1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18
19
20 /* Quick Fair Queueing Plus
21 ========================
22
23 Sources:
24
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38 /*
39
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90 /*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94 #define QFQ_MAX_SLOTS 32
95
96 /*
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
107
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
110
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
113
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
117
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
119
120 /*
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
123 */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125
126 struct qfq_group;
127
128 struct qfq_aggregate;
129
130 struct qfq_class {
131 struct Qdisc_class_common common;
132
133 struct gnet_stats_basic_sync bstats;
134 struct gnet_stats_queue qstats;
135 struct net_rate_estimator __rcu *rate_est;
136 struct Qdisc *qdisc;
137 struct list_head alist; /* Link for active-classes list. */
138 struct qfq_aggregate *agg; /* Parent aggregate. */
139 int deficit; /* DRR deficit counter. */
140 };
141
142 struct qfq_aggregate {
143 struct hlist_node next; /* Link for the slot list. */
144 u64 S, F; /* flow timestamps (exact) */
145
146 /* group we belong to. In principle we would need the index,
147 * which is log_2(lmax/weight), but we never reference it
148 * directly, only the group.
149 */
150 struct qfq_group *grp;
151
152 /* these are copied from the flowset. */
153 u32 class_weight; /* Weight of each class in this aggregate. */
154 /* Max pkt size for the classes in this aggregate, DRR quantum. */
155 int lmax;
156
157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
158 u32 budgetmax; /* Max budget for this aggregate. */
159 u32 initial_budget, budget; /* Initial and current budget. */
160
161 int num_classes; /* Number of classes in this aggr. */
162 struct list_head active; /* DRR queue of active classes. */
163
164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
165 };
166
167 struct qfq_group {
168 u64 S, F; /* group timestamps (approx). */
169 unsigned int slot_shift; /* Slot shift. */
170 unsigned int index; /* Group index. */
171 unsigned int front; /* Index of the front slot. */
172 unsigned long full_slots; /* non-empty slots */
173
174 /* Array of RR lists of active aggregates. */
175 struct hlist_head slots[QFQ_MAX_SLOTS];
176 };
177
178 struct qfq_sched {
179 struct tcf_proto __rcu *filter_list;
180 struct tcf_block *block;
181 struct Qdisc_class_hash clhash;
182
183 u64 oldV, V; /* Precise virtual times. */
184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
185 u32 wsum; /* weight sum */
186 u32 iwsum; /* inverse weight sum */
187
188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
191
192 u32 max_agg_classes; /* Max number of classes per aggr. */
193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
194 };
195
196 /*
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
199 * for service
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 * must be rescheduled for service
202 */
203 enum update_reason {enqueue, requeue};
204
cl_is_active(struct qfq_class * cl)205 static bool cl_is_active(struct qfq_class *cl)
206 {
207 return !list_empty(&cl->alist);
208 }
209
qfq_find_class(struct Qdisc * sch,u32 classid)210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219 }
220
221 static const struct netlink_range_validation lmax_range = {
222 .min = QFQ_MIN_LMAX,
223 .max = QFQ_MAX_LMAX,
224 };
225
226 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
227 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
228 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
229 };
230
231 /*
232 * Calculate a flow index, given its weight and maximum packet length.
233 * index = log_2(maxlen/weight) but we need to apply the scaling.
234 * This is used only once at flow creation.
235 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)236 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
237 {
238 u64 slot_size = (u64)maxlen * inv_w;
239 unsigned long size_map;
240 int index = 0;
241
242 size_map = slot_size >> min_slot_shift;
243 if (!size_map)
244 goto out;
245
246 index = __fls(size_map) + 1; /* basically a log_2 */
247 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
248
249 if (index < 0)
250 index = 0;
251 out:
252 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
253 (unsigned long) ONE_FP/inv_w, maxlen, index);
254
255 return index;
256 }
257
258 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
259 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
260 enum update_reason);
261
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)262 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
263 u32 lmax, u32 weight)
264 {
265 INIT_LIST_HEAD(&agg->active);
266 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
267
268 agg->lmax = lmax;
269 agg->class_weight = weight;
270 }
271
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)272 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
273 u32 lmax, u32 weight)
274 {
275 struct qfq_aggregate *agg;
276
277 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
278 if (agg->lmax == lmax && agg->class_weight == weight)
279 return agg;
280
281 return NULL;
282 }
283
284
285 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)286 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
287 int new_num_classes)
288 {
289 u32 new_agg_weight;
290
291 if (new_num_classes == q->max_agg_classes)
292 hlist_del_init(&agg->nonfull_next);
293
294 if (agg->num_classes > new_num_classes &&
295 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
296 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
297
298 /* The next assignment may let
299 * agg->initial_budget > agg->budgetmax
300 * hold, we will take it into account in charge_actual_service().
301 */
302 agg->budgetmax = new_num_classes * agg->lmax;
303 new_agg_weight = agg->class_weight * new_num_classes;
304 agg->inv_w = ONE_FP/new_agg_weight;
305
306 if (agg->grp == NULL) {
307 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
308 q->min_slot_shift);
309 agg->grp = &q->groups[i];
310 }
311
312 q->wsum +=
313 (int) agg->class_weight * (new_num_classes - agg->num_classes);
314 q->iwsum = ONE_FP / q->wsum;
315
316 agg->num_classes = new_num_classes;
317 }
318
319 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)320 static void qfq_add_to_agg(struct qfq_sched *q,
321 struct qfq_aggregate *agg,
322 struct qfq_class *cl)
323 {
324 cl->agg = agg;
325
326 qfq_update_agg(q, agg, agg->num_classes+1);
327 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
328 list_add_tail(&cl->alist, &agg->active);
329 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
330 cl && q->in_serv_agg != agg) /* agg was inactive */
331 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
332 }
333 }
334
335 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
336
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)337 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
338 {
339 hlist_del_init(&agg->nonfull_next);
340 q->wsum -= agg->class_weight;
341 if (q->wsum != 0)
342 q->iwsum = ONE_FP / q->wsum;
343
344 if (q->in_serv_agg == agg)
345 q->in_serv_agg = qfq_choose_next_agg(q);
346 kfree(agg);
347 }
348
349 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)350 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
351 {
352 struct qfq_aggregate *agg = cl->agg;
353
354
355 list_del_init(&cl->alist); /* remove from RR queue of the aggregate */
356 if (list_empty(&agg->active)) /* agg is now inactive */
357 qfq_deactivate_agg(q, agg);
358 }
359
360 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)361 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
362 {
363 struct qfq_aggregate *agg = cl->agg;
364
365 cl->agg = NULL;
366 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
367 qfq_destroy_agg(q, agg);
368 return;
369 }
370 qfq_update_agg(q, agg, agg->num_classes-1);
371 }
372
373 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)374 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
375 {
376 if (cl->qdisc->q.qlen > 0) /* class is active */
377 qfq_deactivate_class(q, cl);
378
379 qfq_rm_from_agg(q, cl);
380 }
381
382 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)383 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
384 u32 lmax)
385 {
386 struct qfq_sched *q = qdisc_priv(sch);
387 struct qfq_aggregate *new_agg;
388
389 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
390 if (lmax > QFQ_MAX_LMAX)
391 return -EINVAL;
392
393 new_agg = qfq_find_agg(q, lmax, weight);
394 if (new_agg == NULL) { /* create new aggregate */
395 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
396 if (new_agg == NULL)
397 return -ENOBUFS;
398 qfq_init_agg(q, new_agg, lmax, weight);
399 }
400 qfq_deact_rm_from_agg(q, cl);
401 qfq_add_to_agg(q, new_agg, cl);
402
403 return 0;
404 }
405
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)406 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
407 struct nlattr **tca, unsigned long *arg,
408 struct netlink_ext_ack *extack)
409 {
410 struct qfq_sched *q = qdisc_priv(sch);
411 struct qfq_class *cl = (struct qfq_class *)*arg;
412 bool existing = false;
413 struct nlattr *tb[TCA_QFQ_MAX + 1];
414 struct qfq_aggregate *new_agg = NULL;
415 u32 weight, lmax, inv_w, old_weight, old_lmax;
416 int err;
417 int delta_w;
418
419 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
420 NL_SET_ERR_MSG_MOD(extack, "missing options");
421 return -EINVAL;
422 }
423
424 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
425 qfq_policy, extack);
426 if (err < 0)
427 return err;
428
429 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1);
430
431 if (tb[TCA_QFQ_LMAX]) {
432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
433 } else {
434 /* MTU size is user controlled */
435 lmax = psched_mtu(qdisc_dev(sch));
436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
437 NL_SET_ERR_MSG_MOD(extack,
438 "MTU size out of bounds for qfq");
439 return -EINVAL;
440 }
441 }
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL) {
447 sch_tree_lock(sch);
448 old_weight = cl->agg->class_weight;
449 old_lmax = cl->agg->lmax;
450 sch_tree_unlock(sch);
451 if (lmax == old_lmax && weight == old_weight)
452 return 0; /* nothing to change */
453 }
454
455 delta_w = weight - (cl ? old_weight : 0);
456
457 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
458 NL_SET_ERR_MSG_FMT_MOD(extack,
459 "total weight out of range (%d + %u)",
460 delta_w, q->wsum);
461 return -EINVAL;
462 }
463
464 if (cl != NULL) { /* modify existing class */
465 if (tca[TCA_RATE]) {
466 err = gen_replace_estimator(&cl->bstats, NULL,
467 &cl->rate_est,
468 NULL,
469 true,
470 tca[TCA_RATE]);
471 if (err)
472 return err;
473 }
474 existing = true;
475 goto set_change_agg;
476 }
477
478 /* create and init new class */
479 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
480 if (cl == NULL)
481 return -ENOBUFS;
482
483 gnet_stats_basic_sync_init(&cl->bstats);
484 cl->common.classid = classid;
485 cl->deficit = lmax;
486 INIT_LIST_HEAD(&cl->alist);
487
488 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
489 classid, NULL);
490 if (cl->qdisc == NULL)
491 cl->qdisc = &noop_qdisc;
492
493 if (tca[TCA_RATE]) {
494 err = gen_new_estimator(&cl->bstats, NULL,
495 &cl->rate_est,
496 NULL,
497 true,
498 tca[TCA_RATE]);
499 if (err)
500 goto destroy_class;
501 }
502
503 if (cl->qdisc != &noop_qdisc)
504 qdisc_hash_add(cl->qdisc, true);
505
506 set_change_agg:
507 sch_tree_lock(sch);
508 new_agg = qfq_find_agg(q, lmax, weight);
509 if (new_agg == NULL) { /* create new aggregate */
510 sch_tree_unlock(sch);
511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
512 if (new_agg == NULL) {
513 err = -ENOBUFS;
514 gen_kill_estimator(&cl->rate_est);
515 goto destroy_class;
516 }
517 sch_tree_lock(sch);
518 qfq_init_agg(q, new_agg, lmax, weight);
519 }
520 if (existing)
521 qfq_deact_rm_from_agg(q, cl);
522 else
523 qdisc_class_hash_insert(&q->clhash, &cl->common);
524 qfq_add_to_agg(q, new_agg, cl);
525 sch_tree_unlock(sch);
526 qdisc_class_hash_grow(sch, &q->clhash);
527
528 *arg = (unsigned long)cl;
529 return 0;
530
531 destroy_class:
532 qdisc_put(cl->qdisc);
533 kfree(cl);
534 return err;
535 }
536
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)537 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
538 {
539 gen_kill_estimator(&cl->rate_est);
540 qdisc_put(cl->qdisc);
541 kfree(cl);
542 }
543
qfq_delete_class(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)544 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
545 struct netlink_ext_ack *extack)
546 {
547 struct qfq_sched *q = qdisc_priv(sch);
548 struct qfq_class *cl = (struct qfq_class *)arg;
549
550 if (qdisc_class_in_use(&cl->common)) {
551 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
552 return -EBUSY;
553 }
554
555 sch_tree_lock(sch);
556
557 qdisc_purge_queue(cl->qdisc);
558 qdisc_class_hash_remove(&q->clhash, &cl->common);
559 qfq_rm_from_agg(q, cl);
560
561 sch_tree_unlock(sch);
562
563 qfq_destroy_class(sch, cl);
564 return 0;
565 }
566
qfq_search_class(struct Qdisc * sch,u32 classid)567 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
568 {
569 return (unsigned long)qfq_find_class(sch, classid);
570 }
571
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)572 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
573 struct netlink_ext_ack *extack)
574 {
575 struct qfq_sched *q = qdisc_priv(sch);
576
577 if (cl)
578 return NULL;
579
580 return q->block;
581 }
582
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)583 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
584 u32 classid)
585 {
586 struct qfq_class *cl = qfq_find_class(sch, classid);
587
588 if (cl)
589 qdisc_class_get(&cl->common);
590
591 return (unsigned long)cl;
592 }
593
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)594 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
595 {
596 struct qfq_class *cl = (struct qfq_class *)arg;
597
598 qdisc_class_put(&cl->common);
599 }
600
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)601 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
602 struct Qdisc *new, struct Qdisc **old,
603 struct netlink_ext_ack *extack)
604 {
605 struct qfq_class *cl = (struct qfq_class *)arg;
606
607 if (new == NULL) {
608 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
609 cl->common.classid, NULL);
610 if (new == NULL)
611 new = &noop_qdisc;
612 }
613
614 *old = qdisc_replace(sch, new, &cl->qdisc);
615 return 0;
616 }
617
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)618 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
619 {
620 struct qfq_class *cl = (struct qfq_class *)arg;
621
622 return cl->qdisc;
623 }
624
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)625 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
626 struct sk_buff *skb, struct tcmsg *tcm)
627 {
628 struct qfq_class *cl = (struct qfq_class *)arg;
629 struct nlattr *nest;
630 u32 class_weight, lmax;
631
632 tcm->tcm_parent = TC_H_ROOT;
633 tcm->tcm_handle = cl->common.classid;
634 tcm->tcm_info = cl->qdisc->handle;
635
636 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
637 if (nest == NULL)
638 goto nla_put_failure;
639
640 sch_tree_lock(sch);
641 class_weight = cl->agg->class_weight;
642 lmax = cl->agg->lmax;
643 sch_tree_unlock(sch);
644 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, class_weight) ||
645 nla_put_u32(skb, TCA_QFQ_LMAX, lmax))
646 goto nla_put_failure;
647 return nla_nest_end(skb, nest);
648
649 nla_put_failure:
650 nla_nest_cancel(skb, nest);
651 return -EMSGSIZE;
652 }
653
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)654 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
655 struct gnet_dump *d)
656 {
657 struct qfq_class *cl = (struct qfq_class *)arg;
658 struct tc_qfq_stats xstats;
659
660 memset(&xstats, 0, sizeof(xstats));
661
662 sch_tree_lock(sch);
663 xstats.weight = cl->agg->class_weight;
664 xstats.lmax = cl->agg->lmax;
665 sch_tree_unlock(sch);
666
667 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
668 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
669 qdisc_qstats_copy(d, cl->qdisc) < 0)
670 return -1;
671
672 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
673 }
674
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)675 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
676 {
677 struct qfq_sched *q = qdisc_priv(sch);
678 struct qfq_class *cl;
679 unsigned int i;
680
681 if (arg->stop)
682 return;
683
684 for (i = 0; i < q->clhash.hashsize; i++) {
685 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
686 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
687 return;
688 }
689 }
690 }
691
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)692 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
693 int *qerr)
694 {
695 struct qfq_sched *q = qdisc_priv(sch);
696 struct qfq_class *cl;
697 struct tcf_result res;
698 struct tcf_proto *fl;
699 int result;
700
701 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
702 pr_debug("qfq_classify: found %d\n", skb->priority);
703 cl = qfq_find_class(sch, skb->priority);
704 if (cl != NULL)
705 return cl;
706 }
707
708 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
709 fl = rcu_dereference_bh(q->filter_list);
710 result = tcf_classify(skb, NULL, fl, &res, false);
711 if (result >= 0) {
712 #ifdef CONFIG_NET_CLS_ACT
713 switch (result) {
714 case TC_ACT_QUEUED:
715 case TC_ACT_STOLEN:
716 case TC_ACT_TRAP:
717 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
718 fallthrough;
719 case TC_ACT_SHOT:
720 return NULL;
721 }
722 #endif
723 cl = (struct qfq_class *)res.class;
724 if (cl == NULL)
725 cl = qfq_find_class(sch, res.classid);
726 return cl;
727 }
728
729 return NULL;
730 }
731
732 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)733 static inline int qfq_gt(u64 a, u64 b)
734 {
735 return (s64)(a - b) > 0;
736 }
737
738 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)739 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
740 {
741 return ts & ~((1ULL << shift) - 1);
742 }
743
744 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)745 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
746 unsigned long bitmap)
747 {
748 int index = __ffs(bitmap);
749 return &q->groups[index];
750 }
751 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)752 static inline unsigned long mask_from(unsigned long bitmap, int from)
753 {
754 return bitmap & ~((1UL << from) - 1);
755 }
756
757 /*
758 * The state computation relies on ER=0, IR=1, EB=2, IB=3
759 * First compute eligibility comparing grp->S, q->V,
760 * then check if someone is blocking us and possibly add EB
761 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)762 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
763 {
764 /* if S > V we are not eligible */
765 unsigned int state = qfq_gt(grp->S, q->V);
766 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
767 struct qfq_group *next;
768
769 if (mask) {
770 next = qfq_ffs(q, mask);
771 if (qfq_gt(grp->F, next->F))
772 state |= EB;
773 }
774
775 return state;
776 }
777
778
779 /*
780 * In principle
781 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
782 * q->bitmaps[src] &= ~mask;
783 * but we should make sure that src != dst
784 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)785 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
786 int src, int dst)
787 {
788 q->bitmaps[dst] |= q->bitmaps[src] & mask;
789 q->bitmaps[src] &= ~mask;
790 }
791
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)792 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
793 {
794 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
795 struct qfq_group *next;
796
797 if (mask) {
798 next = qfq_ffs(q, mask);
799 if (!qfq_gt(next->F, old_F))
800 return;
801 }
802
803 mask = (1UL << index) - 1;
804 qfq_move_groups(q, mask, EB, ER);
805 qfq_move_groups(q, mask, IB, IR);
806 }
807
808 /*
809 * perhaps
810 *
811 old_V ^= q->V;
812 old_V >>= q->min_slot_shift;
813 if (old_V) {
814 ...
815 }
816 *
817 */
qfq_make_eligible(struct qfq_sched * q)818 static void qfq_make_eligible(struct qfq_sched *q)
819 {
820 unsigned long vslot = q->V >> q->min_slot_shift;
821 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
822
823 if (vslot != old_vslot) {
824 unsigned long mask;
825 int last_flip_pos = fls(vslot ^ old_vslot);
826
827 if (last_flip_pos > 31) /* higher than the number of groups */
828 mask = ~0UL; /* make all groups eligible */
829 else
830 mask = (1UL << last_flip_pos) - 1;
831
832 qfq_move_groups(q, mask, IR, ER);
833 qfq_move_groups(q, mask, IB, EB);
834 }
835 }
836
837 /*
838 * The index of the slot in which the input aggregate agg is to be
839 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
840 * and not a '-1' because the start time of the group may be moved
841 * backward by one slot after the aggregate has been inserted, and
842 * this would cause non-empty slots to be right-shifted by one
843 * position.
844 *
845 * QFQ+ fully satisfies this bound to the slot index if the parameters
846 * of the classes are not changed dynamically, and if QFQ+ never
847 * happens to postpone the service of agg unjustly, i.e., it never
848 * happens that the aggregate becomes backlogged and eligible, or just
849 * eligible, while an aggregate with a higher approximated finish time
850 * is being served. In particular, in this case QFQ+ guarantees that
851 * the timestamps of agg are low enough that the slot index is never
852 * higher than 2. Unfortunately, QFQ+ cannot provide the same
853 * guarantee if it happens to unjustly postpone the service of agg, or
854 * if the parameters of some class are changed.
855 *
856 * As for the first event, i.e., an out-of-order service, the
857 * upper bound to the slot index guaranteed by QFQ+ grows to
858 * 2 +
859 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
860 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
861 *
862 * The following function deals with this problem by backward-shifting
863 * the timestamps of agg, if needed, so as to guarantee that the slot
864 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
865 * cause the service of other aggregates to be postponed, yet the
866 * worst-case guarantees of these aggregates are not violated. In
867 * fact, in case of no out-of-order service, the timestamps of agg
868 * would have been even lower than they are after the backward shift,
869 * because QFQ+ would have guaranteed a maximum value equal to 2 for
870 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
871 * service is postponed because of the backward-shift would have
872 * however waited for the service of agg before being served.
873 *
874 * The other event that may cause the slot index to be higher than 2
875 * for agg is a recent change of the parameters of some class. If the
876 * weight of a class is increased or the lmax (max_pkt_size) of the
877 * class is decreased, then a new aggregate with smaller slot size
878 * than the original parent aggregate of the class may happen to be
879 * activated. The activation of this aggregate should be properly
880 * delayed to when the service of the class has finished in the ideal
881 * system tracked by QFQ+. If the activation of the aggregate is not
882 * delayed to this reference time instant, then this aggregate may be
883 * unjustly served before other aggregates waiting for service. This
884 * may cause the above bound to the slot index to be violated for some
885 * of these unlucky aggregates.
886 *
887 * Instead of delaying the activation of the new aggregate, which is
888 * quite complex, the above-discussed capping of the slot index is
889 * used to handle also the consequences of a change of the parameters
890 * of a class.
891 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)892 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
893 u64 roundedS)
894 {
895 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
896 unsigned int i; /* slot index in the bucket list */
897
898 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
899 u64 deltaS = roundedS - grp->S -
900 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
901 agg->S -= deltaS;
902 agg->F -= deltaS;
903 slot = QFQ_MAX_SLOTS - 2;
904 }
905
906 i = (grp->front + slot) % QFQ_MAX_SLOTS;
907
908 hlist_add_head(&agg->next, &grp->slots[i]);
909 __set_bit(slot, &grp->full_slots);
910 }
911
912 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)913 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
914 {
915 return hlist_entry(grp->slots[grp->front].first,
916 struct qfq_aggregate, next);
917 }
918
919 /*
920 * remove the entry from the slot
921 */
qfq_front_slot_remove(struct qfq_group * grp)922 static void qfq_front_slot_remove(struct qfq_group *grp)
923 {
924 struct qfq_aggregate *agg = qfq_slot_head(grp);
925
926 BUG_ON(!agg);
927 hlist_del(&agg->next);
928 if (hlist_empty(&grp->slots[grp->front]))
929 __clear_bit(0, &grp->full_slots);
930 }
931
932 /*
933 * Returns the first aggregate in the first non-empty bucket of the
934 * group. As a side effect, adjusts the bucket list so the first
935 * non-empty bucket is at position 0 in full_slots.
936 */
qfq_slot_scan(struct qfq_group * grp)937 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
938 {
939 unsigned int i;
940
941 pr_debug("qfq slot_scan: grp %u full %#lx\n",
942 grp->index, grp->full_slots);
943
944 if (grp->full_slots == 0)
945 return NULL;
946
947 i = __ffs(grp->full_slots); /* zero based */
948 if (i > 0) {
949 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
950 grp->full_slots >>= i;
951 }
952
953 return qfq_slot_head(grp);
954 }
955
956 /*
957 * adjust the bucket list. When the start time of a group decreases,
958 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
959 * move the objects. The mask of occupied slots must be shifted
960 * because we use ffs() to find the first non-empty slot.
961 * This covers decreases in the group's start time, but what about
962 * increases of the start time ?
963 * Here too we should make sure that i is less than 32
964 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)965 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
966 {
967 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
968
969 grp->full_slots <<= i;
970 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
971 }
972
qfq_update_eligible(struct qfq_sched * q)973 static void qfq_update_eligible(struct qfq_sched *q)
974 {
975 struct qfq_group *grp;
976 unsigned long ineligible;
977
978 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
979 if (ineligible) {
980 if (!q->bitmaps[ER]) {
981 grp = qfq_ffs(q, ineligible);
982 if (qfq_gt(grp->S, q->V))
983 q->V = grp->S;
984 }
985 qfq_make_eligible(q);
986 }
987 }
988
989 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)990 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
991 struct qfq_class *cl, unsigned int len)
992 {
993 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
994
995 if (!skb)
996 return NULL;
997
998 cl->deficit -= (int) len;
999
1000 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1001 list_del_init(&cl->alist);
1002 else if (cl->deficit < qdisc_peek_len(cl->qdisc)) {
1003 cl->deficit += agg->lmax;
1004 list_move_tail(&cl->alist, &agg->active);
1005 }
1006
1007 return skb;
1008 }
1009
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1011 struct qfq_class **cl,
1012 unsigned int *len)
1013 {
1014 struct sk_buff *skb;
1015
1016 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1017 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1018 if (skb == NULL)
1019 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1020 else
1021 *len = qdisc_pkt_len(skb);
1022
1023 return skb;
1024 }
1025
1026 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1027 static inline void charge_actual_service(struct qfq_aggregate *agg)
1028 {
1029 /* Compute the service received by the aggregate, taking into
1030 * account that, after decreasing the number of classes in
1031 * agg, it may happen that
1032 * agg->initial_budget - agg->budget > agg->bugdetmax
1033 */
1034 u32 service_received = min(agg->budgetmax,
1035 agg->initial_budget - agg->budget);
1036
1037 agg->F = agg->S + (u64)service_received * agg->inv_w;
1038 }
1039
1040 /* Assign a reasonable start time for a new aggregate in group i.
1041 * Admissible values for \hat(F) are multiples of \sigma_i
1042 * no greater than V+\sigma_i . Larger values mean that
1043 * we had a wraparound so we consider the timestamp to be stale.
1044 *
1045 * If F is not stale and F >= V then we set S = F.
1046 * Otherwise we should assign S = V, but this may violate
1047 * the ordering in EB (see [2]). So, if we have groups in ER,
1048 * set S to the F_j of the first group j which would be blocking us.
1049 * We are guaranteed not to move S backward because
1050 * otherwise our group i would still be blocked.
1051 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1053 {
1054 unsigned long mask;
1055 u64 limit, roundedF;
1056 int slot_shift = agg->grp->slot_shift;
1057
1058 roundedF = qfq_round_down(agg->F, slot_shift);
1059 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1060
1061 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1062 /* timestamp was stale */
1063 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1064 if (mask) {
1065 struct qfq_group *next = qfq_ffs(q, mask);
1066 if (qfq_gt(roundedF, next->F)) {
1067 if (qfq_gt(limit, next->F))
1068 agg->S = next->F;
1069 else /* preserve timestamp correctness */
1070 agg->S = limit;
1071 return;
1072 }
1073 }
1074 agg->S = q->V;
1075 } else /* timestamp is not stale */
1076 agg->S = agg->F;
1077 }
1078
1079 /* Update the timestamps of agg before scheduling/rescheduling it for
1080 * service. In particular, assign to agg->F its maximum possible
1081 * value, i.e., the virtual finish time with which the aggregate
1082 * should be labeled if it used all its budget once in service.
1083 */
1084 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1085 qfq_update_agg_ts(struct qfq_sched *q,
1086 struct qfq_aggregate *agg, enum update_reason reason)
1087 {
1088 if (reason != requeue)
1089 qfq_update_start(q, agg);
1090 else /* just charge agg for the service received */
1091 agg->S = agg->F;
1092
1093 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1094 }
1095
1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1097
qfq_dequeue(struct Qdisc * sch)1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1099 {
1100 struct qfq_sched *q = qdisc_priv(sch);
1101 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1102 struct qfq_class *cl;
1103 struct sk_buff *skb = NULL;
1104 /* next-packet len, 0 means no more active classes in in-service agg */
1105 unsigned int len = 0;
1106
1107 if (in_serv_agg == NULL)
1108 return NULL;
1109
1110 if (!list_empty(&in_serv_agg->active))
1111 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1112
1113 /*
1114 * If there are no active classes in the in-service aggregate,
1115 * or if the aggregate has not enough budget to serve its next
1116 * class, then choose the next aggregate to serve.
1117 */
1118 if (len == 0 || in_serv_agg->budget < len) {
1119 charge_actual_service(in_serv_agg);
1120
1121 /* recharge the budget of the aggregate */
1122 in_serv_agg->initial_budget = in_serv_agg->budget =
1123 in_serv_agg->budgetmax;
1124
1125 if (!list_empty(&in_serv_agg->active)) {
1126 /*
1127 * Still active: reschedule for
1128 * service. Possible optimization: if no other
1129 * aggregate is active, then there is no point
1130 * in rescheduling this aggregate, and we can
1131 * just keep it as the in-service one. This
1132 * should be however a corner case, and to
1133 * handle it, we would need to maintain an
1134 * extra num_active_aggs field.
1135 */
1136 qfq_update_agg_ts(q, in_serv_agg, requeue);
1137 qfq_schedule_agg(q, in_serv_agg);
1138 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1139 q->in_serv_agg = NULL;
1140 return NULL;
1141 }
1142
1143 /*
1144 * If we get here, there are other aggregates queued:
1145 * choose the new aggregate to serve.
1146 */
1147 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1148 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1149 }
1150 if (!skb)
1151 return NULL;
1152
1153 sch->q.qlen--;
1154
1155 skb = agg_dequeue(in_serv_agg, cl, len);
1156
1157 if (!skb) {
1158 sch->q.qlen++;
1159 return NULL;
1160 }
1161
1162 qdisc_qstats_backlog_dec(sch, skb);
1163 qdisc_bstats_update(sch, skb);
1164
1165 /* If lmax is lowered, through qfq_change_class, for a class
1166 * owning pending packets with larger size than the new value
1167 * of lmax, then the following condition may hold.
1168 */
1169 if (unlikely(in_serv_agg->budget < len))
1170 in_serv_agg->budget = 0;
1171 else
1172 in_serv_agg->budget -= len;
1173
1174 q->V += (u64)len * q->iwsum;
1175 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1176 len, (unsigned long long) in_serv_agg->F,
1177 (unsigned long long) q->V);
1178
1179 return skb;
1180 }
1181
qfq_choose_next_agg(struct qfq_sched * q)1182 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1183 {
1184 struct qfq_group *grp;
1185 struct qfq_aggregate *agg, *new_front_agg;
1186 u64 old_F;
1187
1188 qfq_update_eligible(q);
1189 q->oldV = q->V;
1190
1191 if (!q->bitmaps[ER])
1192 return NULL;
1193
1194 grp = qfq_ffs(q, q->bitmaps[ER]);
1195 old_F = grp->F;
1196
1197 agg = qfq_slot_head(grp);
1198
1199 /* agg starts to be served, remove it from schedule */
1200 qfq_front_slot_remove(grp);
1201
1202 new_front_agg = qfq_slot_scan(grp);
1203
1204 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1205 __clear_bit(grp->index, &q->bitmaps[ER]);
1206 else {
1207 u64 roundedS = qfq_round_down(new_front_agg->S,
1208 grp->slot_shift);
1209 unsigned int s;
1210
1211 if (grp->S == roundedS)
1212 return agg;
1213 grp->S = roundedS;
1214 grp->F = roundedS + (2ULL << grp->slot_shift);
1215 __clear_bit(grp->index, &q->bitmaps[ER]);
1216 s = qfq_calc_state(q, grp);
1217 __set_bit(grp->index, &q->bitmaps[s]);
1218 }
1219
1220 qfq_unblock_groups(q, grp->index, old_F);
1221
1222 return agg;
1223 }
1224
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1225 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1226 struct sk_buff **to_free)
1227 {
1228 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1229 struct qfq_sched *q = qdisc_priv(sch);
1230 struct qfq_class *cl;
1231 struct qfq_aggregate *agg;
1232 int err = 0;
1233
1234 cl = qfq_classify(skb, sch, &err);
1235 if (cl == NULL) {
1236 if (err & __NET_XMIT_BYPASS)
1237 qdisc_qstats_drop(sch);
1238 __qdisc_drop(skb, to_free);
1239 return err;
1240 }
1241 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1242
1243 if (unlikely(cl->agg->lmax < len)) {
1244 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1245 cl->agg->lmax, len, cl->common.classid);
1246 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1247 if (err) {
1248 cl->qstats.drops++;
1249 return qdisc_drop(skb, sch, to_free);
1250 }
1251 }
1252
1253 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1254 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1255 if (unlikely(err != NET_XMIT_SUCCESS)) {
1256 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1257 if (net_xmit_drop_count(err)) {
1258 cl->qstats.drops++;
1259 qdisc_qstats_drop(sch);
1260 }
1261 return err;
1262 }
1263
1264 _bstats_update(&cl->bstats, len, gso_segs);
1265 sch->qstats.backlog += len;
1266 ++sch->q.qlen;
1267
1268 agg = cl->agg;
1269 /* if the class is active, then done here */
1270 if (cl_is_active(cl)) {
1271 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1272 list_first_entry(&agg->active, struct qfq_class, alist)
1273 == cl && cl->deficit < len)
1274 list_move_tail(&cl->alist, &agg->active);
1275
1276 return err;
1277 }
1278
1279 /* schedule class for service within the aggregate */
1280 cl->deficit = agg->lmax;
1281 list_add_tail(&cl->alist, &agg->active);
1282
1283 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1284 q->in_serv_agg == agg)
1285 return err; /* non-empty or in service, nothing else to do */
1286
1287 qfq_activate_agg(q, agg, enqueue);
1288
1289 return err;
1290 }
1291
1292 /*
1293 * Schedule aggregate according to its timestamps.
1294 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1295 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1296 {
1297 struct qfq_group *grp = agg->grp;
1298 u64 roundedS;
1299 int s;
1300
1301 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1302
1303 /*
1304 * Insert agg in the correct bucket.
1305 * If agg->S >= grp->S we don't need to adjust the
1306 * bucket list and simply go to the insertion phase.
1307 * Otherwise grp->S is decreasing, we must make room
1308 * in the bucket list, and also recompute the group state.
1309 * Finally, if there were no flows in this group and nobody
1310 * was in ER make sure to adjust V.
1311 */
1312 if (grp->full_slots) {
1313 if (!qfq_gt(grp->S, agg->S))
1314 goto skip_update;
1315
1316 /* create a slot for this agg->S */
1317 qfq_slot_rotate(grp, roundedS);
1318 /* group was surely ineligible, remove */
1319 __clear_bit(grp->index, &q->bitmaps[IR]);
1320 __clear_bit(grp->index, &q->bitmaps[IB]);
1321 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1322 q->in_serv_agg == NULL)
1323 q->V = roundedS;
1324
1325 grp->S = roundedS;
1326 grp->F = roundedS + (2ULL << grp->slot_shift);
1327 s = qfq_calc_state(q, grp);
1328 __set_bit(grp->index, &q->bitmaps[s]);
1329
1330 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1331 s, q->bitmaps[s],
1332 (unsigned long long) agg->S,
1333 (unsigned long long) agg->F,
1334 (unsigned long long) q->V);
1335
1336 skip_update:
1337 qfq_slot_insert(grp, agg, roundedS);
1338 }
1339
1340
1341 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1342 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1343 enum update_reason reason)
1344 {
1345 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1346
1347 qfq_update_agg_ts(q, agg, reason);
1348 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1349 q->in_serv_agg = agg; /* start serving this aggregate */
1350 /* update V: to be in service, agg must be eligible */
1351 q->oldV = q->V = agg->S;
1352 } else if (agg != q->in_serv_agg)
1353 qfq_schedule_agg(q, agg);
1354 }
1355
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1356 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1357 struct qfq_aggregate *agg)
1358 {
1359 unsigned int i, offset;
1360 u64 roundedS;
1361
1362 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1363 offset = (roundedS - grp->S) >> grp->slot_shift;
1364
1365 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1366
1367 hlist_del(&agg->next);
1368 if (hlist_empty(&grp->slots[i]))
1369 __clear_bit(offset, &grp->full_slots);
1370 }
1371
1372 /*
1373 * Called to forcibly deschedule an aggregate. If the aggregate is
1374 * not in the front bucket, or if the latter has other aggregates in
1375 * the front bucket, we can simply remove the aggregate with no other
1376 * side effects.
1377 * Otherwise we must propagate the event up.
1378 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1379 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1380 {
1381 struct qfq_group *grp = agg->grp;
1382 unsigned long mask;
1383 u64 roundedS;
1384 int s;
1385
1386 if (agg == q->in_serv_agg) {
1387 charge_actual_service(agg);
1388 q->in_serv_agg = qfq_choose_next_agg(q);
1389 return;
1390 }
1391
1392 agg->F = agg->S;
1393 qfq_slot_remove(q, grp, agg);
1394
1395 if (!grp->full_slots) {
1396 __clear_bit(grp->index, &q->bitmaps[IR]);
1397 __clear_bit(grp->index, &q->bitmaps[EB]);
1398 __clear_bit(grp->index, &q->bitmaps[IB]);
1399
1400 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1401 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1402 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1403 if (mask)
1404 mask = ~((1UL << __fls(mask)) - 1);
1405 else
1406 mask = ~0UL;
1407 qfq_move_groups(q, mask, EB, ER);
1408 qfq_move_groups(q, mask, IB, IR);
1409 }
1410 __clear_bit(grp->index, &q->bitmaps[ER]);
1411 } else if (hlist_empty(&grp->slots[grp->front])) {
1412 agg = qfq_slot_scan(grp);
1413 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1414 if (grp->S != roundedS) {
1415 __clear_bit(grp->index, &q->bitmaps[ER]);
1416 __clear_bit(grp->index, &q->bitmaps[IR]);
1417 __clear_bit(grp->index, &q->bitmaps[EB]);
1418 __clear_bit(grp->index, &q->bitmaps[IB]);
1419 grp->S = roundedS;
1420 grp->F = roundedS + (2ULL << grp->slot_shift);
1421 s = qfq_calc_state(q, grp);
1422 __set_bit(grp->index, &q->bitmaps[s]);
1423 }
1424 }
1425 }
1426
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1427 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1428 {
1429 struct qfq_sched *q = qdisc_priv(sch);
1430 struct qfq_class *cl = (struct qfq_class *)arg;
1431
1432 if (list_empty(&cl->alist))
1433 return;
1434 qfq_deactivate_class(q, cl);
1435 }
1436
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1437 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1438 struct netlink_ext_ack *extack)
1439 {
1440 struct qfq_sched *q = qdisc_priv(sch);
1441 struct qfq_group *grp;
1442 int i, j, err;
1443 u32 max_cl_shift, maxbudg_shift, max_classes;
1444
1445 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1446 if (err)
1447 return err;
1448
1449 err = qdisc_class_hash_init(&q->clhash);
1450 if (err < 0)
1451 return err;
1452
1453 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1454 QFQ_MAX_AGG_CLASSES);
1455 /* max_cl_shift = floor(log_2(max_classes)) */
1456 max_cl_shift = __fls(max_classes);
1457 q->max_agg_classes = 1<<max_cl_shift;
1458
1459 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1460 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1461 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1462
1463 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1464 grp = &q->groups[i];
1465 grp->index = i;
1466 grp->slot_shift = q->min_slot_shift + i;
1467 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1468 INIT_HLIST_HEAD(&grp->slots[j]);
1469 }
1470
1471 INIT_HLIST_HEAD(&q->nonfull_aggs);
1472
1473 return 0;
1474 }
1475
qfq_reset_qdisc(struct Qdisc * sch)1476 static void qfq_reset_qdisc(struct Qdisc *sch)
1477 {
1478 struct qfq_sched *q = qdisc_priv(sch);
1479 struct qfq_class *cl;
1480 unsigned int i;
1481
1482 for (i = 0; i < q->clhash.hashsize; i++) {
1483 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1484 if (cl->qdisc->q.qlen > 0)
1485 qfq_deactivate_class(q, cl);
1486
1487 qdisc_reset(cl->qdisc);
1488 }
1489 }
1490 }
1491
qfq_destroy_qdisc(struct Qdisc * sch)1492 static void qfq_destroy_qdisc(struct Qdisc *sch)
1493 {
1494 struct qfq_sched *q = qdisc_priv(sch);
1495 struct qfq_class *cl;
1496 struct hlist_node *next;
1497 unsigned int i;
1498
1499 tcf_block_put(q->block);
1500
1501 for (i = 0; i < q->clhash.hashsize; i++) {
1502 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1503 common.hnode) {
1504 qfq_rm_from_agg(q, cl);
1505 qfq_destroy_class(sch, cl);
1506 }
1507 }
1508 qdisc_class_hash_destroy(&q->clhash);
1509 }
1510
1511 static const struct Qdisc_class_ops qfq_class_ops = {
1512 .change = qfq_change_class,
1513 .delete = qfq_delete_class,
1514 .find = qfq_search_class,
1515 .tcf_block = qfq_tcf_block,
1516 .bind_tcf = qfq_bind_tcf,
1517 .unbind_tcf = qfq_unbind_tcf,
1518 .graft = qfq_graft_class,
1519 .leaf = qfq_class_leaf,
1520 .qlen_notify = qfq_qlen_notify,
1521 .dump = qfq_dump_class,
1522 .dump_stats = qfq_dump_class_stats,
1523 .walk = qfq_walk,
1524 };
1525
1526 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1527 .cl_ops = &qfq_class_ops,
1528 .id = "qfq",
1529 .priv_size = sizeof(struct qfq_sched),
1530 .enqueue = qfq_enqueue,
1531 .dequeue = qfq_dequeue,
1532 .peek = qdisc_peek_dequeued,
1533 .init = qfq_init_qdisc,
1534 .reset = qfq_reset_qdisc,
1535 .destroy = qfq_destroy_qdisc,
1536 .owner = THIS_MODULE,
1537 };
1538 MODULE_ALIAS_NET_SCH("qfq");
1539
qfq_init(void)1540 static int __init qfq_init(void)
1541 {
1542 return register_qdisc(&qfq_qdisc_ops);
1543 }
1544
qfq_exit(void)1545 static void __exit qfq_exit(void)
1546 {
1547 unregister_qdisc(&qfq_qdisc_ops);
1548 }
1549
1550 module_init(qfq_init);
1551 module_exit(qfq_exit);
1552 MODULE_LICENSE("GPL");
1553 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");
1554