xref: /linux/mm/mm_init.c (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include "internal.h"
33 #include "slab.h"
34 #include "shuffle.h"
35 
36 #include <asm/setup.h>
37 
38 #ifdef CONFIG_DEBUG_MEMORY_INIT
39 int __meminitdata mminit_loglevel;
40 
41 /* The zonelists are simply reported, validation is manual. */
42 void __init mminit_verify_zonelist(void)
43 {
44 	int nid;
45 
46 	if (mminit_loglevel < MMINIT_VERIFY)
47 		return;
48 
49 	for_each_online_node(nid) {
50 		pg_data_t *pgdat = NODE_DATA(nid);
51 		struct zone *zone;
52 		struct zoneref *z;
53 		struct zonelist *zonelist;
54 		int i, listid, zoneid;
55 
56 		BUILD_BUG_ON(MAX_ZONELISTS > 2);
57 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58 
59 			/* Identify the zone and nodelist */
60 			zoneid = i % MAX_NR_ZONES;
61 			listid = i / MAX_NR_ZONES;
62 			zonelist = &pgdat->node_zonelists[listid];
63 			zone = &pgdat->node_zones[zoneid];
64 			if (!populated_zone(zone))
65 				continue;
66 
67 			/* Print information about the zonelist */
68 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 				listid > 0 ? "thisnode" : "general", nid,
70 				zone->name);
71 
72 			/* Iterate the zonelist */
73 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 			pr_cont("\n");
76 		}
77 	}
78 }
79 
80 void __init mminit_verify_pageflags_layout(void)
81 {
82 	int shift, width;
83 	unsigned long or_mask, add_mask;
84 
85 	shift = BITS_PER_LONG;
86 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90 		SECTIONS_WIDTH,
91 		NODES_WIDTH,
92 		ZONES_WIDTH,
93 		LAST_CPUPID_WIDTH,
94 		KASAN_TAG_WIDTH,
95 		LRU_GEN_WIDTH,
96 		LRU_REFS_WIDTH,
97 		NR_PAGEFLAGS);
98 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100 		SECTIONS_SHIFT,
101 		NODES_SHIFT,
102 		ZONES_SHIFT,
103 		LAST_CPUPID_SHIFT,
104 		KASAN_TAG_WIDTH);
105 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107 		(unsigned long)SECTIONS_PGSHIFT,
108 		(unsigned long)NODES_PGSHIFT,
109 		(unsigned long)ZONES_PGSHIFT,
110 		(unsigned long)LAST_CPUPID_PGSHIFT,
111 		(unsigned long)KASAN_TAG_PGSHIFT);
112 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113 		"Node/Zone ID: %lu -> %lu\n",
114 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115 		(unsigned long)ZONEID_PGOFF);
116 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119 #ifdef NODE_NOT_IN_PAGE_FLAGS
120 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121 		"Node not in page flags");
122 #endif
123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125 		"Last cpupid not in page flags");
126 #endif
127 
128 	if (SECTIONS_WIDTH) {
129 		shift -= SECTIONS_WIDTH;
130 		BUG_ON(shift != SECTIONS_PGSHIFT);
131 	}
132 	if (NODES_WIDTH) {
133 		shift -= NODES_WIDTH;
134 		BUG_ON(shift != NODES_PGSHIFT);
135 	}
136 	if (ZONES_WIDTH) {
137 		shift -= ZONES_WIDTH;
138 		BUG_ON(shift != ZONES_PGSHIFT);
139 	}
140 
141 	/* Check for bitmask overlaps */
142 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143 			(NODES_MASK << NODES_PGSHIFT) |
144 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
145 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146 			(NODES_MASK << NODES_PGSHIFT) +
147 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
148 	BUG_ON(or_mask != add_mask);
149 }
150 
151 static __init int set_mminit_loglevel(char *str)
152 {
153 	get_option(&str, &mminit_loglevel);
154 	return 0;
155 }
156 early_param("mminit_loglevel", set_mminit_loglevel);
157 #endif /* CONFIG_DEBUG_MEMORY_INIT */
158 
159 struct kobject *mm_kobj;
160 
161 #ifdef CONFIG_SMP
162 s32 vm_committed_as_batch = 32;
163 
164 void mm_compute_batch(int overcommit_policy)
165 {
166 	u64 memsized_batch;
167 	s32 nr = num_present_cpus();
168 	s32 batch = max_t(s32, nr*2, 32);
169 	unsigned long ram_pages = totalram_pages();
170 
171 	/*
172 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173 	 * (total memory/#cpus), and lift it to 25% for other policies
174 	 * to easy the possible lock contention for percpu_counter
175 	 * vm_committed_as, while the max limit is INT_MAX
176 	 */
177 	if (overcommit_policy == OVERCOMMIT_NEVER)
178 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179 	else
180 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181 
182 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183 }
184 
185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186 					unsigned long action, void *arg)
187 {
188 	switch (action) {
189 	case MEM_ONLINE:
190 	case MEM_OFFLINE:
191 		mm_compute_batch(sysctl_overcommit_memory);
192 		break;
193 	default:
194 		break;
195 	}
196 	return NOTIFY_OK;
197 }
198 
199 static int __init mm_compute_batch_init(void)
200 {
201 	mm_compute_batch(sysctl_overcommit_memory);
202 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203 	return 0;
204 }
205 
206 __initcall(mm_compute_batch_init);
207 
208 #endif
209 
210 static int __init mm_sysfs_init(void)
211 {
212 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213 	if (!mm_kobj)
214 		return -ENOMEM;
215 
216 	return 0;
217 }
218 postcore_initcall(mm_sysfs_init);
219 
220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223 
224 static unsigned long required_kernelcore __initdata;
225 static unsigned long required_kernelcore_percent __initdata;
226 static unsigned long required_movablecore __initdata;
227 static unsigned long required_movablecore_percent __initdata;
228 
229 static unsigned long nr_kernel_pages __initdata;
230 static unsigned long nr_all_pages __initdata;
231 
232 static bool deferred_struct_pages __meminitdata;
233 
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235 
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237 				     unsigned long *percent)
238 {
239 	unsigned long long coremem;
240 	char *endptr;
241 
242 	if (!p)
243 		return -EINVAL;
244 
245 	/* Value may be a percentage of total memory, otherwise bytes */
246 	coremem = simple_strtoull(p, &endptr, 0);
247 	if (*endptr == '%') {
248 		/* Paranoid check for percent values greater than 100 */
249 		WARN_ON(coremem > 100);
250 
251 		*percent = coremem;
252 	} else {
253 		coremem = memparse(p, &p);
254 		/* Paranoid check that UL is enough for the coremem value */
255 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256 
257 		*core = coremem >> PAGE_SHIFT;
258 		*percent = 0UL;
259 	}
260 	return 0;
261 }
262 
263 bool mirrored_kernelcore __initdata_memblock;
264 
265 /*
266  * kernelcore=size sets the amount of memory for use for allocations that
267  * cannot be reclaimed or migrated.
268  */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271 	/* parse kernelcore=mirror */
272 	if (parse_option_str(p, "mirror")) {
273 		mirrored_kernelcore = true;
274 		return 0;
275 	}
276 
277 	return cmdline_parse_core(p, &required_kernelcore,
278 				  &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281 
282 /*
283  * movablecore=size sets the amount of memory for use for allocations that
284  * can be reclaimed or migrated.
285  */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288 	return cmdline_parse_core(p, &required_movablecore,
289 				  &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292 
293 /*
294  * early_calculate_totalpages()
295  * Sum pages in active regions for movable zone.
296  * Populate N_MEMORY for calculating usable_nodes.
297  */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300 	unsigned long totalpages = 0;
301 	unsigned long start_pfn, end_pfn;
302 	int i, nid;
303 
304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 		unsigned long pages = end_pfn - start_pfn;
306 
307 		totalpages += pages;
308 		if (pages)
309 			node_set_state(nid, N_MEMORY);
310 	}
311 	return totalpages;
312 }
313 
314 /*
315  * This finds a zone that can be used for ZONE_MOVABLE pages. The
316  * assumption is made that zones within a node are ordered in monotonic
317  * increasing memory addresses so that the "highest" populated zone is used
318  */
319 static void __init find_usable_zone_for_movable(void)
320 {
321 	int zone_index;
322 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 		if (zone_index == ZONE_MOVABLE)
324 			continue;
325 
326 		if (arch_zone_highest_possible_pfn[zone_index] >
327 				arch_zone_lowest_possible_pfn[zone_index])
328 			break;
329 	}
330 
331 	VM_BUG_ON(zone_index == -1);
332 	movable_zone = zone_index;
333 }
334 
335 /*
336  * Find the PFN the Movable zone begins in each node. Kernel memory
337  * is spread evenly between nodes as long as the nodes have enough
338  * memory. When they don't, some nodes will have more kernelcore than
339  * others
340  */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343 	int i, nid;
344 	unsigned long usable_startpfn;
345 	unsigned long kernelcore_node, kernelcore_remaining;
346 	/* save the state before borrow the nodemask */
347 	nodemask_t saved_node_state = node_states[N_MEMORY];
348 	unsigned long totalpages = early_calculate_totalpages();
349 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 	struct memblock_region *r;
351 
352 	/* Need to find movable_zone earlier when movable_node is specified. */
353 	find_usable_zone_for_movable();
354 
355 	/*
356 	 * If movable_node is specified, ignore kernelcore and movablecore
357 	 * options.
358 	 */
359 	if (movable_node_is_enabled()) {
360 		for_each_mem_region(r) {
361 			if (!memblock_is_hotpluggable(r))
362 				continue;
363 
364 			nid = memblock_get_region_node(r);
365 
366 			usable_startpfn = PFN_DOWN(r->base);
367 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 				min(usable_startpfn, zone_movable_pfn[nid]) :
369 				usable_startpfn;
370 		}
371 
372 		goto out2;
373 	}
374 
375 	/*
376 	 * If kernelcore=mirror is specified, ignore movablecore option
377 	 */
378 	if (mirrored_kernelcore) {
379 		bool mem_below_4gb_not_mirrored = false;
380 
381 		if (!memblock_has_mirror()) {
382 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 			goto out;
384 		}
385 
386 		if (is_kdump_kernel()) {
387 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 			goto out;
389 		}
390 
391 		for_each_mem_region(r) {
392 			if (memblock_is_mirror(r))
393 				continue;
394 
395 			nid = memblock_get_region_node(r);
396 
397 			usable_startpfn = memblock_region_memory_base_pfn(r);
398 
399 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 				mem_below_4gb_not_mirrored = true;
401 				continue;
402 			}
403 
404 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 				min(usable_startpfn, zone_movable_pfn[nid]) :
406 				usable_startpfn;
407 		}
408 
409 		if (mem_below_4gb_not_mirrored)
410 			pr_warn("This configuration results in unmirrored kernel memory.\n");
411 
412 		goto out2;
413 	}
414 
415 	/*
416 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 	 * amount of necessary memory.
418 	 */
419 	if (required_kernelcore_percent)
420 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 				       10000UL;
422 	if (required_movablecore_percent)
423 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 					10000UL;
425 
426 	/*
427 	 * If movablecore= was specified, calculate what size of
428 	 * kernelcore that corresponds so that memory usable for
429 	 * any allocation type is evenly spread. If both kernelcore
430 	 * and movablecore are specified, then the value of kernelcore
431 	 * will be used for required_kernelcore if it's greater than
432 	 * what movablecore would have allowed.
433 	 */
434 	if (required_movablecore) {
435 		unsigned long corepages;
436 
437 		/*
438 		 * Round-up so that ZONE_MOVABLE is at least as large as what
439 		 * was requested by the user
440 		 */
441 		required_movablecore =
442 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 		required_movablecore = min(totalpages, required_movablecore);
444 		corepages = totalpages - required_movablecore;
445 
446 		required_kernelcore = max(required_kernelcore, corepages);
447 	}
448 
449 	/*
450 	 * If kernelcore was not specified or kernelcore size is larger
451 	 * than totalpages, there is no ZONE_MOVABLE.
452 	 */
453 	if (!required_kernelcore || required_kernelcore >= totalpages)
454 		goto out;
455 
456 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458 
459 restart:
460 	/* Spread kernelcore memory as evenly as possible throughout nodes */
461 	kernelcore_node = required_kernelcore / usable_nodes;
462 	for_each_node_state(nid, N_MEMORY) {
463 		unsigned long start_pfn, end_pfn;
464 
465 		/*
466 		 * Recalculate kernelcore_node if the division per node
467 		 * now exceeds what is necessary to satisfy the requested
468 		 * amount of memory for the kernel
469 		 */
470 		if (required_kernelcore < kernelcore_node)
471 			kernelcore_node = required_kernelcore / usable_nodes;
472 
473 		/*
474 		 * As the map is walked, we track how much memory is usable
475 		 * by the kernel using kernelcore_remaining. When it is
476 		 * 0, the rest of the node is usable by ZONE_MOVABLE
477 		 */
478 		kernelcore_remaining = kernelcore_node;
479 
480 		/* Go through each range of PFNs within this node */
481 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 			unsigned long size_pages;
483 
484 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 			if (start_pfn >= end_pfn)
486 				continue;
487 
488 			/* Account for what is only usable for kernelcore */
489 			if (start_pfn < usable_startpfn) {
490 				unsigned long kernel_pages;
491 				kernel_pages = min(end_pfn, usable_startpfn)
492 								- start_pfn;
493 
494 				kernelcore_remaining -= min(kernel_pages,
495 							kernelcore_remaining);
496 				required_kernelcore -= min(kernel_pages,
497 							required_kernelcore);
498 
499 				/* Continue if range is now fully accounted */
500 				if (end_pfn <= usable_startpfn) {
501 
502 					/*
503 					 * Push zone_movable_pfn to the end so
504 					 * that if we have to rebalance
505 					 * kernelcore across nodes, we will
506 					 * not double account here
507 					 */
508 					zone_movable_pfn[nid] = end_pfn;
509 					continue;
510 				}
511 				start_pfn = usable_startpfn;
512 			}
513 
514 			/*
515 			 * The usable PFN range for ZONE_MOVABLE is from
516 			 * start_pfn->end_pfn. Calculate size_pages as the
517 			 * number of pages used as kernelcore
518 			 */
519 			size_pages = end_pfn - start_pfn;
520 			if (size_pages > kernelcore_remaining)
521 				size_pages = kernelcore_remaining;
522 			zone_movable_pfn[nid] = start_pfn + size_pages;
523 
524 			/*
525 			 * Some kernelcore has been met, update counts and
526 			 * break if the kernelcore for this node has been
527 			 * satisfied
528 			 */
529 			required_kernelcore -= min(required_kernelcore,
530 								size_pages);
531 			kernelcore_remaining -= size_pages;
532 			if (!kernelcore_remaining)
533 				break;
534 		}
535 	}
536 
537 	/*
538 	 * If there is still required_kernelcore, we do another pass with one
539 	 * less node in the count. This will push zone_movable_pfn[nid] further
540 	 * along on the nodes that still have memory until kernelcore is
541 	 * satisfied
542 	 */
543 	usable_nodes--;
544 	if (usable_nodes && required_kernelcore > usable_nodes)
545 		goto restart;
546 
547 out2:
548 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 		unsigned long start_pfn, end_pfn;
551 
552 		zone_movable_pfn[nid] =
553 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554 
555 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 		if (zone_movable_pfn[nid] >= end_pfn)
557 			zone_movable_pfn[nid] = 0;
558 	}
559 
560 out:
561 	/* restore the node_state */
562 	node_states[N_MEMORY] = saved_node_state;
563 }
564 
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 				unsigned long zone, int nid)
567 {
568 	mm_zero_struct_page(page);
569 	set_page_links(page, zone, nid, pfn);
570 	init_page_count(page);
571 	page_mapcount_reset(page);
572 	page_cpupid_reset_last(page);
573 	page_kasan_tag_reset(page);
574 
575 	INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 	if (!is_highmem_idx(zone))
579 		set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582 
583 #ifdef CONFIG_NUMA
584 /*
585  * During memory init memblocks map pfns to nids. The search is expensive and
586  * this caches recent lookups. The implementation of __early_pfn_to_nid
587  * treats start/end as pfns.
588  */
589 struct mminit_pfnnid_cache {
590 	unsigned long last_start;
591 	unsigned long last_end;
592 	int last_nid;
593 };
594 
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596 
597 /*
598  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599  */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 					struct mminit_pfnnid_cache *state)
602 {
603 	unsigned long start_pfn, end_pfn;
604 	int nid;
605 
606 	if (state->last_start <= pfn && pfn < state->last_end)
607 		return state->last_nid;
608 
609 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 	if (nid != NUMA_NO_NODE) {
611 		state->last_start = start_pfn;
612 		state->last_end = end_pfn;
613 		state->last_nid = nid;
614 	}
615 
616 	return nid;
617 }
618 
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621 	static DEFINE_SPINLOCK(early_pfn_lock);
622 	int nid;
623 
624 	spin_lock(&early_pfn_lock);
625 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 	if (nid < 0)
627 		nid = first_online_node;
628 	spin_unlock(&early_pfn_lock);
629 
630 	return nid;
631 }
632 
633 int hashdist = HASHDIST_DEFAULT;
634 
635 static int __init set_hashdist(char *str)
636 {
637 	if (!str)
638 		return 0;
639 	hashdist = simple_strtoul(str, &str, 0);
640 	return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643 
644 static inline void fixup_hashdist(void)
645 {
646 	if (num_node_state(N_MEMORY) == 1)
647 		hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652 
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656 	pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658 
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 		return false;
664 
665 	return true;
666 }
667 
668 /*
669  * Returns true when the remaining initialisation should be deferred until
670  * later in the boot cycle when it can be parallelised.
671  */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675 	static unsigned long prev_end_pfn, nr_initialised;
676 
677 	if (early_page_ext_enabled())
678 		return false;
679 	/*
680 	 * prev_end_pfn static that contains the end of previous zone
681 	 * No need to protect because called very early in boot before smp_init.
682 	 */
683 	if (prev_end_pfn != end_pfn) {
684 		prev_end_pfn = end_pfn;
685 		nr_initialised = 0;
686 	}
687 
688 	/* Always populate low zones for address-constrained allocations */
689 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
690 		return false;
691 
692 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
693 		return true;
694 	/*
695 	 * We start only with one section of pages, more pages are added as
696 	 * needed until the rest of deferred pages are initialized.
697 	 */
698 	nr_initialised++;
699 	if ((nr_initialised > PAGES_PER_SECTION) &&
700 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
701 		NODE_DATA(nid)->first_deferred_pfn = pfn;
702 		return true;
703 	}
704 	return false;
705 }
706 
707 static void __meminit init_reserved_page(unsigned long pfn, int nid)
708 {
709 	pg_data_t *pgdat;
710 	int zid;
711 
712 	if (early_page_initialised(pfn, nid))
713 		return;
714 
715 	pgdat = NODE_DATA(nid);
716 
717 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
718 		struct zone *zone = &pgdat->node_zones[zid];
719 
720 		if (zone_spans_pfn(zone, pfn))
721 			break;
722 	}
723 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
724 }
725 #else
726 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
727 
728 static inline bool early_page_initialised(unsigned long pfn, int nid)
729 {
730 	return true;
731 }
732 
733 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
734 {
735 	return false;
736 }
737 
738 static inline void init_reserved_page(unsigned long pfn, int nid)
739 {
740 }
741 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
742 
743 /*
744  * Initialised pages do not have PageReserved set. This function is
745  * called for each range allocated by the bootmem allocator and
746  * marks the pages PageReserved. The remaining valid pages are later
747  * sent to the buddy page allocator.
748  */
749 void __meminit reserve_bootmem_region(phys_addr_t start,
750 				      phys_addr_t end, int nid)
751 {
752 	unsigned long start_pfn = PFN_DOWN(start);
753 	unsigned long end_pfn = PFN_UP(end);
754 
755 	for (; start_pfn < end_pfn; start_pfn++) {
756 		if (pfn_valid(start_pfn)) {
757 			struct page *page = pfn_to_page(start_pfn);
758 
759 			init_reserved_page(start_pfn, nid);
760 
761 			/* Avoid false-positive PageTail() */
762 			INIT_LIST_HEAD(&page->lru);
763 
764 			/*
765 			 * no need for atomic set_bit because the struct
766 			 * page is not visible yet so nobody should
767 			 * access it yet.
768 			 */
769 			__SetPageReserved(page);
770 		}
771 	}
772 }
773 
774 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
775 static bool __meminit
776 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
777 {
778 	static struct memblock_region *r;
779 
780 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
781 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
782 			for_each_mem_region(r) {
783 				if (*pfn < memblock_region_memory_end_pfn(r))
784 					break;
785 			}
786 		}
787 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
788 		    memblock_is_mirror(r)) {
789 			*pfn = memblock_region_memory_end_pfn(r);
790 			return true;
791 		}
792 	}
793 	return false;
794 }
795 
796 /*
797  * Only struct pages that correspond to ranges defined by memblock.memory
798  * are zeroed and initialized by going through __init_single_page() during
799  * memmap_init_zone_range().
800  *
801  * But, there could be struct pages that correspond to holes in
802  * memblock.memory. This can happen because of the following reasons:
803  * - physical memory bank size is not necessarily the exact multiple of the
804  *   arbitrary section size
805  * - early reserved memory may not be listed in memblock.memory
806  * - non-memory regions covered by the contigious flatmem mapping
807  * - memory layouts defined with memmap= kernel parameter may not align
808  *   nicely with memmap sections
809  *
810  * Explicitly initialize those struct pages so that:
811  * - PG_Reserved is set
812  * - zone and node links point to zone and node that span the page if the
813  *   hole is in the middle of a zone
814  * - zone and node links point to adjacent zone/node if the hole falls on
815  *   the zone boundary; the pages in such holes will be prepended to the
816  *   zone/node above the hole except for the trailing pages in the last
817  *   section that will be appended to the zone/node below.
818  */
819 static void __init init_unavailable_range(unsigned long spfn,
820 					  unsigned long epfn,
821 					  int zone, int node)
822 {
823 	unsigned long pfn;
824 	u64 pgcnt = 0;
825 
826 	for (pfn = spfn; pfn < epfn; pfn++) {
827 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
828 			pfn = pageblock_end_pfn(pfn) - 1;
829 			continue;
830 		}
831 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
832 		__SetPageReserved(pfn_to_page(pfn));
833 		pgcnt++;
834 	}
835 
836 	if (pgcnt)
837 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
838 			node, zone_names[zone], pgcnt);
839 }
840 
841 /*
842  * Initially all pages are reserved - free ones are freed
843  * up by memblock_free_all() once the early boot process is
844  * done. Non-atomic initialization, single-pass.
845  *
846  * All aligned pageblocks are initialized to the specified migratetype
847  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
848  * zone stats (e.g., nr_isolate_pageblock) are touched.
849  */
850 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
851 		unsigned long start_pfn, unsigned long zone_end_pfn,
852 		enum meminit_context context,
853 		struct vmem_altmap *altmap, int migratetype)
854 {
855 	unsigned long pfn, end_pfn = start_pfn + size;
856 	struct page *page;
857 
858 	if (highest_memmap_pfn < end_pfn - 1)
859 		highest_memmap_pfn = end_pfn - 1;
860 
861 #ifdef CONFIG_ZONE_DEVICE
862 	/*
863 	 * Honor reservation requested by the driver for this ZONE_DEVICE
864 	 * memory. We limit the total number of pages to initialize to just
865 	 * those that might contain the memory mapping. We will defer the
866 	 * ZONE_DEVICE page initialization until after we have released
867 	 * the hotplug lock.
868 	 */
869 	if (zone == ZONE_DEVICE) {
870 		if (!altmap)
871 			return;
872 
873 		if (start_pfn == altmap->base_pfn)
874 			start_pfn += altmap->reserve;
875 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
876 	}
877 #endif
878 
879 	for (pfn = start_pfn; pfn < end_pfn; ) {
880 		/*
881 		 * There can be holes in boot-time mem_map[]s handed to this
882 		 * function.  They do not exist on hotplugged memory.
883 		 */
884 		if (context == MEMINIT_EARLY) {
885 			if (overlap_memmap_init(zone, &pfn))
886 				continue;
887 			if (defer_init(nid, pfn, zone_end_pfn)) {
888 				deferred_struct_pages = true;
889 				break;
890 			}
891 		}
892 
893 		page = pfn_to_page(pfn);
894 		__init_single_page(page, pfn, zone, nid);
895 		if (context == MEMINIT_HOTPLUG)
896 			__SetPageReserved(page);
897 
898 		/*
899 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
900 		 * such that unmovable allocations won't be scattered all
901 		 * over the place during system boot.
902 		 */
903 		if (pageblock_aligned(pfn)) {
904 			set_pageblock_migratetype(page, migratetype);
905 			cond_resched();
906 		}
907 		pfn++;
908 	}
909 }
910 
911 static void __init memmap_init_zone_range(struct zone *zone,
912 					  unsigned long start_pfn,
913 					  unsigned long end_pfn,
914 					  unsigned long *hole_pfn)
915 {
916 	unsigned long zone_start_pfn = zone->zone_start_pfn;
917 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
918 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
919 
920 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
921 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
922 
923 	if (start_pfn >= end_pfn)
924 		return;
925 
926 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
927 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
928 
929 	if (*hole_pfn < start_pfn)
930 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
931 
932 	*hole_pfn = end_pfn;
933 }
934 
935 static void __init memmap_init(void)
936 {
937 	unsigned long start_pfn, end_pfn;
938 	unsigned long hole_pfn = 0;
939 	int i, j, zone_id = 0, nid;
940 
941 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
942 		struct pglist_data *node = NODE_DATA(nid);
943 
944 		for (j = 0; j < MAX_NR_ZONES; j++) {
945 			struct zone *zone = node->node_zones + j;
946 
947 			if (!populated_zone(zone))
948 				continue;
949 
950 			memmap_init_zone_range(zone, start_pfn, end_pfn,
951 					       &hole_pfn);
952 			zone_id = j;
953 		}
954 	}
955 
956 #ifdef CONFIG_SPARSEMEM
957 	/*
958 	 * Initialize the memory map for hole in the range [memory_end,
959 	 * section_end].
960 	 * Append the pages in this hole to the highest zone in the last
961 	 * node.
962 	 * The call to init_unavailable_range() is outside the ifdef to
963 	 * silence the compiler warining about zone_id set but not used;
964 	 * for FLATMEM it is a nop anyway
965 	 */
966 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
967 	if (hole_pfn < end_pfn)
968 #endif
969 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
970 }
971 
972 #ifdef CONFIG_ZONE_DEVICE
973 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
974 					  unsigned long zone_idx, int nid,
975 					  struct dev_pagemap *pgmap)
976 {
977 
978 	__init_single_page(page, pfn, zone_idx, nid);
979 
980 	/*
981 	 * Mark page reserved as it will need to wait for onlining
982 	 * phase for it to be fully associated with a zone.
983 	 *
984 	 * We can use the non-atomic __set_bit operation for setting
985 	 * the flag as we are still initializing the pages.
986 	 */
987 	__SetPageReserved(page);
988 
989 	/*
990 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
991 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
992 	 * ever freed or placed on a driver-private list.
993 	 */
994 	page->pgmap = pgmap;
995 	page->zone_device_data = NULL;
996 
997 	/*
998 	 * Mark the block movable so that blocks are reserved for
999 	 * movable at startup. This will force kernel allocations
1000 	 * to reserve their blocks rather than leaking throughout
1001 	 * the address space during boot when many long-lived
1002 	 * kernel allocations are made.
1003 	 *
1004 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1005 	 * because this is done early in section_activate()
1006 	 */
1007 	if (pageblock_aligned(pfn)) {
1008 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1009 		cond_resched();
1010 	}
1011 
1012 	/*
1013 	 * ZONE_DEVICE pages are released directly to the driver page allocator
1014 	 * which will set the page count to 1 when allocating the page.
1015 	 */
1016 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1017 	    pgmap->type == MEMORY_DEVICE_COHERENT)
1018 		set_page_count(page, 0);
1019 }
1020 
1021 /*
1022  * With compound page geometry and when struct pages are stored in ram most
1023  * tail pages are reused. Consequently, the amount of unique struct pages to
1024  * initialize is a lot smaller that the total amount of struct pages being
1025  * mapped. This is a paired / mild layering violation with explicit knowledge
1026  * of how the sparse_vmemmap internals handle compound pages in the lack
1027  * of an altmap. See vmemmap_populate_compound_pages().
1028  */
1029 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1030 					      struct dev_pagemap *pgmap)
1031 {
1032 	if (!vmemmap_can_optimize(altmap, pgmap))
1033 		return pgmap_vmemmap_nr(pgmap);
1034 
1035 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1036 }
1037 
1038 static void __ref memmap_init_compound(struct page *head,
1039 				       unsigned long head_pfn,
1040 				       unsigned long zone_idx, int nid,
1041 				       struct dev_pagemap *pgmap,
1042 				       unsigned long nr_pages)
1043 {
1044 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1045 	unsigned int order = pgmap->vmemmap_shift;
1046 
1047 	__SetPageHead(head);
1048 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1049 		struct page *page = pfn_to_page(pfn);
1050 
1051 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1052 		prep_compound_tail(head, pfn - head_pfn);
1053 		set_page_count(page, 0);
1054 
1055 		/*
1056 		 * The first tail page stores important compound page info.
1057 		 * Call prep_compound_head() after the first tail page has
1058 		 * been initialized, to not have the data overwritten.
1059 		 */
1060 		if (pfn == head_pfn + 1)
1061 			prep_compound_head(head, order);
1062 	}
1063 }
1064 
1065 void __ref memmap_init_zone_device(struct zone *zone,
1066 				   unsigned long start_pfn,
1067 				   unsigned long nr_pages,
1068 				   struct dev_pagemap *pgmap)
1069 {
1070 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1071 	struct pglist_data *pgdat = zone->zone_pgdat;
1072 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1073 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1074 	unsigned long zone_idx = zone_idx(zone);
1075 	unsigned long start = jiffies;
1076 	int nid = pgdat->node_id;
1077 
1078 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1079 		return;
1080 
1081 	/*
1082 	 * The call to memmap_init should have already taken care
1083 	 * of the pages reserved for the memmap, so we can just jump to
1084 	 * the end of that region and start processing the device pages.
1085 	 */
1086 	if (altmap) {
1087 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1088 		nr_pages = end_pfn - start_pfn;
1089 	}
1090 
1091 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1092 		struct page *page = pfn_to_page(pfn);
1093 
1094 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1095 
1096 		if (pfns_per_compound == 1)
1097 			continue;
1098 
1099 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1100 				     compound_nr_pages(altmap, pgmap));
1101 	}
1102 
1103 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1104 		nr_pages, jiffies_to_msecs(jiffies - start));
1105 }
1106 #endif
1107 
1108 /*
1109  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1110  * because it is sized independent of architecture. Unlike the other zones,
1111  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1112  * in each node depending on the size of each node and how evenly kernelcore
1113  * is distributed. This helper function adjusts the zone ranges
1114  * provided by the architecture for a given node by using the end of the
1115  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1116  * zones within a node are in order of monotonic increases memory addresses
1117  */
1118 static void __init adjust_zone_range_for_zone_movable(int nid,
1119 					unsigned long zone_type,
1120 					unsigned long node_end_pfn,
1121 					unsigned long *zone_start_pfn,
1122 					unsigned long *zone_end_pfn)
1123 {
1124 	/* Only adjust if ZONE_MOVABLE is on this node */
1125 	if (zone_movable_pfn[nid]) {
1126 		/* Size ZONE_MOVABLE */
1127 		if (zone_type == ZONE_MOVABLE) {
1128 			*zone_start_pfn = zone_movable_pfn[nid];
1129 			*zone_end_pfn = min(node_end_pfn,
1130 				arch_zone_highest_possible_pfn[movable_zone]);
1131 
1132 		/* Adjust for ZONE_MOVABLE starting within this range */
1133 		} else if (!mirrored_kernelcore &&
1134 			*zone_start_pfn < zone_movable_pfn[nid] &&
1135 			*zone_end_pfn > zone_movable_pfn[nid]) {
1136 			*zone_end_pfn = zone_movable_pfn[nid];
1137 
1138 		/* Check if this whole range is within ZONE_MOVABLE */
1139 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1140 			*zone_start_pfn = *zone_end_pfn;
1141 	}
1142 }
1143 
1144 /*
1145  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1146  * then all holes in the requested range will be accounted for.
1147  */
1148 static unsigned long __init __absent_pages_in_range(int nid,
1149 				unsigned long range_start_pfn,
1150 				unsigned long range_end_pfn)
1151 {
1152 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1153 	unsigned long start_pfn, end_pfn;
1154 	int i;
1155 
1156 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1157 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1158 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1159 		nr_absent -= end_pfn - start_pfn;
1160 	}
1161 	return nr_absent;
1162 }
1163 
1164 /**
1165  * absent_pages_in_range - Return number of page frames in holes within a range
1166  * @start_pfn: The start PFN to start searching for holes
1167  * @end_pfn: The end PFN to stop searching for holes
1168  *
1169  * Return: the number of pages frames in memory holes within a range.
1170  */
1171 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1172 							unsigned long end_pfn)
1173 {
1174 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1175 }
1176 
1177 /* Return the number of page frames in holes in a zone on a node */
1178 static unsigned long __init zone_absent_pages_in_node(int nid,
1179 					unsigned long zone_type,
1180 					unsigned long zone_start_pfn,
1181 					unsigned long zone_end_pfn)
1182 {
1183 	unsigned long nr_absent;
1184 
1185 	/* zone is empty, we don't have any absent pages */
1186 	if (zone_start_pfn == zone_end_pfn)
1187 		return 0;
1188 
1189 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1190 
1191 	/*
1192 	 * ZONE_MOVABLE handling.
1193 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1194 	 * and vice versa.
1195 	 */
1196 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1197 		unsigned long start_pfn, end_pfn;
1198 		struct memblock_region *r;
1199 
1200 		for_each_mem_region(r) {
1201 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1202 					  zone_start_pfn, zone_end_pfn);
1203 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1204 					zone_start_pfn, zone_end_pfn);
1205 
1206 			if (zone_type == ZONE_MOVABLE &&
1207 			    memblock_is_mirror(r))
1208 				nr_absent += end_pfn - start_pfn;
1209 
1210 			if (zone_type == ZONE_NORMAL &&
1211 			    !memblock_is_mirror(r))
1212 				nr_absent += end_pfn - start_pfn;
1213 		}
1214 	}
1215 
1216 	return nr_absent;
1217 }
1218 
1219 /*
1220  * Return the number of pages a zone spans in a node, including holes
1221  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1222  */
1223 static unsigned long __init zone_spanned_pages_in_node(int nid,
1224 					unsigned long zone_type,
1225 					unsigned long node_start_pfn,
1226 					unsigned long node_end_pfn,
1227 					unsigned long *zone_start_pfn,
1228 					unsigned long *zone_end_pfn)
1229 {
1230 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1231 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1232 
1233 	/* Get the start and end of the zone */
1234 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1235 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1236 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1237 					   zone_start_pfn, zone_end_pfn);
1238 
1239 	/* Check that this node has pages within the zone's required range */
1240 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1241 		return 0;
1242 
1243 	/* Move the zone boundaries inside the node if necessary */
1244 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1245 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1246 
1247 	/* Return the spanned pages */
1248 	return *zone_end_pfn - *zone_start_pfn;
1249 }
1250 
1251 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1252 {
1253 	struct zone *z;
1254 
1255 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1256 		z->zone_start_pfn = 0;
1257 		z->spanned_pages = 0;
1258 		z->present_pages = 0;
1259 #if defined(CONFIG_MEMORY_HOTPLUG)
1260 		z->present_early_pages = 0;
1261 #endif
1262 	}
1263 
1264 	pgdat->node_spanned_pages = 0;
1265 	pgdat->node_present_pages = 0;
1266 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1267 }
1268 
1269 static void __init calc_nr_kernel_pages(void)
1270 {
1271 	unsigned long start_pfn, end_pfn;
1272 	phys_addr_t start_addr, end_addr;
1273 	u64 u;
1274 #ifdef CONFIG_HIGHMEM
1275 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1276 #endif
1277 
1278 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1279 		start_pfn = PFN_UP(start_addr);
1280 		end_pfn   = PFN_DOWN(end_addr);
1281 
1282 		if (start_pfn < end_pfn) {
1283 			nr_all_pages += end_pfn - start_pfn;
1284 #ifdef CONFIG_HIGHMEM
1285 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1286 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1287 #endif
1288 			nr_kernel_pages += end_pfn - start_pfn;
1289 		}
1290 	}
1291 }
1292 
1293 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1294 						unsigned long node_start_pfn,
1295 						unsigned long node_end_pfn)
1296 {
1297 	unsigned long realtotalpages = 0, totalpages = 0;
1298 	enum zone_type i;
1299 
1300 	for (i = 0; i < MAX_NR_ZONES; i++) {
1301 		struct zone *zone = pgdat->node_zones + i;
1302 		unsigned long zone_start_pfn, zone_end_pfn;
1303 		unsigned long spanned, absent;
1304 		unsigned long real_size;
1305 
1306 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1307 						     node_start_pfn,
1308 						     node_end_pfn,
1309 						     &zone_start_pfn,
1310 						     &zone_end_pfn);
1311 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1312 						   zone_start_pfn,
1313 						   zone_end_pfn);
1314 
1315 		real_size = spanned - absent;
1316 
1317 		if (spanned)
1318 			zone->zone_start_pfn = zone_start_pfn;
1319 		else
1320 			zone->zone_start_pfn = 0;
1321 		zone->spanned_pages = spanned;
1322 		zone->present_pages = real_size;
1323 #if defined(CONFIG_MEMORY_HOTPLUG)
1324 		zone->present_early_pages = real_size;
1325 #endif
1326 
1327 		totalpages += spanned;
1328 		realtotalpages += real_size;
1329 	}
1330 
1331 	pgdat->node_spanned_pages = totalpages;
1332 	pgdat->node_present_pages = realtotalpages;
1333 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1334 }
1335 
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1338 {
1339 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1340 
1341 	spin_lock_init(&ds_queue->split_queue_lock);
1342 	INIT_LIST_HEAD(&ds_queue->split_queue);
1343 	ds_queue->split_queue_len = 0;
1344 }
1345 #else
1346 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1347 #endif
1348 
1349 #ifdef CONFIG_COMPACTION
1350 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1351 {
1352 	init_waitqueue_head(&pgdat->kcompactd_wait);
1353 }
1354 #else
1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1356 #endif
1357 
1358 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1359 {
1360 	int i;
1361 
1362 	pgdat_resize_init(pgdat);
1363 	pgdat_kswapd_lock_init(pgdat);
1364 
1365 	pgdat_init_split_queue(pgdat);
1366 	pgdat_init_kcompactd(pgdat);
1367 
1368 	init_waitqueue_head(&pgdat->kswapd_wait);
1369 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1370 
1371 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1372 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1373 
1374 	pgdat_page_ext_init(pgdat);
1375 	lruvec_init(&pgdat->__lruvec);
1376 }
1377 
1378 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1379 							unsigned long remaining_pages)
1380 {
1381 	atomic_long_set(&zone->managed_pages, remaining_pages);
1382 	zone_set_nid(zone, nid);
1383 	zone->name = zone_names[idx];
1384 	zone->zone_pgdat = NODE_DATA(nid);
1385 	spin_lock_init(&zone->lock);
1386 	zone_seqlock_init(zone);
1387 	zone_pcp_init(zone);
1388 }
1389 
1390 static void __meminit zone_init_free_lists(struct zone *zone)
1391 {
1392 	unsigned int order, t;
1393 	for_each_migratetype_order(order, t) {
1394 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1395 		zone->free_area[order].nr_free = 0;
1396 	}
1397 
1398 #ifdef CONFIG_UNACCEPTED_MEMORY
1399 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1400 #endif
1401 }
1402 
1403 void __meminit init_currently_empty_zone(struct zone *zone,
1404 					unsigned long zone_start_pfn,
1405 					unsigned long size)
1406 {
1407 	struct pglist_data *pgdat = zone->zone_pgdat;
1408 	int zone_idx = zone_idx(zone) + 1;
1409 
1410 	if (zone_idx > pgdat->nr_zones)
1411 		pgdat->nr_zones = zone_idx;
1412 
1413 	zone->zone_start_pfn = zone_start_pfn;
1414 
1415 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1416 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1417 			pgdat->node_id,
1418 			(unsigned long)zone_idx(zone),
1419 			zone_start_pfn, (zone_start_pfn + size));
1420 
1421 	zone_init_free_lists(zone);
1422 	zone->initialized = 1;
1423 }
1424 
1425 #ifndef CONFIG_SPARSEMEM
1426 /*
1427  * Calculate the size of the zone->blockflags rounded to an unsigned long
1428  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1429  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1430  * round what is now in bits to nearest long in bits, then return it in
1431  * bytes.
1432  */
1433 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1434 {
1435 	unsigned long usemapsize;
1436 
1437 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1438 	usemapsize = roundup(zonesize, pageblock_nr_pages);
1439 	usemapsize = usemapsize >> pageblock_order;
1440 	usemapsize *= NR_PAGEBLOCK_BITS;
1441 	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1442 
1443 	return usemapsize / BITS_PER_BYTE;
1444 }
1445 
1446 static void __ref setup_usemap(struct zone *zone)
1447 {
1448 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1449 					       zone->spanned_pages);
1450 	zone->pageblock_flags = NULL;
1451 	if (usemapsize) {
1452 		zone->pageblock_flags =
1453 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1454 					    zone_to_nid(zone));
1455 		if (!zone->pageblock_flags)
1456 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1457 			      usemapsize, zone->name, zone_to_nid(zone));
1458 	}
1459 }
1460 #else
1461 static inline void setup_usemap(struct zone *zone) {}
1462 #endif /* CONFIG_SPARSEMEM */
1463 
1464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1465 
1466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1467 void __init set_pageblock_order(void)
1468 {
1469 	unsigned int order = MAX_PAGE_ORDER;
1470 
1471 	/* Check that pageblock_nr_pages has not already been setup */
1472 	if (pageblock_order)
1473 		return;
1474 
1475 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1476 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1477 		order = HUGETLB_PAGE_ORDER;
1478 
1479 	/*
1480 	 * Assume the largest contiguous order of interest is a huge page.
1481 	 * This value may be variable depending on boot parameters on powerpc.
1482 	 */
1483 	pageblock_order = order;
1484 }
1485 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1486 
1487 /*
1488  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1489  * is unused as pageblock_order is set at compile-time. See
1490  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1491  * the kernel config
1492  */
1493 void __init set_pageblock_order(void)
1494 {
1495 }
1496 
1497 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1498 
1499 /*
1500  * Set up the zone data structures
1501  * - init pgdat internals
1502  * - init all zones belonging to this node
1503  *
1504  * NOTE: this function is only called during memory hotplug
1505  */
1506 #ifdef CONFIG_MEMORY_HOTPLUG
1507 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1508 {
1509 	int nid = pgdat->node_id;
1510 	enum zone_type z;
1511 	int cpu;
1512 
1513 	pgdat_init_internals(pgdat);
1514 
1515 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1516 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1517 
1518 	/*
1519 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1520 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1521 	 * when it starts in the near future.
1522 	 */
1523 	pgdat->nr_zones = 0;
1524 	pgdat->kswapd_order = 0;
1525 	pgdat->kswapd_highest_zoneidx = 0;
1526 	pgdat->node_start_pfn = 0;
1527 	pgdat->node_present_pages = 0;
1528 
1529 	for_each_online_cpu(cpu) {
1530 		struct per_cpu_nodestat *p;
1531 
1532 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1533 		memset(p, 0, sizeof(*p));
1534 	}
1535 
1536 	/*
1537 	 * When memory is hot-added, all the memory is in offline state. So
1538 	 * clear all zones' present_pages and managed_pages because they will
1539 	 * be updated in online_pages() and offline_pages().
1540 	 */
1541 	for (z = 0; z < MAX_NR_ZONES; z++) {
1542 		struct zone *zone = pgdat->node_zones + z;
1543 
1544 		zone->present_pages = 0;
1545 		zone_init_internals(zone, z, nid, 0);
1546 	}
1547 }
1548 #endif
1549 
1550 static void __init free_area_init_core(struct pglist_data *pgdat)
1551 {
1552 	enum zone_type j;
1553 	int nid = pgdat->node_id;
1554 
1555 	pgdat_init_internals(pgdat);
1556 	pgdat->per_cpu_nodestats = &boot_nodestats;
1557 
1558 	for (j = 0; j < MAX_NR_ZONES; j++) {
1559 		struct zone *zone = pgdat->node_zones + j;
1560 		unsigned long size = zone->spanned_pages;
1561 
1562 		/*
1563 		 * Initialize zone->managed_pages as 0 , it will be reset
1564 		 * when memblock allocator frees pages into buddy system.
1565 		 */
1566 		zone_init_internals(zone, j, nid, zone->present_pages);
1567 
1568 		if (!size)
1569 			continue;
1570 
1571 		setup_usemap(zone);
1572 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1573 	}
1574 }
1575 
1576 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1577 			  phys_addr_t min_addr, int nid, bool exact_nid)
1578 {
1579 	void *ptr;
1580 
1581 	if (exact_nid)
1582 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1583 						   MEMBLOCK_ALLOC_ACCESSIBLE,
1584 						   nid);
1585 	else
1586 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1587 						 MEMBLOCK_ALLOC_ACCESSIBLE,
1588 						 nid);
1589 
1590 	if (ptr && size > 0)
1591 		page_init_poison(ptr, size);
1592 
1593 	return ptr;
1594 }
1595 
1596 #ifdef CONFIG_FLATMEM
1597 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1598 {
1599 	unsigned long start, offset, size, end;
1600 	struct page *map;
1601 
1602 	/* Skip empty nodes */
1603 	if (!pgdat->node_spanned_pages)
1604 		return;
1605 
1606 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1607 	offset = pgdat->node_start_pfn - start;
1608 	/*
1609 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1610 	 * aligned but the node_mem_map endpoints must be in order
1611 	 * for the buddy allocator to function correctly.
1612 	 */
1613 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1614 	size =  (end - start) * sizeof(struct page);
1615 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1616 			   pgdat->node_id, false);
1617 	if (!map)
1618 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1619 		      size, pgdat->node_id);
1620 	pgdat->node_mem_map = map + offset;
1621 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1622 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1623 		 (unsigned long)pgdat->node_mem_map);
1624 #ifndef CONFIG_NUMA
1625 	/* the global mem_map is just set as node 0's */
1626 	if (pgdat == NODE_DATA(0)) {
1627 		mem_map = NODE_DATA(0)->node_mem_map;
1628 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1629 			mem_map -= offset;
1630 	}
1631 #endif
1632 }
1633 #else
1634 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1635 #endif /* CONFIG_FLATMEM */
1636 
1637 /**
1638  * get_pfn_range_for_nid - Return the start and end page frames for a node
1639  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1640  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1641  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1642  *
1643  * It returns the start and end page frame of a node based on information
1644  * provided by memblock_set_node(). If called for a node
1645  * with no available memory, the start and end PFNs will be 0.
1646  */
1647 void __init get_pfn_range_for_nid(unsigned int nid,
1648 			unsigned long *start_pfn, unsigned long *end_pfn)
1649 {
1650 	unsigned long this_start_pfn, this_end_pfn;
1651 	int i;
1652 
1653 	*start_pfn = -1UL;
1654 	*end_pfn = 0;
1655 
1656 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1657 		*start_pfn = min(*start_pfn, this_start_pfn);
1658 		*end_pfn = max(*end_pfn, this_end_pfn);
1659 	}
1660 
1661 	if (*start_pfn == -1UL)
1662 		*start_pfn = 0;
1663 }
1664 
1665 static void __init free_area_init_node(int nid)
1666 {
1667 	pg_data_t *pgdat = NODE_DATA(nid);
1668 	unsigned long start_pfn = 0;
1669 	unsigned long end_pfn = 0;
1670 
1671 	/* pg_data_t should be reset to zero when it's allocated */
1672 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1673 
1674 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1675 
1676 	pgdat->node_id = nid;
1677 	pgdat->node_start_pfn = start_pfn;
1678 	pgdat->per_cpu_nodestats = NULL;
1679 
1680 	if (start_pfn != end_pfn) {
1681 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1682 			(u64)start_pfn << PAGE_SHIFT,
1683 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1684 
1685 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1686 	} else {
1687 		pr_info("Initmem setup node %d as memoryless\n", nid);
1688 
1689 		reset_memoryless_node_totalpages(pgdat);
1690 	}
1691 
1692 	alloc_node_mem_map(pgdat);
1693 	pgdat_set_deferred_range(pgdat);
1694 
1695 	free_area_init_core(pgdat);
1696 	lru_gen_init_pgdat(pgdat);
1697 }
1698 
1699 /* Any regular or high memory on that node ? */
1700 static void __init check_for_memory(pg_data_t *pgdat)
1701 {
1702 	enum zone_type zone_type;
1703 
1704 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1705 		struct zone *zone = &pgdat->node_zones[zone_type];
1706 		if (populated_zone(zone)) {
1707 			if (IS_ENABLED(CONFIG_HIGHMEM))
1708 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1709 			if (zone_type <= ZONE_NORMAL)
1710 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1711 			break;
1712 		}
1713 	}
1714 }
1715 
1716 #if MAX_NUMNODES > 1
1717 /*
1718  * Figure out the number of possible node ids.
1719  */
1720 void __init setup_nr_node_ids(void)
1721 {
1722 	unsigned int highest;
1723 
1724 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1725 	nr_node_ids = highest + 1;
1726 }
1727 #endif
1728 
1729 /*
1730  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1731  * such cases we allow max_zone_pfn sorted in the descending order
1732  */
1733 static bool arch_has_descending_max_zone_pfns(void)
1734 {
1735 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1736 }
1737 
1738 /**
1739  * free_area_init - Initialise all pg_data_t and zone data
1740  * @max_zone_pfn: an array of max PFNs for each zone
1741  *
1742  * This will call free_area_init_node() for each active node in the system.
1743  * Using the page ranges provided by memblock_set_node(), the size of each
1744  * zone in each node and their holes is calculated. If the maximum PFN
1745  * between two adjacent zones match, it is assumed that the zone is empty.
1746  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1747  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1748  * starts where the previous one ended. For example, ZONE_DMA32 starts
1749  * at arch_max_dma_pfn.
1750  */
1751 void __init free_area_init(unsigned long *max_zone_pfn)
1752 {
1753 	unsigned long start_pfn, end_pfn;
1754 	int i, nid, zone;
1755 	bool descending;
1756 
1757 	/* Record where the zone boundaries are */
1758 	memset(arch_zone_lowest_possible_pfn, 0,
1759 				sizeof(arch_zone_lowest_possible_pfn));
1760 	memset(arch_zone_highest_possible_pfn, 0,
1761 				sizeof(arch_zone_highest_possible_pfn));
1762 
1763 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1764 	descending = arch_has_descending_max_zone_pfns();
1765 
1766 	for (i = 0; i < MAX_NR_ZONES; i++) {
1767 		if (descending)
1768 			zone = MAX_NR_ZONES - i - 1;
1769 		else
1770 			zone = i;
1771 
1772 		if (zone == ZONE_MOVABLE)
1773 			continue;
1774 
1775 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1776 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1777 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1778 
1779 		start_pfn = end_pfn;
1780 	}
1781 
1782 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1783 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1784 	find_zone_movable_pfns_for_nodes();
1785 
1786 	/* Print out the zone ranges */
1787 	pr_info("Zone ranges:\n");
1788 	for (i = 0; i < MAX_NR_ZONES; i++) {
1789 		if (i == ZONE_MOVABLE)
1790 			continue;
1791 		pr_info("  %-8s ", zone_names[i]);
1792 		if (arch_zone_lowest_possible_pfn[i] ==
1793 				arch_zone_highest_possible_pfn[i])
1794 			pr_cont("empty\n");
1795 		else
1796 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1797 				(u64)arch_zone_lowest_possible_pfn[i]
1798 					<< PAGE_SHIFT,
1799 				((u64)arch_zone_highest_possible_pfn[i]
1800 					<< PAGE_SHIFT) - 1);
1801 	}
1802 
1803 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1804 	pr_info("Movable zone start for each node\n");
1805 	for (i = 0; i < MAX_NUMNODES; i++) {
1806 		if (zone_movable_pfn[i])
1807 			pr_info("  Node %d: %#018Lx\n", i,
1808 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1809 	}
1810 
1811 	/*
1812 	 * Print out the early node map, and initialize the
1813 	 * subsection-map relative to active online memory ranges to
1814 	 * enable future "sub-section" extensions of the memory map.
1815 	 */
1816 	pr_info("Early memory node ranges\n");
1817 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1818 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1819 			(u64)start_pfn << PAGE_SHIFT,
1820 			((u64)end_pfn << PAGE_SHIFT) - 1);
1821 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1822 	}
1823 
1824 	/* Initialise every node */
1825 	mminit_verify_pageflags_layout();
1826 	setup_nr_node_ids();
1827 	set_pageblock_order();
1828 
1829 	for_each_node(nid) {
1830 		pg_data_t *pgdat;
1831 
1832 		if (!node_online(nid)) {
1833 			/* Allocator not initialized yet */
1834 			pgdat = arch_alloc_nodedata(nid);
1835 			if (!pgdat)
1836 				panic("Cannot allocate %zuB for node %d.\n",
1837 				       sizeof(*pgdat), nid);
1838 			arch_refresh_nodedata(nid, pgdat);
1839 		}
1840 
1841 		pgdat = NODE_DATA(nid);
1842 		free_area_init_node(nid);
1843 
1844 		/*
1845 		 * No sysfs hierarcy will be created via register_one_node()
1846 		 *for memory-less node because here it's not marked as N_MEMORY
1847 		 *and won't be set online later. The benefit is userspace
1848 		 *program won't be confused by sysfs files/directories of
1849 		 *memory-less node. The pgdat will get fully initialized by
1850 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1851 		 */
1852 		if (pgdat->node_present_pages) {
1853 			node_set_state(nid, N_MEMORY);
1854 			check_for_memory(pgdat);
1855 		}
1856 	}
1857 
1858 	calc_nr_kernel_pages();
1859 	memmap_init();
1860 
1861 	/* disable hash distribution for systems with a single node */
1862 	fixup_hashdist();
1863 }
1864 
1865 /**
1866  * node_map_pfn_alignment - determine the maximum internode alignment
1867  *
1868  * This function should be called after node map is populated and sorted.
1869  * It calculates the maximum power of two alignment which can distinguish
1870  * all the nodes.
1871  *
1872  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1873  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1874  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1875  * shifted, 1GiB is enough and this function will indicate so.
1876  *
1877  * This is used to test whether pfn -> nid mapping of the chosen memory
1878  * model has fine enough granularity to avoid incorrect mapping for the
1879  * populated node map.
1880  *
1881  * Return: the determined alignment in pfn's.  0 if there is no alignment
1882  * requirement (single node).
1883  */
1884 unsigned long __init node_map_pfn_alignment(void)
1885 {
1886 	unsigned long accl_mask = 0, last_end = 0;
1887 	unsigned long start, end, mask;
1888 	int last_nid = NUMA_NO_NODE;
1889 	int i, nid;
1890 
1891 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1892 		if (!start || last_nid < 0 || last_nid == nid) {
1893 			last_nid = nid;
1894 			last_end = end;
1895 			continue;
1896 		}
1897 
1898 		/*
1899 		 * Start with a mask granular enough to pin-point to the
1900 		 * start pfn and tick off bits one-by-one until it becomes
1901 		 * too coarse to separate the current node from the last.
1902 		 */
1903 		mask = ~((1 << __ffs(start)) - 1);
1904 		while (mask && last_end <= (start & (mask << 1)))
1905 			mask <<= 1;
1906 
1907 		/* accumulate all internode masks */
1908 		accl_mask |= mask;
1909 	}
1910 
1911 	/* convert mask to number of pages */
1912 	return ~accl_mask + 1;
1913 }
1914 
1915 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1916 static void __init deferred_free_range(unsigned long pfn,
1917 				       unsigned long nr_pages)
1918 {
1919 	struct page *page;
1920 	unsigned long i;
1921 
1922 	if (!nr_pages)
1923 		return;
1924 
1925 	page = pfn_to_page(pfn);
1926 
1927 	/* Free a large naturally-aligned chunk if possible */
1928 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1929 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1930 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1931 		__free_pages_core(page, MAX_PAGE_ORDER);
1932 		return;
1933 	}
1934 
1935 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1936 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1937 
1938 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1939 		if (pageblock_aligned(pfn))
1940 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1941 		__free_pages_core(page, 0);
1942 	}
1943 }
1944 
1945 /* Completion tracking for deferred_init_memmap() threads */
1946 static atomic_t pgdat_init_n_undone __initdata;
1947 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1948 
1949 static inline void __init pgdat_init_report_one_done(void)
1950 {
1951 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1952 		complete(&pgdat_init_all_done_comp);
1953 }
1954 
1955 /*
1956  * Returns true if page needs to be initialized or freed to buddy allocator.
1957  *
1958  * We check if a current MAX_PAGE_ORDER block is valid by only checking the
1959  * validity of the head pfn.
1960  */
1961 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1962 {
1963 	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
1964 		return false;
1965 	return true;
1966 }
1967 
1968 /*
1969  * Free pages to buddy allocator. Try to free aligned pages in
1970  * MAX_ORDER_NR_PAGES sizes.
1971  */
1972 static void __init deferred_free_pages(unsigned long pfn,
1973 				       unsigned long end_pfn)
1974 {
1975 	unsigned long nr_free = 0;
1976 
1977 	for (; pfn < end_pfn; pfn++) {
1978 		if (!deferred_pfn_valid(pfn)) {
1979 			deferred_free_range(pfn - nr_free, nr_free);
1980 			nr_free = 0;
1981 		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
1982 			deferred_free_range(pfn - nr_free, nr_free);
1983 			nr_free = 1;
1984 		} else {
1985 			nr_free++;
1986 		}
1987 	}
1988 	/* Free the last block of pages to allocator */
1989 	deferred_free_range(pfn - nr_free, nr_free);
1990 }
1991 
1992 /*
1993  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1994  * by performing it only once every MAX_ORDER_NR_PAGES.
1995  * Return number of pages initialized.
1996  */
1997 static unsigned long  __init deferred_init_pages(struct zone *zone,
1998 						 unsigned long pfn,
1999 						 unsigned long end_pfn)
2000 {
2001 	int nid = zone_to_nid(zone);
2002 	unsigned long nr_pages = 0;
2003 	int zid = zone_idx(zone);
2004 	struct page *page = NULL;
2005 
2006 	for (; pfn < end_pfn; pfn++) {
2007 		if (!deferred_pfn_valid(pfn)) {
2008 			page = NULL;
2009 			continue;
2010 		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2011 			page = pfn_to_page(pfn);
2012 		} else {
2013 			page++;
2014 		}
2015 		__init_single_page(page, pfn, zid, nid);
2016 		nr_pages++;
2017 	}
2018 	return nr_pages;
2019 }
2020 
2021 /*
2022  * This function is meant to pre-load the iterator for the zone init.
2023  * Specifically it walks through the ranges until we are caught up to the
2024  * first_init_pfn value and exits there. If we never encounter the value we
2025  * return false indicating there are no valid ranges left.
2026  */
2027 static bool __init
2028 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2029 				    unsigned long *spfn, unsigned long *epfn,
2030 				    unsigned long first_init_pfn)
2031 {
2032 	u64 j;
2033 
2034 	/*
2035 	 * Start out by walking through the ranges in this zone that have
2036 	 * already been initialized. We don't need to do anything with them
2037 	 * so we just need to flush them out of the system.
2038 	 */
2039 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2040 		if (*epfn <= first_init_pfn)
2041 			continue;
2042 		if (*spfn < first_init_pfn)
2043 			*spfn = first_init_pfn;
2044 		*i = j;
2045 		return true;
2046 	}
2047 
2048 	return false;
2049 }
2050 
2051 /*
2052  * Initialize and free pages. We do it in two loops: first we initialize
2053  * struct page, then free to buddy allocator, because while we are
2054  * freeing pages we can access pages that are ahead (computing buddy
2055  * page in __free_one_page()).
2056  *
2057  * In order to try and keep some memory in the cache we have the loop
2058  * broken along max page order boundaries. This way we will not cause
2059  * any issues with the buddy page computation.
2060  */
2061 static unsigned long __init
2062 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2063 		       unsigned long *end_pfn)
2064 {
2065 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2066 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2067 	unsigned long nr_pages = 0;
2068 	u64 j = *i;
2069 
2070 	/* First we loop through and initialize the page values */
2071 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2072 		unsigned long t;
2073 
2074 		if (mo_pfn <= *start_pfn)
2075 			break;
2076 
2077 		t = min(mo_pfn, *end_pfn);
2078 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2079 
2080 		if (mo_pfn < *end_pfn) {
2081 			*start_pfn = mo_pfn;
2082 			break;
2083 		}
2084 	}
2085 
2086 	/* Reset values and now loop through freeing pages as needed */
2087 	swap(j, *i);
2088 
2089 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2090 		unsigned long t;
2091 
2092 		if (mo_pfn <= spfn)
2093 			break;
2094 
2095 		t = min(mo_pfn, epfn);
2096 		deferred_free_pages(spfn, t);
2097 
2098 		if (mo_pfn <= epfn)
2099 			break;
2100 	}
2101 
2102 	return nr_pages;
2103 }
2104 
2105 static void __init
2106 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2107 			   void *arg)
2108 {
2109 	unsigned long spfn, epfn;
2110 	struct zone *zone = arg;
2111 	u64 i;
2112 
2113 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2114 
2115 	/*
2116 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2117 	 * we can avoid introducing any issues with the buddy allocator.
2118 	 */
2119 	while (spfn < end_pfn) {
2120 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2121 		cond_resched();
2122 	}
2123 }
2124 
2125 /* An arch may override for more concurrency. */
2126 __weak int __init
2127 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2128 {
2129 	return 1;
2130 }
2131 
2132 /* Initialise remaining memory on a node */
2133 static int __init deferred_init_memmap(void *data)
2134 {
2135 	pg_data_t *pgdat = data;
2136 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2137 	unsigned long spfn = 0, epfn = 0;
2138 	unsigned long first_init_pfn, flags;
2139 	unsigned long start = jiffies;
2140 	struct zone *zone;
2141 	int zid, max_threads;
2142 	u64 i;
2143 
2144 	/* Bind memory initialisation thread to a local node if possible */
2145 	if (!cpumask_empty(cpumask))
2146 		set_cpus_allowed_ptr(current, cpumask);
2147 
2148 	pgdat_resize_lock(pgdat, &flags);
2149 	first_init_pfn = pgdat->first_deferred_pfn;
2150 	if (first_init_pfn == ULONG_MAX) {
2151 		pgdat_resize_unlock(pgdat, &flags);
2152 		pgdat_init_report_one_done();
2153 		return 0;
2154 	}
2155 
2156 	/* Sanity check boundaries */
2157 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2158 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2159 	pgdat->first_deferred_pfn = ULONG_MAX;
2160 
2161 	/*
2162 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2163 	 * interrupt thread must allocate this early in boot, zone must be
2164 	 * pre-grown prior to start of deferred page initialization.
2165 	 */
2166 	pgdat_resize_unlock(pgdat, &flags);
2167 
2168 	/* Only the highest zone is deferred so find it */
2169 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2170 		zone = pgdat->node_zones + zid;
2171 		if (first_init_pfn < zone_end_pfn(zone))
2172 			break;
2173 	}
2174 
2175 	/* If the zone is empty somebody else may have cleared out the zone */
2176 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2177 						 first_init_pfn))
2178 		goto zone_empty;
2179 
2180 	max_threads = deferred_page_init_max_threads(cpumask);
2181 
2182 	while (spfn < epfn) {
2183 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2184 		struct padata_mt_job job = {
2185 			.thread_fn   = deferred_init_memmap_chunk,
2186 			.fn_arg      = zone,
2187 			.start       = spfn,
2188 			.size        = epfn_align - spfn,
2189 			.align       = PAGES_PER_SECTION,
2190 			.min_chunk   = PAGES_PER_SECTION,
2191 			.max_threads = max_threads,
2192 			.numa_aware  = false,
2193 		};
2194 
2195 		padata_do_multithreaded(&job);
2196 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2197 						    epfn_align);
2198 	}
2199 zone_empty:
2200 	/* Sanity check that the next zone really is unpopulated */
2201 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2202 
2203 	pr_info("node %d deferred pages initialised in %ums\n",
2204 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2205 
2206 	pgdat_init_report_one_done();
2207 	return 0;
2208 }
2209 
2210 /*
2211  * If this zone has deferred pages, try to grow it by initializing enough
2212  * deferred pages to satisfy the allocation specified by order, rounded up to
2213  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2214  * of SECTION_SIZE bytes by initializing struct pages in increments of
2215  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2216  *
2217  * Return true when zone was grown, otherwise return false. We return true even
2218  * when we grow less than requested, to let the caller decide if there are
2219  * enough pages to satisfy the allocation.
2220  */
2221 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2222 {
2223 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2224 	pg_data_t *pgdat = zone->zone_pgdat;
2225 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2226 	unsigned long spfn, epfn, flags;
2227 	unsigned long nr_pages = 0;
2228 	u64 i;
2229 
2230 	/* Only the last zone may have deferred pages */
2231 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2232 		return false;
2233 
2234 	pgdat_resize_lock(pgdat, &flags);
2235 
2236 	/*
2237 	 * If someone grew this zone while we were waiting for spinlock, return
2238 	 * true, as there might be enough pages already.
2239 	 */
2240 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2241 		pgdat_resize_unlock(pgdat, &flags);
2242 		return true;
2243 	}
2244 
2245 	/* If the zone is empty somebody else may have cleared out the zone */
2246 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2247 						 first_deferred_pfn)) {
2248 		pgdat->first_deferred_pfn = ULONG_MAX;
2249 		pgdat_resize_unlock(pgdat, &flags);
2250 		/* Retry only once. */
2251 		return first_deferred_pfn != ULONG_MAX;
2252 	}
2253 
2254 	/*
2255 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2256 	 * that we can avoid introducing any issues with the buddy
2257 	 * allocator.
2258 	 */
2259 	while (spfn < epfn) {
2260 		/* update our first deferred PFN for this section */
2261 		first_deferred_pfn = spfn;
2262 
2263 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2264 		touch_nmi_watchdog();
2265 
2266 		/* We should only stop along section boundaries */
2267 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2268 			continue;
2269 
2270 		/* If our quota has been met we can stop here */
2271 		if (nr_pages >= nr_pages_needed)
2272 			break;
2273 	}
2274 
2275 	pgdat->first_deferred_pfn = spfn;
2276 	pgdat_resize_unlock(pgdat, &flags);
2277 
2278 	return nr_pages > 0;
2279 }
2280 
2281 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2282 
2283 #ifdef CONFIG_CMA
2284 void __init init_cma_reserved_pageblock(struct page *page)
2285 {
2286 	unsigned i = pageblock_nr_pages;
2287 	struct page *p = page;
2288 
2289 	do {
2290 		__ClearPageReserved(p);
2291 		set_page_count(p, 0);
2292 	} while (++p, --i);
2293 
2294 	set_pageblock_migratetype(page, MIGRATE_CMA);
2295 	set_page_refcounted(page);
2296 	__free_pages(page, pageblock_order);
2297 
2298 	adjust_managed_page_count(page, pageblock_nr_pages);
2299 	page_zone(page)->cma_pages += pageblock_nr_pages;
2300 }
2301 #endif
2302 
2303 void set_zone_contiguous(struct zone *zone)
2304 {
2305 	unsigned long block_start_pfn = zone->zone_start_pfn;
2306 	unsigned long block_end_pfn;
2307 
2308 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2309 	for (; block_start_pfn < zone_end_pfn(zone);
2310 			block_start_pfn = block_end_pfn,
2311 			 block_end_pfn += pageblock_nr_pages) {
2312 
2313 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2314 
2315 		if (!__pageblock_pfn_to_page(block_start_pfn,
2316 					     block_end_pfn, zone))
2317 			return;
2318 		cond_resched();
2319 	}
2320 
2321 	/* We confirm that there is no hole */
2322 	zone->contiguous = true;
2323 }
2324 
2325 void __init page_alloc_init_late(void)
2326 {
2327 	struct zone *zone;
2328 	int nid;
2329 
2330 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2331 
2332 	/* There will be num_node_state(N_MEMORY) threads */
2333 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2334 	for_each_node_state(nid, N_MEMORY) {
2335 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2336 	}
2337 
2338 	/* Block until all are initialised */
2339 	wait_for_completion(&pgdat_init_all_done_comp);
2340 
2341 	/*
2342 	 * We initialized the rest of the deferred pages.  Permanently disable
2343 	 * on-demand struct page initialization.
2344 	 */
2345 	static_branch_disable(&deferred_pages);
2346 
2347 	/* Reinit limits that are based on free pages after the kernel is up */
2348 	files_maxfiles_init();
2349 #endif
2350 
2351 	buffer_init();
2352 
2353 	/* Discard memblock private memory */
2354 	memblock_discard();
2355 
2356 	for_each_node_state(nid, N_MEMORY)
2357 		shuffle_free_memory(NODE_DATA(nid));
2358 
2359 	for_each_populated_zone(zone)
2360 		set_zone_contiguous(zone);
2361 
2362 	/* Initialize page ext after all struct pages are initialized. */
2363 	if (deferred_struct_pages)
2364 		page_ext_init();
2365 
2366 	page_alloc_sysctl_init();
2367 }
2368 
2369 /*
2370  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2371  * machines. As memory size is increased the scale is also increased but at
2372  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2373  * quadruples the scale is increased by one, which means the size of hash table
2374  * only doubles, instead of quadrupling as well.
2375  * Because 32-bit systems cannot have large physical memory, where this scaling
2376  * makes sense, it is disabled on such platforms.
2377  */
2378 #if __BITS_PER_LONG > 32
2379 #define ADAPT_SCALE_BASE	(64ul << 30)
2380 #define ADAPT_SCALE_SHIFT	2
2381 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2382 #endif
2383 
2384 /*
2385  * allocate a large system hash table from bootmem
2386  * - it is assumed that the hash table must contain an exact power-of-2
2387  *   quantity of entries
2388  * - limit is the number of hash buckets, not the total allocation size
2389  */
2390 void *__init alloc_large_system_hash(const char *tablename,
2391 				     unsigned long bucketsize,
2392 				     unsigned long numentries,
2393 				     int scale,
2394 				     int flags,
2395 				     unsigned int *_hash_shift,
2396 				     unsigned int *_hash_mask,
2397 				     unsigned long low_limit,
2398 				     unsigned long high_limit)
2399 {
2400 	unsigned long long max = high_limit;
2401 	unsigned long log2qty, size;
2402 	void *table;
2403 	gfp_t gfp_flags;
2404 	bool virt;
2405 	bool huge;
2406 
2407 	/* allow the kernel cmdline to have a say */
2408 	if (!numentries) {
2409 		/* round applicable memory size up to nearest megabyte */
2410 		numentries = nr_kernel_pages;
2411 
2412 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2413 		if (PAGE_SIZE < SZ_1M)
2414 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2415 
2416 #if __BITS_PER_LONG > 32
2417 		if (!high_limit) {
2418 			unsigned long adapt;
2419 
2420 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2421 			     adapt <<= ADAPT_SCALE_SHIFT)
2422 				scale++;
2423 		}
2424 #endif
2425 
2426 		/* limit to 1 bucket per 2^scale bytes of low memory */
2427 		if (scale > PAGE_SHIFT)
2428 			numentries >>= (scale - PAGE_SHIFT);
2429 		else
2430 			numentries <<= (PAGE_SHIFT - scale);
2431 
2432 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2433 			numentries = PAGE_SIZE / bucketsize;
2434 	}
2435 	numentries = roundup_pow_of_two(numentries);
2436 
2437 	/* limit allocation size to 1/16 total memory by default */
2438 	if (max == 0) {
2439 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2440 		do_div(max, bucketsize);
2441 	}
2442 	max = min(max, 0x80000000ULL);
2443 
2444 	if (numentries < low_limit)
2445 		numentries = low_limit;
2446 	if (numentries > max)
2447 		numentries = max;
2448 
2449 	log2qty = ilog2(numentries);
2450 
2451 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2452 	do {
2453 		virt = false;
2454 		size = bucketsize << log2qty;
2455 		if (flags & HASH_EARLY) {
2456 			if (flags & HASH_ZERO)
2457 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2458 			else
2459 				table = memblock_alloc_raw(size,
2460 							   SMP_CACHE_BYTES);
2461 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2462 			table = vmalloc_huge(size, gfp_flags);
2463 			virt = true;
2464 			if (table)
2465 				huge = is_vm_area_hugepages(table);
2466 		} else {
2467 			/*
2468 			 * If bucketsize is not a power-of-two, we may free
2469 			 * some pages at the end of hash table which
2470 			 * alloc_pages_exact() automatically does
2471 			 */
2472 			table = alloc_pages_exact(size, gfp_flags);
2473 			kmemleak_alloc(table, size, 1, gfp_flags);
2474 		}
2475 	} while (!table && size > PAGE_SIZE && --log2qty);
2476 
2477 	if (!table)
2478 		panic("Failed to allocate %s hash table\n", tablename);
2479 
2480 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2481 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2482 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2483 
2484 	if (_hash_shift)
2485 		*_hash_shift = log2qty;
2486 	if (_hash_mask)
2487 		*_hash_mask = (1 << log2qty) - 1;
2488 
2489 	return table;
2490 }
2491 
2492 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2493 							unsigned int order)
2494 {
2495 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2496 		int nid = early_pfn_to_nid(pfn);
2497 
2498 		if (!early_page_initialised(pfn, nid))
2499 			return;
2500 	}
2501 
2502 	if (!kmsan_memblock_free_pages(page, order)) {
2503 		/* KMSAN will take care of these pages. */
2504 		return;
2505 	}
2506 
2507 	/* pages were reserved and not allocated */
2508 	if (mem_alloc_profiling_enabled()) {
2509 		union codetag_ref *ref = get_page_tag_ref(page);
2510 
2511 		if (ref) {
2512 			set_codetag_empty(ref);
2513 			put_page_tag_ref(ref);
2514 		}
2515 	}
2516 
2517 	__free_pages_core(page, order);
2518 }
2519 
2520 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2521 EXPORT_SYMBOL(init_on_alloc);
2522 
2523 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2524 EXPORT_SYMBOL(init_on_free);
2525 
2526 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON, init_mlocked_on_free);
2527 EXPORT_SYMBOL(init_mlocked_on_free);
2528 
2529 static bool _init_on_alloc_enabled_early __read_mostly
2530 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2531 static int __init early_init_on_alloc(char *buf)
2532 {
2533 
2534 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2535 }
2536 early_param("init_on_alloc", early_init_on_alloc);
2537 
2538 static bool _init_on_free_enabled_early __read_mostly
2539 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2540 static int __init early_init_on_free(char *buf)
2541 {
2542 	return kstrtobool(buf, &_init_on_free_enabled_early);
2543 }
2544 early_param("init_on_free", early_init_on_free);
2545 
2546 static bool _init_mlocked_on_free_enabled_early __read_mostly
2547 				= IS_ENABLED(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON);
2548 static int __init early_init_mlocked_on_free(char *buf)
2549 {
2550 	return kstrtobool(buf, &_init_mlocked_on_free_enabled_early);
2551 }
2552 early_param("init_mlocked_on_free", early_init_mlocked_on_free);
2553 
2554 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2555 
2556 /*
2557  * Enable static keys related to various memory debugging and hardening options.
2558  * Some override others, and depend on early params that are evaluated in the
2559  * order of appearance. So we need to first gather the full picture of what was
2560  * enabled, and then make decisions.
2561  */
2562 static void __init mem_debugging_and_hardening_init(void)
2563 {
2564 	bool page_poisoning_requested = false;
2565 	bool want_check_pages = false;
2566 
2567 #ifdef CONFIG_PAGE_POISONING
2568 	/*
2569 	 * Page poisoning is debug page alloc for some arches. If
2570 	 * either of those options are enabled, enable poisoning.
2571 	 */
2572 	if (page_poisoning_enabled() ||
2573 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2574 	      debug_pagealloc_enabled())) {
2575 		static_branch_enable(&_page_poisoning_enabled);
2576 		page_poisoning_requested = true;
2577 		want_check_pages = true;
2578 	}
2579 #endif
2580 
2581 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early ||
2582 	    _init_mlocked_on_free_enabled_early) &&
2583 	    page_poisoning_requested) {
2584 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2585 			"will take precedence over init_on_alloc, init_on_free "
2586 			"and init_mlocked_on_free\n");
2587 		_init_on_alloc_enabled_early = false;
2588 		_init_on_free_enabled_early = false;
2589 		_init_mlocked_on_free_enabled_early = false;
2590 	}
2591 
2592 	if (_init_mlocked_on_free_enabled_early && _init_on_free_enabled_early) {
2593 		pr_info("mem auto-init: init_on_free is on, "
2594 			"will take precedence over init_mlocked_on_free\n");
2595 		_init_mlocked_on_free_enabled_early = false;
2596 	}
2597 
2598 	if (_init_on_alloc_enabled_early) {
2599 		want_check_pages = true;
2600 		static_branch_enable(&init_on_alloc);
2601 	} else {
2602 		static_branch_disable(&init_on_alloc);
2603 	}
2604 
2605 	if (_init_on_free_enabled_early) {
2606 		want_check_pages = true;
2607 		static_branch_enable(&init_on_free);
2608 	} else {
2609 		static_branch_disable(&init_on_free);
2610 	}
2611 
2612 	if (_init_mlocked_on_free_enabled_early) {
2613 		want_check_pages = true;
2614 		static_branch_enable(&init_mlocked_on_free);
2615 	} else {
2616 		static_branch_disable(&init_mlocked_on_free);
2617 	}
2618 
2619 	if (IS_ENABLED(CONFIG_KMSAN) && (_init_on_alloc_enabled_early ||
2620 	    _init_on_free_enabled_early || _init_mlocked_on_free_enabled_early))
2621 		pr_info("mem auto-init: please make sure init_on_alloc, init_on_free and "
2622 			"init_mlocked_on_free are disabled when running KMSAN\n");
2623 
2624 #ifdef CONFIG_DEBUG_PAGEALLOC
2625 	if (debug_pagealloc_enabled()) {
2626 		want_check_pages = true;
2627 		static_branch_enable(&_debug_pagealloc_enabled);
2628 
2629 		if (debug_guardpage_minorder())
2630 			static_branch_enable(&_debug_guardpage_enabled);
2631 	}
2632 #endif
2633 
2634 	/*
2635 	 * Any page debugging or hardening option also enables sanity checking
2636 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2637 	 * enabled already.
2638 	 */
2639 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2640 		static_branch_enable(&check_pages_enabled);
2641 }
2642 
2643 /* Report memory auto-initialization states for this boot. */
2644 static void __init report_meminit(void)
2645 {
2646 	const char *stack;
2647 
2648 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2649 		stack = "all(pattern)";
2650 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2651 		stack = "all(zero)";
2652 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2653 		stack = "byref_all(zero)";
2654 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2655 		stack = "byref(zero)";
2656 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2657 		stack = "__user(zero)";
2658 	else
2659 		stack = "off";
2660 
2661 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s, mlocked free:%s\n",
2662 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2663 		want_init_on_free() ? "on" : "off",
2664 		want_init_mlocked_on_free() ? "on" : "off");
2665 	if (want_init_on_free())
2666 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2667 }
2668 
2669 static void __init mem_init_print_info(void)
2670 {
2671 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2672 	unsigned long init_code_size, init_data_size;
2673 
2674 	physpages = get_num_physpages();
2675 	codesize = _etext - _stext;
2676 	datasize = _edata - _sdata;
2677 	rosize = __end_rodata - __start_rodata;
2678 	bss_size = __bss_stop - __bss_start;
2679 	init_data_size = __init_end - __init_begin;
2680 	init_code_size = _einittext - _sinittext;
2681 
2682 	/*
2683 	 * Detect special cases and adjust section sizes accordingly:
2684 	 * 1) .init.* may be embedded into .data sections
2685 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2686 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2687 	 * 3) .rodata.* may be embedded into .text or .data sections.
2688 	 */
2689 #define adj_init_size(start, end, size, pos, adj) \
2690 	do { \
2691 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2692 			size -= adj; \
2693 	} while (0)
2694 
2695 	adj_init_size(__init_begin, __init_end, init_data_size,
2696 		     _sinittext, init_code_size);
2697 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2698 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2699 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2700 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2701 
2702 #undef	adj_init_size
2703 
2704 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2705 #ifdef	CONFIG_HIGHMEM
2706 		", %luK highmem"
2707 #endif
2708 		")\n",
2709 		K(nr_free_pages()), K(physpages),
2710 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2711 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2712 		K(physpages - totalram_pages() - totalcma_pages),
2713 		K(totalcma_pages)
2714 #ifdef	CONFIG_HIGHMEM
2715 		, K(totalhigh_pages())
2716 #endif
2717 		);
2718 }
2719 
2720 /*
2721  * Set up kernel memory allocators
2722  */
2723 void __init mm_core_init(void)
2724 {
2725 	/* Initializations relying on SMP setup */
2726 	build_all_zonelists(NULL);
2727 	page_alloc_init_cpuhp();
2728 
2729 	/*
2730 	 * page_ext requires contiguous pages,
2731 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2732 	 */
2733 	page_ext_init_flatmem();
2734 	mem_debugging_and_hardening_init();
2735 	kfence_alloc_pool_and_metadata();
2736 	report_meminit();
2737 	kmsan_init_shadow();
2738 	stack_depot_early_init();
2739 	mem_init();
2740 	mem_init_print_info();
2741 	kmem_cache_init();
2742 	/*
2743 	 * page_owner must be initialized after buddy is ready, and also after
2744 	 * slab is ready so that stack_depot_init() works properly
2745 	 */
2746 	page_ext_init_flatmem_late();
2747 	kmemleak_init();
2748 	ptlock_cache_init();
2749 	pgtable_cache_init();
2750 	debug_objects_mem_init();
2751 	vmalloc_init();
2752 	/* If no deferred init page_ext now, as vmap is fully initialized */
2753 	if (!deferred_struct_pages)
2754 		page_ext_init();
2755 	/* Should be run before the first non-init thread is created */
2756 	init_espfix_bsp();
2757 	/* Should be run after espfix64 is set up. */
2758 	pti_init();
2759 	kmsan_init_runtime();
2760 	mm_cache_init();
2761 	execmem_init();
2762 }
2763