1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 #include <linux/kvm_types.h>
16
17 #include <asm/tlbflush.h>
18 #include <asm/mmu_context.h>
19 #include <asm/nospec-branch.h>
20 #include <asm/cache.h>
21 #include <asm/cacheflush.h>
22 #include <asm/apic.h>
23 #include <asm/msr.h>
24 #include <asm/perf_event.h>
25 #include <asm/tlb.h>
26
27 #include "mm_internal.h"
28
29 #ifdef CONFIG_PARAVIRT
30 # define STATIC_NOPV
31 #else
32 # define STATIC_NOPV static
33 # define __flush_tlb_local native_flush_tlb_local
34 # define __flush_tlb_global native_flush_tlb_global
35 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
36 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
37 #endif
38
39 /*
40 * TLB flushing, formerly SMP-only
41 * c/o Linus Torvalds.
42 *
43 * These mean you can really definitely utterly forget about
44 * writing to user space from interrupts. (Its not allowed anyway).
45 *
46 * Optimizations Manfred Spraul <manfred@colorfullife.com>
47 *
48 * More scalable flush, from Andi Kleen
49 *
50 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
51 */
52
53 /*
54 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
55 * stored in cpu_tlb_state.last_user_mm_spec.
56 */
57 #define LAST_USER_MM_IBPB 0x1UL
58 #define LAST_USER_MM_L1D_FLUSH 0x2UL
59 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
60
61 /* Bits to set when tlbstate and flush is (re)initialized */
62 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
63
64 /*
65 * The x86 feature is called PCID (Process Context IDentifier). It is similar
66 * to what is traditionally called ASID on the RISC processors.
67 *
68 * We don't use the traditional ASID implementation, where each process/mm gets
69 * its own ASID and flush/restart when we run out of ASID space.
70 *
71 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
72 * that came by on this CPU, allowing cheaper switch_mm between processes on
73 * this CPU.
74 *
75 * We end up with different spaces for different things. To avoid confusion we
76 * use different names for each of them:
77 *
78 * ASID - [0, TLB_NR_DYN_ASIDS-1]
79 * the canonical identifier for an mm, dynamically allocated on each CPU
80 * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
81 * the canonical, global identifier for an mm, identical across all CPUs
82 *
83 * kPCID - [1, MAX_ASID_AVAILABLE]
84 * the value we write into the PCID part of CR3; corresponds to the
85 * ASID+1, because PCID 0 is special.
86 *
87 * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
88 * for KPTI each mm has two address spaces and thus needs two
89 * PCID values, but we can still do with a single ASID denomination
90 * for each mm. Corresponds to kPCID + 2048.
91 *
92 */
93
94 /*
95 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
96 * user/kernel switches
97 */
98 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
99 # define PTI_CONSUMED_PCID_BITS 1
100 #else
101 # define PTI_CONSUMED_PCID_BITS 0
102 #endif
103
104 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
105
106 /*
107 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
108 * for them being zero-based. Another -1 is because PCID 0 is reserved for
109 * use by non-PCID-aware users.
110 */
111 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
112
113 /*
114 * Given @asid, compute kPCID
115 */
kern_pcid(u16 asid)116 static inline u16 kern_pcid(u16 asid)
117 {
118 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
119
120 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
121 /*
122 * Make sure that the dynamic ASID space does not conflict with the
123 * bit we are using to switch between user and kernel ASIDs.
124 */
125 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
126
127 /*
128 * The ASID being passed in here should have respected the
129 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
130 */
131 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
132 #endif
133 /*
134 * The dynamically-assigned ASIDs that get passed in are small
135 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
136 * so do not bother to clear it.
137 *
138 * If PCID is on, ASID-aware code paths put the ASID+1 into the
139 * PCID bits. This serves two purposes. It prevents a nasty
140 * situation in which PCID-unaware code saves CR3, loads some other
141 * value (with PCID == 0), and then restores CR3, thus corrupting
142 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
143 * that any bugs involving loading a PCID-enabled CR3 with
144 * CR4.PCIDE off will trigger deterministically.
145 */
146 return asid + 1;
147 }
148
149 /*
150 * Given @asid, compute uPCID
151 */
user_pcid(u16 asid)152 static inline u16 user_pcid(u16 asid)
153 {
154 u16 ret = kern_pcid(asid);
155 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
156 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
157 #endif
158 return ret;
159 }
160
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)161 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
162 {
163 unsigned long cr3 = __sme_pa(pgd) | lam;
164
165 if (static_cpu_has(X86_FEATURE_PCID)) {
166 cr3 |= kern_pcid(asid);
167 } else {
168 VM_WARN_ON_ONCE(asid != 0);
169 }
170
171 return cr3;
172 }
173
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)174 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
175 unsigned long lam)
176 {
177 /*
178 * Use boot_cpu_has() instead of this_cpu_has() as this function
179 * might be called during early boot. This should work even after
180 * boot because all CPU's the have same capabilities:
181 */
182 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
183 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
184 }
185
186 /*
187 * We get here when we do something requiring a TLB invalidation
188 * but could not go invalidate all of the contexts. We do the
189 * necessary invalidation by clearing out the 'ctx_id' which
190 * forces a TLB flush when the context is loaded.
191 */
clear_asid_other(void)192 static void clear_asid_other(void)
193 {
194 u16 asid;
195
196 /*
197 * This is only expected to be set if we have disabled
198 * kernel _PAGE_GLOBAL pages.
199 */
200 if (!static_cpu_has(X86_FEATURE_PTI)) {
201 WARN_ON_ONCE(1);
202 return;
203 }
204
205 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
206 /* Do not need to flush the current asid */
207 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
208 continue;
209 /*
210 * Make sure the next time we go to switch to
211 * this asid, we do a flush:
212 */
213 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
214 }
215 this_cpu_write(cpu_tlbstate.invalidate_other, false);
216 }
217
218 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
219
220 struct new_asid {
221 unsigned int asid : 16;
222 unsigned int need_flush : 1;
223 };
224
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen)225 static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
226 {
227 struct new_asid ns;
228 u16 asid;
229
230 if (!static_cpu_has(X86_FEATURE_PCID)) {
231 ns.asid = 0;
232 ns.need_flush = 1;
233 return ns;
234 }
235
236 /*
237 * TLB consistency for global ASIDs is maintained with hardware assisted
238 * remote TLB flushing. Global ASIDs are always up to date.
239 */
240 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
241 u16 global_asid = mm_global_asid(next);
242
243 if (global_asid) {
244 ns.asid = global_asid;
245 ns.need_flush = 0;
246 return ns;
247 }
248 }
249
250 if (this_cpu_read(cpu_tlbstate.invalidate_other))
251 clear_asid_other();
252
253 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
254 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
255 next->context.ctx_id)
256 continue;
257
258 ns.asid = asid;
259 ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
260 return ns;
261 }
262
263 /*
264 * We don't currently own an ASID slot on this CPU.
265 * Allocate a slot.
266 */
267 ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
268 if (ns.asid >= TLB_NR_DYN_ASIDS) {
269 ns.asid = 0;
270 this_cpu_write(cpu_tlbstate.next_asid, 1);
271 }
272 ns.need_flush = true;
273
274 return ns;
275 }
276
277 /*
278 * Global ASIDs are allocated for multi-threaded processes that are
279 * active on multiple CPUs simultaneously, giving each of those
280 * processes the same PCID on every CPU, for use with hardware-assisted
281 * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
282 *
283 * These global ASIDs are held for the lifetime of the process.
284 */
285 static DEFINE_RAW_SPINLOCK(global_asid_lock);
286 static u16 last_global_asid = MAX_ASID_AVAILABLE;
287 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
288 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
289 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
290
291 /*
292 * When the search for a free ASID in the global ASID space reaches
293 * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
294 * freed global ASIDs are safe to re-use.
295 *
296 * This way the global flush only needs to happen at ASID rollover
297 * time, and not at ASID allocation time.
298 */
reset_global_asid_space(void)299 static void reset_global_asid_space(void)
300 {
301 lockdep_assert_held(&global_asid_lock);
302
303 invlpgb_flush_all_nonglobals();
304
305 /*
306 * The TLB flush above makes it safe to re-use the previously
307 * freed global ASIDs.
308 */
309 bitmap_andnot(global_asid_used, global_asid_used,
310 global_asid_freed, MAX_ASID_AVAILABLE);
311 bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
312
313 /* Restart the search from the start of global ASID space. */
314 last_global_asid = TLB_NR_DYN_ASIDS;
315 }
316
allocate_global_asid(void)317 static u16 allocate_global_asid(void)
318 {
319 u16 asid;
320
321 lockdep_assert_held(&global_asid_lock);
322
323 /* The previous allocation hit the edge of available address space */
324 if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
325 reset_global_asid_space();
326
327 asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
328
329 if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
330 /* This should never happen. */
331 VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
332 global_asid_available);
333 return 0;
334 }
335
336 /* Claim this global ASID. */
337 __set_bit(asid, global_asid_used);
338 last_global_asid = asid;
339 global_asid_available--;
340 return asid;
341 }
342
343 /*
344 * Check whether a process is currently active on more than @threshold CPUs.
345 * This is a cheap estimation on whether or not it may make sense to assign
346 * a global ASID to this process, and use broadcast TLB invalidation.
347 */
mm_active_cpus_exceeds(struct mm_struct * mm,int threshold)348 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
349 {
350 int count = 0;
351 int cpu;
352
353 /* This quick check should eliminate most single threaded programs. */
354 if (cpumask_weight(mm_cpumask(mm)) <= threshold)
355 return false;
356
357 /* Slower check to make sure. */
358 for_each_cpu(cpu, mm_cpumask(mm)) {
359 /* Skip the CPUs that aren't really running this process. */
360 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
361 continue;
362
363 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
364 continue;
365
366 if (++count > threshold)
367 return true;
368 }
369 return false;
370 }
371
372 /*
373 * Assign a global ASID to the current process, protecting against
374 * races between multiple threads in the process.
375 */
use_global_asid(struct mm_struct * mm)376 static void use_global_asid(struct mm_struct *mm)
377 {
378 u16 asid;
379
380 guard(raw_spinlock_irqsave)(&global_asid_lock);
381
382 /* This process is already using broadcast TLB invalidation. */
383 if (mm_global_asid(mm))
384 return;
385
386 /*
387 * The last global ASID was consumed while waiting for the lock.
388 *
389 * If this fires, a more aggressive ASID reuse scheme might be
390 * needed.
391 */
392 if (!global_asid_available) {
393 VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
394 return;
395 }
396
397 asid = allocate_global_asid();
398 if (!asid)
399 return;
400
401 mm_assign_global_asid(mm, asid);
402 }
403
mm_free_global_asid(struct mm_struct * mm)404 void mm_free_global_asid(struct mm_struct *mm)
405 {
406 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
407 return;
408
409 if (!mm_global_asid(mm))
410 return;
411
412 guard(raw_spinlock_irqsave)(&global_asid_lock);
413
414 /* The global ASID can be re-used only after flush at wrap-around. */
415 #ifdef CONFIG_BROADCAST_TLB_FLUSH
416 __set_bit(mm->context.global_asid, global_asid_freed);
417
418 mm->context.global_asid = 0;
419 global_asid_available++;
420 #endif
421 }
422
423 /*
424 * Is the mm transitioning from a CPU-local ASID to a global ASID?
425 */
mm_needs_global_asid(struct mm_struct * mm,u16 asid)426 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
427 {
428 u16 global_asid = mm_global_asid(mm);
429
430 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
431 return false;
432
433 /* Process is transitioning to a global ASID */
434 if (global_asid && asid != global_asid)
435 return true;
436
437 return false;
438 }
439
440 /*
441 * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
442 * systems have over 8k CPUs. Because of this potential ASID shortage,
443 * global ASIDs are handed out to processes that have frequent TLB
444 * flushes and are active on 4 or more CPUs simultaneously.
445 */
consider_global_asid(struct mm_struct * mm)446 static void consider_global_asid(struct mm_struct *mm)
447 {
448 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
449 return;
450
451 /* Check every once in a while. */
452 if ((current->pid & 0x1f) != (jiffies & 0x1f))
453 return;
454
455 /*
456 * Assign a global ASID if the process is active on
457 * 4 or more CPUs simultaneously.
458 */
459 if (mm_active_cpus_exceeds(mm, 3))
460 use_global_asid(mm);
461 }
462
finish_asid_transition(struct flush_tlb_info * info)463 static void finish_asid_transition(struct flush_tlb_info *info)
464 {
465 struct mm_struct *mm = info->mm;
466 int bc_asid = mm_global_asid(mm);
467 int cpu;
468
469 if (!mm_in_asid_transition(mm))
470 return;
471
472 for_each_cpu(cpu, mm_cpumask(mm)) {
473 /*
474 * The remote CPU is context switching. Wait for that to
475 * finish, to catch the unlikely case of it switching to
476 * the target mm with an out of date ASID.
477 */
478 while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
479 cpu_relax();
480
481 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
482 continue;
483
484 /*
485 * If at least one CPU is not using the global ASID yet,
486 * send a TLB flush IPI. The IPI should cause stragglers
487 * to transition soon.
488 *
489 * This can race with the CPU switching to another task;
490 * that results in a (harmless) extra IPI.
491 */
492 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
493 flush_tlb_multi(mm_cpumask(info->mm), info);
494 return;
495 }
496 }
497
498 /* All the CPUs running this process are using the global ASID. */
499 mm_clear_asid_transition(mm);
500 }
501
broadcast_tlb_flush(struct flush_tlb_info * info)502 static void broadcast_tlb_flush(struct flush_tlb_info *info)
503 {
504 bool pmd = info->stride_shift == PMD_SHIFT;
505 unsigned long asid = mm_global_asid(info->mm);
506 unsigned long addr = info->start;
507
508 /*
509 * TLB flushes with INVLPGB are kicked off asynchronously.
510 * The inc_mm_tlb_gen() guarantees page table updates are done
511 * before these TLB flushes happen.
512 */
513 if (info->end == TLB_FLUSH_ALL) {
514 invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
515 /* Do any CPUs supporting INVLPGB need PTI? */
516 if (cpu_feature_enabled(X86_FEATURE_PTI))
517 invlpgb_flush_single_pcid_nosync(user_pcid(asid));
518 } else do {
519 unsigned long nr = 1;
520
521 if (info->stride_shift <= PMD_SHIFT) {
522 nr = (info->end - addr) >> info->stride_shift;
523 nr = clamp_val(nr, 1, invlpgb_count_max);
524 }
525
526 invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
527 if (cpu_feature_enabled(X86_FEATURE_PTI))
528 invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
529
530 addr += nr << info->stride_shift;
531 } while (addr < info->end);
532
533 finish_asid_transition(info);
534
535 /* Wait for the INVLPGBs kicked off above to finish. */
536 __tlbsync();
537 }
538
539 /*
540 * Given an ASID, flush the corresponding user ASID. We can delay this
541 * until the next time we switch to it.
542 *
543 * See SWITCH_TO_USER_CR3.
544 */
invalidate_user_asid(u16 asid)545 static inline void invalidate_user_asid(u16 asid)
546 {
547 /* There is no user ASID if address space separation is off */
548 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
549 return;
550
551 /*
552 * We only have a single ASID if PCID is off and the CR3
553 * write will have flushed it.
554 */
555 if (!cpu_feature_enabled(X86_FEATURE_PCID))
556 return;
557
558 if (!static_cpu_has(X86_FEATURE_PTI))
559 return;
560
561 __set_bit(kern_pcid(asid),
562 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
563 }
564
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)565 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
566 bool need_flush)
567 {
568 unsigned long new_mm_cr3;
569
570 if (need_flush) {
571 invalidate_user_asid(new_asid);
572 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
573 } else {
574 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
575 }
576
577 /*
578 * Caution: many callers of this function expect
579 * that load_cr3() is serializing and orders TLB
580 * fills with respect to the mm_cpumask writes.
581 */
582 write_cr3(new_mm_cr3);
583 }
584
leave_mm(void)585 void leave_mm(void)
586 {
587 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
588
589 /*
590 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
591 * If so, our callers still expect us to flush the TLB, but there
592 * aren't any user TLB entries in init_mm to worry about.
593 *
594 * This needs to happen before any other sanity checks due to
595 * intel_idle's shenanigans.
596 */
597 if (loaded_mm == &init_mm)
598 return;
599
600 /* Warn if we're not lazy. */
601 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
602
603 switch_mm(NULL, &init_mm, NULL);
604 }
605 EXPORT_SYMBOL_GPL(leave_mm);
606
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)607 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
608 struct task_struct *tsk)
609 {
610 unsigned long flags;
611
612 local_irq_save(flags);
613 switch_mm_irqs_off(NULL, next, tsk);
614 local_irq_restore(flags);
615 }
616
617 /*
618 * Invoked from return to user/guest by a task that opted-in to L1D
619 * flushing but ended up running on an SMT enabled core due to wrong
620 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
621 * contract which this task requested.
622 */
l1d_flush_force_sigbus(struct callback_head * ch)623 static void l1d_flush_force_sigbus(struct callback_head *ch)
624 {
625 force_sig(SIGBUS);
626 }
627
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)628 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
629 struct task_struct *next)
630 {
631 /* Flush L1D if the outgoing task requests it */
632 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
633 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
634
635 /* Check whether the incoming task opted in for L1D flush */
636 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
637 return;
638
639 /*
640 * Validate that it is not running on an SMT sibling as this would
641 * make the exercise pointless because the siblings share L1D. If
642 * it runs on a SMT sibling, notify it with SIGBUS on return to
643 * user/guest
644 */
645 if (this_cpu_read(cpu_info.smt_active)) {
646 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
647 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
648 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
649 }
650 }
651
mm_mangle_tif_spec_bits(struct task_struct * next)652 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
653 {
654 unsigned long next_tif = read_task_thread_flags(next);
655 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
656
657 /*
658 * Ensure that the bit shift above works as expected and the two flags
659 * end up in bit 0 and 1.
660 */
661 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
662
663 return (unsigned long)next->mm | spec_bits;
664 }
665
cond_mitigation(struct task_struct * next)666 static void cond_mitigation(struct task_struct *next)
667 {
668 unsigned long prev_mm, next_mm;
669
670 if (!next || !next->mm)
671 return;
672
673 next_mm = mm_mangle_tif_spec_bits(next);
674 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
675
676 /*
677 * Avoid user->user BTB/RSB poisoning by flushing them when switching
678 * between processes. This stops one process from doing Spectre-v2
679 * attacks on another.
680 *
681 * Both, the conditional and the always IBPB mode use the mm
682 * pointer to avoid the IBPB when switching between tasks of the
683 * same process. Using the mm pointer instead of mm->context.ctx_id
684 * opens a hypothetical hole vs. mm_struct reuse, which is more or
685 * less impossible to control by an attacker. Aside of that it
686 * would only affect the first schedule so the theoretically
687 * exposed data is not really interesting.
688 */
689 if (static_branch_likely(&switch_mm_cond_ibpb)) {
690 /*
691 * This is a bit more complex than the always mode because
692 * it has to handle two cases:
693 *
694 * 1) Switch from a user space task (potential attacker)
695 * which has TIF_SPEC_IB set to a user space task
696 * (potential victim) which has TIF_SPEC_IB not set.
697 *
698 * 2) Switch from a user space task (potential attacker)
699 * which has TIF_SPEC_IB not set to a user space task
700 * (potential victim) which has TIF_SPEC_IB set.
701 *
702 * This could be done by unconditionally issuing IBPB when
703 * a task which has TIF_SPEC_IB set is either scheduled in
704 * or out. Though that results in two flushes when:
705 *
706 * - the same user space task is scheduled out and later
707 * scheduled in again and only a kernel thread ran in
708 * between.
709 *
710 * - a user space task belonging to the same process is
711 * scheduled in after a kernel thread ran in between
712 *
713 * - a user space task belonging to the same process is
714 * scheduled in immediately.
715 *
716 * Optimize this with reasonably small overhead for the
717 * above cases. Mangle the TIF_SPEC_IB bit into the mm
718 * pointer of the incoming task which is stored in
719 * cpu_tlbstate.last_user_mm_spec for comparison.
720 *
721 * Issue IBPB only if the mm's are different and one or
722 * both have the IBPB bit set.
723 */
724 if (next_mm != prev_mm &&
725 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
726 indirect_branch_prediction_barrier();
727 }
728
729 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
730 /*
731 * Only flush when switching to a user space task with a
732 * different context than the user space task which ran
733 * last on this CPU.
734 */
735 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
736 indirect_branch_prediction_barrier();
737 }
738
739 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
740 /*
741 * Flush L1D when the outgoing task requested it and/or
742 * check whether the incoming task requested L1D flushing
743 * and ended up on an SMT sibling.
744 */
745 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
746 l1d_flush_evaluate(prev_mm, next_mm, next);
747 }
748
749 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
750 }
751
752 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)753 static inline void cr4_update_pce_mm(struct mm_struct *mm)
754 {
755 if (static_branch_unlikely(&rdpmc_always_available_key) ||
756 (!static_branch_unlikely(&rdpmc_never_available_key) &&
757 atomic_read(&mm->context.perf_rdpmc_allowed))) {
758 /*
759 * Clear the existing dirty counters to
760 * prevent the leak for an RDPMC task.
761 */
762 perf_clear_dirty_counters();
763 cr4_set_bits_irqsoff(X86_CR4_PCE);
764 } else
765 cr4_clear_bits_irqsoff(X86_CR4_PCE);
766 }
767
cr4_update_pce(void * ignored)768 void cr4_update_pce(void *ignored)
769 {
770 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
771 }
772
773 #else
cr4_update_pce_mm(struct mm_struct * mm)774 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
775 #endif
776
777 /*
778 * This optimizes when not actually switching mm's. Some architectures use the
779 * 'unused' argument for this optimization, but x86 must use
780 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
781 * 'current->active_mm' up to date.
782 */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)783 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
784 struct task_struct *tsk)
785 {
786 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
787 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
788 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
789 unsigned cpu = smp_processor_id();
790 unsigned long new_lam;
791 struct new_asid ns;
792 u64 next_tlb_gen;
793
794
795 /* We don't want flush_tlb_func() to run concurrently with us. */
796 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
797 WARN_ON_ONCE(!irqs_disabled());
798
799 /*
800 * Verify that CR3 is what we think it is. This will catch
801 * hypothetical buggy code that directly switches to swapper_pg_dir
802 * without going through leave_mm() / switch_mm_irqs_off() or that
803 * does something like write_cr3(read_cr3_pa()).
804 *
805 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
806 * isn't free.
807 */
808 #ifdef CONFIG_DEBUG_VM
809 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
810 tlbstate_lam_cr3_mask()))) {
811 /*
812 * If we were to BUG here, we'd be very likely to kill
813 * the system so hard that we don't see the call trace.
814 * Try to recover instead by ignoring the error and doing
815 * a global flush to minimize the chance of corruption.
816 *
817 * (This is far from being a fully correct recovery.
818 * Architecturally, the CPU could prefetch something
819 * back into an incorrect ASID slot and leave it there
820 * to cause trouble down the road. It's better than
821 * nothing, though.)
822 */
823 __flush_tlb_all();
824 }
825 #endif
826 if (was_lazy)
827 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
828
829 /*
830 * The membarrier system call requires a full memory barrier and
831 * core serialization before returning to user-space, after
832 * storing to rq->curr, when changing mm. This is because
833 * membarrier() sends IPIs to all CPUs that are in the target mm
834 * to make them issue memory barriers. However, if another CPU
835 * switches to/from the target mm concurrently with
836 * membarrier(), it can cause that CPU not to receive an IPI
837 * when it really should issue a memory barrier. Writing to CR3
838 * provides that full memory barrier and core serializing
839 * instruction.
840 */
841 if (prev == next) {
842 /* Not actually switching mm's */
843 VM_WARN_ON(is_dyn_asid(prev_asid) &&
844 this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
845 next->context.ctx_id);
846
847 /*
848 * If this races with another thread that enables lam, 'new_lam'
849 * might not match tlbstate_lam_cr3_mask().
850 */
851
852 /*
853 * Even in lazy TLB mode, the CPU should stay set in the
854 * mm_cpumask. The TLB shootdown code can figure out from
855 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
856 */
857 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
858 WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
859 !cpumask_test_cpu(cpu, mm_cpumask(next))))
860 cpumask_set_cpu(cpu, mm_cpumask(next));
861
862 /* Check if the current mm is transitioning to a global ASID */
863 if (mm_needs_global_asid(next, prev_asid)) {
864 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
865 ns = choose_new_asid(next, next_tlb_gen);
866 goto reload_tlb;
867 }
868
869 /*
870 * Broadcast TLB invalidation keeps this ASID up to date
871 * all the time.
872 */
873 if (is_global_asid(prev_asid))
874 return;
875
876 /*
877 * If the CPU is not in lazy TLB mode, we are just switching
878 * from one thread in a process to another thread in the same
879 * process. No TLB flush required.
880 */
881 if (!was_lazy)
882 return;
883
884 /*
885 * Read the tlb_gen to check whether a flush is needed.
886 * If the TLB is up to date, just use it.
887 * The barrier synchronizes with the tlb_gen increment in
888 * the TLB shootdown code.
889 */
890 smp_mb();
891 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
892 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
893 next_tlb_gen)
894 return;
895
896 /*
897 * TLB contents went out of date while we were in lazy
898 * mode. Fall through to the TLB switching code below.
899 */
900 ns.asid = prev_asid;
901 ns.need_flush = true;
902 } else {
903 /*
904 * Apply process to process speculation vulnerability
905 * mitigations if applicable.
906 */
907 cond_mitigation(tsk);
908
909 /*
910 * Indicate that CR3 is about to change. nmi_uaccess_okay()
911 * and others are sensitive to the window where mm_cpumask(),
912 * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
913 */
914 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
915
916 /*
917 * Make sure this CPU is set in mm_cpumask() such that we'll
918 * receive invalidation IPIs.
919 *
920 * Rely on the smp_mb() implied by cpumask_set_cpu()'s atomic
921 * operation, or explicitly provide one. Such that:
922 *
923 * switch_mm_irqs_off() flush_tlb_mm_range()
924 * smp_store_release(loaded_mm, SWITCHING); atomic64_inc_return(tlb_gen)
925 * smp_mb(); // here // smp_mb() implied
926 * atomic64_read(tlb_gen); this_cpu_read(loaded_mm);
927 *
928 * we properly order against flush_tlb_mm_range(), where the
929 * loaded_mm load can happen in mative_flush_tlb_multi() ->
930 * should_flush_tlb().
931 *
932 * This way switch_mm() must see the new tlb_gen or
933 * flush_tlb_mm_range() must see the new loaded_mm, or both.
934 */
935 if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
936 cpumask_set_cpu(cpu, mm_cpumask(next));
937 else
938 smp_mb();
939
940 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
941
942 ns = choose_new_asid(next, next_tlb_gen);
943 }
944
945 reload_tlb:
946 new_lam = mm_lam_cr3_mask(next);
947 if (ns.need_flush) {
948 VM_WARN_ON_ONCE(is_global_asid(ns.asid));
949 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
950 this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
951 load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
952
953 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
954 } else {
955 /* The new ASID is already up to date. */
956 load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
957
958 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
959 }
960
961 /* Make sure we write CR3 before loaded_mm. */
962 barrier();
963
964 this_cpu_write(cpu_tlbstate.loaded_mm, next);
965 this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
966 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
967
968 if (next != prev) {
969 cr4_update_pce_mm(next);
970 switch_ldt(prev, next);
971 }
972 }
973
974 /*
975 * Please ignore the name of this function. It should be called
976 * switch_to_kernel_thread().
977 *
978 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
979 * kernel thread or other context without an mm. Acceptable implementations
980 * include doing nothing whatsoever, switching to init_mm, or various clever
981 * lazy tricks to try to minimize TLB flushes.
982 *
983 * The scheduler reserves the right to call enter_lazy_tlb() several times
984 * in a row. It will notify us that we're going back to a real mm by
985 * calling switch_mm_irqs_off().
986 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)987 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
988 {
989 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
990 return;
991
992 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
993 }
994
995 /*
996 * Using a temporary mm allows to set temporary mappings that are not accessible
997 * by other CPUs. Such mappings are needed to perform sensitive memory writes
998 * that override the kernel memory protections (e.g., W^X), without exposing the
999 * temporary page-table mappings that are required for these write operations to
1000 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1001 * mapping is torn down. Temporary mms can also be used for EFI runtime service
1002 * calls or similar functionality.
1003 *
1004 * It is illegal to schedule while using a temporary mm -- the context switch
1005 * code is unaware of the temporary mm and does not know how to context switch.
1006 * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
1007 *
1008 * Note: For sensitive memory writes, the temporary mm needs to be used
1009 * exclusively by a single core, and IRQs should be disabled while the
1010 * temporary mm is loaded, thereby preventing interrupt handler bugs from
1011 * overriding the kernel memory protection.
1012 */
use_temporary_mm(struct mm_struct * temp_mm)1013 struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
1014 {
1015 struct mm_struct *prev_mm;
1016
1017 lockdep_assert_preemption_disabled();
1018 guard(irqsave)();
1019
1020 /*
1021 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1022 * with a stale address space WITHOUT being in lazy mode after
1023 * restoring the previous mm.
1024 */
1025 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1026 leave_mm();
1027
1028 prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1029 switch_mm_irqs_off(NULL, temp_mm, current);
1030
1031 /*
1032 * If breakpoints are enabled, disable them while the temporary mm is
1033 * used. Userspace might set up watchpoints on addresses that are used
1034 * in the temporary mm, which would lead to wrong signals being sent or
1035 * crashes.
1036 *
1037 * Note that breakpoints are not disabled selectively, which also causes
1038 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1039 * undesirable, but still seems reasonable as the code that runs in the
1040 * temporary mm should be short.
1041 */
1042 if (hw_breakpoint_active())
1043 hw_breakpoint_disable();
1044
1045 return prev_mm;
1046 }
1047
unuse_temporary_mm(struct mm_struct * prev_mm)1048 void unuse_temporary_mm(struct mm_struct *prev_mm)
1049 {
1050 lockdep_assert_preemption_disabled();
1051 guard(irqsave)();
1052
1053 /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
1054 cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
1055
1056 switch_mm_irqs_off(NULL, prev_mm, current);
1057
1058 /*
1059 * Restore the breakpoints if they were disabled before the temporary mm
1060 * was loaded.
1061 */
1062 if (hw_breakpoint_active())
1063 hw_breakpoint_restore();
1064 }
1065
1066 /*
1067 * Call this when reinitializing a CPU. It fixes the following potential
1068 * problems:
1069 *
1070 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
1071 * because the CPU was taken down and came back up with CR3's PCID
1072 * bits clear. CPU hotplug can do this.
1073 *
1074 * - The TLB contains junk in slots corresponding to inactive ASIDs.
1075 *
1076 * - The CPU went so far out to lunch that it may have missed a TLB
1077 * flush.
1078 */
initialize_tlbstate_and_flush(void)1079 void initialize_tlbstate_and_flush(void)
1080 {
1081 int i;
1082 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1083 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
1084 unsigned long lam = mm_lam_cr3_mask(mm);
1085 unsigned long cr3 = __read_cr3();
1086
1087 /* Assert that CR3 already references the right mm. */
1088 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
1089
1090 /* LAM expected to be disabled */
1091 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
1092 WARN_ON(lam);
1093
1094 /*
1095 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
1096 * doesn't work like other CR4 bits because it can only be set from
1097 * long mode.)
1098 */
1099 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
1100 !(cr4_read_shadow() & X86_CR4_PCIDE));
1101
1102 /* Disable LAM, force ASID 0 and force a TLB flush. */
1103 write_cr3(build_cr3(mm->pgd, 0, 0));
1104
1105 /* Reinitialize tlbstate. */
1106 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
1107 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
1108 this_cpu_write(cpu_tlbstate.next_asid, 1);
1109 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
1110 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
1111 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
1112
1113 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
1114 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
1115 }
1116
1117 /*
1118 * flush_tlb_func()'s memory ordering requirement is that any
1119 * TLB fills that happen after we flush the TLB are ordered after we
1120 * read active_mm's tlb_gen. We don't need any explicit barriers
1121 * because all x86 flush operations are serializing and the
1122 * atomic64_read operation won't be reordered by the compiler.
1123 */
flush_tlb_func(void * info)1124 static void flush_tlb_func(void *info)
1125 {
1126 /*
1127 * We have three different tlb_gen values in here. They are:
1128 *
1129 * - mm_tlb_gen: the latest generation.
1130 * - local_tlb_gen: the generation that this CPU has already caught
1131 * up to.
1132 * - f->new_tlb_gen: the generation that the requester of the flush
1133 * wants us to catch up to.
1134 */
1135 const struct flush_tlb_info *f = info;
1136 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1137 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1138 u64 local_tlb_gen;
1139 bool local = smp_processor_id() == f->initiating_cpu;
1140 unsigned long nr_invalidate = 0;
1141 u64 mm_tlb_gen;
1142
1143 /* This code cannot presently handle being reentered. */
1144 VM_WARN_ON(!irqs_disabled());
1145
1146 if (!local) {
1147 inc_irq_stat(irq_tlb_count);
1148 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1149 }
1150
1151 /* The CPU was left in the mm_cpumask of the target mm. Clear it. */
1152 if (f->mm && f->mm != loaded_mm) {
1153 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm));
1154 trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0);
1155 return;
1156 }
1157
1158 if (unlikely(loaded_mm == &init_mm))
1159 return;
1160
1161 /* Reload the ASID if transitioning into or out of a global ASID */
1162 if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
1163 switch_mm_irqs_off(NULL, loaded_mm, NULL);
1164 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1165 }
1166
1167 /* Broadcast ASIDs are always kept up to date with INVLPGB. */
1168 if (is_global_asid(loaded_mm_asid))
1169 return;
1170
1171 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
1172 loaded_mm->context.ctx_id);
1173
1174 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
1175 /*
1176 * We're in lazy mode. We need to at least flush our
1177 * paging-structure cache to avoid speculatively reading
1178 * garbage into our TLB. Since switching to init_mm is barely
1179 * slower than a minimal flush, just switch to init_mm.
1180 *
1181 * This should be rare, with native_flush_tlb_multi() skipping
1182 * IPIs to lazy TLB mode CPUs.
1183 */
1184 switch_mm_irqs_off(NULL, &init_mm, NULL);
1185 return;
1186 }
1187
1188 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
1189
1190 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
1191 f->new_tlb_gen <= local_tlb_gen)) {
1192 /*
1193 * The TLB is already up to date in respect to f->new_tlb_gen.
1194 * While the core might be still behind mm_tlb_gen, checking
1195 * mm_tlb_gen unnecessarily would have negative caching effects
1196 * so avoid it.
1197 */
1198 return;
1199 }
1200
1201 /*
1202 * Defer mm_tlb_gen reading as long as possible to avoid cache
1203 * contention.
1204 */
1205 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
1206
1207 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
1208 /*
1209 * There's nothing to do: we're already up to date. This can
1210 * happen if two concurrent flushes happen -- the first flush to
1211 * be handled can catch us all the way up, leaving no work for
1212 * the second flush.
1213 */
1214 goto done;
1215 }
1216
1217 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
1218 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
1219
1220 /*
1221 * If we get to this point, we know that our TLB is out of date.
1222 * This does not strictly imply that we need to flush (it's
1223 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
1224 * going to need to flush in the very near future, so we might
1225 * as well get it over with.
1226 *
1227 * The only question is whether to do a full or partial flush.
1228 *
1229 * We do a partial flush if requested and two extra conditions
1230 * are met:
1231 *
1232 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
1233 * we've always done all needed flushes to catch up to
1234 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
1235 * f->new_tlb_gen == 3, then we know that the flush needed to bring
1236 * us up to date for tlb_gen 3 is the partial flush we're
1237 * processing.
1238 *
1239 * As an example of why this check is needed, suppose that there
1240 * are two concurrent flushes. The first is a full flush that
1241 * changes context.tlb_gen from 1 to 2. The second is a partial
1242 * flush that changes context.tlb_gen from 2 to 3. If they get
1243 * processed on this CPU in reverse order, we'll see
1244 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
1245 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
1246 * 3, we'd be break the invariant: we'd update local_tlb_gen above
1247 * 1 without the full flush that's needed for tlb_gen 2.
1248 *
1249 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
1250 * Partial TLB flushes are not all that much cheaper than full TLB
1251 * flushes, so it seems unlikely that it would be a performance win
1252 * to do a partial flush if that won't bring our TLB fully up to
1253 * date. By doing a full flush instead, we can increase
1254 * local_tlb_gen all the way to mm_tlb_gen and we can probably
1255 * avoid another flush in the very near future.
1256 */
1257 if (f->end != TLB_FLUSH_ALL &&
1258 f->new_tlb_gen == local_tlb_gen + 1 &&
1259 f->new_tlb_gen == mm_tlb_gen) {
1260 /* Partial flush */
1261 unsigned long addr = f->start;
1262
1263 /* Partial flush cannot have invalid generations */
1264 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
1265
1266 /* Partial flush must have valid mm */
1267 VM_WARN_ON(f->mm == NULL);
1268
1269 nr_invalidate = (f->end - f->start) >> f->stride_shift;
1270
1271 while (addr < f->end) {
1272 flush_tlb_one_user(addr);
1273 addr += 1UL << f->stride_shift;
1274 }
1275 if (local)
1276 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
1277 } else {
1278 /* Full flush. */
1279 nr_invalidate = TLB_FLUSH_ALL;
1280
1281 flush_tlb_local();
1282 if (local)
1283 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1284 }
1285
1286 /* Both paths above update our state to mm_tlb_gen. */
1287 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
1288
1289 /* Tracing is done in a unified manner to reduce the code size */
1290 done:
1291 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
1292 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
1293 TLB_LOCAL_MM_SHOOTDOWN,
1294 nr_invalidate);
1295 }
1296
should_flush_tlb(int cpu,void * data)1297 static bool should_flush_tlb(int cpu, void *data)
1298 {
1299 struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
1300 struct flush_tlb_info *info = data;
1301
1302 /*
1303 * Order the 'loaded_mm' and 'is_lazy' against their
1304 * write ordering in switch_mm_irqs_off(). Ensure
1305 * 'is_lazy' is at least as new as 'loaded_mm'.
1306 */
1307 smp_rmb();
1308
1309 /* Lazy TLB will get flushed at the next context switch. */
1310 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
1311 return false;
1312
1313 /* No mm means kernel memory flush. */
1314 if (!info->mm)
1315 return true;
1316
1317 /*
1318 * While switching, the remote CPU could have state from
1319 * either the prev or next mm. Assume the worst and flush.
1320 */
1321 if (loaded_mm == LOADED_MM_SWITCHING)
1322 return true;
1323
1324 /* The target mm is loaded, and the CPU is not lazy. */
1325 if (loaded_mm == info->mm)
1326 return true;
1327
1328 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */
1329 if (info->trim_cpumask)
1330 return true;
1331
1332 return false;
1333 }
1334
should_trim_cpumask(struct mm_struct * mm)1335 static bool should_trim_cpumask(struct mm_struct *mm)
1336 {
1337 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
1338 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
1339 return true;
1340 }
1341 return false;
1342 }
1343
1344 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
1345 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
1346
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1347 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
1348 const struct flush_tlb_info *info)
1349 {
1350 /*
1351 * Do accounting and tracing. Note that there are (and have always been)
1352 * cases in which a remote TLB flush will be traced, but eventually
1353 * would not happen.
1354 */
1355 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1356 if (info->end == TLB_FLUSH_ALL)
1357 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
1358 else
1359 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
1360 (info->end - info->start) >> PAGE_SHIFT);
1361
1362 /*
1363 * If no page tables were freed, we can skip sending IPIs to
1364 * CPUs in lazy TLB mode. They will flush the CPU themselves
1365 * at the next context switch.
1366 *
1367 * However, if page tables are getting freed, we need to send the
1368 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
1369 * up on the new contents of what used to be page tables, while
1370 * doing a speculative memory access.
1371 */
1372 if (info->freed_tables || mm_in_asid_transition(info->mm))
1373 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
1374 else
1375 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
1376 (void *)info, 1, cpumask);
1377 }
1378
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)1379 void flush_tlb_multi(const struct cpumask *cpumask,
1380 const struct flush_tlb_info *info)
1381 {
1382 __flush_tlb_multi(cpumask, info);
1383 }
1384
1385 /*
1386 * See Documentation/arch/x86/tlb.rst for details. We choose 33
1387 * because it is large enough to cover the vast majority (at
1388 * least 95%) of allocations, and is small enough that we are
1389 * confident it will not cause too much overhead. Each single
1390 * flush is about 100 ns, so this caps the maximum overhead at
1391 * _about_ 3,000 ns.
1392 *
1393 * This is in units of pages.
1394 */
1395 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
1396
1397 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
1398
1399 #ifdef CONFIG_DEBUG_VM
1400 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
1401 #endif
1402
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)1403 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
1404 unsigned long start, unsigned long end,
1405 unsigned int stride_shift, bool freed_tables,
1406 u64 new_tlb_gen)
1407 {
1408 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
1409
1410 #ifdef CONFIG_DEBUG_VM
1411 /*
1412 * Ensure that the following code is non-reentrant and flush_tlb_info
1413 * is not overwritten. This means no TLB flushing is initiated by
1414 * interrupt handlers and machine-check exception handlers.
1415 */
1416 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1417 #endif
1418
1419 /*
1420 * If the number of flushes is so large that a full flush
1421 * would be faster, do a full flush.
1422 */
1423 if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
1424 start = 0;
1425 end = TLB_FLUSH_ALL;
1426 }
1427
1428 info->start = start;
1429 info->end = end;
1430 info->mm = mm;
1431 info->stride_shift = stride_shift;
1432 info->freed_tables = freed_tables;
1433 info->new_tlb_gen = new_tlb_gen;
1434 info->initiating_cpu = smp_processor_id();
1435 info->trim_cpumask = 0;
1436
1437 return info;
1438 }
1439
put_flush_tlb_info(void)1440 static void put_flush_tlb_info(void)
1441 {
1442 #ifdef CONFIG_DEBUG_VM
1443 /* Complete reentrancy prevention checks */
1444 barrier();
1445 this_cpu_dec(flush_tlb_info_idx);
1446 #endif
1447 }
1448
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1449 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1450 unsigned long end, unsigned int stride_shift,
1451 bool freed_tables)
1452 {
1453 struct flush_tlb_info *info;
1454 int cpu = get_cpu();
1455 u64 new_tlb_gen;
1456
1457 /* This is also a barrier that synchronizes with switch_mm(). */
1458 new_tlb_gen = inc_mm_tlb_gen(mm);
1459
1460 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1461 new_tlb_gen);
1462
1463 /*
1464 * flush_tlb_multi() is not optimized for the common case in which only
1465 * a local TLB flush is needed. Optimize this use-case by calling
1466 * flush_tlb_func_local() directly in this case.
1467 */
1468 if (mm_global_asid(mm)) {
1469 broadcast_tlb_flush(info);
1470 } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1471 info->trim_cpumask = should_trim_cpumask(mm);
1472 flush_tlb_multi(mm_cpumask(mm), info);
1473 consider_global_asid(mm);
1474 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1475 lockdep_assert_irqs_enabled();
1476 local_irq_disable();
1477 flush_tlb_func(info);
1478 local_irq_enable();
1479 }
1480
1481 put_flush_tlb_info();
1482 put_cpu();
1483 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1484 }
1485
do_flush_tlb_all(void * info)1486 static void do_flush_tlb_all(void *info)
1487 {
1488 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1489 __flush_tlb_all();
1490 }
1491
flush_tlb_all(void)1492 void flush_tlb_all(void)
1493 {
1494 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1495
1496 /* First try (faster) hardware-assisted TLB invalidation. */
1497 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1498 invlpgb_flush_all();
1499 else
1500 /* Fall back to the IPI-based invalidation. */
1501 on_each_cpu(do_flush_tlb_all, NULL, 1);
1502 }
1503
1504 /* Flush an arbitrarily large range of memory with INVLPGB. */
invlpgb_kernel_range_flush(struct flush_tlb_info * info)1505 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
1506 {
1507 unsigned long addr, nr;
1508
1509 for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
1510 nr = (info->end - addr) >> PAGE_SHIFT;
1511
1512 /*
1513 * INVLPGB has a limit on the size of ranges it can
1514 * flush. Break up large flushes.
1515 */
1516 nr = clamp_val(nr, 1, invlpgb_count_max);
1517
1518 invlpgb_flush_addr_nosync(addr, nr);
1519 }
1520 __tlbsync();
1521 }
1522
do_kernel_range_flush(void * info)1523 static void do_kernel_range_flush(void *info)
1524 {
1525 struct flush_tlb_info *f = info;
1526 unsigned long addr;
1527
1528 /* flush range by one by one 'invlpg' */
1529 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1530 flush_tlb_one_kernel(addr);
1531 }
1532
kernel_tlb_flush_all(struct flush_tlb_info * info)1533 static void kernel_tlb_flush_all(struct flush_tlb_info *info)
1534 {
1535 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1536 invlpgb_flush_all();
1537 else
1538 on_each_cpu(do_flush_tlb_all, NULL, 1);
1539 }
1540
kernel_tlb_flush_range(struct flush_tlb_info * info)1541 static void kernel_tlb_flush_range(struct flush_tlb_info *info)
1542 {
1543 if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
1544 invlpgb_kernel_range_flush(info);
1545 else
1546 on_each_cpu(do_kernel_range_flush, info, 1);
1547 }
1548
flush_tlb_kernel_range(unsigned long start,unsigned long end)1549 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1550 {
1551 struct flush_tlb_info *info;
1552
1553 guard(preempt)();
1554
1555 info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
1556 TLB_GENERATION_INVALID);
1557
1558 if (info->end == TLB_FLUSH_ALL)
1559 kernel_tlb_flush_all(info);
1560 else
1561 kernel_tlb_flush_range(info);
1562
1563 put_flush_tlb_info();
1564 }
1565
1566 /*
1567 * This can be used from process context to figure out what the value of
1568 * CR3 is without needing to do a (slow) __read_cr3().
1569 *
1570 * It's intended to be used for code like KVM that sneakily changes CR3
1571 * and needs to restore it. It needs to be used very carefully.
1572 */
__get_current_cr3_fast(void)1573 unsigned long __get_current_cr3_fast(void)
1574 {
1575 unsigned long cr3 =
1576 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1577 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1578 tlbstate_lam_cr3_mask());
1579
1580 /* For now, be very restrictive about when this can be called. */
1581 VM_WARN_ON(in_nmi() || preemptible());
1582
1583 VM_BUG_ON(cr3 != __read_cr3());
1584 return cr3;
1585 }
1586 EXPORT_SYMBOL_FOR_KVM(__get_current_cr3_fast);
1587
1588 /*
1589 * Flush one page in the kernel mapping
1590 */
flush_tlb_one_kernel(unsigned long addr)1591 void flush_tlb_one_kernel(unsigned long addr)
1592 {
1593 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1594
1595 /*
1596 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1597 * paravirt equivalent. Even with PCID, this is sufficient: we only
1598 * use PCID if we also use global PTEs for the kernel mapping, and
1599 * INVLPG flushes global translations across all address spaces.
1600 *
1601 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1602 * __flush_tlb_one_user() will flush the given address for the current
1603 * kernel address space and for its usermode counterpart, but it does
1604 * not flush it for other address spaces.
1605 */
1606 flush_tlb_one_user(addr);
1607
1608 if (!static_cpu_has(X86_FEATURE_PTI))
1609 return;
1610
1611 /*
1612 * See above. We need to propagate the flush to all other address
1613 * spaces. In principle, we only need to propagate it to kernelmode
1614 * address spaces, but the extra bookkeeping we would need is not
1615 * worth it.
1616 */
1617 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1618 }
1619
1620 /*
1621 * Flush one page in the user mapping
1622 */
native_flush_tlb_one_user(unsigned long addr)1623 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1624 {
1625 u32 loaded_mm_asid;
1626 bool cpu_pcide;
1627
1628 /* Flush 'addr' from the kernel PCID: */
1629 invlpg(addr);
1630
1631 /* If PTI is off there is no user PCID and nothing to flush. */
1632 if (!static_cpu_has(X86_FEATURE_PTI))
1633 return;
1634
1635 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1636 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1637
1638 /*
1639 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1640 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1641 * #GP's even if called before CR4.PCIDE has been initialized.
1642 */
1643 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1644 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1645 else
1646 invalidate_user_asid(loaded_mm_asid);
1647 }
1648
flush_tlb_one_user(unsigned long addr)1649 void flush_tlb_one_user(unsigned long addr)
1650 {
1651 __flush_tlb_one_user(addr);
1652 }
1653
1654 /*
1655 * Flush everything
1656 */
native_flush_tlb_global(void)1657 STATIC_NOPV void native_flush_tlb_global(void)
1658 {
1659 unsigned long flags;
1660
1661 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1662 /*
1663 * Using INVPCID is considerably faster than a pair of writes
1664 * to CR4 sandwiched inside an IRQ flag save/restore.
1665 *
1666 * Note, this works with CR4.PCIDE=0 or 1.
1667 */
1668 invpcid_flush_all();
1669 return;
1670 }
1671
1672 /*
1673 * Read-modify-write to CR4 - protect it from preemption and
1674 * from interrupts. (Use the raw variant because this code can
1675 * be called from deep inside debugging code.)
1676 */
1677 raw_local_irq_save(flags);
1678
1679 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1680
1681 raw_local_irq_restore(flags);
1682 }
1683
1684 /*
1685 * Flush the entire current user mapping
1686 */
native_flush_tlb_local(void)1687 STATIC_NOPV void native_flush_tlb_local(void)
1688 {
1689 /*
1690 * Preemption or interrupts must be disabled to protect the access
1691 * to the per CPU variable and to prevent being preempted between
1692 * read_cr3() and write_cr3().
1693 */
1694 WARN_ON_ONCE(preemptible());
1695
1696 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1697
1698 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1699 native_write_cr3(__native_read_cr3());
1700 }
1701
flush_tlb_local(void)1702 void flush_tlb_local(void)
1703 {
1704 __flush_tlb_local();
1705 }
1706
1707 /*
1708 * Flush everything
1709 */
__flush_tlb_all(void)1710 void __flush_tlb_all(void)
1711 {
1712 /*
1713 * This is to catch users with enabled preemption and the PGE feature
1714 * and don't trigger the warning in __native_flush_tlb().
1715 */
1716 VM_WARN_ON_ONCE(preemptible());
1717
1718 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1719 __flush_tlb_global();
1720 } else {
1721 /*
1722 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1723 */
1724 flush_tlb_local();
1725 }
1726 }
1727 EXPORT_SYMBOL_FOR_KVM(__flush_tlb_all);
1728
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1729 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1730 {
1731 struct flush_tlb_info *info;
1732
1733 int cpu = get_cpu();
1734
1735 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1736 TLB_GENERATION_INVALID);
1737 /*
1738 * flush_tlb_multi() is not optimized for the common case in which only
1739 * a local TLB flush is needed. Optimize this use-case by calling
1740 * flush_tlb_func_local() directly in this case.
1741 */
1742 if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
1743 invlpgb_flush_all_nonglobals();
1744 batch->unmapped_pages = false;
1745 } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1746 flush_tlb_multi(&batch->cpumask, info);
1747 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1748 lockdep_assert_irqs_enabled();
1749 local_irq_disable();
1750 flush_tlb_func(info);
1751 local_irq_enable();
1752 }
1753
1754 cpumask_clear(&batch->cpumask);
1755
1756 put_flush_tlb_info();
1757 put_cpu();
1758 }
1759
1760 /*
1761 * Blindly accessing user memory from NMI context can be dangerous
1762 * if we're in the middle of switching the current user task or
1763 * switching the loaded mm. It can also be dangerous if we
1764 * interrupted some kernel code that was temporarily using a
1765 * different mm.
1766 */
nmi_uaccess_okay(void)1767 bool nmi_uaccess_okay(void)
1768 {
1769 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1770 struct mm_struct *current_mm = current->mm;
1771
1772 VM_WARN_ON_ONCE(!loaded_mm);
1773
1774 /*
1775 * The condition we want to check is
1776 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1777 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1778 * is supposed to be reasonably fast.
1779 *
1780 * Instead, we check the almost equivalent but somewhat conservative
1781 * condition below, and we rely on the fact that switch_mm_irqs_off()
1782 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1783 */
1784 if (loaded_mm != current_mm)
1785 return false;
1786
1787 VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
1788
1789 return true;
1790 }
1791
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1792 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1793 size_t count, loff_t *ppos)
1794 {
1795 char buf[32];
1796 unsigned int len;
1797
1798 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1799 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1800 }
1801
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1802 static ssize_t tlbflush_write_file(struct file *file,
1803 const char __user *user_buf, size_t count, loff_t *ppos)
1804 {
1805 char buf[32];
1806 ssize_t len;
1807 int ceiling;
1808
1809 len = min(count, sizeof(buf) - 1);
1810 if (copy_from_user(buf, user_buf, len))
1811 return -EFAULT;
1812
1813 buf[len] = '\0';
1814 if (kstrtoint(buf, 0, &ceiling))
1815 return -EINVAL;
1816
1817 if (ceiling < 0)
1818 return -EINVAL;
1819
1820 tlb_single_page_flush_ceiling = ceiling;
1821 return count;
1822 }
1823
1824 static const struct file_operations fops_tlbflush = {
1825 .read = tlbflush_read_file,
1826 .write = tlbflush_write_file,
1827 .llseek = default_llseek,
1828 };
1829
create_tlb_single_page_flush_ceiling(void)1830 static int __init create_tlb_single_page_flush_ceiling(void)
1831 {
1832 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1833 arch_debugfs_dir, NULL, &fops_tlbflush);
1834 return 0;
1835 }
1836 late_initcall(create_tlb_single_page_flush_ceiling);
1837