1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * inet fragments management
4 *
5 * Authors: Pavel Emelyanov <xemul@openvz.org>
6 * Started as consolidation of ipv4/ip_fragment.c,
7 * ipv6/reassembly. and ipv6 nf conntrack reassembly
8 */
9
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26
27 #include "../core/sock_destructor.h"
28
29 /* Use skb->cb to track consecutive/adjacent fragments coming at
30 * the end of the queue. Nodes in the rb-tree queue will
31 * contain "runs" of one or more adjacent fragments.
32 *
33 * Invariants:
34 * - next_frag is NULL at the tail of a "run";
35 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
36 */
37 struct ipfrag_skb_cb {
38 union {
39 struct inet_skb_parm h4;
40 struct inet6_skb_parm h6;
41 };
42 struct sk_buff *next_frag;
43 int frag_run_len;
44 int ip_defrag_offset;
45 };
46
47 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
48
fragcb_clear(struct sk_buff * skb)49 static void fragcb_clear(struct sk_buff *skb)
50 {
51 RB_CLEAR_NODE(&skb->rbnode);
52 FRAG_CB(skb)->next_frag = NULL;
53 FRAG_CB(skb)->frag_run_len = skb->len;
54 }
55
56 /* Append skb to the last "run". */
fragrun_append_to_last(struct inet_frag_queue * q,struct sk_buff * skb)57 static void fragrun_append_to_last(struct inet_frag_queue *q,
58 struct sk_buff *skb)
59 {
60 fragcb_clear(skb);
61
62 FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
63 FRAG_CB(q->fragments_tail)->next_frag = skb;
64 q->fragments_tail = skb;
65 }
66
67 /* Create a new "run" with the skb. */
fragrun_create(struct inet_frag_queue * q,struct sk_buff * skb)68 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
69 {
70 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
71 fragcb_clear(skb);
72
73 if (q->last_run_head)
74 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
75 &q->last_run_head->rbnode.rb_right);
76 else
77 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
78 rb_insert_color(&skb->rbnode, &q->rb_fragments);
79
80 q->fragments_tail = skb;
81 q->last_run_head = skb;
82 }
83
84 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
85 * Value : 0xff if frame should be dropped.
86 * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
87 */
88 const u8 ip_frag_ecn_table[16] = {
89 /* at least one fragment had CE, and others ECT_0 or ECT_1 */
90 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
91 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
92 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
93
94 /* invalid combinations : drop frame */
95 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
96 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
97 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
98 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
100 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
101 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
102 };
103 EXPORT_SYMBOL(ip_frag_ecn_table);
104
inet_frags_init(struct inet_frags * f)105 int inet_frags_init(struct inet_frags *f)
106 {
107 f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
108 NULL);
109 if (!f->frags_cachep)
110 return -ENOMEM;
111
112 refcount_set(&f->refcnt, 1);
113 init_completion(&f->completion);
114 return 0;
115 }
116 EXPORT_SYMBOL(inet_frags_init);
117
inet_frags_fini(struct inet_frags * f)118 void inet_frags_fini(struct inet_frags *f)
119 {
120 if (refcount_dec_and_test(&f->refcnt))
121 complete(&f->completion);
122
123 wait_for_completion(&f->completion);
124
125 kmem_cache_destroy(f->frags_cachep);
126 f->frags_cachep = NULL;
127 }
128 EXPORT_SYMBOL(inet_frags_fini);
129
130 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
inet_frags_free_cb(void * ptr,void * arg)131 static void inet_frags_free_cb(void *ptr, void *arg)
132 {
133 struct inet_frag_queue *fq = ptr;
134 int count;
135
136 count = timer_delete_sync(&fq->timer) ? 1 : 0;
137
138 spin_lock_bh(&fq->lock);
139 fq->flags |= INET_FRAG_DROP;
140 if (!(fq->flags & INET_FRAG_COMPLETE)) {
141 fq->flags |= INET_FRAG_COMPLETE;
142 count++;
143 } else if (fq->flags & INET_FRAG_HASH_DEAD) {
144 count++;
145 }
146 spin_unlock_bh(&fq->lock);
147
148 inet_frag_putn(fq, count);
149 }
150
151 static LLIST_HEAD(fqdir_free_list);
152
fqdir_free_fn(struct work_struct * work)153 static void fqdir_free_fn(struct work_struct *work)
154 {
155 struct llist_node *kill_list;
156 struct fqdir *fqdir, *tmp;
157 struct inet_frags *f;
158
159 /* Atomically snapshot the list of fqdirs to free */
160 kill_list = llist_del_all(&fqdir_free_list);
161
162 /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
163 * have completed, since they need to dereference fqdir.
164 * Would it not be nice to have kfree_rcu_barrier() ? :)
165 */
166 rcu_barrier();
167
168 llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
169 f = fqdir->f;
170 if (refcount_dec_and_test(&f->refcnt))
171 complete(&f->completion);
172
173 kfree(fqdir);
174 }
175 }
176
177 static DECLARE_DELAYED_WORK(fqdir_free_work, fqdir_free_fn);
178
fqdir_work_fn(struct work_struct * work)179 static void fqdir_work_fn(struct work_struct *work)
180 {
181 struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
182
183 rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
184
185 if (llist_add(&fqdir->free_list, &fqdir_free_list))
186 queue_delayed_work(system_wq, &fqdir_free_work, HZ);
187 }
188
fqdir_init(struct fqdir ** fqdirp,struct inet_frags * f,struct net * net)189 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
190 {
191 struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
192 int res;
193
194 if (!fqdir)
195 return -ENOMEM;
196 fqdir->f = f;
197 fqdir->net = net;
198 res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
199 if (res < 0) {
200 kfree(fqdir);
201 return res;
202 }
203 refcount_inc(&f->refcnt);
204 *fqdirp = fqdir;
205 return 0;
206 }
207 EXPORT_SYMBOL(fqdir_init);
208
209 static struct workqueue_struct *inet_frag_wq;
210
inet_frag_wq_init(void)211 static int __init inet_frag_wq_init(void)
212 {
213 inet_frag_wq = create_workqueue("inet_frag_wq");
214 if (!inet_frag_wq)
215 panic("Could not create inet frag workq");
216 return 0;
217 }
218
219 pure_initcall(inet_frag_wq_init);
220
fqdir_exit(struct fqdir * fqdir)221 void fqdir_exit(struct fqdir *fqdir)
222 {
223 INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
224 queue_work(inet_frag_wq, &fqdir->destroy_work);
225 }
226 EXPORT_SYMBOL(fqdir_exit);
227
inet_frag_kill(struct inet_frag_queue * fq,int * refs)228 void inet_frag_kill(struct inet_frag_queue *fq, int *refs)
229 {
230 if (timer_delete(&fq->timer))
231 (*refs)++;
232
233 if (!(fq->flags & INET_FRAG_COMPLETE)) {
234 struct fqdir *fqdir = fq->fqdir;
235
236 fq->flags |= INET_FRAG_COMPLETE;
237 rcu_read_lock();
238 /* The RCU read lock provides a memory barrier
239 * guaranteeing that if fqdir->dead is false then
240 * the hash table destruction will not start until
241 * after we unlock. Paired with fqdir_pre_exit().
242 */
243 if (!READ_ONCE(fqdir->dead)) {
244 rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
245 fqdir->f->rhash_params);
246 (*refs)++;
247 } else {
248 fq->flags |= INET_FRAG_HASH_DEAD;
249 }
250 rcu_read_unlock();
251 }
252 }
253 EXPORT_SYMBOL(inet_frag_kill);
254
inet_frag_destroy_rcu(struct rcu_head * head)255 static void inet_frag_destroy_rcu(struct rcu_head *head)
256 {
257 struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
258 rcu);
259 struct inet_frags *f = q->fqdir->f;
260
261 if (f->destructor)
262 f->destructor(q);
263 kmem_cache_free(f->frags_cachep, q);
264 }
265
inet_frag_rbtree_purge(struct rb_root * root,enum skb_drop_reason reason)266 unsigned int inet_frag_rbtree_purge(struct rb_root *root,
267 enum skb_drop_reason reason)
268 {
269 struct rb_node *p = rb_first(root);
270 unsigned int sum = 0;
271
272 while (p) {
273 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
274
275 p = rb_next(p);
276 rb_erase(&skb->rbnode, root);
277 while (skb) {
278 struct sk_buff *next = FRAG_CB(skb)->next_frag;
279
280 sum += skb->truesize;
281 kfree_skb_reason(skb, reason);
282 skb = next;
283 }
284 }
285 return sum;
286 }
287 EXPORT_SYMBOL(inet_frag_rbtree_purge);
288
inet_frag_destroy(struct inet_frag_queue * q)289 void inet_frag_destroy(struct inet_frag_queue *q)
290 {
291 unsigned int sum, sum_truesize = 0;
292 enum skb_drop_reason reason;
293 struct inet_frags *f;
294 struct fqdir *fqdir;
295
296 WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
297 reason = (q->flags & INET_FRAG_DROP) ?
298 SKB_DROP_REASON_FRAG_REASM_TIMEOUT :
299 SKB_CONSUMED;
300 WARN_ON(timer_delete(&q->timer) != 0);
301
302 /* Release all fragment data. */
303 fqdir = q->fqdir;
304 f = fqdir->f;
305 sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason);
306 sum = sum_truesize + f->qsize;
307
308 call_rcu(&q->rcu, inet_frag_destroy_rcu);
309
310 sub_frag_mem_limit(fqdir, sum);
311 }
312 EXPORT_SYMBOL(inet_frag_destroy);
313
inet_frag_alloc(struct fqdir * fqdir,struct inet_frags * f,void * arg)314 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
315 struct inet_frags *f,
316 void *arg)
317 {
318 struct inet_frag_queue *q;
319
320 q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
321 if (!q)
322 return NULL;
323
324 q->fqdir = fqdir;
325 f->constructor(q, arg);
326 add_frag_mem_limit(fqdir, f->qsize);
327
328 timer_setup(&q->timer, f->frag_expire, 0);
329 spin_lock_init(&q->lock);
330 /* One reference for the timer, one for the hash table. */
331 refcount_set(&q->refcnt, 2);
332
333 return q;
334 }
335
inet_frag_create(struct fqdir * fqdir,void * arg,struct inet_frag_queue ** prev)336 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
337 void *arg,
338 struct inet_frag_queue **prev)
339 {
340 struct inet_frags *f = fqdir->f;
341 struct inet_frag_queue *q;
342
343 q = inet_frag_alloc(fqdir, f, arg);
344 if (!q) {
345 *prev = ERR_PTR(-ENOMEM);
346 return NULL;
347 }
348 mod_timer(&q->timer, jiffies + fqdir->timeout);
349
350 *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
351 &q->node, f->rhash_params);
352 if (*prev) {
353 /* We could not insert in the hash table,
354 * we need to cancel what inet_frag_alloc()
355 * anticipated.
356 */
357 int refs = 1;
358
359 q->flags |= INET_FRAG_COMPLETE;
360 inet_frag_kill(q, &refs);
361 inet_frag_putn(q, refs);
362 return NULL;
363 }
364 return q;
365 }
366
inet_frag_find(struct fqdir * fqdir,void * key)367 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
368 {
369 /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */
370 long high_thresh = READ_ONCE(fqdir->high_thresh);
371 struct inet_frag_queue *fq = NULL, *prev;
372
373 if (!high_thresh || frag_mem_limit(fqdir) > high_thresh)
374 return NULL;
375
376 prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
377 if (!prev)
378 fq = inet_frag_create(fqdir, key, &prev);
379 if (!IS_ERR_OR_NULL(prev))
380 fq = prev;
381 return fq;
382 }
383 EXPORT_SYMBOL(inet_frag_find);
384
inet_frag_queue_insert(struct inet_frag_queue * q,struct sk_buff * skb,int offset,int end)385 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
386 int offset, int end)
387 {
388 struct sk_buff *last = q->fragments_tail;
389
390 /* RFC5722, Section 4, amended by Errata ID : 3089
391 * When reassembling an IPv6 datagram, if
392 * one or more its constituent fragments is determined to be an
393 * overlapping fragment, the entire datagram (and any constituent
394 * fragments) MUST be silently discarded.
395 *
396 * Duplicates, however, should be ignored (i.e. skb dropped, but the
397 * queue/fragments kept for later reassembly).
398 */
399 if (!last)
400 fragrun_create(q, skb); /* First fragment. */
401 else if (FRAG_CB(last)->ip_defrag_offset + last->len < end) {
402 /* This is the common case: skb goes to the end. */
403 /* Detect and discard overlaps. */
404 if (offset < FRAG_CB(last)->ip_defrag_offset + last->len)
405 return IPFRAG_OVERLAP;
406 if (offset == FRAG_CB(last)->ip_defrag_offset + last->len)
407 fragrun_append_to_last(q, skb);
408 else
409 fragrun_create(q, skb);
410 } else {
411 /* Binary search. Note that skb can become the first fragment,
412 * but not the last (covered above).
413 */
414 struct rb_node **rbn, *parent;
415
416 rbn = &q->rb_fragments.rb_node;
417 do {
418 struct sk_buff *curr;
419 int curr_run_end;
420
421 parent = *rbn;
422 curr = rb_to_skb(parent);
423 curr_run_end = FRAG_CB(curr)->ip_defrag_offset +
424 FRAG_CB(curr)->frag_run_len;
425 if (end <= FRAG_CB(curr)->ip_defrag_offset)
426 rbn = &parent->rb_left;
427 else if (offset >= curr_run_end)
428 rbn = &parent->rb_right;
429 else if (offset >= FRAG_CB(curr)->ip_defrag_offset &&
430 end <= curr_run_end)
431 return IPFRAG_DUP;
432 else
433 return IPFRAG_OVERLAP;
434 } while (*rbn);
435 /* Here we have parent properly set, and rbn pointing to
436 * one of its NULL left/right children. Insert skb.
437 */
438 fragcb_clear(skb);
439 rb_link_node(&skb->rbnode, parent, rbn);
440 rb_insert_color(&skb->rbnode, &q->rb_fragments);
441 }
442
443 FRAG_CB(skb)->ip_defrag_offset = offset;
444
445 return IPFRAG_OK;
446 }
447 EXPORT_SYMBOL(inet_frag_queue_insert);
448
inet_frag_reasm_prepare(struct inet_frag_queue * q,struct sk_buff * skb,struct sk_buff * parent)449 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
450 struct sk_buff *parent)
451 {
452 struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
453 void (*destructor)(struct sk_buff *);
454 unsigned int orig_truesize = 0;
455 struct sk_buff **nextp = NULL;
456 struct sock *sk = skb->sk;
457 int delta;
458
459 if (sk && is_skb_wmem(skb)) {
460 /* TX: skb->sk might have been passed as argument to
461 * dst->output and must remain valid until tx completes.
462 *
463 * Move sk to reassembled skb and fix up wmem accounting.
464 */
465 orig_truesize = skb->truesize;
466 destructor = skb->destructor;
467 }
468
469 if (head != skb) {
470 fp = skb_clone(skb, GFP_ATOMIC);
471 if (!fp) {
472 head = skb;
473 goto out_restore_sk;
474 }
475 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
476 if (RB_EMPTY_NODE(&skb->rbnode))
477 FRAG_CB(parent)->next_frag = fp;
478 else
479 rb_replace_node(&skb->rbnode, &fp->rbnode,
480 &q->rb_fragments);
481 if (q->fragments_tail == skb)
482 q->fragments_tail = fp;
483
484 if (orig_truesize) {
485 /* prevent skb_morph from releasing sk */
486 skb->sk = NULL;
487 skb->destructor = NULL;
488 }
489 skb_morph(skb, head);
490 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
491 rb_replace_node(&head->rbnode, &skb->rbnode,
492 &q->rb_fragments);
493 consume_skb(head);
494 head = skb;
495 }
496 WARN_ON(FRAG_CB(head)->ip_defrag_offset != 0);
497
498 delta = -head->truesize;
499
500 /* Head of list must not be cloned. */
501 if (skb_unclone(head, GFP_ATOMIC))
502 goto out_restore_sk;
503
504 delta += head->truesize;
505 if (delta)
506 add_frag_mem_limit(q->fqdir, delta);
507
508 /* If the first fragment is fragmented itself, we split
509 * it to two chunks: the first with data and paged part
510 * and the second, holding only fragments.
511 */
512 if (skb_has_frag_list(head)) {
513 struct sk_buff *clone;
514 int i, plen = 0;
515
516 clone = alloc_skb(0, GFP_ATOMIC);
517 if (!clone)
518 goto out_restore_sk;
519 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
520 skb_frag_list_init(head);
521 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
522 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
523 clone->data_len = head->data_len - plen;
524 clone->len = clone->data_len;
525 head->truesize += clone->truesize;
526 clone->csum = 0;
527 clone->ip_summed = head->ip_summed;
528 add_frag_mem_limit(q->fqdir, clone->truesize);
529 skb_shinfo(head)->frag_list = clone;
530 nextp = &clone->next;
531 } else {
532 nextp = &skb_shinfo(head)->frag_list;
533 }
534
535 out_restore_sk:
536 if (orig_truesize) {
537 int ts_delta = head->truesize - orig_truesize;
538
539 /* if this reassembled skb is fragmented later,
540 * fraglist skbs will get skb->sk assigned from head->sk,
541 * and each frag skb will be released via sock_wfree.
542 *
543 * Update sk_wmem_alloc.
544 */
545 head->sk = sk;
546 head->destructor = destructor;
547 refcount_add(ts_delta, &sk->sk_wmem_alloc);
548 }
549
550 return nextp;
551 }
552 EXPORT_SYMBOL(inet_frag_reasm_prepare);
553
inet_frag_reasm_finish(struct inet_frag_queue * q,struct sk_buff * head,void * reasm_data,bool try_coalesce)554 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
555 void *reasm_data, bool try_coalesce)
556 {
557 struct sock *sk = is_skb_wmem(head) ? head->sk : NULL;
558 const unsigned int head_truesize = head->truesize;
559 struct sk_buff **nextp = reasm_data;
560 struct rb_node *rbn;
561 struct sk_buff *fp;
562 int sum_truesize;
563
564 skb_push(head, head->data - skb_network_header(head));
565
566 /* Traverse the tree in order, to build frag_list. */
567 fp = FRAG_CB(head)->next_frag;
568 rbn = rb_next(&head->rbnode);
569 rb_erase(&head->rbnode, &q->rb_fragments);
570
571 sum_truesize = head->truesize;
572 while (rbn || fp) {
573 /* fp points to the next sk_buff in the current run;
574 * rbn points to the next run.
575 */
576 /* Go through the current run. */
577 while (fp) {
578 struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
579 bool stolen;
580 int delta;
581
582 sum_truesize += fp->truesize;
583 if (head->ip_summed != fp->ip_summed)
584 head->ip_summed = CHECKSUM_NONE;
585 else if (head->ip_summed == CHECKSUM_COMPLETE)
586 head->csum = csum_add(head->csum, fp->csum);
587
588 if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
589 &delta)) {
590 kfree_skb_partial(fp, stolen);
591 } else {
592 fp->prev = NULL;
593 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
594 fp->sk = NULL;
595
596 head->data_len += fp->len;
597 head->len += fp->len;
598 head->truesize += fp->truesize;
599
600 *nextp = fp;
601 nextp = &fp->next;
602 }
603
604 fp = next_frag;
605 }
606 /* Move to the next run. */
607 if (rbn) {
608 struct rb_node *rbnext = rb_next(rbn);
609
610 fp = rb_to_skb(rbn);
611 rb_erase(rbn, &q->rb_fragments);
612 rbn = rbnext;
613 }
614 }
615 sub_frag_mem_limit(q->fqdir, sum_truesize);
616
617 *nextp = NULL;
618 skb_mark_not_on_list(head);
619 head->prev = NULL;
620 head->tstamp = q->stamp;
621 head->tstamp_type = q->tstamp_type;
622
623 if (sk)
624 refcount_add(sum_truesize - head_truesize, &sk->sk_wmem_alloc);
625 }
626 EXPORT_SYMBOL(inet_frag_reasm_finish);
627
inet_frag_pull_head(struct inet_frag_queue * q)628 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
629 {
630 struct sk_buff *head, *skb;
631
632 head = skb_rb_first(&q->rb_fragments);
633 if (!head)
634 return NULL;
635 skb = FRAG_CB(head)->next_frag;
636 if (skb)
637 rb_replace_node(&head->rbnode, &skb->rbnode,
638 &q->rb_fragments);
639 else
640 rb_erase(&head->rbnode, &q->rb_fragments);
641 memset(&head->rbnode, 0, sizeof(head->rbnode));
642 barrier();
643
644 if (head == q->fragments_tail)
645 q->fragments_tail = NULL;
646
647 sub_frag_mem_limit(q->fqdir, head->truesize);
648
649 return head;
650 }
651 EXPORT_SYMBOL(inet_frag_pull_head);
652