1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 /** 121 * inet_sk_get_local_port_range - fetch ephemeral ports range 122 * @sk: socket 123 * @low: pointer to low port 124 * @high: pointer to high port 125 * 126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range) 127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option. 128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket. 129 */ 130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 131 { 132 int lo, hi, sk_lo, sk_hi; 133 bool local_range = false; 134 u32 sk_range; 135 136 inet_get_local_port_range(sock_net(sk), &lo, &hi); 137 138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range); 139 if (unlikely(sk_range)) { 140 sk_lo = sk_range & 0xffff; 141 sk_hi = sk_range >> 16; 142 143 if (lo <= sk_lo && sk_lo <= hi) 144 lo = sk_lo; 145 if (lo <= sk_hi && sk_hi <= hi) 146 hi = sk_hi; 147 local_range = true; 148 } 149 150 *low = lo; 151 *high = hi; 152 return local_range; 153 } 154 EXPORT_SYMBOL(inet_sk_get_local_port_range); 155 156 static bool inet_use_bhash2_on_bind(const struct sock *sk) 157 { 158 #if IS_ENABLED(CONFIG_IPV6) 159 if (sk->sk_family == AF_INET6) { 160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) 161 return false; 162 163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 164 return true; 165 } 166 #endif 167 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 168 } 169 170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 171 kuid_t uid, bool relax, 172 bool reuseport_cb_ok, bool reuseport_ok) 173 { 174 int bound_dev_if2; 175 176 if (sk == sk2) 177 return false; 178 179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 180 181 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 182 sk->sk_bound_dev_if == bound_dev_if2) { 183 if (sk->sk_reuse && sk2->sk_reuse && 184 sk2->sk_state != TCP_LISTEN) { 185 if (!relax || (!reuseport_ok && sk->sk_reuseport && 186 sk2->sk_reuseport && reuseport_cb_ok && 187 (sk2->sk_state == TCP_TIME_WAIT || 188 uid_eq(uid, sk_uid(sk2))))) 189 return true; 190 } else if (!reuseport_ok || !sk->sk_reuseport || 191 !sk2->sk_reuseport || !reuseport_cb_ok || 192 (sk2->sk_state != TCP_TIME_WAIT && 193 !uid_eq(uid, sk_uid(sk2)))) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 201 kuid_t uid, bool relax, 202 bool reuseport_cb_ok, bool reuseport_ok) 203 { 204 if (ipv6_only_sock(sk2)) { 205 if (sk->sk_family == AF_INET) 206 return false; 207 208 #if IS_ENABLED(CONFIG_IPV6) 209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 210 return false; 211 #endif 212 } 213 214 return inet_bind_conflict(sk, sk2, uid, relax, 215 reuseport_cb_ok, reuseport_ok); 216 } 217 218 static bool inet_bhash2_conflict(const struct sock *sk, 219 const struct inet_bind2_bucket *tb2, 220 kuid_t uid, 221 bool relax, bool reuseport_cb_ok, 222 bool reuseport_ok) 223 { 224 struct sock *sk2; 225 226 sk_for_each_bound(sk2, &tb2->owners) { 227 if (__inet_bhash2_conflict(sk, sk2, uid, relax, 228 reuseport_cb_ok, reuseport_ok)) 229 return true; 230 } 231 232 return false; 233 } 234 235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \ 236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \ 237 sk_for_each_bound((__sk), &(__tb2)->owners) 238 239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 240 static int inet_csk_bind_conflict(const struct sock *sk, 241 const struct inet_bind_bucket *tb, 242 const struct inet_bind2_bucket *tb2, /* may be null */ 243 bool relax, bool reuseport_ok) 244 { 245 struct sock_reuseport *reuseport_cb; 246 kuid_t uid = sk_uid(sk); 247 bool reuseport_cb_ok; 248 struct sock *sk2; 249 250 rcu_read_lock(); 251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 254 rcu_read_unlock(); 255 256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 257 * ipv4) should have been checked already. We need to do these two 258 * checks separately because their spinlocks have to be acquired/released 259 * independently of each other, to prevent possible deadlocks 260 */ 261 if (inet_use_bhash2_on_bind(sk)) 262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, 263 reuseport_cb_ok, reuseport_ok); 264 265 /* Unlike other sk lookup places we do not check 266 * for sk_net here, since _all_ the socks listed 267 * in tb->owners and tb2->owners list belong 268 * to the same net - the one this bucket belongs to. 269 */ 270 sk_for_each_bound_bhash(sk2, tb2, tb) { 271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok)) 272 continue; 273 274 if (inet_rcv_saddr_equal(sk, sk2, true)) 275 return true; 276 } 277 278 return false; 279 } 280 281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 282 * INADDR_ANY (if ipv4) socket. 283 * 284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 285 * against concurrent binds on the port for addr any 286 */ 287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 288 bool relax, bool reuseport_ok) 289 { 290 const struct net *net = sock_net(sk); 291 struct sock_reuseport *reuseport_cb; 292 struct inet_bind_hashbucket *head2; 293 struct inet_bind2_bucket *tb2; 294 kuid_t uid = sk_uid(sk); 295 bool conflict = false; 296 bool reuseport_cb_ok; 297 298 rcu_read_lock(); 299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 302 rcu_read_unlock(); 303 304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 305 306 spin_lock(&head2->lock); 307 308 inet_bind_bucket_for_each(tb2, &head2->chain) { 309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 310 continue; 311 312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok)) 313 continue; 314 315 conflict = true; 316 break; 317 } 318 319 spin_unlock(&head2->lock); 320 321 return conflict; 322 } 323 324 /* 325 * Find an open port number for the socket. Returns with the 326 * inet_bind_hashbucket locks held if successful. 327 */ 328 static struct inet_bind_hashbucket * 329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 330 struct inet_bind2_bucket **tb2_ret, 331 struct inet_bind_hashbucket **head2_ret, int *port_ret) 332 { 333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 334 int i, low, high, attempt_half, port, l3mdev; 335 struct inet_bind_hashbucket *head, *head2; 336 struct net *net = sock_net(sk); 337 struct inet_bind2_bucket *tb2; 338 struct inet_bind_bucket *tb; 339 u32 remaining, offset; 340 bool relax = false; 341 342 l3mdev = inet_sk_bound_l3mdev(sk); 343 ports_exhausted: 344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 345 other_half_scan: 346 inet_sk_get_local_port_range(sk, &low, &high); 347 high++; /* [32768, 60999] -> [32768, 61000[ */ 348 if (high - low < 4) 349 attempt_half = 0; 350 if (attempt_half) { 351 int half = low + (((high - low) >> 2) << 1); 352 353 if (attempt_half == 1) 354 high = half; 355 else 356 low = half; 357 } 358 remaining = high - low; 359 if (likely(remaining > 1)) 360 remaining &= ~1U; 361 362 offset = get_random_u32_below(remaining); 363 /* __inet_hash_connect() favors ports having @low parity 364 * We do the opposite to not pollute connect() users. 365 */ 366 offset |= 1U; 367 368 other_parity_scan: 369 port = low + offset; 370 for (i = 0; i < remaining; i += 2, port += 2) { 371 if (unlikely(port >= high)) 372 port -= remaining; 373 if (inet_is_local_reserved_port(net, port)) 374 continue; 375 head = &hinfo->bhash[inet_bhashfn(net, port, 376 hinfo->bhash_size)]; 377 spin_lock_bh(&head->lock); 378 if (inet_use_bhash2_on_bind(sk)) { 379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 380 goto next_port; 381 } 382 383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 384 spin_lock(&head2->lock); 385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 386 inet_bind_bucket_for_each(tb, &head->chain) 387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 388 if (!inet_csk_bind_conflict(sk, tb, tb2, 389 relax, false)) 390 goto success; 391 spin_unlock(&head2->lock); 392 goto next_port; 393 } 394 tb = NULL; 395 goto success; 396 next_port: 397 spin_unlock_bh(&head->lock); 398 cond_resched(); 399 } 400 401 offset--; 402 if (!(offset & 1)) 403 goto other_parity_scan; 404 405 if (attempt_half == 1) { 406 /* OK we now try the upper half of the range */ 407 attempt_half = 2; 408 goto other_half_scan; 409 } 410 411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 412 /* We still have a chance to connect to different destinations */ 413 relax = true; 414 goto ports_exhausted; 415 } 416 return NULL; 417 success: 418 *port_ret = port; 419 *tb_ret = tb; 420 *tb2_ret = tb2; 421 *head2_ret = head2; 422 return head; 423 } 424 425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 426 const struct sock *sk) 427 { 428 if (tb->fastreuseport <= 0) 429 return 0; 430 if (!sk->sk_reuseport) 431 return 0; 432 if (rcu_access_pointer(sk->sk_reuseport_cb)) 433 return 0; 434 if (!uid_eq(tb->fastuid, sk_uid(sk))) 435 return 0; 436 /* We only need to check the rcv_saddr if this tb was once marked 437 * without fastreuseport and then was reset, as we can only know that 438 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 439 * owners list. 440 */ 441 if (tb->fastreuseport == FASTREUSEPORT_ANY) 442 return 1; 443 #if IS_ENABLED(CONFIG_IPV6) 444 if (tb->fast_sk_family == AF_INET6) 445 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 446 inet6_rcv_saddr(sk), 447 tb->fast_rcv_saddr, 448 sk->sk_rcv_saddr, 449 tb->fast_ipv6_only, 450 ipv6_only_sock(sk), true, false); 451 #endif 452 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 453 ipv6_only_sock(sk), true, false); 454 } 455 456 void inet_csk_update_fastreuse(const struct sock *sk, 457 struct inet_bind_bucket *tb, 458 struct inet_bind2_bucket *tb2) 459 { 460 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 461 462 if (hlist_empty(&tb->bhash2)) { 463 tb->fastreuse = reuse; 464 if (sk->sk_reuseport) { 465 tb->fastreuseport = FASTREUSEPORT_ANY; 466 tb->fastuid = sk_uid(sk); 467 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 468 tb->fast_ipv6_only = ipv6_only_sock(sk); 469 tb->fast_sk_family = sk->sk_family; 470 #if IS_ENABLED(CONFIG_IPV6) 471 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 472 #endif 473 } else { 474 tb->fastreuseport = 0; 475 } 476 } else { 477 if (!reuse) 478 tb->fastreuse = 0; 479 if (sk->sk_reuseport) { 480 /* We didn't match or we don't have fastreuseport set on 481 * the tb, but we have sk_reuseport set on this socket 482 * and we know that there are no bind conflicts with 483 * this socket in this tb, so reset our tb's reuseport 484 * settings so that any subsequent sockets that match 485 * our current socket will be put on the fast path. 486 * 487 * If we reset we need to set FASTREUSEPORT_STRICT so we 488 * do extra checking for all subsequent sk_reuseport 489 * socks. 490 */ 491 if (!sk_reuseport_match(tb, sk)) { 492 tb->fastreuseport = FASTREUSEPORT_STRICT; 493 tb->fastuid = sk_uid(sk); 494 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 495 tb->fast_ipv6_only = ipv6_only_sock(sk); 496 tb->fast_sk_family = sk->sk_family; 497 #if IS_ENABLED(CONFIG_IPV6) 498 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 499 #endif 500 } 501 } else { 502 tb->fastreuseport = 0; 503 } 504 } 505 506 tb2->fastreuse = tb->fastreuse; 507 tb2->fastreuseport = tb->fastreuseport; 508 } 509 510 /* Obtain a reference to a local port for the given sock, 511 * if snum is zero it means select any available local port. 512 * We try to allocate an odd port (and leave even ports for connect()) 513 */ 514 int inet_csk_get_port(struct sock *sk, unsigned short snum) 515 { 516 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 517 bool found_port = false, check_bind_conflict = true; 518 bool bhash_created = false, bhash2_created = false; 519 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk); 520 int ret = -EADDRINUSE, port = snum, l3mdev; 521 struct inet_bind_hashbucket *head, *head2; 522 struct inet_bind2_bucket *tb2 = NULL; 523 struct inet_bind_bucket *tb = NULL; 524 bool head2_lock_acquired = false; 525 struct net *net = sock_net(sk); 526 527 l3mdev = inet_sk_bound_l3mdev(sk); 528 529 if (!port) { 530 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 531 if (!head) 532 return ret; 533 534 head2_lock_acquired = true; 535 536 if (tb && tb2) 537 goto success; 538 found_port = true; 539 } else { 540 head = &hinfo->bhash[inet_bhashfn(net, port, 541 hinfo->bhash_size)]; 542 spin_lock_bh(&head->lock); 543 inet_bind_bucket_for_each(tb, &head->chain) 544 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 545 break; 546 } 547 548 if (!tb) { 549 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 550 head, port, l3mdev); 551 if (!tb) 552 goto fail_unlock; 553 bhash_created = true; 554 } 555 556 if (!found_port) { 557 if (!hlist_empty(&tb->bhash2)) { 558 if (sk->sk_reuse == SK_FORCE_REUSE || 559 (tb->fastreuse > 0 && reuse) || 560 sk_reuseport_match(tb, sk)) 561 check_bind_conflict = false; 562 } 563 564 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 565 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 566 goto fail_unlock; 567 } 568 569 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 570 spin_lock(&head2->lock); 571 head2_lock_acquired = true; 572 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 573 } 574 575 if (!tb2) { 576 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 577 net, head2, tb, sk); 578 if (!tb2) 579 goto fail_unlock; 580 bhash2_created = true; 581 } 582 583 if (!found_port && check_bind_conflict) { 584 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 585 goto fail_unlock; 586 } 587 588 success: 589 inet_csk_update_fastreuse(sk, tb, tb2); 590 591 if (!inet_csk(sk)->icsk_bind_hash) 592 inet_bind_hash(sk, tb, tb2, port); 593 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 594 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 595 ret = 0; 596 597 fail_unlock: 598 if (ret) { 599 if (bhash2_created) 600 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2); 601 if (bhash_created) 602 inet_bind_bucket_destroy(tb); 603 } 604 if (head2_lock_acquired) 605 spin_unlock(&head2->lock); 606 spin_unlock_bh(&head->lock); 607 return ret; 608 } 609 EXPORT_SYMBOL_GPL(inet_csk_get_port); 610 611 /* 612 * Wait for an incoming connection, avoid race conditions. This must be called 613 * with the socket locked. 614 */ 615 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 616 { 617 struct inet_connection_sock *icsk = inet_csk(sk); 618 DEFINE_WAIT(wait); 619 int err; 620 621 /* 622 * True wake-one mechanism for incoming connections: only 623 * one process gets woken up, not the 'whole herd'. 624 * Since we do not 'race & poll' for established sockets 625 * anymore, the common case will execute the loop only once. 626 * 627 * Subtle issue: "add_wait_queue_exclusive()" will be added 628 * after any current non-exclusive waiters, and we know that 629 * it will always _stay_ after any new non-exclusive waiters 630 * because all non-exclusive waiters are added at the 631 * beginning of the wait-queue. As such, it's ok to "drop" 632 * our exclusiveness temporarily when we get woken up without 633 * having to remove and re-insert us on the wait queue. 634 */ 635 for (;;) { 636 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 637 TASK_INTERRUPTIBLE); 638 release_sock(sk); 639 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 640 timeo = schedule_timeout(timeo); 641 sched_annotate_sleep(); 642 lock_sock(sk); 643 err = 0; 644 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 645 break; 646 err = -EINVAL; 647 if (sk->sk_state != TCP_LISTEN) 648 break; 649 err = sock_intr_errno(timeo); 650 if (signal_pending(current)) 651 break; 652 err = -EAGAIN; 653 if (!timeo) 654 break; 655 } 656 finish_wait(sk_sleep(sk), &wait); 657 return err; 658 } 659 660 /* 661 * This will accept the next outstanding connection. 662 */ 663 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg) 664 { 665 struct inet_connection_sock *icsk = inet_csk(sk); 666 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 667 struct request_sock *req; 668 struct sock *newsk; 669 int error; 670 671 lock_sock(sk); 672 673 /* We need to make sure that this socket is listening, 674 * and that it has something pending. 675 */ 676 error = -EINVAL; 677 if (sk->sk_state != TCP_LISTEN) 678 goto out_err; 679 680 /* Find already established connection */ 681 if (reqsk_queue_empty(queue)) { 682 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 683 684 /* If this is a non blocking socket don't sleep */ 685 error = -EAGAIN; 686 if (!timeo) 687 goto out_err; 688 689 error = inet_csk_wait_for_connect(sk, timeo); 690 if (error) 691 goto out_err; 692 } 693 req = reqsk_queue_remove(queue, sk); 694 arg->is_empty = reqsk_queue_empty(queue); 695 newsk = req->sk; 696 697 if (sk->sk_protocol == IPPROTO_TCP && 698 tcp_rsk(req)->tfo_listener) { 699 spin_lock_bh(&queue->fastopenq.lock); 700 if (tcp_rsk(req)->tfo_listener) { 701 /* We are still waiting for the final ACK from 3WHS 702 * so can't free req now. Instead, we set req->sk to 703 * NULL to signify that the child socket is taken 704 * so reqsk_fastopen_remove() will free the req 705 * when 3WHS finishes (or is aborted). 706 */ 707 req->sk = NULL; 708 req = NULL; 709 } 710 spin_unlock_bh(&queue->fastopenq.lock); 711 } 712 713 release_sock(sk); 714 715 if (mem_cgroup_sockets_enabled) { 716 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 717 int amt = 0; 718 719 /* atomically get the memory usage, set and charge the 720 * newsk->sk_memcg. 721 */ 722 lock_sock(newsk); 723 724 mem_cgroup_sk_alloc(newsk); 725 if (mem_cgroup_from_sk(newsk)) { 726 /* The socket has not been accepted yet, no need 727 * to look at newsk->sk_wmem_queued. 728 */ 729 amt = sk_mem_pages(newsk->sk_forward_alloc + 730 atomic_read(&newsk->sk_rmem_alloc)); 731 } 732 733 if (amt) 734 mem_cgroup_sk_charge(newsk, amt, gfp); 735 kmem_cache_charge(newsk, gfp); 736 737 release_sock(newsk); 738 } 739 740 if (req) 741 reqsk_put(req); 742 743 inet_init_csk_locks(newsk); 744 return newsk; 745 746 out_err: 747 release_sock(sk); 748 arg->err = error; 749 return NULL; 750 } 751 EXPORT_SYMBOL(inet_csk_accept); 752 753 /* 754 * Using different timers for retransmit, delayed acks and probes 755 * We may wish use just one timer maintaining a list of expire jiffies 756 * to optimize. 757 */ 758 void inet_csk_init_xmit_timers(struct sock *sk, 759 void (*retransmit_handler)(struct timer_list *t), 760 void (*delack_handler)(struct timer_list *t), 761 void (*keepalive_handler)(struct timer_list *t)) 762 { 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 767 timer_setup(&sk->sk_timer, keepalive_handler, 0); 768 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 769 } 770 771 void inet_csk_clear_xmit_timers(struct sock *sk) 772 { 773 struct inet_connection_sock *icsk = inet_csk(sk); 774 775 smp_store_release(&icsk->icsk_pending, 0); 776 smp_store_release(&icsk->icsk_ack.pending, 0); 777 778 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 779 sk_stop_timer(sk, &icsk->icsk_delack_timer); 780 sk_stop_timer(sk, &sk->sk_timer); 781 } 782 783 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 784 { 785 struct inet_connection_sock *icsk = inet_csk(sk); 786 787 /* ongoing timer handlers need to acquire socket lock. */ 788 sock_not_owned_by_me(sk); 789 790 smp_store_release(&icsk->icsk_pending, 0); 791 smp_store_release(&icsk->icsk_ack.pending, 0); 792 793 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 794 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 795 sk_stop_timer_sync(sk, &sk->sk_timer); 796 } 797 798 struct dst_entry *inet_csk_route_req(const struct sock *sk, 799 struct flowi4 *fl4, 800 const struct request_sock *req) 801 { 802 const struct inet_request_sock *ireq = inet_rsk(req); 803 struct net *net = read_pnet(&ireq->ireq_net); 804 struct ip_options_rcu *opt; 805 struct rtable *rt; 806 807 rcu_read_lock(); 808 opt = rcu_dereference(ireq->ireq_opt); 809 810 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 811 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 812 sk->sk_protocol, inet_sk_flowi_flags(sk), 813 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 814 ireq->ir_loc_addr, ireq->ir_rmt_port, 815 htons(ireq->ir_num), sk_uid(sk)); 816 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 817 rt = ip_route_output_flow(net, fl4, sk); 818 if (IS_ERR(rt)) 819 goto no_route; 820 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 821 goto route_err; 822 rcu_read_unlock(); 823 return &rt->dst; 824 825 route_err: 826 ip_rt_put(rt); 827 no_route: 828 rcu_read_unlock(); 829 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 830 return NULL; 831 } 832 833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 834 struct sock *newsk, 835 const struct request_sock *req) 836 { 837 const struct inet_request_sock *ireq = inet_rsk(req); 838 struct net *net = read_pnet(&ireq->ireq_net); 839 struct inet_sock *newinet = inet_sk(newsk); 840 struct ip_options_rcu *opt; 841 struct flowi4 *fl4; 842 struct rtable *rt; 843 844 opt = rcu_dereference(ireq->ireq_opt); 845 fl4 = &newinet->cork.fl.u.ip4; 846 847 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 848 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 849 sk->sk_protocol, inet_sk_flowi_flags(sk), 850 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 851 ireq->ir_loc_addr, ireq->ir_rmt_port, 852 htons(ireq->ir_num), sk_uid(sk)); 853 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 854 rt = ip_route_output_flow(net, fl4, sk); 855 if (IS_ERR(rt)) 856 goto no_route; 857 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 858 goto route_err; 859 return &rt->dst; 860 861 route_err: 862 ip_rt_put(rt); 863 no_route: 864 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 865 return NULL; 866 } 867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 868 869 /* Decide when to expire the request and when to resend SYN-ACK */ 870 static void syn_ack_recalc(struct request_sock *req, 871 const int max_syn_ack_retries, 872 const u8 rskq_defer_accept, 873 int *expire, int *resend) 874 { 875 if (!rskq_defer_accept) { 876 *expire = req->num_timeout >= max_syn_ack_retries; 877 *resend = 1; 878 return; 879 } 880 *expire = req->num_timeout >= max_syn_ack_retries && 881 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 882 /* Do not resend while waiting for data after ACK, 883 * start to resend on end of deferring period to give 884 * last chance for data or ACK to create established socket. 885 */ 886 *resend = !inet_rsk(req)->acked || 887 req->num_timeout >= rskq_defer_accept - 1; 888 } 889 890 static struct request_sock * 891 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener, 892 bool attach_listener) 893 { 894 struct request_sock *req; 895 896 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN); 897 if (!req) 898 return NULL; 899 req->rsk_listener = NULL; 900 if (attach_listener) { 901 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { 902 kmem_cache_free(ops->slab, req); 903 return NULL; 904 } 905 req->rsk_listener = sk_listener; 906 } 907 req->rsk_ops = ops; 908 req_to_sk(req)->sk_prot = sk_listener->sk_prot; 909 sk_node_init(&req_to_sk(req)->sk_node); 910 sk_tx_queue_clear(req_to_sk(req)); 911 req->saved_syn = NULL; 912 req->syncookie = 0; 913 req->timeout = 0; 914 req->num_timeout = 0; 915 req->num_retrans = 0; 916 req->sk = NULL; 917 refcount_set(&req->rsk_refcnt, 0); 918 919 return req; 920 } 921 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__)) 922 923 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 924 struct sock *sk_listener, 925 bool attach_listener) 926 { 927 struct request_sock *req = reqsk_alloc(ops, sk_listener, 928 attach_listener); 929 930 if (req) { 931 struct inet_request_sock *ireq = inet_rsk(req); 932 933 ireq->ireq_opt = NULL; 934 #if IS_ENABLED(CONFIG_IPV6) 935 ireq->pktopts = NULL; 936 #endif 937 atomic64_set(&ireq->ir_cookie, 0); 938 ireq->ireq_state = TCP_NEW_SYN_RECV; 939 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 940 ireq->ireq_family = sk_listener->sk_family; 941 req->timeout = TCP_TIMEOUT_INIT; 942 } 943 944 return req; 945 } 946 EXPORT_SYMBOL(inet_reqsk_alloc); 947 948 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 949 struct sock *sk) 950 { 951 struct sock *req_sk, *nreq_sk; 952 struct request_sock *nreq; 953 954 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 955 if (!nreq) { 956 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 957 958 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 959 sock_put(sk); 960 return NULL; 961 } 962 963 req_sk = req_to_sk(req); 964 nreq_sk = req_to_sk(nreq); 965 966 memcpy(nreq_sk, req_sk, 967 offsetof(struct sock, sk_dontcopy_begin)); 968 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 969 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end), 970 /* alloc is larger than struct, see above */); 971 972 sk_node_init(&nreq_sk->sk_node); 973 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 974 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 975 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 976 #endif 977 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 978 979 nreq->rsk_listener = sk; 980 981 /* We need not acquire fastopenq->lock 982 * because the child socket is locked in inet_csk_listen_stop(). 983 */ 984 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 985 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 986 987 return nreq; 988 } 989 990 static void reqsk_queue_migrated(struct request_sock_queue *queue, 991 const struct request_sock *req) 992 { 993 if (req->num_timeout == 0) 994 atomic_inc(&queue->young); 995 atomic_inc(&queue->qlen); 996 } 997 998 static void reqsk_migrate_reset(struct request_sock *req) 999 { 1000 req->saved_syn = NULL; 1001 #if IS_ENABLED(CONFIG_IPV6) 1002 inet_rsk(req)->ipv6_opt = NULL; 1003 inet_rsk(req)->pktopts = NULL; 1004 #else 1005 inet_rsk(req)->ireq_opt = NULL; 1006 #endif 1007 } 1008 1009 /* return true if req was found in the ehash table */ 1010 static bool reqsk_queue_unlink(struct request_sock *req) 1011 { 1012 struct sock *sk = req_to_sk(req); 1013 bool found = false; 1014 1015 if (sk_hashed(sk)) { 1016 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk); 1017 spinlock_t *lock; 1018 1019 lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 1020 spin_lock(lock); 1021 found = __sk_nulls_del_node_init_rcu(sk); 1022 spin_unlock(lock); 1023 } 1024 1025 return found; 1026 } 1027 1028 static bool __inet_csk_reqsk_queue_drop(struct sock *sk, 1029 struct request_sock *req, 1030 bool from_timer) 1031 { 1032 bool unlinked = reqsk_queue_unlink(req); 1033 1034 if (!from_timer && timer_delete_sync(&req->rsk_timer)) 1035 reqsk_put(req); 1036 1037 if (unlinked) { 1038 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 1039 reqsk_put(req); 1040 } 1041 1042 return unlinked; 1043 } 1044 1045 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 1046 { 1047 return __inet_csk_reqsk_queue_drop(sk, req, false); 1048 } 1049 1050 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 1051 { 1052 inet_csk_reqsk_queue_drop(sk, req); 1053 reqsk_put(req); 1054 } 1055 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put); 1056 1057 static void reqsk_timer_handler(struct timer_list *t) 1058 { 1059 struct request_sock *req = timer_container_of(req, t, rsk_timer); 1060 struct request_sock *nreq = NULL, *oreq = req; 1061 struct sock *sk_listener = req->rsk_listener; 1062 struct inet_connection_sock *icsk; 1063 struct request_sock_queue *queue; 1064 struct net *net; 1065 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1066 1067 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1068 struct sock *nsk; 1069 1070 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1071 if (!nsk) 1072 goto drop; 1073 1074 nreq = inet_reqsk_clone(req, nsk); 1075 if (!nreq) 1076 goto drop; 1077 1078 /* The new timer for the cloned req can decrease the 2 1079 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1080 * hold another count to prevent use-after-free and 1081 * call reqsk_put() just before return. 1082 */ 1083 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1084 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1085 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1086 1087 req = nreq; 1088 sk_listener = nsk; 1089 } 1090 1091 icsk = inet_csk(sk_listener); 1092 net = sock_net(sk_listener); 1093 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1094 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1095 /* Normally all the openreqs are young and become mature 1096 * (i.e. converted to established socket) for first timeout. 1097 * If synack was not acknowledged for 1 second, it means 1098 * one of the following things: synack was lost, ack was lost, 1099 * rtt is high or nobody planned to ack (i.e. synflood). 1100 * When server is a bit loaded, queue is populated with old 1101 * open requests, reducing effective size of queue. 1102 * When server is well loaded, queue size reduces to zero 1103 * after several minutes of work. It is not synflood, 1104 * it is normal operation. The solution is pruning 1105 * too old entries overriding normal timeout, when 1106 * situation becomes dangerous. 1107 * 1108 * Essentially, we reserve half of room for young 1109 * embrions; and abort old ones without pity, if old 1110 * ones are about to clog our table. 1111 */ 1112 queue = &icsk->icsk_accept_queue; 1113 qlen = reqsk_queue_len(queue); 1114 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1115 int young = reqsk_queue_len_young(queue) << 1; 1116 1117 while (max_syn_ack_retries > 2) { 1118 if (qlen < young) 1119 break; 1120 max_syn_ack_retries--; 1121 young <<= 1; 1122 } 1123 } 1124 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1125 &expire, &resend); 1126 req->rsk_ops->syn_ack_timeout(req); 1127 if (!expire && 1128 (!resend || 1129 !tcp_rtx_synack(sk_listener, req) || 1130 inet_rsk(req)->acked)) { 1131 if (req->num_timeout++ == 0) 1132 atomic_dec(&queue->young); 1133 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1134 1135 if (!nreq) 1136 return; 1137 1138 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1139 /* delete timer */ 1140 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true); 1141 goto no_ownership; 1142 } 1143 1144 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1145 reqsk_migrate_reset(oreq); 1146 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1147 reqsk_put(oreq); 1148 1149 reqsk_put(nreq); 1150 return; 1151 } 1152 1153 /* Even if we can clone the req, we may need not retransmit any more 1154 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1155 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1156 */ 1157 if (nreq) { 1158 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1159 no_ownership: 1160 reqsk_migrate_reset(nreq); 1161 reqsk_queue_removed(queue, nreq); 1162 __reqsk_free(nreq); 1163 } 1164 1165 drop: 1166 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true); 1167 reqsk_put(oreq); 1168 } 1169 1170 static bool reqsk_queue_hash_req(struct request_sock *req, 1171 unsigned long timeout) 1172 { 1173 bool found_dup_sk = false; 1174 1175 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk)) 1176 return false; 1177 1178 /* The timer needs to be setup after a successful insertion. */ 1179 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1180 mod_timer(&req->rsk_timer, jiffies + timeout); 1181 1182 /* before letting lookups find us, make sure all req fields 1183 * are committed to memory and refcnt initialized. 1184 */ 1185 smp_wmb(); 1186 refcount_set(&req->rsk_refcnt, 2 + 1); 1187 return true; 1188 } 1189 1190 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1191 unsigned long timeout) 1192 { 1193 if (!reqsk_queue_hash_req(req, timeout)) 1194 return false; 1195 1196 inet_csk_reqsk_queue_added(sk); 1197 return true; 1198 } 1199 1200 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1201 const gfp_t priority) 1202 { 1203 struct inet_connection_sock *icsk = inet_csk(newsk); 1204 1205 if (!icsk->icsk_ulp_ops) 1206 return; 1207 1208 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1209 } 1210 1211 /** 1212 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1213 * @sk: the socket to clone 1214 * @req: request_sock 1215 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1216 * 1217 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1218 */ 1219 struct sock *inet_csk_clone_lock(const struct sock *sk, 1220 const struct request_sock *req, 1221 const gfp_t priority) 1222 { 1223 struct sock *newsk = sk_clone_lock(sk, priority); 1224 struct inet_connection_sock *newicsk; 1225 struct inet_request_sock *ireq; 1226 struct inet_sock *newinet; 1227 1228 if (!newsk) 1229 return NULL; 1230 1231 newicsk = inet_csk(newsk); 1232 newinet = inet_sk(newsk); 1233 ireq = inet_rsk(req); 1234 1235 newicsk->icsk_bind_hash = NULL; 1236 newicsk->icsk_bind2_hash = NULL; 1237 1238 newinet->inet_dport = ireq->ir_rmt_port; 1239 newinet->inet_num = ireq->ir_num; 1240 newinet->inet_sport = htons(ireq->ir_num); 1241 1242 newsk->sk_bound_dev_if = ireq->ir_iif; 1243 1244 newsk->sk_daddr = ireq->ir_rmt_addr; 1245 newsk->sk_rcv_saddr = ireq->ir_loc_addr; 1246 newinet->inet_saddr = ireq->ir_loc_addr; 1247 1248 #if IS_ENABLED(CONFIG_IPV6) 1249 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; 1250 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; 1251 #endif 1252 1253 /* listeners have SOCK_RCU_FREE, not the children */ 1254 sock_reset_flag(newsk, SOCK_RCU_FREE); 1255 1256 inet_sk(newsk)->mc_list = NULL; 1257 1258 newsk->sk_mark = inet_rsk(req)->ir_mark; 1259 atomic64_set(&newsk->sk_cookie, 1260 atomic64_read(&inet_rsk(req)->ir_cookie)); 1261 1262 newicsk->icsk_retransmits = 0; 1263 newicsk->icsk_backoff = 0; 1264 newicsk->icsk_probes_out = 0; 1265 newicsk->icsk_probes_tstamp = 0; 1266 1267 /* Deinitialize accept_queue to trap illegal accesses. */ 1268 memset(&newicsk->icsk_accept_queue, 0, 1269 sizeof(newicsk->icsk_accept_queue)); 1270 1271 inet_sk_set_state(newsk, TCP_SYN_RECV); 1272 1273 inet_clone_ulp(req, newsk, priority); 1274 1275 security_inet_csk_clone(newsk, req); 1276 1277 return newsk; 1278 } 1279 1280 /* 1281 * At this point, there should be no process reference to this 1282 * socket, and thus no user references at all. Therefore we 1283 * can assume the socket waitqueue is inactive and nobody will 1284 * try to jump onto it. 1285 */ 1286 void inet_csk_destroy_sock(struct sock *sk) 1287 { 1288 WARN_ON(sk->sk_state != TCP_CLOSE); 1289 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1290 1291 /* It cannot be in hash table! */ 1292 WARN_ON(!sk_unhashed(sk)); 1293 1294 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1295 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1296 1297 sk->sk_prot->destroy(sk); 1298 1299 sk_stream_kill_queues(sk); 1300 1301 xfrm_sk_free_policy(sk); 1302 1303 tcp_orphan_count_dec(); 1304 1305 sock_put(sk); 1306 } 1307 EXPORT_SYMBOL(inet_csk_destroy_sock); 1308 1309 void inet_csk_prepare_for_destroy_sock(struct sock *sk) 1310 { 1311 /* The below has to be done to allow calling inet_csk_destroy_sock */ 1312 sock_set_flag(sk, SOCK_DEAD); 1313 tcp_orphan_count_inc(); 1314 } 1315 1316 /* This function allows to force a closure of a socket after the call to 1317 * tcp_create_openreq_child(). 1318 */ 1319 void inet_csk_prepare_forced_close(struct sock *sk) 1320 __releases(&sk->sk_lock.slock) 1321 { 1322 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1323 bh_unlock_sock(sk); 1324 sock_put(sk); 1325 inet_csk_prepare_for_destroy_sock(sk); 1326 inet_sk(sk)->inet_num = 0; 1327 } 1328 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1329 1330 static int inet_ulp_can_listen(const struct sock *sk) 1331 { 1332 const struct inet_connection_sock *icsk = inet_csk(sk); 1333 1334 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1335 return -EINVAL; 1336 1337 return 0; 1338 } 1339 1340 int inet_csk_listen_start(struct sock *sk) 1341 { 1342 struct inet_connection_sock *icsk = inet_csk(sk); 1343 struct inet_sock *inet = inet_sk(sk); 1344 int err; 1345 1346 err = inet_ulp_can_listen(sk); 1347 if (unlikely(err)) 1348 return err; 1349 1350 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1351 1352 sk->sk_ack_backlog = 0; 1353 inet_csk_delack_init(sk); 1354 1355 /* There is race window here: we announce ourselves listening, 1356 * but this transition is still not validated by get_port(). 1357 * It is OK, because this socket enters to hash table only 1358 * after validation is complete. 1359 */ 1360 inet_sk_state_store(sk, TCP_LISTEN); 1361 err = sk->sk_prot->get_port(sk, inet->inet_num); 1362 if (!err) { 1363 inet->inet_sport = htons(inet->inet_num); 1364 1365 sk_dst_reset(sk); 1366 err = sk->sk_prot->hash(sk); 1367 1368 if (likely(!err)) 1369 return 0; 1370 } 1371 1372 inet_sk_set_state(sk, TCP_CLOSE); 1373 return err; 1374 } 1375 1376 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1377 struct sock *child) 1378 { 1379 sk->sk_prot->disconnect(child, O_NONBLOCK); 1380 1381 sock_orphan(child); 1382 1383 tcp_orphan_count_inc(); 1384 1385 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1386 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1387 BUG_ON(sk != req->rsk_listener); 1388 1389 /* Paranoid, to prevent race condition if 1390 * an inbound pkt destined for child is 1391 * blocked by sock lock in tcp_v4_rcv(). 1392 * Also to satisfy an assertion in 1393 * tcp_v4_destroy_sock(). 1394 */ 1395 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1396 } 1397 inet_csk_destroy_sock(child); 1398 } 1399 1400 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1401 struct request_sock *req, 1402 struct sock *child) 1403 { 1404 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1405 1406 spin_lock(&queue->rskq_lock); 1407 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1408 inet_child_forget(sk, req, child); 1409 child = NULL; 1410 } else { 1411 req->sk = child; 1412 req->dl_next = NULL; 1413 if (queue->rskq_accept_head == NULL) 1414 WRITE_ONCE(queue->rskq_accept_head, req); 1415 else 1416 queue->rskq_accept_tail->dl_next = req; 1417 queue->rskq_accept_tail = req; 1418 sk_acceptq_added(sk); 1419 } 1420 spin_unlock(&queue->rskq_lock); 1421 return child; 1422 } 1423 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1424 1425 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1426 struct request_sock *req, bool own_req) 1427 { 1428 if (own_req) { 1429 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1430 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1431 1432 if (sk != req->rsk_listener) { 1433 /* another listening sk has been selected, 1434 * migrate the req to it. 1435 */ 1436 struct request_sock *nreq; 1437 1438 /* hold a refcnt for the nreq->rsk_listener 1439 * which is assigned in inet_reqsk_clone() 1440 */ 1441 sock_hold(sk); 1442 nreq = inet_reqsk_clone(req, sk); 1443 if (!nreq) { 1444 inet_child_forget(sk, req, child); 1445 goto child_put; 1446 } 1447 1448 refcount_set(&nreq->rsk_refcnt, 1); 1449 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1450 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1451 reqsk_migrate_reset(req); 1452 reqsk_put(req); 1453 return child; 1454 } 1455 1456 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1457 reqsk_migrate_reset(nreq); 1458 __reqsk_free(nreq); 1459 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1460 return child; 1461 } 1462 } 1463 /* Too bad, another child took ownership of the request, undo. */ 1464 child_put: 1465 bh_unlock_sock(child); 1466 sock_put(child); 1467 return NULL; 1468 } 1469 1470 /* 1471 * This routine closes sockets which have been at least partially 1472 * opened, but not yet accepted. 1473 */ 1474 void inet_csk_listen_stop(struct sock *sk) 1475 { 1476 struct inet_connection_sock *icsk = inet_csk(sk); 1477 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1478 struct request_sock *next, *req; 1479 1480 /* Following specs, it would be better either to send FIN 1481 * (and enter FIN-WAIT-1, it is normal close) 1482 * or to send active reset (abort). 1483 * Certainly, it is pretty dangerous while synflood, but it is 1484 * bad justification for our negligence 8) 1485 * To be honest, we are not able to make either 1486 * of the variants now. --ANK 1487 */ 1488 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1489 struct sock *child = req->sk, *nsk; 1490 struct request_sock *nreq; 1491 1492 local_bh_disable(); 1493 bh_lock_sock(child); 1494 WARN_ON(sock_owned_by_user(child)); 1495 sock_hold(child); 1496 1497 nsk = reuseport_migrate_sock(sk, child, NULL); 1498 if (nsk) { 1499 nreq = inet_reqsk_clone(req, nsk); 1500 if (nreq) { 1501 refcount_set(&nreq->rsk_refcnt, 1); 1502 1503 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1504 __NET_INC_STATS(sock_net(nsk), 1505 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1506 reqsk_migrate_reset(req); 1507 } else { 1508 __NET_INC_STATS(sock_net(nsk), 1509 LINUX_MIB_TCPMIGRATEREQFAILURE); 1510 reqsk_migrate_reset(nreq); 1511 __reqsk_free(nreq); 1512 } 1513 1514 /* inet_csk_reqsk_queue_add() has already 1515 * called inet_child_forget() on failure case. 1516 */ 1517 goto skip_child_forget; 1518 } 1519 } 1520 1521 inet_child_forget(sk, req, child); 1522 skip_child_forget: 1523 reqsk_put(req); 1524 bh_unlock_sock(child); 1525 local_bh_enable(); 1526 sock_put(child); 1527 1528 cond_resched(); 1529 } 1530 if (queue->fastopenq.rskq_rst_head) { 1531 /* Free all the reqs queued in rskq_rst_head. */ 1532 spin_lock_bh(&queue->fastopenq.lock); 1533 req = queue->fastopenq.rskq_rst_head; 1534 queue->fastopenq.rskq_rst_head = NULL; 1535 spin_unlock_bh(&queue->fastopenq.lock); 1536 while (req != NULL) { 1537 next = req->dl_next; 1538 reqsk_put(req); 1539 req = next; 1540 } 1541 } 1542 WARN_ON_ONCE(sk->sk_ack_backlog); 1543 } 1544 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1545 1546 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1547 { 1548 const struct inet_sock *inet = inet_sk(sk); 1549 struct flowi4 *fl4; 1550 struct rtable *rt; 1551 1552 rcu_read_lock(); 1553 fl4 = &fl->u.ip4; 1554 inet_sk_init_flowi4(inet, fl4); 1555 rt = ip_route_output_flow(sock_net(sk), fl4, sk); 1556 if (IS_ERR(rt)) 1557 rt = NULL; 1558 if (rt) 1559 sk_setup_caps(sk, &rt->dst); 1560 rcu_read_unlock(); 1561 1562 return &rt->dst; 1563 } 1564 1565 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1566 { 1567 struct dst_entry *dst = __sk_dst_check(sk, 0); 1568 struct inet_sock *inet = inet_sk(sk); 1569 1570 if (!dst) { 1571 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1572 if (!dst) 1573 goto out; 1574 } 1575 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1576 1577 dst = __sk_dst_check(sk, 0); 1578 if (!dst) 1579 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1580 out: 1581 return dst; 1582 } 1583