xref: /linux/mm/vmstat.c (revision 4cff5c05e076d2ee4e34122aa956b84a2eaac587)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <cl@gentwo.org>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_PROC_FS
35 #ifdef CONFIG_NUMA
36 #define ENABLE_NUMA_STAT 1
37 static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 	int item, cpu;
43 
44 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
45 		atomic_long_set(&zone->vm_numa_event[item], 0);
46 		for_each_online_cpu(cpu) {
47 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
48 						= 0;
49 		}
50 	}
51 }
52 
53 /* zero numa counters of all the populated zones */
54 static void zero_zones_numa_counters(void)
55 {
56 	struct zone *zone;
57 
58 	for_each_populated_zone(zone)
59 		zero_zone_numa_counters(zone);
60 }
61 
62 /* zero global numa counters */
63 static void zero_global_numa_counters(void)
64 {
65 	int item;
66 
67 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
68 		atomic_long_set(&vm_numa_event[item], 0);
69 }
70 
71 static void invalid_numa_statistics(void)
72 {
73 	zero_zones_numa_counters();
74 	zero_global_numa_counters();
75 }
76 
77 static DEFINE_MUTEX(vm_numa_stat_lock);
78 
79 static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
80 		void *buffer, size_t *length, loff_t *ppos)
81 {
82 	int ret, oldval;
83 
84 	mutex_lock(&vm_numa_stat_lock);
85 	if (write)
86 		oldval = sysctl_vm_numa_stat;
87 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
88 	if (ret || !write)
89 		goto out;
90 
91 	if (oldval == sysctl_vm_numa_stat)
92 		goto out;
93 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
94 		static_branch_enable(&vm_numa_stat_key);
95 		pr_info("enable numa statistics\n");
96 	} else {
97 		static_branch_disable(&vm_numa_stat_key);
98 		invalid_numa_statistics();
99 		pr_info("disable numa statistics, and clear numa counters\n");
100 	}
101 
102 out:
103 	mutex_unlock(&vm_numa_stat_lock);
104 	return ret;
105 }
106 #endif
107 #endif /* CONFIG_PROC_FS */
108 
109 #ifdef CONFIG_VM_EVENT_COUNTERS
110 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
111 EXPORT_PER_CPU_SYMBOL(vm_event_states);
112 
113 static void sum_vm_events(unsigned long *ret)
114 {
115 	int cpu;
116 	int i;
117 
118 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
119 
120 	for_each_online_cpu(cpu) {
121 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
122 
123 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
124 			ret[i] += this->event[i];
125 	}
126 }
127 
128 /*
129  * Accumulate the vm event counters across all CPUs.
130  * The result is unavoidably approximate - it can change
131  * during and after execution of this function.
132 */
133 void all_vm_events(unsigned long *ret)
134 {
135 	cpus_read_lock();
136 	sum_vm_events(ret);
137 	cpus_read_unlock();
138 }
139 EXPORT_SYMBOL_GPL(all_vm_events);
140 
141 /*
142  * Fold the foreign cpu events into our own.
143  *
144  * This is adding to the events on one processor
145  * but keeps the global counts constant.
146  */
147 void vm_events_fold_cpu(int cpu)
148 {
149 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 	int i;
151 
152 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
153 		count_vm_events(i, fold_state->event[i]);
154 		fold_state->event[i] = 0;
155 	}
156 }
157 
158 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 
160 /*
161  * Manage combined zone based / global counters
162  *
163  * vm_stat contains the global counters
164  */
165 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
167 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
168 EXPORT_SYMBOL(vm_zone_stat);
169 EXPORT_SYMBOL(vm_node_stat);
170 
171 #ifdef CONFIG_NUMA
172 static void fold_vm_zone_numa_events(struct zone *zone)
173 {
174 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
175 	int cpu;
176 	enum numa_stat_item item;
177 
178 	for_each_online_cpu(cpu) {
179 		struct per_cpu_zonestat *pzstats;
180 
181 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
182 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
183 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 	}
185 
186 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
187 		zone_numa_event_add(zone_numa_events[item], zone, item);
188 }
189 
190 void fold_vm_numa_events(void)
191 {
192 	struct zone *zone;
193 
194 	for_each_populated_zone(zone)
195 		fold_vm_zone_numa_events(zone);
196 }
197 #endif
198 
199 #ifdef CONFIG_SMP
200 
201 int calculate_pressure_threshold(struct zone *zone)
202 {
203 	int threshold;
204 	int watermark_distance;
205 
206 	/*
207 	 * As vmstats are not up to date, there is drift between the estimated
208 	 * and real values. For high thresholds and a high number of CPUs, it
209 	 * is possible for the min watermark to be breached while the estimated
210 	 * value looks fine. The pressure threshold is a reduced value such
211 	 * that even the maximum amount of drift will not accidentally breach
212 	 * the min watermark
213 	 */
214 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
215 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216 
217 	/*
218 	 * Maximum threshold is 125
219 	 */
220 	threshold = min(125, threshold);
221 
222 	return threshold;
223 }
224 
225 int calculate_normal_threshold(struct zone *zone)
226 {
227 	int threshold;
228 	int mem;	/* memory in 128 MB units */
229 
230 	/*
231 	 * The threshold scales with the number of processors and the amount
232 	 * of memory per zone. More memory means that we can defer updates for
233 	 * longer, more processors could lead to more contention.
234  	 * fls() is used to have a cheap way of logarithmic scaling.
235 	 *
236 	 * Some sample thresholds:
237 	 *
238 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
239 	 * ------------------------------------------------------------------
240 	 * 8		1		1	0.9-1 GB	4
241 	 * 16		2		2	0.9-1 GB	4
242 	 * 20 		2		2	1-2 GB		5
243 	 * 24		2		2	2-4 GB		6
244 	 * 28		2		2	4-8 GB		7
245 	 * 32		2		2	8-16 GB		8
246 	 * 4		2		2	<128M		1
247 	 * 30		4		3	2-4 GB		5
248 	 * 48		4		3	8-16 GB		8
249 	 * 32		8		4	1-2 GB		4
250 	 * 32		8		4	0.9-1GB		4
251 	 * 10		16		5	<128M		1
252 	 * 40		16		5	900M		4
253 	 * 70		64		7	2-4 GB		5
254 	 * 84		64		7	4-8 GB		6
255 	 * 108		512		9	4-8 GB		6
256 	 * 125		1024		10	8-16 GB		8
257 	 * 125		1024		10	16-32 GB	9
258 	 */
259 
260 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
261 
262 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263 
264 	/*
265 	 * Maximum threshold is 125
266 	 */
267 	threshold = min(125, threshold);
268 
269 	return threshold;
270 }
271 
272 /*
273  * Refresh the thresholds for each zone.
274  */
275 void refresh_zone_stat_thresholds(void)
276 {
277 	struct pglist_data *pgdat;
278 	struct zone *zone;
279 	int cpu;
280 	int threshold;
281 
282 	/* Zero current pgdat thresholds */
283 	for_each_online_pgdat(pgdat) {
284 		for_each_online_cpu(cpu) {
285 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 		}
287 	}
288 
289 	for_each_populated_zone(zone) {
290 		struct pglist_data *pgdat = zone->zone_pgdat;
291 		unsigned long max_drift, tolerate_drift;
292 
293 		threshold = calculate_normal_threshold(zone);
294 
295 		for_each_online_cpu(cpu) {
296 			int pgdat_threshold;
297 
298 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 							= threshold;
300 
301 			/* Base nodestat threshold on the largest populated zone. */
302 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
303 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
304 				= max(threshold, pgdat_threshold);
305 		}
306 
307 		/*
308 		 * Only set percpu_drift_mark if there is a danger that
309 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
310 		 * the min watermark could be breached by an allocation
311 		 */
312 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
313 		max_drift = num_online_cpus() * threshold;
314 		if (max_drift > tolerate_drift)
315 			zone->percpu_drift_mark = high_wmark_pages(zone) +
316 					max_drift;
317 	}
318 }
319 
320 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
321 				int (*calculate_pressure)(struct zone *))
322 {
323 	struct zone *zone;
324 	int cpu;
325 	int threshold;
326 	int i;
327 
328 	for (i = 0; i < pgdat->nr_zones; i++) {
329 		zone = &pgdat->node_zones[i];
330 		if (!zone->percpu_drift_mark)
331 			continue;
332 
333 		threshold = (*calculate_pressure)(zone);
334 		for_each_online_cpu(cpu)
335 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
336 							= threshold;
337 	}
338 }
339 
340 /*
341  * For use when we know that interrupts are disabled,
342  * or when we know that preemption is disabled and that
343  * particular counter cannot be updated from interrupt context.
344  */
345 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 			   long delta)
347 {
348 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
349 	s8 __percpu *p = pcp->vm_stat_diff + item;
350 	long x;
351 	long t;
352 
353 	/*
354 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
355 	 * atomicity is provided by IRQs being disabled -- either explicitly
356 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
357 	 * CPU migrations and preemption potentially corrupts a counter so
358 	 * disable preemption.
359 	 */
360 	preempt_disable_nested();
361 
362 	x = delta + __this_cpu_read(*p);
363 
364 	t = __this_cpu_read(pcp->stat_threshold);
365 
366 	if (unlikely(abs(x) > t)) {
367 		zone_page_state_add(x, zone, item);
368 		x = 0;
369 	}
370 	__this_cpu_write(*p, x);
371 
372 	preempt_enable_nested();
373 }
374 EXPORT_SYMBOL(__mod_zone_page_state);
375 
376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 				long delta)
378 {
379 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 	long x;
382 	long t;
383 
384 	if (vmstat_item_in_bytes(item)) {
385 		/*
386 		 * Only cgroups use subpage accounting right now; at
387 		 * the global level, these items still change in
388 		 * multiples of whole pages. Store them as pages
389 		 * internally to keep the per-cpu counters compact.
390 		 */
391 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 		delta >>= PAGE_SHIFT;
393 	}
394 
395 	/* See __mod_zone_page_state() */
396 	preempt_disable_nested();
397 
398 	x = delta + __this_cpu_read(*p);
399 
400 	t = __this_cpu_read(pcp->stat_threshold);
401 
402 	if (unlikely(abs(x) > t)) {
403 		node_page_state_add(x, pgdat, item);
404 		x = 0;
405 	}
406 	__this_cpu_write(*p, x);
407 
408 	preempt_enable_nested();
409 }
410 EXPORT_SYMBOL(__mod_node_page_state);
411 
412 /*
413  * Optimized increment and decrement functions.
414  *
415  * These are only for a single page and therefore can take a struct page *
416  * argument instead of struct zone *. This allows the inclusion of the code
417  * generated for page_zone(page) into the optimized functions.
418  *
419  * No overflow check is necessary and therefore the differential can be
420  * incremented or decremented in place which may allow the compilers to
421  * generate better code.
422  * The increment or decrement is known and therefore one boundary check can
423  * be omitted.
424  *
425  * NOTE: These functions are very performance sensitive. Change only
426  * with care.
427  *
428  * Some processors have inc/dec instructions that are atomic vs an interrupt.
429  * However, the code must first determine the differential location in a zone
430  * based on the processor number and then inc/dec the counter. There is no
431  * guarantee without disabling preemption that the processor will not change
432  * in between and therefore the atomicity vs. interrupt cannot be exploited
433  * in a useful way here.
434  */
435 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
436 {
437 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
438 	s8 __percpu *p = pcp->vm_stat_diff + item;
439 	s8 v, t;
440 
441 	/* See __mod_zone_page_state() */
442 	preempt_disable_nested();
443 
444 	v = __this_cpu_inc_return(*p);
445 	t = __this_cpu_read(pcp->stat_threshold);
446 	if (unlikely(v > t)) {
447 		s8 overstep = t >> 1;
448 
449 		zone_page_state_add(v + overstep, zone, item);
450 		__this_cpu_write(*p, -overstep);
451 	}
452 
453 	preempt_enable_nested();
454 }
455 
456 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
457 {
458 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
459 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 	s8 v, t;
461 
462 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
463 
464 	/* See __mod_zone_page_state() */
465 	preempt_disable_nested();
466 
467 	v = __this_cpu_inc_return(*p);
468 	t = __this_cpu_read(pcp->stat_threshold);
469 	if (unlikely(v > t)) {
470 		s8 overstep = t >> 1;
471 
472 		node_page_state_add(v + overstep, pgdat, item);
473 		__this_cpu_write(*p, -overstep);
474 	}
475 
476 	preempt_enable_nested();
477 }
478 
479 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
480 {
481 	__inc_zone_state(page_zone(page), item);
482 }
483 EXPORT_SYMBOL(__inc_zone_page_state);
484 
485 void __inc_node_page_state(struct page *page, enum node_stat_item item)
486 {
487 	__inc_node_state(page_pgdat(page), item);
488 }
489 EXPORT_SYMBOL(__inc_node_page_state);
490 
491 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
492 {
493 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
494 	s8 __percpu *p = pcp->vm_stat_diff + item;
495 	s8 v, t;
496 
497 	/* See __mod_zone_page_state() */
498 	preempt_disable_nested();
499 
500 	v = __this_cpu_dec_return(*p);
501 	t = __this_cpu_read(pcp->stat_threshold);
502 	if (unlikely(v < - t)) {
503 		s8 overstep = t >> 1;
504 
505 		zone_page_state_add(v - overstep, zone, item);
506 		__this_cpu_write(*p, overstep);
507 	}
508 
509 	preempt_enable_nested();
510 }
511 
512 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
513 {
514 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
515 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 	s8 v, t;
517 
518 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
519 
520 	/* See __mod_zone_page_state() */
521 	preempt_disable_nested();
522 
523 	v = __this_cpu_dec_return(*p);
524 	t = __this_cpu_read(pcp->stat_threshold);
525 	if (unlikely(v < - t)) {
526 		s8 overstep = t >> 1;
527 
528 		node_page_state_add(v - overstep, pgdat, item);
529 		__this_cpu_write(*p, overstep);
530 	}
531 
532 	preempt_enable_nested();
533 }
534 
535 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
536 {
537 	__dec_zone_state(page_zone(page), item);
538 }
539 EXPORT_SYMBOL(__dec_zone_page_state);
540 
541 void __dec_node_page_state(struct page *page, enum node_stat_item item)
542 {
543 	__dec_node_state(page_pgdat(page), item);
544 }
545 EXPORT_SYMBOL(__dec_node_page_state);
546 
547 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
548 /*
549  * If we have cmpxchg_local support then we do not need to incur the overhead
550  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
551  *
552  * mod_state() modifies the zone counter state through atomic per cpu
553  * operations.
554  *
555  * Overstep mode specifies how overstep should handled:
556  *     0       No overstepping
557  *     1       Overstepping half of threshold
558  *     -1      Overstepping minus half of threshold
559 */
560 static inline void mod_zone_state(struct zone *zone,
561        enum zone_stat_item item, long delta, int overstep_mode)
562 {
563 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
564 	s8 __percpu *p = pcp->vm_stat_diff + item;
565 	long n, t, z;
566 	s8 o;
567 
568 	o = this_cpu_read(*p);
569 	do {
570 		z = 0;  /* overflow to zone counters */
571 
572 		/*
573 		 * The fetching of the stat_threshold is racy. We may apply
574 		 * a counter threshold to the wrong the cpu if we get
575 		 * rescheduled while executing here. However, the next
576 		 * counter update will apply the threshold again and
577 		 * therefore bring the counter under the threshold again.
578 		 *
579 		 * Most of the time the thresholds are the same anyways
580 		 * for all cpus in a zone.
581 		 */
582 		t = this_cpu_read(pcp->stat_threshold);
583 
584 		n = delta + (long)o;
585 
586 		if (abs(n) > t) {
587 			int os = overstep_mode * (t >> 1) ;
588 
589 			/* Overflow must be added to zone counters */
590 			z = n + os;
591 			n = -os;
592 		}
593 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
594 
595 	if (z)
596 		zone_page_state_add(z, zone, item);
597 }
598 
599 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
600 			 long delta)
601 {
602 	mod_zone_state(zone, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_zone_page_state);
605 
606 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
607 {
608 	mod_zone_state(page_zone(page), item, 1, 1);
609 }
610 EXPORT_SYMBOL(inc_zone_page_state);
611 
612 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
613 {
614 	mod_zone_state(page_zone(page), item, -1, -1);
615 }
616 EXPORT_SYMBOL(dec_zone_page_state);
617 
618 static inline void mod_node_state(struct pglist_data *pgdat,
619        enum node_stat_item item, int delta, int overstep_mode)
620 {
621 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
622 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
623 	long n, t, z;
624 	s8 o;
625 
626 	if (vmstat_item_in_bytes(item)) {
627 		/*
628 		 * Only cgroups use subpage accounting right now; at
629 		 * the global level, these items still change in
630 		 * multiples of whole pages. Store them as pages
631 		 * internally to keep the per-cpu counters compact.
632 		 */
633 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
634 		delta >>= PAGE_SHIFT;
635 	}
636 
637 	o = this_cpu_read(*p);
638 	do {
639 		z = 0;  /* overflow to node counters */
640 
641 		/*
642 		 * The fetching of the stat_threshold is racy. We may apply
643 		 * a counter threshold to the wrong the cpu if we get
644 		 * rescheduled while executing here. However, the next
645 		 * counter update will apply the threshold again and
646 		 * therefore bring the counter under the threshold again.
647 		 *
648 		 * Most of the time the thresholds are the same anyways
649 		 * for all cpus in a node.
650 		 */
651 		t = this_cpu_read(pcp->stat_threshold);
652 
653 		n = delta + (long)o;
654 
655 		if (abs(n) > t) {
656 			int os = overstep_mode * (t >> 1) ;
657 
658 			/* Overflow must be added to node counters */
659 			z = n + os;
660 			n = -os;
661 		}
662 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
663 
664 	if (z)
665 		node_page_state_add(z, pgdat, item);
666 }
667 
668 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
669 					long delta)
670 {
671 	mod_node_state(pgdat, item, delta, 0);
672 }
673 EXPORT_SYMBOL(mod_node_page_state);
674 
675 void inc_node_page_state(struct page *page, enum node_stat_item item)
676 {
677 	mod_node_state(page_pgdat(page), item, 1, 1);
678 }
679 EXPORT_SYMBOL(inc_node_page_state);
680 
681 void dec_node_page_state(struct page *page, enum node_stat_item item)
682 {
683 	mod_node_state(page_pgdat(page), item, -1, -1);
684 }
685 EXPORT_SYMBOL(dec_node_page_state);
686 #else
687 /*
688  * Use interrupt disable to serialize counter updates
689  */
690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 			 long delta)
692 {
693 	unsigned long flags;
694 
695 	local_irq_save(flags);
696 	__mod_zone_page_state(zone, item, delta);
697 	local_irq_restore(flags);
698 }
699 EXPORT_SYMBOL(mod_zone_page_state);
700 
701 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702 {
703 	unsigned long flags;
704 	struct zone *zone;
705 
706 	zone = page_zone(page);
707 	local_irq_save(flags);
708 	__inc_zone_state(zone, item);
709 	local_irq_restore(flags);
710 }
711 EXPORT_SYMBOL(inc_zone_page_state);
712 
713 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714 {
715 	unsigned long flags;
716 
717 	local_irq_save(flags);
718 	__dec_zone_page_state(page, item);
719 	local_irq_restore(flags);
720 }
721 EXPORT_SYMBOL(dec_zone_page_state);
722 
723 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
724 					long delta)
725 {
726 	unsigned long flags;
727 
728 	local_irq_save(flags);
729 	__mod_node_page_state(pgdat, item, delta);
730 	local_irq_restore(flags);
731 }
732 EXPORT_SYMBOL(mod_node_page_state);
733 
734 void inc_node_page_state(struct page *page, enum node_stat_item item)
735 {
736 	unsigned long flags;
737 	struct pglist_data *pgdat;
738 
739 	pgdat = page_pgdat(page);
740 	local_irq_save(flags);
741 	__inc_node_state(pgdat, item);
742 	local_irq_restore(flags);
743 }
744 EXPORT_SYMBOL(inc_node_page_state);
745 
746 void dec_node_page_state(struct page *page, enum node_stat_item item)
747 {
748 	unsigned long flags;
749 
750 	local_irq_save(flags);
751 	__dec_node_page_state(page, item);
752 	local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL(dec_node_page_state);
755 #endif
756 
757 /*
758  * Fold a differential into the global counters.
759  * Returns whether counters were updated.
760  */
761 static int fold_diff(int *zone_diff, int *node_diff)
762 {
763 	int i;
764 	bool changed = false;
765 
766 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
767 		if (zone_diff[i]) {
768 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
769 			changed = true;
770 		}
771 	}
772 
773 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
774 		if (node_diff[i]) {
775 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
776 			changed = true;
777 		}
778 	}
779 
780 	return changed;
781 }
782 
783 /*
784  * Update the zone counters for the current cpu.
785  *
786  * Note that refresh_cpu_vm_stats strives to only access
787  * node local memory. The per cpu pagesets on remote zones are placed
788  * in the memory local to the processor using that pageset. So the
789  * loop over all zones will access a series of cachelines local to
790  * the processor.
791  *
792  * The call to zone_page_state_add updates the cachelines with the
793  * statistics in the remote zone struct as well as the global cachelines
794  * with the global counters. These could cause remote node cache line
795  * bouncing and will have to be only done when necessary.
796  *
797  * The function returns whether global counters were updated.
798  */
799 static bool refresh_cpu_vm_stats(bool do_pagesets)
800 {
801 	struct pglist_data *pgdat;
802 	struct zone *zone;
803 	int i;
804 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
805 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
806 	bool changed = false;
807 
808 	for_each_populated_zone(zone) {
809 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
810 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
811 
812 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
813 			int v;
814 
815 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
816 			if (v) {
817 
818 				atomic_long_add(v, &zone->vm_stat[i]);
819 				global_zone_diff[i] += v;
820 #ifdef CONFIG_NUMA
821 				/* 3 seconds idle till flush */
822 				__this_cpu_write(pcp->expire, 3);
823 #endif
824 			}
825 		}
826 
827 		if (do_pagesets) {
828 			cond_resched();
829 
830 			if (decay_pcp_high(zone, this_cpu_ptr(pcp)))
831 				changed = true;
832 #ifdef CONFIG_NUMA
833 			/*
834 			 * Deal with draining the remote pageset of this
835 			 * processor
836 			 *
837 			 * Check if there are pages remaining in this pageset
838 			 * if not then there is nothing to expire.
839 			 */
840 			if (!__this_cpu_read(pcp->expire) ||
841 			       !__this_cpu_read(pcp->count))
842 				continue;
843 
844 			/*
845 			 * We never drain zones local to this processor.
846 			 */
847 			if (zone_to_nid(zone) == numa_node_id()) {
848 				__this_cpu_write(pcp->expire, 0);
849 				continue;
850 			}
851 
852 			if (__this_cpu_dec_return(pcp->expire)) {
853 				changed = true;
854 				continue;
855 			}
856 
857 			if (__this_cpu_read(pcp->count)) {
858 				drain_zone_pages(zone, this_cpu_ptr(pcp));
859 				changed = true;
860 			}
861 #endif
862 		}
863 	}
864 
865 	for_each_online_pgdat(pgdat) {
866 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
867 
868 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
869 			int v;
870 
871 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
872 			if (v) {
873 				atomic_long_add(v, &pgdat->vm_stat[i]);
874 				global_node_diff[i] += v;
875 			}
876 		}
877 	}
878 
879 	if (fold_diff(global_zone_diff, global_node_diff))
880 		changed = true;
881 	return changed;
882 }
883 
884 /*
885  * Fold the data for an offline cpu into the global array.
886  * There cannot be any access by the offline cpu and therefore
887  * synchronization is simplified.
888  */
889 void cpu_vm_stats_fold(int cpu)
890 {
891 	struct pglist_data *pgdat;
892 	struct zone *zone;
893 	int i;
894 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
895 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
896 
897 	for_each_populated_zone(zone) {
898 		struct per_cpu_zonestat *pzstats;
899 
900 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
901 
902 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
903 			if (pzstats->vm_stat_diff[i]) {
904 				int v;
905 
906 				v = pzstats->vm_stat_diff[i];
907 				pzstats->vm_stat_diff[i] = 0;
908 				atomic_long_add(v, &zone->vm_stat[i]);
909 				global_zone_diff[i] += v;
910 			}
911 		}
912 #ifdef CONFIG_NUMA
913 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
914 			if (pzstats->vm_numa_event[i]) {
915 				unsigned long v;
916 
917 				v = pzstats->vm_numa_event[i];
918 				pzstats->vm_numa_event[i] = 0;
919 				zone_numa_event_add(v, zone, i);
920 			}
921 		}
922 #endif
923 	}
924 
925 	for_each_online_pgdat(pgdat) {
926 		struct per_cpu_nodestat *p;
927 
928 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
929 
930 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
931 			if (p->vm_node_stat_diff[i]) {
932 				int v;
933 
934 				v = p->vm_node_stat_diff[i];
935 				p->vm_node_stat_diff[i] = 0;
936 				atomic_long_add(v, &pgdat->vm_stat[i]);
937 				global_node_diff[i] += v;
938 			}
939 	}
940 
941 	fold_diff(global_zone_diff, global_node_diff);
942 }
943 
944 /*
945  * this is only called if !populated_zone(zone), which implies no other users of
946  * pset->vm_stat_diff[] exist.
947  */
948 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
949 {
950 	unsigned long v;
951 	int i;
952 
953 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
954 		if (pzstats->vm_stat_diff[i]) {
955 			v = pzstats->vm_stat_diff[i];
956 			pzstats->vm_stat_diff[i] = 0;
957 			zone_page_state_add(v, zone, i);
958 		}
959 	}
960 
961 #ifdef CONFIG_NUMA
962 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
963 		if (pzstats->vm_numa_event[i]) {
964 			v = pzstats->vm_numa_event[i];
965 			pzstats->vm_numa_event[i] = 0;
966 			zone_numa_event_add(v, zone, i);
967 		}
968 	}
969 #endif
970 }
971 #endif
972 
973 #ifdef CONFIG_NUMA
974 /*
975  * Determine the per node value of a stat item. This function
976  * is called frequently in a NUMA machine, so try to be as
977  * frugal as possible.
978  */
979 unsigned long sum_zone_node_page_state(int node,
980 				 enum zone_stat_item item)
981 {
982 	struct zone *zones = NODE_DATA(node)->node_zones;
983 	int i;
984 	unsigned long count = 0;
985 
986 	for (i = 0; i < MAX_NR_ZONES; i++)
987 		count += zone_page_state(zones + i, item);
988 
989 	return count;
990 }
991 
992 /* Determine the per node value of a numa stat item. */
993 unsigned long sum_zone_numa_event_state(int node,
994 				 enum numa_stat_item item)
995 {
996 	struct zone *zones = NODE_DATA(node)->node_zones;
997 	unsigned long count = 0;
998 	int i;
999 
1000 	for (i = 0; i < MAX_NR_ZONES; i++)
1001 		count += zone_numa_event_state(zones + i, item);
1002 
1003 	return count;
1004 }
1005 
1006 /*
1007  * Determine the per node value of a stat item.
1008  */
1009 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1010 				    enum node_stat_item item)
1011 {
1012 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1013 #ifdef CONFIG_SMP
1014 	if (x < 0)
1015 		x = 0;
1016 #endif
1017 	return x;
1018 }
1019 
1020 unsigned long node_page_state(struct pglist_data *pgdat,
1021 			      enum node_stat_item item)
1022 {
1023 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1024 
1025 	return node_page_state_pages(pgdat, item);
1026 }
1027 #endif
1028 
1029 /*
1030  * Count number of pages "struct page" and "struct page_ext" consume.
1031  * nr_memmap_boot_pages: # of pages allocated by boot allocator
1032  * nr_memmap_pages: # of pages that were allocated by buddy allocator
1033  */
1034 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1035 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1036 
1037 void memmap_boot_pages_add(long delta)
1038 {
1039 	atomic_long_add(delta, &nr_memmap_boot_pages);
1040 }
1041 
1042 void memmap_pages_add(long delta)
1043 {
1044 	atomic_long_add(delta, &nr_memmap_pages);
1045 }
1046 
1047 #ifdef CONFIG_COMPACTION
1048 
1049 struct contig_page_info {
1050 	unsigned long free_pages;
1051 	unsigned long free_blocks_total;
1052 	unsigned long free_blocks_suitable;
1053 };
1054 
1055 /*
1056  * Calculate the number of free pages in a zone, how many contiguous
1057  * pages are free and how many are large enough to satisfy an allocation of
1058  * the target size. Note that this function makes no attempt to estimate
1059  * how many suitable free blocks there *might* be if MOVABLE pages were
1060  * migrated. Calculating that is possible, but expensive and can be
1061  * figured out from userspace
1062  */
1063 static void fill_contig_page_info(struct zone *zone,
1064 				unsigned int suitable_order,
1065 				struct contig_page_info *info)
1066 {
1067 	unsigned int order;
1068 
1069 	info->free_pages = 0;
1070 	info->free_blocks_total = 0;
1071 	info->free_blocks_suitable = 0;
1072 
1073 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1074 		unsigned long blocks;
1075 
1076 		/*
1077 		 * Count number of free blocks.
1078 		 *
1079 		 * Access to nr_free is lockless as nr_free is used only for
1080 		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1081 		 */
1082 		blocks = data_race(zone->free_area[order].nr_free);
1083 		info->free_blocks_total += blocks;
1084 
1085 		/* Count free base pages */
1086 		info->free_pages += blocks << order;
1087 
1088 		/* Count the suitable free blocks */
1089 		if (order >= suitable_order)
1090 			info->free_blocks_suitable += blocks <<
1091 						(order - suitable_order);
1092 	}
1093 }
1094 
1095 /*
1096  * A fragmentation index only makes sense if an allocation of a requested
1097  * size would fail. If that is true, the fragmentation index indicates
1098  * whether external fragmentation or a lack of memory was the problem.
1099  * The value can be used to determine if page reclaim or compaction
1100  * should be used
1101  */
1102 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1103 {
1104 	unsigned long requested = 1UL << order;
1105 
1106 	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1107 		return 0;
1108 
1109 	if (!info->free_blocks_total)
1110 		return 0;
1111 
1112 	/* Fragmentation index only makes sense when a request would fail */
1113 	if (info->free_blocks_suitable)
1114 		return -1000;
1115 
1116 	/*
1117 	 * Index is between 0 and 1 so return within 3 decimal places
1118 	 *
1119 	 * 0 => allocation would fail due to lack of memory
1120 	 * 1 => allocation would fail due to fragmentation
1121 	 */
1122 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1123 }
1124 
1125 /*
1126  * Calculates external fragmentation within a zone wrt the given order.
1127  * It is defined as the percentage of pages found in blocks of size
1128  * less than 1 << order. It returns values in range [0, 100].
1129  */
1130 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1131 {
1132 	struct contig_page_info info;
1133 
1134 	fill_contig_page_info(zone, order, &info);
1135 	if (info.free_pages == 0)
1136 		return 0;
1137 
1138 	return div_u64((info.free_pages -
1139 			(info.free_blocks_suitable << order)) * 100,
1140 			info.free_pages);
1141 }
1142 
1143 /* Same as __fragmentation index but allocs contig_page_info on stack */
1144 int fragmentation_index(struct zone *zone, unsigned int order)
1145 {
1146 	struct contig_page_info info;
1147 
1148 	fill_contig_page_info(zone, order, &info);
1149 	return __fragmentation_index(order, &info);
1150 }
1151 #endif
1152 
1153 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1154     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1155 #ifdef CONFIG_ZONE_DMA
1156 #define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma",
1157 #else
1158 #define TEXT_FOR_DMA(xx, yy)
1159 #endif
1160 
1161 #ifdef CONFIG_ZONE_DMA32
1162 #define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32",
1163 #else
1164 #define TEXT_FOR_DMA32(xx, yy)
1165 #endif
1166 
1167 #ifdef CONFIG_HIGHMEM
1168 #define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high",
1169 #else
1170 #define TEXT_FOR_HIGHMEM(xx, yy)
1171 #endif
1172 
1173 #ifdef CONFIG_ZONE_DEVICE
1174 #define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device",
1175 #else
1176 #define TEXT_FOR_DEVICE(xx, yy)
1177 #endif
1178 
1179 #define TEXTS_FOR_ZONES(xx, yy)			\
1180 	TEXT_FOR_DMA(xx, yy)			\
1181 	TEXT_FOR_DMA32(xx, yy)			\
1182 	[xx##_NORMAL] = yy "_normal",		\
1183 	TEXT_FOR_HIGHMEM(xx, yy)		\
1184 	[xx##_MOVABLE] = yy "_movable",		\
1185 	TEXT_FOR_DEVICE(xx, yy)
1186 
1187 const char * const vmstat_text[] = {
1188 	/* enum zone_stat_item counters */
1189 #define I(x) (x)
1190 	[I(NR_FREE_PAGES)]			= "nr_free_pages",
1191 	[I(NR_FREE_PAGES_BLOCKS)]		= "nr_free_pages_blocks",
1192 	[I(NR_ZONE_INACTIVE_ANON)]		= "nr_zone_inactive_anon",
1193 	[I(NR_ZONE_ACTIVE_ANON)]		= "nr_zone_active_anon",
1194 	[I(NR_ZONE_INACTIVE_FILE)]		= "nr_zone_inactive_file",
1195 	[I(NR_ZONE_ACTIVE_FILE)]		= "nr_zone_active_file",
1196 	[I(NR_ZONE_UNEVICTABLE)]		= "nr_zone_unevictable",
1197 	[I(NR_ZONE_WRITE_PENDING)]		= "nr_zone_write_pending",
1198 	[I(NR_MLOCK)]				= "nr_mlock",
1199 #if IS_ENABLED(CONFIG_ZSMALLOC)
1200 	[I(NR_ZSPAGES)]				= "nr_zspages",
1201 #endif
1202 	[I(NR_FREE_CMA_PAGES)]			= "nr_free_cma",
1203 #ifdef CONFIG_UNACCEPTED_MEMORY
1204 	[I(NR_UNACCEPTED)]			= "nr_unaccepted",
1205 #endif
1206 #undef I
1207 
1208 	/* enum numa_stat_item counters */
1209 #define I(x) (NR_VM_ZONE_STAT_ITEMS + x)
1210 #ifdef CONFIG_NUMA
1211 	[I(NUMA_HIT)]				= "numa_hit",
1212 	[I(NUMA_MISS)]				= "numa_miss",
1213 	[I(NUMA_FOREIGN)]			= "numa_foreign",
1214 	[I(NUMA_INTERLEAVE_HIT)]		= "numa_interleave",
1215 	[I(NUMA_LOCAL)]				= "numa_local",
1216 	[I(NUMA_OTHER)]				= "numa_other",
1217 #endif
1218 #undef I
1219 
1220 	/* enum node_stat_item counters */
1221 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x)
1222 	[I(NR_INACTIVE_ANON)]			= "nr_inactive_anon",
1223 	[I(NR_ACTIVE_ANON)]			= "nr_active_anon",
1224 	[I(NR_INACTIVE_FILE)]			= "nr_inactive_file",
1225 	[I(NR_ACTIVE_FILE)]			= "nr_active_file",
1226 	[I(NR_UNEVICTABLE)]			= "nr_unevictable",
1227 	[I(NR_SLAB_RECLAIMABLE_B)]		= "nr_slab_reclaimable",
1228 	[I(NR_SLAB_UNRECLAIMABLE_B)]		= "nr_slab_unreclaimable",
1229 	[I(NR_ISOLATED_ANON)]			= "nr_isolated_anon",
1230 	[I(NR_ISOLATED_FILE)]			= "nr_isolated_file",
1231 	[I(WORKINGSET_NODES)]			= "workingset_nodes",
1232 	[I(WORKINGSET_REFAULT_ANON)]		= "workingset_refault_anon",
1233 	[I(WORKINGSET_REFAULT_FILE)]		= "workingset_refault_file",
1234 	[I(WORKINGSET_ACTIVATE_ANON)]		= "workingset_activate_anon",
1235 	[I(WORKINGSET_ACTIVATE_FILE)]		= "workingset_activate_file",
1236 	[I(WORKINGSET_RESTORE_ANON)]		= "workingset_restore_anon",
1237 	[I(WORKINGSET_RESTORE_FILE)]		= "workingset_restore_file",
1238 	[I(WORKINGSET_NODERECLAIM)]		= "workingset_nodereclaim",
1239 	[I(NR_ANON_MAPPED)]			= "nr_anon_pages",
1240 	[I(NR_FILE_MAPPED)]			= "nr_mapped",
1241 	[I(NR_FILE_PAGES)]			= "nr_file_pages",
1242 	[I(NR_FILE_DIRTY)]			= "nr_dirty",
1243 	[I(NR_WRITEBACK)]			= "nr_writeback",
1244 	[I(NR_SHMEM)]				= "nr_shmem",
1245 	[I(NR_SHMEM_THPS)]			= "nr_shmem_hugepages",
1246 	[I(NR_SHMEM_PMDMAPPED)]			= "nr_shmem_pmdmapped",
1247 	[I(NR_FILE_THPS)]			= "nr_file_hugepages",
1248 	[I(NR_FILE_PMDMAPPED)]			= "nr_file_pmdmapped",
1249 	[I(NR_ANON_THPS)]			= "nr_anon_transparent_hugepages",
1250 	[I(NR_VMSCAN_WRITE)]			= "nr_vmscan_write",
1251 	[I(NR_VMSCAN_IMMEDIATE)]		= "nr_vmscan_immediate_reclaim",
1252 	[I(NR_DIRTIED)]				= "nr_dirtied",
1253 	[I(NR_WRITTEN)]				= "nr_written",
1254 	[I(NR_THROTTLED_WRITTEN)]		= "nr_throttled_written",
1255 	[I(NR_KERNEL_MISC_RECLAIMABLE)]		= "nr_kernel_misc_reclaimable",
1256 	[I(NR_FOLL_PIN_ACQUIRED)]		= "nr_foll_pin_acquired",
1257 	[I(NR_FOLL_PIN_RELEASED)]		= "nr_foll_pin_released",
1258 	[I(NR_KERNEL_STACK_KB)]			= "nr_kernel_stack",
1259 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1260 	[I(NR_KERNEL_SCS_KB)]			= "nr_shadow_call_stack",
1261 #endif
1262 	[I(NR_PAGETABLE)]			= "nr_page_table_pages",
1263 	[I(NR_SECONDARY_PAGETABLE)]		= "nr_sec_page_table_pages",
1264 #ifdef CONFIG_IOMMU_SUPPORT
1265 	[I(NR_IOMMU_PAGES)]			= "nr_iommu_pages",
1266 #endif
1267 #ifdef CONFIG_SWAP
1268 	[I(NR_SWAPCACHE)]			= "nr_swapcached",
1269 #endif
1270 #ifdef CONFIG_NUMA_BALANCING
1271 	[I(PGPROMOTE_SUCCESS)]			= "pgpromote_success",
1272 	[I(PGPROMOTE_CANDIDATE)]		= "pgpromote_candidate",
1273 	[I(PGPROMOTE_CANDIDATE_NRL)]		= "pgpromote_candidate_nrl",
1274 #endif
1275 	[I(PGDEMOTE_KSWAPD)]			= "pgdemote_kswapd",
1276 	[I(PGDEMOTE_DIRECT)]			= "pgdemote_direct",
1277 	[I(PGDEMOTE_KHUGEPAGED)]		= "pgdemote_khugepaged",
1278 	[I(PGDEMOTE_PROACTIVE)]			= "pgdemote_proactive",
1279 #ifdef CONFIG_HUGETLB_PAGE
1280 	[I(NR_HUGETLB)]				= "nr_hugetlb",
1281 #endif
1282 	[I(NR_BALLOON_PAGES)]			= "nr_balloon_pages",
1283 	[I(NR_KERNEL_FILE_PAGES)]		= "nr_kernel_file_pages",
1284 #undef I
1285 
1286 	/* system-wide enum vm_stat_item counters */
1287 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1288 	     NR_VM_NODE_STAT_ITEMS + x)
1289 	[I(NR_DIRTY_THRESHOLD)]			= "nr_dirty_threshold",
1290 	[I(NR_DIRTY_BG_THRESHOLD)]		= "nr_dirty_background_threshold",
1291 	[I(NR_MEMMAP_PAGES)]			= "nr_memmap_pages",
1292 	[I(NR_MEMMAP_BOOT_PAGES)]		= "nr_memmap_boot_pages",
1293 #undef I
1294 
1295 #if defined(CONFIG_VM_EVENT_COUNTERS)
1296 	/* enum vm_event_item counters */
1297 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1298 	     NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x)
1299 
1300 	[I(PGPGIN)]				= "pgpgin",
1301 	[I(PGPGOUT)]				= "pgpgout",
1302 	[I(PSWPIN)]				= "pswpin",
1303 	[I(PSWPOUT)]				= "pswpout",
1304 
1305 #define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1306 	     NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS)
1307 	TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc")
1308 	TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall")
1309 	TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip")
1310 #undef OFF
1311 
1312 	[I(PGFREE)]				= "pgfree",
1313 	[I(PGACTIVATE)]				= "pgactivate",
1314 	[I(PGDEACTIVATE)]			= "pgdeactivate",
1315 	[I(PGLAZYFREE)]				= "pglazyfree",
1316 
1317 	[I(PGFAULT)]				= "pgfault",
1318 	[I(PGMAJFAULT)]				= "pgmajfault",
1319 	[I(PGLAZYFREED)]			= "pglazyfreed",
1320 
1321 	[I(PGREFILL)]				= "pgrefill",
1322 	[I(PGREUSE)]				= "pgreuse",
1323 	[I(PGSTEAL_KSWAPD)]			= "pgsteal_kswapd",
1324 	[I(PGSTEAL_DIRECT)]			= "pgsteal_direct",
1325 	[I(PGSTEAL_KHUGEPAGED)]			= "pgsteal_khugepaged",
1326 	[I(PGSTEAL_PROACTIVE)]			= "pgsteal_proactive",
1327 	[I(PGSCAN_KSWAPD)]			= "pgscan_kswapd",
1328 	[I(PGSCAN_DIRECT)]			= "pgscan_direct",
1329 	[I(PGSCAN_KHUGEPAGED)]			= "pgscan_khugepaged",
1330 	[I(PGSCAN_PROACTIVE)]			= "pgscan_proactive",
1331 	[I(PGSCAN_DIRECT_THROTTLE)]		= "pgscan_direct_throttle",
1332 	[I(PGSCAN_ANON)]			= "pgscan_anon",
1333 	[I(PGSCAN_FILE)]			= "pgscan_file",
1334 	[I(PGSTEAL_ANON)]			= "pgsteal_anon",
1335 	[I(PGSTEAL_FILE)]			= "pgsteal_file",
1336 
1337 #ifdef CONFIG_NUMA
1338 	[I(PGSCAN_ZONE_RECLAIM_SUCCESS)]	= "zone_reclaim_success",
1339 	[I(PGSCAN_ZONE_RECLAIM_FAILED)]		= "zone_reclaim_failed",
1340 #endif
1341 	[I(PGINODESTEAL)]			= "pginodesteal",
1342 	[I(SLABS_SCANNED)]			= "slabs_scanned",
1343 	[I(KSWAPD_INODESTEAL)]			= "kswapd_inodesteal",
1344 	[I(KSWAPD_LOW_WMARK_HIT_QUICKLY)]	= "kswapd_low_wmark_hit_quickly",
1345 	[I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)]	= "kswapd_high_wmark_hit_quickly",
1346 	[I(PAGEOUTRUN)]				= "pageoutrun",
1347 
1348 	[I(PGROTATED)]				= "pgrotated",
1349 
1350 	[I(DROP_PAGECACHE)]			= "drop_pagecache",
1351 	[I(DROP_SLAB)]				= "drop_slab",
1352 	[I(OOM_KILL)]				= "oom_kill",
1353 
1354 #ifdef CONFIG_NUMA_BALANCING
1355 	[I(NUMA_PTE_UPDATES)]			= "numa_pte_updates",
1356 	[I(NUMA_HUGE_PTE_UPDATES)]		= "numa_huge_pte_updates",
1357 	[I(NUMA_HINT_FAULTS)]			= "numa_hint_faults",
1358 	[I(NUMA_HINT_FAULTS_LOCAL)]		= "numa_hint_faults_local",
1359 	[I(NUMA_PAGE_MIGRATE)]			= "numa_pages_migrated",
1360 #endif
1361 #ifdef CONFIG_MIGRATION
1362 	[I(PGMIGRATE_SUCCESS)]			= "pgmigrate_success",
1363 	[I(PGMIGRATE_FAIL)]			= "pgmigrate_fail",
1364 	[I(THP_MIGRATION_SUCCESS)]		= "thp_migration_success",
1365 	[I(THP_MIGRATION_FAIL)]			= "thp_migration_fail",
1366 	[I(THP_MIGRATION_SPLIT)]		= "thp_migration_split",
1367 #endif
1368 #ifdef CONFIG_COMPACTION
1369 	[I(COMPACTMIGRATE_SCANNED)]		= "compact_migrate_scanned",
1370 	[I(COMPACTFREE_SCANNED)]		= "compact_free_scanned",
1371 	[I(COMPACTISOLATED)]			= "compact_isolated",
1372 	[I(COMPACTSTALL)]			= "compact_stall",
1373 	[I(COMPACTFAIL)]			= "compact_fail",
1374 	[I(COMPACTSUCCESS)]			= "compact_success",
1375 	[I(KCOMPACTD_WAKE)]			= "compact_daemon_wake",
1376 	[I(KCOMPACTD_MIGRATE_SCANNED)]		= "compact_daemon_migrate_scanned",
1377 	[I(KCOMPACTD_FREE_SCANNED)]		= "compact_daemon_free_scanned",
1378 #endif
1379 
1380 #ifdef CONFIG_HUGETLB_PAGE
1381 	[I(HTLB_BUDDY_PGALLOC)]			= "htlb_buddy_alloc_success",
1382 	[I(HTLB_BUDDY_PGALLOC_FAIL)]		= "htlb_buddy_alloc_fail",
1383 #endif
1384 #ifdef CONFIG_CMA
1385 	[I(CMA_ALLOC_SUCCESS)]			= "cma_alloc_success",
1386 	[I(CMA_ALLOC_FAIL)]			= "cma_alloc_fail",
1387 #endif
1388 	[I(UNEVICTABLE_PGCULLED)]		= "unevictable_pgs_culled",
1389 	[I(UNEVICTABLE_PGSCANNED)]		= "unevictable_pgs_scanned",
1390 	[I(UNEVICTABLE_PGRESCUED)]		= "unevictable_pgs_rescued",
1391 	[I(UNEVICTABLE_PGMLOCKED)]		= "unevictable_pgs_mlocked",
1392 	[I(UNEVICTABLE_PGMUNLOCKED)]		= "unevictable_pgs_munlocked",
1393 	[I(UNEVICTABLE_PGCLEARED)]		= "unevictable_pgs_cleared",
1394 	[I(UNEVICTABLE_PGSTRANDED)]		= "unevictable_pgs_stranded",
1395 
1396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1397 	[I(THP_FAULT_ALLOC)]			= "thp_fault_alloc",
1398 	[I(THP_FAULT_FALLBACK)]			= "thp_fault_fallback",
1399 	[I(THP_FAULT_FALLBACK_CHARGE)]		= "thp_fault_fallback_charge",
1400 	[I(THP_COLLAPSE_ALLOC)]			= "thp_collapse_alloc",
1401 	[I(THP_COLLAPSE_ALLOC_FAILED)]		= "thp_collapse_alloc_failed",
1402 	[I(THP_FILE_ALLOC)]			= "thp_file_alloc",
1403 	[I(THP_FILE_FALLBACK)]			= "thp_file_fallback",
1404 	[I(THP_FILE_FALLBACK_CHARGE)]		= "thp_file_fallback_charge",
1405 	[I(THP_FILE_MAPPED)]			= "thp_file_mapped",
1406 	[I(THP_SPLIT_PAGE)]			= "thp_split_page",
1407 	[I(THP_SPLIT_PAGE_FAILED)]		= "thp_split_page_failed",
1408 	[I(THP_DEFERRED_SPLIT_PAGE)]		= "thp_deferred_split_page",
1409 	[I(THP_UNDERUSED_SPLIT_PAGE)]		= "thp_underused_split_page",
1410 	[I(THP_SPLIT_PMD)]			= "thp_split_pmd",
1411 	[I(THP_SCAN_EXCEED_NONE_PTE)]		= "thp_scan_exceed_none_pte",
1412 	[I(THP_SCAN_EXCEED_SWAP_PTE)]		= "thp_scan_exceed_swap_pte",
1413 	[I(THP_SCAN_EXCEED_SHARED_PTE)]		= "thp_scan_exceed_share_pte",
1414 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1415 	[I(THP_SPLIT_PUD)]			= "thp_split_pud",
1416 #endif
1417 	[I(THP_ZERO_PAGE_ALLOC)]		= "thp_zero_page_alloc",
1418 	[I(THP_ZERO_PAGE_ALLOC_FAILED)]		= "thp_zero_page_alloc_failed",
1419 	[I(THP_SWPOUT)]				= "thp_swpout",
1420 	[I(THP_SWPOUT_FALLBACK)]		= "thp_swpout_fallback",
1421 #endif
1422 #ifdef CONFIG_BALLOON
1423 	[I(BALLOON_INFLATE)]			= "balloon_inflate",
1424 	[I(BALLOON_DEFLATE)]			= "balloon_deflate",
1425 #ifdef CONFIG_BALLOON_MIGRATION
1426 	[I(BALLOON_MIGRATE)]			= "balloon_migrate",
1427 #endif /* CONFIG_BALLOON_MIGRATION */
1428 #endif /* CONFIG_BALLOON */
1429 #ifdef CONFIG_DEBUG_TLBFLUSH
1430 	[I(NR_TLB_REMOTE_FLUSH)]		= "nr_tlb_remote_flush",
1431 	[I(NR_TLB_REMOTE_FLUSH_RECEIVED)]	= "nr_tlb_remote_flush_received",
1432 	[I(NR_TLB_LOCAL_FLUSH_ALL)]		= "nr_tlb_local_flush_all",
1433 	[I(NR_TLB_LOCAL_FLUSH_ONE)]		= "nr_tlb_local_flush_one",
1434 #endif /* CONFIG_DEBUG_TLBFLUSH */
1435 
1436 #ifdef CONFIG_SWAP
1437 	[I(SWAP_RA)]				= "swap_ra",
1438 	[I(SWAP_RA_HIT)]			= "swap_ra_hit",
1439 	[I(SWPIN_ZERO)]				= "swpin_zero",
1440 	[I(SWPOUT_ZERO)]			= "swpout_zero",
1441 #ifdef CONFIG_KSM
1442 	[I(KSM_SWPIN_COPY)]			= "ksm_swpin_copy",
1443 #endif
1444 #endif
1445 #ifdef CONFIG_KSM
1446 	[I(COW_KSM)]				= "cow_ksm",
1447 #endif
1448 #ifdef CONFIG_ZSWAP
1449 	[I(ZSWPIN)]				= "zswpin",
1450 	[I(ZSWPOUT)]				= "zswpout",
1451 	[I(ZSWPWB)]				= "zswpwb",
1452 #endif
1453 #ifdef CONFIG_X86
1454 	[I(DIRECT_MAP_LEVEL2_SPLIT)]		= "direct_map_level2_splits",
1455 	[I(DIRECT_MAP_LEVEL3_SPLIT)]		= "direct_map_level3_splits",
1456 	[I(DIRECT_MAP_LEVEL2_COLLAPSE)]		= "direct_map_level2_collapses",
1457 	[I(DIRECT_MAP_LEVEL3_COLLAPSE)]		= "direct_map_level3_collapses",
1458 #endif
1459 #ifdef CONFIG_PER_VMA_LOCK_STATS
1460 	[I(VMA_LOCK_SUCCESS)]			= "vma_lock_success",
1461 	[I(VMA_LOCK_ABORT)]			= "vma_lock_abort",
1462 	[I(VMA_LOCK_RETRY)]			= "vma_lock_retry",
1463 	[I(VMA_LOCK_MISS)]			= "vma_lock_miss",
1464 #endif
1465 #ifdef CONFIG_DEBUG_STACK_USAGE
1466 	[I(KSTACK_1K)]				= "kstack_1k",
1467 #if THREAD_SIZE > 1024
1468 	[I(KSTACK_2K)]				= "kstack_2k",
1469 #endif
1470 #if THREAD_SIZE > 2048
1471 	[I(KSTACK_4K)]				= "kstack_4k",
1472 #endif
1473 #if THREAD_SIZE > 4096
1474 	[I(KSTACK_8K)]				= "kstack_8k",
1475 #endif
1476 #if THREAD_SIZE > 8192
1477 	[I(KSTACK_16K)]				= "kstack_16k",
1478 #endif
1479 #if THREAD_SIZE > 16384
1480 	[I(KSTACK_32K)]				= "kstack_32k",
1481 #endif
1482 #if THREAD_SIZE > 32768
1483 	[I(KSTACK_64K)]				= "kstack_64k",
1484 #endif
1485 #if THREAD_SIZE > 65536
1486 	[I(KSTACK_REST)]			= "kstack_rest",
1487 #endif
1488 #endif
1489 #undef I
1490 #endif /* CONFIG_VM_EVENT_COUNTERS */
1491 };
1492 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1493 
1494 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1495      defined(CONFIG_PROC_FS)
1496 static void *frag_start(struct seq_file *m, loff_t *pos)
1497 {
1498 	pg_data_t *pgdat;
1499 	loff_t node = *pos;
1500 
1501 	for (pgdat = first_online_pgdat();
1502 	     pgdat && node;
1503 	     pgdat = next_online_pgdat(pgdat))
1504 		--node;
1505 
1506 	return pgdat;
1507 }
1508 
1509 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1510 {
1511 	pg_data_t *pgdat = (pg_data_t *)arg;
1512 
1513 	(*pos)++;
1514 	return next_online_pgdat(pgdat);
1515 }
1516 
1517 static void frag_stop(struct seq_file *m, void *arg)
1518 {
1519 }
1520 
1521 /*
1522  * Walk zones in a node and print using a callback.
1523  * If @assert_populated is true, only use callback for zones that are populated.
1524  */
1525 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1526 		bool assert_populated, bool nolock,
1527 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1528 {
1529 	struct zone *zone;
1530 	struct zone *node_zones = pgdat->node_zones;
1531 	unsigned long flags;
1532 
1533 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1534 		if (assert_populated && !populated_zone(zone))
1535 			continue;
1536 
1537 		if (!nolock)
1538 			spin_lock_irqsave(&zone->lock, flags);
1539 		print(m, pgdat, zone);
1540 		if (!nolock)
1541 			spin_unlock_irqrestore(&zone->lock, flags);
1542 	}
1543 }
1544 #endif
1545 
1546 #ifdef CONFIG_PROC_FS
1547 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1548 						struct zone *zone)
1549 {
1550 	int order;
1551 
1552 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1553 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1554 		/*
1555 		 * Access to nr_free is lockless as nr_free is used only for
1556 		 * printing purposes. Use data_race to avoid KCSAN warning.
1557 		 */
1558 		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1559 	seq_putc(m, '\n');
1560 }
1561 
1562 /*
1563  * This walks the free areas for each zone.
1564  */
1565 static int frag_show(struct seq_file *m, void *arg)
1566 {
1567 	pg_data_t *pgdat = (pg_data_t *)arg;
1568 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1569 	return 0;
1570 }
1571 
1572 static void pagetypeinfo_showfree_print(struct seq_file *m,
1573 					pg_data_t *pgdat, struct zone *zone)
1574 {
1575 	int order, mtype;
1576 
1577 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1578 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1579 					pgdat->node_id,
1580 					zone->name,
1581 					migratetype_names[mtype]);
1582 		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1583 			unsigned long freecount = 0;
1584 			struct free_area *area;
1585 			struct list_head *curr;
1586 			bool overflow = false;
1587 
1588 			area = &(zone->free_area[order]);
1589 
1590 			list_for_each(curr, &area->free_list[mtype]) {
1591 				/*
1592 				 * Cap the free_list iteration because it might
1593 				 * be really large and we are under a spinlock
1594 				 * so a long time spent here could trigger a
1595 				 * hard lockup detector. Anyway this is a
1596 				 * debugging tool so knowing there is a handful
1597 				 * of pages of this order should be more than
1598 				 * sufficient.
1599 				 */
1600 				if (++freecount >= 100000) {
1601 					overflow = true;
1602 					break;
1603 				}
1604 			}
1605 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1606 			spin_unlock_irq(&zone->lock);
1607 			cond_resched();
1608 			spin_lock_irq(&zone->lock);
1609 		}
1610 		seq_putc(m, '\n');
1611 	}
1612 }
1613 
1614 /* Print out the free pages at each order for each migratetype */
1615 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1616 {
1617 	int order;
1618 	pg_data_t *pgdat = (pg_data_t *)arg;
1619 
1620 	/* Print header */
1621 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1622 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1623 		seq_printf(m, "%6d ", order);
1624 	seq_putc(m, '\n');
1625 
1626 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1627 }
1628 
1629 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1630 					pg_data_t *pgdat, struct zone *zone)
1631 {
1632 	int mtype;
1633 	unsigned long pfn;
1634 	unsigned long start_pfn = zone->zone_start_pfn;
1635 	unsigned long end_pfn = zone_end_pfn(zone);
1636 	unsigned long count[MIGRATE_TYPES] = { 0, };
1637 
1638 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1639 		struct page *page;
1640 
1641 		page = pfn_to_online_page(pfn);
1642 		if (!page)
1643 			continue;
1644 
1645 		if (page_zone(page) != zone)
1646 			continue;
1647 
1648 		mtype = get_pageblock_migratetype(page);
1649 
1650 		if (mtype < MIGRATE_TYPES)
1651 			count[mtype]++;
1652 	}
1653 
1654 	/* Print counts */
1655 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1656 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1657 		seq_printf(m, "%12lu ", count[mtype]);
1658 	seq_putc(m, '\n');
1659 }
1660 
1661 /* Print out the number of pageblocks for each migratetype */
1662 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1663 {
1664 	int mtype;
1665 	pg_data_t *pgdat = (pg_data_t *)arg;
1666 
1667 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1668 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1669 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1670 	seq_putc(m, '\n');
1671 	walk_zones_in_node(m, pgdat, true, false,
1672 		pagetypeinfo_showblockcount_print);
1673 }
1674 
1675 /*
1676  * Print out the number of pageblocks for each migratetype that contain pages
1677  * of other types. This gives an indication of how well fallbacks are being
1678  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1679  * to determine what is going on
1680  */
1681 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1682 {
1683 #ifdef CONFIG_PAGE_OWNER
1684 	int mtype;
1685 
1686 	if (!static_branch_unlikely(&page_owner_inited))
1687 		return;
1688 
1689 	drain_all_pages(NULL);
1690 
1691 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1692 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1693 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1694 	seq_putc(m, '\n');
1695 
1696 	walk_zones_in_node(m, pgdat, true, true,
1697 		pagetypeinfo_showmixedcount_print);
1698 #endif /* CONFIG_PAGE_OWNER */
1699 }
1700 
1701 /*
1702  * This prints out statistics in relation to grouping pages by mobility.
1703  * It is expensive to collect so do not constantly read the file.
1704  */
1705 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1706 {
1707 	pg_data_t *pgdat = (pg_data_t *)arg;
1708 
1709 	/* check memoryless node */
1710 	if (!node_state(pgdat->node_id, N_MEMORY))
1711 		return 0;
1712 
1713 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1714 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1715 	seq_putc(m, '\n');
1716 	pagetypeinfo_showfree(m, pgdat);
1717 	pagetypeinfo_showblockcount(m, pgdat);
1718 	pagetypeinfo_showmixedcount(m, pgdat);
1719 
1720 	return 0;
1721 }
1722 
1723 static const struct seq_operations fragmentation_op = {
1724 	.start	= frag_start,
1725 	.next	= frag_next,
1726 	.stop	= frag_stop,
1727 	.show	= frag_show,
1728 };
1729 
1730 static const struct seq_operations pagetypeinfo_op = {
1731 	.start	= frag_start,
1732 	.next	= frag_next,
1733 	.stop	= frag_stop,
1734 	.show	= pagetypeinfo_show,
1735 };
1736 
1737 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1738 {
1739 	int zid;
1740 
1741 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1742 		struct zone *compare = &pgdat->node_zones[zid];
1743 
1744 		if (populated_zone(compare))
1745 			return zone == compare;
1746 	}
1747 
1748 	return false;
1749 }
1750 
1751 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1752 							struct zone *zone)
1753 {
1754 	int i;
1755 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1756 	if (is_zone_first_populated(pgdat, zone)) {
1757 		seq_printf(m, "\n  per-node stats");
1758 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1759 			unsigned long pages = node_page_state_pages(pgdat, i);
1760 
1761 			if (vmstat_item_print_in_thp(i))
1762 				pages /= HPAGE_PMD_NR;
1763 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1764 				   pages);
1765 		}
1766 	}
1767 	seq_printf(m,
1768 		   "\n  pages free     %lu"
1769 		   "\n        boost    %lu"
1770 		   "\n        min      %lu"
1771 		   "\n        low      %lu"
1772 		   "\n        high     %lu"
1773 		   "\n        promo    %lu"
1774 		   "\n        spanned  %lu"
1775 		   "\n        present  %lu"
1776 		   "\n        managed  %lu"
1777 		   "\n        cma      %lu",
1778 		   zone_page_state(zone, NR_FREE_PAGES),
1779 		   zone->watermark_boost,
1780 		   min_wmark_pages(zone),
1781 		   low_wmark_pages(zone),
1782 		   high_wmark_pages(zone),
1783 		   promo_wmark_pages(zone),
1784 		   zone->spanned_pages,
1785 		   zone->present_pages,
1786 		   zone_managed_pages(zone),
1787 		   zone_cma_pages(zone));
1788 
1789 	seq_printf(m,
1790 		   "\n        protection: (%ld",
1791 		   zone->lowmem_reserve[0]);
1792 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1793 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1794 	seq_putc(m, ')');
1795 
1796 	/* If unpopulated, no other information is useful */
1797 	if (!populated_zone(zone)) {
1798 		seq_putc(m, '\n');
1799 		return;
1800 	}
1801 
1802 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1803 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1804 			   zone_page_state(zone, i));
1805 
1806 #ifdef CONFIG_NUMA
1807 	fold_vm_zone_numa_events(zone);
1808 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1809 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1810 			   zone_numa_event_state(zone, i));
1811 #endif
1812 
1813 	seq_printf(m, "\n  pagesets");
1814 	for_each_online_cpu(i) {
1815 		struct per_cpu_pages *pcp;
1816 		struct per_cpu_zonestat __maybe_unused *pzstats;
1817 
1818 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1819 		seq_printf(m,
1820 			   "\n    cpu: %i"
1821 			   "\n              count:    %i"
1822 			   "\n              high:     %i"
1823 			   "\n              batch:    %i"
1824 			   "\n              high_min: %i"
1825 			   "\n              high_max: %i",
1826 			   i,
1827 			   pcp->count,
1828 			   pcp->high,
1829 			   pcp->batch,
1830 			   pcp->high_min,
1831 			   pcp->high_max);
1832 #ifdef CONFIG_SMP
1833 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1834 		seq_printf(m, "\n  vm stats threshold: %d",
1835 				pzstats->stat_threshold);
1836 #endif
1837 	}
1838 	seq_printf(m,
1839 		   "\n  node_unreclaimable:  %u"
1840 		   "\n  start_pfn:           %lu"
1841 		   "\n  reserved_highatomic: %lu"
1842 		   "\n  free_highatomic:     %lu",
1843 		   kswapd_test_hopeless(pgdat),
1844 		   zone->zone_start_pfn,
1845 		   zone->nr_reserved_highatomic,
1846 		   zone->nr_free_highatomic);
1847 	seq_putc(m, '\n');
1848 }
1849 
1850 /*
1851  * Output information about zones in @pgdat.  All zones are printed regardless
1852  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1853  * set of all zones and userspace would not be aware of such zones if they are
1854  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1855  */
1856 static int zoneinfo_show(struct seq_file *m, void *arg)
1857 {
1858 	pg_data_t *pgdat = (pg_data_t *)arg;
1859 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1860 	return 0;
1861 }
1862 
1863 static const struct seq_operations zoneinfo_op = {
1864 	.start	= frag_start, /* iterate over all zones. The same as in
1865 			       * fragmentation. */
1866 	.next	= frag_next,
1867 	.stop	= frag_stop,
1868 	.show	= zoneinfo_show,
1869 };
1870 
1871 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1872 			 NR_VM_NUMA_EVENT_ITEMS + \
1873 			 NR_VM_NODE_STAT_ITEMS + \
1874 			 NR_VM_STAT_ITEMS + \
1875 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1876 			  NR_VM_EVENT_ITEMS : 0))
1877 
1878 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1879 {
1880 	unsigned long *v;
1881 	int i;
1882 
1883 	if (*pos >= NR_VMSTAT_ITEMS)
1884 		return NULL;
1885 
1886 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS);
1887 	fold_vm_numa_events();
1888 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1889 	m->private = v;
1890 	if (!v)
1891 		return ERR_PTR(-ENOMEM);
1892 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1893 		v[i] = global_zone_page_state(i);
1894 	v += NR_VM_ZONE_STAT_ITEMS;
1895 
1896 #ifdef CONFIG_NUMA
1897 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1898 		v[i] = global_numa_event_state(i);
1899 	v += NR_VM_NUMA_EVENT_ITEMS;
1900 #endif
1901 
1902 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1903 		v[i] = global_node_page_state_pages(i);
1904 		if (vmstat_item_print_in_thp(i))
1905 			v[i] /= HPAGE_PMD_NR;
1906 	}
1907 	v += NR_VM_NODE_STAT_ITEMS;
1908 
1909 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1910 			    v + NR_DIRTY_THRESHOLD);
1911 	v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1912 	v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1913 	v += NR_VM_STAT_ITEMS;
1914 
1915 #ifdef CONFIG_VM_EVENT_COUNTERS
1916 	all_vm_events(v);
1917 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1918 	v[PGPGOUT] /= 2;
1919 #endif
1920 	return (unsigned long *)m->private + *pos;
1921 }
1922 
1923 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1924 {
1925 	(*pos)++;
1926 	if (*pos >= NR_VMSTAT_ITEMS)
1927 		return NULL;
1928 	return (unsigned long *)m->private + *pos;
1929 }
1930 
1931 static int vmstat_show(struct seq_file *m, void *arg)
1932 {
1933 	unsigned long *l = arg;
1934 	unsigned long off = l - (unsigned long *)m->private;
1935 
1936 	seq_puts(m, vmstat_text[off]);
1937 	seq_put_decimal_ull(m, " ", *l);
1938 	seq_putc(m, '\n');
1939 
1940 	if (off == NR_VMSTAT_ITEMS - 1) {
1941 		/*
1942 		 * We've come to the end - add any deprecated counters to avoid
1943 		 * breaking userspace which might depend on them being present.
1944 		 */
1945 		seq_puts(m, "nr_unstable 0\n");
1946 	}
1947 	return 0;
1948 }
1949 
1950 static void vmstat_stop(struct seq_file *m, void *arg)
1951 {
1952 	kfree(m->private);
1953 	m->private = NULL;
1954 }
1955 
1956 static const struct seq_operations vmstat_op = {
1957 	.start	= vmstat_start,
1958 	.next	= vmstat_next,
1959 	.stop	= vmstat_stop,
1960 	.show	= vmstat_show,
1961 };
1962 #endif /* CONFIG_PROC_FS */
1963 
1964 #ifdef CONFIG_SMP
1965 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1966 static int sysctl_stat_interval __read_mostly = HZ;
1967 static int vmstat_late_init_done;
1968 
1969 #ifdef CONFIG_PROC_FS
1970 static void refresh_vm_stats(struct work_struct *work)
1971 {
1972 	refresh_cpu_vm_stats(true);
1973 }
1974 
1975 static int vmstat_refresh(const struct ctl_table *table, int write,
1976 		   void *buffer, size_t *lenp, loff_t *ppos)
1977 {
1978 	long val;
1979 	int err;
1980 	int i;
1981 
1982 	/*
1983 	 * The regular update, every sysctl_stat_interval, may come later
1984 	 * than expected: leaving a significant amount in per_cpu buckets.
1985 	 * This is particularly misleading when checking a quantity of HUGE
1986 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1987 	 * which can equally be echo'ed to or cat'ted from (by root),
1988 	 * can be used to update the stats just before reading them.
1989 	 *
1990 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1991 	 * transiently negative values, report an error here if any of
1992 	 * the stats is negative, so we know to go looking for imbalance.
1993 	 */
1994 	err = schedule_on_each_cpu(refresh_vm_stats);
1995 	if (err)
1996 		return err;
1997 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1998 		/*
1999 		 * Skip checking stats known to go negative occasionally.
2000 		 */
2001 		switch (i) {
2002 		case NR_ZONE_WRITE_PENDING:
2003 		case NR_FREE_CMA_PAGES:
2004 			continue;
2005 		}
2006 		val = atomic_long_read(&vm_zone_stat[i]);
2007 		if (val < 0) {
2008 			pr_warn("%s: %s %ld\n",
2009 				__func__, zone_stat_name(i), val);
2010 		}
2011 	}
2012 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2013 		/*
2014 		 * Skip checking stats known to go negative occasionally.
2015 		 */
2016 		switch (i) {
2017 		case NR_WRITEBACK:
2018 			continue;
2019 		}
2020 		val = atomic_long_read(&vm_node_stat[i]);
2021 		if (val < 0) {
2022 			pr_warn("%s: %s %ld\n",
2023 				__func__, node_stat_name(i), val);
2024 		}
2025 	}
2026 	if (write)
2027 		*ppos += *lenp;
2028 	else
2029 		*lenp = 0;
2030 	return 0;
2031 }
2032 #endif /* CONFIG_PROC_FS */
2033 
2034 static void vmstat_update(struct work_struct *w)
2035 {
2036 	if (refresh_cpu_vm_stats(true)) {
2037 		/*
2038 		 * Counters were updated so we expect more updates
2039 		 * to occur in the future. Keep on running the
2040 		 * update worker thread.
2041 		 */
2042 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2043 				this_cpu_ptr(&vmstat_work),
2044 				round_jiffies_relative(sysctl_stat_interval));
2045 	}
2046 }
2047 
2048 /*
2049  * Check if the diffs for a certain cpu indicate that
2050  * an update is needed.
2051  */
2052 static bool need_update(int cpu)
2053 {
2054 	pg_data_t *last_pgdat = NULL;
2055 	struct zone *zone;
2056 
2057 	for_each_populated_zone(zone) {
2058 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2059 		struct per_cpu_nodestat *n;
2060 
2061 		/*
2062 		 * The fast way of checking if there are any vmstat diffs.
2063 		 */
2064 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2065 			return true;
2066 
2067 		if (last_pgdat == zone->zone_pgdat)
2068 			continue;
2069 		last_pgdat = zone->zone_pgdat;
2070 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2071 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2072 			return true;
2073 	}
2074 	return false;
2075 }
2076 
2077 /*
2078  * Switch off vmstat processing and then fold all the remaining differentials
2079  * until the diffs stay at zero. The function is used by NOHZ and can only be
2080  * invoked when tick processing is not active.
2081  */
2082 void quiet_vmstat(void)
2083 {
2084 	if (system_state != SYSTEM_RUNNING)
2085 		return;
2086 
2087 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2088 		return;
2089 
2090 	if (!need_update(smp_processor_id()))
2091 		return;
2092 
2093 	/*
2094 	 * Just refresh counters and do not care about the pending delayed
2095 	 * vmstat_update. It doesn't fire that often to matter and canceling
2096 	 * it would be too expensive from this path.
2097 	 * vmstat_shepherd will take care about that for us.
2098 	 */
2099 	refresh_cpu_vm_stats(false);
2100 }
2101 
2102 /*
2103  * Shepherd worker thread that checks the
2104  * differentials of processors that have their worker
2105  * threads for vm statistics updates disabled because of
2106  * inactivity.
2107  */
2108 static void vmstat_shepherd(struct work_struct *w);
2109 
2110 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2111 
2112 void vmstat_flush_workqueue(void)
2113 {
2114 	flush_workqueue(mm_percpu_wq);
2115 }
2116 
2117 static void vmstat_shepherd(struct work_struct *w)
2118 {
2119 	int cpu;
2120 
2121 	cpus_read_lock();
2122 	/* Check processors whose vmstat worker threads have been disabled */
2123 	for_each_online_cpu(cpu) {
2124 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2125 
2126 		/*
2127 		 * In kernel users of vmstat counters either require the precise value and
2128 		 * they are using zone_page_state_snapshot interface or they can live with
2129 		 * an imprecision as the regular flushing can happen at arbitrary time and
2130 		 * cumulative error can grow (see calculate_normal_threshold).
2131 		 *
2132 		 * From that POV the regular flushing can be postponed for CPUs that have
2133 		 * been isolated from the kernel interference without critical
2134 		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2135 		 * for all isolated CPUs to avoid interference with the isolated workload.
2136 		 */
2137 		scoped_guard(rcu) {
2138 			if (cpu_is_isolated(cpu))
2139 				continue;
2140 
2141 			if (!delayed_work_pending(dw) && need_update(cpu))
2142 				queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2143 		}
2144 
2145 		cond_resched();
2146 	}
2147 	cpus_read_unlock();
2148 
2149 	schedule_delayed_work(&shepherd,
2150 		round_jiffies_relative(sysctl_stat_interval));
2151 }
2152 
2153 static void __init start_shepherd_timer(void)
2154 {
2155 	int cpu;
2156 
2157 	for_each_possible_cpu(cpu) {
2158 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2159 			vmstat_update);
2160 
2161 		/*
2162 		 * For secondary CPUs during CPU hotplug scenarios,
2163 		 * vmstat_cpu_online() will enable the work.
2164 		 * mm/vmstat:online enables and disables vmstat_work
2165 		 * symmetrically during CPU hotplug events.
2166 		 */
2167 		if (!cpu_online(cpu))
2168 			disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2169 	}
2170 
2171 	schedule_delayed_work(&shepherd,
2172 		round_jiffies_relative(sysctl_stat_interval));
2173 }
2174 
2175 static void __init init_cpu_node_state(void)
2176 {
2177 	int node;
2178 
2179 	for_each_online_node(node) {
2180 		if (!cpumask_empty(cpumask_of_node(node)))
2181 			node_set_state(node, N_CPU);
2182 	}
2183 }
2184 
2185 static int vmstat_cpu_online(unsigned int cpu)
2186 {
2187 	if (vmstat_late_init_done)
2188 		refresh_zone_stat_thresholds();
2189 
2190 	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2191 		node_set_state(cpu_to_node(cpu), N_CPU);
2192 	}
2193 	enable_delayed_work(&per_cpu(vmstat_work, cpu));
2194 
2195 	return 0;
2196 }
2197 
2198 static int vmstat_cpu_down_prep(unsigned int cpu)
2199 {
2200 	disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2201 	return 0;
2202 }
2203 
2204 static int vmstat_cpu_dead(unsigned int cpu)
2205 {
2206 	const struct cpumask *node_cpus;
2207 	int node;
2208 
2209 	node = cpu_to_node(cpu);
2210 
2211 	refresh_zone_stat_thresholds();
2212 	node_cpus = cpumask_of_node(node);
2213 	if (!cpumask_empty(node_cpus))
2214 		return 0;
2215 
2216 	node_clear_state(node, N_CPU);
2217 
2218 	return 0;
2219 }
2220 
2221 static int __init vmstat_late_init(void)
2222 {
2223 	refresh_zone_stat_thresholds();
2224 	vmstat_late_init_done = 1;
2225 
2226 	return 0;
2227 }
2228 late_initcall(vmstat_late_init);
2229 #endif
2230 
2231 #ifdef CONFIG_PROC_FS
2232 static const struct ctl_table vmstat_table[] = {
2233 #ifdef CONFIG_SMP
2234 	{
2235 		.procname	= "stat_interval",
2236 		.data		= &sysctl_stat_interval,
2237 		.maxlen		= sizeof(sysctl_stat_interval),
2238 		.mode		= 0644,
2239 		.proc_handler	= proc_dointvec_jiffies,
2240 	},
2241 	{
2242 		.procname	= "stat_refresh",
2243 		.data		= NULL,
2244 		.maxlen		= 0,
2245 		.mode		= 0600,
2246 		.proc_handler	= vmstat_refresh,
2247 	},
2248 #endif
2249 #ifdef CONFIG_NUMA
2250 	{
2251 		.procname	= "numa_stat",
2252 		.data		= &sysctl_vm_numa_stat,
2253 		.maxlen		= sizeof(int),
2254 		.mode		= 0644,
2255 		.proc_handler	= sysctl_vm_numa_stat_handler,
2256 		.extra1		= SYSCTL_ZERO,
2257 		.extra2		= SYSCTL_ONE,
2258 	},
2259 #endif
2260 };
2261 #endif
2262 
2263 struct workqueue_struct *mm_percpu_wq;
2264 
2265 void __init init_mm_internals(void)
2266 {
2267 	int ret __maybe_unused;
2268 
2269 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq",
2270 				       WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2271 
2272 #ifdef CONFIG_SMP
2273 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2274 					NULL, vmstat_cpu_dead);
2275 	if (ret < 0)
2276 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2277 
2278 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2279 					vmstat_cpu_online,
2280 					vmstat_cpu_down_prep);
2281 	if (ret < 0)
2282 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2283 
2284 	cpus_read_lock();
2285 	init_cpu_node_state();
2286 	cpus_read_unlock();
2287 
2288 	start_shepherd_timer();
2289 #endif
2290 #ifdef CONFIG_PROC_FS
2291 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2292 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2293 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2294 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2295 	register_sysctl_init("vm", vmstat_table);
2296 #endif
2297 }
2298 
2299 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2300 
2301 /*
2302  * Return an index indicating how much of the available free memory is
2303  * unusable for an allocation of the requested size.
2304  */
2305 static int unusable_free_index(unsigned int order,
2306 				struct contig_page_info *info)
2307 {
2308 	/* No free memory is interpreted as all free memory is unusable */
2309 	if (info->free_pages == 0)
2310 		return 1000;
2311 
2312 	/*
2313 	 * Index should be a value between 0 and 1. Return a value to 3
2314 	 * decimal places.
2315 	 *
2316 	 * 0 => no fragmentation
2317 	 * 1 => high fragmentation
2318 	 */
2319 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2320 
2321 }
2322 
2323 static void unusable_show_print(struct seq_file *m,
2324 					pg_data_t *pgdat, struct zone *zone)
2325 {
2326 	unsigned int order;
2327 	int index;
2328 	struct contig_page_info info;
2329 
2330 	seq_printf(m, "Node %d, zone %8s ",
2331 				pgdat->node_id,
2332 				zone->name);
2333 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2334 		fill_contig_page_info(zone, order, &info);
2335 		index = unusable_free_index(order, &info);
2336 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2337 	}
2338 
2339 	seq_putc(m, '\n');
2340 }
2341 
2342 /*
2343  * Display unusable free space index
2344  *
2345  * The unusable free space index measures how much of the available free
2346  * memory cannot be used to satisfy an allocation of a given size and is a
2347  * value between 0 and 1. The higher the value, the more of free memory is
2348  * unusable and by implication, the worse the external fragmentation is. This
2349  * can be expressed as a percentage by multiplying by 100.
2350  */
2351 static int unusable_show(struct seq_file *m, void *arg)
2352 {
2353 	pg_data_t *pgdat = (pg_data_t *)arg;
2354 
2355 	/* check memoryless node */
2356 	if (!node_state(pgdat->node_id, N_MEMORY))
2357 		return 0;
2358 
2359 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2360 
2361 	return 0;
2362 }
2363 
2364 static const struct seq_operations unusable_sops = {
2365 	.start	= frag_start,
2366 	.next	= frag_next,
2367 	.stop	= frag_stop,
2368 	.show	= unusable_show,
2369 };
2370 
2371 DEFINE_SEQ_ATTRIBUTE(unusable);
2372 
2373 static void extfrag_show_print(struct seq_file *m,
2374 					pg_data_t *pgdat, struct zone *zone)
2375 {
2376 	unsigned int order;
2377 	int index;
2378 
2379 	/* Alloc on stack as interrupts are disabled for zone walk */
2380 	struct contig_page_info info;
2381 
2382 	seq_printf(m, "Node %d, zone %8s ",
2383 				pgdat->node_id,
2384 				zone->name);
2385 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2386 		fill_contig_page_info(zone, order, &info);
2387 		index = __fragmentation_index(order, &info);
2388 		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2389 	}
2390 
2391 	seq_putc(m, '\n');
2392 }
2393 
2394 /*
2395  * Display fragmentation index for orders that allocations would fail for
2396  */
2397 static int extfrag_show(struct seq_file *m, void *arg)
2398 {
2399 	pg_data_t *pgdat = (pg_data_t *)arg;
2400 
2401 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2402 
2403 	return 0;
2404 }
2405 
2406 static const struct seq_operations extfrag_sops = {
2407 	.start	= frag_start,
2408 	.next	= frag_next,
2409 	.stop	= frag_stop,
2410 	.show	= extfrag_show,
2411 };
2412 
2413 DEFINE_SEQ_ATTRIBUTE(extfrag);
2414 
2415 static int __init extfrag_debug_init(void)
2416 {
2417 	struct dentry *extfrag_debug_root;
2418 
2419 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2420 
2421 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2422 			    &unusable_fops);
2423 
2424 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2425 			    &extfrag_fops);
2426 
2427 	return 0;
2428 }
2429 
2430 module_init(extfrag_debug_init);
2431 
2432 #endif
2433