1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010 IBM Corporation 4 * Copyright (C) 2010 Politecnico di Torino, Italy 5 * TORSEC group -- https://security.polito.it 6 * 7 * Authors: 8 * Mimi Zohar <zohar@us.ibm.com> 9 * Roberto Sassu <roberto.sassu@polito.it> 10 * 11 * See Documentation/security/keys/trusted-encrypted.rst 12 */ 13 14 #include <linux/uaccess.h> 15 #include <linux/module.h> 16 #include <linux/hex.h> 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/parser.h> 20 #include <linux/string.h> 21 #include <linux/err.h> 22 #include <keys/user-type.h> 23 #include <keys/trusted-type.h> 24 #include <keys/encrypted-type.h> 25 #include <linux/key-type.h> 26 #include <linux/random.h> 27 #include <linux/rcupdate.h> 28 #include <linux/scatterlist.h> 29 #include <linux/ctype.h> 30 #include <crypto/aes.h> 31 #include <crypto/sha2.h> 32 #include <crypto/skcipher.h> 33 #include <crypto/utils.h> 34 35 #include "encrypted.h" 36 #include "ecryptfs_format.h" 37 38 static const char KEY_TRUSTED_PREFIX[] = "trusted:"; 39 static const char KEY_USER_PREFIX[] = "user:"; 40 static const char blkcipher_alg[] = "cbc(aes)"; 41 static const char key_format_default[] = "default"; 42 static const char key_format_ecryptfs[] = "ecryptfs"; 43 static const char key_format_enc32[] = "enc32"; 44 static unsigned int ivsize; 45 static int blksize; 46 47 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) 48 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) 49 #define KEY_ECRYPTFS_DESC_LEN 16 50 #define HASH_SIZE SHA256_DIGEST_SIZE 51 #define MAX_DATA_SIZE 4096 52 #define MIN_DATA_SIZE 20 53 #define KEY_ENC32_PAYLOAD_LEN 32 54 55 enum { 56 Opt_new, Opt_load, Opt_update, Opt_err 57 }; 58 59 enum { 60 Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error 61 }; 62 63 static const match_table_t key_format_tokens = { 64 {Opt_default, "default"}, 65 {Opt_ecryptfs, "ecryptfs"}, 66 {Opt_enc32, "enc32"}, 67 {Opt_error, NULL} 68 }; 69 70 static const match_table_t key_tokens = { 71 {Opt_new, "new"}, 72 {Opt_load, "load"}, 73 {Opt_update, "update"}, 74 {Opt_err, NULL} 75 }; 76 77 static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA); 78 module_param(user_decrypted_data, bool, 0); 79 MODULE_PARM_DESC(user_decrypted_data, 80 "Allow instantiation of encrypted keys using provided decrypted data"); 81 82 static int aes_get_sizes(void) 83 { 84 struct crypto_skcipher *tfm; 85 86 tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 87 if (IS_ERR(tfm)) { 88 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", 89 PTR_ERR(tfm)); 90 return PTR_ERR(tfm); 91 } 92 ivsize = crypto_skcipher_ivsize(tfm); 93 blksize = crypto_skcipher_blocksize(tfm); 94 crypto_free_skcipher(tfm); 95 return 0; 96 } 97 98 /* 99 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key 100 * 101 * The description of a encrypted key with format 'ecryptfs' must contain 102 * exactly 16 hexadecimal characters. 103 * 104 */ 105 static int valid_ecryptfs_desc(const char *ecryptfs_desc) 106 { 107 int i; 108 109 if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) { 110 pr_err("encrypted_key: key description must be %d hexadecimal " 111 "characters long\n", KEY_ECRYPTFS_DESC_LEN); 112 return -EINVAL; 113 } 114 115 for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) { 116 if (!isxdigit(ecryptfs_desc[i])) { 117 pr_err("encrypted_key: key description must contain " 118 "only hexadecimal characters\n"); 119 return -EINVAL; 120 } 121 } 122 123 return 0; 124 } 125 126 /* 127 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key 128 * 129 * key-type:= "trusted:" | "user:" 130 * desc:= master-key description 131 * 132 * Verify that 'key-type' is valid and that 'desc' exists. On key update, 133 * only the master key description is permitted to change, not the key-type. 134 * The key-type remains constant. 135 * 136 * On success returns 0, otherwise -EINVAL. 137 */ 138 static int valid_master_desc(const char *new_desc, const char *orig_desc) 139 { 140 int prefix_len; 141 142 if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) 143 prefix_len = KEY_TRUSTED_PREFIX_LEN; 144 else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) 145 prefix_len = KEY_USER_PREFIX_LEN; 146 else 147 return -EINVAL; 148 149 if (!new_desc[prefix_len]) 150 return -EINVAL; 151 152 if (orig_desc && strncmp(new_desc, orig_desc, prefix_len)) 153 return -EINVAL; 154 155 return 0; 156 } 157 158 /* 159 * datablob_parse - parse the keyctl data 160 * 161 * datablob format: 162 * new [<format>] <master-key name> <decrypted data length> [<decrypted data>] 163 * load [<format>] <master-key name> <decrypted data length> 164 * <encrypted iv + data> 165 * update <new-master-key name> 166 * 167 * Tokenizes a copy of the keyctl data, returning a pointer to each token, 168 * which is null terminated. 169 * 170 * On success returns 0, otherwise -EINVAL. 171 */ 172 static int datablob_parse(char *datablob, const char **format, 173 char **master_desc, char **decrypted_datalen, 174 char **hex_encoded_iv, char **decrypted_data) 175 { 176 substring_t args[MAX_OPT_ARGS]; 177 int ret = -EINVAL; 178 int key_cmd; 179 int key_format; 180 char *p, *keyword; 181 182 keyword = strsep(&datablob, " \t"); 183 if (!keyword) { 184 pr_info("encrypted_key: insufficient parameters specified\n"); 185 return ret; 186 } 187 key_cmd = match_token(keyword, key_tokens, args); 188 189 /* Get optional format: default | ecryptfs */ 190 p = strsep(&datablob, " \t"); 191 if (!p) { 192 pr_err("encrypted_key: insufficient parameters specified\n"); 193 return ret; 194 } 195 196 key_format = match_token(p, key_format_tokens, args); 197 switch (key_format) { 198 case Opt_ecryptfs: 199 case Opt_enc32: 200 case Opt_default: 201 *format = p; 202 *master_desc = strsep(&datablob, " \t"); 203 break; 204 case Opt_error: 205 *master_desc = p; 206 break; 207 } 208 209 if (!*master_desc) { 210 pr_info("encrypted_key: master key parameter is missing\n"); 211 goto out; 212 } 213 214 if (valid_master_desc(*master_desc, NULL) < 0) { 215 pr_info("encrypted_key: master key parameter \'%s\' " 216 "is invalid\n", *master_desc); 217 goto out; 218 } 219 220 if (decrypted_datalen) { 221 *decrypted_datalen = strsep(&datablob, " \t"); 222 if (!*decrypted_datalen) { 223 pr_info("encrypted_key: keylen parameter is missing\n"); 224 goto out; 225 } 226 } 227 228 switch (key_cmd) { 229 case Opt_new: 230 if (!decrypted_datalen) { 231 pr_info("encrypted_key: keyword \'%s\' not allowed " 232 "when called from .update method\n", keyword); 233 break; 234 } 235 *decrypted_data = strsep(&datablob, " \t"); 236 ret = 0; 237 break; 238 case Opt_load: 239 if (!decrypted_datalen) { 240 pr_info("encrypted_key: keyword \'%s\' not allowed " 241 "when called from .update method\n", keyword); 242 break; 243 } 244 *hex_encoded_iv = strsep(&datablob, " \t"); 245 if (!*hex_encoded_iv) { 246 pr_info("encrypted_key: hex blob is missing\n"); 247 break; 248 } 249 ret = 0; 250 break; 251 case Opt_update: 252 if (decrypted_datalen) { 253 pr_info("encrypted_key: keyword \'%s\' not allowed " 254 "when called from .instantiate method\n", 255 keyword); 256 break; 257 } 258 ret = 0; 259 break; 260 case Opt_err: 261 pr_info("encrypted_key: keyword \'%s\' not recognized\n", 262 keyword); 263 break; 264 } 265 out: 266 return ret; 267 } 268 269 /* 270 * datablob_format - format as an ascii string, before copying to userspace 271 */ 272 static char *datablob_format(struct encrypted_key_payload *epayload, 273 size_t asciiblob_len) 274 { 275 char *ascii_buf, *bufp; 276 u8 *iv = epayload->iv; 277 int len; 278 int i; 279 280 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); 281 if (!ascii_buf) 282 goto out; 283 284 ascii_buf[asciiblob_len] = '\0'; 285 286 /* copy datablob master_desc and datalen strings */ 287 len = sprintf(ascii_buf, "%s %s %s ", epayload->format, 288 epayload->master_desc, epayload->datalen); 289 290 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ 291 bufp = &ascii_buf[len]; 292 for (i = 0; i < (asciiblob_len - len) / 2; i++) 293 bufp = hex_byte_pack(bufp, iv[i]); 294 out: 295 return ascii_buf; 296 } 297 298 /* 299 * request_user_key - request the user key 300 * 301 * Use a user provided key to encrypt/decrypt an encrypted-key. 302 */ 303 static struct key *request_user_key(const char *master_desc, const u8 **master_key, 304 size_t *master_keylen) 305 { 306 const struct user_key_payload *upayload; 307 struct key *ukey; 308 309 ukey = request_key(&key_type_user, master_desc, NULL); 310 if (IS_ERR(ukey)) 311 goto error; 312 313 down_read(&ukey->sem); 314 upayload = user_key_payload_locked(ukey); 315 if (!upayload) { 316 /* key was revoked before we acquired its semaphore */ 317 up_read(&ukey->sem); 318 key_put(ukey); 319 ukey = ERR_PTR(-EKEYREVOKED); 320 goto error; 321 } 322 *master_key = upayload->data; 323 *master_keylen = upayload->datalen; 324 error: 325 return ukey; 326 } 327 328 enum derived_key_type { ENC_KEY, AUTH_KEY }; 329 330 /* Derive authentication/encryption key from trusted key */ 331 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, 332 const u8 *master_key, size_t master_keylen) 333 { 334 u8 *derived_buf; 335 unsigned int derived_buf_len; 336 337 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; 338 if (derived_buf_len < HASH_SIZE) 339 derived_buf_len = HASH_SIZE; 340 341 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); 342 if (!derived_buf) 343 return -ENOMEM; 344 345 if (key_type) 346 strcpy(derived_buf, "AUTH_KEY"); 347 else 348 strcpy(derived_buf, "ENC_KEY"); 349 350 memcpy(derived_buf + strlen(derived_buf) + 1, master_key, 351 master_keylen); 352 sha256(derived_buf, derived_buf_len, derived_key); 353 kfree_sensitive(derived_buf); 354 return 0; 355 } 356 357 static struct skcipher_request *init_skcipher_req(const u8 *key, 358 unsigned int key_len) 359 { 360 struct skcipher_request *req; 361 struct crypto_skcipher *tfm; 362 int ret; 363 364 tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 365 if (IS_ERR(tfm)) { 366 pr_err("encrypted_key: failed to load %s transform (%ld)\n", 367 blkcipher_alg, PTR_ERR(tfm)); 368 return ERR_CAST(tfm); 369 } 370 371 ret = crypto_skcipher_setkey(tfm, key, key_len); 372 if (ret < 0) { 373 pr_err("encrypted_key: failed to setkey (%d)\n", ret); 374 crypto_free_skcipher(tfm); 375 return ERR_PTR(ret); 376 } 377 378 req = skcipher_request_alloc(tfm, GFP_KERNEL); 379 if (!req) { 380 pr_err("encrypted_key: failed to allocate request for %s\n", 381 blkcipher_alg); 382 crypto_free_skcipher(tfm); 383 return ERR_PTR(-ENOMEM); 384 } 385 386 skcipher_request_set_callback(req, 0, NULL, NULL); 387 return req; 388 } 389 390 static struct key *request_master_key(struct encrypted_key_payload *epayload, 391 const u8 **master_key, size_t *master_keylen) 392 { 393 struct key *mkey = ERR_PTR(-EINVAL); 394 395 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, 396 KEY_TRUSTED_PREFIX_LEN)) { 397 mkey = request_trusted_key(epayload->master_desc + 398 KEY_TRUSTED_PREFIX_LEN, 399 master_key, master_keylen); 400 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, 401 KEY_USER_PREFIX_LEN)) { 402 mkey = request_user_key(epayload->master_desc + 403 KEY_USER_PREFIX_LEN, 404 master_key, master_keylen); 405 } else 406 goto out; 407 408 if (IS_ERR(mkey)) { 409 int ret = PTR_ERR(mkey); 410 411 if (ret == -ENOTSUPP) 412 pr_info("encrypted_key: key %s not supported", 413 epayload->master_desc); 414 else 415 pr_info("encrypted_key: key %s not found", 416 epayload->master_desc); 417 goto out; 418 } 419 420 dump_master_key(*master_key, *master_keylen); 421 out: 422 return mkey; 423 } 424 425 /* Before returning data to userspace, encrypt decrypted data. */ 426 static int derived_key_encrypt(struct encrypted_key_payload *epayload, 427 const u8 *derived_key, 428 unsigned int derived_keylen) 429 { 430 struct scatterlist sg_in[2]; 431 struct scatterlist sg_out[1]; 432 struct crypto_skcipher *tfm; 433 struct skcipher_request *req; 434 unsigned int encrypted_datalen; 435 u8 iv[AES_BLOCK_SIZE]; 436 int ret; 437 438 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 439 440 req = init_skcipher_req(derived_key, derived_keylen); 441 ret = PTR_ERR(req); 442 if (IS_ERR(req)) 443 goto out; 444 dump_decrypted_data(epayload); 445 446 sg_init_table(sg_in, 2); 447 sg_set_buf(&sg_in[0], epayload->decrypted_data, 448 epayload->decrypted_datalen); 449 sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0); 450 451 sg_init_table(sg_out, 1); 452 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); 453 454 memcpy(iv, epayload->iv, sizeof(iv)); 455 skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); 456 ret = crypto_skcipher_encrypt(req); 457 tfm = crypto_skcipher_reqtfm(req); 458 skcipher_request_free(req); 459 crypto_free_skcipher(tfm); 460 if (ret < 0) 461 pr_err("encrypted_key: failed to encrypt (%d)\n", ret); 462 else 463 dump_encrypted_data(epayload, encrypted_datalen); 464 out: 465 return ret; 466 } 467 468 static int datablob_hmac_append(struct encrypted_key_payload *epayload, 469 const u8 *master_key, size_t master_keylen) 470 { 471 u8 derived_key[HASH_SIZE]; 472 u8 *digest; 473 int ret; 474 475 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 476 if (ret < 0) 477 goto out; 478 479 digest = epayload->format + epayload->datablob_len; 480 hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), 481 epayload->format, epayload->datablob_len, 482 digest); 483 dump_hmac(NULL, digest, HASH_SIZE); 484 out: 485 memzero_explicit(derived_key, sizeof(derived_key)); 486 return ret; 487 } 488 489 /* verify HMAC before decrypting encrypted key */ 490 static int datablob_hmac_verify(struct encrypted_key_payload *epayload, 491 const u8 *format, const u8 *master_key, 492 size_t master_keylen) 493 { 494 u8 derived_key[HASH_SIZE]; 495 u8 digest[HASH_SIZE]; 496 int ret; 497 char *p; 498 unsigned short len; 499 500 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 501 if (ret < 0) 502 goto out; 503 504 len = epayload->datablob_len; 505 if (!format) { 506 p = epayload->master_desc; 507 len -= strlen(epayload->format) + 1; 508 } else 509 p = epayload->format; 510 511 hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), p, len, 512 digest); 513 ret = crypto_memneq(digest, epayload->format + epayload->datablob_len, 514 sizeof(digest)); 515 if (ret) { 516 ret = -EINVAL; 517 dump_hmac("datablob", 518 epayload->format + epayload->datablob_len, 519 HASH_SIZE); 520 dump_hmac("calc", digest, HASH_SIZE); 521 } 522 out: 523 memzero_explicit(derived_key, sizeof(derived_key)); 524 return ret; 525 } 526 527 static int derived_key_decrypt(struct encrypted_key_payload *epayload, 528 const u8 *derived_key, 529 unsigned int derived_keylen) 530 { 531 struct scatterlist sg_in[1]; 532 struct scatterlist sg_out[2]; 533 struct crypto_skcipher *tfm; 534 struct skcipher_request *req; 535 unsigned int encrypted_datalen; 536 u8 iv[AES_BLOCK_SIZE]; 537 u8 *pad; 538 int ret; 539 540 /* Throwaway buffer to hold the unused zero padding at the end */ 541 pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL); 542 if (!pad) 543 return -ENOMEM; 544 545 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 546 req = init_skcipher_req(derived_key, derived_keylen); 547 ret = PTR_ERR(req); 548 if (IS_ERR(req)) 549 goto out; 550 dump_encrypted_data(epayload, encrypted_datalen); 551 552 sg_init_table(sg_in, 1); 553 sg_init_table(sg_out, 2); 554 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); 555 sg_set_buf(&sg_out[0], epayload->decrypted_data, 556 epayload->decrypted_datalen); 557 sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE); 558 559 memcpy(iv, epayload->iv, sizeof(iv)); 560 skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); 561 ret = crypto_skcipher_decrypt(req); 562 tfm = crypto_skcipher_reqtfm(req); 563 skcipher_request_free(req); 564 crypto_free_skcipher(tfm); 565 if (ret < 0) 566 goto out; 567 dump_decrypted_data(epayload); 568 out: 569 kfree(pad); 570 return ret; 571 } 572 573 /* Allocate memory for decrypted key and datablob. */ 574 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, 575 const char *format, 576 const char *master_desc, 577 const char *datalen, 578 const char *decrypted_data) 579 { 580 struct encrypted_key_payload *epayload = NULL; 581 unsigned short datablob_len; 582 unsigned short decrypted_datalen; 583 unsigned short payload_datalen; 584 unsigned int encrypted_datalen; 585 unsigned int format_len; 586 long dlen; 587 int i; 588 int ret; 589 590 ret = kstrtol(datalen, 10, &dlen); 591 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) 592 return ERR_PTR(-EINVAL); 593 594 format_len = (!format) ? strlen(key_format_default) : strlen(format); 595 decrypted_datalen = dlen; 596 payload_datalen = decrypted_datalen; 597 598 if (decrypted_data) { 599 if (!user_decrypted_data) { 600 pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n"); 601 return ERR_PTR(-EINVAL); 602 } 603 if (strlen(decrypted_data) != decrypted_datalen * 2) { 604 pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n"); 605 return ERR_PTR(-EINVAL); 606 } 607 for (i = 0; i < strlen(decrypted_data); i++) { 608 if (!isxdigit(decrypted_data[i])) { 609 pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n"); 610 return ERR_PTR(-EINVAL); 611 } 612 } 613 } 614 615 if (format) { 616 if (!strcmp(format, key_format_ecryptfs)) { 617 if (dlen != ECRYPTFS_MAX_KEY_BYTES) { 618 pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n", 619 ECRYPTFS_MAX_KEY_BYTES); 620 return ERR_PTR(-EINVAL); 621 } 622 decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; 623 payload_datalen = sizeof(struct ecryptfs_auth_tok); 624 } else if (!strcmp(format, key_format_enc32)) { 625 if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) { 626 pr_err("encrypted_key: enc32 key payload incorrect length: %d\n", 627 decrypted_datalen); 628 return ERR_PTR(-EINVAL); 629 } 630 } 631 } 632 633 encrypted_datalen = roundup(decrypted_datalen, blksize); 634 635 datablob_len = format_len + 1 + strlen(master_desc) + 1 636 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; 637 638 ret = key_payload_reserve(key, payload_datalen + datablob_len 639 + HASH_SIZE + 1); 640 if (ret < 0) 641 return ERR_PTR(ret); 642 643 epayload = kzalloc(sizeof(*epayload) + payload_datalen + 644 datablob_len + HASH_SIZE + 1, GFP_KERNEL); 645 if (!epayload) 646 return ERR_PTR(-ENOMEM); 647 648 epayload->payload_datalen = payload_datalen; 649 epayload->decrypted_datalen = decrypted_datalen; 650 epayload->datablob_len = datablob_len; 651 return epayload; 652 } 653 654 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, 655 const char *format, const char *hex_encoded_iv) 656 { 657 struct key *mkey; 658 u8 derived_key[HASH_SIZE]; 659 const u8 *master_key; 660 u8 *hmac; 661 const char *hex_encoded_data; 662 unsigned int encrypted_datalen; 663 size_t master_keylen; 664 size_t asciilen; 665 int ret; 666 667 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 668 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; 669 if (strlen(hex_encoded_iv) != asciilen) 670 return -EINVAL; 671 672 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; 673 ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize); 674 if (ret < 0) 675 return -EINVAL; 676 ret = hex2bin(epayload->encrypted_data, hex_encoded_data, 677 encrypted_datalen); 678 if (ret < 0) 679 return -EINVAL; 680 681 hmac = epayload->format + epayload->datablob_len; 682 ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), 683 HASH_SIZE); 684 if (ret < 0) 685 return -EINVAL; 686 687 mkey = request_master_key(epayload, &master_key, &master_keylen); 688 if (IS_ERR(mkey)) 689 return PTR_ERR(mkey); 690 691 ret = datablob_hmac_verify(epayload, format, master_key, master_keylen); 692 if (ret < 0) { 693 pr_err("encrypted_key: bad hmac (%d)\n", ret); 694 goto out; 695 } 696 697 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 698 if (ret < 0) 699 goto out; 700 701 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); 702 if (ret < 0) 703 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); 704 out: 705 up_read(&mkey->sem); 706 key_put(mkey); 707 memzero_explicit(derived_key, sizeof(derived_key)); 708 return ret; 709 } 710 711 static void __ekey_init(struct encrypted_key_payload *epayload, 712 const char *format, const char *master_desc, 713 const char *datalen) 714 { 715 unsigned int format_len; 716 717 format_len = (!format) ? strlen(key_format_default) : strlen(format); 718 epayload->format = epayload->payload_data + epayload->payload_datalen; 719 epayload->master_desc = epayload->format + format_len + 1; 720 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; 721 epayload->iv = epayload->datalen + strlen(datalen) + 1; 722 epayload->encrypted_data = epayload->iv + ivsize + 1; 723 epayload->decrypted_data = epayload->payload_data; 724 725 if (!format) 726 memcpy(epayload->format, key_format_default, format_len); 727 else { 728 if (!strcmp(format, key_format_ecryptfs)) 729 epayload->decrypted_data = 730 ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data); 731 732 memcpy(epayload->format, format, format_len); 733 } 734 735 memcpy(epayload->master_desc, master_desc, strlen(master_desc)); 736 memcpy(epayload->datalen, datalen, strlen(datalen)); 737 } 738 739 /* 740 * encrypted_init - initialize an encrypted key 741 * 742 * For a new key, use either a random number or user-provided decrypted data in 743 * case it is provided. A random number is used for the iv in both cases. For 744 * an old key, decrypt the hex encoded data. 745 */ 746 static int encrypted_init(struct encrypted_key_payload *epayload, 747 const char *key_desc, const char *format, 748 const char *master_desc, const char *datalen, 749 const char *hex_encoded_iv, const char *decrypted_data) 750 { 751 int ret = 0; 752 753 if (format && !strcmp(format, key_format_ecryptfs)) { 754 ret = valid_ecryptfs_desc(key_desc); 755 if (ret < 0) 756 return ret; 757 758 ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data, 759 key_desc); 760 } 761 762 __ekey_init(epayload, format, master_desc, datalen); 763 if (hex_encoded_iv) { 764 ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv); 765 } else if (decrypted_data) { 766 get_random_bytes(epayload->iv, ivsize); 767 ret = hex2bin(epayload->decrypted_data, decrypted_data, 768 epayload->decrypted_datalen); 769 } else { 770 get_random_bytes(epayload->iv, ivsize); 771 get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen); 772 } 773 return ret; 774 } 775 776 /* 777 * encrypted_instantiate - instantiate an encrypted key 778 * 779 * Instantiates the key: 780 * - by decrypting an existing encrypted datablob, or 781 * - by creating a new encrypted key based on a kernel random number, or 782 * - using provided decrypted data. 783 * 784 * On success, return 0. Otherwise return errno. 785 */ 786 static int encrypted_instantiate(struct key *key, 787 struct key_preparsed_payload *prep) 788 { 789 struct encrypted_key_payload *epayload = NULL; 790 char *datablob = NULL; 791 const char *format = NULL; 792 char *master_desc = NULL; 793 char *decrypted_datalen = NULL; 794 char *hex_encoded_iv = NULL; 795 char *decrypted_data = NULL; 796 size_t datalen = prep->datalen; 797 int ret; 798 799 if (datalen == 0 || datalen > 32767 || !prep->data) 800 return -EINVAL; 801 802 datablob = kmalloc(datalen + 1, GFP_KERNEL); 803 if (!datablob) 804 return -ENOMEM; 805 datablob[datalen] = 0; 806 memcpy(datablob, prep->data, datalen); 807 ret = datablob_parse(datablob, &format, &master_desc, 808 &decrypted_datalen, &hex_encoded_iv, &decrypted_data); 809 if (ret < 0) 810 goto out; 811 812 epayload = encrypted_key_alloc(key, format, master_desc, 813 decrypted_datalen, decrypted_data); 814 if (IS_ERR(epayload)) { 815 ret = PTR_ERR(epayload); 816 goto out; 817 } 818 ret = encrypted_init(epayload, key->description, format, master_desc, 819 decrypted_datalen, hex_encoded_iv, decrypted_data); 820 if (ret < 0) { 821 kfree_sensitive(epayload); 822 goto out; 823 } 824 825 rcu_assign_keypointer(key, epayload); 826 out: 827 kfree_sensitive(datablob); 828 return ret; 829 } 830 831 static void encrypted_rcu_free(struct rcu_head *rcu) 832 { 833 struct encrypted_key_payload *epayload; 834 835 epayload = container_of(rcu, struct encrypted_key_payload, rcu); 836 kfree_sensitive(epayload); 837 } 838 839 /* 840 * encrypted_update - update the master key description 841 * 842 * Change the master key description for an existing encrypted key. 843 * The next read will return an encrypted datablob using the new 844 * master key description. 845 * 846 * On success, return 0. Otherwise return errno. 847 */ 848 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep) 849 { 850 struct encrypted_key_payload *epayload = key->payload.data[0]; 851 struct encrypted_key_payload *new_epayload; 852 char *buf; 853 char *new_master_desc = NULL; 854 const char *format = NULL; 855 size_t datalen = prep->datalen; 856 int ret = 0; 857 858 if (key_is_negative(key)) 859 return -ENOKEY; 860 if (datalen == 0 || datalen > 32767 || !prep->data) 861 return -EINVAL; 862 863 buf = kmalloc(datalen + 1, GFP_KERNEL); 864 if (!buf) 865 return -ENOMEM; 866 867 buf[datalen] = 0; 868 memcpy(buf, prep->data, datalen); 869 ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL); 870 if (ret < 0) 871 goto out; 872 873 ret = valid_master_desc(new_master_desc, epayload->master_desc); 874 if (ret < 0) 875 goto out; 876 877 new_epayload = encrypted_key_alloc(key, epayload->format, 878 new_master_desc, epayload->datalen, NULL); 879 if (IS_ERR(new_epayload)) { 880 ret = PTR_ERR(new_epayload); 881 goto out; 882 } 883 884 __ekey_init(new_epayload, epayload->format, new_master_desc, 885 epayload->datalen); 886 887 memcpy(new_epayload->iv, epayload->iv, ivsize); 888 memcpy(new_epayload->payload_data, epayload->payload_data, 889 epayload->payload_datalen); 890 891 rcu_assign_keypointer(key, new_epayload); 892 call_rcu(&epayload->rcu, encrypted_rcu_free); 893 out: 894 kfree_sensitive(buf); 895 return ret; 896 } 897 898 /* 899 * encrypted_read - format and copy out the encrypted data 900 * 901 * The resulting datablob format is: 902 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> 903 * 904 * On success, return to userspace the encrypted key datablob size. 905 */ 906 static long encrypted_read(const struct key *key, char *buffer, 907 size_t buflen) 908 { 909 struct encrypted_key_payload *epayload; 910 struct key *mkey; 911 const u8 *master_key; 912 size_t master_keylen; 913 char derived_key[HASH_SIZE]; 914 char *ascii_buf; 915 size_t asciiblob_len; 916 int ret; 917 918 epayload = dereference_key_locked(key); 919 920 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ 921 asciiblob_len = epayload->datablob_len + ivsize + 1 922 + roundup(epayload->decrypted_datalen, blksize) 923 + (HASH_SIZE * 2); 924 925 if (!buffer || buflen < asciiblob_len) 926 return asciiblob_len; 927 928 mkey = request_master_key(epayload, &master_key, &master_keylen); 929 if (IS_ERR(mkey)) 930 return PTR_ERR(mkey); 931 932 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 933 if (ret < 0) 934 goto out; 935 936 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); 937 if (ret < 0) 938 goto out; 939 940 ret = datablob_hmac_append(epayload, master_key, master_keylen); 941 if (ret < 0) 942 goto out; 943 944 ascii_buf = datablob_format(epayload, asciiblob_len); 945 if (!ascii_buf) { 946 ret = -ENOMEM; 947 goto out; 948 } 949 950 up_read(&mkey->sem); 951 key_put(mkey); 952 memzero_explicit(derived_key, sizeof(derived_key)); 953 954 memcpy(buffer, ascii_buf, asciiblob_len); 955 kfree_sensitive(ascii_buf); 956 957 return asciiblob_len; 958 out: 959 up_read(&mkey->sem); 960 key_put(mkey); 961 memzero_explicit(derived_key, sizeof(derived_key)); 962 return ret; 963 } 964 965 /* 966 * encrypted_destroy - clear and free the key's payload 967 */ 968 static void encrypted_destroy(struct key *key) 969 { 970 kfree_sensitive(key->payload.data[0]); 971 } 972 973 struct key_type key_type_encrypted = { 974 .name = "encrypted", 975 .instantiate = encrypted_instantiate, 976 .update = encrypted_update, 977 .destroy = encrypted_destroy, 978 .describe = user_describe, 979 .read = encrypted_read, 980 }; 981 EXPORT_SYMBOL_GPL(key_type_encrypted); 982 983 static int __init init_encrypted(void) 984 { 985 int ret; 986 987 ret = aes_get_sizes(); 988 if (ret < 0) 989 return ret; 990 return register_key_type(&key_type_encrypted); 991 } 992 993 static void __exit cleanup_encrypted(void) 994 { 995 unregister_key_type(&key_type_encrypted); 996 } 997 998 late_initcall(init_encrypted); 999 module_exit(cleanup_encrypted); 1000 1001 MODULE_DESCRIPTION("Encrypted key type"); 1002 MODULE_LICENSE("GPL"); 1003