1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @eusb2_isoc_ep_comp: eUSB2 isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct usb_eusb2_isoc_ep_comp_descriptor eusb2_isoc_ep_comp;
72 struct list_head urb_list;
73 void *hcpriv;
74 struct ep_device *ep_dev; /* For sysfs info */
75
76 unsigned char *extra; /* Extra descriptors */
77 int extralen;
78 int enabled;
79 int streams;
80 };
81
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 struct usb_interface_descriptor desc;
85
86 int extralen;
87 unsigned char *extra; /* Extra descriptors */
88
89 /* array of desc.bNumEndpoints endpoints associated with this
90 * interface setting. these will be in no particular order.
91 */
92 struct usb_host_endpoint *endpoint;
93
94 char *string; /* iInterface string, if present */
95 };
96
97 enum usb_interface_condition {
98 USB_INTERFACE_UNBOUND = 0,
99 USB_INTERFACE_BINDING,
100 USB_INTERFACE_BOUND,
101 USB_INTERFACE_UNBINDING,
102 };
103
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 struct usb_endpoint_descriptor **bulk_in,
107 struct usb_endpoint_descriptor **bulk_out,
108 struct usb_endpoint_descriptor **int_in,
109 struct usb_endpoint_descriptor **int_out);
110
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 struct usb_endpoint_descriptor **bulk_in,
114 struct usb_endpoint_descriptor **bulk_out,
115 struct usb_endpoint_descriptor **int_in,
116 struct usb_endpoint_descriptor **int_out);
117
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 struct usb_endpoint_descriptor **bulk_in)
121 {
122 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 struct usb_endpoint_descriptor **bulk_out)
128 {
129 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 struct usb_endpoint_descriptor **int_in)
135 {
136 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 struct usb_endpoint_descriptor **int_out)
142 {
143 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 struct usb_endpoint_descriptor **bulk_in)
149 {
150 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 struct usb_endpoint_descriptor **bulk_out)
156 {
157 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 struct usb_endpoint_descriptor **int_in)
163 {
164 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 struct usb_endpoint_descriptor **int_out)
170 {
171 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173
174 enum usb_wireless_status {
175 USB_WIRELESS_STATUS_NA = 0,
176 USB_WIRELESS_STATUS_DISCONNECTED,
177 USB_WIRELESS_STATUS_CONNECTED,
178 };
179
180 /**
181 * struct usb_interface - what usb device drivers talk to
182 * @altsetting: array of interface structures, one for each alternate
183 * setting that may be selected. Each one includes a set of
184 * endpoint configurations. They will be in no particular order.
185 * @cur_altsetting: the current altsetting.
186 * @num_altsetting: number of altsettings defined.
187 * @intf_assoc: interface association descriptor
188 * @minor: the minor number assigned to this interface, if this
189 * interface is bound to a driver that uses the USB major number.
190 * If this interface does not use the USB major, this field should
191 * be unused. The driver should set this value in the probe()
192 * function of the driver, after it has been assigned a minor
193 * number from the USB core by calling usb_register_dev().
194 * @condition: binding state of the interface: not bound, binding
195 * (in probe()), bound to a driver, or unbinding (in disconnect())
196 * @sysfs_files_created: sysfs attributes exist
197 * @ep_devs_created: endpoint child pseudo-devices exist
198 * @unregistering: flag set when the interface is being unregistered
199 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
200 * capability during autosuspend.
201 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
202 * has been deferred.
203 * @needs_binding: flag set when the driver should be re-probed or unbound
204 * following a reset or suspend operation it doesn't support.
205 * @authorized: This allows to (de)authorize individual interfaces instead
206 * a whole device in contrast to the device authorization.
207 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
208 * the emitter is connected.
209 * @wireless_status_work: Used for scheduling wireless status changes
210 * from atomic context.
211 * @dev: driver model's view of this device
212 * @usb_dev: if an interface is bound to the USB major, this will point
213 * to the sysfs representation for that device.
214 * @reset_ws: Used for scheduling resets from atomic context.
215 * @resetting_device: USB core reset the device, so use alt setting 0 as
216 * current; needs bandwidth alloc after reset.
217 *
218 * USB device drivers attach to interfaces on a physical device. Each
219 * interface encapsulates a single high level function, such as feeding
220 * an audio stream to a speaker or reporting a change in a volume control.
221 * Many USB devices only have one interface. The protocol used to talk to
222 * an interface's endpoints can be defined in a usb "class" specification,
223 * or by a product's vendor. The (default) control endpoint is part of
224 * every interface, but is never listed among the interface's descriptors.
225 *
226 * The driver that is bound to the interface can use standard driver model
227 * calls such as dev_get_drvdata() on the dev member of this structure.
228 *
229 * Each interface may have alternate settings. The initial configuration
230 * of a device sets altsetting 0, but the device driver can change
231 * that setting using usb_set_interface(). Alternate settings are often
232 * used to control the use of periodic endpoints, such as by having
233 * different endpoints use different amounts of reserved USB bandwidth.
234 * All standards-conformant USB devices that use isochronous endpoints
235 * will use them in non-default settings.
236 *
237 * The USB specification says that alternate setting numbers must run from
238 * 0 to one less than the total number of alternate settings. But some
239 * devices manage to mess this up, and the structures aren't necessarily
240 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
241 * look up an alternate setting in the altsetting array based on its number.
242 */
243 struct usb_interface {
244 /* array of alternate settings for this interface,
245 * stored in no particular order */
246 struct usb_host_interface *altsetting;
247
248 struct usb_host_interface *cur_altsetting; /* the currently
249 * active alternate setting */
250 unsigned num_altsetting; /* number of alternate settings */
251
252 /* If there is an interface association descriptor then it will list
253 * the associated interfaces */
254 struct usb_interface_assoc_descriptor *intf_assoc;
255
256 int minor; /* minor number this interface is
257 * bound to */
258 enum usb_interface_condition condition; /* state of binding */
259 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
260 unsigned ep_devs_created:1; /* endpoint "devices" exist */
261 unsigned unregistering:1; /* unregistration is in progress */
262 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
263 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
264 unsigned needs_binding:1; /* needs delayed unbind/rebind */
265 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
266 unsigned authorized:1; /* used for interface authorization */
267 enum usb_wireless_status wireless_status;
268 struct work_struct wireless_status_work;
269
270 struct device dev; /* interface specific device info */
271 struct device *usb_dev;
272 struct work_struct reset_ws; /* for resets in atomic context */
273 };
274
275 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
276
usb_get_intfdata(struct usb_interface * intf)277 static inline void *usb_get_intfdata(struct usb_interface *intf)
278 {
279 return dev_get_drvdata(&intf->dev);
280 }
281
282 /**
283 * usb_set_intfdata() - associate driver-specific data with an interface
284 * @intf: USB interface
285 * @data: driver data
286 *
287 * Drivers can use this function in their probe() callbacks to associate
288 * driver-specific data with an interface.
289 *
290 * Note that there is generally no need to clear the driver-data pointer even
291 * if some drivers do so for historical or implementation-specific reasons.
292 */
usb_set_intfdata(struct usb_interface * intf,void * data)293 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
294 {
295 dev_set_drvdata(&intf->dev, data);
296 }
297
298 struct usb_interface *usb_get_intf(struct usb_interface *intf);
299 void usb_put_intf(struct usb_interface *intf);
300
301 /* Hard limit */
302 #define USB_MAXENDPOINTS 30
303 /* this maximum is arbitrary */
304 #define USB_MAXINTERFACES 32
305 #define USB_MAXIADS (USB_MAXINTERFACES/2)
306
307 bool usb_check_bulk_endpoints(
308 const struct usb_interface *intf, const u8 *ep_addrs);
309 bool usb_check_int_endpoints(
310 const struct usb_interface *intf, const u8 *ep_addrs);
311
312 /*
313 * USB Resume Timer: Every Host controller driver should drive the resume
314 * signalling on the bus for the amount of time defined by this macro.
315 *
316 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
317 *
318 * Note that the USB Specification states we should drive resume for *at least*
319 * 20 ms, but it doesn't give an upper bound. This creates two possible
320 * situations which we want to avoid:
321 *
322 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
323 * us to fail USB Electrical Tests, thus failing Certification
324 *
325 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
326 * and while we can argue that's against the USB Specification, we don't have
327 * control over which devices a certification laboratory will be using for
328 * certification. If CertLab uses a device which was tested against Windows and
329 * that happens to have relaxed resume signalling rules, we might fall into
330 * situations where we fail interoperability and electrical tests.
331 *
332 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
333 * should cope with both LPJ calibration errors and devices not following every
334 * detail of the USB Specification.
335 */
336 #define USB_RESUME_TIMEOUT 40 /* ms */
337
338 /**
339 * struct usb_interface_cache - long-term representation of a device interface
340 * @num_altsetting: number of altsettings defined.
341 * @ref: reference counter.
342 * @altsetting: variable-length array of interface structures, one for
343 * each alternate setting that may be selected. Each one includes a
344 * set of endpoint configurations. They will be in no particular order.
345 *
346 * These structures persist for the lifetime of a usb_device, unlike
347 * struct usb_interface (which persists only as long as its configuration
348 * is installed). The altsetting arrays can be accessed through these
349 * structures at any time, permitting comparison of configurations and
350 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
351 */
352 struct usb_interface_cache {
353 unsigned num_altsetting; /* number of alternate settings */
354 struct kref ref; /* reference counter */
355
356 /* variable-length array of alternate settings for this interface,
357 * stored in no particular order */
358 struct usb_host_interface altsetting[];
359 };
360 #define ref_to_usb_interface_cache(r) \
361 container_of(r, struct usb_interface_cache, ref)
362 #define altsetting_to_usb_interface_cache(a) \
363 container_of(a, struct usb_interface_cache, altsetting[0])
364
365 /**
366 * struct usb_host_config - representation of a device's configuration
367 * @desc: the device's configuration descriptor.
368 * @string: pointer to the cached version of the iConfiguration string, if
369 * present for this configuration.
370 * @intf_assoc: list of any interface association descriptors in this config
371 * @interface: array of pointers to usb_interface structures, one for each
372 * interface in the configuration. The number of interfaces is stored
373 * in desc.bNumInterfaces. These pointers are valid only while the
374 * configuration is active.
375 * @intf_cache: array of pointers to usb_interface_cache structures, one
376 * for each interface in the configuration. These structures exist
377 * for the entire life of the device.
378 * @extra: pointer to buffer containing all extra descriptors associated
379 * with this configuration (those preceding the first interface
380 * descriptor).
381 * @extralen: length of the extra descriptors buffer.
382 *
383 * USB devices may have multiple configurations, but only one can be active
384 * at any time. Each encapsulates a different operational environment;
385 * for example, a dual-speed device would have separate configurations for
386 * full-speed and high-speed operation. The number of configurations
387 * available is stored in the device descriptor as bNumConfigurations.
388 *
389 * A configuration can contain multiple interfaces. Each corresponds to
390 * a different function of the USB device, and all are available whenever
391 * the configuration is active. The USB standard says that interfaces
392 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
393 * of devices get this wrong. In addition, the interface array is not
394 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
395 * look up an interface entry based on its number.
396 *
397 * Device drivers should not attempt to activate configurations. The choice
398 * of which configuration to install is a policy decision based on such
399 * considerations as available power, functionality provided, and the user's
400 * desires (expressed through userspace tools). However, drivers can call
401 * usb_reset_configuration() to reinitialize the current configuration and
402 * all its interfaces.
403 */
404 struct usb_host_config {
405 struct usb_config_descriptor desc;
406
407 char *string; /* iConfiguration string, if present */
408
409 /* List of any Interface Association Descriptors in this
410 * configuration. */
411 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
412
413 /* the interfaces associated with this configuration,
414 * stored in no particular order */
415 struct usb_interface *interface[USB_MAXINTERFACES];
416
417 /* Interface information available even when this is not the
418 * active configuration */
419 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
420
421 unsigned char *extra; /* Extra descriptors */
422 int extralen;
423 };
424
425 /* USB2.0 and USB3.0 device BOS descriptor set */
426 struct usb_host_bos {
427 struct usb_bos_descriptor *desc;
428
429 struct usb_ext_cap_descriptor *ext_cap;
430 struct usb_ss_cap_descriptor *ss_cap;
431 struct usb_ssp_cap_descriptor *ssp_cap;
432 struct usb_ss_container_id_descriptor *ss_id;
433 struct usb_ptm_cap_descriptor *ptm_cap;
434 };
435
436 int __usb_get_extra_descriptor(char *buffer, unsigned size,
437 unsigned char type, void **ptr, size_t min);
438 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
439 __usb_get_extra_descriptor((ifpoint)->extra, \
440 (ifpoint)->extralen, \
441 type, (void **)ptr, sizeof(**(ptr)))
442
443 /* ----------------------------------------------------------------------- */
444
445 /*
446 * Allocated per bus (tree of devices) we have:
447 */
448 struct usb_bus {
449 struct device *controller; /* host side hardware */
450 struct device *sysdev; /* as seen from firmware or bus */
451 int busnum; /* Bus number (in order of reg) */
452 const char *bus_name; /* stable id (PCI slot_name etc) */
453 u8 uses_pio_for_control; /*
454 * Does the host controller use PIO
455 * for control transfers?
456 */
457 u8 otg_port; /* 0, or number of OTG/HNP port */
458 unsigned is_b_host:1; /* true during some HNP roleswitches */
459 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
460 unsigned no_stop_on_short:1; /*
461 * Quirk: some controllers don't stop
462 * the ep queue on a short transfer
463 * with the URB_SHORT_NOT_OK flag set.
464 */
465 unsigned no_sg_constraint:1; /* no sg constraint */
466 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
467
468 int devnum_next; /* Next open device number in
469 * round-robin allocation */
470 struct mutex devnum_next_mutex; /* devnum_next mutex */
471
472 DECLARE_BITMAP(devmap, 128); /* USB device number allocation bitmap */
473 struct usb_device *root_hub; /* Root hub */
474 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
475
476 int bandwidth_allocated; /* on this bus: how much of the time
477 * reserved for periodic (intr/iso)
478 * requests is used, on average?
479 * Units: microseconds/frame.
480 * Limits: Full/low speed reserve 90%,
481 * while high speed reserves 80%.
482 */
483 int bandwidth_int_reqs; /* number of Interrupt requests */
484 int bandwidth_isoc_reqs; /* number of Isoc. requests */
485
486 unsigned resuming_ports; /* bit array: resuming root-hub ports */
487
488 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
489 struct mon_bus *mon_bus; /* non-null when associated */
490 int monitored; /* non-zero when monitored */
491 #endif
492 };
493
494 struct usb_dev_state;
495
496 /* ----------------------------------------------------------------------- */
497
498 struct usb_tt;
499
500 enum usb_link_tunnel_mode {
501 USB_LINK_UNKNOWN = 0,
502 USB_LINK_NATIVE,
503 USB_LINK_TUNNELED,
504 };
505
506 enum usb_port_connect_type {
507 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
508 USB_PORT_CONNECT_TYPE_HOT_PLUG,
509 USB_PORT_CONNECT_TYPE_HARD_WIRED,
510 USB_PORT_NOT_USED,
511 };
512
513 /*
514 * USB port quirks.
515 */
516
517 /* For the given port, prefer the old (faster) enumeration scheme. */
518 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
519
520 /* Decrease TRSTRCY to 10ms during device enumeration. */
521 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
522
523 /*
524 * USB 2.0 Link Power Management (LPM) parameters.
525 */
526 struct usb2_lpm_parameters {
527 /* Best effort service latency indicate how long the host will drive
528 * resume on an exit from L1.
529 */
530 unsigned int besl;
531
532 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
533 * When the timer counts to zero, the parent hub will initiate a LPM
534 * transition to L1.
535 */
536 int timeout;
537 };
538
539 /*
540 * USB 3.0 Link Power Management (LPM) parameters.
541 *
542 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
543 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
544 * All three are stored in nanoseconds.
545 */
546 struct usb3_lpm_parameters {
547 /*
548 * Maximum exit latency (MEL) for the host to send a packet to the
549 * device (either a Ping for isoc endpoints, or a data packet for
550 * interrupt endpoints), the hubs to decode the packet, and for all hubs
551 * in the path to transition the links to U0.
552 */
553 unsigned int mel;
554 /*
555 * Maximum exit latency for a device-initiated LPM transition to bring
556 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
557 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
558 */
559 unsigned int pel;
560
561 /*
562 * The System Exit Latency (SEL) includes PEL, and three other
563 * latencies. After a device initiates a U0 transition, it will take
564 * some time from when the device sends the ERDY to when it will finally
565 * receive the data packet. Basically, SEL should be the worse-case
566 * latency from when a device starts initiating a U0 transition to when
567 * it will get data.
568 */
569 unsigned int sel;
570 /*
571 * The idle timeout value that is currently programmed into the parent
572 * hub for this device. When the timer counts to zero, the parent hub
573 * will initiate an LPM transition to either U1 or U2.
574 */
575 int timeout;
576 };
577
578 /**
579 * struct usb_device - kernel's representation of a USB device
580 * @devnum: device number; address on a USB bus
581 * @devpath: device ID string for use in messages (e.g., /port/...)
582 * @route: tree topology hex string for use with xHCI
583 * @state: device state: configured, not attached, etc.
584 * @speed: device speed: high/full/low (or error)
585 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
586 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
587 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
588 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
589 * @ttport: device port on that tt hub
590 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
591 * @parent: our hub, unless we're the root
592 * @bus: bus we're part of
593 * @ep0: endpoint 0 data (default control pipe)
594 * @dev: generic device interface
595 * @descriptor: USB device descriptor
596 * @bos: USB device BOS descriptor set
597 * @config: all of the device's configs
598 * @actconfig: the active configuration
599 * @ep_in: array of IN endpoints
600 * @ep_out: array of OUT endpoints
601 * @rawdescriptors: raw descriptors for each config
602 * @bus_mA: Current available from the bus
603 * @portnum: parent port number (origin 1)
604 * @level: number of USB hub ancestors
605 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
606 * @can_submit: URBs may be submitted
607 * @persist_enabled: USB_PERSIST enabled for this device
608 * @reset_in_progress: the device is being reset
609 * @have_langid: whether string_langid is valid
610 * @authorized: policy has said we can use it;
611 * (user space) policy determines if we authorize this device to be
612 * used or not. By default, wired USB devices are authorized.
613 * WUSB devices are not, until we authorize them from user space.
614 * FIXME -- complete doc
615 * @authenticated: Crypto authentication passed
616 * @tunnel_mode: Connection native or tunneled over USB4
617 * @lpm_capable: device supports LPM
618 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
619 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
620 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
621 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
622 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
623 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
624 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
625 * @string_langid: language ID for strings
626 * @product: iProduct string, if present (static)
627 * @manufacturer: iManufacturer string, if present (static)
628 * @serial: iSerialNumber string, if present (static)
629 * @filelist: usbfs files that are open to this device
630 * @maxchild: number of ports if hub
631 * @quirks: quirks of the whole device
632 * @urbnum: number of URBs submitted for the whole device
633 * @active_duration: total time device is not suspended
634 * @connect_time: time device was first connected
635 * @do_remote_wakeup: remote wakeup should be enabled
636 * @reset_resume: needs reset instead of resume
637 * @port_is_suspended: the upstream port is suspended (L2 or U3)
638 * @slot_id: Slot ID assigned by xHCI
639 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
640 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
641 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
642 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
643 * to keep track of the number of functions that require USB 3.0 Link Power
644 * Management to be disabled for this usb_device. This count should only
645 * be manipulated by those functions, with the bandwidth_mutex is held.
646 * @hub_delay: cached value consisting of:
647 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
648 * Will be used as wValue for SetIsochDelay requests.
649 * @use_generic_driver: ask driver core to reprobe using the generic driver.
650 *
651 * Notes:
652 * Usbcore drivers should not set usbdev->state directly. Instead use
653 * usb_set_device_state().
654 */
655 struct usb_device {
656 int devnum;
657 char devpath[16];
658 u32 route;
659 enum usb_device_state state;
660 enum usb_device_speed speed;
661 unsigned int rx_lanes;
662 unsigned int tx_lanes;
663 enum usb_ssp_rate ssp_rate;
664
665 struct usb_tt *tt;
666 int ttport;
667
668 unsigned int toggle[2];
669
670 struct usb_device *parent;
671 struct usb_bus *bus;
672 struct usb_host_endpoint ep0;
673
674 struct device dev;
675
676 struct usb_device_descriptor descriptor;
677 struct usb_host_bos *bos;
678 struct usb_host_config *config;
679
680 struct usb_host_config *actconfig;
681 struct usb_host_endpoint *ep_in[16];
682 struct usb_host_endpoint *ep_out[16];
683
684 char **rawdescriptors;
685
686 unsigned short bus_mA;
687 u8 portnum;
688 u8 level;
689 u8 devaddr;
690
691 unsigned can_submit:1;
692 unsigned persist_enabled:1;
693 unsigned reset_in_progress:1;
694 unsigned have_langid:1;
695 unsigned authorized:1;
696 unsigned authenticated:1;
697 unsigned lpm_capable:1;
698 unsigned lpm_devinit_allow:1;
699 unsigned usb2_hw_lpm_capable:1;
700 unsigned usb2_hw_lpm_besl_capable:1;
701 unsigned usb2_hw_lpm_enabled:1;
702 unsigned usb2_hw_lpm_allowed:1;
703 unsigned usb3_lpm_u1_enabled:1;
704 unsigned usb3_lpm_u2_enabled:1;
705 int string_langid;
706
707 /* static strings from the device */
708 char *product;
709 char *manufacturer;
710 char *serial;
711
712 struct list_head filelist;
713
714 int maxchild;
715
716 u32 quirks;
717 atomic_t urbnum;
718
719 unsigned long active_duration;
720
721 unsigned long connect_time;
722
723 unsigned do_remote_wakeup:1;
724 unsigned reset_resume:1;
725 unsigned port_is_suspended:1;
726 enum usb_link_tunnel_mode tunnel_mode;
727
728 int slot_id;
729 struct usb2_lpm_parameters l1_params;
730 struct usb3_lpm_parameters u1_params;
731 struct usb3_lpm_parameters u2_params;
732 unsigned lpm_disable_count;
733
734 u16 hub_delay;
735 unsigned use_generic_driver:1;
736 };
737
738 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
739
__intf_to_usbdev(struct usb_interface * intf)740 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
741 {
742 return to_usb_device(intf->dev.parent);
743 }
__intf_to_usbdev_const(const struct usb_interface * intf)744 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
745 {
746 return to_usb_device((const struct device *)intf->dev.parent);
747 }
748
749 #define interface_to_usbdev(intf) \
750 _Generic((intf), \
751 const struct usb_interface *: __intf_to_usbdev_const, \
752 struct usb_interface *: __intf_to_usbdev)(intf)
753
754 extern struct usb_device *usb_get_dev(struct usb_device *dev);
755 extern void usb_put_dev(struct usb_device *dev);
756 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
757 int port1);
758
759 /**
760 * usb_hub_for_each_child - iterate over all child devices on the hub
761 * @hdev: USB device belonging to the usb hub
762 * @port1: portnum associated with child device
763 * @child: child device pointer
764 */
765 #define usb_hub_for_each_child(hdev, port1, child) \
766 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
767 port1 <= hdev->maxchild; \
768 child = usb_hub_find_child(hdev, ++port1)) \
769 if (!child) continue; else
770
771 /* USB device locking */
772 #define usb_lock_device(udev) device_lock(&(udev)->dev)
773 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
774 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
775 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
776 extern int usb_lock_device_for_reset(struct usb_device *udev,
777 const struct usb_interface *iface);
778
779 /* USB port reset for device reinitialization */
780 extern int usb_reset_device(struct usb_device *dev);
781 extern void usb_queue_reset_device(struct usb_interface *dev);
782
783 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
784
785 #ifdef CONFIG_ACPI
786 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
787 bool enable);
788 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
789 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
790 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)791 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
792 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)793 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
794 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)795 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
796 { return 0; }
797 #endif
798
799 /* USB autosuspend and autoresume */
800 #ifdef CONFIG_PM
801 extern void usb_enable_autosuspend(struct usb_device *udev);
802 extern void usb_disable_autosuspend(struct usb_device *udev);
803
804 extern int usb_autopm_get_interface(struct usb_interface *intf);
805 extern void usb_autopm_put_interface(struct usb_interface *intf);
806 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
807 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
808 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
809 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
810
usb_mark_last_busy(struct usb_device * udev)811 static inline void usb_mark_last_busy(struct usb_device *udev)
812 {
813 pm_runtime_mark_last_busy(&udev->dev);
814 }
815
816 #else
817
usb_enable_autosuspend(struct usb_device * udev)818 static inline void usb_enable_autosuspend(struct usb_device *udev)
819 { }
usb_disable_autosuspend(struct usb_device * udev)820 static inline void usb_disable_autosuspend(struct usb_device *udev)
821 { }
822
usb_autopm_get_interface(struct usb_interface * intf)823 static inline int usb_autopm_get_interface(struct usb_interface *intf)
824 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)825 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
826 { return 0; }
827
usb_autopm_put_interface(struct usb_interface * intf)828 static inline void usb_autopm_put_interface(struct usb_interface *intf)
829 { }
usb_autopm_put_interface_async(struct usb_interface * intf)830 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
831 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)832 static inline void usb_autopm_get_interface_no_resume(
833 struct usb_interface *intf)
834 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)835 static inline void usb_autopm_put_interface_no_suspend(
836 struct usb_interface *intf)
837 { }
usb_mark_last_busy(struct usb_device * udev)838 static inline void usb_mark_last_busy(struct usb_device *udev)
839 { }
840 #endif
841
842 extern int usb_disable_lpm(struct usb_device *udev);
843 extern void usb_enable_lpm(struct usb_device *udev);
844 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
845 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
846 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
847
848 extern int usb_disable_ltm(struct usb_device *udev);
849 extern void usb_enable_ltm(struct usb_device *udev);
850
usb_device_supports_ltm(struct usb_device * udev)851 static inline bool usb_device_supports_ltm(struct usb_device *udev)
852 {
853 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
854 return false;
855 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
856 }
857
usb_device_no_sg_constraint(struct usb_device * udev)858 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
859 {
860 return udev && udev->bus && udev->bus->no_sg_constraint;
861 }
862
863
864 /*-------------------------------------------------------------------------*/
865
866 /* for drivers using iso endpoints */
867 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
868
869 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
870 extern int usb_alloc_streams(struct usb_interface *interface,
871 struct usb_host_endpoint **eps, unsigned int num_eps,
872 unsigned int num_streams, gfp_t mem_flags);
873
874 /* Reverts a group of bulk endpoints back to not using stream IDs. */
875 extern int usb_free_streams(struct usb_interface *interface,
876 struct usb_host_endpoint **eps, unsigned int num_eps,
877 gfp_t mem_flags);
878
879 /* used these for multi-interface device registration */
880 extern int usb_driver_claim_interface(struct usb_driver *driver,
881 struct usb_interface *iface, void *data);
882
883 /**
884 * usb_interface_claimed - returns true iff an interface is claimed
885 * @iface: the interface being checked
886 *
887 * Return: %true (nonzero) iff the interface is claimed, else %false
888 * (zero).
889 *
890 * Note:
891 * Callers must own the driver model's usb bus readlock. So driver
892 * probe() entries don't need extra locking, but other call contexts
893 * may need to explicitly claim that lock.
894 *
895 */
usb_interface_claimed(struct usb_interface * iface)896 static inline int usb_interface_claimed(struct usb_interface *iface)
897 {
898 return (iface->dev.driver != NULL);
899 }
900
901 extern void usb_driver_release_interface(struct usb_driver *driver,
902 struct usb_interface *iface);
903
904 int usb_set_wireless_status(struct usb_interface *iface,
905 enum usb_wireless_status status);
906
907 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
908 const struct usb_device_id *id);
909 extern int usb_match_one_id(struct usb_interface *interface,
910 const struct usb_device_id *id);
911
912 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
913 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
914 int minor);
915 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
916 unsigned ifnum);
917 extern struct usb_host_interface *usb_altnum_to_altsetting(
918 const struct usb_interface *intf, unsigned int altnum);
919 extern struct usb_host_interface *usb_find_alt_setting(
920 struct usb_host_config *config,
921 unsigned int iface_num,
922 unsigned int alt_num);
923
924 /* port claiming functions */
925 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
926 struct usb_dev_state *owner);
927 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
928 struct usb_dev_state *owner);
929
930 /**
931 * usb_make_path - returns stable device path in the usb tree
932 * @dev: the device whose path is being constructed
933 * @buf: where to put the string
934 * @size: how big is "buf"?
935 *
936 * Return: Length of the string (> 0) or negative if size was too small.
937 *
938 * Note:
939 * This identifier is intended to be "stable", reflecting physical paths in
940 * hardware such as physical bus addresses for host controllers or ports on
941 * USB hubs. That makes it stay the same until systems are physically
942 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
943 * controllers. Adding and removing devices, including virtual root hubs
944 * in host controller driver modules, does not change these path identifiers;
945 * neither does rebooting or re-enumerating. These are more useful identifiers
946 * than changeable ("unstable") ones like bus numbers or device addresses.
947 *
948 * With a partial exception for devices connected to USB 2.0 root hubs, these
949 * identifiers are also predictable. So long as the device tree isn't changed,
950 * plugging any USB device into a given hub port always gives it the same path.
951 * Because of the use of "companion" controllers, devices connected to ports on
952 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
953 * high speed, and a different one if they are full or low speed.
954 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)955 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
956 {
957 int actual;
958 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
959 dev->devpath);
960 return (actual >= (int)size) ? -1 : actual;
961 }
962
963 /*-------------------------------------------------------------------------*/
964
965 #define USB_DEVICE_ID_MATCH_DEVICE \
966 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
967 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
968 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
969 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
970 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
971 #define USB_DEVICE_ID_MATCH_DEV_INFO \
972 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
973 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
974 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
975 #define USB_DEVICE_ID_MATCH_INT_INFO \
976 (USB_DEVICE_ID_MATCH_INT_CLASS | \
977 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
978 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
979
980 /**
981 * USB_DEVICE - macro used to describe a specific usb device
982 * @vend: the 16 bit USB Vendor ID
983 * @prod: the 16 bit USB Product ID
984 *
985 * This macro is used to create a struct usb_device_id that matches a
986 * specific device.
987 */
988 #define USB_DEVICE(vend, prod) \
989 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
990 .idVendor = (vend), \
991 .idProduct = (prod)
992 /**
993 * USB_DEVICE_VER - describe a specific usb device with a version range
994 * @vend: the 16 bit USB Vendor ID
995 * @prod: the 16 bit USB Product ID
996 * @lo: the bcdDevice_lo value
997 * @hi: the bcdDevice_hi value
998 *
999 * This macro is used to create a struct usb_device_id that matches a
1000 * specific device, with a version range.
1001 */
1002 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1003 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1004 .idVendor = (vend), \
1005 .idProduct = (prod), \
1006 .bcdDevice_lo = (lo), \
1007 .bcdDevice_hi = (hi)
1008
1009 /**
1010 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1011 * @vend: the 16 bit USB Vendor ID
1012 * @prod: the 16 bit USB Product ID
1013 * @cl: bInterfaceClass value
1014 *
1015 * This macro is used to create a struct usb_device_id that matches a
1016 * specific interface class of devices.
1017 */
1018 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1019 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1020 USB_DEVICE_ID_MATCH_INT_CLASS, \
1021 .idVendor = (vend), \
1022 .idProduct = (prod), \
1023 .bInterfaceClass = (cl)
1024
1025 /**
1026 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1027 * @vend: the 16 bit USB Vendor ID
1028 * @prod: the 16 bit USB Product ID
1029 * @pr: bInterfaceProtocol value
1030 *
1031 * This macro is used to create a struct usb_device_id that matches a
1032 * specific interface protocol of devices.
1033 */
1034 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1035 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1036 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1037 .idVendor = (vend), \
1038 .idProduct = (prod), \
1039 .bInterfaceProtocol = (pr)
1040
1041 /**
1042 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1043 * @vend: the 16 bit USB Vendor ID
1044 * @prod: the 16 bit USB Product ID
1045 * @num: bInterfaceNumber value
1046 *
1047 * This macro is used to create a struct usb_device_id that matches a
1048 * specific interface number of devices.
1049 */
1050 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1051 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1052 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1053 .idVendor = (vend), \
1054 .idProduct = (prod), \
1055 .bInterfaceNumber = (num)
1056
1057 /**
1058 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1059 * @cl: bDeviceClass value
1060 * @sc: bDeviceSubClass value
1061 * @pr: bDeviceProtocol value
1062 *
1063 * This macro is used to create a struct usb_device_id that matches a
1064 * specific class of devices.
1065 */
1066 #define USB_DEVICE_INFO(cl, sc, pr) \
1067 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1068 .bDeviceClass = (cl), \
1069 .bDeviceSubClass = (sc), \
1070 .bDeviceProtocol = (pr)
1071
1072 /**
1073 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1074 * @cl: bInterfaceClass value
1075 * @sc: bInterfaceSubClass value
1076 * @pr: bInterfaceProtocol value
1077 *
1078 * This macro is used to create a struct usb_device_id that matches a
1079 * specific class of interfaces.
1080 */
1081 #define USB_INTERFACE_INFO(cl, sc, pr) \
1082 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1083 .bInterfaceClass = (cl), \
1084 .bInterfaceSubClass = (sc), \
1085 .bInterfaceProtocol = (pr)
1086
1087 /**
1088 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1089 * @vend: the 16 bit USB Vendor ID
1090 * @prod: the 16 bit USB Product ID
1091 * @cl: bInterfaceClass value
1092 * @sc: bInterfaceSubClass value
1093 * @pr: bInterfaceProtocol value
1094 *
1095 * This macro is used to create a struct usb_device_id that matches a
1096 * specific device with a specific class of interfaces.
1097 *
1098 * This is especially useful when explicitly matching devices that have
1099 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1100 */
1101 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1102 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1103 | USB_DEVICE_ID_MATCH_DEVICE, \
1104 .idVendor = (vend), \
1105 .idProduct = (prod), \
1106 .bInterfaceClass = (cl), \
1107 .bInterfaceSubClass = (sc), \
1108 .bInterfaceProtocol = (pr)
1109
1110 /**
1111 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1112 * @vend: the 16 bit USB Vendor ID
1113 * @cl: bInterfaceClass value
1114 * @sc: bInterfaceSubClass value
1115 * @pr: bInterfaceProtocol value
1116 *
1117 * This macro is used to create a struct usb_device_id that matches a
1118 * specific vendor with a specific class of interfaces.
1119 *
1120 * This is especially useful when explicitly matching devices that have
1121 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1122 */
1123 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1124 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1125 | USB_DEVICE_ID_MATCH_VENDOR, \
1126 .idVendor = (vend), \
1127 .bInterfaceClass = (cl), \
1128 .bInterfaceSubClass = (sc), \
1129 .bInterfaceProtocol = (pr)
1130
1131 /* ----------------------------------------------------------------------- */
1132
1133 /* Stuff for dynamic usb ids */
1134 extern struct mutex usb_dynids_lock;
1135 struct usb_dynids {
1136 struct list_head list;
1137 };
1138
1139 struct usb_dynid {
1140 struct list_head node;
1141 struct usb_device_id id;
1142 };
1143
1144 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1145 const struct usb_device_id *id_table,
1146 struct device_driver *driver,
1147 const char *buf, size_t count);
1148
1149 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1150
1151 /**
1152 * struct usb_driver - identifies USB interface driver to usbcore
1153 * @name: The driver name should be unique among USB drivers,
1154 * and should normally be the same as the module name.
1155 * @probe: Called to see if the driver is willing to manage a particular
1156 * interface on a device. If it is, probe returns zero and uses
1157 * usb_set_intfdata() to associate driver-specific data with the
1158 * interface. It may also use usb_set_interface() to specify the
1159 * appropriate altsetting. If unwilling to manage the interface,
1160 * return -ENODEV, if genuine IO errors occurred, an appropriate
1161 * negative errno value.
1162 * @disconnect: Called when the interface is no longer accessible, usually
1163 * because its device has been (or is being) disconnected or the
1164 * driver module is being unloaded.
1165 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1166 * the "usbfs" filesystem. This lets devices provide ways to
1167 * expose information to user space regardless of where they
1168 * do (or don't) show up otherwise in the filesystem.
1169 * @suspend: Called when the device is going to be suspended by the
1170 * system either from system sleep or runtime suspend context. The
1171 * return value will be ignored in system sleep context, so do NOT
1172 * try to continue using the device if suspend fails in this case.
1173 * Instead, let the resume or reset-resume routine recover from
1174 * the failure.
1175 * @resume: Called when the device is being resumed by the system.
1176 * @reset_resume: Called when the suspended device has been reset instead
1177 * of being resumed.
1178 * @pre_reset: Called by usb_reset_device() when the device is about to be
1179 * reset. This routine must not return until the driver has no active
1180 * URBs for the device, and no more URBs may be submitted until the
1181 * post_reset method is called.
1182 * @post_reset: Called by usb_reset_device() after the device
1183 * has been reset
1184 * @shutdown: Called at shut-down time to quiesce the device.
1185 * @id_table: USB drivers use ID table to support hotplugging.
1186 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1187 * or your driver's probe function will never get called.
1188 * @dev_groups: Attributes attached to the device that will be created once it
1189 * is bound to the driver.
1190 * @dynids: used internally to hold the list of dynamically added device
1191 * ids for this driver.
1192 * @driver: The driver-model core driver structure.
1193 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1194 * added to this driver by preventing the sysfs file from being created.
1195 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1196 * for interfaces bound to this driver.
1197 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1198 * endpoints before calling the driver's disconnect method.
1199 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1200 * to initiate lower power link state transitions when an idle timeout
1201 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1202 *
1203 * USB interface drivers must provide a name, probe() and disconnect()
1204 * methods, and an id_table. Other driver fields are optional.
1205 *
1206 * The id_table is used in hotplugging. It holds a set of descriptors,
1207 * and specialized data may be associated with each entry. That table
1208 * is used by both user and kernel mode hotplugging support.
1209 *
1210 * The probe() and disconnect() methods are called in a context where
1211 * they can sleep, but they should avoid abusing the privilege. Most
1212 * work to connect to a device should be done when the device is opened,
1213 * and undone at the last close. The disconnect code needs to address
1214 * concurrency issues with respect to open() and close() methods, as
1215 * well as forcing all pending I/O requests to complete (by unlinking
1216 * them as necessary, and blocking until the unlinks complete).
1217 */
1218 struct usb_driver {
1219 const char *name;
1220
1221 int (*probe) (struct usb_interface *intf,
1222 const struct usb_device_id *id);
1223
1224 void (*disconnect) (struct usb_interface *intf);
1225
1226 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1227 void *buf);
1228
1229 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1230 int (*resume) (struct usb_interface *intf);
1231 int (*reset_resume)(struct usb_interface *intf);
1232
1233 int (*pre_reset)(struct usb_interface *intf);
1234 int (*post_reset)(struct usb_interface *intf);
1235
1236 void (*shutdown)(struct usb_interface *intf);
1237
1238 const struct usb_device_id *id_table;
1239 const struct attribute_group **dev_groups;
1240
1241 struct usb_dynids dynids;
1242 struct device_driver driver;
1243 unsigned int no_dynamic_id:1;
1244 unsigned int supports_autosuspend:1;
1245 unsigned int disable_hub_initiated_lpm:1;
1246 unsigned int soft_unbind:1;
1247 };
1248 #define to_usb_driver(d) container_of_const(d, struct usb_driver, driver)
1249
1250 /**
1251 * struct usb_device_driver - identifies USB device driver to usbcore
1252 * @name: The driver name should be unique among USB drivers,
1253 * and should normally be the same as the module name.
1254 * @match: If set, used for better device/driver matching.
1255 * @probe: Called to see if the driver is willing to manage a particular
1256 * device. If it is, probe returns zero and uses dev_set_drvdata()
1257 * to associate driver-specific data with the device. If unwilling
1258 * to manage the device, return a negative errno value.
1259 * @disconnect: Called when the device is no longer accessible, usually
1260 * because it has been (or is being) disconnected or the driver's
1261 * module is being unloaded.
1262 * @suspend: Called when the device is going to be suspended by the system.
1263 * @resume: Called when the device is being resumed by the system.
1264 * @choose_configuration: If non-NULL, called instead of the default
1265 * usb_choose_configuration(). If this returns an error then we'll go
1266 * on to call the normal usb_choose_configuration().
1267 * @dev_groups: Attributes attached to the device that will be created once it
1268 * is bound to the driver.
1269 * @driver: The driver-model core driver structure.
1270 * @id_table: used with @match() to select better matching driver at
1271 * probe() time.
1272 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1273 * for devices bound to this driver.
1274 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1275 * resume and suspend functions will be called in addition to the driver's
1276 * own, so this part of the setup does not need to be replicated.
1277 *
1278 * USB drivers must provide all the fields listed above except driver,
1279 * match, and id_table.
1280 */
1281 struct usb_device_driver {
1282 const char *name;
1283
1284 bool (*match) (struct usb_device *udev);
1285 int (*probe) (struct usb_device *udev);
1286 void (*disconnect) (struct usb_device *udev);
1287
1288 int (*suspend) (struct usb_device *udev, pm_message_t message);
1289 int (*resume) (struct usb_device *udev, pm_message_t message);
1290
1291 int (*choose_configuration) (struct usb_device *udev);
1292
1293 const struct attribute_group **dev_groups;
1294 struct device_driver driver;
1295 const struct usb_device_id *id_table;
1296 unsigned int supports_autosuspend:1;
1297 unsigned int generic_subclass:1;
1298 };
1299 #define to_usb_device_driver(d) container_of_const(d, struct usb_device_driver, driver)
1300
1301 /**
1302 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1303 * @name: the usb class device name for this driver. Will show up in sysfs.
1304 * @devnode: Callback to provide a naming hint for a possible
1305 * device node to create.
1306 * @fops: pointer to the struct file_operations of this driver.
1307 * @minor_base: the start of the minor range for this driver.
1308 *
1309 * This structure is used for the usb_register_dev() and
1310 * usb_deregister_dev() functions, to consolidate a number of the
1311 * parameters used for them.
1312 */
1313 struct usb_class_driver {
1314 char *name;
1315 char *(*devnode)(const struct device *dev, umode_t *mode);
1316 const struct file_operations *fops;
1317 int minor_base;
1318 };
1319
1320 /*
1321 * use these in module_init()/module_exit()
1322 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1323 */
1324 extern int usb_register_driver(struct usb_driver *, struct module *,
1325 const char *);
1326
1327 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1328 #define usb_register(driver) \
1329 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1330
1331 extern void usb_deregister(struct usb_driver *);
1332
1333 /**
1334 * module_usb_driver() - Helper macro for registering a USB driver
1335 * @__usb_driver: usb_driver struct
1336 *
1337 * Helper macro for USB drivers which do not do anything special in module
1338 * init/exit. This eliminates a lot of boilerplate. Each module may only
1339 * use this macro once, and calling it replaces module_init() and module_exit()
1340 */
1341 #define module_usb_driver(__usb_driver) \
1342 module_driver(__usb_driver, usb_register, \
1343 usb_deregister)
1344
1345 extern int usb_register_device_driver(struct usb_device_driver *,
1346 struct module *);
1347 extern void usb_deregister_device_driver(struct usb_device_driver *);
1348
1349 extern int usb_register_dev(struct usb_interface *intf,
1350 struct usb_class_driver *class_driver);
1351 extern void usb_deregister_dev(struct usb_interface *intf,
1352 struct usb_class_driver *class_driver);
1353
1354 extern int usb_disabled(void);
1355
1356 /* ----------------------------------------------------------------------- */
1357
1358 /*
1359 * URB support, for asynchronous request completions
1360 */
1361
1362 /*
1363 * urb->transfer_flags:
1364 *
1365 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1366 */
1367 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1368 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1369 * slot in the schedule */
1370 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1371 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1372 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1373 * needed */
1374 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1375
1376 /* The following flags are used internally by usbcore and HCDs */
1377 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1378 #define URB_DIR_OUT 0
1379 #define URB_DIR_MASK URB_DIR_IN
1380
1381 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1382 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1383 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1384 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1385 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1386 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1387 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1388 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1389
1390 struct usb_iso_packet_descriptor {
1391 unsigned int offset;
1392 unsigned int length; /* expected length */
1393 unsigned int actual_length;
1394 int status;
1395 };
1396
1397 struct urb;
1398
1399 struct usb_anchor {
1400 struct list_head urb_list;
1401 wait_queue_head_t wait;
1402 spinlock_t lock;
1403 atomic_t suspend_wakeups;
1404 unsigned int poisoned:1;
1405 };
1406
init_usb_anchor(struct usb_anchor * anchor)1407 static inline void init_usb_anchor(struct usb_anchor *anchor)
1408 {
1409 memset(anchor, 0, sizeof(*anchor));
1410 INIT_LIST_HEAD(&anchor->urb_list);
1411 init_waitqueue_head(&anchor->wait);
1412 spin_lock_init(&anchor->lock);
1413 }
1414
1415 typedef void (*usb_complete_t)(struct urb *);
1416
1417 /**
1418 * struct urb - USB Request Block
1419 * @urb_list: For use by current owner of the URB.
1420 * @anchor_list: membership in the list of an anchor
1421 * @anchor: to anchor URBs to a common mooring
1422 * @ep: Points to the endpoint's data structure. Will eventually
1423 * replace @pipe.
1424 * @pipe: Holds endpoint number, direction, type, and more.
1425 * Create these values with the eight macros available;
1426 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1427 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1428 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1429 * numbers range from zero to fifteen. Note that "in" endpoint two
1430 * is a different endpoint (and pipe) from "out" endpoint two.
1431 * The current configuration controls the existence, type, and
1432 * maximum packet size of any given endpoint.
1433 * @stream_id: the endpoint's stream ID for bulk streams
1434 * @dev: Identifies the USB device to perform the request.
1435 * @status: This is read in non-iso completion functions to get the
1436 * status of the particular request. ISO requests only use it
1437 * to tell whether the URB was unlinked; detailed status for
1438 * each frame is in the fields of the iso_frame-desc.
1439 * @transfer_flags: A variety of flags may be used to affect how URB
1440 * submission, unlinking, or operation are handled. Different
1441 * kinds of URB can use different flags.
1442 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1443 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1444 * (however, do not leave garbage in transfer_buffer even then).
1445 * This buffer must be suitable for DMA; allocate it with
1446 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1447 * of this buffer will be modified. This buffer is used for the data
1448 * stage of control transfers.
1449 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1450 * the device driver is saying that it provided this DMA address,
1451 * which the host controller driver should use in preference to the
1452 * transfer_buffer.
1453 * @sg: scatter gather buffer list, the buffer size of each element in
1454 * the list (except the last) must be divisible by the endpoint's
1455 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1456 * @num_mapped_sgs: (internal) number of mapped sg entries
1457 * @num_sgs: number of entries in the sg list
1458 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1459 * be broken up into chunks according to the current maximum packet
1460 * size for the endpoint, which is a function of the configuration
1461 * and is encoded in the pipe. When the length is zero, neither
1462 * transfer_buffer nor transfer_dma is used.
1463 * @actual_length: This is read in non-iso completion functions, and
1464 * it tells how many bytes (out of transfer_buffer_length) were
1465 * transferred. It will normally be the same as requested, unless
1466 * either an error was reported or a short read was performed.
1467 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1468 * short reads be reported as errors.
1469 * @setup_packet: Only used for control transfers, this points to eight bytes
1470 * of setup data. Control transfers always start by sending this data
1471 * to the device. Then transfer_buffer is read or written, if needed.
1472 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1473 * this field; setup_packet must point to a valid buffer.
1474 * @start_frame: Returns the initial frame for isochronous transfers.
1475 * @number_of_packets: Lists the number of ISO transfer buffers.
1476 * @interval: Specifies the polling interval for interrupt or isochronous
1477 * transfers. The units are frames (milliseconds) for full and low
1478 * speed devices, and microframes (1/8 millisecond) for highspeed
1479 * and SuperSpeed devices.
1480 * @error_count: Returns the number of ISO transfers that reported errors.
1481 * @context: For use in completion functions. This normally points to
1482 * request-specific driver context.
1483 * @complete: Completion handler. This URB is passed as the parameter to the
1484 * completion function. The completion function may then do what
1485 * it likes with the URB, including resubmitting or freeing it.
1486 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1487 * collect the transfer status for each buffer.
1488 *
1489 * This structure identifies USB transfer requests. URBs must be allocated by
1490 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1491 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1492 * are submitted using usb_submit_urb(), and pending requests may be canceled
1493 * using usb_unlink_urb() or usb_kill_urb().
1494 *
1495 * Data Transfer Buffers:
1496 *
1497 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1498 * taken from the general page pool. That is provided by transfer_buffer
1499 * (control requests also use setup_packet), and host controller drivers
1500 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1501 * mapping operations can be expensive on some platforms (perhaps using a dma
1502 * bounce buffer or talking to an IOMMU),
1503 * although they're cheap on commodity x86 and ppc hardware.
1504 *
1505 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1506 * which tells the host controller driver that no such mapping is needed for
1507 * the transfer_buffer since
1508 * the device driver is DMA-aware. For example, a device driver might
1509 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1510 * When this transfer flag is provided, host controller drivers will
1511 * attempt to use the dma address found in the transfer_dma
1512 * field rather than determining a dma address themselves.
1513 *
1514 * Note that transfer_buffer must still be set if the controller
1515 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1516 * to root hub. If you have to transfer between highmem zone and the device
1517 * on such controller, create a bounce buffer or bail out with an error.
1518 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1519 * capable, assign NULL to it, so that usbmon knows not to use the value.
1520 * The setup_packet must always be set, so it cannot be located in highmem.
1521 *
1522 * Initialization:
1523 *
1524 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1525 * zero), and complete fields. All URBs must also initialize
1526 * transfer_buffer and transfer_buffer_length. They may provide the
1527 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1528 * to be treated as errors; that flag is invalid for write requests.
1529 *
1530 * Bulk URBs may
1531 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1532 * should always terminate with a short packet, even if it means adding an
1533 * extra zero length packet.
1534 *
1535 * Control URBs must provide a valid pointer in the setup_packet field.
1536 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1537 * beforehand.
1538 *
1539 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1540 * or, for highspeed devices, 125 microsecond units)
1541 * to poll for transfers. After the URB has been submitted, the interval
1542 * field reflects how the transfer was actually scheduled.
1543 * The polling interval may be more frequent than requested.
1544 * For example, some controllers have a maximum interval of 32 milliseconds,
1545 * while others support intervals of up to 1024 milliseconds.
1546 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1547 * endpoints, as well as high speed interrupt endpoints, the encoding of
1548 * the transfer interval in the endpoint descriptor is logarithmic.
1549 * Device drivers must convert that value to linear units themselves.)
1550 *
1551 * If an isochronous endpoint queue isn't already running, the host
1552 * controller will schedule a new URB to start as soon as bandwidth
1553 * utilization allows. If the queue is running then a new URB will be
1554 * scheduled to start in the first transfer slot following the end of the
1555 * preceding URB, if that slot has not already expired. If the slot has
1556 * expired (which can happen when IRQ delivery is delayed for a long time),
1557 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1558 * is clear then the URB will be scheduled to start in the expired slot,
1559 * implying that some of its packets will not be transferred; if the flag
1560 * is set then the URB will be scheduled in the first unexpired slot,
1561 * breaking the queue's synchronization. Upon URB completion, the
1562 * start_frame field will be set to the (micro)frame number in which the
1563 * transfer was scheduled. Ranges for frame counter values are HC-specific
1564 * and can go from as low as 256 to as high as 65536 frames.
1565 *
1566 * Isochronous URBs have a different data transfer model, in part because
1567 * the quality of service is only "best effort". Callers provide specially
1568 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1569 * at the end. Each such packet is an individual ISO transfer. Isochronous
1570 * URBs are normally queued, submitted by drivers to arrange that
1571 * transfers are at least double buffered, and then explicitly resubmitted
1572 * in completion handlers, so
1573 * that data (such as audio or video) streams at as constant a rate as the
1574 * host controller scheduler can support.
1575 *
1576 * Completion Callbacks:
1577 *
1578 * The completion callback is made in_interrupt(), and one of the first
1579 * things that a completion handler should do is check the status field.
1580 * The status field is provided for all URBs. It is used to report
1581 * unlinked URBs, and status for all non-ISO transfers. It should not
1582 * be examined before the URB is returned to the completion handler.
1583 *
1584 * The context field is normally used to link URBs back to the relevant
1585 * driver or request state.
1586 *
1587 * When the completion callback is invoked for non-isochronous URBs, the
1588 * actual_length field tells how many bytes were transferred. This field
1589 * is updated even when the URB terminated with an error or was unlinked.
1590 *
1591 * ISO transfer status is reported in the status and actual_length fields
1592 * of the iso_frame_desc array, and the number of errors is reported in
1593 * error_count. Completion callbacks for ISO transfers will normally
1594 * (re)submit URBs to ensure a constant transfer rate.
1595 *
1596 * Note that even fields marked "public" should not be touched by the driver
1597 * when the urb is owned by the hcd, that is, since the call to
1598 * usb_submit_urb() till the entry into the completion routine.
1599 */
1600 struct urb {
1601 /* private: usb core and host controller only fields in the urb */
1602 struct kref kref; /* reference count of the URB */
1603 int unlinked; /* unlink error code */
1604 void *hcpriv; /* private data for host controller */
1605 atomic_t use_count; /* concurrent submissions counter */
1606 atomic_t reject; /* submissions will fail */
1607
1608 /* public: documented fields in the urb that can be used by drivers */
1609 struct list_head urb_list; /* list head for use by the urb's
1610 * current owner */
1611 struct list_head anchor_list; /* the URB may be anchored */
1612 struct usb_anchor *anchor;
1613 struct usb_device *dev; /* (in) pointer to associated device */
1614 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1615 unsigned int pipe; /* (in) pipe information */
1616 unsigned int stream_id; /* (in) stream ID */
1617 int status; /* (return) non-ISO status */
1618 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1619 void *transfer_buffer; /* (in) associated data buffer */
1620 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1621 struct scatterlist *sg; /* (in) scatter gather buffer list */
1622 int num_mapped_sgs; /* (internal) mapped sg entries */
1623 int num_sgs; /* (in) number of entries in the sg list */
1624 u32 transfer_buffer_length; /* (in) data buffer length */
1625 u32 actual_length; /* (return) actual transfer length */
1626 unsigned char *setup_packet; /* (in) setup packet (control only) */
1627 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1628 int start_frame; /* (modify) start frame (ISO) */
1629 int number_of_packets; /* (in) number of ISO packets */
1630 int interval; /* (modify) transfer interval
1631 * (INT/ISO) */
1632 int error_count; /* (return) number of ISO errors */
1633 void *context; /* (in) context for completion */
1634 usb_complete_t complete; /* (in) completion routine */
1635 struct usb_iso_packet_descriptor iso_frame_desc[];
1636 /* (in) ISO ONLY */
1637 };
1638
1639 /* ----------------------------------------------------------------------- */
1640
1641 /**
1642 * usb_fill_control_urb - initializes a control urb
1643 * @urb: pointer to the urb to initialize.
1644 * @dev: pointer to the struct usb_device for this urb.
1645 * @pipe: the endpoint pipe
1646 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1647 * suitable for DMA.
1648 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1649 * suitable for DMA.
1650 * @buffer_length: length of the transfer buffer
1651 * @complete_fn: pointer to the usb_complete_t function
1652 * @context: what to set the urb context to.
1653 *
1654 * Initializes a control urb with the proper information needed to submit
1655 * it to a device.
1656 *
1657 * The transfer buffer and the setup_packet buffer will most likely be filled
1658 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1659 * allocating it via kmalloc() or equivalent, even for very small buffers.
1660 * If the buffers are embedded in a bigger structure, there is a risk that
1661 * the buffer itself, the previous fields and/or the next fields are corrupted
1662 * due to cache incoherencies; or slowed down if they are evicted from the
1663 * cache. For more information, check &struct urb.
1664 *
1665 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1666 static inline void usb_fill_control_urb(struct urb *urb,
1667 struct usb_device *dev,
1668 unsigned int pipe,
1669 unsigned char *setup_packet,
1670 void *transfer_buffer,
1671 int buffer_length,
1672 usb_complete_t complete_fn,
1673 void *context)
1674 {
1675 urb->dev = dev;
1676 urb->pipe = pipe;
1677 urb->setup_packet = setup_packet;
1678 urb->transfer_buffer = transfer_buffer;
1679 urb->transfer_buffer_length = buffer_length;
1680 urb->complete = complete_fn;
1681 urb->context = context;
1682 }
1683
1684 /**
1685 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1686 * @urb: pointer to the urb to initialize.
1687 * @dev: pointer to the struct usb_device for this urb.
1688 * @pipe: the endpoint pipe
1689 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1690 * suitable for DMA.
1691 * @buffer_length: length of the transfer buffer
1692 * @complete_fn: pointer to the usb_complete_t function
1693 * @context: what to set the urb context to.
1694 *
1695 * Initializes a bulk urb with the proper information needed to submit it
1696 * to a device.
1697 *
1698 * Refer to usb_fill_control_urb() for a description of the requirements for
1699 * transfer_buffer.
1700 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1701 static inline void usb_fill_bulk_urb(struct urb *urb,
1702 struct usb_device *dev,
1703 unsigned int pipe,
1704 void *transfer_buffer,
1705 int buffer_length,
1706 usb_complete_t complete_fn,
1707 void *context)
1708 {
1709 urb->dev = dev;
1710 urb->pipe = pipe;
1711 urb->transfer_buffer = transfer_buffer;
1712 urb->transfer_buffer_length = buffer_length;
1713 urb->complete = complete_fn;
1714 urb->context = context;
1715 }
1716
1717 /**
1718 * usb_fill_int_urb - macro to help initialize a interrupt urb
1719 * @urb: pointer to the urb to initialize.
1720 * @dev: pointer to the struct usb_device for this urb.
1721 * @pipe: the endpoint pipe
1722 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1723 * suitable for DMA.
1724 * @buffer_length: length of the transfer buffer
1725 * @complete_fn: pointer to the usb_complete_t function
1726 * @context: what to set the urb context to.
1727 * @interval: what to set the urb interval to, encoded like
1728 * the endpoint descriptor's bInterval value.
1729 *
1730 * Initializes a interrupt urb with the proper information needed to submit
1731 * it to a device.
1732 *
1733 * Refer to usb_fill_control_urb() for a description of the requirements for
1734 * transfer_buffer.
1735 *
1736 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1737 * encoding of the endpoint interval, and express polling intervals in
1738 * microframes (eight per millisecond) rather than in frames (one per
1739 * millisecond).
1740 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1741 static inline void usb_fill_int_urb(struct urb *urb,
1742 struct usb_device *dev,
1743 unsigned int pipe,
1744 void *transfer_buffer,
1745 int buffer_length,
1746 usb_complete_t complete_fn,
1747 void *context,
1748 int interval)
1749 {
1750 urb->dev = dev;
1751 urb->pipe = pipe;
1752 urb->transfer_buffer = transfer_buffer;
1753 urb->transfer_buffer_length = buffer_length;
1754 urb->complete = complete_fn;
1755 urb->context = context;
1756
1757 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1758 /* make sure interval is within allowed range */
1759 interval = clamp(interval, 1, 16);
1760
1761 urb->interval = 1 << (interval - 1);
1762 } else {
1763 urb->interval = interval;
1764 }
1765
1766 urb->start_frame = -1;
1767 }
1768
1769 extern void usb_init_urb(struct urb *urb);
1770 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1771 extern void usb_free_urb(struct urb *urb);
1772 #define usb_put_urb usb_free_urb
1773 extern struct urb *usb_get_urb(struct urb *urb);
1774 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1775 extern int usb_unlink_urb(struct urb *urb);
1776 extern void usb_kill_urb(struct urb *urb);
1777 extern void usb_poison_urb(struct urb *urb);
1778 extern void usb_unpoison_urb(struct urb *urb);
1779 extern void usb_block_urb(struct urb *urb);
1780 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1781 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1782 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1783 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1784 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1785 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1786 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1787 extern void usb_unanchor_urb(struct urb *urb);
1788 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1789 unsigned int timeout);
1790 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1791 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1792 extern int usb_anchor_empty(struct usb_anchor *anchor);
1793
1794 #define usb_unblock_urb usb_unpoison_urb
1795
1796 /**
1797 * usb_urb_dir_in - check if an URB describes an IN transfer
1798 * @urb: URB to be checked
1799 *
1800 * Return: 1 if @urb describes an IN transfer (device-to-host),
1801 * otherwise 0.
1802 */
usb_urb_dir_in(struct urb * urb)1803 static inline int usb_urb_dir_in(struct urb *urb)
1804 {
1805 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1806 }
1807
1808 /**
1809 * usb_urb_dir_out - check if an URB describes an OUT transfer
1810 * @urb: URB to be checked
1811 *
1812 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1813 * otherwise 0.
1814 */
usb_urb_dir_out(struct urb * urb)1815 static inline int usb_urb_dir_out(struct urb *urb)
1816 {
1817 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1818 }
1819
1820 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1821 int usb_urb_ep_type_check(const struct urb *urb);
1822
1823 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1824 gfp_t mem_flags, dma_addr_t *dma);
1825 void usb_free_coherent(struct usb_device *dev, size_t size,
1826 void *addr, dma_addr_t dma);
1827
1828 /*-------------------------------------------------------------------*
1829 * SYNCHRONOUS CALL SUPPORT *
1830 *-------------------------------------------------------------------*/
1831
1832 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1833 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1834 void *data, __u16 size, int timeout);
1835 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1836 void *data, int len, int *actual_length, int timeout);
1837 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1838 void *data, int len, int *actual_length,
1839 int timeout);
1840
1841 /* wrappers around usb_control_msg() for the most common standard requests */
1842 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1843 __u8 requesttype, __u16 value, __u16 index,
1844 const void *data, __u16 size, int timeout,
1845 gfp_t memflags);
1846 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1847 __u8 requesttype, __u16 value, __u16 index,
1848 void *data, __u16 size, int timeout,
1849 gfp_t memflags);
1850 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1851 unsigned char descindex, void *buf, int size);
1852 extern int usb_get_status(struct usb_device *dev,
1853 int recip, int type, int target, void *data);
1854
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1855 static inline int usb_get_std_status(struct usb_device *dev,
1856 int recip, int target, void *data)
1857 {
1858 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1859 data);
1860 }
1861
usb_get_ptm_status(struct usb_device * dev,void * data)1862 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1863 {
1864 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1865 0, data);
1866 }
1867
1868 extern int usb_string(struct usb_device *dev, int index,
1869 char *buf, size_t size);
1870 extern char *usb_cache_string(struct usb_device *udev, int index);
1871
1872 /* wrappers that also update important state inside usbcore */
1873 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1874 extern int usb_reset_configuration(struct usb_device *dev);
1875 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1876 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1877
1878 /* this request isn't really synchronous, but it belongs with the others */
1879 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1880
1881 /* choose and set configuration for device */
1882 extern int usb_choose_configuration(struct usb_device *udev);
1883 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1884
1885 /*
1886 * timeouts, in milliseconds, used for sending/receiving control messages
1887 * they typically complete within a few frames (msec) after they're issued
1888 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1889 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1890 */
1891 #define USB_CTRL_GET_TIMEOUT 5000
1892 #define USB_CTRL_SET_TIMEOUT 5000
1893
1894
1895 /**
1896 * struct usb_sg_request - support for scatter/gather I/O
1897 * @status: zero indicates success, else negative errno
1898 * @bytes: counts bytes transferred.
1899 *
1900 * These requests are initialized using usb_sg_init(), and then are used
1901 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1902 * members of the request object aren't for driver access.
1903 *
1904 * The status and bytecount values are valid only after usb_sg_wait()
1905 * returns. If the status is zero, then the bytecount matches the total
1906 * from the request.
1907 *
1908 * After an error completion, drivers may need to clear a halt condition
1909 * on the endpoint.
1910 */
1911 struct usb_sg_request {
1912 int status;
1913 size_t bytes;
1914
1915 /* private:
1916 * members below are private to usbcore,
1917 * and are not provided for driver access!
1918 */
1919 spinlock_t lock;
1920
1921 struct usb_device *dev;
1922 int pipe;
1923
1924 int entries;
1925 struct urb **urbs;
1926
1927 int count;
1928 struct completion complete;
1929 };
1930
1931 int usb_sg_init(
1932 struct usb_sg_request *io,
1933 struct usb_device *dev,
1934 unsigned pipe,
1935 unsigned period,
1936 struct scatterlist *sg,
1937 int nents,
1938 size_t length,
1939 gfp_t mem_flags
1940 );
1941 void usb_sg_cancel(struct usb_sg_request *io);
1942 void usb_sg_wait(struct usb_sg_request *io);
1943
1944
1945 /* ----------------------------------------------------------------------- */
1946
1947 /*
1948 * For various legacy reasons, Linux has a small cookie that's paired with
1949 * a struct usb_device to identify an endpoint queue. Queue characteristics
1950 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1951 * an unsigned int encoded as:
1952 *
1953 * - direction: bit 7 (0 = Host-to-Device [Out],
1954 * 1 = Device-to-Host [In] ...
1955 * like endpoint bEndpointAddress)
1956 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1957 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1958 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1959 * 10 = control, 11 = bulk)
1960 *
1961 * Given the device address and endpoint descriptor, pipes are redundant.
1962 */
1963
1964 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1965 /* (yet ... they're the values used by usbfs) */
1966 #define PIPE_ISOCHRONOUS 0
1967 #define PIPE_INTERRUPT 1
1968 #define PIPE_CONTROL 2
1969 #define PIPE_BULK 3
1970
1971 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1972 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1973
1974 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1975 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1976
1977 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1978 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1979 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1980 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1981 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1982
__create_pipe(struct usb_device * dev,unsigned int endpoint)1983 static inline unsigned int __create_pipe(struct usb_device *dev,
1984 unsigned int endpoint)
1985 {
1986 return (dev->devnum << 8) | (endpoint << 15);
1987 }
1988
1989 /* Create various pipes... */
1990 #define usb_sndctrlpipe(dev, endpoint) \
1991 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1992 #define usb_rcvctrlpipe(dev, endpoint) \
1993 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1994 #define usb_sndisocpipe(dev, endpoint) \
1995 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1996 #define usb_rcvisocpipe(dev, endpoint) \
1997 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1998 #define usb_sndbulkpipe(dev, endpoint) \
1999 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2000 #define usb_rcvbulkpipe(dev, endpoint) \
2001 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2002 #define usb_sndintpipe(dev, endpoint) \
2003 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2004 #define usb_rcvintpipe(dev, endpoint) \
2005 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2006
2007 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2008 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2009 {
2010 struct usb_host_endpoint **eps;
2011 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2012 return eps[usb_pipeendpoint(pipe)];
2013 }
2014
usb_maxpacket(struct usb_device * udev,int pipe)2015 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2016 {
2017 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2018
2019 if (!ep)
2020 return 0;
2021
2022 /* NOTE: only 0x07ff bits are for packet size... */
2023 return usb_endpoint_maxp(&ep->desc);
2024 }
2025
2026 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2027 static inline int usb_translate_errors(int error_code)
2028 {
2029 switch (error_code) {
2030 case 0:
2031 case -ENOMEM:
2032 case -ENODEV:
2033 case -EOPNOTSUPP:
2034 return error_code;
2035 default:
2036 return -EIO;
2037 }
2038 }
2039
2040 /* Events from the usb core */
2041 #define USB_DEVICE_ADD 0x0001
2042 #define USB_DEVICE_REMOVE 0x0002
2043 #define USB_BUS_ADD 0x0003
2044 #define USB_BUS_REMOVE 0x0004
2045 extern void usb_register_notify(struct notifier_block *nb);
2046 extern void usb_unregister_notify(struct notifier_block *nb);
2047
2048 /* debugfs stuff */
2049 extern struct dentry *usb_debug_root;
2050
2051 /* LED triggers */
2052 enum usb_led_event {
2053 USB_LED_EVENT_HOST = 0,
2054 USB_LED_EVENT_GADGET = 1,
2055 };
2056
2057 #ifdef CONFIG_USB_LED_TRIG
2058 extern void usb_led_activity(enum usb_led_event ev);
2059 #else
usb_led_activity(enum usb_led_event ev)2060 static inline void usb_led_activity(enum usb_led_event ev) {}
2061 #endif
2062
2063 #endif /* __KERNEL__ */
2064
2065 #endif
2066