1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2025 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include <kunit/visibility.h> 24 #include "core.h" 25 #include "nl80211.h" 26 #include "wext-compat.h" 27 #include "rdev-ops.h" 28 29 /** 30 * DOC: BSS tree/list structure 31 * 32 * At the top level, the BSS list is kept in both a list in each 33 * registered device (@bss_list) as well as an RB-tree for faster 34 * lookup. In the RB-tree, entries can be looked up using their 35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 36 * for other BSSes. 37 * 38 * Due to the possibility of hidden SSIDs, there's a second level 39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 40 * The hidden_list connects all BSSes belonging to a single AP 41 * that has a hidden SSID, and connects beacon and probe response 42 * entries. For a probe response entry for a hidden SSID, the 43 * hidden_beacon_bss pointer points to the BSS struct holding the 44 * beacon's information. 45 * 46 * Reference counting is done for all these references except for 47 * the hidden_list, so that a beacon BSS struct that is otherwise 48 * not referenced has one reference for being on the bss_list and 49 * one for each probe response entry that points to it using the 50 * hidden_beacon_bss pointer. When a BSS struct that has such a 51 * pointer is get/put, the refcount update is also propagated to 52 * the referenced struct, this ensure that it cannot get removed 53 * while somebody is using the probe response version. 54 * 55 * Note that the hidden_beacon_bss pointer never changes, due to 56 * the reference counting. Therefore, no locking is needed for 57 * it. 58 * 59 * Also note that the hidden_beacon_bss pointer is only relevant 60 * if the driver uses something other than the IEs, e.g. private 61 * data stored in the BSS struct, since the beacon IEs are 62 * also linked into the probe response struct. 63 */ 64 65 /* 66 * Limit the number of BSS entries stored in mac80211. Each one is 67 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 68 * If somebody wants to really attack this though, they'd likely 69 * use small beacons, and only one type of frame, limiting each of 70 * the entries to a much smaller size (in order to generate more 71 * entries in total, so overhead is bigger.) 72 */ 73 static int bss_entries_limit = 1000; 74 module_param(bss_entries_limit, int, 0644); 75 MODULE_PARM_DESC(bss_entries_limit, 76 "limit to number of scan BSS entries (per wiphy, default 1000)"); 77 78 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 79 80 static void bss_free(struct cfg80211_internal_bss *bss) 81 { 82 struct cfg80211_bss_ies *ies; 83 84 if (WARN_ON(atomic_read(&bss->hold))) 85 return; 86 87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 88 if (ies && !bss->pub.hidden_beacon_bss) 89 kfree_rcu(ies, rcu_head); 90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 91 if (ies) 92 kfree_rcu(ies, rcu_head); 93 94 /* 95 * This happens when the module is removed, it doesn't 96 * really matter any more save for completeness 97 */ 98 if (!list_empty(&bss->hidden_list)) 99 list_del(&bss->hidden_list); 100 101 kfree(bss); 102 } 103 104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 105 struct cfg80211_internal_bss *bss) 106 { 107 lockdep_assert_held(&rdev->bss_lock); 108 109 bss->refcount++; 110 111 if (bss->pub.hidden_beacon_bss) 112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 113 114 if (bss->pub.transmitted_bss) 115 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 116 } 117 118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 119 struct cfg80211_internal_bss *bss) 120 { 121 lockdep_assert_held(&rdev->bss_lock); 122 123 if (bss->pub.hidden_beacon_bss) { 124 struct cfg80211_internal_bss *hbss; 125 126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 127 hbss->refcount--; 128 if (hbss->refcount == 0) 129 bss_free(hbss); 130 } 131 132 if (bss->pub.transmitted_bss) { 133 struct cfg80211_internal_bss *tbss; 134 135 tbss = bss_from_pub(bss->pub.transmitted_bss); 136 tbss->refcount--; 137 if (tbss->refcount == 0) 138 bss_free(tbss); 139 } 140 141 bss->refcount--; 142 if (bss->refcount == 0) 143 bss_free(bss); 144 } 145 146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 147 struct cfg80211_internal_bss *bss) 148 { 149 lockdep_assert_held(&rdev->bss_lock); 150 151 if (!list_empty(&bss->hidden_list)) { 152 /* 153 * don't remove the beacon entry if it has 154 * probe responses associated with it 155 */ 156 if (!bss->pub.hidden_beacon_bss) 157 return false; 158 /* 159 * if it's a probe response entry break its 160 * link to the other entries in the group 161 */ 162 list_del_init(&bss->hidden_list); 163 } 164 165 list_del_init(&bss->list); 166 list_del_init(&bss->pub.nontrans_list); 167 rb_erase(&bss->rbn, &rdev->bss_tree); 168 rdev->bss_entries--; 169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 170 "rdev bss entries[%d]/list[empty:%d] corruption\n", 171 rdev->bss_entries, list_empty(&rdev->bss_list)); 172 bss_ref_put(rdev, bss); 173 return true; 174 } 175 176 bool cfg80211_is_element_inherited(const struct element *elem, 177 const struct element *non_inherit_elem) 178 { 179 u8 id_len, ext_id_len, i, loop_len, id; 180 const u8 *list; 181 182 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 183 return false; 184 185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 187 return false; 188 189 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 190 return true; 191 192 /* 193 * non inheritance element format is: 194 * ext ID (56) | IDs list len | list | extension IDs list len | list 195 * Both lists are optional. Both lengths are mandatory. 196 * This means valid length is: 197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 198 */ 199 id_len = non_inherit_elem->data[1]; 200 if (non_inherit_elem->datalen < 3 + id_len) 201 return true; 202 203 ext_id_len = non_inherit_elem->data[2 + id_len]; 204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 205 return true; 206 207 if (elem->id == WLAN_EID_EXTENSION) { 208 if (!ext_id_len) 209 return true; 210 loop_len = ext_id_len; 211 list = &non_inherit_elem->data[3 + id_len]; 212 id = elem->data[0]; 213 } else { 214 if (!id_len) 215 return true; 216 loop_len = id_len; 217 list = &non_inherit_elem->data[2]; 218 id = elem->id; 219 } 220 221 for (i = 0; i < loop_len; i++) { 222 if (list[i] == id) 223 return false; 224 } 225 226 return true; 227 } 228 EXPORT_SYMBOL(cfg80211_is_element_inherited); 229 230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 231 const u8 *ie, size_t ie_len, 232 u8 **pos, u8 *buf, size_t buf_len) 233 { 234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 235 elem->data + elem->datalen > ie + ie_len)) 236 return 0; 237 238 if (elem->datalen + 2 > buf + buf_len - *pos) 239 return 0; 240 241 memcpy(*pos, elem, elem->datalen + 2); 242 *pos += elem->datalen + 2; 243 244 /* Finish if it is not fragmented */ 245 if (elem->datalen != 255) 246 return *pos - buf; 247 248 ie_len = ie + ie_len - elem->data - elem->datalen; 249 ie = (const u8 *)elem->data + elem->datalen; 250 251 for_each_element(elem, ie, ie_len) { 252 if (elem->id != WLAN_EID_FRAGMENT) 253 break; 254 255 if (elem->datalen + 2 > buf + buf_len - *pos) 256 return 0; 257 258 memcpy(*pos, elem, elem->datalen + 2); 259 *pos += elem->datalen + 2; 260 261 if (elem->datalen != 255) 262 break; 263 } 264 265 return *pos - buf; 266 } 267 268 VISIBLE_IF_CFG80211_KUNIT size_t 269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 270 const u8 *subie, size_t subie_len, 271 u8 *new_ie, size_t new_ie_len) 272 { 273 const struct element *non_inherit_elem, *parent, *sub; 274 u8 *pos = new_ie; 275 const u8 *mbssid_index_ie; 276 u8 id, ext_id, bssid_index = 255; 277 unsigned int match_len; 278 279 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 280 subie, subie_len); 281 282 mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie, 283 subie_len); 284 if (mbssid_index_ie && mbssid_index_ie[1] > 0 && 285 mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46) 286 bssid_index = mbssid_index_ie[2]; 287 288 /* We copy the elements one by one from the parent to the generated 289 * elements. 290 * If they are not inherited (included in subie or in the non 291 * inheritance element), then we copy all occurrences the first time 292 * we see this element type. 293 */ 294 for_each_element(parent, ie, ielen) { 295 if (parent->id == WLAN_EID_FRAGMENT) 296 continue; 297 298 if (parent->id == WLAN_EID_EXTENSION) { 299 if (parent->datalen < 1) 300 continue; 301 302 id = WLAN_EID_EXTENSION; 303 ext_id = parent->data[0]; 304 match_len = 1; 305 } else { 306 id = parent->id; 307 match_len = 0; 308 } 309 310 /* Find first occurrence in subie */ 311 sub = cfg80211_find_elem_match(id, subie, subie_len, 312 &ext_id, match_len, 0); 313 314 /* Copy from parent if not in subie and inherited */ 315 if (!sub && 316 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 317 if (!cfg80211_copy_elem_with_frags(parent, 318 ie, ielen, 319 &pos, new_ie, 320 new_ie_len)) 321 return 0; 322 323 continue; 324 } 325 326 /* For ML probe response, match the MLE in the frame body with 327 * MLD id being 'bssid_index' 328 */ 329 if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 && 330 parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK && 331 bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) { 332 if (!cfg80211_copy_elem_with_frags(parent, 333 ie, ielen, 334 &pos, new_ie, 335 new_ie_len)) 336 return 0; 337 338 /* Continue here to prevent processing the MLE in 339 * sub-element, which AP MLD should not carry 340 */ 341 continue; 342 } 343 344 /* Already copied if an earlier element had the same type */ 345 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 346 &ext_id, match_len, 0)) 347 continue; 348 349 /* Not inheriting, copy all similar elements from subie */ 350 while (sub) { 351 if (!cfg80211_copy_elem_with_frags(sub, 352 subie, subie_len, 353 &pos, new_ie, 354 new_ie_len)) 355 return 0; 356 357 sub = cfg80211_find_elem_match(id, 358 sub->data + sub->datalen, 359 subie_len + subie - 360 (sub->data + 361 sub->datalen), 362 &ext_id, match_len, 0); 363 } 364 } 365 366 /* The above misses elements that are included in subie but not in the 367 * parent, so do a pass over subie and append those. 368 * Skip the non-tx BSSID caps and non-inheritance element. 369 */ 370 for_each_element(sub, subie, subie_len) { 371 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 372 continue; 373 374 if (sub->id == WLAN_EID_FRAGMENT) 375 continue; 376 377 if (sub->id == WLAN_EID_EXTENSION) { 378 if (sub->datalen < 1) 379 continue; 380 381 id = WLAN_EID_EXTENSION; 382 ext_id = sub->data[0]; 383 match_len = 1; 384 385 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 386 continue; 387 } else { 388 id = sub->id; 389 match_len = 0; 390 } 391 392 /* Processed if one was included in the parent */ 393 if (cfg80211_find_elem_match(id, ie, ielen, 394 &ext_id, match_len, 0)) 395 continue; 396 397 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 398 &pos, new_ie, new_ie_len)) 399 return 0; 400 } 401 402 return pos - new_ie; 403 } 404 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie); 405 406 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 407 const u8 *ssid, size_t ssid_len) 408 { 409 const struct cfg80211_bss_ies *ies; 410 const struct element *ssid_elem; 411 412 if (bssid && !ether_addr_equal(a->bssid, bssid)) 413 return false; 414 415 if (!ssid) 416 return true; 417 418 ies = rcu_access_pointer(a->ies); 419 if (!ies) 420 return false; 421 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 422 if (!ssid_elem) 423 return false; 424 if (ssid_elem->datalen != ssid_len) 425 return false; 426 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 427 } 428 429 static int 430 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 431 struct cfg80211_bss *nontrans_bss) 432 { 433 const struct element *ssid_elem; 434 struct cfg80211_bss *bss = NULL; 435 436 rcu_read_lock(); 437 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 438 if (!ssid_elem) { 439 rcu_read_unlock(); 440 return -EINVAL; 441 } 442 443 /* check if nontrans_bss is in the list */ 444 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 445 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 446 ssid_elem->datalen)) { 447 rcu_read_unlock(); 448 return 0; 449 } 450 } 451 452 rcu_read_unlock(); 453 454 /* 455 * This is a bit weird - it's not on the list, but already on another 456 * one! The only way that could happen is if there's some BSSID/SSID 457 * shared by multiple APs in their multi-BSSID profiles, potentially 458 * with hidden SSID mixed in ... ignore it. 459 */ 460 if (!list_empty(&nontrans_bss->nontrans_list)) 461 return -EINVAL; 462 463 /* add to the list */ 464 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 465 return 0; 466 } 467 468 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 469 unsigned long expire_time) 470 { 471 struct cfg80211_internal_bss *bss, *tmp; 472 bool expired = false; 473 474 lockdep_assert_held(&rdev->bss_lock); 475 476 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 477 if (atomic_read(&bss->hold)) 478 continue; 479 if (!time_after(expire_time, bss->ts)) 480 continue; 481 482 if (__cfg80211_unlink_bss(rdev, bss)) 483 expired = true; 484 } 485 486 if (expired) 487 rdev->bss_generation++; 488 } 489 490 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 491 { 492 struct cfg80211_internal_bss *bss, *oldest = NULL; 493 bool ret; 494 495 lockdep_assert_held(&rdev->bss_lock); 496 497 list_for_each_entry(bss, &rdev->bss_list, list) { 498 if (atomic_read(&bss->hold)) 499 continue; 500 501 if (!list_empty(&bss->hidden_list) && 502 !bss->pub.hidden_beacon_bss) 503 continue; 504 505 if (oldest && time_before(oldest->ts, bss->ts)) 506 continue; 507 oldest = bss; 508 } 509 510 if (WARN_ON(!oldest)) 511 return false; 512 513 /* 514 * The callers make sure to increase rdev->bss_generation if anything 515 * gets removed (and a new entry added), so there's no need to also do 516 * it here. 517 */ 518 519 ret = __cfg80211_unlink_bss(rdev, oldest); 520 WARN_ON(!ret); 521 return ret; 522 } 523 524 static u8 cfg80211_parse_bss_param(u8 data, 525 struct cfg80211_colocated_ap *coloc_ap) 526 { 527 coloc_ap->oct_recommended = 528 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 529 coloc_ap->same_ssid = 530 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 531 coloc_ap->multi_bss = 532 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 533 coloc_ap->transmitted_bssid = 534 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 535 coloc_ap->unsolicited_probe = 536 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 537 coloc_ap->colocated_ess = 538 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 539 540 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 541 } 542 543 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 544 const struct element **elem, u32 *s_ssid) 545 { 546 547 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 548 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 549 return -EINVAL; 550 551 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 552 return 0; 553 } 554 555 VISIBLE_IF_CFG80211_KUNIT void 556 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 557 { 558 struct cfg80211_colocated_ap *ap, *tmp_ap; 559 560 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 561 list_del(&ap->list); 562 kfree(ap); 563 } 564 } 565 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list); 566 567 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 568 const u8 *pos, u8 length, 569 const struct element *ssid_elem, 570 u32 s_ssid_tmp) 571 { 572 u8 bss_params; 573 574 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 575 576 /* The length is already verified by the caller to contain bss_params */ 577 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 578 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 579 580 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 581 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 582 entry->short_ssid_valid = true; 583 584 bss_params = tbtt_info->bss_params; 585 586 /* Ignore disabled links */ 587 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 588 if (le16_get_bits(tbtt_info->mld_params.params, 589 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 590 return -EINVAL; 591 } 592 593 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 594 psd_20)) 595 entry->psd_20 = tbtt_info->psd_20; 596 } else { 597 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 598 599 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 600 601 bss_params = tbtt_info->bss_params; 602 603 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 604 psd_20)) 605 entry->psd_20 = tbtt_info->psd_20; 606 } 607 608 /* ignore entries with invalid BSSID */ 609 if (!is_valid_ether_addr(entry->bssid)) 610 return -EINVAL; 611 612 /* skip non colocated APs */ 613 if (!cfg80211_parse_bss_param(bss_params, entry)) 614 return -EINVAL; 615 616 /* no information about the short ssid. Consider the entry valid 617 * for now. It would later be dropped in case there are explicit 618 * SSIDs that need to be matched 619 */ 620 if (!entry->same_ssid && !entry->short_ssid_valid) 621 return 0; 622 623 if (entry->same_ssid) { 624 entry->short_ssid = s_ssid_tmp; 625 entry->short_ssid_valid = true; 626 627 /* 628 * This is safe because we validate datalen in 629 * cfg80211_parse_colocated_ap(), before calling this 630 * function. 631 */ 632 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 633 entry->ssid_len = ssid_elem->datalen; 634 } 635 636 return 0; 637 } 638 639 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len, 640 enum cfg80211_rnr_iter_ret 641 (*iter)(void *data, u8 type, 642 const struct ieee80211_neighbor_ap_info *info, 643 const u8 *tbtt_info, u8 tbtt_info_len), 644 void *iter_data) 645 { 646 const struct element *rnr; 647 const u8 *pos, *end; 648 649 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 650 elems, elems_len) { 651 const struct ieee80211_neighbor_ap_info *info; 652 653 pos = rnr->data; 654 end = rnr->data + rnr->datalen; 655 656 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 657 while (sizeof(*info) <= end - pos) { 658 u8 length, i, count; 659 u8 type; 660 661 info = (void *)pos; 662 count = u8_get_bits(info->tbtt_info_hdr, 663 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 664 1; 665 length = info->tbtt_info_len; 666 667 pos += sizeof(*info); 668 669 if (count * length > end - pos) 670 return false; 671 672 type = u8_get_bits(info->tbtt_info_hdr, 673 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 674 675 for (i = 0; i < count; i++) { 676 switch (iter(iter_data, type, info, 677 pos, length)) { 678 case RNR_ITER_CONTINUE: 679 break; 680 case RNR_ITER_BREAK: 681 return true; 682 case RNR_ITER_ERROR: 683 return false; 684 } 685 686 pos += length; 687 } 688 } 689 690 if (pos != end) 691 return false; 692 } 693 694 return true; 695 } 696 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr); 697 698 struct colocated_ap_data { 699 const struct element *ssid_elem; 700 struct list_head ap_list; 701 u32 s_ssid_tmp; 702 int n_coloc; 703 }; 704 705 static enum cfg80211_rnr_iter_ret 706 cfg80211_parse_colocated_ap_iter(void *_data, u8 type, 707 const struct ieee80211_neighbor_ap_info *info, 708 const u8 *tbtt_info, u8 tbtt_info_len) 709 { 710 struct colocated_ap_data *data = _data; 711 struct cfg80211_colocated_ap *entry; 712 enum nl80211_band band; 713 714 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) 715 return RNR_ITER_CONTINUE; 716 717 if (!ieee80211_operating_class_to_band(info->op_class, &band)) 718 return RNR_ITER_CONTINUE; 719 720 /* TBTT info must include bss param + BSSID + (short SSID or 721 * same_ssid bit to be set). Ignore other options, and move to 722 * the next AP info 723 */ 724 if (band != NL80211_BAND_6GHZ || 725 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9, 726 bss_params) || 727 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) || 728 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 729 bss_params))) 730 return RNR_ITER_CONTINUE; 731 732 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 733 if (!entry) 734 return RNR_ITER_ERROR; 735 736 entry->center_freq = 737 ieee80211_channel_to_frequency(info->channel, band); 738 739 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len, 740 data->ssid_elem, data->s_ssid_tmp)) { 741 struct cfg80211_colocated_ap *tmp; 742 743 /* Don't add duplicate BSSIDs on the same channel. */ 744 list_for_each_entry(tmp, &data->ap_list, list) { 745 if (ether_addr_equal(tmp->bssid, entry->bssid) && 746 tmp->center_freq == entry->center_freq) { 747 kfree(entry); 748 return RNR_ITER_CONTINUE; 749 } 750 } 751 752 data->n_coloc++; 753 list_add_tail(&entry->list, &data->ap_list); 754 } else { 755 kfree(entry); 756 } 757 758 return RNR_ITER_CONTINUE; 759 } 760 761 VISIBLE_IF_CFG80211_KUNIT int 762 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 763 struct list_head *list) 764 { 765 struct colocated_ap_data data = {}; 766 int ret; 767 768 INIT_LIST_HEAD(&data.ap_list); 769 770 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp); 771 if (ret) 772 return 0; 773 774 if (!cfg80211_iter_rnr(ies->data, ies->len, 775 cfg80211_parse_colocated_ap_iter, &data)) { 776 cfg80211_free_coloc_ap_list(&data.ap_list); 777 return 0; 778 } 779 780 list_splice_tail(&data.ap_list, list); 781 return data.n_coloc; 782 } 783 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap); 784 785 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 786 struct ieee80211_channel *chan, 787 bool add_to_6ghz) 788 { 789 int i; 790 u32 n_channels = request->n_channels; 791 struct cfg80211_scan_6ghz_params *params = 792 &request->scan_6ghz_params[request->n_6ghz_params]; 793 794 for (i = 0; i < n_channels; i++) { 795 if (request->channels[i] == chan) { 796 if (add_to_6ghz) 797 params->channel_idx = i; 798 return; 799 } 800 } 801 802 request->n_channels++; 803 request->channels[n_channels] = chan; 804 if (add_to_6ghz) 805 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 806 n_channels; 807 } 808 809 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 810 struct cfg80211_scan_request *request) 811 { 812 int i; 813 u32 s_ssid; 814 815 for (i = 0; i < request->n_ssids; i++) { 816 /* wildcard ssid in the scan request */ 817 if (!request->ssids[i].ssid_len) { 818 if (ap->multi_bss && !ap->transmitted_bssid) 819 continue; 820 821 return true; 822 } 823 824 if (ap->ssid_len && 825 ap->ssid_len == request->ssids[i].ssid_len) { 826 if (!memcmp(request->ssids[i].ssid, ap->ssid, 827 ap->ssid_len)) 828 return true; 829 } else if (ap->short_ssid_valid) { 830 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 831 request->ssids[i].ssid_len); 832 833 if (ap->short_ssid == s_ssid) 834 return true; 835 } 836 } 837 838 return false; 839 } 840 841 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev, 842 bool first_part) 843 { 844 u8 i; 845 struct cfg80211_colocated_ap *ap; 846 int n_channels, count = 0, err; 847 struct cfg80211_scan_request_int *request, *rdev_req = rdev->scan_req; 848 LIST_HEAD(coloc_ap_list); 849 bool need_scan_psc = true; 850 const struct ieee80211_sband_iftype_data *iftd; 851 size_t size, offs_ssids, offs_6ghz_params, offs_ies; 852 853 rdev_req->req.scan_6ghz = true; 854 rdev_req->req.first_part = first_part; 855 856 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 857 return -EOPNOTSUPP; 858 859 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 860 rdev_req->req.wdev->iftype); 861 if (!iftd || !iftd->he_cap.has_he) 862 return -EOPNOTSUPP; 863 864 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 865 866 if (rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 867 struct cfg80211_internal_bss *intbss; 868 869 spin_lock_bh(&rdev->bss_lock); 870 list_for_each_entry(intbss, &rdev->bss_list, list) { 871 struct cfg80211_bss *res = &intbss->pub; 872 const struct cfg80211_bss_ies *ies; 873 const struct element *ssid_elem; 874 struct cfg80211_colocated_ap *entry; 875 u32 s_ssid_tmp; 876 int ret; 877 878 ies = rcu_access_pointer(res->ies); 879 count += cfg80211_parse_colocated_ap(ies, 880 &coloc_ap_list); 881 882 /* In case the scan request specified a specific BSSID 883 * and the BSS is found and operating on 6GHz band then 884 * add this AP to the collocated APs list. 885 * This is relevant for ML probe requests when the lower 886 * band APs have not been discovered. 887 */ 888 if (is_broadcast_ether_addr(rdev_req->req.bssid) || 889 !ether_addr_equal(rdev_req->req.bssid, res->bssid) || 890 res->channel->band != NL80211_BAND_6GHZ) 891 continue; 892 893 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, 894 &s_ssid_tmp); 895 if (ret) 896 continue; 897 898 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 899 if (!entry) 900 continue; 901 902 memcpy(entry->bssid, res->bssid, ETH_ALEN); 903 entry->short_ssid = s_ssid_tmp; 904 memcpy(entry->ssid, ssid_elem->data, 905 ssid_elem->datalen); 906 entry->ssid_len = ssid_elem->datalen; 907 entry->short_ssid_valid = true; 908 entry->center_freq = res->channel->center_freq; 909 910 list_add_tail(&entry->list, &coloc_ap_list); 911 count++; 912 } 913 spin_unlock_bh(&rdev->bss_lock); 914 } 915 916 size = struct_size(request, req.channels, n_channels); 917 offs_ssids = size; 918 size += sizeof(*request->req.ssids) * rdev_req->req.n_ssids; 919 offs_6ghz_params = size; 920 size += sizeof(*request->req.scan_6ghz_params) * count; 921 offs_ies = size; 922 size += rdev_req->req.ie_len; 923 924 request = kzalloc(size, GFP_KERNEL); 925 if (!request) { 926 cfg80211_free_coloc_ap_list(&coloc_ap_list); 927 return -ENOMEM; 928 } 929 930 *request = *rdev_req; 931 request->req.n_channels = 0; 932 request->req.n_6ghz_params = 0; 933 if (rdev_req->req.n_ssids) { 934 /* 935 * Add the ssids from the parent scan request to the new 936 * scan request, so the driver would be able to use them 937 * in its probe requests to discover hidden APs on PSC 938 * channels. 939 */ 940 request->req.ssids = (void *)request + offs_ssids; 941 memcpy(request->req.ssids, rdev_req->req.ssids, 942 sizeof(*request->req.ssids) * request->req.n_ssids); 943 } 944 request->req.scan_6ghz_params = (void *)request + offs_6ghz_params; 945 946 if (rdev_req->req.ie_len) { 947 void *ie = (void *)request + offs_ies; 948 949 memcpy(ie, rdev_req->req.ie, rdev_req->req.ie_len); 950 request->req.ie = ie; 951 } 952 953 /* 954 * PSC channels should not be scanned in case of direct scan with 1 SSID 955 * and at least one of the reported co-located APs with same SSID 956 * indicating that all APs in the same ESS are co-located 957 */ 958 if (count && 959 request->req.n_ssids == 1 && 960 request->req.ssids[0].ssid_len) { 961 list_for_each_entry(ap, &coloc_ap_list, list) { 962 if (ap->colocated_ess && 963 cfg80211_find_ssid_match(ap, &request->req)) { 964 need_scan_psc = false; 965 break; 966 } 967 } 968 } 969 970 /* 971 * add to the scan request the channels that need to be scanned 972 * regardless of the collocated APs (PSC channels or all channels 973 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 974 */ 975 for (i = 0; i < rdev_req->req.n_channels; i++) { 976 if (rdev_req->req.channels[i]->band == NL80211_BAND_6GHZ && 977 ((need_scan_psc && 978 cfg80211_channel_is_psc(rdev_req->req.channels[i])) || 979 !(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 980 cfg80211_scan_req_add_chan(&request->req, 981 rdev_req->req.channels[i], 982 false); 983 } 984 } 985 986 if (!(rdev_req->req.flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 987 goto skip; 988 989 list_for_each_entry(ap, &coloc_ap_list, list) { 990 bool found = false; 991 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 992 &request->req.scan_6ghz_params[request->req.n_6ghz_params]; 993 struct ieee80211_channel *chan = 994 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 995 996 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED || 997 !cfg80211_wdev_channel_allowed(rdev_req->req.wdev, chan)) 998 continue; 999 1000 for (i = 0; i < rdev_req->req.n_channels; i++) { 1001 if (rdev_req->req.channels[i] == chan) 1002 found = true; 1003 } 1004 1005 if (!found) 1006 continue; 1007 1008 if (request->req.n_ssids > 0 && 1009 !cfg80211_find_ssid_match(ap, &request->req)) 1010 continue; 1011 1012 if (!is_broadcast_ether_addr(request->req.bssid) && 1013 !ether_addr_equal(request->req.bssid, ap->bssid)) 1014 continue; 1015 1016 if (!request->req.n_ssids && ap->multi_bss && 1017 !ap->transmitted_bssid) 1018 continue; 1019 1020 cfg80211_scan_req_add_chan(&request->req, chan, true); 1021 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 1022 scan_6ghz_params->short_ssid = ap->short_ssid; 1023 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 1024 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 1025 scan_6ghz_params->psd_20 = ap->psd_20; 1026 1027 /* 1028 * If a PSC channel is added to the scan and 'need_scan_psc' is 1029 * set to false, then all the APs that the scan logic is 1030 * interested with on the channel are collocated and thus there 1031 * is no need to perform the initial PSC channel listen. 1032 */ 1033 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 1034 scan_6ghz_params->psc_no_listen = true; 1035 1036 request->req.n_6ghz_params++; 1037 } 1038 1039 skip: 1040 cfg80211_free_coloc_ap_list(&coloc_ap_list); 1041 1042 if (request->req.n_channels) { 1043 struct cfg80211_scan_request_int *old = rdev->int_scan_req; 1044 1045 rdev->int_scan_req = request; 1046 1047 /* 1048 * If this scan follows a previous scan, save the scan start 1049 * info from the first part of the scan 1050 */ 1051 if (!first_part && !WARN_ON(!old)) 1052 rdev->int_scan_req->info = old->info; 1053 1054 err = rdev_scan(rdev, request); 1055 if (err) { 1056 rdev->int_scan_req = old; 1057 kfree(request); 1058 } else { 1059 kfree(old); 1060 } 1061 1062 return err; 1063 } 1064 1065 kfree(request); 1066 return -EINVAL; 1067 } 1068 1069 int cfg80211_scan(struct cfg80211_registered_device *rdev) 1070 { 1071 struct cfg80211_scan_request_int *request; 1072 struct cfg80211_scan_request_int *rdev_req = rdev->scan_req; 1073 u32 n_channels = 0, idx, i; 1074 1075 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) { 1076 rdev_req->req.first_part = true; 1077 return rdev_scan(rdev, rdev_req); 1078 } 1079 1080 for (i = 0; i < rdev_req->req.n_channels; i++) { 1081 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ) 1082 n_channels++; 1083 } 1084 1085 if (!n_channels) 1086 return cfg80211_scan_6ghz(rdev, true); 1087 1088 request = kzalloc(struct_size(request, req.channels, n_channels), 1089 GFP_KERNEL); 1090 if (!request) 1091 return -ENOMEM; 1092 1093 *request = *rdev_req; 1094 request->req.n_channels = n_channels; 1095 1096 for (i = idx = 0; i < rdev_req->req.n_channels; i++) { 1097 if (rdev_req->req.channels[i]->band != NL80211_BAND_6GHZ) 1098 request->req.channels[idx++] = 1099 rdev_req->req.channels[i]; 1100 } 1101 1102 rdev_req->req.scan_6ghz = false; 1103 rdev_req->req.first_part = true; 1104 rdev->int_scan_req = request; 1105 return rdev_scan(rdev, request); 1106 } 1107 1108 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1109 bool send_message) 1110 { 1111 struct cfg80211_scan_request_int *request, *rdev_req; 1112 struct wireless_dev *wdev; 1113 struct sk_buff *msg; 1114 #ifdef CONFIG_CFG80211_WEXT 1115 union iwreq_data wrqu; 1116 #endif 1117 1118 lockdep_assert_held(&rdev->wiphy.mtx); 1119 1120 if (rdev->scan_msg) { 1121 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1122 rdev->scan_msg = NULL; 1123 return; 1124 } 1125 1126 rdev_req = rdev->scan_req; 1127 if (!rdev_req) 1128 return; 1129 1130 wdev = rdev_req->req.wdev; 1131 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1132 1133 if (wdev_running(wdev) && 1134 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1135 !rdev_req->req.scan_6ghz && !request->info.aborted && 1136 !cfg80211_scan_6ghz(rdev, false)) 1137 return; 1138 1139 /* 1140 * This must be before sending the other events! 1141 * Otherwise, wpa_supplicant gets completely confused with 1142 * wext events. 1143 */ 1144 if (wdev->netdev) 1145 cfg80211_sme_scan_done(wdev->netdev); 1146 1147 if (!request->info.aborted && 1148 request->req.flags & NL80211_SCAN_FLAG_FLUSH) { 1149 /* flush entries from previous scans */ 1150 spin_lock_bh(&rdev->bss_lock); 1151 __cfg80211_bss_expire(rdev, request->req.scan_start); 1152 spin_unlock_bh(&rdev->bss_lock); 1153 } 1154 1155 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1156 1157 #ifdef CONFIG_CFG80211_WEXT 1158 if (wdev->netdev && !request->info.aborted) { 1159 memset(&wrqu, 0, sizeof(wrqu)); 1160 1161 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1162 } 1163 #endif 1164 1165 dev_put(wdev->netdev); 1166 1167 kfree(rdev->int_scan_req); 1168 rdev->int_scan_req = NULL; 1169 1170 kfree(rdev->scan_req); 1171 rdev->scan_req = NULL; 1172 1173 if (!send_message) 1174 rdev->scan_msg = msg; 1175 else 1176 nl80211_send_scan_msg(rdev, msg); 1177 } 1178 1179 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1180 { 1181 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1182 } 1183 1184 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1185 struct cfg80211_scan_info *info) 1186 { 1187 struct cfg80211_scan_request_int *intreq = 1188 container_of(request, struct cfg80211_scan_request_int, req); 1189 struct cfg80211_registered_device *rdev = wiphy_to_rdev(request->wiphy); 1190 struct cfg80211_scan_info old_info = intreq->info; 1191 1192 trace_cfg80211_scan_done(intreq, info); 1193 WARN_ON(intreq != rdev->scan_req && 1194 intreq != rdev->int_scan_req); 1195 1196 intreq->info = *info; 1197 1198 /* 1199 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1200 * be of the first part. In such a case old_info.scan_start_tsf should 1201 * be non zero. 1202 */ 1203 if (request->scan_6ghz && old_info.scan_start_tsf) { 1204 intreq->info.scan_start_tsf = old_info.scan_start_tsf; 1205 memcpy(intreq->info.tsf_bssid, old_info.tsf_bssid, 1206 sizeof(intreq->info.tsf_bssid)); 1207 } 1208 1209 intreq->notified = true; 1210 wiphy_work_queue(request->wiphy, &rdev->scan_done_wk); 1211 } 1212 EXPORT_SYMBOL(cfg80211_scan_done); 1213 1214 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1215 struct cfg80211_sched_scan_request *req) 1216 { 1217 lockdep_assert_held(&rdev->wiphy.mtx); 1218 1219 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1220 } 1221 1222 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1223 struct cfg80211_sched_scan_request *req) 1224 { 1225 lockdep_assert_held(&rdev->wiphy.mtx); 1226 1227 list_del_rcu(&req->list); 1228 kfree_rcu(req, rcu_head); 1229 } 1230 1231 static struct cfg80211_sched_scan_request * 1232 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1233 { 1234 struct cfg80211_sched_scan_request *pos; 1235 1236 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1237 lockdep_is_held(&rdev->wiphy.mtx)) { 1238 if (pos->reqid == reqid) 1239 return pos; 1240 } 1241 return NULL; 1242 } 1243 1244 /* 1245 * Determines if a scheduled scan request can be handled. When a legacy 1246 * scheduled scan is running no other scheduled scan is allowed regardless 1247 * whether the request is for legacy or multi-support scan. When a multi-support 1248 * scheduled scan is running a request for legacy scan is not allowed. In this 1249 * case a request for multi-support scan can be handled if resources are 1250 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1251 */ 1252 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1253 bool want_multi) 1254 { 1255 struct cfg80211_sched_scan_request *pos; 1256 int i = 0; 1257 1258 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1259 /* request id zero means legacy in progress */ 1260 if (!i && !pos->reqid) 1261 return -EINPROGRESS; 1262 i++; 1263 } 1264 1265 if (i) { 1266 /* no legacy allowed when multi request(s) are active */ 1267 if (!want_multi) 1268 return -EINPROGRESS; 1269 1270 /* resource limit reached */ 1271 if (i == rdev->wiphy.max_sched_scan_reqs) 1272 return -ENOSPC; 1273 } 1274 return 0; 1275 } 1276 1277 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1278 { 1279 struct cfg80211_registered_device *rdev; 1280 struct cfg80211_sched_scan_request *req, *tmp; 1281 1282 rdev = container_of(work, struct cfg80211_registered_device, 1283 sched_scan_res_wk); 1284 1285 guard(wiphy)(&rdev->wiphy); 1286 1287 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1288 if (req->report_results) { 1289 req->report_results = false; 1290 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1291 /* flush entries from previous scans */ 1292 spin_lock_bh(&rdev->bss_lock); 1293 __cfg80211_bss_expire(rdev, req->scan_start); 1294 spin_unlock_bh(&rdev->bss_lock); 1295 req->scan_start = jiffies; 1296 } 1297 nl80211_send_sched_scan(req, 1298 NL80211_CMD_SCHED_SCAN_RESULTS); 1299 } 1300 } 1301 } 1302 1303 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1304 { 1305 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1306 struct cfg80211_sched_scan_request *request; 1307 1308 trace_cfg80211_sched_scan_results(wiphy, reqid); 1309 /* ignore if we're not scanning */ 1310 1311 rcu_read_lock(); 1312 request = cfg80211_find_sched_scan_req(rdev, reqid); 1313 if (request) { 1314 request->report_results = true; 1315 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1316 } 1317 rcu_read_unlock(); 1318 } 1319 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1320 1321 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1322 { 1323 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1324 1325 lockdep_assert_held(&wiphy->mtx); 1326 1327 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1328 1329 __cfg80211_stop_sched_scan(rdev, reqid, true); 1330 } 1331 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1332 1333 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1334 { 1335 guard(wiphy)(wiphy); 1336 1337 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1338 } 1339 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1340 1341 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1342 struct cfg80211_sched_scan_request *req, 1343 bool driver_initiated) 1344 { 1345 lockdep_assert_held(&rdev->wiphy.mtx); 1346 1347 if (!driver_initiated) { 1348 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1349 if (err) 1350 return err; 1351 } 1352 1353 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1354 1355 cfg80211_del_sched_scan_req(rdev, req); 1356 1357 return 0; 1358 } 1359 1360 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1361 u64 reqid, bool driver_initiated) 1362 { 1363 struct cfg80211_sched_scan_request *sched_scan_req; 1364 1365 lockdep_assert_held(&rdev->wiphy.mtx); 1366 1367 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1368 if (!sched_scan_req) 1369 return -ENOENT; 1370 1371 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1372 driver_initiated); 1373 } 1374 1375 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1376 unsigned long age_secs) 1377 { 1378 struct cfg80211_internal_bss *bss; 1379 unsigned long age_jiffies = secs_to_jiffies(age_secs); 1380 1381 spin_lock_bh(&rdev->bss_lock); 1382 list_for_each_entry(bss, &rdev->bss_list, list) 1383 bss->ts -= age_jiffies; 1384 spin_unlock_bh(&rdev->bss_lock); 1385 } 1386 1387 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1388 { 1389 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1390 } 1391 1392 void cfg80211_bss_flush(struct wiphy *wiphy) 1393 { 1394 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1395 1396 spin_lock_bh(&rdev->bss_lock); 1397 __cfg80211_bss_expire(rdev, jiffies); 1398 spin_unlock_bh(&rdev->bss_lock); 1399 } 1400 EXPORT_SYMBOL(cfg80211_bss_flush); 1401 1402 const struct element * 1403 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1404 const u8 *match, unsigned int match_len, 1405 unsigned int match_offset) 1406 { 1407 const struct element *elem; 1408 1409 for_each_element_id(elem, eid, ies, len) { 1410 if (elem->datalen >= match_offset + match_len && 1411 !memcmp(elem->data + match_offset, match, match_len)) 1412 return elem; 1413 } 1414 1415 return NULL; 1416 } 1417 EXPORT_SYMBOL(cfg80211_find_elem_match); 1418 1419 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1420 const u8 *ies, 1421 unsigned int len) 1422 { 1423 const struct element *elem; 1424 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1425 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1426 1427 if (WARN_ON(oui_type > 0xff)) 1428 return NULL; 1429 1430 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1431 match, match_len, 0); 1432 1433 if (!elem || elem->datalen < 4) 1434 return NULL; 1435 1436 return elem; 1437 } 1438 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1439 1440 /** 1441 * enum bss_compare_mode - BSS compare mode 1442 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1443 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1444 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1445 */ 1446 enum bss_compare_mode { 1447 BSS_CMP_REGULAR, 1448 BSS_CMP_HIDE_ZLEN, 1449 BSS_CMP_HIDE_NUL, 1450 }; 1451 1452 static int cmp_bss(struct cfg80211_bss *a, 1453 struct cfg80211_bss *b, 1454 enum bss_compare_mode mode) 1455 { 1456 const struct cfg80211_bss_ies *a_ies, *b_ies; 1457 const u8 *ie1 = NULL; 1458 const u8 *ie2 = NULL; 1459 int i, r; 1460 1461 if (a->channel != b->channel) 1462 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1463 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1464 1465 a_ies = rcu_access_pointer(a->ies); 1466 if (!a_ies) 1467 return -1; 1468 b_ies = rcu_access_pointer(b->ies); 1469 if (!b_ies) 1470 return 1; 1471 1472 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1473 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1474 a_ies->data, a_ies->len); 1475 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1476 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1477 b_ies->data, b_ies->len); 1478 if (ie1 && ie2) { 1479 int mesh_id_cmp; 1480 1481 if (ie1[1] == ie2[1]) 1482 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1483 else 1484 mesh_id_cmp = ie2[1] - ie1[1]; 1485 1486 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1487 a_ies->data, a_ies->len); 1488 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1489 b_ies->data, b_ies->len); 1490 if (ie1 && ie2) { 1491 if (mesh_id_cmp) 1492 return mesh_id_cmp; 1493 if (ie1[1] != ie2[1]) 1494 return ie2[1] - ie1[1]; 1495 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1496 } 1497 } 1498 1499 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1500 if (r) 1501 return r; 1502 1503 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1504 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1505 1506 if (!ie1 && !ie2) 1507 return 0; 1508 1509 /* 1510 * Note that with "hide_ssid", the function returns a match if 1511 * the already-present BSS ("b") is a hidden SSID beacon for 1512 * the new BSS ("a"). 1513 */ 1514 1515 /* sort missing IE before (left of) present IE */ 1516 if (!ie1) 1517 return -1; 1518 if (!ie2) 1519 return 1; 1520 1521 switch (mode) { 1522 case BSS_CMP_HIDE_ZLEN: 1523 /* 1524 * In ZLEN mode we assume the BSS entry we're 1525 * looking for has a zero-length SSID. So if 1526 * the one we're looking at right now has that, 1527 * return 0. Otherwise, return the difference 1528 * in length, but since we're looking for the 1529 * 0-length it's really equivalent to returning 1530 * the length of the one we're looking at. 1531 * 1532 * No content comparison is needed as we assume 1533 * the content length is zero. 1534 */ 1535 return ie2[1]; 1536 case BSS_CMP_REGULAR: 1537 default: 1538 /* sort by length first, then by contents */ 1539 if (ie1[1] != ie2[1]) 1540 return ie2[1] - ie1[1]; 1541 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1542 case BSS_CMP_HIDE_NUL: 1543 if (ie1[1] != ie2[1]) 1544 return ie2[1] - ie1[1]; 1545 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1546 for (i = 0; i < ie2[1]; i++) 1547 if (ie2[i + 2]) 1548 return -1; 1549 return 0; 1550 } 1551 } 1552 1553 static bool cfg80211_bss_type_match(u16 capability, 1554 enum nl80211_band band, 1555 enum ieee80211_bss_type bss_type) 1556 { 1557 bool ret = true; 1558 u16 mask, val; 1559 1560 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1561 return ret; 1562 1563 if (band == NL80211_BAND_60GHZ) { 1564 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1565 switch (bss_type) { 1566 case IEEE80211_BSS_TYPE_ESS: 1567 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1568 break; 1569 case IEEE80211_BSS_TYPE_PBSS: 1570 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1571 break; 1572 case IEEE80211_BSS_TYPE_IBSS: 1573 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1574 break; 1575 default: 1576 return false; 1577 } 1578 } else { 1579 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1580 switch (bss_type) { 1581 case IEEE80211_BSS_TYPE_ESS: 1582 val = WLAN_CAPABILITY_ESS; 1583 break; 1584 case IEEE80211_BSS_TYPE_IBSS: 1585 val = WLAN_CAPABILITY_IBSS; 1586 break; 1587 case IEEE80211_BSS_TYPE_MBSS: 1588 val = 0; 1589 break; 1590 default: 1591 return false; 1592 } 1593 } 1594 1595 ret = ((capability & mask) == val); 1596 return ret; 1597 } 1598 1599 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1600 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy, 1601 struct ieee80211_channel *channel, 1602 const u8 *bssid, 1603 const u8 *ssid, size_t ssid_len, 1604 enum ieee80211_bss_type bss_type, 1605 enum ieee80211_privacy privacy, 1606 u32 use_for) 1607 { 1608 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1609 struct cfg80211_internal_bss *bss, *res = NULL; 1610 unsigned long now = jiffies; 1611 int bss_privacy; 1612 1613 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1614 privacy); 1615 1616 spin_lock_bh(&rdev->bss_lock); 1617 1618 list_for_each_entry(bss, &rdev->bss_list, list) { 1619 if (!cfg80211_bss_type_match(bss->pub.capability, 1620 bss->pub.channel->band, bss_type)) 1621 continue; 1622 1623 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1624 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1625 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1626 continue; 1627 if (channel && bss->pub.channel != channel) 1628 continue; 1629 if (!is_valid_ether_addr(bss->pub.bssid)) 1630 continue; 1631 if ((bss->pub.use_for & use_for) != use_for) 1632 continue; 1633 /* Don't get expired BSS structs */ 1634 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1635 !atomic_read(&bss->hold)) 1636 continue; 1637 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1638 res = bss; 1639 bss_ref_get(rdev, res); 1640 break; 1641 } 1642 } 1643 1644 spin_unlock_bh(&rdev->bss_lock); 1645 if (!res) 1646 return NULL; 1647 trace_cfg80211_return_bss(&res->pub); 1648 return &res->pub; 1649 } 1650 EXPORT_SYMBOL(__cfg80211_get_bss); 1651 1652 static bool rb_insert_bss(struct cfg80211_registered_device *rdev, 1653 struct cfg80211_internal_bss *bss) 1654 { 1655 struct rb_node **p = &rdev->bss_tree.rb_node; 1656 struct rb_node *parent = NULL; 1657 struct cfg80211_internal_bss *tbss; 1658 int cmp; 1659 1660 while (*p) { 1661 parent = *p; 1662 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1663 1664 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1665 1666 if (WARN_ON(!cmp)) { 1667 /* will sort of leak this BSS */ 1668 return false; 1669 } 1670 1671 if (cmp < 0) 1672 p = &(*p)->rb_left; 1673 else 1674 p = &(*p)->rb_right; 1675 } 1676 1677 rb_link_node(&bss->rbn, parent, p); 1678 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1679 return true; 1680 } 1681 1682 static struct cfg80211_internal_bss * 1683 rb_find_bss(struct cfg80211_registered_device *rdev, 1684 struct cfg80211_internal_bss *res, 1685 enum bss_compare_mode mode) 1686 { 1687 struct rb_node *n = rdev->bss_tree.rb_node; 1688 struct cfg80211_internal_bss *bss; 1689 int r; 1690 1691 while (n) { 1692 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1693 r = cmp_bss(&res->pub, &bss->pub, mode); 1694 1695 if (r == 0) 1696 return bss; 1697 else if (r < 0) 1698 n = n->rb_left; 1699 else 1700 n = n->rb_right; 1701 } 1702 1703 return NULL; 1704 } 1705 1706 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev, 1707 struct cfg80211_internal_bss *bss) 1708 { 1709 lockdep_assert_held(&rdev->bss_lock); 1710 1711 if (!rb_insert_bss(rdev, bss)) 1712 return; 1713 list_add_tail(&bss->list, &rdev->bss_list); 1714 rdev->bss_entries++; 1715 } 1716 1717 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev, 1718 struct cfg80211_internal_bss *bss) 1719 { 1720 lockdep_assert_held(&rdev->bss_lock); 1721 1722 rb_erase(&bss->rbn, &rdev->bss_tree); 1723 if (!rb_insert_bss(rdev, bss)) { 1724 list_del(&bss->list); 1725 if (!list_empty(&bss->hidden_list)) 1726 list_del_init(&bss->hidden_list); 1727 if (!list_empty(&bss->pub.nontrans_list)) 1728 list_del_init(&bss->pub.nontrans_list); 1729 rdev->bss_entries--; 1730 } 1731 rdev->bss_generation++; 1732 } 1733 1734 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1735 struct cfg80211_internal_bss *new) 1736 { 1737 const struct cfg80211_bss_ies *ies; 1738 struct cfg80211_internal_bss *bss; 1739 const u8 *ie; 1740 int i, ssidlen; 1741 u8 fold = 0; 1742 u32 n_entries = 0; 1743 1744 ies = rcu_access_pointer(new->pub.beacon_ies); 1745 if (WARN_ON(!ies)) 1746 return false; 1747 1748 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1749 if (!ie) { 1750 /* nothing to do */ 1751 return true; 1752 } 1753 1754 ssidlen = ie[1]; 1755 for (i = 0; i < ssidlen; i++) 1756 fold |= ie[2 + i]; 1757 1758 if (fold) { 1759 /* not a hidden SSID */ 1760 return true; 1761 } 1762 1763 /* This is the bad part ... */ 1764 1765 list_for_each_entry(bss, &rdev->bss_list, list) { 1766 /* 1767 * we're iterating all the entries anyway, so take the 1768 * opportunity to validate the list length accounting 1769 */ 1770 n_entries++; 1771 1772 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1773 continue; 1774 if (bss->pub.channel != new->pub.channel) 1775 continue; 1776 if (rcu_access_pointer(bss->pub.beacon_ies)) 1777 continue; 1778 ies = rcu_access_pointer(bss->pub.ies); 1779 if (!ies) 1780 continue; 1781 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1782 if (!ie) 1783 continue; 1784 if (ssidlen && ie[1] != ssidlen) 1785 continue; 1786 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1787 continue; 1788 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1789 list_del(&bss->hidden_list); 1790 /* combine them */ 1791 list_add(&bss->hidden_list, &new->hidden_list); 1792 bss->pub.hidden_beacon_bss = &new->pub; 1793 new->refcount += bss->refcount; 1794 rcu_assign_pointer(bss->pub.beacon_ies, 1795 new->pub.beacon_ies); 1796 } 1797 1798 WARN_ONCE(n_entries != rdev->bss_entries, 1799 "rdev bss entries[%d]/list[len:%d] corruption\n", 1800 rdev->bss_entries, n_entries); 1801 1802 return true; 1803 } 1804 1805 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1806 const struct cfg80211_bss_ies *new_ies, 1807 const struct cfg80211_bss_ies *old_ies) 1808 { 1809 struct cfg80211_internal_bss *bss; 1810 1811 /* Assign beacon IEs to all sub entries */ 1812 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1813 const struct cfg80211_bss_ies *ies; 1814 1815 ies = rcu_access_pointer(bss->pub.beacon_ies); 1816 WARN_ON(ies != old_ies); 1817 1818 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1819 1820 bss->ts = known->ts; 1821 bss->pub.ts_boottime = known->pub.ts_boottime; 1822 } 1823 } 1824 1825 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev, 1826 struct cfg80211_internal_bss *known, 1827 const struct cfg80211_bss_ies *old) 1828 { 1829 const struct ieee80211_ext_chansw_ie *ecsa; 1830 const struct element *elem_new, *elem_old; 1831 const struct cfg80211_bss_ies *new, *bcn; 1832 1833 if (known->pub.proberesp_ecsa_stuck) 1834 return; 1835 1836 new = rcu_dereference_protected(known->pub.proberesp_ies, 1837 lockdep_is_held(&rdev->bss_lock)); 1838 if (WARN_ON(!new)) 1839 return; 1840 1841 if (new->tsf - old->tsf < USEC_PER_SEC) 1842 return; 1843 1844 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1845 old->data, old->len); 1846 if (!elem_old) 1847 return; 1848 1849 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1850 new->data, new->len); 1851 if (!elem_new) 1852 return; 1853 1854 bcn = rcu_dereference_protected(known->pub.beacon_ies, 1855 lockdep_is_held(&rdev->bss_lock)); 1856 if (bcn && 1857 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, 1858 bcn->data, bcn->len)) 1859 return; 1860 1861 if (elem_new->datalen != elem_old->datalen) 1862 return; 1863 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie)) 1864 return; 1865 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen)) 1866 return; 1867 1868 ecsa = (void *)elem_new->data; 1869 1870 if (!ecsa->mode) 1871 return; 1872 1873 if (ecsa->new_ch_num != 1874 ieee80211_frequency_to_channel(known->pub.channel->center_freq)) 1875 return; 1876 1877 known->pub.proberesp_ecsa_stuck = 1; 1878 } 1879 1880 static bool 1881 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1882 struct cfg80211_internal_bss *known, 1883 struct cfg80211_internal_bss *new, 1884 bool signal_valid) 1885 { 1886 lockdep_assert_held(&rdev->bss_lock); 1887 1888 /* Update time stamps */ 1889 known->ts = new->ts; 1890 known->pub.ts_boottime = new->pub.ts_boottime; 1891 1892 /* Update IEs */ 1893 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1894 const struct cfg80211_bss_ies *old; 1895 1896 old = rcu_access_pointer(known->pub.proberesp_ies); 1897 1898 rcu_assign_pointer(known->pub.proberesp_ies, 1899 new->pub.proberesp_ies); 1900 /* Override possible earlier Beacon frame IEs */ 1901 rcu_assign_pointer(known->pub.ies, 1902 new->pub.proberesp_ies); 1903 if (old) { 1904 cfg80211_check_stuck_ecsa(rdev, known, old); 1905 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1906 } 1907 } 1908 1909 if (rcu_access_pointer(new->pub.beacon_ies)) { 1910 const struct cfg80211_bss_ies *old; 1911 1912 if (known->pub.hidden_beacon_bss && 1913 !list_empty(&known->hidden_list)) { 1914 const struct cfg80211_bss_ies *f; 1915 1916 /* The known BSS struct is one of the probe 1917 * response members of a group, but we're 1918 * receiving a beacon (beacon_ies in the new 1919 * bss is used). This can only mean that the 1920 * AP changed its beacon from not having an 1921 * SSID to showing it, which is confusing so 1922 * drop this information. 1923 */ 1924 1925 f = rcu_access_pointer(new->pub.beacon_ies); 1926 if (!new->pub.hidden_beacon_bss) 1927 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1928 return false; 1929 } 1930 1931 old = rcu_access_pointer(known->pub.beacon_ies); 1932 1933 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1934 1935 /* Override IEs if they were from a beacon before */ 1936 if (old == rcu_access_pointer(known->pub.ies)) 1937 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1938 1939 cfg80211_update_hidden_bsses(known, 1940 rcu_access_pointer(new->pub.beacon_ies), 1941 old); 1942 1943 if (old) 1944 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1945 } 1946 1947 known->pub.beacon_interval = new->pub.beacon_interval; 1948 1949 /* don't update the signal if beacon was heard on 1950 * adjacent channel. 1951 */ 1952 if (signal_valid) 1953 known->pub.signal = new->pub.signal; 1954 known->pub.capability = new->pub.capability; 1955 known->parent_tsf = new->parent_tsf; 1956 known->pub.chains = new->pub.chains; 1957 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1958 IEEE80211_MAX_CHAINS); 1959 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1960 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1961 known->pub.bssid_index = new->pub.bssid_index; 1962 known->pub.use_for &= new->pub.use_for; 1963 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons; 1964 known->bss_source = new->bss_source; 1965 1966 return true; 1967 } 1968 1969 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1970 static struct cfg80211_internal_bss * 1971 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1972 struct cfg80211_internal_bss *tmp, 1973 bool signal_valid, unsigned long ts) 1974 { 1975 struct cfg80211_internal_bss *found = NULL; 1976 struct cfg80211_bss_ies *ies; 1977 1978 if (WARN_ON(!tmp->pub.channel)) 1979 goto free_ies; 1980 1981 tmp->ts = ts; 1982 1983 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) 1984 goto free_ies; 1985 1986 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1987 1988 if (found) { 1989 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1990 return NULL; 1991 } else { 1992 struct cfg80211_internal_bss *new; 1993 struct cfg80211_internal_bss *hidden; 1994 1995 /* 1996 * create a copy -- the "res" variable that is passed in 1997 * is allocated on the stack since it's not needed in the 1998 * more common case of an update 1999 */ 2000 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 2001 GFP_ATOMIC); 2002 if (!new) 2003 goto free_ies; 2004 memcpy(new, tmp, sizeof(*new)); 2005 new->refcount = 1; 2006 INIT_LIST_HEAD(&new->hidden_list); 2007 INIT_LIST_HEAD(&new->pub.nontrans_list); 2008 /* we'll set this later if it was non-NULL */ 2009 new->pub.transmitted_bss = NULL; 2010 2011 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 2012 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 2013 if (!hidden) 2014 hidden = rb_find_bss(rdev, tmp, 2015 BSS_CMP_HIDE_NUL); 2016 if (hidden) { 2017 new->pub.hidden_beacon_bss = &hidden->pub; 2018 list_add(&new->hidden_list, 2019 &hidden->hidden_list); 2020 hidden->refcount++; 2021 2022 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 2023 rcu_assign_pointer(new->pub.beacon_ies, 2024 hidden->pub.beacon_ies); 2025 if (ies) 2026 kfree_rcu(ies, rcu_head); 2027 } 2028 } else { 2029 /* 2030 * Ok so we found a beacon, and don't have an entry. If 2031 * it's a beacon with hidden SSID, we might be in for an 2032 * expensive search for any probe responses that should 2033 * be grouped with this beacon for updates ... 2034 */ 2035 if (!cfg80211_combine_bsses(rdev, new)) { 2036 bss_ref_put(rdev, new); 2037 return NULL; 2038 } 2039 } 2040 2041 if (rdev->bss_entries >= bss_entries_limit && 2042 !cfg80211_bss_expire_oldest(rdev)) { 2043 bss_ref_put(rdev, new); 2044 return NULL; 2045 } 2046 2047 /* This must be before the call to bss_ref_get */ 2048 if (tmp->pub.transmitted_bss) { 2049 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 2050 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 2051 } 2052 2053 cfg80211_insert_bss(rdev, new); 2054 found = new; 2055 } 2056 2057 rdev->bss_generation++; 2058 bss_ref_get(rdev, found); 2059 2060 return found; 2061 2062 free_ies: 2063 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies); 2064 if (ies) 2065 kfree_rcu(ies, rcu_head); 2066 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies); 2067 if (ies) 2068 kfree_rcu(ies, rcu_head); 2069 2070 return NULL; 2071 } 2072 2073 struct cfg80211_internal_bss * 2074 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 2075 struct cfg80211_internal_bss *tmp, 2076 bool signal_valid, unsigned long ts) 2077 { 2078 struct cfg80211_internal_bss *res; 2079 2080 spin_lock_bh(&rdev->bss_lock); 2081 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 2082 spin_unlock_bh(&rdev->bss_lock); 2083 2084 return res; 2085 } 2086 2087 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 2088 enum nl80211_band band) 2089 { 2090 const struct element *tmp; 2091 2092 if (band == NL80211_BAND_6GHZ) { 2093 struct ieee80211_he_operation *he_oper; 2094 2095 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 2096 ielen); 2097 if (tmp && tmp->datalen >= sizeof(*he_oper) && 2098 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 2099 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2100 2101 he_oper = (void *)&tmp->data[1]; 2102 2103 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2104 if (!he_6ghz_oper) 2105 return -1; 2106 2107 return he_6ghz_oper->primary; 2108 } 2109 } else if (band == NL80211_BAND_S1GHZ) { 2110 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 2111 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 2112 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 2113 2114 return s1gop->oper_ch; 2115 } 2116 } else { 2117 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 2118 if (tmp && tmp->datalen == 1) 2119 return tmp->data[0]; 2120 2121 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 2122 if (tmp && 2123 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 2124 struct ieee80211_ht_operation *htop = (void *)tmp->data; 2125 2126 return htop->primary_chan; 2127 } 2128 } 2129 2130 return -1; 2131 } 2132 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 2133 2134 /* 2135 * Update RX channel information based on the available frame payload 2136 * information. This is mainly for the 2.4 GHz band where frames can be received 2137 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 2138 * element to indicate the current (transmitting) channel, but this might also 2139 * be needed on other bands if RX frequency does not match with the actual 2140 * operating channel of a BSS, or if the AP reports a different primary channel. 2141 */ 2142 static struct ieee80211_channel * 2143 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 2144 struct ieee80211_channel *channel) 2145 { 2146 u32 freq; 2147 int channel_number; 2148 struct ieee80211_channel *alt_channel; 2149 2150 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 2151 channel->band); 2152 2153 if (channel_number < 0) { 2154 /* No channel information in frame payload */ 2155 return channel; 2156 } 2157 2158 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2159 2160 /* 2161 * Frame info (beacon/prob res) is the same as received channel, 2162 * no need for further processing. 2163 */ 2164 if (freq == ieee80211_channel_to_khz(channel)) 2165 return channel; 2166 2167 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2168 if (!alt_channel) { 2169 if (channel->band == NL80211_BAND_2GHZ || 2170 channel->band == NL80211_BAND_6GHZ) { 2171 /* 2172 * Better not allow unexpected channels when that could 2173 * be going beyond the 1-11 range (e.g., discovering 2174 * BSS on channel 12 when radio is configured for 2175 * channel 11) or beyond the 6 GHz channel range. 2176 */ 2177 return NULL; 2178 } 2179 2180 /* No match for the payload channel number - ignore it */ 2181 return channel; 2182 } 2183 2184 /* 2185 * Use the channel determined through the payload channel number 2186 * instead of the RX channel reported by the driver. 2187 */ 2188 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2189 return NULL; 2190 return alt_channel; 2191 } 2192 2193 struct cfg80211_inform_single_bss_data { 2194 struct cfg80211_inform_bss *drv_data; 2195 enum cfg80211_bss_frame_type ftype; 2196 struct ieee80211_channel *channel; 2197 u8 bssid[ETH_ALEN]; 2198 u64 tsf; 2199 u16 capability; 2200 u16 beacon_interval; 2201 const u8 *ie; 2202 size_t ielen; 2203 2204 enum bss_source_type bss_source; 2205 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2206 struct cfg80211_bss *source_bss; 2207 u8 max_bssid_indicator; 2208 u8 bssid_index; 2209 2210 u8 use_for; 2211 u64 cannot_use_reasons; 2212 }; 2213 2214 enum ieee80211_ap_reg_power 2215 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len) 2216 { 2217 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 2218 struct ieee80211_he_operation *he_oper; 2219 const struct element *tmp; 2220 2221 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 2222 elems, elems_len); 2223 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 || 2224 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1)) 2225 return IEEE80211_REG_UNSET_AP; 2226 2227 he_oper = (void *)&tmp->data[1]; 2228 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 2229 2230 if (!he_6ghz_oper) 2231 return IEEE80211_REG_UNSET_AP; 2232 2233 switch (u8_get_bits(he_6ghz_oper->control, 2234 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 2235 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 2236 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: 2237 return IEEE80211_REG_LPI_AP; 2238 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 2239 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: 2240 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD: 2241 return IEEE80211_REG_SP_AP; 2242 case IEEE80211_6GHZ_CTRL_REG_VLP_AP: 2243 return IEEE80211_REG_VLP_AP; 2244 default: 2245 return IEEE80211_REG_UNSET_AP; 2246 } 2247 } 2248 2249 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len, 2250 const u32 flags) 2251 { 2252 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) { 2253 case IEEE80211_REG_LPI_AP: 2254 return true; 2255 case IEEE80211_REG_SP_AP: 2256 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT); 2257 case IEEE80211_REG_VLP_AP: 2258 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT); 2259 default: 2260 return false; 2261 } 2262 } 2263 2264 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2265 static struct cfg80211_bss * 2266 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2267 struct cfg80211_inform_single_bss_data *data, 2268 gfp_t gfp) 2269 { 2270 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2271 struct cfg80211_inform_bss *drv_data = data->drv_data; 2272 struct cfg80211_bss_ies *ies; 2273 struct ieee80211_channel *channel; 2274 struct cfg80211_internal_bss tmp = {}, *res; 2275 int bss_type; 2276 bool signal_valid; 2277 unsigned long ts; 2278 2279 if (WARN_ON(!wiphy)) 2280 return NULL; 2281 2282 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2283 (drv_data->signal < 0 || drv_data->signal > 100))) 2284 return NULL; 2285 2286 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2287 return NULL; 2288 2289 channel = data->channel; 2290 if (!channel) 2291 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2292 drv_data->chan); 2293 if (!channel) 2294 return NULL; 2295 2296 if (channel->band == NL80211_BAND_6GHZ && 2297 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen, 2298 channel->flags)) { 2299 data->use_for = 0; 2300 data->cannot_use_reasons = 2301 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH; 2302 } 2303 2304 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2305 tmp.pub.channel = channel; 2306 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2307 tmp.pub.signal = drv_data->signal; 2308 else 2309 tmp.pub.signal = 0; 2310 tmp.pub.beacon_interval = data->beacon_interval; 2311 tmp.pub.capability = data->capability; 2312 tmp.pub.ts_boottime = drv_data->boottime_ns; 2313 tmp.parent_tsf = drv_data->parent_tsf; 2314 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2315 tmp.pub.chains = drv_data->chains; 2316 memcpy(tmp.pub.chain_signal, drv_data->chain_signal, 2317 IEEE80211_MAX_CHAINS); 2318 tmp.pub.use_for = data->use_for; 2319 tmp.pub.cannot_use_reasons = data->cannot_use_reasons; 2320 tmp.bss_source = data->bss_source; 2321 2322 switch (data->bss_source) { 2323 case BSS_SOURCE_MBSSID: 2324 tmp.pub.transmitted_bss = data->source_bss; 2325 fallthrough; 2326 case BSS_SOURCE_STA_PROFILE: 2327 ts = bss_from_pub(data->source_bss)->ts; 2328 tmp.pub.bssid_index = data->bssid_index; 2329 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2330 break; 2331 case BSS_SOURCE_DIRECT: 2332 ts = jiffies; 2333 2334 if (channel->band == NL80211_BAND_60GHZ) { 2335 bss_type = data->capability & 2336 WLAN_CAPABILITY_DMG_TYPE_MASK; 2337 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2338 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2339 regulatory_hint_found_beacon(wiphy, channel, 2340 gfp); 2341 } else { 2342 if (data->capability & WLAN_CAPABILITY_ESS) 2343 regulatory_hint_found_beacon(wiphy, channel, 2344 gfp); 2345 } 2346 break; 2347 } 2348 2349 /* 2350 * If we do not know here whether the IEs are from a Beacon or Probe 2351 * Response frame, we need to pick one of the options and only use it 2352 * with the driver that does not provide the full Beacon/Probe Response 2353 * frame. Use Beacon frame pointer to avoid indicating that this should 2354 * override the IEs pointer should we have received an earlier 2355 * indication of Probe Response data. 2356 */ 2357 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2358 if (!ies) 2359 return NULL; 2360 ies->len = data->ielen; 2361 ies->tsf = data->tsf; 2362 ies->from_beacon = false; 2363 memcpy(ies->data, data->ie, data->ielen); 2364 2365 switch (data->ftype) { 2366 case CFG80211_BSS_FTYPE_BEACON: 2367 case CFG80211_BSS_FTYPE_S1G_BEACON: 2368 ies->from_beacon = true; 2369 fallthrough; 2370 case CFG80211_BSS_FTYPE_UNKNOWN: 2371 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2372 break; 2373 case CFG80211_BSS_FTYPE_PRESP: 2374 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2375 break; 2376 } 2377 rcu_assign_pointer(tmp.pub.ies, ies); 2378 2379 signal_valid = drv_data->chan == channel; 2380 spin_lock_bh(&rdev->bss_lock); 2381 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2382 if (!res) 2383 goto drop; 2384 2385 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2386 2387 if (data->bss_source == BSS_SOURCE_MBSSID) { 2388 /* this is a nontransmitting bss, we need to add it to 2389 * transmitting bss' list if it is not there 2390 */ 2391 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2392 if (__cfg80211_unlink_bss(rdev, res)) { 2393 rdev->bss_generation++; 2394 res = NULL; 2395 } 2396 } 2397 2398 if (!res) 2399 goto drop; 2400 } 2401 spin_unlock_bh(&rdev->bss_lock); 2402 2403 trace_cfg80211_return_bss(&res->pub); 2404 /* __cfg80211_bss_update gives us a referenced result */ 2405 return &res->pub; 2406 2407 drop: 2408 spin_unlock_bh(&rdev->bss_lock); 2409 return NULL; 2410 } 2411 2412 static const struct element 2413 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2414 const struct element *mbssid_elem, 2415 const struct element *sub_elem) 2416 { 2417 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2418 const struct element *next_mbssid; 2419 const struct element *next_sub; 2420 2421 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2422 mbssid_end, 2423 ielen - (mbssid_end - ie)); 2424 2425 /* 2426 * If it is not the last subelement in current MBSSID IE or there isn't 2427 * a next MBSSID IE - profile is complete. 2428 */ 2429 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2430 !next_mbssid) 2431 return NULL; 2432 2433 /* For any length error, just return NULL */ 2434 2435 if (next_mbssid->datalen < 4) 2436 return NULL; 2437 2438 next_sub = (void *)&next_mbssid->data[1]; 2439 2440 if (next_mbssid->data + next_mbssid->datalen < 2441 next_sub->data + next_sub->datalen) 2442 return NULL; 2443 2444 if (next_sub->id != 0 || next_sub->datalen < 2) 2445 return NULL; 2446 2447 /* 2448 * Check if the first element in the next sub element is a start 2449 * of a new profile 2450 */ 2451 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2452 NULL : next_mbssid; 2453 } 2454 2455 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2456 const struct element *mbssid_elem, 2457 const struct element *sub_elem, 2458 u8 *merged_ie, size_t max_copy_len) 2459 { 2460 size_t copied_len = sub_elem->datalen; 2461 const struct element *next_mbssid; 2462 2463 if (sub_elem->datalen > max_copy_len) 2464 return 0; 2465 2466 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2467 2468 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2469 mbssid_elem, 2470 sub_elem))) { 2471 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2472 2473 if (copied_len + next_sub->datalen > max_copy_len) 2474 break; 2475 memcpy(merged_ie + copied_len, next_sub->data, 2476 next_sub->datalen); 2477 copied_len += next_sub->datalen; 2478 } 2479 2480 return copied_len; 2481 } 2482 EXPORT_SYMBOL(cfg80211_merge_profile); 2483 2484 static void 2485 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2486 struct cfg80211_inform_single_bss_data *tx_data, 2487 struct cfg80211_bss *source_bss, 2488 gfp_t gfp) 2489 { 2490 struct cfg80211_inform_single_bss_data data = { 2491 .drv_data = tx_data->drv_data, 2492 .ftype = tx_data->ftype, 2493 .tsf = tx_data->tsf, 2494 .beacon_interval = tx_data->beacon_interval, 2495 .source_bss = source_bss, 2496 .bss_source = BSS_SOURCE_MBSSID, 2497 .use_for = tx_data->use_for, 2498 .cannot_use_reasons = tx_data->cannot_use_reasons, 2499 }; 2500 const u8 *mbssid_index_ie; 2501 const struct element *elem, *sub; 2502 u8 *new_ie, *profile; 2503 u64 seen_indices = 0; 2504 struct cfg80211_bss *bss; 2505 2506 if (!source_bss) 2507 return; 2508 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2509 tx_data->ie, tx_data->ielen)) 2510 return; 2511 if (!wiphy->support_mbssid) 2512 return; 2513 if (wiphy->support_only_he_mbssid && 2514 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2515 tx_data->ie, tx_data->ielen)) 2516 return; 2517 2518 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2519 if (!new_ie) 2520 return; 2521 2522 profile = kmalloc(tx_data->ielen, gfp); 2523 if (!profile) 2524 goto out; 2525 2526 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2527 tx_data->ie, tx_data->ielen) { 2528 if (elem->datalen < 4) 2529 continue; 2530 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2531 continue; 2532 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2533 u8 profile_len; 2534 2535 if (sub->id != 0 || sub->datalen < 4) { 2536 /* not a valid BSS profile */ 2537 continue; 2538 } 2539 2540 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2541 sub->data[1] != 2) { 2542 /* The first element within the Nontransmitted 2543 * BSSID Profile is not the Nontransmitted 2544 * BSSID Capability element. 2545 */ 2546 continue; 2547 } 2548 2549 memset(profile, 0, tx_data->ielen); 2550 profile_len = cfg80211_merge_profile(tx_data->ie, 2551 tx_data->ielen, 2552 elem, 2553 sub, 2554 profile, 2555 tx_data->ielen); 2556 2557 /* found a Nontransmitted BSSID Profile */ 2558 mbssid_index_ie = cfg80211_find_ie 2559 (WLAN_EID_MULTI_BSSID_IDX, 2560 profile, profile_len); 2561 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2562 mbssid_index_ie[2] == 0 || 2563 mbssid_index_ie[2] > 46 || 2564 mbssid_index_ie[2] >= (1 << elem->data[0])) { 2565 /* No valid Multiple BSSID-Index element */ 2566 continue; 2567 } 2568 2569 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2570 /* We don't support legacy split of a profile */ 2571 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2572 mbssid_index_ie[2]); 2573 2574 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2575 2576 data.bssid_index = mbssid_index_ie[2]; 2577 data.max_bssid_indicator = elem->data[0]; 2578 2579 cfg80211_gen_new_bssid(tx_data->bssid, 2580 data.max_bssid_indicator, 2581 data.bssid_index, 2582 data.bssid); 2583 2584 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2585 data.ie = new_ie; 2586 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2587 tx_data->ielen, 2588 profile, 2589 profile_len, 2590 new_ie, 2591 IEEE80211_MAX_DATA_LEN); 2592 if (!data.ielen) 2593 continue; 2594 2595 data.capability = get_unaligned_le16(profile + 2); 2596 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2597 if (!bss) 2598 break; 2599 cfg80211_put_bss(wiphy, bss); 2600 } 2601 } 2602 2603 out: 2604 kfree(new_ie); 2605 kfree(profile); 2606 } 2607 2608 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2609 size_t ieslen, u8 *data, size_t data_len, 2610 u8 frag_id) 2611 { 2612 const struct element *next; 2613 ssize_t copied; 2614 u8 elem_datalen; 2615 2616 if (!elem) 2617 return -EINVAL; 2618 2619 /* elem might be invalid after the memmove */ 2620 next = (void *)(elem->data + elem->datalen); 2621 elem_datalen = elem->datalen; 2622 2623 if (elem->id == WLAN_EID_EXTENSION) { 2624 copied = elem->datalen - 1; 2625 2626 if (data) { 2627 if (copied > data_len) 2628 return -ENOSPC; 2629 2630 memmove(data, elem->data + 1, copied); 2631 } 2632 } else { 2633 copied = elem->datalen; 2634 2635 if (data) { 2636 if (copied > data_len) 2637 return -ENOSPC; 2638 2639 memmove(data, elem->data, copied); 2640 } 2641 } 2642 2643 /* Fragmented elements must have 255 bytes */ 2644 if (elem_datalen < 255) 2645 return copied; 2646 2647 for (elem = next; 2648 elem->data < ies + ieslen && 2649 elem->data + elem->datalen <= ies + ieslen; 2650 elem = next) { 2651 /* elem might be invalid after the memmove */ 2652 next = (void *)(elem->data + elem->datalen); 2653 2654 if (elem->id != frag_id) 2655 break; 2656 2657 elem_datalen = elem->datalen; 2658 2659 if (data) { 2660 if (copied + elem_datalen > data_len) 2661 return -ENOSPC; 2662 2663 memmove(data + copied, elem->data, elem_datalen); 2664 } 2665 2666 copied += elem_datalen; 2667 2668 /* Only the last fragment may be short */ 2669 if (elem_datalen != 255) 2670 break; 2671 } 2672 2673 return copied; 2674 } 2675 EXPORT_SYMBOL(cfg80211_defragment_element); 2676 2677 struct cfg80211_mle { 2678 struct ieee80211_multi_link_elem *mle; 2679 struct ieee80211_mle_per_sta_profile 2680 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2681 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2682 2683 u8 data[]; 2684 }; 2685 2686 static struct cfg80211_mle * 2687 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2688 gfp_t gfp) 2689 { 2690 const struct element *elem; 2691 struct cfg80211_mle *res; 2692 size_t buf_len; 2693 ssize_t mle_len; 2694 u8 common_size, idx; 2695 2696 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2697 return NULL; 2698 2699 /* Required length for first defragmentation */ 2700 buf_len = mle->datalen - 1; 2701 for_each_element(elem, mle->data + mle->datalen, 2702 ie + ielen - mle->data - mle->datalen) { 2703 if (elem->id != WLAN_EID_FRAGMENT) 2704 break; 2705 2706 buf_len += elem->datalen; 2707 } 2708 2709 res = kzalloc(struct_size(res, data, buf_len), gfp); 2710 if (!res) 2711 return NULL; 2712 2713 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2714 res->data, buf_len, 2715 WLAN_EID_FRAGMENT); 2716 if (mle_len < 0) 2717 goto error; 2718 2719 res->mle = (void *)res->data; 2720 2721 /* Find the sub-element area in the buffer */ 2722 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2723 ie = res->data + common_size; 2724 ielen = mle_len - common_size; 2725 2726 idx = 0; 2727 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2728 ie, ielen) { 2729 res->sta_prof[idx] = (void *)elem->data; 2730 res->sta_prof_len[idx] = elem->datalen; 2731 2732 idx++; 2733 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2734 break; 2735 } 2736 if (!for_each_element_completed(elem, ie, ielen)) 2737 goto error; 2738 2739 /* Defragment sta_info in-place */ 2740 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2741 idx++) { 2742 if (res->sta_prof_len[idx] < 255) 2743 continue; 2744 2745 elem = (void *)res->sta_prof[idx] - 2; 2746 2747 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2748 res->sta_prof[idx + 1]) 2749 buf_len = (u8 *)res->sta_prof[idx + 1] - 2750 (u8 *)res->sta_prof[idx]; 2751 else 2752 buf_len = ielen + ie - (u8 *)elem; 2753 2754 res->sta_prof_len[idx] = 2755 cfg80211_defragment_element(elem, 2756 (u8 *)elem, buf_len, 2757 (u8 *)res->sta_prof[idx], 2758 buf_len, 2759 IEEE80211_MLE_SUBELEM_FRAGMENT); 2760 if (res->sta_prof_len[idx] < 0) 2761 goto error; 2762 } 2763 2764 return res; 2765 2766 error: 2767 kfree(res); 2768 return NULL; 2769 } 2770 2771 struct tbtt_info_iter_data { 2772 const struct ieee80211_neighbor_ap_info *ap_info; 2773 u8 param_ch_count; 2774 u32 use_for; 2775 u8 mld_id, link_id; 2776 bool non_tx; 2777 }; 2778 2779 static enum cfg80211_rnr_iter_ret 2780 cfg802121_mld_ap_rnr_iter(void *_data, u8 type, 2781 const struct ieee80211_neighbor_ap_info *info, 2782 const u8 *tbtt_info, u8 tbtt_info_len) 2783 { 2784 const struct ieee80211_rnr_mld_params *mld_params; 2785 struct tbtt_info_iter_data *data = _data; 2786 u8 link_id; 2787 bool non_tx = false; 2788 2789 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2790 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11, 2791 mld_params)) { 2792 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 = 2793 (void *)tbtt_info; 2794 2795 non_tx = (tbtt_info_ge_11->bss_params & 2796 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID | 2797 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) == 2798 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2799 mld_params = &tbtt_info_ge_11->mld_params; 2800 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD && 2801 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params)) 2802 mld_params = (void *)tbtt_info; 2803 else 2804 return RNR_ITER_CONTINUE; 2805 2806 link_id = le16_get_bits(mld_params->params, 2807 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2808 2809 if (data->mld_id != mld_params->mld_id) 2810 return RNR_ITER_CONTINUE; 2811 2812 if (data->link_id != link_id) 2813 return RNR_ITER_CONTINUE; 2814 2815 data->ap_info = info; 2816 data->param_ch_count = 2817 le16_get_bits(mld_params->params, 2818 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2819 data->non_tx = non_tx; 2820 2821 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT) 2822 data->use_for = NL80211_BSS_USE_FOR_ALL; 2823 else 2824 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK; 2825 return RNR_ITER_BREAK; 2826 } 2827 2828 static u8 2829 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2830 const struct ieee80211_neighbor_ap_info **ap_info, 2831 u8 *param_ch_count, bool *non_tx) 2832 { 2833 struct tbtt_info_iter_data data = { 2834 .mld_id = mld_id, 2835 .link_id = link_id, 2836 }; 2837 2838 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data); 2839 2840 *ap_info = data.ap_info; 2841 *param_ch_count = data.param_ch_count; 2842 *non_tx = data.non_tx; 2843 2844 return data.use_for; 2845 } 2846 2847 static struct element * 2848 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid, 2849 bool same_mld, u8 link_id, u8 bss_change_count, 2850 gfp_t gfp) 2851 { 2852 const struct cfg80211_bss_ies *ies; 2853 struct ieee80211_neighbor_ap_info ap_info; 2854 struct ieee80211_tbtt_info_ge_11 tbtt_info; 2855 u32 short_ssid; 2856 const struct element *elem; 2857 struct element *res; 2858 2859 /* 2860 * We only generate the RNR to permit ML lookups. For that we do not 2861 * need an entry for the corresponding transmitting BSS, lets just skip 2862 * it even though it would be easy to add. 2863 */ 2864 if (!same_mld) 2865 return NULL; 2866 2867 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */ 2868 rcu_read_lock(); 2869 ies = rcu_dereference(source_bss->ies); 2870 2871 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params); 2872 ap_info.tbtt_info_hdr = 2873 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT, 2874 IEEE80211_AP_INFO_TBTT_HDR_TYPE) | 2875 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT); 2876 2877 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq); 2878 2879 /* operating class */ 2880 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2881 ies->data, ies->len); 2882 if (elem && elem->datalen >= 1) { 2883 ap_info.op_class = elem->data[0]; 2884 } else { 2885 struct cfg80211_chan_def chandef; 2886 2887 /* The AP is not providing us with anything to work with. So 2888 * make up a somewhat reasonable operating class, but don't 2889 * bother with it too much as no one will ever use the 2890 * information. 2891 */ 2892 cfg80211_chandef_create(&chandef, source_bss->channel, 2893 NL80211_CHAN_NO_HT); 2894 2895 if (!ieee80211_chandef_to_operating_class(&chandef, 2896 &ap_info.op_class)) 2897 goto out_unlock; 2898 } 2899 2900 /* Just set TBTT offset and PSD 20 to invalid/unknown */ 2901 tbtt_info.tbtt_offset = 255; 2902 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 2903 2904 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN); 2905 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid)) 2906 goto out_unlock; 2907 2908 rcu_read_unlock(); 2909 2910 tbtt_info.short_ssid = cpu_to_le32(short_ssid); 2911 2912 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID; 2913 2914 if (is_mbssid) { 2915 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID; 2916 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID; 2917 } 2918 2919 tbtt_info.mld_params.mld_id = 0; 2920 tbtt_info.mld_params.params = 2921 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) | 2922 le16_encode_bits(bss_change_count, 2923 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); 2924 2925 res = kzalloc(struct_size(res, data, 2926 sizeof(ap_info) + ap_info.tbtt_info_len), 2927 gfp); 2928 if (!res) 2929 return NULL; 2930 2931 /* Copy the data */ 2932 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT; 2933 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len; 2934 memcpy(res->data, &ap_info, sizeof(ap_info)); 2935 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len); 2936 2937 return res; 2938 2939 out_unlock: 2940 rcu_read_unlock(); 2941 return NULL; 2942 } 2943 2944 static void 2945 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2946 struct cfg80211_inform_single_bss_data *tx_data, 2947 struct cfg80211_bss *source_bss, 2948 const struct element *elem, 2949 gfp_t gfp) 2950 { 2951 struct cfg80211_inform_single_bss_data data = { 2952 .drv_data = tx_data->drv_data, 2953 .ftype = tx_data->ftype, 2954 .source_bss = source_bss, 2955 .bss_source = BSS_SOURCE_STA_PROFILE, 2956 }; 2957 struct element *reporter_rnr = NULL; 2958 struct ieee80211_multi_link_elem *ml_elem; 2959 struct cfg80211_mle *mle; 2960 const struct element *ssid_elem; 2961 const u8 *ssid = NULL; 2962 size_t ssid_len = 0; 2963 u16 control; 2964 u8 ml_common_len; 2965 u8 *new_ie = NULL; 2966 struct cfg80211_bss *bss; 2967 u8 mld_id, reporter_link_id, bss_change_count; 2968 u16 seen_links = 0; 2969 u8 i; 2970 2971 if (!ieee80211_mle_type_ok(elem->data + 1, 2972 IEEE80211_ML_CONTROL_TYPE_BASIC, 2973 elem->datalen - 1)) 2974 return; 2975 2976 ml_elem = (void *)(elem->data + 1); 2977 control = le16_to_cpu(ml_elem->control); 2978 ml_common_len = ml_elem->variable[0]; 2979 2980 /* Must be present when transmitted by an AP (in a probe response) */ 2981 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2982 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2983 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2984 return; 2985 2986 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1); 2987 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1); 2988 2989 /* 2990 * The MLD ID of the reporting AP is always zero. It is set if the AP 2991 * is part of an MBSSID set and will be non-zero for ML Elements 2992 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2993 * Draft P802.11be_D3.2, 35.3.4.2) 2994 */ 2995 mld_id = ieee80211_mle_get_mld_id(elem->data + 1); 2996 2997 /* Fully defrag the ML element for sta information/profile iteration */ 2998 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2999 if (!mle) 3000 return; 3001 3002 /* No point in doing anything if there is no per-STA profile */ 3003 if (!mle->sta_prof[0]) 3004 goto out; 3005 3006 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 3007 if (!new_ie) 3008 goto out; 3009 3010 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss, 3011 u16_get_bits(control, 3012 IEEE80211_MLC_BASIC_PRES_MLD_ID), 3013 mld_id == 0, reporter_link_id, 3014 bss_change_count, 3015 gfp); 3016 3017 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie, 3018 tx_data->ielen); 3019 if (ssid_elem) { 3020 ssid = ssid_elem->data; 3021 ssid_len = ssid_elem->datalen; 3022 } 3023 3024 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 3025 const struct ieee80211_neighbor_ap_info *ap_info; 3026 enum nl80211_band band; 3027 u32 freq; 3028 const u8 *profile; 3029 ssize_t profile_len; 3030 u8 param_ch_count; 3031 u8 link_id, use_for; 3032 bool non_tx; 3033 3034 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 3035 mle->sta_prof_len[i])) 3036 continue; 3037 3038 control = le16_to_cpu(mle->sta_prof[i]->control); 3039 3040 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 3041 continue; 3042 3043 link_id = u16_get_bits(control, 3044 IEEE80211_MLE_STA_CONTROL_LINK_ID); 3045 if (seen_links & BIT(link_id)) 3046 break; 3047 seen_links |= BIT(link_id); 3048 3049 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 3050 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 3051 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 3052 continue; 3053 3054 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 3055 data.beacon_interval = 3056 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 3057 data.tsf = tx_data->tsf + 3058 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 3059 3060 /* sta_info_len counts itself */ 3061 profile = mle->sta_prof[i]->variable + 3062 mle->sta_prof[i]->sta_info_len - 1; 3063 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 3064 profile; 3065 3066 if (profile_len < 2) 3067 continue; 3068 3069 data.capability = get_unaligned_le16(profile); 3070 profile += 2; 3071 profile_len -= 2; 3072 3073 /* Find in RNR to look up channel information */ 3074 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie, 3075 tx_data->ielen, 3076 mld_id, link_id, 3077 &ap_info, 3078 ¶m_ch_count, 3079 &non_tx); 3080 if (!use_for) 3081 continue; 3082 3083 /* 3084 * As of 802.11be_D5.0, the specification does not give us any 3085 * way of discovering both the MaxBSSID and the Multiple-BSSID 3086 * Index. It does seem like the Multiple-BSSID Index element 3087 * may be provided, but section 9.4.2.45 explicitly forbids 3088 * including a Multiple-BSSID Element (in this case without any 3089 * subelements). 3090 * Without both pieces of information we cannot calculate the 3091 * reference BSSID, so simply ignore the BSS. 3092 */ 3093 if (non_tx) 3094 continue; 3095 3096 /* We could sanity check the BSSID is included */ 3097 3098 if (!ieee80211_operating_class_to_band(ap_info->op_class, 3099 &band)) 3100 continue; 3101 3102 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 3103 data.channel = ieee80211_get_channel_khz(wiphy, freq); 3104 3105 /* Skip if RNR element specifies an unsupported channel */ 3106 if (!data.channel) 3107 continue; 3108 3109 /* Skip if BSS entry generated from MBSSID or DIRECT source 3110 * frame data available already. 3111 */ 3112 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid, 3113 ssid_len, IEEE80211_BSS_TYPE_ANY, 3114 IEEE80211_PRIVACY_ANY); 3115 if (bss) { 3116 struct cfg80211_internal_bss *ibss = bss_from_pub(bss); 3117 3118 if (data.capability == bss->capability && 3119 ibss->bss_source != BSS_SOURCE_STA_PROFILE) { 3120 cfg80211_put_bss(wiphy, bss); 3121 continue; 3122 } 3123 cfg80211_put_bss(wiphy, bss); 3124 } 3125 3126 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK && 3127 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) { 3128 use_for = 0; 3129 data.cannot_use_reasons = 3130 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY; 3131 } 3132 data.use_for = use_for; 3133 3134 /* Generate new elements */ 3135 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 3136 data.ie = new_ie; 3137 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 3138 profile, profile_len, 3139 new_ie, 3140 IEEE80211_MAX_DATA_LEN); 3141 if (!data.ielen) 3142 continue; 3143 3144 /* The generated elements do not contain: 3145 * - Basic ML element 3146 * - A TBTT entry in the RNR for the transmitting AP 3147 * 3148 * This information is needed both internally and in userspace 3149 * as such, we should append it here. 3150 */ 3151 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len > 3152 IEEE80211_MAX_DATA_LEN) 3153 continue; 3154 3155 /* Copy the Basic Multi-Link element including the common 3156 * information, and then fix up the link ID and BSS param 3157 * change count. 3158 * Note that the ML element length has been verified and we 3159 * also checked that it contains the link ID. 3160 */ 3161 new_ie[data.ielen++] = WLAN_EID_EXTENSION; 3162 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len; 3163 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK; 3164 memcpy(new_ie + data.ielen, ml_elem, 3165 sizeof(*ml_elem) + ml_common_len); 3166 3167 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id; 3168 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] = 3169 param_ch_count; 3170 3171 data.ielen += sizeof(*ml_elem) + ml_common_len; 3172 3173 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) { 3174 if (data.ielen + sizeof(struct element) + 3175 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN) 3176 continue; 3177 3178 memcpy(new_ie + data.ielen, reporter_rnr, 3179 sizeof(struct element) + reporter_rnr->datalen); 3180 data.ielen += sizeof(struct element) + 3181 reporter_rnr->datalen; 3182 } 3183 3184 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 3185 if (!bss) 3186 break; 3187 cfg80211_put_bss(wiphy, bss); 3188 } 3189 3190 out: 3191 kfree(reporter_rnr); 3192 kfree(new_ie); 3193 kfree(mle); 3194 } 3195 3196 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 3197 struct cfg80211_inform_single_bss_data *tx_data, 3198 struct cfg80211_bss *source_bss, 3199 gfp_t gfp) 3200 { 3201 const struct element *elem; 3202 3203 if (!source_bss) 3204 return; 3205 3206 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 3207 return; 3208 3209 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 3210 tx_data->ie, tx_data->ielen) 3211 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 3212 elem, gfp); 3213 } 3214 3215 struct cfg80211_bss * 3216 cfg80211_inform_bss_data(struct wiphy *wiphy, 3217 struct cfg80211_inform_bss *data, 3218 enum cfg80211_bss_frame_type ftype, 3219 const u8 *bssid, u64 tsf, u16 capability, 3220 u16 beacon_interval, const u8 *ie, size_t ielen, 3221 gfp_t gfp) 3222 { 3223 struct cfg80211_inform_single_bss_data inform_data = { 3224 .drv_data = data, 3225 .ftype = ftype, 3226 .tsf = tsf, 3227 .capability = capability, 3228 .beacon_interval = beacon_interval, 3229 .ie = ie, 3230 .ielen = ielen, 3231 .use_for = data->restrict_use ? 3232 data->use_for : 3233 NL80211_BSS_USE_FOR_ALL, 3234 .cannot_use_reasons = data->cannot_use_reasons, 3235 }; 3236 struct cfg80211_bss *res; 3237 3238 memcpy(inform_data.bssid, bssid, ETH_ALEN); 3239 3240 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 3241 if (!res) 3242 return NULL; 3243 3244 /* don't do any further MBSSID/ML handling for S1G */ 3245 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON) 3246 return res; 3247 3248 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 3249 3250 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 3251 3252 return res; 3253 } 3254 EXPORT_SYMBOL(cfg80211_inform_bss_data); 3255 3256 struct cfg80211_bss * 3257 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 3258 struct cfg80211_inform_bss *data, 3259 struct ieee80211_mgmt *mgmt, size_t len, 3260 gfp_t gfp) 3261 { 3262 size_t min_hdr_len; 3263 struct ieee80211_ext *ext = NULL; 3264 enum cfg80211_bss_frame_type ftype; 3265 u16 beacon_interval; 3266 const u8 *bssid; 3267 u16 capability; 3268 const u8 *ie; 3269 size_t ielen; 3270 u64 tsf; 3271 size_t s1g_optional_len; 3272 3273 if (WARN_ON(!mgmt)) 3274 return NULL; 3275 3276 if (WARN_ON(!wiphy)) 3277 return NULL; 3278 3279 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 3280 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 3281 3282 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 3283 3284 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 3285 ext = (void *) mgmt; 3286 s1g_optional_len = 3287 ieee80211_s1g_optional_len(ext->frame_control); 3288 min_hdr_len = 3289 offsetof(struct ieee80211_ext, u.s1g_beacon.variable) + 3290 s1g_optional_len; 3291 } else { 3292 /* same for beacons */ 3293 min_hdr_len = offsetof(struct ieee80211_mgmt, 3294 u.probe_resp.variable); 3295 } 3296 3297 if (WARN_ON(len < min_hdr_len)) 3298 return NULL; 3299 3300 ielen = len - min_hdr_len; 3301 ie = mgmt->u.probe_resp.variable; 3302 if (ext) { 3303 const struct ieee80211_s1g_bcn_compat_ie *compat; 3304 const struct element *elem; 3305 3306 ie = ext->u.s1g_beacon.variable + s1g_optional_len; 3307 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen); 3308 if (!elem) 3309 return NULL; 3310 if (elem->datalen < sizeof(*compat)) 3311 return NULL; 3312 compat = (void *)elem->data; 3313 bssid = ext->u.s1g_beacon.sa; 3314 capability = le16_to_cpu(compat->compat_info); 3315 beacon_interval = le16_to_cpu(compat->beacon_int); 3316 } else { 3317 bssid = mgmt->bssid; 3318 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 3319 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 3320 } 3321 3322 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 3323 3324 if (ieee80211_is_probe_resp(mgmt->frame_control)) 3325 ftype = CFG80211_BSS_FTYPE_PRESP; 3326 else if (ext) 3327 ftype = CFG80211_BSS_FTYPE_S1G_BEACON; 3328 else 3329 ftype = CFG80211_BSS_FTYPE_BEACON; 3330 3331 return cfg80211_inform_bss_data(wiphy, data, ftype, 3332 bssid, tsf, capability, 3333 beacon_interval, ie, ielen, 3334 gfp); 3335 } 3336 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3337 3338 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3339 { 3340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3341 3342 if (!pub) 3343 return; 3344 3345 spin_lock_bh(&rdev->bss_lock); 3346 bss_ref_get(rdev, bss_from_pub(pub)); 3347 spin_unlock_bh(&rdev->bss_lock); 3348 } 3349 EXPORT_SYMBOL(cfg80211_ref_bss); 3350 3351 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3352 { 3353 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3354 3355 if (!pub) 3356 return; 3357 3358 spin_lock_bh(&rdev->bss_lock); 3359 bss_ref_put(rdev, bss_from_pub(pub)); 3360 spin_unlock_bh(&rdev->bss_lock); 3361 } 3362 EXPORT_SYMBOL(cfg80211_put_bss); 3363 3364 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3365 { 3366 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3367 struct cfg80211_internal_bss *bss, *tmp1; 3368 struct cfg80211_bss *nontrans_bss, *tmp; 3369 3370 if (WARN_ON(!pub)) 3371 return; 3372 3373 bss = bss_from_pub(pub); 3374 3375 spin_lock_bh(&rdev->bss_lock); 3376 if (list_empty(&bss->list)) 3377 goto out; 3378 3379 list_for_each_entry_safe(nontrans_bss, tmp, 3380 &pub->nontrans_list, 3381 nontrans_list) { 3382 tmp1 = bss_from_pub(nontrans_bss); 3383 if (__cfg80211_unlink_bss(rdev, tmp1)) 3384 rdev->bss_generation++; 3385 } 3386 3387 if (__cfg80211_unlink_bss(rdev, bss)) 3388 rdev->bss_generation++; 3389 out: 3390 spin_unlock_bh(&rdev->bss_lock); 3391 } 3392 EXPORT_SYMBOL(cfg80211_unlink_bss); 3393 3394 void cfg80211_bss_iter(struct wiphy *wiphy, 3395 struct cfg80211_chan_def *chandef, 3396 void (*iter)(struct wiphy *wiphy, 3397 struct cfg80211_bss *bss, 3398 void *data), 3399 void *iter_data) 3400 { 3401 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3402 struct cfg80211_internal_bss *bss; 3403 3404 spin_lock_bh(&rdev->bss_lock); 3405 3406 list_for_each_entry(bss, &rdev->bss_list, list) { 3407 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3408 false)) 3409 iter(wiphy, &bss->pub, iter_data); 3410 } 3411 3412 spin_unlock_bh(&rdev->bss_lock); 3413 } 3414 EXPORT_SYMBOL(cfg80211_bss_iter); 3415 3416 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3417 unsigned int link_id, 3418 struct ieee80211_channel *chan) 3419 { 3420 struct wiphy *wiphy = wdev->wiphy; 3421 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3422 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3423 struct cfg80211_internal_bss *new = NULL; 3424 struct cfg80211_internal_bss *bss; 3425 struct cfg80211_bss *nontrans_bss; 3426 struct cfg80211_bss *tmp; 3427 3428 spin_lock_bh(&rdev->bss_lock); 3429 3430 /* 3431 * Some APs use CSA also for bandwidth changes, i.e., without actually 3432 * changing the control channel, so no need to update in such a case. 3433 */ 3434 if (cbss->pub.channel == chan) 3435 goto done; 3436 3437 /* use transmitting bss */ 3438 if (cbss->pub.transmitted_bss) 3439 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3440 3441 cbss->pub.channel = chan; 3442 3443 list_for_each_entry(bss, &rdev->bss_list, list) { 3444 if (!cfg80211_bss_type_match(bss->pub.capability, 3445 bss->pub.channel->band, 3446 wdev->conn_bss_type)) 3447 continue; 3448 3449 if (bss == cbss) 3450 continue; 3451 3452 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3453 new = bss; 3454 break; 3455 } 3456 } 3457 3458 if (new) { 3459 /* to save time, update IEs for transmitting bss only */ 3460 cfg80211_update_known_bss(rdev, cbss, new, false); 3461 new->pub.proberesp_ies = NULL; 3462 new->pub.beacon_ies = NULL; 3463 3464 list_for_each_entry_safe(nontrans_bss, tmp, 3465 &new->pub.nontrans_list, 3466 nontrans_list) { 3467 bss = bss_from_pub(nontrans_bss); 3468 if (__cfg80211_unlink_bss(rdev, bss)) 3469 rdev->bss_generation++; 3470 } 3471 3472 WARN_ON(atomic_read(&new->hold)); 3473 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3474 rdev->bss_generation++; 3475 } 3476 cfg80211_rehash_bss(rdev, cbss); 3477 3478 list_for_each_entry_safe(nontrans_bss, tmp, 3479 &cbss->pub.nontrans_list, 3480 nontrans_list) { 3481 bss = bss_from_pub(nontrans_bss); 3482 bss->pub.channel = chan; 3483 cfg80211_rehash_bss(rdev, bss); 3484 } 3485 3486 done: 3487 spin_unlock_bh(&rdev->bss_lock); 3488 } 3489 3490 #ifdef CONFIG_CFG80211_WEXT 3491 static struct cfg80211_registered_device * 3492 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3493 { 3494 struct cfg80211_registered_device *rdev; 3495 struct net_device *dev; 3496 3497 ASSERT_RTNL(); 3498 3499 dev = dev_get_by_index(net, ifindex); 3500 if (!dev) 3501 return ERR_PTR(-ENODEV); 3502 if (dev->ieee80211_ptr) 3503 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3504 else 3505 rdev = ERR_PTR(-ENODEV); 3506 dev_put(dev); 3507 return rdev; 3508 } 3509 3510 int cfg80211_wext_siwscan(struct net_device *dev, 3511 struct iw_request_info *info, 3512 union iwreq_data *wrqu, char *extra) 3513 { 3514 struct cfg80211_registered_device *rdev; 3515 struct wiphy *wiphy; 3516 struct iw_scan_req *wreq = NULL; 3517 struct cfg80211_scan_request_int *creq; 3518 int i, err, n_channels = 0; 3519 enum nl80211_band band; 3520 3521 if (!netif_running(dev)) 3522 return -ENETDOWN; 3523 3524 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3525 wreq = (struct iw_scan_req *)extra; 3526 3527 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3528 3529 if (IS_ERR(rdev)) 3530 return PTR_ERR(rdev); 3531 3532 if (rdev->scan_req || rdev->scan_msg) 3533 return -EBUSY; 3534 3535 wiphy = &rdev->wiphy; 3536 3537 /* Determine number of channels, needed to allocate creq */ 3538 if (wreq && wreq->num_channels) { 3539 /* Passed from userspace so should be checked */ 3540 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) 3541 return -EINVAL; 3542 n_channels = wreq->num_channels; 3543 } else { 3544 n_channels = ieee80211_get_num_supported_channels(wiphy); 3545 } 3546 3547 creq = kzalloc(struct_size(creq, req.channels, n_channels) + 3548 sizeof(struct cfg80211_ssid), 3549 GFP_ATOMIC); 3550 if (!creq) 3551 return -ENOMEM; 3552 3553 creq->req.wiphy = wiphy; 3554 creq->req.wdev = dev->ieee80211_ptr; 3555 /* SSIDs come after channels */ 3556 creq->req.ssids = (void *)creq + 3557 struct_size(creq, req.channels, n_channels); 3558 creq->req.n_channels = n_channels; 3559 creq->req.n_ssids = 1; 3560 creq->req.scan_start = jiffies; 3561 3562 /* translate "Scan on frequencies" request */ 3563 i = 0; 3564 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3565 int j; 3566 3567 if (!wiphy->bands[band]) 3568 continue; 3569 3570 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3571 struct ieee80211_channel *chan; 3572 3573 /* ignore disabled channels */ 3574 chan = &wiphy->bands[band]->channels[j]; 3575 if (chan->flags & IEEE80211_CHAN_DISABLED || 3576 !cfg80211_wdev_channel_allowed(creq->req.wdev, chan)) 3577 continue; 3578 3579 /* If we have a wireless request structure and the 3580 * wireless request specifies frequencies, then search 3581 * for the matching hardware channel. 3582 */ 3583 if (wreq && wreq->num_channels) { 3584 int k; 3585 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3586 for (k = 0; k < wreq->num_channels; k++) { 3587 struct iw_freq *freq = 3588 &wreq->channel_list[k]; 3589 int wext_freq = 3590 cfg80211_wext_freq(freq); 3591 3592 if (wext_freq == wiphy_freq) 3593 goto wext_freq_found; 3594 } 3595 goto wext_freq_not_found; 3596 } 3597 3598 wext_freq_found: 3599 creq->req.channels[i] = 3600 &wiphy->bands[band]->channels[j]; 3601 i++; 3602 wext_freq_not_found: ; 3603 } 3604 } 3605 /* No channels found? */ 3606 if (!i) { 3607 err = -EINVAL; 3608 goto out; 3609 } 3610 3611 /* Set real number of channels specified in creq->req.channels[] */ 3612 creq->req.n_channels = i; 3613 3614 /* translate "Scan for SSID" request */ 3615 if (wreq) { 3616 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3617 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) 3618 return -EINVAL; 3619 memcpy(creq->req.ssids[0].ssid, wreq->essid, 3620 wreq->essid_len); 3621 creq->req.ssids[0].ssid_len = wreq->essid_len; 3622 } 3623 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { 3624 creq->req.ssids = NULL; 3625 creq->req.n_ssids = 0; 3626 } 3627 } 3628 3629 for (i = 0; i < NUM_NL80211_BANDS; i++) 3630 if (wiphy->bands[i]) 3631 creq->req.rates[i] = 3632 (1 << wiphy->bands[i]->n_bitrates) - 1; 3633 3634 eth_broadcast_addr(creq->req.bssid); 3635 3636 scoped_guard(wiphy, &rdev->wiphy) { 3637 rdev->scan_req = creq; 3638 err = rdev_scan(rdev, creq); 3639 if (err) { 3640 rdev->scan_req = NULL; 3641 /* creq will be freed below */ 3642 } else { 3643 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3644 /* creq now owned by driver */ 3645 creq = NULL; 3646 dev_hold(dev); 3647 } 3648 } 3649 3650 out: 3651 kfree(creq); 3652 return err; 3653 } 3654 3655 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3656 const struct cfg80211_bss_ies *ies, 3657 char *current_ev, char *end_buf) 3658 { 3659 const u8 *pos, *end, *next; 3660 struct iw_event iwe; 3661 3662 if (!ies) 3663 return current_ev; 3664 3665 /* 3666 * If needed, fragment the IEs buffer (at IE boundaries) into short 3667 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3668 */ 3669 pos = ies->data; 3670 end = pos + ies->len; 3671 3672 while (end - pos > IW_GENERIC_IE_MAX) { 3673 next = pos + 2 + pos[1]; 3674 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3675 next = next + 2 + next[1]; 3676 3677 memset(&iwe, 0, sizeof(iwe)); 3678 iwe.cmd = IWEVGENIE; 3679 iwe.u.data.length = next - pos; 3680 current_ev = iwe_stream_add_point_check(info, current_ev, 3681 end_buf, &iwe, 3682 (void *)pos); 3683 if (IS_ERR(current_ev)) 3684 return current_ev; 3685 pos = next; 3686 } 3687 3688 if (end > pos) { 3689 memset(&iwe, 0, sizeof(iwe)); 3690 iwe.cmd = IWEVGENIE; 3691 iwe.u.data.length = end - pos; 3692 current_ev = iwe_stream_add_point_check(info, current_ev, 3693 end_buf, &iwe, 3694 (void *)pos); 3695 if (IS_ERR(current_ev)) 3696 return current_ev; 3697 } 3698 3699 return current_ev; 3700 } 3701 3702 static char * 3703 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3704 struct cfg80211_internal_bss *bss, char *current_ev, 3705 char *end_buf) 3706 { 3707 const struct cfg80211_bss_ies *ies; 3708 struct iw_event iwe; 3709 const u8 *ie; 3710 u8 buf[50]; 3711 u8 *cfg, *p, *tmp; 3712 int rem, i, sig; 3713 bool ismesh = false; 3714 3715 memset(&iwe, 0, sizeof(iwe)); 3716 iwe.cmd = SIOCGIWAP; 3717 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3718 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3719 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3720 IW_EV_ADDR_LEN); 3721 if (IS_ERR(current_ev)) 3722 return current_ev; 3723 3724 memset(&iwe, 0, sizeof(iwe)); 3725 iwe.cmd = SIOCGIWFREQ; 3726 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3727 iwe.u.freq.e = 0; 3728 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3729 IW_EV_FREQ_LEN); 3730 if (IS_ERR(current_ev)) 3731 return current_ev; 3732 3733 memset(&iwe, 0, sizeof(iwe)); 3734 iwe.cmd = SIOCGIWFREQ; 3735 iwe.u.freq.m = bss->pub.channel->center_freq; 3736 iwe.u.freq.e = 6; 3737 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3738 IW_EV_FREQ_LEN); 3739 if (IS_ERR(current_ev)) 3740 return current_ev; 3741 3742 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3743 memset(&iwe, 0, sizeof(iwe)); 3744 iwe.cmd = IWEVQUAL; 3745 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3746 IW_QUAL_NOISE_INVALID | 3747 IW_QUAL_QUAL_UPDATED; 3748 switch (wiphy->signal_type) { 3749 case CFG80211_SIGNAL_TYPE_MBM: 3750 sig = bss->pub.signal / 100; 3751 iwe.u.qual.level = sig; 3752 iwe.u.qual.updated |= IW_QUAL_DBM; 3753 if (sig < -110) /* rather bad */ 3754 sig = -110; 3755 else if (sig > -40) /* perfect */ 3756 sig = -40; 3757 /* will give a range of 0 .. 70 */ 3758 iwe.u.qual.qual = sig + 110; 3759 break; 3760 case CFG80211_SIGNAL_TYPE_UNSPEC: 3761 iwe.u.qual.level = bss->pub.signal; 3762 /* will give range 0 .. 100 */ 3763 iwe.u.qual.qual = bss->pub.signal; 3764 break; 3765 default: 3766 /* not reached */ 3767 break; 3768 } 3769 current_ev = iwe_stream_add_event_check(info, current_ev, 3770 end_buf, &iwe, 3771 IW_EV_QUAL_LEN); 3772 if (IS_ERR(current_ev)) 3773 return current_ev; 3774 } 3775 3776 memset(&iwe, 0, sizeof(iwe)); 3777 iwe.cmd = SIOCGIWENCODE; 3778 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3779 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3780 else 3781 iwe.u.data.flags = IW_ENCODE_DISABLED; 3782 iwe.u.data.length = 0; 3783 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3784 &iwe, ""); 3785 if (IS_ERR(current_ev)) 3786 return current_ev; 3787 3788 rcu_read_lock(); 3789 ies = rcu_dereference(bss->pub.ies); 3790 rem = ies->len; 3791 ie = ies->data; 3792 3793 while (rem >= 2) { 3794 /* invalid data */ 3795 if (ie[1] > rem - 2) 3796 break; 3797 3798 switch (ie[0]) { 3799 case WLAN_EID_SSID: 3800 memset(&iwe, 0, sizeof(iwe)); 3801 iwe.cmd = SIOCGIWESSID; 3802 iwe.u.data.length = ie[1]; 3803 iwe.u.data.flags = 1; 3804 current_ev = iwe_stream_add_point_check(info, 3805 current_ev, 3806 end_buf, &iwe, 3807 (u8 *)ie + 2); 3808 if (IS_ERR(current_ev)) 3809 goto unlock; 3810 break; 3811 case WLAN_EID_MESH_ID: 3812 memset(&iwe, 0, sizeof(iwe)); 3813 iwe.cmd = SIOCGIWESSID; 3814 iwe.u.data.length = ie[1]; 3815 iwe.u.data.flags = 1; 3816 current_ev = iwe_stream_add_point_check(info, 3817 current_ev, 3818 end_buf, &iwe, 3819 (u8 *)ie + 2); 3820 if (IS_ERR(current_ev)) 3821 goto unlock; 3822 break; 3823 case WLAN_EID_MESH_CONFIG: 3824 ismesh = true; 3825 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3826 break; 3827 cfg = (u8 *)ie + 2; 3828 memset(&iwe, 0, sizeof(iwe)); 3829 iwe.cmd = IWEVCUSTOM; 3830 iwe.u.data.length = sprintf(buf, 3831 "Mesh Network Path Selection Protocol ID: 0x%02X", 3832 cfg[0]); 3833 current_ev = iwe_stream_add_point_check(info, 3834 current_ev, 3835 end_buf, 3836 &iwe, buf); 3837 if (IS_ERR(current_ev)) 3838 goto unlock; 3839 iwe.u.data.length = sprintf(buf, 3840 "Path Selection Metric ID: 0x%02X", 3841 cfg[1]); 3842 current_ev = iwe_stream_add_point_check(info, 3843 current_ev, 3844 end_buf, 3845 &iwe, buf); 3846 if (IS_ERR(current_ev)) 3847 goto unlock; 3848 iwe.u.data.length = sprintf(buf, 3849 "Congestion Control Mode ID: 0x%02X", 3850 cfg[2]); 3851 current_ev = iwe_stream_add_point_check(info, 3852 current_ev, 3853 end_buf, 3854 &iwe, buf); 3855 if (IS_ERR(current_ev)) 3856 goto unlock; 3857 iwe.u.data.length = sprintf(buf, 3858 "Synchronization ID: 0x%02X", 3859 cfg[3]); 3860 current_ev = iwe_stream_add_point_check(info, 3861 current_ev, 3862 end_buf, 3863 &iwe, buf); 3864 if (IS_ERR(current_ev)) 3865 goto unlock; 3866 iwe.u.data.length = sprintf(buf, 3867 "Authentication ID: 0x%02X", 3868 cfg[4]); 3869 current_ev = iwe_stream_add_point_check(info, 3870 current_ev, 3871 end_buf, 3872 &iwe, buf); 3873 if (IS_ERR(current_ev)) 3874 goto unlock; 3875 iwe.u.data.length = sprintf(buf, 3876 "Formation Info: 0x%02X", 3877 cfg[5]); 3878 current_ev = iwe_stream_add_point_check(info, 3879 current_ev, 3880 end_buf, 3881 &iwe, buf); 3882 if (IS_ERR(current_ev)) 3883 goto unlock; 3884 iwe.u.data.length = sprintf(buf, 3885 "Capabilities: 0x%02X", 3886 cfg[6]); 3887 current_ev = iwe_stream_add_point_check(info, 3888 current_ev, 3889 end_buf, 3890 &iwe, buf); 3891 if (IS_ERR(current_ev)) 3892 goto unlock; 3893 break; 3894 case WLAN_EID_SUPP_RATES: 3895 case WLAN_EID_EXT_SUPP_RATES: 3896 /* display all supported rates in readable format */ 3897 p = current_ev + iwe_stream_lcp_len(info); 3898 3899 memset(&iwe, 0, sizeof(iwe)); 3900 iwe.cmd = SIOCGIWRATE; 3901 /* Those two flags are ignored... */ 3902 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3903 3904 for (i = 0; i < ie[1]; i++) { 3905 iwe.u.bitrate.value = 3906 ((ie[i + 2] & 0x7f) * 500000); 3907 tmp = p; 3908 p = iwe_stream_add_value(info, current_ev, p, 3909 end_buf, &iwe, 3910 IW_EV_PARAM_LEN); 3911 if (p == tmp) { 3912 current_ev = ERR_PTR(-E2BIG); 3913 goto unlock; 3914 } 3915 } 3916 current_ev = p; 3917 break; 3918 } 3919 rem -= ie[1] + 2; 3920 ie += ie[1] + 2; 3921 } 3922 3923 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3924 ismesh) { 3925 memset(&iwe, 0, sizeof(iwe)); 3926 iwe.cmd = SIOCGIWMODE; 3927 if (ismesh) 3928 iwe.u.mode = IW_MODE_MESH; 3929 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3930 iwe.u.mode = IW_MODE_MASTER; 3931 else 3932 iwe.u.mode = IW_MODE_ADHOC; 3933 current_ev = iwe_stream_add_event_check(info, current_ev, 3934 end_buf, &iwe, 3935 IW_EV_UINT_LEN); 3936 if (IS_ERR(current_ev)) 3937 goto unlock; 3938 } 3939 3940 memset(&iwe, 0, sizeof(iwe)); 3941 iwe.cmd = IWEVCUSTOM; 3942 iwe.u.data.length = sprintf(buf, "tsf=%016llx", 3943 (unsigned long long)(ies->tsf)); 3944 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3945 &iwe, buf); 3946 if (IS_ERR(current_ev)) 3947 goto unlock; 3948 memset(&iwe, 0, sizeof(iwe)); 3949 iwe.cmd = IWEVCUSTOM; 3950 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago", 3951 elapsed_jiffies_msecs(bss->ts)); 3952 current_ev = iwe_stream_add_point_check(info, current_ev, 3953 end_buf, &iwe, buf); 3954 if (IS_ERR(current_ev)) 3955 goto unlock; 3956 3957 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3958 3959 unlock: 3960 rcu_read_unlock(); 3961 return current_ev; 3962 } 3963 3964 3965 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3966 struct iw_request_info *info, 3967 char *buf, size_t len) 3968 { 3969 char *current_ev = buf; 3970 char *end_buf = buf + len; 3971 struct cfg80211_internal_bss *bss; 3972 int err = 0; 3973 3974 spin_lock_bh(&rdev->bss_lock); 3975 cfg80211_bss_expire(rdev); 3976 3977 list_for_each_entry(bss, &rdev->bss_list, list) { 3978 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3979 err = -E2BIG; 3980 break; 3981 } 3982 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3983 current_ev, end_buf); 3984 if (IS_ERR(current_ev)) { 3985 err = PTR_ERR(current_ev); 3986 break; 3987 } 3988 } 3989 spin_unlock_bh(&rdev->bss_lock); 3990 3991 if (err) 3992 return err; 3993 return current_ev - buf; 3994 } 3995 3996 3997 int cfg80211_wext_giwscan(struct net_device *dev, 3998 struct iw_request_info *info, 3999 union iwreq_data *wrqu, char *extra) 4000 { 4001 struct iw_point *data = &wrqu->data; 4002 struct cfg80211_registered_device *rdev; 4003 int res; 4004 4005 if (!netif_running(dev)) 4006 return -ENETDOWN; 4007 4008 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 4009 4010 if (IS_ERR(rdev)) 4011 return PTR_ERR(rdev); 4012 4013 if (rdev->scan_req || rdev->scan_msg) 4014 return -EAGAIN; 4015 4016 res = ieee80211_scan_results(rdev, info, extra, data->length); 4017 data->length = 0; 4018 if (res >= 0) { 4019 data->length = res; 4020 res = 0; 4021 } 4022 4023 return res; 4024 } 4025 #endif 4026