear(&batch->cpumask);
1648 
1649 	put_flush_tlb_info();
1650 	put_cpu();
1651 }
1652 
1653 /*
1654  * Blindly accessing user memory from NMI context can be dangerous
1655  * if we're in the middle of switching the current user task or
1656  * switching the loaded mm.  It can also be dangerous if we
1657  * interrupted some kernel code that was temporarily using a
1658  * different mm.
1659  */
nmi_uaccess_okay(void)1660 bool nmi_uaccess_okay(void)
1661 {
1662 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1663 	struct mm_struct *current_mm = current->mm;
1664 
1665 	VM_WARN_ON_ONCE(!loaded_mm);
1666 
1667 	/*
1668 	 * The condition we want to check is
1669 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1670 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1671 	 * is supposed to be reasonably fast.
1672 	 *
1673 	 * Instead, we check the almost equivalent but somewhat conservative
1674 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1675 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1676 	 */
1677 	if (loaded_mm != current_mm)
1678 		return false;
1679 
1680 	VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
1681 
1682 	return true;
1683 }
1684 
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1685 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1686 			     size_t count, loff_t *ppos)
1687 {
1688 	char buf[32];
1689 	unsigned int len;
1690 
1691 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1692 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1693 }
1694 
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1695 static ssize_t tlbflush_write_file(struct file *file,
1696 		 const char __user *user_buf, size_t count, loff_t *ppos)
1697 {
1698 	char buf[32];
1699 	ssize_t len;
1700 	int ceiling;
1701 
1702 	len = min(count, sizeof(buf) - 1);
1703 	if (copy_from_user(buf, user_buf, len))
1704 		return -EFAULT;
1705 
1706 	buf[len] = '\0';
1707 	if (kstrtoint(buf, 0, &ceiling))
1708 		return -EINVAL;
1709 
1710 	if (ceiling < 0)
1711 		return -EINVAL;
1712 
1713 	tlb_single_page_flush_ceiling = ceiling;
1714 	return count;
1715 }
1716 
1717 static const struct file_operations fops_tlbflush = {
1718 	.read = tlbflush_read_file,
1719 	.write = tlbflush_write_file,
1720 	.llseek = default_llseek,
1721 };
1722 
create_tlb_single_page_flush_ceiling(void)1723 static int __init create_tlb_single_page_flush_ceiling(void)
1724 {
1725 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1726 			    arch_debugfs_dir, NULL, &fops_tlbflush);
1727 	return 0;
1728 }
1729 late_initcall(create_tlb_single_page_flush_ceiling);
1730