xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 336b4dae6dfecc9aa53a3a68c71b9c1c1d466388)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 #include "irq-msi-lib.h"
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
51 
52 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
69 
70 /*
71  * Collection structure - just an ID, and a redistributor address to
72  * ping. We use one per CPU as a bag of interrupts assigned to this
73  * CPU.
74  */
75 struct its_collection {
76 	u64			target_address;
77 	u16			col_id;
78 };
79 
80 /*
81  * The ITS_BASER structure - contains memory information, cached
82  * value of BASER register configuration and ITS page size.
83  */
84 struct its_baser {
85 	void		*base;
86 	u64		val;
87 	u32		order;
88 	u32		psz;
89 };
90 
91 struct its_device;
92 
93 /*
94  * The ITS structure - contains most of the infrastructure, with the
95  * top-level MSI domain, the command queue, the collections, and the
96  * list of devices writing to it.
97  *
98  * dev_alloc_lock has to be taken for device allocations, while the
99  * spinlock must be taken to parse data structures such as the device
100  * list.
101  */
102 struct its_node {
103 	raw_spinlock_t		lock;
104 	struct mutex		dev_alloc_lock;
105 	struct list_head	entry;
106 	void __iomem		*base;
107 	void __iomem		*sgir_base;
108 	phys_addr_t		phys_base;
109 	struct its_cmd_block	*cmd_base;
110 	struct its_cmd_block	*cmd_write;
111 	struct its_baser	tables[GITS_BASER_NR_REGS];
112 	struct its_collection	*collections;
113 	struct fwnode_handle	*fwnode_handle;
114 	u64			(*get_msi_base)(struct its_device *its_dev);
115 	u64			typer;
116 	u64			cbaser_save;
117 	u32			ctlr_save;
118 	u32			mpidr;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	int			numa_node;
123 	unsigned int		msi_domain_flags;
124 	u32			pre_its_base; /* for Socionext Synquacer */
125 	int			vlpi_redist_offset;
126 };
127 
128 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
129 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
130 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
131 
132 #define ITS_ITT_ALIGN		SZ_256
133 
134 /* The maximum number of VPEID bits supported by VLPI commands */
135 #define ITS_MAX_VPEID_BITS						\
136 	({								\
137 		int nvpeid = 16;					\
138 		if (gic_rdists->has_rvpeid &&				\
139 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
140 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
141 				      GICD_TYPER2_VID);			\
142 									\
143 		nvpeid;							\
144 	})
145 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
146 
147 /* Convert page order to size in bytes */
148 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
149 
150 struct event_lpi_map {
151 	unsigned long		*lpi_map;
152 	u16			*col_map;
153 	irq_hw_number_t		lpi_base;
154 	int			nr_lpis;
155 	raw_spinlock_t		vlpi_lock;
156 	struct its_vm		*vm;
157 	struct its_vlpi_map	*vlpi_maps;
158 	int			nr_vlpis;
159 };
160 
161 /*
162  * The ITS view of a device - belongs to an ITS, owns an interrupt
163  * translation table, and a list of interrupts.  If it some of its
164  * LPIs are injected into a guest (GICv4), the event_map.vm field
165  * indicates which one.
166  */
167 struct its_device {
168 	struct list_head	entry;
169 	struct its_node		*its;
170 	struct event_lpi_map	event_map;
171 	void			*itt;
172 	u32			itt_sz;
173 	u32			nr_ites;
174 	u32			device_id;
175 	bool			shared;
176 };
177 
178 static struct {
179 	raw_spinlock_t		lock;
180 	struct its_device	*dev;
181 	struct its_vpe		**vpes;
182 	int			next_victim;
183 } vpe_proxy;
184 
185 struct cpu_lpi_count {
186 	atomic_t	managed;
187 	atomic_t	unmanaged;
188 };
189 
190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
191 
192 static LIST_HEAD(its_nodes);
193 static DEFINE_RAW_SPINLOCK(its_lock);
194 static struct rdists *gic_rdists;
195 static struct irq_domain *its_parent;
196 
197 static unsigned long its_list_map;
198 static u16 vmovp_seq_num;
199 static DEFINE_RAW_SPINLOCK(vmovp_lock);
200 
201 static DEFINE_IDA(its_vpeid_ida);
202 
203 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
204 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
205 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
206 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
207 
208 static gfp_t gfp_flags_quirk;
209 
its_alloc_pages_node(int node,gfp_t gfp,unsigned int order)210 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
211 					 unsigned int order)
212 {
213 	struct page *page;
214 	int ret = 0;
215 
216 	page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
217 
218 	if (!page)
219 		return NULL;
220 
221 	ret = set_memory_decrypted((unsigned long)page_address(page),
222 				   1 << order);
223 	/*
224 	 * If set_memory_decrypted() fails then we don't know what state the
225 	 * page is in, so we can't free it. Instead we leak it.
226 	 * set_memory_decrypted() will already have WARNed.
227 	 */
228 	if (ret)
229 		return NULL;
230 
231 	return page;
232 }
233 
its_alloc_pages(gfp_t gfp,unsigned int order)234 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
235 {
236 	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
237 }
238 
its_free_pages(void * addr,unsigned int order)239 static void its_free_pages(void *addr, unsigned int order)
240 {
241 	/*
242 	 * If the memory cannot be encrypted again then we must leak the pages.
243 	 * set_memory_encrypted() will already have WARNed.
244 	 */
245 	if (set_memory_encrypted((unsigned long)addr, 1 << order))
246 		return;
247 	free_pages((unsigned long)addr, order);
248 }
249 
250 static struct gen_pool *itt_pool;
251 
itt_alloc_pool(int node,int size)252 static void *itt_alloc_pool(int node, int size)
253 {
254 	unsigned long addr;
255 	struct page *page;
256 
257 	if (size >= PAGE_SIZE) {
258 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
259 
260 		return page ? page_address(page) : NULL;
261 	}
262 
263 	do {
264 		addr = gen_pool_alloc(itt_pool, size);
265 		if (addr)
266 			break;
267 
268 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
269 		if (!page)
270 			break;
271 
272 		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
273 	} while (!addr);
274 
275 	return (void *)addr;
276 }
277 
itt_free_pool(void * addr,int size)278 static void itt_free_pool(void *addr, int size)
279 {
280 	if (!addr)
281 		return;
282 
283 	if (size >= PAGE_SIZE) {
284 		its_free_pages(addr, get_order(size));
285 		return;
286 	}
287 
288 	gen_pool_free(itt_pool, (unsigned long)addr, size);
289 }
290 
291 /*
292  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
293  * always have vSGIs mapped.
294  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)295 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
296 {
297 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
298 }
299 
rdists_support_shareable(void)300 static bool rdists_support_shareable(void)
301 {
302 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
303 }
304 
get_its_list(struct its_vm * vm)305 static u16 get_its_list(struct its_vm *vm)
306 {
307 	struct its_node *its;
308 	unsigned long its_list = 0;
309 
310 	list_for_each_entry(its, &its_nodes, entry) {
311 		if (!is_v4(its))
312 			continue;
313 
314 		if (require_its_list_vmovp(vm, its))
315 			__set_bit(its->list_nr, &its_list);
316 	}
317 
318 	return (u16)its_list;
319 }
320 
its_get_event_id(struct irq_data * d)321 static inline u32 its_get_event_id(struct irq_data *d)
322 {
323 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
324 	return d->hwirq - its_dev->event_map.lpi_base;
325 }
326 
dev_event_to_col(struct its_device * its_dev,u32 event)327 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
328 					       u32 event)
329 {
330 	struct its_node *its = its_dev->its;
331 
332 	return its->collections + its_dev->event_map.col_map[event];
333 }
334 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)335 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
336 					       u32 event)
337 {
338 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
339 		return NULL;
340 
341 	return &its_dev->event_map.vlpi_maps[event];
342 }
343 
get_vlpi_map(struct irq_data * d)344 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
345 {
346 	if (irqd_is_forwarded_to_vcpu(d)) {
347 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
348 		u32 event = its_get_event_id(d);
349 
350 		return dev_event_to_vlpi_map(its_dev, event);
351 	}
352 
353 	return NULL;
354 }
355 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)356 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
357 {
358 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
359 	return vpe->col_idx;
360 }
361 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)362 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
363 {
364 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
365 }
366 
367 static struct irq_chip its_vpe_irq_chip;
368 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)369 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
370 {
371 	struct its_vpe *vpe = NULL;
372 	int cpu;
373 
374 	if (d->chip == &its_vpe_irq_chip) {
375 		vpe = irq_data_get_irq_chip_data(d);
376 	} else {
377 		struct its_vlpi_map *map = get_vlpi_map(d);
378 		if (map)
379 			vpe = map->vpe;
380 	}
381 
382 	if (vpe) {
383 		cpu = vpe_to_cpuid_lock(vpe, flags);
384 	} else {
385 		/* Physical LPIs are already locked via the irq_desc lock */
386 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
387 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
388 		/* Keep GCC quiet... */
389 		*flags = 0;
390 	}
391 
392 	return cpu;
393 }
394 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)395 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
396 {
397 	struct its_vpe *vpe = NULL;
398 
399 	if (d->chip == &its_vpe_irq_chip) {
400 		vpe = irq_data_get_irq_chip_data(d);
401 	} else {
402 		struct its_vlpi_map *map = get_vlpi_map(d);
403 		if (map)
404 			vpe = map->vpe;
405 	}
406 
407 	if (vpe)
408 		vpe_to_cpuid_unlock(vpe, flags);
409 }
410 
valid_col(struct its_collection * col)411 static struct its_collection *valid_col(struct its_collection *col)
412 {
413 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
414 		return NULL;
415 
416 	return col;
417 }
418 
valid_vpe(struct its_node * its,struct its_vpe * vpe)419 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
420 {
421 	if (valid_col(its->collections + vpe->col_idx))
422 		return vpe;
423 
424 	return NULL;
425 }
426 
427 /*
428  * ITS command descriptors - parameters to be encoded in a command
429  * block.
430  */
431 struct its_cmd_desc {
432 	union {
433 		struct {
434 			struct its_device *dev;
435 			u32 event_id;
436 		} its_inv_cmd;
437 
438 		struct {
439 			struct its_device *dev;
440 			u32 event_id;
441 		} its_clear_cmd;
442 
443 		struct {
444 			struct its_device *dev;
445 			u32 event_id;
446 		} its_int_cmd;
447 
448 		struct {
449 			struct its_device *dev;
450 			int valid;
451 		} its_mapd_cmd;
452 
453 		struct {
454 			struct its_collection *col;
455 			int valid;
456 		} its_mapc_cmd;
457 
458 		struct {
459 			struct its_device *dev;
460 			u32 phys_id;
461 			u32 event_id;
462 		} its_mapti_cmd;
463 
464 		struct {
465 			struct its_device *dev;
466 			struct its_collection *col;
467 			u32 event_id;
468 		} its_movi_cmd;
469 
470 		struct {
471 			struct its_device *dev;
472 			u32 event_id;
473 		} its_discard_cmd;
474 
475 		struct {
476 			struct its_collection *col;
477 		} its_invall_cmd;
478 
479 		struct {
480 			struct its_vpe *vpe;
481 		} its_vinvall_cmd;
482 
483 		struct {
484 			struct its_vpe *vpe;
485 			struct its_collection *col;
486 			bool valid;
487 		} its_vmapp_cmd;
488 
489 		struct {
490 			struct its_vpe *vpe;
491 			struct its_device *dev;
492 			u32 virt_id;
493 			u32 event_id;
494 			bool db_enabled;
495 		} its_vmapti_cmd;
496 
497 		struct {
498 			struct its_vpe *vpe;
499 			struct its_device *dev;
500 			u32 event_id;
501 			bool db_enabled;
502 		} its_vmovi_cmd;
503 
504 		struct {
505 			struct its_vpe *vpe;
506 			struct its_collection *col;
507 			u16 seq_num;
508 			u16 its_list;
509 		} its_vmovp_cmd;
510 
511 		struct {
512 			struct its_vpe *vpe;
513 		} its_invdb_cmd;
514 
515 		struct {
516 			struct its_vpe *vpe;
517 			u8 sgi;
518 			u8 priority;
519 			bool enable;
520 			bool group;
521 			bool clear;
522 		} its_vsgi_cmd;
523 	};
524 };
525 
526 /*
527  * The ITS command block, which is what the ITS actually parses.
528  */
529 struct its_cmd_block {
530 	union {
531 		u64	raw_cmd[4];
532 		__le64	raw_cmd_le[4];
533 	};
534 };
535 
536 #define ITS_CMD_QUEUE_SZ		SZ_64K
537 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
538 
539 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
540 						    struct its_cmd_block *,
541 						    struct its_cmd_desc *);
542 
543 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
544 					      struct its_cmd_block *,
545 					      struct its_cmd_desc *);
546 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)547 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
548 {
549 	u64 mask = GENMASK_ULL(h, l);
550 	*raw_cmd &= ~mask;
551 	*raw_cmd |= (val << l) & mask;
552 }
553 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)554 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
557 }
558 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)559 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
560 {
561 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
562 }
563 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)564 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
565 {
566 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
567 }
568 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)569 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
570 {
571 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
572 }
573 
its_encode_size(struct its_cmd_block * cmd,u8 size)574 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
575 {
576 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
577 }
578 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)579 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
580 {
581 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
582 }
583 
its_encode_valid(struct its_cmd_block * cmd,int valid)584 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
585 {
586 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
587 }
588 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)589 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
590 {
591 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
592 }
593 
its_encode_collection(struct its_cmd_block * cmd,u16 col)594 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
595 {
596 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
597 }
598 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)599 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
600 {
601 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
602 }
603 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)604 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
605 {
606 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
607 }
608 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)609 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
610 {
611 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
612 }
613 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)614 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
615 {
616 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
617 }
618 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)619 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
620 {
621 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
622 }
623 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)624 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
625 {
626 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
627 }
628 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)629 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
630 {
631 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
632 }
633 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)634 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
635 {
636 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
637 }
638 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)639 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
640 {
641 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
642 }
643 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)644 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
645 {
646 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
647 }
648 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)649 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
650 {
651 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
652 }
653 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)654 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
655 					u32 vpe_db_lpi)
656 {
657 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
658 }
659 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)660 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
661 					u32 vpe_db_lpi)
662 {
663 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
664 }
665 
its_encode_db(struct its_cmd_block * cmd,bool db)666 static void its_encode_db(struct its_cmd_block *cmd, bool db)
667 {
668 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
669 }
670 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)671 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
672 {
673 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
674 }
675 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)676 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
677 {
678 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
679 }
680 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)681 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
682 {
683 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
684 }
685 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)686 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
687 {
688 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
689 }
690 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)691 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
692 {
693 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
694 }
695 
its_fixup_cmd(struct its_cmd_block * cmd)696 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
697 {
698 	/* Let's fixup BE commands */
699 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
700 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
701 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
702 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
703 }
704 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)705 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
706 						 struct its_cmd_block *cmd,
707 						 struct its_cmd_desc *desc)
708 {
709 	unsigned long itt_addr;
710 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
711 
712 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
713 
714 	its_encode_cmd(cmd, GITS_CMD_MAPD);
715 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
716 	its_encode_size(cmd, size - 1);
717 	its_encode_itt(cmd, itt_addr);
718 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
719 
720 	its_fixup_cmd(cmd);
721 
722 	return NULL;
723 }
724 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)725 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
726 						 struct its_cmd_block *cmd,
727 						 struct its_cmd_desc *desc)
728 {
729 	its_encode_cmd(cmd, GITS_CMD_MAPC);
730 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
731 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
732 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
733 
734 	its_fixup_cmd(cmd);
735 
736 	return desc->its_mapc_cmd.col;
737 }
738 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)739 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
740 						  struct its_cmd_block *cmd,
741 						  struct its_cmd_desc *desc)
742 {
743 	struct its_collection *col;
744 
745 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
746 			       desc->its_mapti_cmd.event_id);
747 
748 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
749 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
750 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
751 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
752 	its_encode_collection(cmd, col->col_id);
753 
754 	its_fixup_cmd(cmd);
755 
756 	return valid_col(col);
757 }
758 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)759 static struct its_collection *its_build_movi_cmd(struct its_node *its,
760 						 struct its_cmd_block *cmd,
761 						 struct its_cmd_desc *desc)
762 {
763 	struct its_collection *col;
764 
765 	col = dev_event_to_col(desc->its_movi_cmd.dev,
766 			       desc->its_movi_cmd.event_id);
767 
768 	its_encode_cmd(cmd, GITS_CMD_MOVI);
769 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
770 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
771 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
772 
773 	its_fixup_cmd(cmd);
774 
775 	return valid_col(col);
776 }
777 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)778 static struct its_collection *its_build_discard_cmd(struct its_node *its,
779 						    struct its_cmd_block *cmd,
780 						    struct its_cmd_desc *desc)
781 {
782 	struct its_collection *col;
783 
784 	col = dev_event_to_col(desc->its_discard_cmd.dev,
785 			       desc->its_discard_cmd.event_id);
786 
787 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
788 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
789 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
790 
791 	its_fixup_cmd(cmd);
792 
793 	return valid_col(col);
794 }
795 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)796 static struct its_collection *its_build_inv_cmd(struct its_node *its,
797 						struct its_cmd_block *cmd,
798 						struct its_cmd_desc *desc)
799 {
800 	struct its_collection *col;
801 
802 	col = dev_event_to_col(desc->its_inv_cmd.dev,
803 			       desc->its_inv_cmd.event_id);
804 
805 	its_encode_cmd(cmd, GITS_CMD_INV);
806 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
807 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
808 
809 	its_fixup_cmd(cmd);
810 
811 	return valid_col(col);
812 }
813 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)814 static struct its_collection *its_build_int_cmd(struct its_node *its,
815 						struct its_cmd_block *cmd,
816 						struct its_cmd_desc *desc)
817 {
818 	struct its_collection *col;
819 
820 	col = dev_event_to_col(desc->its_int_cmd.dev,
821 			       desc->its_int_cmd.event_id);
822 
823 	its_encode_cmd(cmd, GITS_CMD_INT);
824 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
825 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
826 
827 	its_fixup_cmd(cmd);
828 
829 	return valid_col(col);
830 }
831 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)832 static struct its_collection *its_build_clear_cmd(struct its_node *its,
833 						  struct its_cmd_block *cmd,
834 						  struct its_cmd_desc *desc)
835 {
836 	struct its_collection *col;
837 
838 	col = dev_event_to_col(desc->its_clear_cmd.dev,
839 			       desc->its_clear_cmd.event_id);
840 
841 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
842 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
843 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
844 
845 	its_fixup_cmd(cmd);
846 
847 	return valid_col(col);
848 }
849 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)850 static struct its_collection *its_build_invall_cmd(struct its_node *its,
851 						   struct its_cmd_block *cmd,
852 						   struct its_cmd_desc *desc)
853 {
854 	its_encode_cmd(cmd, GITS_CMD_INVALL);
855 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
856 
857 	its_fixup_cmd(cmd);
858 
859 	return desc->its_invall_cmd.col;
860 }
861 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)862 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
863 					     struct its_cmd_block *cmd,
864 					     struct its_cmd_desc *desc)
865 {
866 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
867 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
868 
869 	its_fixup_cmd(cmd);
870 
871 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
872 }
873 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)874 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
875 					   struct its_cmd_block *cmd,
876 					   struct its_cmd_desc *desc)
877 {
878 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
879 	unsigned long vpt_addr, vconf_addr;
880 	u64 target;
881 	bool alloc;
882 
883 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
884 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
885 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
886 
887 	if (!desc->its_vmapp_cmd.valid) {
888 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
889 		if (is_v4_1(its)) {
890 			its_encode_alloc(cmd, alloc);
891 			/*
892 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
893 			 * no need to issue a VSYNC.
894 			 */
895 			vpe = NULL;
896 		}
897 
898 		goto out;
899 	}
900 
901 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
902 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
903 
904 	its_encode_target(cmd, target);
905 	its_encode_vpt_addr(cmd, vpt_addr);
906 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
907 
908 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
909 
910 	if (!is_v4_1(its))
911 		goto out;
912 
913 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
914 
915 	its_encode_alloc(cmd, alloc);
916 
917 	/*
918 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
919 	 * to be unmapped first, and in this case, we may remap the vPE
920 	 * back while the VPT is not empty. So we can't assume that the
921 	 * VPT is empty on map. This is why we never advertise PTZ.
922 	 */
923 	its_encode_ptz(cmd, false);
924 	its_encode_vconf_addr(cmd, vconf_addr);
925 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
926 
927 out:
928 	its_fixup_cmd(cmd);
929 
930 	return vpe;
931 }
932 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)933 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
934 					    struct its_cmd_block *cmd,
935 					    struct its_cmd_desc *desc)
936 {
937 	u32 db;
938 
939 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
940 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
941 	else
942 		db = 1023;
943 
944 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
945 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
946 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
947 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
948 	its_encode_db_phys_id(cmd, db);
949 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
950 
951 	its_fixup_cmd(cmd);
952 
953 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
954 }
955 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)956 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
957 					   struct its_cmd_block *cmd,
958 					   struct its_cmd_desc *desc)
959 {
960 	u32 db;
961 
962 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
963 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
964 	else
965 		db = 1023;
966 
967 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
968 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
969 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
970 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
971 	its_encode_db_phys_id(cmd, db);
972 	its_encode_db_valid(cmd, true);
973 
974 	its_fixup_cmd(cmd);
975 
976 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
977 }
978 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)979 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
980 					   struct its_cmd_block *cmd,
981 					   struct its_cmd_desc *desc)
982 {
983 	u64 target;
984 
985 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
986 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
987 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
988 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
989 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
990 	its_encode_target(cmd, target);
991 
992 	if (is_v4_1(its)) {
993 		its_encode_db(cmd, true);
994 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
995 	}
996 
997 	its_fixup_cmd(cmd);
998 
999 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1000 }
1001 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1002 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1003 					  struct its_cmd_block *cmd,
1004 					  struct its_cmd_desc *desc)
1005 {
1006 	struct its_vlpi_map *map;
1007 
1008 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1009 				    desc->its_inv_cmd.event_id);
1010 
1011 	its_encode_cmd(cmd, GITS_CMD_INV);
1012 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1013 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1014 
1015 	its_fixup_cmd(cmd);
1016 
1017 	return valid_vpe(its, map->vpe);
1018 }
1019 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1020 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1021 					  struct its_cmd_block *cmd,
1022 					  struct its_cmd_desc *desc)
1023 {
1024 	struct its_vlpi_map *map;
1025 
1026 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1027 				    desc->its_int_cmd.event_id);
1028 
1029 	its_encode_cmd(cmd, GITS_CMD_INT);
1030 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1031 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1032 
1033 	its_fixup_cmd(cmd);
1034 
1035 	return valid_vpe(its, map->vpe);
1036 }
1037 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1038 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1039 					    struct its_cmd_block *cmd,
1040 					    struct its_cmd_desc *desc)
1041 {
1042 	struct its_vlpi_map *map;
1043 
1044 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1045 				    desc->its_clear_cmd.event_id);
1046 
1047 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1048 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1049 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1050 
1051 	its_fixup_cmd(cmd);
1052 
1053 	return valid_vpe(its, map->vpe);
1054 }
1055 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1056 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1057 					   struct its_cmd_block *cmd,
1058 					   struct its_cmd_desc *desc)
1059 {
1060 	if (WARN_ON(!is_v4_1(its)))
1061 		return NULL;
1062 
1063 	its_encode_cmd(cmd, GITS_CMD_INVDB);
1064 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1065 
1066 	its_fixup_cmd(cmd);
1067 
1068 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1069 }
1070 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1071 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1072 					  struct its_cmd_block *cmd,
1073 					  struct its_cmd_desc *desc)
1074 {
1075 	if (WARN_ON(!is_v4_1(its)))
1076 		return NULL;
1077 
1078 	its_encode_cmd(cmd, GITS_CMD_VSGI);
1079 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1080 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1081 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1082 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1083 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1084 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1085 
1086 	its_fixup_cmd(cmd);
1087 
1088 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1089 }
1090 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)1091 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1092 				 struct its_cmd_block *ptr)
1093 {
1094 	return (ptr - its->cmd_base) * sizeof(*ptr);
1095 }
1096 
its_queue_full(struct its_node * its)1097 static int its_queue_full(struct its_node *its)
1098 {
1099 	int widx;
1100 	int ridx;
1101 
1102 	widx = its->cmd_write - its->cmd_base;
1103 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1104 
1105 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1106 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1107 		return 1;
1108 
1109 	return 0;
1110 }
1111 
its_allocate_entry(struct its_node * its)1112 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1113 {
1114 	struct its_cmd_block *cmd;
1115 	u32 count = 1000000;	/* 1s! */
1116 
1117 	while (its_queue_full(its)) {
1118 		count--;
1119 		if (!count) {
1120 			pr_err_ratelimited("ITS queue not draining\n");
1121 			return NULL;
1122 		}
1123 		cpu_relax();
1124 		udelay(1);
1125 	}
1126 
1127 	cmd = its->cmd_write++;
1128 
1129 	/* Handle queue wrapping */
1130 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1131 		its->cmd_write = its->cmd_base;
1132 
1133 	/* Clear command  */
1134 	cmd->raw_cmd[0] = 0;
1135 	cmd->raw_cmd[1] = 0;
1136 	cmd->raw_cmd[2] = 0;
1137 	cmd->raw_cmd[3] = 0;
1138 
1139 	return cmd;
1140 }
1141 
its_post_commands(struct its_node * its)1142 static struct its_cmd_block *its_post_commands(struct its_node *its)
1143 {
1144 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1145 
1146 	writel_relaxed(wr, its->base + GITS_CWRITER);
1147 
1148 	return its->cmd_write;
1149 }
1150 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1151 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1152 {
1153 	/*
1154 	 * Make sure the commands written to memory are observable by
1155 	 * the ITS.
1156 	 */
1157 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1158 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1159 	else
1160 		dsb(ishst);
1161 }
1162 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1163 static int its_wait_for_range_completion(struct its_node *its,
1164 					 u64	prev_idx,
1165 					 struct its_cmd_block *to)
1166 {
1167 	u64 rd_idx, to_idx, linear_idx;
1168 	u32 count = 1000000;	/* 1s! */
1169 
1170 	/* Linearize to_idx if the command set has wrapped around */
1171 	to_idx = its_cmd_ptr_to_offset(its, to);
1172 	if (to_idx < prev_idx)
1173 		to_idx += ITS_CMD_QUEUE_SZ;
1174 
1175 	linear_idx = prev_idx;
1176 
1177 	while (1) {
1178 		s64 delta;
1179 
1180 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1181 
1182 		/*
1183 		 * Compute the read pointer progress, taking the
1184 		 * potential wrap-around into account.
1185 		 */
1186 		delta = rd_idx - prev_idx;
1187 		if (rd_idx < prev_idx)
1188 			delta += ITS_CMD_QUEUE_SZ;
1189 
1190 		linear_idx += delta;
1191 		if (linear_idx >= to_idx)
1192 			break;
1193 
1194 		count--;
1195 		if (!count) {
1196 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1197 					   to_idx, linear_idx);
1198 			return -1;
1199 		}
1200 		prev_idx = rd_idx;
1201 		cpu_relax();
1202 		udelay(1);
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /* Warning, macro hell follows */
1209 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1210 void name(struct its_node *its,						\
1211 	  buildtype builder,						\
1212 	  struct its_cmd_desc *desc)					\
1213 {									\
1214 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1215 	synctype *sync_obj;						\
1216 	unsigned long flags;						\
1217 	u64 rd_idx;							\
1218 									\
1219 	raw_spin_lock_irqsave(&its->lock, flags);			\
1220 									\
1221 	cmd = its_allocate_entry(its);					\
1222 	if (!cmd) {		/* We're soooooo screewed... */		\
1223 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1224 		return;							\
1225 	}								\
1226 	sync_obj = builder(its, cmd, desc);				\
1227 	its_flush_cmd(its, cmd);					\
1228 									\
1229 	if (sync_obj) {							\
1230 		sync_cmd = its_allocate_entry(its);			\
1231 		if (!sync_cmd)						\
1232 			goto post;					\
1233 									\
1234 		buildfn(its, sync_cmd, sync_obj);			\
1235 		its_flush_cmd(its, sync_cmd);				\
1236 	}								\
1237 									\
1238 post:									\
1239 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1240 	next_cmd = its_post_commands(its);				\
1241 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1242 									\
1243 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1244 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1245 }
1246 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1247 static void its_build_sync_cmd(struct its_node *its,
1248 			       struct its_cmd_block *sync_cmd,
1249 			       struct its_collection *sync_col)
1250 {
1251 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1252 	its_encode_target(sync_cmd, sync_col->target_address);
1253 
1254 	its_fixup_cmd(sync_cmd);
1255 }
1256 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1257 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1258 			     struct its_collection, its_build_sync_cmd)
1259 
1260 static void its_build_vsync_cmd(struct its_node *its,
1261 				struct its_cmd_block *sync_cmd,
1262 				struct its_vpe *sync_vpe)
1263 {
1264 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1265 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1266 
1267 	its_fixup_cmd(sync_cmd);
1268 }
1269 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1270 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1271 			     struct its_vpe, its_build_vsync_cmd)
1272 
1273 static void its_send_int(struct its_device *dev, u32 event_id)
1274 {
1275 	struct its_cmd_desc desc;
1276 
1277 	desc.its_int_cmd.dev = dev;
1278 	desc.its_int_cmd.event_id = event_id;
1279 
1280 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1281 }
1282 
its_send_clear(struct its_device * dev,u32 event_id)1283 static void its_send_clear(struct its_device *dev, u32 event_id)
1284 {
1285 	struct its_cmd_desc desc;
1286 
1287 	desc.its_clear_cmd.dev = dev;
1288 	desc.its_clear_cmd.event_id = event_id;
1289 
1290 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1291 }
1292 
its_send_inv(struct its_device * dev,u32 event_id)1293 static void its_send_inv(struct its_device *dev, u32 event_id)
1294 {
1295 	struct its_cmd_desc desc;
1296 
1297 	desc.its_inv_cmd.dev = dev;
1298 	desc.its_inv_cmd.event_id = event_id;
1299 
1300 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1301 }
1302 
its_send_mapd(struct its_device * dev,int valid)1303 static void its_send_mapd(struct its_device *dev, int valid)
1304 {
1305 	struct its_cmd_desc desc;
1306 
1307 	desc.its_mapd_cmd.dev = dev;
1308 	desc.its_mapd_cmd.valid = !!valid;
1309 
1310 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1311 }
1312 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1313 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1314 			  int valid)
1315 {
1316 	struct its_cmd_desc desc;
1317 
1318 	desc.its_mapc_cmd.col = col;
1319 	desc.its_mapc_cmd.valid = !!valid;
1320 
1321 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1322 }
1323 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1324 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1325 {
1326 	struct its_cmd_desc desc;
1327 
1328 	desc.its_mapti_cmd.dev = dev;
1329 	desc.its_mapti_cmd.phys_id = irq_id;
1330 	desc.its_mapti_cmd.event_id = id;
1331 
1332 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1333 }
1334 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1335 static void its_send_movi(struct its_device *dev,
1336 			  struct its_collection *col, u32 id)
1337 {
1338 	struct its_cmd_desc desc;
1339 
1340 	desc.its_movi_cmd.dev = dev;
1341 	desc.its_movi_cmd.col = col;
1342 	desc.its_movi_cmd.event_id = id;
1343 
1344 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1345 }
1346 
its_send_discard(struct its_device * dev,u32 id)1347 static void its_send_discard(struct its_device *dev, u32 id)
1348 {
1349 	struct its_cmd_desc desc;
1350 
1351 	desc.its_discard_cmd.dev = dev;
1352 	desc.its_discard_cmd.event_id = id;
1353 
1354 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1355 }
1356 
its_send_invall(struct its_node * its,struct its_collection * col)1357 static void its_send_invall(struct its_node *its, struct its_collection *col)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	desc.its_invall_cmd.col = col;
1362 
1363 	its_send_single_command(its, its_build_invall_cmd, &desc);
1364 }
1365 
its_send_vmapti(struct its_device * dev,u32 id)1366 static void its_send_vmapti(struct its_device *dev, u32 id)
1367 {
1368 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1369 	struct its_cmd_desc desc;
1370 
1371 	desc.its_vmapti_cmd.vpe = map->vpe;
1372 	desc.its_vmapti_cmd.dev = dev;
1373 	desc.its_vmapti_cmd.virt_id = map->vintid;
1374 	desc.its_vmapti_cmd.event_id = id;
1375 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1376 
1377 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1378 }
1379 
its_send_vmovi(struct its_device * dev,u32 id)1380 static void its_send_vmovi(struct its_device *dev, u32 id)
1381 {
1382 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1383 	struct its_cmd_desc desc;
1384 
1385 	desc.its_vmovi_cmd.vpe = map->vpe;
1386 	desc.its_vmovi_cmd.dev = dev;
1387 	desc.its_vmovi_cmd.event_id = id;
1388 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1389 
1390 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1391 }
1392 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1393 static void its_send_vmapp(struct its_node *its,
1394 			   struct its_vpe *vpe, bool valid)
1395 {
1396 	struct its_cmd_desc desc;
1397 
1398 	desc.its_vmapp_cmd.vpe = vpe;
1399 	desc.its_vmapp_cmd.valid = valid;
1400 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1401 
1402 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1403 }
1404 
its_send_vmovp(struct its_vpe * vpe)1405 static void its_send_vmovp(struct its_vpe *vpe)
1406 {
1407 	struct its_cmd_desc desc = {};
1408 	struct its_node *its;
1409 	int col_id = vpe->col_idx;
1410 
1411 	desc.its_vmovp_cmd.vpe = vpe;
1412 
1413 	if (!its_list_map) {
1414 		its = list_first_entry(&its_nodes, struct its_node, entry);
1415 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1416 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * Yet another marvel of the architecture. If using the
1422 	 * its_list "feature", we need to make sure that all ITSs
1423 	 * receive all VMOVP commands in the same order. The only way
1424 	 * to guarantee this is to make vmovp a serialization point.
1425 	 *
1426 	 * Wall <-- Head.
1427 	 */
1428 	guard(raw_spinlock)(&vmovp_lock);
1429 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1430 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1431 
1432 	/* Emit VMOVPs */
1433 	list_for_each_entry(its, &its_nodes, entry) {
1434 		if (!is_v4(its))
1435 			continue;
1436 
1437 		if (!require_its_list_vmovp(vpe->its_vm, its))
1438 			continue;
1439 
1440 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1441 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1442 	}
1443 }
1444 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1445 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1446 {
1447 	struct its_cmd_desc desc;
1448 
1449 	desc.its_vinvall_cmd.vpe = vpe;
1450 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1451 }
1452 
its_send_vinv(struct its_device * dev,u32 event_id)1453 static void its_send_vinv(struct its_device *dev, u32 event_id)
1454 {
1455 	struct its_cmd_desc desc;
1456 
1457 	/*
1458 	 * There is no real VINV command. This is just a normal INV,
1459 	 * with a VSYNC instead of a SYNC.
1460 	 */
1461 	desc.its_inv_cmd.dev = dev;
1462 	desc.its_inv_cmd.event_id = event_id;
1463 
1464 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1465 }
1466 
its_send_vint(struct its_device * dev,u32 event_id)1467 static void its_send_vint(struct its_device *dev, u32 event_id)
1468 {
1469 	struct its_cmd_desc desc;
1470 
1471 	/*
1472 	 * There is no real VINT command. This is just a normal INT,
1473 	 * with a VSYNC instead of a SYNC.
1474 	 */
1475 	desc.its_int_cmd.dev = dev;
1476 	desc.its_int_cmd.event_id = event_id;
1477 
1478 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1479 }
1480 
its_send_vclear(struct its_device * dev,u32 event_id)1481 static void its_send_vclear(struct its_device *dev, u32 event_id)
1482 {
1483 	struct its_cmd_desc desc;
1484 
1485 	/*
1486 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1487 	 * with a VSYNC instead of a SYNC.
1488 	 */
1489 	desc.its_clear_cmd.dev = dev;
1490 	desc.its_clear_cmd.event_id = event_id;
1491 
1492 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1493 }
1494 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1495 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1496 {
1497 	struct its_cmd_desc desc;
1498 
1499 	desc.its_invdb_cmd.vpe = vpe;
1500 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1501 }
1502 
1503 /*
1504  * irqchip functions - assumes MSI, mostly.
1505  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1506 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1507 {
1508 	struct its_vlpi_map *map = get_vlpi_map(d);
1509 	irq_hw_number_t hwirq;
1510 	void *va;
1511 	u8 *cfg;
1512 
1513 	if (map) {
1514 		va = page_address(map->vm->vprop_page);
1515 		hwirq = map->vintid;
1516 
1517 		/* Remember the updated property */
1518 		map->properties &= ~clr;
1519 		map->properties |= set | LPI_PROP_GROUP1;
1520 	} else {
1521 		va = gic_rdists->prop_table_va;
1522 		hwirq = d->hwirq;
1523 	}
1524 
1525 	cfg = va + hwirq - 8192;
1526 	*cfg &= ~clr;
1527 	*cfg |= set | LPI_PROP_GROUP1;
1528 
1529 	/*
1530 	 * Make the above write visible to the redistributors.
1531 	 * And yes, we're flushing exactly: One. Single. Byte.
1532 	 * Humpf...
1533 	 */
1534 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1535 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1536 	else
1537 		dsb(ishst);
1538 }
1539 
wait_for_syncr(void __iomem * rdbase)1540 static void wait_for_syncr(void __iomem *rdbase)
1541 {
1542 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1543 		cpu_relax();
1544 }
1545 
__direct_lpi_inv(struct irq_data * d,u64 val)1546 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1547 {
1548 	void __iomem *rdbase;
1549 	unsigned long flags;
1550 	int cpu;
1551 
1552 	/* Target the redistributor this LPI is currently routed to */
1553 	cpu = irq_to_cpuid_lock(d, &flags);
1554 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1555 
1556 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1557 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1558 	wait_for_syncr(rdbase);
1559 
1560 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1561 	irq_to_cpuid_unlock(d, flags);
1562 }
1563 
direct_lpi_inv(struct irq_data * d)1564 static void direct_lpi_inv(struct irq_data *d)
1565 {
1566 	struct its_vlpi_map *map = get_vlpi_map(d);
1567 	u64 val;
1568 
1569 	if (map) {
1570 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1571 
1572 		WARN_ON(!is_v4_1(its_dev->its));
1573 
1574 		val  = GICR_INVLPIR_V;
1575 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1576 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1577 	} else {
1578 		val = d->hwirq;
1579 	}
1580 
1581 	__direct_lpi_inv(d, val);
1582 }
1583 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1584 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1585 {
1586 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1587 
1588 	lpi_write_config(d, clr, set);
1589 	if (gic_rdists->has_direct_lpi &&
1590 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1591 		direct_lpi_inv(d);
1592 	else if (!irqd_is_forwarded_to_vcpu(d))
1593 		its_send_inv(its_dev, its_get_event_id(d));
1594 	else
1595 		its_send_vinv(its_dev, its_get_event_id(d));
1596 }
1597 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1598 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1599 {
1600 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1601 	u32 event = its_get_event_id(d);
1602 	struct its_vlpi_map *map;
1603 
1604 	/*
1605 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1606 	 * here.
1607 	 */
1608 	if (is_v4_1(its_dev->its))
1609 		return;
1610 
1611 	map = dev_event_to_vlpi_map(its_dev, event);
1612 
1613 	if (map->db_enabled == enable)
1614 		return;
1615 
1616 	map->db_enabled = enable;
1617 
1618 	/*
1619 	 * More fun with the architecture:
1620 	 *
1621 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1622 	 * value or to 1023, depending on the enable bit. But that
1623 	 * would be issuing a mapping for an /existing/ DevID+EventID
1624 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1625 	 * to the /same/ vPE, using this opportunity to adjust the
1626 	 * doorbell. Mouahahahaha. We loves it, Precious.
1627 	 */
1628 	its_send_vmovi(its_dev, event);
1629 }
1630 
its_mask_irq(struct irq_data * d)1631 static void its_mask_irq(struct irq_data *d)
1632 {
1633 	if (irqd_is_forwarded_to_vcpu(d))
1634 		its_vlpi_set_doorbell(d, false);
1635 
1636 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1637 }
1638 
its_unmask_irq(struct irq_data * d)1639 static void its_unmask_irq(struct irq_data *d)
1640 {
1641 	if (irqd_is_forwarded_to_vcpu(d))
1642 		its_vlpi_set_doorbell(d, true);
1643 
1644 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1645 }
1646 
its_read_lpi_count(struct irq_data * d,int cpu)1647 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1648 {
1649 	if (irqd_affinity_is_managed(d))
1650 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1651 
1652 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1653 }
1654 
its_inc_lpi_count(struct irq_data * d,int cpu)1655 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1656 {
1657 	if (irqd_affinity_is_managed(d))
1658 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1659 	else
1660 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1661 }
1662 
its_dec_lpi_count(struct irq_data * d,int cpu)1663 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1664 {
1665 	if (irqd_affinity_is_managed(d))
1666 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1667 	else
1668 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1669 }
1670 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1671 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1672 					      const struct cpumask *cpu_mask)
1673 {
1674 	unsigned int cpu = nr_cpu_ids, tmp;
1675 	int count = S32_MAX;
1676 
1677 	for_each_cpu(tmp, cpu_mask) {
1678 		int this_count = its_read_lpi_count(d, tmp);
1679 		if (this_count < count) {
1680 			cpu = tmp;
1681 		        count = this_count;
1682 		}
1683 	}
1684 
1685 	return cpu;
1686 }
1687 
1688 /*
1689  * As suggested by Thomas Gleixner in:
1690  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1691  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1692 static int its_select_cpu(struct irq_data *d,
1693 			  const struct cpumask *aff_mask)
1694 {
1695 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1696 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1697 	static struct cpumask __tmpmask;
1698 	struct cpumask *tmpmask;
1699 	unsigned long flags;
1700 	int cpu, node;
1701 	node = its_dev->its->numa_node;
1702 	tmpmask = &__tmpmask;
1703 
1704 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1705 
1706 	if (!irqd_affinity_is_managed(d)) {
1707 		/* First try the NUMA node */
1708 		if (node != NUMA_NO_NODE) {
1709 			/*
1710 			 * Try the intersection of the affinity mask and the
1711 			 * node mask (and the online mask, just to be safe).
1712 			 */
1713 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1714 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1715 
1716 			/*
1717 			 * Ideally, we would check if the mask is empty, and
1718 			 * try again on the full node here.
1719 			 *
1720 			 * But it turns out that the way ACPI describes the
1721 			 * affinity for ITSs only deals about memory, and
1722 			 * not target CPUs, so it cannot describe a single
1723 			 * ITS placed next to two NUMA nodes.
1724 			 *
1725 			 * Instead, just fallback on the online mask. This
1726 			 * diverges from Thomas' suggestion above.
1727 			 */
1728 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1729 			if (cpu < nr_cpu_ids)
1730 				goto out;
1731 
1732 			/* If we can't cross sockets, give up */
1733 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1734 				goto out;
1735 
1736 			/* If the above failed, expand the search */
1737 		}
1738 
1739 		/* Try the intersection of the affinity and online masks */
1740 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1741 
1742 		/* If that doesn't fly, the online mask is the last resort */
1743 		if (cpumask_empty(tmpmask))
1744 			cpumask_copy(tmpmask, cpu_online_mask);
1745 
1746 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1747 	} else {
1748 		cpumask_copy(tmpmask, aff_mask);
1749 
1750 		/* If we cannot cross sockets, limit the search to that node */
1751 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1752 		    node != NUMA_NO_NODE)
1753 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1754 
1755 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1756 	}
1757 out:
1758 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1759 
1760 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1761 	return cpu;
1762 }
1763 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1764 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1765 			    bool force)
1766 {
1767 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1768 	struct its_collection *target_col;
1769 	u32 id = its_get_event_id(d);
1770 	int cpu, prev_cpu;
1771 
1772 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1773 	if (irqd_is_forwarded_to_vcpu(d))
1774 		return -EINVAL;
1775 
1776 	prev_cpu = its_dev->event_map.col_map[id];
1777 	its_dec_lpi_count(d, prev_cpu);
1778 
1779 	if (!force)
1780 		cpu = its_select_cpu(d, mask_val);
1781 	else
1782 		cpu = cpumask_pick_least_loaded(d, mask_val);
1783 
1784 	if (cpu < 0 || cpu >= nr_cpu_ids)
1785 		goto err;
1786 
1787 	/* don't set the affinity when the target cpu is same as current one */
1788 	if (cpu != prev_cpu) {
1789 		target_col = &its_dev->its->collections[cpu];
1790 		its_send_movi(its_dev, target_col, id);
1791 		its_dev->event_map.col_map[id] = cpu;
1792 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1793 	}
1794 
1795 	its_inc_lpi_count(d, cpu);
1796 
1797 	return IRQ_SET_MASK_OK_DONE;
1798 
1799 err:
1800 	its_inc_lpi_count(d, prev_cpu);
1801 	return -EINVAL;
1802 }
1803 
its_irq_get_msi_base(struct its_device * its_dev)1804 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1805 {
1806 	struct its_node *its = its_dev->its;
1807 
1808 	return its->phys_base + GITS_TRANSLATER;
1809 }
1810 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1811 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1812 {
1813 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814 
1815 	msg->data = its_get_event_id(d);
1816 	msi_msg_set_addr(irq_data_get_msi_desc(d), msg,
1817 			 its_dev->its->get_msi_base(its_dev));
1818 }
1819 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1820 static int its_irq_set_irqchip_state(struct irq_data *d,
1821 				     enum irqchip_irq_state which,
1822 				     bool state)
1823 {
1824 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1825 	u32 event = its_get_event_id(d);
1826 
1827 	if (which != IRQCHIP_STATE_PENDING)
1828 		return -EINVAL;
1829 
1830 	if (irqd_is_forwarded_to_vcpu(d)) {
1831 		if (state)
1832 			its_send_vint(its_dev, event);
1833 		else
1834 			its_send_vclear(its_dev, event);
1835 	} else {
1836 		if (state)
1837 			its_send_int(its_dev, event);
1838 		else
1839 			its_send_clear(its_dev, event);
1840 	}
1841 
1842 	return 0;
1843 }
1844 
its_irq_retrigger(struct irq_data * d)1845 static int its_irq_retrigger(struct irq_data *d)
1846 {
1847 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1848 }
1849 
1850 /*
1851  * Two favourable cases:
1852  *
1853  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1854  *     for vSGI delivery
1855  *
1856  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1857  *     and we're better off mapping all VPEs always
1858  *
1859  * If neither (a) nor (b) is true, then we map vPEs on demand.
1860  *
1861  */
gic_requires_eager_mapping(void)1862 static bool gic_requires_eager_mapping(void)
1863 {
1864 	if (!its_list_map || gic_rdists->has_rvpeid)
1865 		return true;
1866 
1867 	return false;
1868 }
1869 
its_map_vm(struct its_node * its,struct its_vm * vm)1870 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1871 {
1872 	if (gic_requires_eager_mapping())
1873 		return;
1874 
1875 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1876 
1877 	/*
1878 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1879 	 * them mapped now.
1880 	 */
1881 	vm->vlpi_count[its->list_nr]++;
1882 
1883 	if (vm->vlpi_count[its->list_nr] == 1) {
1884 		int i;
1885 
1886 		for (i = 0; i < vm->nr_vpes; i++) {
1887 			struct its_vpe *vpe = vm->vpes[i];
1888 
1889 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1890 				its_send_vmapp(its, vpe, true);
1891 
1892 			its_send_vinvall(its, vpe);
1893 		}
1894 	}
1895 }
1896 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1897 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1898 {
1899 	/* Not using the ITS list? Everything is always mapped. */
1900 	if (gic_requires_eager_mapping())
1901 		return;
1902 
1903 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1904 
1905 	if (!--vm->vlpi_count[its->list_nr]) {
1906 		int i;
1907 
1908 		for (i = 0; i < vm->nr_vpes; i++) {
1909 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1910 			its_send_vmapp(its, vm->vpes[i], false);
1911 		}
1912 	}
1913 }
1914 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1915 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1916 {
1917 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1918 	u32 event = its_get_event_id(d);
1919 
1920 	if (!info->map)
1921 		return -EINVAL;
1922 
1923 	if (!its_dev->event_map.vm) {
1924 		struct its_vlpi_map *maps;
1925 
1926 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1927 			       GFP_ATOMIC);
1928 		if (!maps)
1929 			return -ENOMEM;
1930 
1931 		its_dev->event_map.vm = info->map->vm;
1932 		its_dev->event_map.vlpi_maps = maps;
1933 	} else if (its_dev->event_map.vm != info->map->vm) {
1934 		return -EINVAL;
1935 	}
1936 
1937 	/* Get our private copy of the mapping information */
1938 	its_dev->event_map.vlpi_maps[event] = *info->map;
1939 
1940 	if (irqd_is_forwarded_to_vcpu(d)) {
1941 		/* Already mapped, move it around */
1942 		its_send_vmovi(its_dev, event);
1943 	} else {
1944 		/* Ensure all the VPEs are mapped on this ITS */
1945 		its_map_vm(its_dev->its, info->map->vm);
1946 
1947 		/*
1948 		 * Flag the interrupt as forwarded so that we can
1949 		 * start poking the virtual property table.
1950 		 */
1951 		irqd_set_forwarded_to_vcpu(d);
1952 
1953 		/* Write out the property to the prop table */
1954 		lpi_write_config(d, 0xff, info->map->properties);
1955 
1956 		/* Drop the physical mapping */
1957 		its_send_discard(its_dev, event);
1958 
1959 		/* and install the virtual one */
1960 		its_send_vmapti(its_dev, event);
1961 
1962 		/* Increment the number of VLPIs */
1963 		its_dev->event_map.nr_vlpis++;
1964 	}
1965 
1966 	return 0;
1967 }
1968 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1969 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1970 {
1971 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1972 	struct its_vlpi_map *map;
1973 
1974 	map = get_vlpi_map(d);
1975 
1976 	if (!its_dev->event_map.vm || !map)
1977 		return -EINVAL;
1978 
1979 	/* Copy our mapping information to the incoming request */
1980 	*info->map = *map;
1981 
1982 	return 0;
1983 }
1984 
its_vlpi_unmap(struct irq_data * d)1985 static int its_vlpi_unmap(struct irq_data *d)
1986 {
1987 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1988 	u32 event = its_get_event_id(d);
1989 
1990 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1991 		return -EINVAL;
1992 
1993 	/* Drop the virtual mapping */
1994 	its_send_discard(its_dev, event);
1995 
1996 	/* and restore the physical one */
1997 	irqd_clr_forwarded_to_vcpu(d);
1998 	its_send_mapti(its_dev, d->hwirq, event);
1999 	lpi_update_config(d, 0xff, (lpi_prop_prio |
2000 				    LPI_PROP_ENABLED |
2001 				    LPI_PROP_GROUP1));
2002 
2003 	/* Potentially unmap the VM from this ITS */
2004 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2005 
2006 	/*
2007 	 * Drop the refcount and make the device available again if
2008 	 * this was the last VLPI.
2009 	 */
2010 	if (!--its_dev->event_map.nr_vlpis) {
2011 		its_dev->event_map.vm = NULL;
2012 		kfree(its_dev->event_map.vlpi_maps);
2013 	}
2014 
2015 	return 0;
2016 }
2017 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)2018 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2019 {
2020 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2021 
2022 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2023 		return -EINVAL;
2024 
2025 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2026 		lpi_update_config(d, 0xff, info->config);
2027 	else
2028 		lpi_write_config(d, 0xff, info->config);
2029 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2030 
2031 	return 0;
2032 }
2033 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2034 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2035 {
2036 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2037 	struct its_cmd_info *info = vcpu_info;
2038 
2039 	/* Need a v4 ITS */
2040 	if (!is_v4(its_dev->its))
2041 		return -EINVAL;
2042 
2043 	guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2044 
2045 	/* Unmap request? */
2046 	if (!info)
2047 		return its_vlpi_unmap(d);
2048 
2049 	switch (info->cmd_type) {
2050 	case MAP_VLPI:
2051 		return its_vlpi_map(d, info);
2052 
2053 	case GET_VLPI:
2054 		return its_vlpi_get(d, info);
2055 
2056 	case PROP_UPDATE_VLPI:
2057 	case PROP_UPDATE_AND_INV_VLPI:
2058 		return its_vlpi_prop_update(d, info);
2059 
2060 	default:
2061 		return -EINVAL;
2062 	}
2063 }
2064 
2065 static struct irq_chip its_irq_chip = {
2066 	.name			= "ITS",
2067 	.irq_mask		= its_mask_irq,
2068 	.irq_unmask		= its_unmask_irq,
2069 	.irq_eoi		= irq_chip_eoi_parent,
2070 	.irq_set_affinity	= its_set_affinity,
2071 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2072 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2073 	.irq_retrigger		= its_irq_retrigger,
2074 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2075 };
2076 
2077 
2078 /*
2079  * How we allocate LPIs:
2080  *
2081  * lpi_range_list contains ranges of LPIs that are to available to
2082  * allocate from. To allocate LPIs, just pick the first range that
2083  * fits the required allocation, and reduce it by the required
2084  * amount. Once empty, remove the range from the list.
2085  *
2086  * To free a range of LPIs, add a free range to the list, sort it and
2087  * merge the result if the new range happens to be adjacent to an
2088  * already free block.
2089  *
2090  * The consequence of the above is that allocation is cost is low, but
2091  * freeing is expensive. We assumes that freeing rarely occurs.
2092  */
2093 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2094 
2095 static DEFINE_MUTEX(lpi_range_lock);
2096 static LIST_HEAD(lpi_range_list);
2097 
2098 struct lpi_range {
2099 	struct list_head	entry;
2100 	u32			base_id;
2101 	u32			span;
2102 };
2103 
mk_lpi_range(u32 base,u32 span)2104 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2105 {
2106 	struct lpi_range *range;
2107 
2108 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2109 	if (range) {
2110 		range->base_id = base;
2111 		range->span = span;
2112 	}
2113 
2114 	return range;
2115 }
2116 
alloc_lpi_range(u32 nr_lpis,u32 * base)2117 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2118 {
2119 	struct lpi_range *range, *tmp;
2120 	int err = -ENOSPC;
2121 
2122 	mutex_lock(&lpi_range_lock);
2123 
2124 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2125 		if (range->span >= nr_lpis) {
2126 			*base = range->base_id;
2127 			range->base_id += nr_lpis;
2128 			range->span -= nr_lpis;
2129 
2130 			if (range->span == 0) {
2131 				list_del(&range->entry);
2132 				kfree(range);
2133 			}
2134 
2135 			err = 0;
2136 			break;
2137 		}
2138 	}
2139 
2140 	mutex_unlock(&lpi_range_lock);
2141 
2142 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2143 	return err;
2144 }
2145 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2146 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2147 {
2148 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2149 		return;
2150 	if (a->base_id + a->span != b->base_id)
2151 		return;
2152 	b->base_id = a->base_id;
2153 	b->span += a->span;
2154 	list_del(&a->entry);
2155 	kfree(a);
2156 }
2157 
free_lpi_range(u32 base,u32 nr_lpis)2158 static int free_lpi_range(u32 base, u32 nr_lpis)
2159 {
2160 	struct lpi_range *new, *old;
2161 
2162 	new = mk_lpi_range(base, nr_lpis);
2163 	if (!new)
2164 		return -ENOMEM;
2165 
2166 	mutex_lock(&lpi_range_lock);
2167 
2168 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2169 		if (old->base_id < base)
2170 			break;
2171 	}
2172 	/*
2173 	 * old is the last element with ->base_id smaller than base,
2174 	 * so new goes right after it. If there are no elements with
2175 	 * ->base_id smaller than base, &old->entry ends up pointing
2176 	 * at the head of the list, and inserting new it the start of
2177 	 * the list is the right thing to do in that case as well.
2178 	 */
2179 	list_add(&new->entry, &old->entry);
2180 	/*
2181 	 * Now check if we can merge with the preceding and/or
2182 	 * following ranges.
2183 	 */
2184 	merge_lpi_ranges(old, new);
2185 	merge_lpi_ranges(new, list_next_entry(new, entry));
2186 
2187 	mutex_unlock(&lpi_range_lock);
2188 	return 0;
2189 }
2190 
its_lpi_init(u32 id_bits)2191 static int __init its_lpi_init(u32 id_bits)
2192 {
2193 	u32 lpis = (1UL << id_bits) - 8192;
2194 	u32 numlpis;
2195 	int err;
2196 
2197 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2198 
2199 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2200 		lpis = numlpis;
2201 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2202 			lpis);
2203 	}
2204 
2205 	/*
2206 	 * Initializing the allocator is just the same as freeing the
2207 	 * full range of LPIs.
2208 	 */
2209 	err = free_lpi_range(8192, lpis);
2210 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2211 	return err;
2212 }
2213 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2214 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2215 {
2216 	unsigned long *bitmap = NULL;
2217 	int err = 0;
2218 
2219 	do {
2220 		err = alloc_lpi_range(nr_irqs, base);
2221 		if (!err)
2222 			break;
2223 
2224 		nr_irqs /= 2;
2225 	} while (nr_irqs > 0);
2226 
2227 	if (!nr_irqs)
2228 		err = -ENOSPC;
2229 
2230 	if (err)
2231 		goto out;
2232 
2233 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2234 	if (!bitmap)
2235 		goto out;
2236 
2237 	*nr_ids = nr_irqs;
2238 
2239 out:
2240 	if (!bitmap)
2241 		*base = *nr_ids = 0;
2242 
2243 	return bitmap;
2244 }
2245 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2246 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2247 {
2248 	WARN_ON(free_lpi_range(base, nr_ids));
2249 	bitmap_free(bitmap);
2250 }
2251 
gic_reset_prop_table(void * va)2252 static void gic_reset_prop_table(void *va)
2253 {
2254 	/* Regular IRQ priority, Group-1, disabled */
2255 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2256 
2257 	/* Make sure the GIC will observe the written configuration */
2258 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2259 }
2260 
its_allocate_prop_table(gfp_t gfp_flags)2261 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2262 {
2263 	struct page *prop_page;
2264 
2265 	prop_page = its_alloc_pages(gfp_flags,
2266 				    get_order(LPI_PROPBASE_SZ));
2267 	if (!prop_page)
2268 		return NULL;
2269 
2270 	gic_reset_prop_table(page_address(prop_page));
2271 
2272 	return prop_page;
2273 }
2274 
its_free_prop_table(struct page * prop_page)2275 static void its_free_prop_table(struct page *prop_page)
2276 {
2277 	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2278 }
2279 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2280 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2281 {
2282 	phys_addr_t start, end, addr_end;
2283 	u64 i;
2284 
2285 	/*
2286 	 * We don't bother checking for a kdump kernel as by
2287 	 * construction, the LPI tables are out of this kernel's
2288 	 * memory map.
2289 	 */
2290 	if (is_kdump_kernel())
2291 		return true;
2292 
2293 	addr_end = addr + size - 1;
2294 
2295 	for_each_reserved_mem_range(i, &start, &end) {
2296 		if (addr >= start && addr_end <= end)
2297 			return true;
2298 	}
2299 
2300 	/* Not found, not a good sign... */
2301 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2302 		&addr, &addr_end);
2303 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2304 	return false;
2305 }
2306 
gic_reserve_range(phys_addr_t addr,unsigned long size)2307 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2308 {
2309 	if (efi_enabled(EFI_CONFIG_TABLES))
2310 		return efi_mem_reserve_persistent(addr, size);
2311 
2312 	return 0;
2313 }
2314 
its_setup_lpi_prop_table(void)2315 static int __init its_setup_lpi_prop_table(void)
2316 {
2317 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2318 		u64 val;
2319 
2320 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2321 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2322 
2323 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2324 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2325 						     LPI_PROPBASE_SZ,
2326 						     MEMREMAP_WB);
2327 		gic_reset_prop_table(gic_rdists->prop_table_va);
2328 	} else {
2329 		struct page *page;
2330 
2331 		lpi_id_bits = min_t(u32,
2332 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2333 				    ITS_MAX_LPI_NRBITS);
2334 		page = its_allocate_prop_table(GFP_NOWAIT);
2335 		if (!page) {
2336 			pr_err("Failed to allocate PROPBASE\n");
2337 			return -ENOMEM;
2338 		}
2339 
2340 		gic_rdists->prop_table_pa = page_to_phys(page);
2341 		gic_rdists->prop_table_va = page_address(page);
2342 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2343 					  LPI_PROPBASE_SZ));
2344 	}
2345 
2346 	pr_info("GICv3: using LPI property table @%pa\n",
2347 		&gic_rdists->prop_table_pa);
2348 
2349 	return its_lpi_init(lpi_id_bits);
2350 }
2351 
2352 static const char *its_base_type_string[] = {
2353 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2354 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2355 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2356 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2357 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2358 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2359 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2360 };
2361 
its_read_baser(struct its_node * its,struct its_baser * baser)2362 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2363 {
2364 	u32 idx = baser - its->tables;
2365 
2366 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2367 }
2368 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2369 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2370 			    u64 val)
2371 {
2372 	u32 idx = baser - its->tables;
2373 
2374 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2375 	baser->val = its_read_baser(its, baser);
2376 }
2377 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2378 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2379 			   u64 cache, u64 shr, u32 order, bool indirect)
2380 {
2381 	u64 val = its_read_baser(its, baser);
2382 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2383 	u64 type = GITS_BASER_TYPE(val);
2384 	u64 baser_phys, tmp;
2385 	u32 alloc_pages, psz;
2386 	struct page *page;
2387 	void *base;
2388 
2389 	psz = baser->psz;
2390 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2391 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2392 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2393 			&its->phys_base, its_base_type_string[type],
2394 			alloc_pages, GITS_BASER_PAGES_MAX);
2395 		alloc_pages = GITS_BASER_PAGES_MAX;
2396 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2397 	}
2398 
2399 	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2400 	if (!page)
2401 		return -ENOMEM;
2402 
2403 	base = (void *)page_address(page);
2404 	baser_phys = virt_to_phys(base);
2405 
2406 	/* Check if the physical address of the memory is above 48bits */
2407 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2408 
2409 		/* 52bit PA is supported only when PageSize=64K */
2410 		if (psz != SZ_64K) {
2411 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2412 			its_free_pages(base, order);
2413 			return -ENXIO;
2414 		}
2415 
2416 		/* Convert 52bit PA to 48bit field */
2417 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2418 	}
2419 
2420 retry_baser:
2421 	val = (baser_phys					 |
2422 		(type << GITS_BASER_TYPE_SHIFT)			 |
2423 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2424 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2425 		cache						 |
2426 		shr						 |
2427 		GITS_BASER_VALID);
2428 
2429 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2430 
2431 	switch (psz) {
2432 	case SZ_4K:
2433 		val |= GITS_BASER_PAGE_SIZE_4K;
2434 		break;
2435 	case SZ_16K:
2436 		val |= GITS_BASER_PAGE_SIZE_16K;
2437 		break;
2438 	case SZ_64K:
2439 		val |= GITS_BASER_PAGE_SIZE_64K;
2440 		break;
2441 	}
2442 
2443 	if (!shr)
2444 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2445 
2446 	its_write_baser(its, baser, val);
2447 	tmp = baser->val;
2448 
2449 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2450 		/*
2451 		 * Shareability didn't stick. Just use
2452 		 * whatever the read reported, which is likely
2453 		 * to be the only thing this redistributor
2454 		 * supports. If that's zero, make it
2455 		 * non-cacheable as well.
2456 		 */
2457 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2458 		if (!shr)
2459 			cache = GITS_BASER_nC;
2460 
2461 		goto retry_baser;
2462 	}
2463 
2464 	if (val != tmp) {
2465 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2466 		       &its->phys_base, its_base_type_string[type],
2467 		       val, tmp);
2468 		its_free_pages(base, order);
2469 		return -ENXIO;
2470 	}
2471 
2472 	baser->order = order;
2473 	baser->base = base;
2474 	baser->psz = psz;
2475 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2476 
2477 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2478 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2479 		its_base_type_string[type],
2480 		(unsigned long)virt_to_phys(base),
2481 		indirect ? "indirect" : "flat", (int)esz,
2482 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2483 
2484 	return 0;
2485 }
2486 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2487 static bool its_parse_indirect_baser(struct its_node *its,
2488 				     struct its_baser *baser,
2489 				     u32 *order, u32 ids)
2490 {
2491 	u64 tmp = its_read_baser(its, baser);
2492 	u64 type = GITS_BASER_TYPE(tmp);
2493 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2494 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2495 	u32 new_order = *order;
2496 	u32 psz = baser->psz;
2497 	bool indirect = false;
2498 
2499 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2500 	if ((esz << ids) > (psz * 2)) {
2501 		/*
2502 		 * Find out whether hw supports a single or two-level table by
2503 		 * table by reading bit at offset '62' after writing '1' to it.
2504 		 */
2505 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2506 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2507 
2508 		if (indirect) {
2509 			/*
2510 			 * The size of the lvl2 table is equal to ITS page size
2511 			 * which is 'psz'. For computing lvl1 table size,
2512 			 * subtract ID bits that sparse lvl2 table from 'ids'
2513 			 * which is reported by ITS hardware times lvl1 table
2514 			 * entry size.
2515 			 */
2516 			ids -= ilog2(psz / (int)esz);
2517 			esz = GITS_LVL1_ENTRY_SIZE;
2518 		}
2519 	}
2520 
2521 	/*
2522 	 * Allocate as many entries as required to fit the
2523 	 * range of device IDs that the ITS can grok... The ID
2524 	 * space being incredibly sparse, this results in a
2525 	 * massive waste of memory if two-level device table
2526 	 * feature is not supported by hardware.
2527 	 */
2528 	new_order = max_t(u32, get_order(esz << ids), new_order);
2529 	if (new_order > MAX_PAGE_ORDER) {
2530 		new_order = MAX_PAGE_ORDER;
2531 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2532 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2533 			&its->phys_base, its_base_type_string[type],
2534 			device_ids(its), ids);
2535 	}
2536 
2537 	*order = new_order;
2538 
2539 	return indirect;
2540 }
2541 
compute_common_aff(u64 val)2542 static u32 compute_common_aff(u64 val)
2543 {
2544 	u32 aff, clpiaff;
2545 
2546 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2547 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2548 
2549 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2550 }
2551 
compute_its_aff(struct its_node * its)2552 static u32 compute_its_aff(struct its_node *its)
2553 {
2554 	u64 val;
2555 	u32 svpet;
2556 
2557 	/*
2558 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2559 	 * the resulting affinity. We then use that to see if this match
2560 	 * our own affinity.
2561 	 */
2562 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2563 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2564 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2565 	return compute_common_aff(val);
2566 }
2567 
find_sibling_its(struct its_node * cur_its)2568 static struct its_node *find_sibling_its(struct its_node *cur_its)
2569 {
2570 	struct its_node *its;
2571 	u32 aff;
2572 
2573 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2574 		return NULL;
2575 
2576 	aff = compute_its_aff(cur_its);
2577 
2578 	list_for_each_entry(its, &its_nodes, entry) {
2579 		u64 baser;
2580 
2581 		if (!is_v4_1(its) || its == cur_its)
2582 			continue;
2583 
2584 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2585 			continue;
2586 
2587 		if (aff != compute_its_aff(its))
2588 			continue;
2589 
2590 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2591 		baser = its->tables[2].val;
2592 		if (!(baser & GITS_BASER_VALID))
2593 			continue;
2594 
2595 		return its;
2596 	}
2597 
2598 	return NULL;
2599 }
2600 
its_free_tables(struct its_node * its)2601 static void its_free_tables(struct its_node *its)
2602 {
2603 	int i;
2604 
2605 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2606 		if (its->tables[i].base) {
2607 			its_free_pages(its->tables[i].base, its->tables[i].order);
2608 			its->tables[i].base = NULL;
2609 		}
2610 	}
2611 }
2612 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2613 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2614 {
2615 	u64 psz = SZ_64K;
2616 
2617 	while (psz) {
2618 		u64 val, gpsz;
2619 
2620 		val = its_read_baser(its, baser);
2621 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2622 
2623 		switch (psz) {
2624 		case SZ_64K:
2625 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2626 			break;
2627 		case SZ_16K:
2628 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2629 			break;
2630 		case SZ_4K:
2631 		default:
2632 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2633 			break;
2634 		}
2635 
2636 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2637 
2638 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2639 		its_write_baser(its, baser, val);
2640 
2641 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2642 			break;
2643 
2644 		switch (psz) {
2645 		case SZ_64K:
2646 			psz = SZ_16K;
2647 			break;
2648 		case SZ_16K:
2649 			psz = SZ_4K;
2650 			break;
2651 		case SZ_4K:
2652 		default:
2653 			return -1;
2654 		}
2655 	}
2656 
2657 	baser->psz = psz;
2658 	return 0;
2659 }
2660 
its_alloc_tables(struct its_node * its)2661 static int its_alloc_tables(struct its_node *its)
2662 {
2663 	u64 shr = GITS_BASER_InnerShareable;
2664 	u64 cache = GITS_BASER_RaWaWb;
2665 	int err, i;
2666 
2667 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2668 		/* erratum 24313: ignore memory access type */
2669 		cache = GITS_BASER_nCnB;
2670 
2671 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2672 		cache = GITS_BASER_nC;
2673 		shr = 0;
2674 	}
2675 
2676 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2677 		struct its_baser *baser = its->tables + i;
2678 		u64 val = its_read_baser(its, baser);
2679 		u64 type = GITS_BASER_TYPE(val);
2680 		bool indirect = false;
2681 		u32 order;
2682 
2683 		if (type == GITS_BASER_TYPE_NONE)
2684 			continue;
2685 
2686 		if (its_probe_baser_psz(its, baser)) {
2687 			its_free_tables(its);
2688 			return -ENXIO;
2689 		}
2690 
2691 		order = get_order(baser->psz);
2692 
2693 		switch (type) {
2694 		case GITS_BASER_TYPE_DEVICE:
2695 			indirect = its_parse_indirect_baser(its, baser, &order,
2696 							    device_ids(its));
2697 			break;
2698 
2699 		case GITS_BASER_TYPE_VCPU:
2700 			if (is_v4_1(its)) {
2701 				struct its_node *sibling;
2702 
2703 				WARN_ON(i != 2);
2704 				if ((sibling = find_sibling_its(its))) {
2705 					*baser = sibling->tables[2];
2706 					its_write_baser(its, baser, baser->val);
2707 					continue;
2708 				}
2709 			}
2710 
2711 			indirect = its_parse_indirect_baser(its, baser, &order,
2712 							    ITS_MAX_VPEID_BITS);
2713 			break;
2714 		}
2715 
2716 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2717 		if (err < 0) {
2718 			its_free_tables(its);
2719 			return err;
2720 		}
2721 
2722 		/* Update settings which will be used for next BASERn */
2723 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2724 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
inherit_vpe_l1_table_from_its(void)2730 static u64 inherit_vpe_l1_table_from_its(void)
2731 {
2732 	struct its_node *its;
2733 	u64 val;
2734 	u32 aff;
2735 
2736 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2737 	aff = compute_common_aff(val);
2738 
2739 	list_for_each_entry(its, &its_nodes, entry) {
2740 		u64 baser, addr;
2741 
2742 		if (!is_v4_1(its))
2743 			continue;
2744 
2745 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2746 			continue;
2747 
2748 		if (aff != compute_its_aff(its))
2749 			continue;
2750 
2751 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2752 		baser = its->tables[2].val;
2753 		if (!(baser & GITS_BASER_VALID))
2754 			continue;
2755 
2756 		/* We have a winner! */
2757 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2758 
2759 		val  = GICR_VPROPBASER_4_1_VALID;
2760 		if (baser & GITS_BASER_INDIRECT)
2761 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2762 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2763 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2764 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2765 		case GIC_PAGE_SIZE_64K:
2766 			addr = GITS_BASER_ADDR_48_to_52(baser);
2767 			break;
2768 		default:
2769 			addr = baser & GENMASK_ULL(47, 12);
2770 			break;
2771 		}
2772 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2773 		if (rdists_support_shareable()) {
2774 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2775 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2776 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2777 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2778 		}
2779 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2780 
2781 		return val;
2782 	}
2783 
2784 	return 0;
2785 }
2786 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2787 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2788 {
2789 	u32 aff;
2790 	u64 val;
2791 	int cpu;
2792 
2793 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2794 	aff = compute_common_aff(val);
2795 
2796 	for_each_possible_cpu(cpu) {
2797 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2798 
2799 		if (!base || cpu == smp_processor_id())
2800 			continue;
2801 
2802 		val = gic_read_typer(base + GICR_TYPER);
2803 		if (aff != compute_common_aff(val))
2804 			continue;
2805 
2806 		/*
2807 		 * At this point, we have a victim. This particular CPU
2808 		 * has already booted, and has an affinity that matches
2809 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2810 		 * Make sure we don't write the Z bit in that case.
2811 		 */
2812 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2813 		val &= ~GICR_VPROPBASER_4_1_Z;
2814 
2815 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2816 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2817 
2818 		return val;
2819 	}
2820 
2821 	return 0;
2822 }
2823 
allocate_vpe_l2_table(int cpu,u32 id)2824 static bool allocate_vpe_l2_table(int cpu, u32 id)
2825 {
2826 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2827 	unsigned int psz, esz, idx, npg, gpsz;
2828 	u64 val;
2829 	struct page *page;
2830 	__le64 *table;
2831 
2832 	if (!gic_rdists->has_rvpeid)
2833 		return true;
2834 
2835 	/* Skip non-present CPUs */
2836 	if (!base)
2837 		return true;
2838 
2839 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2840 
2841 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2842 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2843 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2844 
2845 	switch (gpsz) {
2846 	default:
2847 		WARN_ON(1);
2848 		fallthrough;
2849 	case GIC_PAGE_SIZE_4K:
2850 		psz = SZ_4K;
2851 		break;
2852 	case GIC_PAGE_SIZE_16K:
2853 		psz = SZ_16K;
2854 		break;
2855 	case GIC_PAGE_SIZE_64K:
2856 		psz = SZ_64K;
2857 		break;
2858 	}
2859 
2860 	/* Don't allow vpe_id that exceeds single, flat table limit */
2861 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2862 		return (id < (npg * psz / (esz * SZ_8)));
2863 
2864 	/* Compute 1st level table index & check if that exceeds table limit */
2865 	idx = id >> ilog2(psz / (esz * SZ_8));
2866 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2867 		return false;
2868 
2869 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2870 
2871 	/* Allocate memory for 2nd level table */
2872 	if (!table[idx]) {
2873 		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2874 		if (!page)
2875 			return false;
2876 
2877 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2878 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2879 			gic_flush_dcache_to_poc(page_address(page), psz);
2880 
2881 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2882 
2883 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2884 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2885 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2886 
2887 		/* Ensure updated table contents are visible to RD hardware */
2888 		dsb(sy);
2889 	}
2890 
2891 	return true;
2892 }
2893 
allocate_vpe_l1_table(void)2894 static int allocate_vpe_l1_table(void)
2895 {
2896 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2897 	u64 val, gpsz, npg, pa;
2898 	unsigned int psz = SZ_64K;
2899 	unsigned int np, epp, esz;
2900 	struct page *page;
2901 
2902 	if (!gic_rdists->has_rvpeid)
2903 		return 0;
2904 
2905 	/*
2906 	 * if VPENDBASER.Valid is set, disable any previously programmed
2907 	 * VPE by setting PendingLast while clearing Valid. This has the
2908 	 * effect of making sure no doorbell will be generated and we can
2909 	 * then safely clear VPROPBASER.Valid.
2910 	 */
2911 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2912 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2913 				      vlpi_base + GICR_VPENDBASER);
2914 
2915 	/*
2916 	 * If we can inherit the configuration from another RD, let's do
2917 	 * so. Otherwise, we have to go through the allocation process. We
2918 	 * assume that all RDs have the exact same requirements, as
2919 	 * nothing will work otherwise.
2920 	 */
2921 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2922 	if (val & GICR_VPROPBASER_4_1_VALID)
2923 		goto out;
2924 
2925 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2926 	if (!gic_data_rdist()->vpe_table_mask)
2927 		return -ENOMEM;
2928 
2929 	val = inherit_vpe_l1_table_from_its();
2930 	if (val & GICR_VPROPBASER_4_1_VALID)
2931 		goto out;
2932 
2933 	/* First probe the page size */
2934 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2935 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2936 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2937 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2938 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2939 
2940 	switch (gpsz) {
2941 	default:
2942 		gpsz = GIC_PAGE_SIZE_4K;
2943 		fallthrough;
2944 	case GIC_PAGE_SIZE_4K:
2945 		psz = SZ_4K;
2946 		break;
2947 	case GIC_PAGE_SIZE_16K:
2948 		psz = SZ_16K;
2949 		break;
2950 	case GIC_PAGE_SIZE_64K:
2951 		psz = SZ_64K;
2952 		break;
2953 	}
2954 
2955 	/*
2956 	 * Start populating the register from scratch, including RO fields
2957 	 * (which we want to print in debug cases...)
2958 	 */
2959 	val = 0;
2960 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2961 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2962 
2963 	/* How many entries per GIC page? */
2964 	esz++;
2965 	epp = psz / (esz * SZ_8);
2966 
2967 	/*
2968 	 * If we need more than just a single L1 page, flag the table
2969 	 * as indirect and compute the number of required L1 pages.
2970 	 */
2971 	if (epp < ITS_MAX_VPEID) {
2972 		int nl2;
2973 
2974 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2975 
2976 		/* Number of L2 pages required to cover the VPEID space */
2977 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2978 
2979 		/* Number of L1 pages to point to the L2 pages */
2980 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2981 	} else {
2982 		npg = 1;
2983 	}
2984 
2985 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2986 
2987 	/* Right, that's the number of CPU pages we need for L1 */
2988 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2989 
2990 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2991 		 np, npg, psz, epp, esz);
2992 	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2993 	if (!page)
2994 		return -ENOMEM;
2995 
2996 	gic_data_rdist()->vpe_l1_base = page_address(page);
2997 	pa = virt_to_phys(page_address(page));
2998 	WARN_ON(!IS_ALIGNED(pa, psz));
2999 
3000 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3001 	if (rdists_support_shareable()) {
3002 		val |= GICR_VPROPBASER_RaWb;
3003 		val |= GICR_VPROPBASER_InnerShareable;
3004 	}
3005 	val |= GICR_VPROPBASER_4_1_Z;
3006 	val |= GICR_VPROPBASER_4_1_VALID;
3007 
3008 out:
3009 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3010 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3011 
3012 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3013 		 smp_processor_id(), val,
3014 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3015 
3016 	return 0;
3017 }
3018 
its_alloc_collections(struct its_node * its)3019 static int its_alloc_collections(struct its_node *its)
3020 {
3021 	int i;
3022 
3023 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3024 				   GFP_KERNEL);
3025 	if (!its->collections)
3026 		return -ENOMEM;
3027 
3028 	for (i = 0; i < nr_cpu_ids; i++)
3029 		its->collections[i].target_address = ~0ULL;
3030 
3031 	return 0;
3032 }
3033 
its_allocate_pending_table(gfp_t gfp_flags)3034 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3035 {
3036 	struct page *pend_page;
3037 
3038 	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3039 	if (!pend_page)
3040 		return NULL;
3041 
3042 	/* Make sure the GIC will observe the zero-ed page */
3043 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3044 
3045 	return pend_page;
3046 }
3047 
its_free_pending_table(struct page * pt)3048 static void its_free_pending_table(struct page *pt)
3049 {
3050 	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3051 }
3052 
3053 /*
3054  * Booting with kdump and LPIs enabled is generally fine. Any other
3055  * case is wrong in the absence of firmware/EFI support.
3056  */
enabled_lpis_allowed(void)3057 static bool enabled_lpis_allowed(void)
3058 {
3059 	phys_addr_t addr;
3060 	u64 val;
3061 
3062 	/* Check whether the property table is in a reserved region */
3063 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3064 	addr = val & GENMASK_ULL(51, 12);
3065 
3066 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3067 }
3068 
allocate_lpi_tables(void)3069 static int __init allocate_lpi_tables(void)
3070 {
3071 	u64 val;
3072 	int err, cpu;
3073 
3074 	/*
3075 	 * If LPIs are enabled while we run this from the boot CPU,
3076 	 * flag the RD tables as pre-allocated if the stars do align.
3077 	 */
3078 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3079 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3080 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3081 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3082 		pr_info("GICv3: Using preallocated redistributor tables\n");
3083 	}
3084 
3085 	err = its_setup_lpi_prop_table();
3086 	if (err)
3087 		return err;
3088 
3089 	/*
3090 	 * We allocate all the pending tables anyway, as we may have a
3091 	 * mix of RDs that have had LPIs enabled, and some that
3092 	 * don't. We'll free the unused ones as each CPU comes online.
3093 	 */
3094 	for_each_possible_cpu(cpu) {
3095 		struct page *pend_page;
3096 
3097 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3098 		if (!pend_page) {
3099 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3100 			return -ENOMEM;
3101 		}
3102 
3103 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
read_vpend_dirty_clear(void __iomem * vlpi_base)3109 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3110 {
3111 	u32 count = 1000000;	/* 1s! */
3112 	bool clean;
3113 	u64 val;
3114 
3115 	do {
3116 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3117 		clean = !(val & GICR_VPENDBASER_Dirty);
3118 		if (!clean) {
3119 			count--;
3120 			cpu_relax();
3121 			udelay(1);
3122 		}
3123 	} while (!clean && count);
3124 
3125 	if (unlikely(!clean))
3126 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3127 
3128 	return val;
3129 }
3130 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3131 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3132 {
3133 	u64 val;
3134 
3135 	/* Make sure we wait until the RD is done with the initial scan */
3136 	val = read_vpend_dirty_clear(vlpi_base);
3137 	val &= ~GICR_VPENDBASER_Valid;
3138 	val &= ~clr;
3139 	val |= set;
3140 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3141 
3142 	val = read_vpend_dirty_clear(vlpi_base);
3143 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3144 		val |= GICR_VPENDBASER_PendingLast;
3145 
3146 	return val;
3147 }
3148 
its_cpu_init_lpis(void)3149 static void its_cpu_init_lpis(void)
3150 {
3151 	void __iomem *rbase = gic_data_rdist_rd_base();
3152 	struct page *pend_page;
3153 	phys_addr_t paddr;
3154 	u64 val, tmp;
3155 
3156 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3157 		return;
3158 
3159 	val = readl_relaxed(rbase + GICR_CTLR);
3160 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3161 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3162 		/*
3163 		 * Check that we get the same property table on all
3164 		 * RDs. If we don't, this is hopeless.
3165 		 */
3166 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3167 		paddr &= GENMASK_ULL(51, 12);
3168 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3169 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3170 
3171 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3172 		paddr &= GENMASK_ULL(51, 16);
3173 
3174 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3175 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3176 
3177 		goto out;
3178 	}
3179 
3180 	pend_page = gic_data_rdist()->pend_page;
3181 	paddr = page_to_phys(pend_page);
3182 
3183 	/* set PROPBASE */
3184 	val = (gic_rdists->prop_table_pa |
3185 	       GICR_PROPBASER_InnerShareable |
3186 	       GICR_PROPBASER_RaWaWb |
3187 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3188 
3189 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3190 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3191 
3192 	if (!rdists_support_shareable())
3193 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3194 
3195 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3196 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3197 			/*
3198 			 * The HW reports non-shareable, we must
3199 			 * remove the cacheability attributes as
3200 			 * well.
3201 			 */
3202 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3203 				 GICR_PROPBASER_CACHEABILITY_MASK);
3204 			val |= GICR_PROPBASER_nC;
3205 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3206 		}
3207 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3208 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3209 	}
3210 
3211 	/* set PENDBASE */
3212 	val = (page_to_phys(pend_page) |
3213 	       GICR_PENDBASER_InnerShareable |
3214 	       GICR_PENDBASER_RaWaWb);
3215 
3216 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3217 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3218 
3219 	if (!rdists_support_shareable())
3220 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3221 
3222 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3223 		/*
3224 		 * The HW reports non-shareable, we must remove the
3225 		 * cacheability attributes as well.
3226 		 */
3227 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3228 			 GICR_PENDBASER_CACHEABILITY_MASK);
3229 		val |= GICR_PENDBASER_nC;
3230 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3231 	}
3232 
3233 	/* Enable LPIs */
3234 	val = readl_relaxed(rbase + GICR_CTLR);
3235 	val |= GICR_CTLR_ENABLE_LPIS;
3236 	writel_relaxed(val, rbase + GICR_CTLR);
3237 
3238 out:
3239 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3240 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3241 
3242 		/*
3243 		 * It's possible for CPU to receive VLPIs before it is
3244 		 * scheduled as a vPE, especially for the first CPU, and the
3245 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3246 		 * as out of range and dropped by GIC.
3247 		 * So we initialize IDbits to known value to avoid VLPI drop.
3248 		 */
3249 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3250 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3251 			smp_processor_id(), val);
3252 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3253 
3254 		/*
3255 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3256 		 * ancient programming gets left in and has possibility of
3257 		 * corrupting memory.
3258 		 */
3259 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3260 	}
3261 
3262 	if (allocate_vpe_l1_table()) {
3263 		/*
3264 		 * If the allocation has failed, we're in massive trouble.
3265 		 * Disable direct injection, and pray that no VM was
3266 		 * already running...
3267 		 */
3268 		gic_rdists->has_rvpeid = false;
3269 		gic_rdists->has_vlpis = false;
3270 	}
3271 
3272 	/* Make sure the GIC has seen the above */
3273 	dsb(sy);
3274 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3275 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3276 		smp_processor_id(),
3277 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3278 		"reserved" : "allocated",
3279 		&paddr);
3280 }
3281 
its_cpu_init_collection(struct its_node * its)3282 static void its_cpu_init_collection(struct its_node *its)
3283 {
3284 	int cpu = smp_processor_id();
3285 	u64 target;
3286 
3287 	/* avoid cross node collections and its mapping */
3288 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3289 		struct device_node *cpu_node;
3290 
3291 		cpu_node = of_get_cpu_node(cpu, NULL);
3292 		if (its->numa_node != NUMA_NO_NODE &&
3293 			its->numa_node != of_node_to_nid(cpu_node))
3294 			return;
3295 	}
3296 
3297 	/*
3298 	 * We now have to bind each collection to its target
3299 	 * redistributor.
3300 	 */
3301 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3302 		/*
3303 		 * This ITS wants the physical address of the
3304 		 * redistributor.
3305 		 */
3306 		target = gic_data_rdist()->phys_base;
3307 	} else {
3308 		/* This ITS wants a linear CPU number. */
3309 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3310 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3311 	}
3312 
3313 	/* Perform collection mapping */
3314 	its->collections[cpu].target_address = target;
3315 	its->collections[cpu].col_id = cpu;
3316 
3317 	its_send_mapc(its, &its->collections[cpu], 1);
3318 	its_send_invall(its, &its->collections[cpu]);
3319 }
3320 
its_cpu_init_collections(void)3321 static void its_cpu_init_collections(void)
3322 {
3323 	struct its_node *its;
3324 
3325 	raw_spin_lock(&its_lock);
3326 
3327 	list_for_each_entry(its, &its_nodes, entry)
3328 		its_cpu_init_collection(its);
3329 
3330 	raw_spin_unlock(&its_lock);
3331 }
3332 
its_find_device(struct its_node * its,u32 dev_id)3333 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3334 {
3335 	struct its_device *its_dev = NULL, *tmp;
3336 	unsigned long flags;
3337 
3338 	raw_spin_lock_irqsave(&its->lock, flags);
3339 
3340 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3341 		if (tmp->device_id == dev_id) {
3342 			its_dev = tmp;
3343 			break;
3344 		}
3345 	}
3346 
3347 	raw_spin_unlock_irqrestore(&its->lock, flags);
3348 
3349 	return its_dev;
3350 }
3351 
its_get_baser(struct its_node * its,u32 type)3352 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3353 {
3354 	int i;
3355 
3356 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3357 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3358 			return &its->tables[i];
3359 	}
3360 
3361 	return NULL;
3362 }
3363 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3364 static bool its_alloc_table_entry(struct its_node *its,
3365 				  struct its_baser *baser, u32 id)
3366 {
3367 	struct page *page;
3368 	u32 esz, idx;
3369 	__le64 *table;
3370 
3371 	/* Don't allow device id that exceeds single, flat table limit */
3372 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3373 	if (!(baser->val & GITS_BASER_INDIRECT))
3374 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3375 
3376 	/* Compute 1st level table index & check if that exceeds table limit */
3377 	idx = id >> ilog2(baser->psz / esz);
3378 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3379 		return false;
3380 
3381 	table = baser->base;
3382 
3383 	/* Allocate memory for 2nd level table */
3384 	if (!table[idx]) {
3385 		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3386 					    get_order(baser->psz));
3387 		if (!page)
3388 			return false;
3389 
3390 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3391 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3392 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3393 
3394 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3395 
3396 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3397 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3398 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3399 
3400 		/* Ensure updated table contents are visible to ITS hardware */
3401 		dsb(sy);
3402 	}
3403 
3404 	return true;
3405 }
3406 
its_alloc_device_table(struct its_node * its,u32 dev_id)3407 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3408 {
3409 	struct its_baser *baser;
3410 
3411 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3412 
3413 	/* Don't allow device id that exceeds ITS hardware limit */
3414 	if (!baser)
3415 		return (ilog2(dev_id) < device_ids(its));
3416 
3417 	return its_alloc_table_entry(its, baser, dev_id);
3418 }
3419 
its_alloc_vpe_table(u32 vpe_id)3420 static bool its_alloc_vpe_table(u32 vpe_id)
3421 {
3422 	struct its_node *its;
3423 	int cpu;
3424 
3425 	/*
3426 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3427 	 * could try and only do it on ITSs corresponding to devices
3428 	 * that have interrupts targeted at this VPE, but the
3429 	 * complexity becomes crazy (and you have tons of memory
3430 	 * anyway, right?).
3431 	 */
3432 	list_for_each_entry(its, &its_nodes, entry) {
3433 		struct its_baser *baser;
3434 
3435 		if (!is_v4(its))
3436 			continue;
3437 
3438 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3439 		if (!baser)
3440 			return false;
3441 
3442 		if (!its_alloc_table_entry(its, baser, vpe_id))
3443 			return false;
3444 	}
3445 
3446 	/* Non v4.1? No need to iterate RDs and go back early. */
3447 	if (!gic_rdists->has_rvpeid)
3448 		return true;
3449 
3450 	/*
3451 	 * Make sure the L2 tables are allocated for all copies of
3452 	 * the L1 table on *all* v4.1 RDs.
3453 	 */
3454 	for_each_possible_cpu(cpu) {
3455 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3456 			return false;
3457 	}
3458 
3459 	return true;
3460 }
3461 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3462 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3463 					    int nvecs, bool alloc_lpis)
3464 {
3465 	struct its_device *dev;
3466 	unsigned long *lpi_map = NULL;
3467 	unsigned long flags;
3468 	u16 *col_map = NULL;
3469 	void *itt;
3470 	int lpi_base;
3471 	int nr_lpis;
3472 	int nr_ites;
3473 	int sz;
3474 
3475 	if (!its_alloc_device_table(its, dev_id))
3476 		return NULL;
3477 
3478 	if (WARN_ON(!is_power_of_2(nvecs)))
3479 		nvecs = roundup_pow_of_two(nvecs);
3480 
3481 	/*
3482 	 * Even if the device wants a single LPI, the ITT must be
3483 	 * sized as a power of two (and you need at least one bit...).
3484 	 */
3485 	nr_ites = max(2, nvecs);
3486 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3487 	sz = max(sz, ITS_ITT_ALIGN);
3488 
3489 	itt = itt_alloc_pool(its->numa_node, sz);
3490 
3491 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3492 
3493 	if (alloc_lpis) {
3494 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3495 		if (lpi_map)
3496 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3497 					  GFP_KERNEL);
3498 	} else {
3499 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3500 		nr_lpis = 0;
3501 		lpi_base = 0;
3502 	}
3503 
3504 	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3505 		kfree(dev);
3506 		itt_free_pool(itt, sz);
3507 		bitmap_free(lpi_map);
3508 		kfree(col_map);
3509 		return NULL;
3510 	}
3511 
3512 	gic_flush_dcache_to_poc(itt, sz);
3513 
3514 	dev->its = its;
3515 	dev->itt = itt;
3516 	dev->itt_sz = sz;
3517 	dev->nr_ites = nr_ites;
3518 	dev->event_map.lpi_map = lpi_map;
3519 	dev->event_map.col_map = col_map;
3520 	dev->event_map.lpi_base = lpi_base;
3521 	dev->event_map.nr_lpis = nr_lpis;
3522 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3523 	dev->device_id = dev_id;
3524 	INIT_LIST_HEAD(&dev->entry);
3525 
3526 	raw_spin_lock_irqsave(&its->lock, flags);
3527 	list_add(&dev->entry, &its->its_device_list);
3528 	raw_spin_unlock_irqrestore(&its->lock, flags);
3529 
3530 	/* Map device to its ITT */
3531 	its_send_mapd(dev, 1);
3532 
3533 	return dev;
3534 }
3535 
its_free_device(struct its_device * its_dev)3536 static void its_free_device(struct its_device *its_dev)
3537 {
3538 	unsigned long flags;
3539 
3540 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3541 	list_del(&its_dev->entry);
3542 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3543 	kfree(its_dev->event_map.col_map);
3544 	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3545 	kfree(its_dev);
3546 }
3547 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3548 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3549 {
3550 	int idx;
3551 
3552 	/* Find a free LPI region in lpi_map and allocate them. */
3553 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3554 				      dev->event_map.nr_lpis,
3555 				      get_count_order(nvecs));
3556 	if (idx < 0)
3557 		return -ENOSPC;
3558 
3559 	*hwirq = dev->event_map.lpi_base + idx;
3560 
3561 	return 0;
3562 }
3563 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3564 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3565 			   int nvec, msi_alloc_info_t *info)
3566 {
3567 	struct its_node *its;
3568 	struct its_device *its_dev;
3569 	struct msi_domain_info *msi_info;
3570 	u32 dev_id;
3571 	int err = 0;
3572 
3573 	/*
3574 	 * We ignore "dev" entirely, and rely on the dev_id that has
3575 	 * been passed via the scratchpad. This limits this domain's
3576 	 * usefulness to upper layers that definitely know that they
3577 	 * are built on top of the ITS.
3578 	 */
3579 	dev_id = info->scratchpad[0].ul;
3580 
3581 	msi_info = msi_get_domain_info(domain);
3582 	its = msi_info->data;
3583 
3584 	if (!gic_rdists->has_direct_lpi &&
3585 	    vpe_proxy.dev &&
3586 	    vpe_proxy.dev->its == its &&
3587 	    dev_id == vpe_proxy.dev->device_id) {
3588 		/* Bad luck. Get yourself a better implementation */
3589 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3590 			  dev_id);
3591 		return -EINVAL;
3592 	}
3593 
3594 	mutex_lock(&its->dev_alloc_lock);
3595 	its_dev = its_find_device(its, dev_id);
3596 	if (its_dev) {
3597 		/*
3598 		 * We already have seen this ID, probably through
3599 		 * another alias (PCI bridge of some sort). No need to
3600 		 * create the device.
3601 		 */
3602 		its_dev->shared = true;
3603 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3604 		goto out;
3605 	}
3606 
3607 	its_dev = its_create_device(its, dev_id, nvec, true);
3608 	if (!its_dev) {
3609 		err = -ENOMEM;
3610 		goto out;
3611 	}
3612 
3613 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3614 		its_dev->shared = true;
3615 
3616 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3617 out:
3618 	mutex_unlock(&its->dev_alloc_lock);
3619 	info->scratchpad[0].ptr = its_dev;
3620 	return err;
3621 }
3622 
3623 static struct msi_domain_ops its_msi_domain_ops = {
3624 	.msi_prepare	= its_msi_prepare,
3625 };
3626 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3627 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3628 				    unsigned int virq,
3629 				    irq_hw_number_t hwirq)
3630 {
3631 	struct irq_fwspec fwspec;
3632 
3633 	if (irq_domain_get_of_node(domain->parent)) {
3634 		fwspec.fwnode = domain->parent->fwnode;
3635 		fwspec.param_count = 3;
3636 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3637 		fwspec.param[1] = hwirq;
3638 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3639 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3640 		fwspec.fwnode = domain->parent->fwnode;
3641 		fwspec.param_count = 2;
3642 		fwspec.param[0] = hwirq;
3643 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3644 	} else {
3645 		return -EINVAL;
3646 	}
3647 
3648 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3649 }
3650 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3651 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3652 				unsigned int nr_irqs, void *args)
3653 {
3654 	msi_alloc_info_t *info = args;
3655 	struct its_device *its_dev = info->scratchpad[0].ptr;
3656 	struct its_node *its = its_dev->its;
3657 	struct irq_data *irqd;
3658 	irq_hw_number_t hwirq;
3659 	int err;
3660 	int i;
3661 
3662 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3663 	if (err)
3664 		return err;
3665 
3666 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3667 	if (err)
3668 		return err;
3669 
3670 	for (i = 0; i < nr_irqs; i++) {
3671 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3672 		if (err)
3673 			return err;
3674 
3675 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3676 					      hwirq + i, &its_irq_chip, its_dev);
3677 		irqd = irq_get_irq_data(virq + i);
3678 		irqd_set_single_target(irqd);
3679 		irqd_set_affinity_on_activate(irqd);
3680 		irqd_set_resend_when_in_progress(irqd);
3681 		pr_debug("ID:%d pID:%d vID:%d\n",
3682 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3683 			 (int)(hwirq + i), virq + i);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3689 static int its_irq_domain_activate(struct irq_domain *domain,
3690 				   struct irq_data *d, bool reserve)
3691 {
3692 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3693 	u32 event = its_get_event_id(d);
3694 	int cpu;
3695 
3696 	cpu = its_select_cpu(d, cpu_online_mask);
3697 	if (cpu < 0 || cpu >= nr_cpu_ids)
3698 		return -EINVAL;
3699 
3700 	its_inc_lpi_count(d, cpu);
3701 	its_dev->event_map.col_map[event] = cpu;
3702 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3703 
3704 	/* Map the GIC IRQ and event to the device */
3705 	its_send_mapti(its_dev, d->hwirq, event);
3706 	return 0;
3707 }
3708 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3709 static void its_irq_domain_deactivate(struct irq_domain *domain,
3710 				      struct irq_data *d)
3711 {
3712 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3713 	u32 event = its_get_event_id(d);
3714 
3715 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3716 	/* Stop the delivery of interrupts */
3717 	its_send_discard(its_dev, event);
3718 }
3719 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3720 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3721 				unsigned int nr_irqs)
3722 {
3723 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3724 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3725 	struct its_node *its = its_dev->its;
3726 	int i;
3727 
3728 	bitmap_release_region(its_dev->event_map.lpi_map,
3729 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3730 			      get_count_order(nr_irqs));
3731 
3732 	for (i = 0; i < nr_irqs; i++) {
3733 		struct irq_data *data = irq_domain_get_irq_data(domain,
3734 								virq + i);
3735 		/* Nuke the entry in the domain */
3736 		irq_domain_reset_irq_data(data);
3737 	}
3738 
3739 	mutex_lock(&its->dev_alloc_lock);
3740 
3741 	/*
3742 	 * If all interrupts have been freed, start mopping the
3743 	 * floor. This is conditioned on the device not being shared.
3744 	 */
3745 	if (!its_dev->shared &&
3746 	    bitmap_empty(its_dev->event_map.lpi_map,
3747 			 its_dev->event_map.nr_lpis)) {
3748 		its_lpi_free(its_dev->event_map.lpi_map,
3749 			     its_dev->event_map.lpi_base,
3750 			     its_dev->event_map.nr_lpis);
3751 
3752 		/* Unmap device/itt */
3753 		its_send_mapd(its_dev, 0);
3754 		its_free_device(its_dev);
3755 	}
3756 
3757 	mutex_unlock(&its->dev_alloc_lock);
3758 
3759 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3760 }
3761 
3762 static const struct irq_domain_ops its_domain_ops = {
3763 	.select			= msi_lib_irq_domain_select,
3764 	.alloc			= its_irq_domain_alloc,
3765 	.free			= its_irq_domain_free,
3766 	.activate		= its_irq_domain_activate,
3767 	.deactivate		= its_irq_domain_deactivate,
3768 };
3769 
3770 /*
3771  * This is insane.
3772  *
3773  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3774  * likely), the only way to perform an invalidate is to use a fake
3775  * device to issue an INV command, implying that the LPI has first
3776  * been mapped to some event on that device. Since this is not exactly
3777  * cheap, we try to keep that mapping around as long as possible, and
3778  * only issue an UNMAP if we're short on available slots.
3779  *
3780  * Broken by design(tm).
3781  *
3782  * GICv4.1, on the other hand, mandates that we're able to invalidate
3783  * by writing to a MMIO register. It doesn't implement the whole of
3784  * DirectLPI, but that's good enough. And most of the time, we don't
3785  * even have to invalidate anything, as the redistributor can be told
3786  * whether to generate a doorbell or not (we thus leave it enabled,
3787  * always).
3788  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3789 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3790 {
3791 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3792 	if (gic_rdists->has_rvpeid)
3793 		return;
3794 
3795 	/* Already unmapped? */
3796 	if (vpe->vpe_proxy_event == -1)
3797 		return;
3798 
3799 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3800 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3801 
3802 	/*
3803 	 * We don't track empty slots at all, so let's move the
3804 	 * next_victim pointer if we can quickly reuse that slot
3805 	 * instead of nuking an existing entry. Not clear that this is
3806 	 * always a win though, and this might just generate a ripple
3807 	 * effect... Let's just hope VPEs don't migrate too often.
3808 	 */
3809 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3810 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3811 
3812 	vpe->vpe_proxy_event = -1;
3813 }
3814 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3815 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3816 {
3817 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3818 	if (gic_rdists->has_rvpeid)
3819 		return;
3820 
3821 	if (!gic_rdists->has_direct_lpi) {
3822 		unsigned long flags;
3823 
3824 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3825 		its_vpe_db_proxy_unmap_locked(vpe);
3826 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3827 	}
3828 }
3829 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3830 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3831 {
3832 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3833 	if (gic_rdists->has_rvpeid)
3834 		return;
3835 
3836 	/* Already mapped? */
3837 	if (vpe->vpe_proxy_event != -1)
3838 		return;
3839 
3840 	/* This slot was already allocated. Kick the other VPE out. */
3841 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3842 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3843 
3844 	/* Map the new VPE instead */
3845 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3846 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3847 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3848 
3849 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3850 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3851 }
3852 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3853 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3854 {
3855 	unsigned long flags;
3856 	struct its_collection *target_col;
3857 
3858 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3859 	if (gic_rdists->has_rvpeid)
3860 		return;
3861 
3862 	if (gic_rdists->has_direct_lpi) {
3863 		void __iomem *rdbase;
3864 
3865 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3866 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3867 		wait_for_syncr(rdbase);
3868 
3869 		return;
3870 	}
3871 
3872 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3873 
3874 	its_vpe_db_proxy_map_locked(vpe);
3875 
3876 	target_col = &vpe_proxy.dev->its->collections[to];
3877 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3878 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3879 
3880 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3881 }
3882 
its_vpe_4_1_invall_locked(int cpu,struct its_vpe * vpe)3883 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3884 {
3885 	void __iomem *rdbase;
3886 	u64 val;
3887 
3888 	val  = GICR_INVALLR_V;
3889 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3890 
3891 	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3892 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3893 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3894 	wait_for_syncr(rdbase);
3895 }
3896 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3897 static int its_vpe_set_affinity(struct irq_data *d,
3898 				const struct cpumask *mask_val,
3899 				bool force)
3900 {
3901 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3902 	unsigned int from, cpu = nr_cpu_ids;
3903 	struct cpumask *table_mask;
3904 	struct its_node *its;
3905 	unsigned long flags;
3906 
3907 	/*
3908 	 * Check if we're racing against a VPE being destroyed, for
3909 	 * which we don't want to allow a VMOVP.
3910 	 */
3911 	if (!atomic_read(&vpe->vmapp_count)) {
3912 		if (gic_requires_eager_mapping())
3913 			return -EINVAL;
3914 
3915 		/*
3916 		 * If we lazily map the VPEs, this isn't an error and
3917 		 * we can exit cleanly.
3918 		 */
3919 		cpu = cpumask_first(mask_val);
3920 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3921 		return IRQ_SET_MASK_OK_DONE;
3922 	}
3923 
3924 	/*
3925 	 * Changing affinity is mega expensive, so let's be as lazy as
3926 	 * we can and only do it if we really have to. Also, if mapped
3927 	 * into the proxy device, we need to move the doorbell
3928 	 * interrupt to its new location.
3929 	 *
3930 	 * Another thing is that changing the affinity of a vPE affects
3931 	 * *other interrupts* such as all the vLPIs that are routed to
3932 	 * this vPE. This means that the irq_desc lock is not enough to
3933 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3934 	 * during the update, hence the lock below which must also be
3935 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3936 	 *
3937 	 * Finally, we must protect ourselves against concurrent updates of
3938 	 * the mapping state on this VM should the ITS list be in use (see
3939 	 * the shortcut in its_send_vmovp() otherewise).
3940 	 */
3941 	if (its_list_map)
3942 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3943 
3944 	from = vpe_to_cpuid_lock(vpe, &flags);
3945 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3946 
3947 	/*
3948 	 * If we are offered another CPU in the same GICv4.1 ITS
3949 	 * affinity, pick this one. Otherwise, any CPU will do.
3950 	 */
3951 	if (table_mask)
3952 		cpu = cpumask_any_and(mask_val, table_mask);
3953 	if (cpu < nr_cpu_ids) {
3954 		if (cpumask_test_cpu(from, mask_val) &&
3955 		    cpumask_test_cpu(from, table_mask))
3956 			cpu = from;
3957 	} else {
3958 		cpu = cpumask_first(mask_val);
3959 	}
3960 
3961 	if (from == cpu)
3962 		goto out;
3963 
3964 	vpe->col_idx = cpu;
3965 
3966 	its_send_vmovp(vpe);
3967 
3968 	its = find_4_1_its();
3969 	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3970 		its_vpe_4_1_invall_locked(cpu, vpe);
3971 
3972 	its_vpe_db_proxy_move(vpe, from, cpu);
3973 
3974 out:
3975 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3976 	vpe_to_cpuid_unlock(vpe, flags);
3977 
3978 	if (its_list_map)
3979 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3980 
3981 	return IRQ_SET_MASK_OK_DONE;
3982 }
3983 
its_wait_vpt_parse_complete(void)3984 static void its_wait_vpt_parse_complete(void)
3985 {
3986 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3987 	u64 val;
3988 
3989 	if (!gic_rdists->has_vpend_valid_dirty)
3990 		return;
3991 
3992 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3993 						       val,
3994 						       !(val & GICR_VPENDBASER_Dirty),
3995 						       1, 500));
3996 }
3997 
its_vpe_schedule(struct its_vpe * vpe)3998 static void its_vpe_schedule(struct its_vpe *vpe)
3999 {
4000 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4001 	u64 val;
4002 
4003 	/* Schedule the VPE */
4004 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4005 		GENMASK_ULL(51, 12);
4006 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4007 	if (rdists_support_shareable()) {
4008 		val |= GICR_VPROPBASER_RaWb;
4009 		val |= GICR_VPROPBASER_InnerShareable;
4010 	}
4011 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4012 
4013 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4014 		GENMASK_ULL(51, 16);
4015 	if (rdists_support_shareable()) {
4016 		val |= GICR_VPENDBASER_RaWaWb;
4017 		val |= GICR_VPENDBASER_InnerShareable;
4018 	}
4019 	/*
4020 	 * There is no good way of finding out if the pending table is
4021 	 * empty as we can race against the doorbell interrupt very
4022 	 * easily. So in the end, vpe->pending_last is only an
4023 	 * indication that the vcpu has something pending, not one
4024 	 * that the pending table is empty. A good implementation
4025 	 * would be able to read its coarse map pretty quickly anyway,
4026 	 * making this a tolerable issue.
4027 	 */
4028 	val |= GICR_VPENDBASER_PendingLast;
4029 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4030 	val |= GICR_VPENDBASER_Valid;
4031 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4032 }
4033 
its_vpe_deschedule(struct its_vpe * vpe)4034 static void its_vpe_deschedule(struct its_vpe *vpe)
4035 {
4036 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4037 	u64 val;
4038 
4039 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4040 
4041 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4042 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4043 }
4044 
its_vpe_invall(struct its_vpe * vpe)4045 static void its_vpe_invall(struct its_vpe *vpe)
4046 {
4047 	struct its_node *its;
4048 
4049 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4050 
4051 	list_for_each_entry(its, &its_nodes, entry) {
4052 		if (!is_v4(its))
4053 			continue;
4054 
4055 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4056 			continue;
4057 
4058 		/*
4059 		 * Sending a VINVALL to a single ITS is enough, as all
4060 		 * we need is to reach the redistributors.
4061 		 */
4062 		its_send_vinvall(its, vpe);
4063 		return;
4064 	}
4065 }
4066 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4067 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4068 {
4069 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4070 	struct its_cmd_info *info = vcpu_info;
4071 
4072 	switch (info->cmd_type) {
4073 	case SCHEDULE_VPE:
4074 		its_vpe_schedule(vpe);
4075 		return 0;
4076 
4077 	case DESCHEDULE_VPE:
4078 		its_vpe_deschedule(vpe);
4079 		return 0;
4080 
4081 	case COMMIT_VPE:
4082 		its_wait_vpt_parse_complete();
4083 		return 0;
4084 
4085 	case INVALL_VPE:
4086 		its_vpe_invall(vpe);
4087 		return 0;
4088 
4089 	default:
4090 		return -EINVAL;
4091 	}
4092 }
4093 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))4094 static void its_vpe_send_cmd(struct its_vpe *vpe,
4095 			     void (*cmd)(struct its_device *, u32))
4096 {
4097 	unsigned long flags;
4098 
4099 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4100 
4101 	its_vpe_db_proxy_map_locked(vpe);
4102 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4103 
4104 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4105 }
4106 
its_vpe_send_inv(struct irq_data * d)4107 static void its_vpe_send_inv(struct irq_data *d)
4108 {
4109 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4110 
4111 	if (gic_rdists->has_direct_lpi)
4112 		__direct_lpi_inv(d, d->parent_data->hwirq);
4113 	else
4114 		its_vpe_send_cmd(vpe, its_send_inv);
4115 }
4116 
its_vpe_mask_irq(struct irq_data * d)4117 static void its_vpe_mask_irq(struct irq_data *d)
4118 {
4119 	/*
4120 	 * We need to unmask the LPI, which is described by the parent
4121 	 * irq_data. Instead of calling into the parent (which won't
4122 	 * exactly do the right thing, let's simply use the
4123 	 * parent_data pointer. Yes, I'm naughty.
4124 	 */
4125 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4126 	its_vpe_send_inv(d);
4127 }
4128 
its_vpe_unmask_irq(struct irq_data * d)4129 static void its_vpe_unmask_irq(struct irq_data *d)
4130 {
4131 	/* Same hack as above... */
4132 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4133 	its_vpe_send_inv(d);
4134 }
4135 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4136 static int its_vpe_set_irqchip_state(struct irq_data *d,
4137 				     enum irqchip_irq_state which,
4138 				     bool state)
4139 {
4140 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4141 
4142 	if (which != IRQCHIP_STATE_PENDING)
4143 		return -EINVAL;
4144 
4145 	if (gic_rdists->has_direct_lpi) {
4146 		void __iomem *rdbase;
4147 
4148 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4149 		if (state) {
4150 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4151 		} else {
4152 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4153 			wait_for_syncr(rdbase);
4154 		}
4155 	} else {
4156 		if (state)
4157 			its_vpe_send_cmd(vpe, its_send_int);
4158 		else
4159 			its_vpe_send_cmd(vpe, its_send_clear);
4160 	}
4161 
4162 	return 0;
4163 }
4164 
its_vpe_retrigger(struct irq_data * d)4165 static int its_vpe_retrigger(struct irq_data *d)
4166 {
4167 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4168 }
4169 
4170 static struct irq_chip its_vpe_irq_chip = {
4171 	.name			= "GICv4-vpe",
4172 	.irq_mask		= its_vpe_mask_irq,
4173 	.irq_unmask		= its_vpe_unmask_irq,
4174 	.irq_eoi		= irq_chip_eoi_parent,
4175 	.irq_set_affinity	= its_vpe_set_affinity,
4176 	.irq_retrigger		= its_vpe_retrigger,
4177 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4178 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4179 };
4180 
find_4_1_its(void)4181 static struct its_node *find_4_1_its(void)
4182 {
4183 	static struct its_node *its = NULL;
4184 
4185 	if (!its) {
4186 		list_for_each_entry(its, &its_nodes, entry) {
4187 			if (is_v4_1(its))
4188 				return its;
4189 		}
4190 
4191 		/* Oops? */
4192 		its = NULL;
4193 	}
4194 
4195 	return its;
4196 }
4197 
its_vpe_4_1_send_inv(struct irq_data * d)4198 static void its_vpe_4_1_send_inv(struct irq_data *d)
4199 {
4200 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4201 	struct its_node *its;
4202 
4203 	/*
4204 	 * GICv4.1 wants doorbells to be invalidated using the
4205 	 * INVDB command in order to be broadcast to all RDs. Send
4206 	 * it to the first valid ITS, and let the HW do its magic.
4207 	 */
4208 	its = find_4_1_its();
4209 	if (its)
4210 		its_send_invdb(its, vpe);
4211 }
4212 
its_vpe_4_1_mask_irq(struct irq_data * d)4213 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4214 {
4215 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4216 	its_vpe_4_1_send_inv(d);
4217 }
4218 
its_vpe_4_1_unmask_irq(struct irq_data * d)4219 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4220 {
4221 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4222 	its_vpe_4_1_send_inv(d);
4223 }
4224 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4225 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4226 				 struct its_cmd_info *info)
4227 {
4228 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4229 	u64 val = 0;
4230 
4231 	/* Schedule the VPE */
4232 	val |= GICR_VPENDBASER_Valid;
4233 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4234 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4235 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4236 
4237 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4238 }
4239 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4240 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4241 				   struct its_cmd_info *info)
4242 {
4243 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4244 	u64 val;
4245 
4246 	if (info->req_db) {
4247 		unsigned long flags;
4248 
4249 		/*
4250 		 * vPE is going to block: make the vPE non-resident with
4251 		 * PendingLast clear and DB set. The GIC guarantees that if
4252 		 * we read-back PendingLast clear, then a doorbell will be
4253 		 * delivered when an interrupt comes.
4254 		 *
4255 		 * Note the locking to deal with the concurrent update of
4256 		 * pending_last from the doorbell interrupt handler that can
4257 		 * run concurrently.
4258 		 */
4259 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4260 		val = its_clear_vpend_valid(vlpi_base,
4261 					    GICR_VPENDBASER_PendingLast,
4262 					    GICR_VPENDBASER_4_1_DB);
4263 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4264 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4265 	} else {
4266 		/*
4267 		 * We're not blocking, so just make the vPE non-resident
4268 		 * with PendingLast set, indicating that we'll be back.
4269 		 */
4270 		val = its_clear_vpend_valid(vlpi_base,
4271 					    0,
4272 					    GICR_VPENDBASER_PendingLast);
4273 		vpe->pending_last = true;
4274 	}
4275 }
4276 
its_vpe_4_1_invall(struct its_vpe * vpe)4277 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4278 {
4279 	unsigned long flags;
4280 	int cpu;
4281 
4282 	/* Target the redistributor this vPE is currently known on */
4283 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4284 	its_vpe_4_1_invall_locked(cpu, vpe);
4285 	vpe_to_cpuid_unlock(vpe, flags);
4286 }
4287 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4288 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4289 {
4290 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4291 	struct its_cmd_info *info = vcpu_info;
4292 
4293 	switch (info->cmd_type) {
4294 	case SCHEDULE_VPE:
4295 		its_vpe_4_1_schedule(vpe, info);
4296 		return 0;
4297 
4298 	case DESCHEDULE_VPE:
4299 		its_vpe_4_1_deschedule(vpe, info);
4300 		return 0;
4301 
4302 	case COMMIT_VPE:
4303 		its_wait_vpt_parse_complete();
4304 		return 0;
4305 
4306 	case INVALL_VPE:
4307 		its_vpe_4_1_invall(vpe);
4308 		return 0;
4309 
4310 	default:
4311 		return -EINVAL;
4312 	}
4313 }
4314 
4315 static struct irq_chip its_vpe_4_1_irq_chip = {
4316 	.name			= "GICv4.1-vpe",
4317 	.irq_mask		= its_vpe_4_1_mask_irq,
4318 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4319 	.irq_eoi		= irq_chip_eoi_parent,
4320 	.irq_set_affinity	= its_vpe_set_affinity,
4321 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4322 };
4323 
its_configure_sgi(struct irq_data * d,bool clear)4324 static void its_configure_sgi(struct irq_data *d, bool clear)
4325 {
4326 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4327 	struct its_cmd_desc desc;
4328 
4329 	desc.its_vsgi_cmd.vpe = vpe;
4330 	desc.its_vsgi_cmd.sgi = d->hwirq;
4331 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4332 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4333 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4334 	desc.its_vsgi_cmd.clear = clear;
4335 
4336 	/*
4337 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4338 	 * destination VPE is mapped there. Since we map them eagerly at
4339 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4340 	 */
4341 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4342 }
4343 
its_sgi_mask_irq(struct irq_data * d)4344 static void its_sgi_mask_irq(struct irq_data *d)
4345 {
4346 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4347 
4348 	vpe->sgi_config[d->hwirq].enabled = false;
4349 	its_configure_sgi(d, false);
4350 }
4351 
its_sgi_unmask_irq(struct irq_data * d)4352 static void its_sgi_unmask_irq(struct irq_data *d)
4353 {
4354 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4355 
4356 	vpe->sgi_config[d->hwirq].enabled = true;
4357 	its_configure_sgi(d, false);
4358 }
4359 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4360 static int its_sgi_set_affinity(struct irq_data *d,
4361 				const struct cpumask *mask_val,
4362 				bool force)
4363 {
4364 	/*
4365 	 * There is no notion of affinity for virtual SGIs, at least
4366 	 * not on the host (since they can only be targeting a vPE).
4367 	 * Tell the kernel we've done whatever it asked for.
4368 	 */
4369 	irq_data_update_effective_affinity(d, mask_val);
4370 	return IRQ_SET_MASK_OK;
4371 }
4372 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4373 static int its_sgi_set_irqchip_state(struct irq_data *d,
4374 				     enum irqchip_irq_state which,
4375 				     bool state)
4376 {
4377 	if (which != IRQCHIP_STATE_PENDING)
4378 		return -EINVAL;
4379 
4380 	if (state) {
4381 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4382 		struct its_node *its = find_4_1_its();
4383 		u64 val;
4384 
4385 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4386 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4387 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4388 	} else {
4389 		its_configure_sgi(d, true);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4395 static int its_sgi_get_irqchip_state(struct irq_data *d,
4396 				     enum irqchip_irq_state which, bool *val)
4397 {
4398 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4399 	void __iomem *base;
4400 	unsigned long flags;
4401 	u32 count = 1000000;	/* 1s! */
4402 	u32 status;
4403 	int cpu;
4404 
4405 	if (which != IRQCHIP_STATE_PENDING)
4406 		return -EINVAL;
4407 
4408 	/*
4409 	 * Locking galore! We can race against two different events:
4410 	 *
4411 	 * - Concurrent vPE affinity change: we must make sure it cannot
4412 	 *   happen, or we'll talk to the wrong redistributor. This is
4413 	 *   identical to what happens with vLPIs.
4414 	 *
4415 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4416 	 *   MMIO registers, this must be made atomic one way or another.
4417 	 */
4418 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4419 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4420 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4421 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4422 	do {
4423 		status = readl_relaxed(base + GICR_VSGIPENDR);
4424 		if (!(status & GICR_VSGIPENDR_BUSY))
4425 			goto out;
4426 
4427 		count--;
4428 		if (!count) {
4429 			pr_err_ratelimited("Unable to get SGI status\n");
4430 			goto out;
4431 		}
4432 		cpu_relax();
4433 		udelay(1);
4434 	} while (count);
4435 
4436 out:
4437 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4438 	vpe_to_cpuid_unlock(vpe, flags);
4439 
4440 	if (!count)
4441 		return -ENXIO;
4442 
4443 	*val = !!(status & (1 << d->hwirq));
4444 
4445 	return 0;
4446 }
4447 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4448 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4449 {
4450 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4451 	struct its_cmd_info *info = vcpu_info;
4452 
4453 	switch (info->cmd_type) {
4454 	case PROP_UPDATE_VSGI:
4455 		vpe->sgi_config[d->hwirq].priority = info->priority;
4456 		vpe->sgi_config[d->hwirq].group = info->group;
4457 		its_configure_sgi(d, false);
4458 		return 0;
4459 
4460 	default:
4461 		return -EINVAL;
4462 	}
4463 }
4464 
4465 static struct irq_chip its_sgi_irq_chip = {
4466 	.name			= "GICv4.1-sgi",
4467 	.irq_mask		= its_sgi_mask_irq,
4468 	.irq_unmask		= its_sgi_unmask_irq,
4469 	.irq_set_affinity	= its_sgi_set_affinity,
4470 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4471 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4472 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4473 };
4474 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4475 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4476 				    unsigned int virq, unsigned int nr_irqs,
4477 				    void *args)
4478 {
4479 	struct its_vpe *vpe = args;
4480 	int i;
4481 
4482 	/* Yes, we do want 16 SGIs */
4483 	WARN_ON(nr_irqs != 16);
4484 
4485 	for (i = 0; i < 16; i++) {
4486 		vpe->sgi_config[i].priority = 0;
4487 		vpe->sgi_config[i].enabled = false;
4488 		vpe->sgi_config[i].group = false;
4489 
4490 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4491 					      &its_sgi_irq_chip, vpe);
4492 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4493 	}
4494 
4495 	return 0;
4496 }
4497 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4498 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4499 				    unsigned int virq,
4500 				    unsigned int nr_irqs)
4501 {
4502 	/* Nothing to do */
4503 }
4504 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4505 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4506 				       struct irq_data *d, bool reserve)
4507 {
4508 	/* Write out the initial SGI configuration */
4509 	its_configure_sgi(d, false);
4510 	return 0;
4511 }
4512 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4513 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4514 					  struct irq_data *d)
4515 {
4516 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4517 
4518 	/*
4519 	 * The VSGI command is awkward:
4520 	 *
4521 	 * - To change the configuration, CLEAR must be set to false,
4522 	 *   leaving the pending bit unchanged.
4523 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4524 	 *   the configuration unchanged.
4525 	 *
4526 	 * You just can't do both at once, hence the two commands below.
4527 	 */
4528 	vpe->sgi_config[d->hwirq].enabled = false;
4529 	its_configure_sgi(d, false);
4530 	its_configure_sgi(d, true);
4531 }
4532 
4533 static const struct irq_domain_ops its_sgi_domain_ops = {
4534 	.alloc		= its_sgi_irq_domain_alloc,
4535 	.free		= its_sgi_irq_domain_free,
4536 	.activate	= its_sgi_irq_domain_activate,
4537 	.deactivate	= its_sgi_irq_domain_deactivate,
4538 };
4539 
its_vpe_id_alloc(void)4540 static int its_vpe_id_alloc(void)
4541 {
4542 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4543 }
4544 
its_vpe_id_free(u16 id)4545 static void its_vpe_id_free(u16 id)
4546 {
4547 	ida_free(&its_vpeid_ida, id);
4548 }
4549 
its_vpe_init(struct its_vpe * vpe)4550 static int its_vpe_init(struct its_vpe *vpe)
4551 {
4552 	struct page *vpt_page;
4553 	int vpe_id;
4554 
4555 	/* Allocate vpe_id */
4556 	vpe_id = its_vpe_id_alloc();
4557 	if (vpe_id < 0)
4558 		return vpe_id;
4559 
4560 	/* Allocate VPT */
4561 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4562 	if (!vpt_page) {
4563 		its_vpe_id_free(vpe_id);
4564 		return -ENOMEM;
4565 	}
4566 
4567 	if (!its_alloc_vpe_table(vpe_id)) {
4568 		its_vpe_id_free(vpe_id);
4569 		its_free_pending_table(vpt_page);
4570 		return -ENOMEM;
4571 	}
4572 
4573 	raw_spin_lock_init(&vpe->vpe_lock);
4574 	vpe->vpe_id = vpe_id;
4575 	vpe->vpt_page = vpt_page;
4576 	atomic_set(&vpe->vmapp_count, 0);
4577 	if (!gic_rdists->has_rvpeid)
4578 		vpe->vpe_proxy_event = -1;
4579 
4580 	return 0;
4581 }
4582 
its_vpe_teardown(struct its_vpe * vpe)4583 static void its_vpe_teardown(struct its_vpe *vpe)
4584 {
4585 	its_vpe_db_proxy_unmap(vpe);
4586 	its_vpe_id_free(vpe->vpe_id);
4587 	its_free_pending_table(vpe->vpt_page);
4588 }
4589 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4590 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4591 				    unsigned int virq,
4592 				    unsigned int nr_irqs)
4593 {
4594 	struct its_vm *vm = domain->host_data;
4595 	int i;
4596 
4597 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4598 
4599 	for (i = 0; i < nr_irqs; i++) {
4600 		struct irq_data *data = irq_domain_get_irq_data(domain,
4601 								virq + i);
4602 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4603 
4604 		BUG_ON(vm != vpe->its_vm);
4605 
4606 		clear_bit(data->hwirq, vm->db_bitmap);
4607 		its_vpe_teardown(vpe);
4608 		irq_domain_reset_irq_data(data);
4609 	}
4610 
4611 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4612 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4613 		its_free_prop_table(vm->vprop_page);
4614 	}
4615 }
4616 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4617 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4618 				    unsigned int nr_irqs, void *args)
4619 {
4620 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4621 	struct its_vm *vm = args;
4622 	unsigned long *bitmap;
4623 	struct page *vprop_page;
4624 	int base, nr_ids, i, err = 0;
4625 
4626 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4627 	if (!bitmap)
4628 		return -ENOMEM;
4629 
4630 	if (nr_ids < nr_irqs) {
4631 		its_lpi_free(bitmap, base, nr_ids);
4632 		return -ENOMEM;
4633 	}
4634 
4635 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4636 	if (!vprop_page) {
4637 		its_lpi_free(bitmap, base, nr_ids);
4638 		return -ENOMEM;
4639 	}
4640 
4641 	vm->db_bitmap = bitmap;
4642 	vm->db_lpi_base = base;
4643 	vm->nr_db_lpis = nr_ids;
4644 	vm->vprop_page = vprop_page;
4645 	raw_spin_lock_init(&vm->vmapp_lock);
4646 
4647 	if (gic_rdists->has_rvpeid)
4648 		irqchip = &its_vpe_4_1_irq_chip;
4649 
4650 	for (i = 0; i < nr_irqs; i++) {
4651 		vm->vpes[i]->vpe_db_lpi = base + i;
4652 		err = its_vpe_init(vm->vpes[i]);
4653 		if (err)
4654 			break;
4655 		err = its_irq_gic_domain_alloc(domain, virq + i,
4656 					       vm->vpes[i]->vpe_db_lpi);
4657 		if (err)
4658 			break;
4659 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4660 					      irqchip, vm->vpes[i]);
4661 		set_bit(i, bitmap);
4662 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4663 	}
4664 
4665 	if (err)
4666 		its_vpe_irq_domain_free(domain, virq, i);
4667 
4668 	return err;
4669 }
4670 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4671 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4672 				       struct irq_data *d, bool reserve)
4673 {
4674 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4675 	struct its_node *its;
4676 
4677 	/* Map the VPE to the first possible CPU */
4678 	vpe->col_idx = cpumask_first(cpu_online_mask);
4679 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4680 
4681 	/*
4682 	 * If we use the list map, we issue VMAPP on demand... Unless
4683 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4684 	 * so that VSGIs can work.
4685 	 */
4686 	if (!gic_requires_eager_mapping())
4687 		return 0;
4688 
4689 	list_for_each_entry(its, &its_nodes, entry) {
4690 		if (!is_v4(its))
4691 			continue;
4692 
4693 		its_send_vmapp(its, vpe, true);
4694 		its_send_vinvall(its, vpe);
4695 	}
4696 
4697 	return 0;
4698 }
4699 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4700 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4701 					  struct irq_data *d)
4702 {
4703 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4704 	struct its_node *its;
4705 
4706 	/*
4707 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4708 	 * VLPIs are associated with the VM.
4709 	 */
4710 	if (!gic_requires_eager_mapping())
4711 		return;
4712 
4713 	list_for_each_entry(its, &its_nodes, entry) {
4714 		if (!is_v4(its))
4715 			continue;
4716 
4717 		its_send_vmapp(its, vpe, false);
4718 	}
4719 
4720 	/*
4721 	 * There may be a direct read to the VPT after unmapping the
4722 	 * vPE, to guarantee the validity of this, we make the VPT
4723 	 * memory coherent with the CPU caches here.
4724 	 */
4725 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4726 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4727 					LPI_PENDBASE_SZ);
4728 }
4729 
4730 static const struct irq_domain_ops its_vpe_domain_ops = {
4731 	.alloc			= its_vpe_irq_domain_alloc,
4732 	.free			= its_vpe_irq_domain_free,
4733 	.activate		= its_vpe_irq_domain_activate,
4734 	.deactivate		= its_vpe_irq_domain_deactivate,
4735 };
4736 
its_force_quiescent(void __iomem * base)4737 static int its_force_quiescent(void __iomem *base)
4738 {
4739 	u32 count = 1000000;	/* 1s */
4740 	u32 val;
4741 
4742 	val = readl_relaxed(base + GITS_CTLR);
4743 	/*
4744 	 * GIC architecture specification requires the ITS to be both
4745 	 * disabled and quiescent for writes to GITS_BASER<n> or
4746 	 * GITS_CBASER to not have UNPREDICTABLE results.
4747 	 */
4748 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4749 		return 0;
4750 
4751 	/* Disable the generation of all interrupts to this ITS */
4752 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4753 	writel_relaxed(val, base + GITS_CTLR);
4754 
4755 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4756 	while (1) {
4757 		val = readl_relaxed(base + GITS_CTLR);
4758 		if (val & GITS_CTLR_QUIESCENT)
4759 			return 0;
4760 
4761 		count--;
4762 		if (!count)
4763 			return -EBUSY;
4764 
4765 		cpu_relax();
4766 		udelay(1);
4767 	}
4768 }
4769 
its_enable_quirk_cavium_22375(void * data)4770 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4771 {
4772 	struct its_node *its = data;
4773 
4774 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4775 	its->typer &= ~GITS_TYPER_DEVBITS;
4776 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4777 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4778 
4779 	return true;
4780 }
4781 
its_enable_quirk_cavium_23144(void * data)4782 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4783 {
4784 	struct its_node *its = data;
4785 
4786 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4787 
4788 	return true;
4789 }
4790 
its_enable_quirk_qdf2400_e0065(void * data)4791 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4792 {
4793 	struct its_node *its = data;
4794 
4795 	/* On QDF2400, the size of the ITE is 16Bytes */
4796 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4797 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4798 
4799 	return true;
4800 }
4801 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4802 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4803 {
4804 	struct its_node *its = its_dev->its;
4805 
4806 	/*
4807 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4808 	 * which maps 32-bit writes targeted at a separate window of
4809 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4810 	 * with device ID taken from bits [device_id_bits + 1:2] of
4811 	 * the window offset.
4812 	 */
4813 	return its->pre_its_base + (its_dev->device_id << 2);
4814 }
4815 
its_enable_quirk_socionext_synquacer(void * data)4816 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4817 {
4818 	struct its_node *its = data;
4819 	u32 pre_its_window[2];
4820 	u32 ids;
4821 
4822 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4823 					   "socionext,synquacer-pre-its",
4824 					   pre_its_window,
4825 					   ARRAY_SIZE(pre_its_window))) {
4826 
4827 		its->pre_its_base = pre_its_window[0];
4828 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4829 
4830 		ids = ilog2(pre_its_window[1]) - 2;
4831 		if (device_ids(its) > ids) {
4832 			its->typer &= ~GITS_TYPER_DEVBITS;
4833 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4834 		}
4835 
4836 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4837 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4838 		return true;
4839 	}
4840 	return false;
4841 }
4842 
its_enable_quirk_hip07_161600802(void * data)4843 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4844 {
4845 	struct its_node *its = data;
4846 
4847 	/*
4848 	 * Hip07 insists on using the wrong address for the VLPI
4849 	 * page. Trick it into doing the right thing...
4850 	 */
4851 	its->vlpi_redist_offset = SZ_128K;
4852 	return true;
4853 }
4854 
its_enable_rk3588001(void * data)4855 static bool __maybe_unused its_enable_rk3588001(void *data)
4856 {
4857 	struct its_node *its = data;
4858 
4859 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4860 	    !of_machine_is_compatible("rockchip,rk3588s"))
4861 		return false;
4862 
4863 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4864 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4865 
4866 	return true;
4867 }
4868 
its_set_non_coherent(void * data)4869 static bool its_set_non_coherent(void *data)
4870 {
4871 	struct its_node *its = data;
4872 
4873 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4874 	return true;
4875 }
4876 
its_enable_quirk_hip09_162100801(void * data)4877 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4878 {
4879 	struct its_node *its = data;
4880 
4881 	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4882 	return true;
4883 }
4884 
its_enable_rk3568002(void * data)4885 static bool __maybe_unused its_enable_rk3568002(void *data)
4886 {
4887 	if (!of_machine_is_compatible("rockchip,rk3566") &&
4888 	    !of_machine_is_compatible("rockchip,rk3568"))
4889 		return false;
4890 
4891 	gfp_flags_quirk |= GFP_DMA32;
4892 
4893 	return true;
4894 }
4895 
4896 static const struct gic_quirk its_quirks[] = {
4897 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4898 	{
4899 		.desc	= "ITS: Cavium errata 22375, 24313",
4900 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4901 		.mask	= 0xffff0fff,
4902 		.init	= its_enable_quirk_cavium_22375,
4903 	},
4904 #endif
4905 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4906 	{
4907 		.desc	= "ITS: Cavium erratum 23144",
4908 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4909 		.mask	= 0xffff0fff,
4910 		.init	= its_enable_quirk_cavium_23144,
4911 	},
4912 #endif
4913 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4914 	{
4915 		.desc	= "ITS: QDF2400 erratum 0065",
4916 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4917 		.mask	= 0xffffffff,
4918 		.init	= its_enable_quirk_qdf2400_e0065,
4919 	},
4920 #endif
4921 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4922 	{
4923 		/*
4924 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4925 		 * implementation, but with a 'pre-ITS' added that requires
4926 		 * special handling in software.
4927 		 */
4928 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4929 		.iidr	= 0x0001143b,
4930 		.mask	= 0xffffffff,
4931 		.init	= its_enable_quirk_socionext_synquacer,
4932 	},
4933 #endif
4934 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4935 	{
4936 		.desc	= "ITS: Hip07 erratum 161600802",
4937 		.iidr	= 0x00000004,
4938 		.mask	= 0xffffffff,
4939 		.init	= its_enable_quirk_hip07_161600802,
4940 	},
4941 #endif
4942 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4943 	{
4944 		.desc	= "ITS: Hip09 erratum 162100801",
4945 		.iidr	= 0x00051736,
4946 		.mask	= 0xffffffff,
4947 		.init	= its_enable_quirk_hip09_162100801,
4948 	},
4949 #endif
4950 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4951 	{
4952 		.desc   = "ITS: Rockchip erratum RK3588001",
4953 		.iidr   = 0x0201743b,
4954 		.mask   = 0xffffffff,
4955 		.init   = its_enable_rk3588001,
4956 	},
4957 #endif
4958 	{
4959 		.desc   = "ITS: non-coherent attribute",
4960 		.property = "dma-noncoherent",
4961 		.init   = its_set_non_coherent,
4962 	},
4963 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4964 	{
4965 		.desc   = "ITS: Rockchip erratum RK3568002",
4966 		.iidr   = 0x0201743b,
4967 		.mask   = 0xffffffff,
4968 		.init   = its_enable_rk3568002,
4969 	},
4970 #endif
4971 	{
4972 	}
4973 };
4974 
its_enable_quirks(struct its_node * its)4975 static void its_enable_quirks(struct its_node *its)
4976 {
4977 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4978 
4979 	gic_enable_quirks(iidr, its_quirks, its);
4980 
4981 	if (is_of_node(its->fwnode_handle))
4982 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4983 				     its_quirks, its);
4984 }
4985 
its_save_disable(void)4986 static int its_save_disable(void)
4987 {
4988 	struct its_node *its;
4989 	int err = 0;
4990 
4991 	raw_spin_lock(&its_lock);
4992 	list_for_each_entry(its, &its_nodes, entry) {
4993 		void __iomem *base;
4994 
4995 		base = its->base;
4996 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4997 		err = its_force_quiescent(base);
4998 		if (err) {
4999 			pr_err("ITS@%pa: failed to quiesce: %d\n",
5000 			       &its->phys_base, err);
5001 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5002 			goto err;
5003 		}
5004 
5005 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5006 	}
5007 
5008 err:
5009 	if (err) {
5010 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5011 			void __iomem *base;
5012 
5013 			base = its->base;
5014 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5015 		}
5016 	}
5017 	raw_spin_unlock(&its_lock);
5018 
5019 	return err;
5020 }
5021 
its_restore_enable(void)5022 static void its_restore_enable(void)
5023 {
5024 	struct its_node *its;
5025 	int ret;
5026 
5027 	raw_spin_lock(&its_lock);
5028 	list_for_each_entry(its, &its_nodes, entry) {
5029 		void __iomem *base;
5030 		int i;
5031 
5032 		base = its->base;
5033 
5034 		/*
5035 		 * Make sure that the ITS is disabled. If it fails to quiesce,
5036 		 * don't restore it since writing to CBASER or BASER<n>
5037 		 * registers is undefined according to the GIC v3 ITS
5038 		 * Specification.
5039 		 *
5040 		 * Firmware resuming with the ITS enabled is terminally broken.
5041 		 */
5042 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5043 		ret = its_force_quiescent(base);
5044 		if (ret) {
5045 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5046 			       &its->phys_base, ret);
5047 			continue;
5048 		}
5049 
5050 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5051 
5052 		/*
5053 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5054 		 * cmd_write line up with it.
5055 		 */
5056 		its->cmd_write = its->cmd_base;
5057 		gits_write_cwriter(0, base + GITS_CWRITER);
5058 
5059 		/* Restore GITS_BASER from the value cache. */
5060 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5061 			struct its_baser *baser = &its->tables[i];
5062 
5063 			if (!(baser->val & GITS_BASER_VALID))
5064 				continue;
5065 
5066 			its_write_baser(its, baser, baser->val);
5067 		}
5068 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5069 
5070 		/*
5071 		 * Reinit the collection if it's stored in the ITS. This is
5072 		 * indicated by the col_id being less than the HCC field.
5073 		 * CID < HCC as specified in the GIC v3 Documentation.
5074 		 */
5075 		if (its->collections[smp_processor_id()].col_id <
5076 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5077 			its_cpu_init_collection(its);
5078 	}
5079 	raw_spin_unlock(&its_lock);
5080 }
5081 
5082 static struct syscore_ops its_syscore_ops = {
5083 	.suspend = its_save_disable,
5084 	.resume = its_restore_enable,
5085 };
5086 
its_map_one(struct resource * res,int * err)5087 static void __init __iomem *its_map_one(struct resource *res, int *err)
5088 {
5089 	void __iomem *its_base;
5090 	u32 val;
5091 
5092 	its_base = ioremap(res->start, SZ_64K);
5093 	if (!its_base) {
5094 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5095 		*err = -ENOMEM;
5096 		return NULL;
5097 	}
5098 
5099 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5100 	if (val != 0x30 && val != 0x40) {
5101 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5102 		*err = -ENODEV;
5103 		goto out_unmap;
5104 	}
5105 
5106 	*err = its_force_quiescent(its_base);
5107 	if (*err) {
5108 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5109 		goto out_unmap;
5110 	}
5111 
5112 	return its_base;
5113 
5114 out_unmap:
5115 	iounmap(its_base);
5116 	return NULL;
5117 }
5118 
its_init_domain(struct its_node * its)5119 static int its_init_domain(struct its_node *its)
5120 {
5121 	struct irq_domain *inner_domain;
5122 	struct msi_domain_info *info;
5123 
5124 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5125 	if (!info)
5126 		return -ENOMEM;
5127 
5128 	info->ops = &its_msi_domain_ops;
5129 	info->data = its;
5130 
5131 	inner_domain = irq_domain_create_hierarchy(its_parent,
5132 						   its->msi_domain_flags, 0,
5133 						   its->fwnode_handle, &its_domain_ops,
5134 						   info);
5135 	if (!inner_domain) {
5136 		kfree(info);
5137 		return -ENOMEM;
5138 	}
5139 
5140 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5141 
5142 	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5143 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5144 
5145 	return 0;
5146 }
5147 
its_init_vpe_domain(void)5148 static int its_init_vpe_domain(void)
5149 {
5150 	struct its_node *its;
5151 	u32 devid;
5152 	int entries;
5153 
5154 	if (gic_rdists->has_direct_lpi) {
5155 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5156 		return 0;
5157 	}
5158 
5159 	/* Any ITS will do, even if not v4 */
5160 	its = list_first_entry(&its_nodes, struct its_node, entry);
5161 
5162 	entries = roundup_pow_of_two(nr_cpu_ids);
5163 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5164 				 GFP_KERNEL);
5165 	if (!vpe_proxy.vpes)
5166 		return -ENOMEM;
5167 
5168 	/* Use the last possible DevID */
5169 	devid = GENMASK(device_ids(its) - 1, 0);
5170 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5171 	if (!vpe_proxy.dev) {
5172 		kfree(vpe_proxy.vpes);
5173 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5174 		return -ENOMEM;
5175 	}
5176 
5177 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5178 
5179 	raw_spin_lock_init(&vpe_proxy.lock);
5180 	vpe_proxy.next_victim = 0;
5181 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5182 		devid, vpe_proxy.dev->nr_ites);
5183 
5184 	return 0;
5185 }
5186 
its_compute_its_list_map(struct its_node * its)5187 static int __init its_compute_its_list_map(struct its_node *its)
5188 {
5189 	int its_number;
5190 	u32 ctlr;
5191 
5192 	/*
5193 	 * This is assumed to be done early enough that we're
5194 	 * guaranteed to be single-threaded, hence no
5195 	 * locking. Should this change, we should address
5196 	 * this.
5197 	 */
5198 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5199 	if (its_number >= GICv4_ITS_LIST_MAX) {
5200 		pr_err("ITS@%pa: No ITSList entry available!\n",
5201 		       &its->phys_base);
5202 		return -EINVAL;
5203 	}
5204 
5205 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5206 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5207 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5208 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5209 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5210 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5211 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5212 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5213 	}
5214 
5215 	if (test_and_set_bit(its_number, &its_list_map)) {
5216 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5217 		       &its->phys_base, its_number);
5218 		return -EINVAL;
5219 	}
5220 
5221 	return its_number;
5222 }
5223 
its_probe_one(struct its_node * its)5224 static int __init its_probe_one(struct its_node *its)
5225 {
5226 	u64 baser, tmp;
5227 	struct page *page;
5228 	u32 ctlr;
5229 	int err;
5230 
5231 	its_enable_quirks(its);
5232 
5233 	if (is_v4(its)) {
5234 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5235 			err = its_compute_its_list_map(its);
5236 			if (err < 0)
5237 				goto out;
5238 
5239 			its->list_nr = err;
5240 
5241 			pr_info("ITS@%pa: Using ITS number %d\n",
5242 				&its->phys_base, err);
5243 		} else {
5244 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5245 		}
5246 
5247 		if (is_v4_1(its)) {
5248 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5249 
5250 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5251 			if (!its->sgir_base) {
5252 				err = -ENOMEM;
5253 				goto out;
5254 			}
5255 
5256 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5257 
5258 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5259 				&its->phys_base, its->mpidr, svpet);
5260 		}
5261 	}
5262 
5263 	page = its_alloc_pages_node(its->numa_node,
5264 				    GFP_KERNEL | __GFP_ZERO,
5265 				    get_order(ITS_CMD_QUEUE_SZ));
5266 	if (!page) {
5267 		err = -ENOMEM;
5268 		goto out_unmap_sgir;
5269 	}
5270 	its->cmd_base = (void *)page_address(page);
5271 	its->cmd_write = its->cmd_base;
5272 
5273 	err = its_alloc_tables(its);
5274 	if (err)
5275 		goto out_free_cmd;
5276 
5277 	err = its_alloc_collections(its);
5278 	if (err)
5279 		goto out_free_tables;
5280 
5281 	baser = (virt_to_phys(its->cmd_base)	|
5282 		 GITS_CBASER_RaWaWb		|
5283 		 GITS_CBASER_InnerShareable	|
5284 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5285 		 GITS_CBASER_VALID);
5286 
5287 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5288 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5289 
5290 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5291 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5292 
5293 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5294 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5295 			/*
5296 			 * The HW reports non-shareable, we must
5297 			 * remove the cacheability attributes as
5298 			 * well.
5299 			 */
5300 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5301 				   GITS_CBASER_CACHEABILITY_MASK);
5302 			baser |= GITS_CBASER_nC;
5303 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5304 		}
5305 		pr_info("ITS: using cache flushing for cmd queue\n");
5306 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5307 	}
5308 
5309 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5310 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5311 	ctlr |= GITS_CTLR_ENABLE;
5312 	if (is_v4(its))
5313 		ctlr |= GITS_CTLR_ImDe;
5314 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5315 
5316 	err = its_init_domain(its);
5317 	if (err)
5318 		goto out_free_tables;
5319 
5320 	raw_spin_lock(&its_lock);
5321 	list_add(&its->entry, &its_nodes);
5322 	raw_spin_unlock(&its_lock);
5323 
5324 	return 0;
5325 
5326 out_free_tables:
5327 	its_free_tables(its);
5328 out_free_cmd:
5329 	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5330 out_unmap_sgir:
5331 	if (its->sgir_base)
5332 		iounmap(its->sgir_base);
5333 out:
5334 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5335 	return err;
5336 }
5337 
gic_rdists_supports_plpis(void)5338 static bool gic_rdists_supports_plpis(void)
5339 {
5340 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5341 }
5342 
redist_disable_lpis(void)5343 static int redist_disable_lpis(void)
5344 {
5345 	void __iomem *rbase = gic_data_rdist_rd_base();
5346 	u64 timeout = USEC_PER_SEC;
5347 	u64 val;
5348 
5349 	if (!gic_rdists_supports_plpis()) {
5350 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5351 		return -ENXIO;
5352 	}
5353 
5354 	val = readl_relaxed(rbase + GICR_CTLR);
5355 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5356 		return 0;
5357 
5358 	/*
5359 	 * If coming via a CPU hotplug event, we don't need to disable
5360 	 * LPIs before trying to re-enable them. They are already
5361 	 * configured and all is well in the world.
5362 	 *
5363 	 * If running with preallocated tables, there is nothing to do.
5364 	 */
5365 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5366 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5367 		return 0;
5368 
5369 	/*
5370 	 * From that point on, we only try to do some damage control.
5371 	 */
5372 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5373 		smp_processor_id());
5374 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5375 
5376 	/* Disable LPIs */
5377 	val &= ~GICR_CTLR_ENABLE_LPIS;
5378 	writel_relaxed(val, rbase + GICR_CTLR);
5379 
5380 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5381 	dsb(sy);
5382 
5383 	/*
5384 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5385 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5386 	 * Error out if we time out waiting for RWP to clear.
5387 	 */
5388 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5389 		if (!timeout) {
5390 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5391 			       smp_processor_id());
5392 			return -ETIMEDOUT;
5393 		}
5394 		udelay(1);
5395 		timeout--;
5396 	}
5397 
5398 	/*
5399 	 * After it has been written to 1, it is IMPLEMENTATION
5400 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5401 	 * cleared to 0. Error out if clearing the bit failed.
5402 	 */
5403 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5404 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5405 		return -EBUSY;
5406 	}
5407 
5408 	return 0;
5409 }
5410 
its_cpu_init(void)5411 int its_cpu_init(void)
5412 {
5413 	if (!list_empty(&its_nodes)) {
5414 		int ret;
5415 
5416 		ret = redist_disable_lpis();
5417 		if (ret)
5418 			return ret;
5419 
5420 		its_cpu_init_lpis();
5421 		its_cpu_init_collections();
5422 	}
5423 
5424 	return 0;
5425 }
5426 
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5427 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5428 {
5429 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5430 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5431 }
5432 
5433 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5434 		    rdist_memreserve_cpuhp_cleanup_workfn);
5435 
its_cpu_memreserve_lpi(unsigned int cpu)5436 static int its_cpu_memreserve_lpi(unsigned int cpu)
5437 {
5438 	struct page *pend_page;
5439 	int ret = 0;
5440 
5441 	/* This gets to run exactly once per CPU */
5442 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5443 		return 0;
5444 
5445 	pend_page = gic_data_rdist()->pend_page;
5446 	if (WARN_ON(!pend_page)) {
5447 		ret = -ENOMEM;
5448 		goto out;
5449 	}
5450 	/*
5451 	 * If the pending table was pre-programmed, free the memory we
5452 	 * preemptively allocated. Otherwise, reserve that memory for
5453 	 * later kexecs.
5454 	 */
5455 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5456 		its_free_pending_table(pend_page);
5457 		gic_data_rdist()->pend_page = NULL;
5458 	} else {
5459 		phys_addr_t paddr = page_to_phys(pend_page);
5460 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5461 	}
5462 
5463 out:
5464 	/* Last CPU being brought up gets to issue the cleanup */
5465 	if (!IS_ENABLED(CONFIG_SMP) ||
5466 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5467 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5468 
5469 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5470 	return ret;
5471 }
5472 
5473 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5474 static int __init its_reset_one(struct resource *res)
5475 {
5476 	void __iomem *its_base;
5477 	int err, i;
5478 
5479 	its_base = its_map_one(res, &err);
5480 	if (!its_base)
5481 		return err;
5482 
5483 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5484 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5485 
5486 	iounmap(its_base);
5487 	return 0;
5488 }
5489 
5490 static const struct of_device_id its_device_id[] = {
5491 	{	.compatible	= "arm,gic-v3-its",	},
5492 	{},
5493 };
5494 
its_node_init(struct resource * res,struct fwnode_handle * handle,int numa_node)5495 static struct its_node __init *its_node_init(struct resource *res,
5496 					     struct fwnode_handle *handle, int numa_node)
5497 {
5498 	void __iomem *its_base;
5499 	struct its_node *its;
5500 	int err;
5501 
5502 	its_base = its_map_one(res, &err);
5503 	if (!its_base)
5504 		return NULL;
5505 
5506 	pr_info("ITS %pR\n", res);
5507 
5508 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5509 	if (!its)
5510 		goto out_unmap;
5511 
5512 	raw_spin_lock_init(&its->lock);
5513 	mutex_init(&its->dev_alloc_lock);
5514 	INIT_LIST_HEAD(&its->entry);
5515 	INIT_LIST_HEAD(&its->its_device_list);
5516 
5517 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5518 	its->base = its_base;
5519 	its->phys_base = res->start;
5520 	its->get_msi_base = its_irq_get_msi_base;
5521 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5522 
5523 	its->numa_node = numa_node;
5524 	its->fwnode_handle = handle;
5525 
5526 	return its;
5527 
5528 out_unmap:
5529 	iounmap(its_base);
5530 	return NULL;
5531 }
5532 
its_node_destroy(struct its_node * its)5533 static void its_node_destroy(struct its_node *its)
5534 {
5535 	iounmap(its->base);
5536 	kfree(its);
5537 }
5538 
its_of_probe(struct device_node * node)5539 static int __init its_of_probe(struct device_node *node)
5540 {
5541 	struct device_node *np;
5542 	struct resource res;
5543 	int err;
5544 
5545 	/*
5546 	 * Make sure *all* the ITS are reset before we probe any, as
5547 	 * they may be sharing memory. If any of the ITS fails to
5548 	 * reset, don't even try to go any further, as this could
5549 	 * result in something even worse.
5550 	 */
5551 	for (np = of_find_matching_node(node, its_device_id); np;
5552 	     np = of_find_matching_node(np, its_device_id)) {
5553 		if (!of_device_is_available(np) ||
5554 		    !of_property_read_bool(np, "msi-controller") ||
5555 		    of_address_to_resource(np, 0, &res))
5556 			continue;
5557 
5558 		err = its_reset_one(&res);
5559 		if (err)
5560 			return err;
5561 	}
5562 
5563 	for (np = of_find_matching_node(node, its_device_id); np;
5564 	     np = of_find_matching_node(np, its_device_id)) {
5565 		struct its_node *its;
5566 
5567 		if (!of_device_is_available(np))
5568 			continue;
5569 		if (!of_property_read_bool(np, "msi-controller")) {
5570 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5571 				np);
5572 			continue;
5573 		}
5574 
5575 		if (of_address_to_resource(np, 0, &res)) {
5576 			pr_warn("%pOF: no regs?\n", np);
5577 			continue;
5578 		}
5579 
5580 
5581 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5582 		if (!its)
5583 			return -ENOMEM;
5584 
5585 		err = its_probe_one(its);
5586 		if (err)  {
5587 			its_node_destroy(its);
5588 			return err;
5589 		}
5590 	}
5591 	return 0;
5592 }
5593 
5594 #ifdef CONFIG_ACPI
5595 
5596 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5597 
5598 #ifdef CONFIG_ACPI_NUMA
5599 struct its_srat_map {
5600 	/* numa node id */
5601 	u32	numa_node;
5602 	/* GIC ITS ID */
5603 	u32	its_id;
5604 };
5605 
5606 static struct its_srat_map *its_srat_maps __initdata;
5607 static int its_in_srat __initdata;
5608 
acpi_get_its_numa_node(u32 its_id)5609 static int __init acpi_get_its_numa_node(u32 its_id)
5610 {
5611 	int i;
5612 
5613 	for (i = 0; i < its_in_srat; i++) {
5614 		if (its_id == its_srat_maps[i].its_id)
5615 			return its_srat_maps[i].numa_node;
5616 	}
5617 	return NUMA_NO_NODE;
5618 }
5619 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5620 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5621 					  const unsigned long end)
5622 {
5623 	return 0;
5624 }
5625 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5626 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5627 			 const unsigned long end)
5628 {
5629 	int node;
5630 	struct acpi_srat_gic_its_affinity *its_affinity;
5631 
5632 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5633 	if (!its_affinity)
5634 		return -EINVAL;
5635 
5636 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5637 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5638 			its_affinity->header.length);
5639 		return -EINVAL;
5640 	}
5641 
5642 	/*
5643 	 * Note that in theory a new proximity node could be created by this
5644 	 * entry as it is an SRAT resource allocation structure.
5645 	 * We do not currently support doing so.
5646 	 */
5647 	node = pxm_to_node(its_affinity->proximity_domain);
5648 
5649 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5650 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5651 		return 0;
5652 	}
5653 
5654 	its_srat_maps[its_in_srat].numa_node = node;
5655 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5656 	its_in_srat++;
5657 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5658 		its_affinity->proximity_domain, its_affinity->its_id, node);
5659 
5660 	return 0;
5661 }
5662 
acpi_table_parse_srat_its(void)5663 static void __init acpi_table_parse_srat_its(void)
5664 {
5665 	int count;
5666 
5667 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5668 			sizeof(struct acpi_table_srat),
5669 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5670 			gic_acpi_match_srat_its, 0);
5671 	if (count <= 0)
5672 		return;
5673 
5674 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5675 				      GFP_KERNEL);
5676 	if (!its_srat_maps)
5677 		return;
5678 
5679 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5680 			sizeof(struct acpi_table_srat),
5681 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5682 			gic_acpi_parse_srat_its, 0);
5683 }
5684 
5685 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5686 static void __init acpi_its_srat_maps_free(void)
5687 {
5688 	kfree(its_srat_maps);
5689 }
5690 #else
acpi_table_parse_srat_its(void)5691 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5692 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5693 static void __init acpi_its_srat_maps_free(void) { }
5694 #endif
5695 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5696 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5697 					  const unsigned long end)
5698 {
5699 	struct acpi_madt_generic_translator *its_entry;
5700 	struct fwnode_handle *dom_handle;
5701 	struct its_node *its;
5702 	struct resource res;
5703 	int err;
5704 
5705 	its_entry = (struct acpi_madt_generic_translator *)header;
5706 	memset(&res, 0, sizeof(res));
5707 	res.start = its_entry->base_address;
5708 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5709 	res.flags = IORESOURCE_MEM;
5710 
5711 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5712 	if (!dom_handle) {
5713 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5714 		       &res.start);
5715 		return -ENOMEM;
5716 	}
5717 
5718 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5719 					 dom_handle);
5720 	if (err) {
5721 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5722 		       &res.start, its_entry->translation_id);
5723 		goto dom_err;
5724 	}
5725 
5726 	its = its_node_init(&res, dom_handle,
5727 			    acpi_get_its_numa_node(its_entry->translation_id));
5728 	if (!its) {
5729 		err = -ENOMEM;
5730 		goto node_err;
5731 	}
5732 
5733 	if (acpi_get_madt_revision() >= 7 &&
5734 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5735 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5736 
5737 	err = its_probe_one(its);
5738 	if (!err)
5739 		return 0;
5740 
5741 node_err:
5742 	iort_deregister_domain_token(its_entry->translation_id);
5743 dom_err:
5744 	irq_domain_free_fwnode(dom_handle);
5745 	return err;
5746 }
5747 
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5748 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5749 				 const unsigned long end)
5750 {
5751 	struct acpi_madt_generic_translator *its_entry;
5752 	struct resource res;
5753 
5754 	its_entry = (struct acpi_madt_generic_translator *)header;
5755 	res = (struct resource) {
5756 		.start	= its_entry->base_address,
5757 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5758 		.flags	= IORESOURCE_MEM,
5759 	};
5760 
5761 	return its_reset_one(&res);
5762 }
5763 
its_acpi_probe(void)5764 static void __init its_acpi_probe(void)
5765 {
5766 	acpi_table_parse_srat_its();
5767 	/*
5768 	 * Make sure *all* the ITS are reset before we probe any, as
5769 	 * they may be sharing memory. If any of the ITS fails to
5770 	 * reset, don't even try to go any further, as this could
5771 	 * result in something even worse.
5772 	 */
5773 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5774 				  its_acpi_reset, 0) > 0)
5775 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5776 				      gic_acpi_parse_madt_its, 0);
5777 	acpi_its_srat_maps_free();
5778 }
5779 #else
its_acpi_probe(void)5780 static void __init its_acpi_probe(void) { }
5781 #endif
5782 
its_lpi_memreserve_init(void)5783 int __init its_lpi_memreserve_init(void)
5784 {
5785 	int state;
5786 
5787 	if (!efi_enabled(EFI_CONFIG_TABLES))
5788 		return 0;
5789 
5790 	if (list_empty(&its_nodes))
5791 		return 0;
5792 
5793 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5794 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5795 				  "irqchip/arm/gicv3/memreserve:online",
5796 				  its_cpu_memreserve_lpi,
5797 				  NULL);
5798 	if (state < 0)
5799 		return state;
5800 
5801 	gic_rdists->cpuhp_memreserve_state = state;
5802 
5803 	return 0;
5804 }
5805 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain,u8 irq_prio)5806 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5807 		    struct irq_domain *parent_domain, u8 irq_prio)
5808 {
5809 	struct device_node *of_node;
5810 	struct its_node *its;
5811 	bool has_v4 = false;
5812 	bool has_v4_1 = false;
5813 	int err;
5814 
5815 	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5816 	if (!itt_pool)
5817 		return -ENOMEM;
5818 
5819 	gic_rdists = rdists;
5820 
5821 	lpi_prop_prio = irq_prio;
5822 	its_parent = parent_domain;
5823 	of_node = to_of_node(handle);
5824 	if (of_node)
5825 		its_of_probe(of_node);
5826 	else
5827 		its_acpi_probe();
5828 
5829 	if (list_empty(&its_nodes)) {
5830 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5831 		return -ENXIO;
5832 	}
5833 
5834 	err = allocate_lpi_tables();
5835 	if (err)
5836 		return err;
5837 
5838 	list_for_each_entry(its, &its_nodes, entry) {
5839 		has_v4 |= is_v4(its);
5840 		has_v4_1 |= is_v4_1(its);
5841 	}
5842 
5843 	/* Don't bother with inconsistent systems */
5844 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5845 		rdists->has_rvpeid = false;
5846 
5847 	if (has_v4 & rdists->has_vlpis) {
5848 		const struct irq_domain_ops *sgi_ops;
5849 
5850 		if (has_v4_1)
5851 			sgi_ops = &its_sgi_domain_ops;
5852 		else
5853 			sgi_ops = NULL;
5854 
5855 		if (its_init_vpe_domain() ||
5856 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5857 			rdists->has_vlpis = false;
5858 			pr_err("ITS: Disabling GICv4 support\n");
5859 		}
5860 	}
5861 
5862 	register_syscore_ops(&its_syscore_ops);
5863 
5864 	return 0;
5865 }
5866