1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
120 /**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 return false;
162
163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 return true;
165 }
166 #endif
167 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 kuid_t sk_uid, bool relax,
172 bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 int bound_dev_if2;
175
176 if (sk == sk2)
177 return false;
178
179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 sk->sk_bound_dev_if == bound_dev_if2) {
183 if (sk->sk_reuse && sk2->sk_reuse &&
184 sk2->sk_state != TCP_LISTEN) {
185 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 sk2->sk_reuseport && reuseport_cb_ok &&
187 (sk2->sk_state == TCP_TIME_WAIT ||
188 uid_eq(sk_uid, sock_i_uid(sk2)))))
189 return true;
190 } else if (!reuseport_ok || !sk->sk_reuseport ||
191 !sk2->sk_reuseport || !reuseport_cb_ok ||
192 (sk2->sk_state != TCP_TIME_WAIT &&
193 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
194 return true;
195 }
196 }
197 return false;
198 }
199
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 kuid_t sk_uid, bool relax,
202 bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 if (ipv6_only_sock(sk2)) {
205 if (sk->sk_family == AF_INET)
206 return false;
207
208 #if IS_ENABLED(CONFIG_IPV6)
209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 return false;
211 #endif
212 }
213
214 return inet_bind_conflict(sk, sk2, sk_uid, relax,
215 reuseport_cb_ok, reuseport_ok);
216 }
217
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 const struct inet_bind2_bucket *tb2,
220 kuid_t sk_uid,
221 bool relax, bool reuseport_cb_ok,
222 bool reuseport_ok)
223 {
224 struct sock *sk2;
225
226 sk_for_each_bound(sk2, &tb2->owners) {
227 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228 reuseport_cb_ok, reuseport_ok))
229 return true;
230 }
231
232 return false;
233 }
234
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237 sk_for_each_bound((__sk), &(__tb2)->owners)
238
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 const struct inet_bind_bucket *tb,
242 const struct inet_bind2_bucket *tb2, /* may be null */
243 bool relax, bool reuseport_ok)
244 {
245 kuid_t uid = sock_i_uid((struct sock *)sk);
246 struct sock_reuseport *reuseport_cb;
247 bool reuseport_cb_ok;
248 struct sock *sk2;
249
250 rcu_read_lock();
251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 rcu_read_unlock();
255
256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 * ipv4) should have been checked already. We need to do these two
258 * checks separately because their spinlocks have to be acquired/released
259 * independently of each other, to prevent possible deadlocks
260 */
261 if (inet_use_bhash2_on_bind(sk))
262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 reuseport_cb_ok, reuseport_ok);
264
265 /* Unlike other sk lookup places we do not check
266 * for sk_net here, since _all_ the socks listed
267 * in tb->owners and tb2->owners list belong
268 * to the same net - the one this bucket belongs to.
269 */
270 sk_for_each_bound_bhash(sk2, tb2, tb) {
271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 continue;
273
274 if (inet_rcv_saddr_equal(sk, sk2, true))
275 return true;
276 }
277
278 return false;
279 }
280
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282 * INADDR_ANY (if ipv4) socket.
283 *
284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285 * against concurrent binds on the port for addr any
286 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 bool relax, bool reuseport_ok)
289 {
290 kuid_t uid = sock_i_uid((struct sock *)sk);
291 const struct net *net = sock_net(sk);
292 struct sock_reuseport *reuseport_cb;
293 struct inet_bind_hashbucket *head2;
294 struct inet_bind2_bucket *tb2;
295 bool conflict = false;
296 bool reuseport_cb_ok;
297
298 rcu_read_lock();
299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 rcu_read_unlock();
303
304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306 spin_lock(&head2->lock);
307
308 inet_bind_bucket_for_each(tb2, &head2->chain) {
309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 continue;
311
312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313 continue;
314
315 conflict = true;
316 break;
317 }
318
319 spin_unlock(&head2->lock);
320
321 return conflict;
322 }
323
324 /*
325 * Find an open port number for the socket. Returns with the
326 * inet_bind_hashbucket locks held if successful.
327 */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 struct inet_bind2_bucket **tb2_ret,
331 struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
334 int i, low, high, attempt_half, port, l3mdev;
335 struct inet_bind_hashbucket *head, *head2;
336 struct net *net = sock_net(sk);
337 struct inet_bind2_bucket *tb2;
338 struct inet_bind_bucket *tb;
339 u32 remaining, offset;
340 bool relax = false;
341
342 l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 inet_sk_get_local_port_range(sk, &low, &high);
347 high++; /* [32768, 60999] -> [32768, 61000[ */
348 if (high - low < 4)
349 attempt_half = 0;
350 if (attempt_half) {
351 int half = low + (((high - low) >> 2) << 1);
352
353 if (attempt_half == 1)
354 high = half;
355 else
356 low = half;
357 }
358 remaining = high - low;
359 if (likely(remaining > 1))
360 remaining &= ~1U;
361
362 offset = get_random_u32_below(remaining);
363 /* __inet_hash_connect() favors ports having @low parity
364 * We do the opposite to not pollute connect() users.
365 */
366 offset |= 1U;
367
368 other_parity_scan:
369 port = low + offset;
370 for (i = 0; i < remaining; i += 2, port += 2) {
371 if (unlikely(port >= high))
372 port -= remaining;
373 if (inet_is_local_reserved_port(net, port))
374 continue;
375 head = &hinfo->bhash[inet_bhashfn(net, port,
376 hinfo->bhash_size)];
377 spin_lock_bh(&head->lock);
378 if (inet_use_bhash2_on_bind(sk)) {
379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 goto next_port;
381 }
382
383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 spin_lock(&head2->lock);
385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 inet_bind_bucket_for_each(tb, &head->chain)
387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 if (!inet_csk_bind_conflict(sk, tb, tb2,
389 relax, false))
390 goto success;
391 spin_unlock(&head2->lock);
392 goto next_port;
393 }
394 tb = NULL;
395 goto success;
396 next_port:
397 spin_unlock_bh(&head->lock);
398 cond_resched();
399 }
400
401 offset--;
402 if (!(offset & 1))
403 goto other_parity_scan;
404
405 if (attempt_half == 1) {
406 /* OK we now try the upper half of the range */
407 attempt_half = 2;
408 goto other_half_scan;
409 }
410
411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 /* We still have a chance to connect to different destinations */
413 relax = true;
414 goto ports_exhausted;
415 }
416 return NULL;
417 success:
418 *port_ret = port;
419 *tb_ret = tb;
420 *tb2_ret = tb2;
421 *head2_ret = head2;
422 return head;
423 }
424
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 struct sock *sk)
427 {
428 kuid_t uid = sock_i_uid(sk);
429
430 if (tb->fastreuseport <= 0)
431 return 0;
432 if (!sk->sk_reuseport)
433 return 0;
434 if (rcu_access_pointer(sk->sk_reuseport_cb))
435 return 0;
436 if (!uid_eq(tb->fastuid, uid))
437 return 0;
438 /* We only need to check the rcv_saddr if this tb was once marked
439 * without fastreuseport and then was reset, as we can only know that
440 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
441 * owners list.
442 */
443 if (tb->fastreuseport == FASTREUSEPORT_ANY)
444 return 1;
445 #if IS_ENABLED(CONFIG_IPV6)
446 if (tb->fast_sk_family == AF_INET6)
447 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
448 inet6_rcv_saddr(sk),
449 tb->fast_rcv_saddr,
450 sk->sk_rcv_saddr,
451 tb->fast_ipv6_only,
452 ipv6_only_sock(sk), true, false);
453 #endif
454 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455 ipv6_only_sock(sk), true, false);
456 }
457
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
459 struct sock *sk)
460 {
461 kuid_t uid = sock_i_uid(sk);
462 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
463
464 if (hlist_empty(&tb->bhash2)) {
465 tb->fastreuse = reuse;
466 if (sk->sk_reuseport) {
467 tb->fastreuseport = FASTREUSEPORT_ANY;
468 tb->fastuid = uid;
469 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 tb->fast_ipv6_only = ipv6_only_sock(sk);
471 tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475 } else {
476 tb->fastreuseport = 0;
477 }
478 } else {
479 if (!reuse)
480 tb->fastreuse = 0;
481 if (sk->sk_reuseport) {
482 /* We didn't match or we don't have fastreuseport set on
483 * the tb, but we have sk_reuseport set on this socket
484 * and we know that there are no bind conflicts with
485 * this socket in this tb, so reset our tb's reuseport
486 * settings so that any subsequent sockets that match
487 * our current socket will be put on the fast path.
488 *
489 * If we reset we need to set FASTREUSEPORT_STRICT so we
490 * do extra checking for all subsequent sk_reuseport
491 * socks.
492 */
493 if (!sk_reuseport_match(tb, sk)) {
494 tb->fastreuseport = FASTREUSEPORT_STRICT;
495 tb->fastuid = uid;
496 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497 tb->fast_ipv6_only = ipv6_only_sock(sk);
498 tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
501 #endif
502 }
503 } else {
504 tb->fastreuseport = 0;
505 }
506 }
507 }
508
509 /* Obtain a reference to a local port for the given sock,
510 * if snum is zero it means select any available local port.
511 * We try to allocate an odd port (and leave even ports for connect())
512 */
inet_csk_get_port(struct sock * sk,unsigned short snum)513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
514 {
515 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
516 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
517 bool found_port = false, check_bind_conflict = true;
518 bool bhash_created = false, bhash2_created = false;
519 int ret = -EADDRINUSE, port = snum, l3mdev;
520 struct inet_bind_hashbucket *head, *head2;
521 struct inet_bind2_bucket *tb2 = NULL;
522 struct inet_bind_bucket *tb = NULL;
523 bool head2_lock_acquired = false;
524 struct net *net = sock_net(sk);
525
526 l3mdev = inet_sk_bound_l3mdev(sk);
527
528 if (!port) {
529 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
530 if (!head)
531 return ret;
532
533 head2_lock_acquired = true;
534
535 if (tb && tb2)
536 goto success;
537 found_port = true;
538 } else {
539 head = &hinfo->bhash[inet_bhashfn(net, port,
540 hinfo->bhash_size)];
541 spin_lock_bh(&head->lock);
542 inet_bind_bucket_for_each(tb, &head->chain)
543 if (inet_bind_bucket_match(tb, net, port, l3mdev))
544 break;
545 }
546
547 if (!tb) {
548 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
549 head, port, l3mdev);
550 if (!tb)
551 goto fail_unlock;
552 bhash_created = true;
553 }
554
555 if (!found_port) {
556 if (!hlist_empty(&tb->bhash2)) {
557 if (sk->sk_reuse == SK_FORCE_REUSE ||
558 (tb->fastreuse > 0 && reuse) ||
559 sk_reuseport_match(tb, sk))
560 check_bind_conflict = false;
561 }
562
563 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
565 goto fail_unlock;
566 }
567
568 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569 spin_lock(&head2->lock);
570 head2_lock_acquired = true;
571 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
572 }
573
574 if (!tb2) {
575 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
576 net, head2, tb, sk);
577 if (!tb2)
578 goto fail_unlock;
579 bhash2_created = true;
580 }
581
582 if (!found_port && check_bind_conflict) {
583 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
584 goto fail_unlock;
585 }
586
587 success:
588 inet_csk_update_fastreuse(tb, sk);
589
590 if (!inet_csk(sk)->icsk_bind_hash)
591 inet_bind_hash(sk, tb, tb2, port);
592 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
594 ret = 0;
595
596 fail_unlock:
597 if (ret) {
598 if (bhash2_created)
599 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
600 if (bhash_created)
601 inet_bind_bucket_destroy(tb);
602 }
603 if (head2_lock_acquired)
604 spin_unlock(&head2->lock);
605 spin_unlock_bh(&head->lock);
606 return ret;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
609
610 /*
611 * Wait for an incoming connection, avoid race conditions. This must be called
612 * with the socket locked.
613 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
615 {
616 struct inet_connection_sock *icsk = inet_csk(sk);
617 DEFINE_WAIT(wait);
618 int err;
619
620 /*
621 * True wake-one mechanism for incoming connections: only
622 * one process gets woken up, not the 'whole herd'.
623 * Since we do not 'race & poll' for established sockets
624 * anymore, the common case will execute the loop only once.
625 *
626 * Subtle issue: "add_wait_queue_exclusive()" will be added
627 * after any current non-exclusive waiters, and we know that
628 * it will always _stay_ after any new non-exclusive waiters
629 * because all non-exclusive waiters are added at the
630 * beginning of the wait-queue. As such, it's ok to "drop"
631 * our exclusiveness temporarily when we get woken up without
632 * having to remove and re-insert us on the wait queue.
633 */
634 for (;;) {
635 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
636 TASK_INTERRUPTIBLE);
637 release_sock(sk);
638 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639 timeo = schedule_timeout(timeo);
640 sched_annotate_sleep();
641 lock_sock(sk);
642 err = 0;
643 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
644 break;
645 err = -EINVAL;
646 if (sk->sk_state != TCP_LISTEN)
647 break;
648 err = sock_intr_errno(timeo);
649 if (signal_pending(current))
650 break;
651 err = -EAGAIN;
652 if (!timeo)
653 break;
654 }
655 finish_wait(sk_sleep(sk), &wait);
656 return err;
657 }
658
659 /*
660 * This will accept the next outstanding connection.
661 */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
663 {
664 struct inet_connection_sock *icsk = inet_csk(sk);
665 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666 struct request_sock *req;
667 struct sock *newsk;
668 int error;
669
670 lock_sock(sk);
671
672 /* We need to make sure that this socket is listening,
673 * and that it has something pending.
674 */
675 error = -EINVAL;
676 if (sk->sk_state != TCP_LISTEN)
677 goto out_err;
678
679 /* Find already established connection */
680 if (reqsk_queue_empty(queue)) {
681 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
682
683 /* If this is a non blocking socket don't sleep */
684 error = -EAGAIN;
685 if (!timeo)
686 goto out_err;
687
688 error = inet_csk_wait_for_connect(sk, timeo);
689 if (error)
690 goto out_err;
691 }
692 req = reqsk_queue_remove(queue, sk);
693 arg->is_empty = reqsk_queue_empty(queue);
694 newsk = req->sk;
695
696 if (sk->sk_protocol == IPPROTO_TCP &&
697 tcp_rsk(req)->tfo_listener) {
698 spin_lock_bh(&queue->fastopenq.lock);
699 if (tcp_rsk(req)->tfo_listener) {
700 /* We are still waiting for the final ACK from 3WHS
701 * so can't free req now. Instead, we set req->sk to
702 * NULL to signify that the child socket is taken
703 * so reqsk_fastopen_remove() will free the req
704 * when 3WHS finishes (or is aborted).
705 */
706 req->sk = NULL;
707 req = NULL;
708 }
709 spin_unlock_bh(&queue->fastopenq.lock);
710 }
711
712 out:
713 release_sock(sk);
714 if (newsk && mem_cgroup_sockets_enabled) {
715 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
716 int amt = 0;
717
718 /* atomically get the memory usage, set and charge the
719 * newsk->sk_memcg.
720 */
721 lock_sock(newsk);
722
723 mem_cgroup_sk_alloc(newsk);
724 if (newsk->sk_memcg) {
725 /* The socket has not been accepted yet, no need
726 * to look at newsk->sk_wmem_queued.
727 */
728 amt = sk_mem_pages(newsk->sk_forward_alloc +
729 atomic_read(&newsk->sk_rmem_alloc));
730 }
731
732 if (amt)
733 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734 kmem_cache_charge(newsk, gfp);
735
736 release_sock(newsk);
737 }
738 if (req)
739 reqsk_put(req);
740
741 if (newsk)
742 inet_init_csk_locks(newsk);
743
744 return newsk;
745 out_err:
746 newsk = NULL;
747 req = NULL;
748 arg->err = error;
749 goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752
753 /*
754 * Using different timers for retransmit, delayed acks and probes
755 * We may wish use just one timer maintaining a list of expire jiffies
756 * to optimize.
757 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))758 void inet_csk_init_xmit_timers(struct sock *sk,
759 void (*retransmit_handler)(struct timer_list *t),
760 void (*delack_handler)(struct timer_list *t),
761 void (*keepalive_handler)(struct timer_list *t))
762 {
763 struct inet_connection_sock *icsk = inet_csk(sk);
764
765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767 timer_setup(&sk->sk_timer, keepalive_handler, 0);
768 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
771
inet_csk_clear_xmit_timers(struct sock * sk)772 void inet_csk_clear_xmit_timers(struct sock *sk)
773 {
774 struct inet_connection_sock *icsk = inet_csk(sk);
775
776 smp_store_release(&icsk->icsk_pending, 0);
777 smp_store_release(&icsk->icsk_ack.pending, 0);
778
779 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
780 sk_stop_timer(sk, &icsk->icsk_delack_timer);
781 sk_stop_timer(sk, &sk->sk_timer);
782 }
783 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
784
inet_csk_clear_xmit_timers_sync(struct sock * sk)785 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
786 {
787 struct inet_connection_sock *icsk = inet_csk(sk);
788
789 /* ongoing timer handlers need to acquire socket lock. */
790 sock_not_owned_by_me(sk);
791
792 smp_store_release(&icsk->icsk_pending, 0);
793 smp_store_release(&icsk->icsk_ack.pending, 0);
794
795 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
796 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
797 sk_stop_timer_sync(sk, &sk->sk_timer);
798 }
799
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)800 struct dst_entry *inet_csk_route_req(const struct sock *sk,
801 struct flowi4 *fl4,
802 const struct request_sock *req)
803 {
804 const struct inet_request_sock *ireq = inet_rsk(req);
805 struct net *net = read_pnet(&ireq->ireq_net);
806 struct ip_options_rcu *opt;
807 struct rtable *rt;
808
809 rcu_read_lock();
810 opt = rcu_dereference(ireq->ireq_opt);
811
812 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
813 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
814 sk->sk_protocol, inet_sk_flowi_flags(sk),
815 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
816 ireq->ir_loc_addr, ireq->ir_rmt_port,
817 htons(ireq->ir_num), sk->sk_uid);
818 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
819 rt = ip_route_output_flow(net, fl4, sk);
820 if (IS_ERR(rt))
821 goto no_route;
822 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
823 goto route_err;
824 rcu_read_unlock();
825 return &rt->dst;
826
827 route_err:
828 ip_rt_put(rt);
829 no_route:
830 rcu_read_unlock();
831 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
832 return NULL;
833 }
834 EXPORT_SYMBOL_GPL(inet_csk_route_req);
835
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)836 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
837 struct sock *newsk,
838 const struct request_sock *req)
839 {
840 const struct inet_request_sock *ireq = inet_rsk(req);
841 struct net *net = read_pnet(&ireq->ireq_net);
842 struct inet_sock *newinet = inet_sk(newsk);
843 struct ip_options_rcu *opt;
844 struct flowi4 *fl4;
845 struct rtable *rt;
846
847 opt = rcu_dereference(ireq->ireq_opt);
848 fl4 = &newinet->cork.fl.u.ip4;
849
850 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
851 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
852 sk->sk_protocol, inet_sk_flowi_flags(sk),
853 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
854 ireq->ir_loc_addr, ireq->ir_rmt_port,
855 htons(ireq->ir_num), sk->sk_uid);
856 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
857 rt = ip_route_output_flow(net, fl4, sk);
858 if (IS_ERR(rt))
859 goto no_route;
860 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
861 goto route_err;
862 return &rt->dst;
863
864 route_err:
865 ip_rt_put(rt);
866 no_route:
867 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
868 return NULL;
869 }
870 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
871
872 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)873 static void syn_ack_recalc(struct request_sock *req,
874 const int max_syn_ack_retries,
875 const u8 rskq_defer_accept,
876 int *expire, int *resend)
877 {
878 if (!rskq_defer_accept) {
879 *expire = req->num_timeout >= max_syn_ack_retries;
880 *resend = 1;
881 return;
882 }
883 *expire = req->num_timeout >= max_syn_ack_retries &&
884 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
885 /* Do not resend while waiting for data after ACK,
886 * start to resend on end of deferring period to give
887 * last chance for data or ACK to create established socket.
888 */
889 *resend = !inet_rsk(req)->acked ||
890 req->num_timeout >= rskq_defer_accept - 1;
891 }
892
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)893 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
894 {
895 int err = req->rsk_ops->rtx_syn_ack(parent, req);
896
897 if (!err)
898 req->num_retrans++;
899 return err;
900 }
901 EXPORT_SYMBOL(inet_rtx_syn_ack);
902
903 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)904 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
905 bool attach_listener)
906 {
907 struct request_sock *req;
908
909 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
910 if (!req)
911 return NULL;
912 req->rsk_listener = NULL;
913 if (attach_listener) {
914 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
915 kmem_cache_free(ops->slab, req);
916 return NULL;
917 }
918 req->rsk_listener = sk_listener;
919 }
920 req->rsk_ops = ops;
921 req_to_sk(req)->sk_prot = sk_listener->sk_prot;
922 sk_node_init(&req_to_sk(req)->sk_node);
923 sk_tx_queue_clear(req_to_sk(req));
924 req->saved_syn = NULL;
925 req->syncookie = 0;
926 req->timeout = 0;
927 req->num_timeout = 0;
928 req->num_retrans = 0;
929 req->sk = NULL;
930 refcount_set(&req->rsk_refcnt, 0);
931
932 return req;
933 }
934 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
935
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)936 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
937 struct sock *sk_listener,
938 bool attach_listener)
939 {
940 struct request_sock *req = reqsk_alloc(ops, sk_listener,
941 attach_listener);
942
943 if (req) {
944 struct inet_request_sock *ireq = inet_rsk(req);
945
946 ireq->ireq_opt = NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948 ireq->pktopts = NULL;
949 #endif
950 atomic64_set(&ireq->ir_cookie, 0);
951 ireq->ireq_state = TCP_NEW_SYN_RECV;
952 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
953 ireq->ireq_family = sk_listener->sk_family;
954 req->timeout = TCP_TIMEOUT_INIT;
955 }
956
957 return req;
958 }
959 EXPORT_SYMBOL(inet_reqsk_alloc);
960
inet_reqsk_clone(struct request_sock * req,struct sock * sk)961 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
962 struct sock *sk)
963 {
964 struct sock *req_sk, *nreq_sk;
965 struct request_sock *nreq;
966
967 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
968 if (!nreq) {
969 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
970
971 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
972 sock_put(sk);
973 return NULL;
974 }
975
976 req_sk = req_to_sk(req);
977 nreq_sk = req_to_sk(nreq);
978
979 memcpy(nreq_sk, req_sk,
980 offsetof(struct sock, sk_dontcopy_begin));
981 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
982 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
983 /* alloc is larger than struct, see above */);
984
985 sk_node_init(&nreq_sk->sk_node);
986 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
988 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
989 #endif
990 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
991
992 nreq->rsk_listener = sk;
993
994 /* We need not acquire fastopenq->lock
995 * because the child socket is locked in inet_csk_listen_stop().
996 */
997 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
998 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
999
1000 return nreq;
1001 }
1002
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)1003 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1004 const struct request_sock *req)
1005 {
1006 if (req->num_timeout == 0)
1007 atomic_inc(&queue->young);
1008 atomic_inc(&queue->qlen);
1009 }
1010
reqsk_migrate_reset(struct request_sock * req)1011 static void reqsk_migrate_reset(struct request_sock *req)
1012 {
1013 req->saved_syn = NULL;
1014 #if IS_ENABLED(CONFIG_IPV6)
1015 inet_rsk(req)->ipv6_opt = NULL;
1016 inet_rsk(req)->pktopts = NULL;
1017 #else
1018 inet_rsk(req)->ireq_opt = NULL;
1019 #endif
1020 }
1021
1022 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1023 static bool reqsk_queue_unlink(struct request_sock *req)
1024 {
1025 struct sock *sk = req_to_sk(req);
1026 bool found = false;
1027
1028 if (sk_hashed(sk)) {
1029 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
1030 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1031
1032 spin_lock(lock);
1033 found = __sk_nulls_del_node_init_rcu(sk);
1034 spin_unlock(lock);
1035 }
1036
1037 return found;
1038 }
1039
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1040 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1041 struct request_sock *req,
1042 bool from_timer)
1043 {
1044 bool unlinked = reqsk_queue_unlink(req);
1045
1046 if (!from_timer && timer_delete_sync(&req->rsk_timer))
1047 reqsk_put(req);
1048
1049 if (unlinked) {
1050 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1051 reqsk_put(req);
1052 }
1053
1054 return unlinked;
1055 }
1056
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1057 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1058 {
1059 return __inet_csk_reqsk_queue_drop(sk, req, false);
1060 }
1061 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1062
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1063 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1064 {
1065 inet_csk_reqsk_queue_drop(sk, req);
1066 reqsk_put(req);
1067 }
1068 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1069
reqsk_timer_handler(struct timer_list * t)1070 static void reqsk_timer_handler(struct timer_list *t)
1071 {
1072 struct request_sock *req = from_timer(req, t, rsk_timer);
1073 struct request_sock *nreq = NULL, *oreq = req;
1074 struct sock *sk_listener = req->rsk_listener;
1075 struct inet_connection_sock *icsk;
1076 struct request_sock_queue *queue;
1077 struct net *net;
1078 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1079
1080 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1081 struct sock *nsk;
1082
1083 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1084 if (!nsk)
1085 goto drop;
1086
1087 nreq = inet_reqsk_clone(req, nsk);
1088 if (!nreq)
1089 goto drop;
1090
1091 /* The new timer for the cloned req can decrease the 2
1092 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1093 * hold another count to prevent use-after-free and
1094 * call reqsk_put() just before return.
1095 */
1096 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1097 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1098 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1099
1100 req = nreq;
1101 sk_listener = nsk;
1102 }
1103
1104 icsk = inet_csk(sk_listener);
1105 net = sock_net(sk_listener);
1106 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1107 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1108 /* Normally all the openreqs are young and become mature
1109 * (i.e. converted to established socket) for first timeout.
1110 * If synack was not acknowledged for 1 second, it means
1111 * one of the following things: synack was lost, ack was lost,
1112 * rtt is high or nobody planned to ack (i.e. synflood).
1113 * When server is a bit loaded, queue is populated with old
1114 * open requests, reducing effective size of queue.
1115 * When server is well loaded, queue size reduces to zero
1116 * after several minutes of work. It is not synflood,
1117 * it is normal operation. The solution is pruning
1118 * too old entries overriding normal timeout, when
1119 * situation becomes dangerous.
1120 *
1121 * Essentially, we reserve half of room for young
1122 * embrions; and abort old ones without pity, if old
1123 * ones are about to clog our table.
1124 */
1125 queue = &icsk->icsk_accept_queue;
1126 qlen = reqsk_queue_len(queue);
1127 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1128 int young = reqsk_queue_len_young(queue) << 1;
1129
1130 while (max_syn_ack_retries > 2) {
1131 if (qlen < young)
1132 break;
1133 max_syn_ack_retries--;
1134 young <<= 1;
1135 }
1136 }
1137 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1138 &expire, &resend);
1139 req->rsk_ops->syn_ack_timeout(req);
1140 if (!expire &&
1141 (!resend ||
1142 !inet_rtx_syn_ack(sk_listener, req) ||
1143 inet_rsk(req)->acked)) {
1144 if (req->num_timeout++ == 0)
1145 atomic_dec(&queue->young);
1146 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1147
1148 if (!nreq)
1149 return;
1150
1151 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1152 /* delete timer */
1153 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1154 goto no_ownership;
1155 }
1156
1157 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1158 reqsk_migrate_reset(oreq);
1159 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1160 reqsk_put(oreq);
1161
1162 reqsk_put(nreq);
1163 return;
1164 }
1165
1166 /* Even if we can clone the req, we may need not retransmit any more
1167 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1168 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1169 */
1170 if (nreq) {
1171 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1172 no_ownership:
1173 reqsk_migrate_reset(nreq);
1174 reqsk_queue_removed(queue, nreq);
1175 __reqsk_free(nreq);
1176 }
1177
1178 drop:
1179 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1180 reqsk_put(oreq);
1181 }
1182
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1183 static bool reqsk_queue_hash_req(struct request_sock *req,
1184 unsigned long timeout)
1185 {
1186 bool found_dup_sk = false;
1187
1188 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1189 return false;
1190
1191 /* The timer needs to be setup after a successful insertion. */
1192 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1193 mod_timer(&req->rsk_timer, jiffies + timeout);
1194
1195 /* before letting lookups find us, make sure all req fields
1196 * are committed to memory and refcnt initialized.
1197 */
1198 smp_wmb();
1199 refcount_set(&req->rsk_refcnt, 2 + 1);
1200 return true;
1201 }
1202
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1203 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1204 unsigned long timeout)
1205 {
1206 if (!reqsk_queue_hash_req(req, timeout))
1207 return false;
1208
1209 inet_csk_reqsk_queue_added(sk);
1210 return true;
1211 }
1212 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1213
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1214 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1215 const gfp_t priority)
1216 {
1217 struct inet_connection_sock *icsk = inet_csk(newsk);
1218
1219 if (!icsk->icsk_ulp_ops)
1220 return;
1221
1222 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1223 }
1224
1225 /**
1226 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1227 * @sk: the socket to clone
1228 * @req: request_sock
1229 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1230 *
1231 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1232 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1233 struct sock *inet_csk_clone_lock(const struct sock *sk,
1234 const struct request_sock *req,
1235 const gfp_t priority)
1236 {
1237 struct sock *newsk = sk_clone_lock(sk, priority);
1238 struct inet_connection_sock *newicsk;
1239 struct inet_request_sock *ireq;
1240 struct inet_sock *newinet;
1241
1242 if (!newsk)
1243 return NULL;
1244
1245 newicsk = inet_csk(newsk);
1246 newinet = inet_sk(newsk);
1247 ireq = inet_rsk(req);
1248
1249 newicsk->icsk_bind_hash = NULL;
1250 newicsk->icsk_bind2_hash = NULL;
1251
1252 newinet->inet_dport = ireq->ir_rmt_port;
1253 newinet->inet_num = ireq->ir_num;
1254 newinet->inet_sport = htons(ireq->ir_num);
1255
1256 newsk->sk_bound_dev_if = ireq->ir_iif;
1257
1258 newsk->sk_daddr = ireq->ir_rmt_addr;
1259 newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1260 newinet->inet_saddr = ireq->ir_loc_addr;
1261
1262 #if IS_ENABLED(CONFIG_IPV6)
1263 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1264 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1265 #endif
1266
1267 /* listeners have SOCK_RCU_FREE, not the children */
1268 sock_reset_flag(newsk, SOCK_RCU_FREE);
1269
1270 inet_sk(newsk)->mc_list = NULL;
1271
1272 newsk->sk_mark = inet_rsk(req)->ir_mark;
1273 atomic64_set(&newsk->sk_cookie,
1274 atomic64_read(&inet_rsk(req)->ir_cookie));
1275
1276 newicsk->icsk_retransmits = 0;
1277 newicsk->icsk_backoff = 0;
1278 newicsk->icsk_probes_out = 0;
1279 newicsk->icsk_probes_tstamp = 0;
1280
1281 /* Deinitialize accept_queue to trap illegal accesses. */
1282 memset(&newicsk->icsk_accept_queue, 0,
1283 sizeof(newicsk->icsk_accept_queue));
1284
1285 inet_sk_set_state(newsk, TCP_SYN_RECV);
1286
1287 inet_clone_ulp(req, newsk, priority);
1288
1289 security_inet_csk_clone(newsk, req);
1290
1291 return newsk;
1292 }
1293 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1294
1295 /*
1296 * At this point, there should be no process reference to this
1297 * socket, and thus no user references at all. Therefore we
1298 * can assume the socket waitqueue is inactive and nobody will
1299 * try to jump onto it.
1300 */
inet_csk_destroy_sock(struct sock * sk)1301 void inet_csk_destroy_sock(struct sock *sk)
1302 {
1303 WARN_ON(sk->sk_state != TCP_CLOSE);
1304 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1305
1306 /* It cannot be in hash table! */
1307 WARN_ON(!sk_unhashed(sk));
1308
1309 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1310 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1311
1312 sk->sk_prot->destroy(sk);
1313
1314 sk_stream_kill_queues(sk);
1315
1316 xfrm_sk_free_policy(sk);
1317
1318 this_cpu_dec(*sk->sk_prot->orphan_count);
1319
1320 sock_put(sk);
1321 }
1322 EXPORT_SYMBOL(inet_csk_destroy_sock);
1323
1324 /* This function allows to force a closure of a socket after the call to
1325 * tcp/dccp_create_openreq_child().
1326 */
inet_csk_prepare_forced_close(struct sock * sk)1327 void inet_csk_prepare_forced_close(struct sock *sk)
1328 __releases(&sk->sk_lock.slock)
1329 {
1330 /* sk_clone_lock locked the socket and set refcnt to 2 */
1331 bh_unlock_sock(sk);
1332 sock_put(sk);
1333 inet_csk_prepare_for_destroy_sock(sk);
1334 inet_sk(sk)->inet_num = 0;
1335 }
1336 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1337
inet_ulp_can_listen(const struct sock * sk)1338 static int inet_ulp_can_listen(const struct sock *sk)
1339 {
1340 const struct inet_connection_sock *icsk = inet_csk(sk);
1341
1342 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1343 return -EINVAL;
1344
1345 return 0;
1346 }
1347
inet_csk_listen_start(struct sock * sk)1348 int inet_csk_listen_start(struct sock *sk)
1349 {
1350 struct inet_connection_sock *icsk = inet_csk(sk);
1351 struct inet_sock *inet = inet_sk(sk);
1352 int err;
1353
1354 err = inet_ulp_can_listen(sk);
1355 if (unlikely(err))
1356 return err;
1357
1358 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1359
1360 sk->sk_ack_backlog = 0;
1361 inet_csk_delack_init(sk);
1362
1363 /* There is race window here: we announce ourselves listening,
1364 * but this transition is still not validated by get_port().
1365 * It is OK, because this socket enters to hash table only
1366 * after validation is complete.
1367 */
1368 inet_sk_state_store(sk, TCP_LISTEN);
1369 err = sk->sk_prot->get_port(sk, inet->inet_num);
1370 if (!err) {
1371 inet->inet_sport = htons(inet->inet_num);
1372
1373 sk_dst_reset(sk);
1374 err = sk->sk_prot->hash(sk);
1375
1376 if (likely(!err))
1377 return 0;
1378 }
1379
1380 inet_sk_set_state(sk, TCP_CLOSE);
1381 return err;
1382 }
1383 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1384
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1385 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1386 struct sock *child)
1387 {
1388 sk->sk_prot->disconnect(child, O_NONBLOCK);
1389
1390 sock_orphan(child);
1391
1392 this_cpu_inc(*sk->sk_prot->orphan_count);
1393
1394 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1395 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1396 BUG_ON(sk != req->rsk_listener);
1397
1398 /* Paranoid, to prevent race condition if
1399 * an inbound pkt destined for child is
1400 * blocked by sock lock in tcp_v4_rcv().
1401 * Also to satisfy an assertion in
1402 * tcp_v4_destroy_sock().
1403 */
1404 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1405 }
1406 inet_csk_destroy_sock(child);
1407 }
1408
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1409 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1410 struct request_sock *req,
1411 struct sock *child)
1412 {
1413 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1414
1415 spin_lock(&queue->rskq_lock);
1416 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1417 inet_child_forget(sk, req, child);
1418 child = NULL;
1419 } else {
1420 req->sk = child;
1421 req->dl_next = NULL;
1422 if (queue->rskq_accept_head == NULL)
1423 WRITE_ONCE(queue->rskq_accept_head, req);
1424 else
1425 queue->rskq_accept_tail->dl_next = req;
1426 queue->rskq_accept_tail = req;
1427 sk_acceptq_added(sk);
1428 }
1429 spin_unlock(&queue->rskq_lock);
1430 return child;
1431 }
1432 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1433
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1434 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1435 struct request_sock *req, bool own_req)
1436 {
1437 if (own_req) {
1438 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1439 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1440
1441 if (sk != req->rsk_listener) {
1442 /* another listening sk has been selected,
1443 * migrate the req to it.
1444 */
1445 struct request_sock *nreq;
1446
1447 /* hold a refcnt for the nreq->rsk_listener
1448 * which is assigned in inet_reqsk_clone()
1449 */
1450 sock_hold(sk);
1451 nreq = inet_reqsk_clone(req, sk);
1452 if (!nreq) {
1453 inet_child_forget(sk, req, child);
1454 goto child_put;
1455 }
1456
1457 refcount_set(&nreq->rsk_refcnt, 1);
1458 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1459 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1460 reqsk_migrate_reset(req);
1461 reqsk_put(req);
1462 return child;
1463 }
1464
1465 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1466 reqsk_migrate_reset(nreq);
1467 __reqsk_free(nreq);
1468 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1469 return child;
1470 }
1471 }
1472 /* Too bad, another child took ownership of the request, undo. */
1473 child_put:
1474 bh_unlock_sock(child);
1475 sock_put(child);
1476 return NULL;
1477 }
1478 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1479
1480 /*
1481 * This routine closes sockets which have been at least partially
1482 * opened, but not yet accepted.
1483 */
inet_csk_listen_stop(struct sock * sk)1484 void inet_csk_listen_stop(struct sock *sk)
1485 {
1486 struct inet_connection_sock *icsk = inet_csk(sk);
1487 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1488 struct request_sock *next, *req;
1489
1490 /* Following specs, it would be better either to send FIN
1491 * (and enter FIN-WAIT-1, it is normal close)
1492 * or to send active reset (abort).
1493 * Certainly, it is pretty dangerous while synflood, but it is
1494 * bad justification for our negligence 8)
1495 * To be honest, we are not able to make either
1496 * of the variants now. --ANK
1497 */
1498 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1499 struct sock *child = req->sk, *nsk;
1500 struct request_sock *nreq;
1501
1502 local_bh_disable();
1503 bh_lock_sock(child);
1504 WARN_ON(sock_owned_by_user(child));
1505 sock_hold(child);
1506
1507 nsk = reuseport_migrate_sock(sk, child, NULL);
1508 if (nsk) {
1509 nreq = inet_reqsk_clone(req, nsk);
1510 if (nreq) {
1511 refcount_set(&nreq->rsk_refcnt, 1);
1512
1513 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1514 __NET_INC_STATS(sock_net(nsk),
1515 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1516 reqsk_migrate_reset(req);
1517 } else {
1518 __NET_INC_STATS(sock_net(nsk),
1519 LINUX_MIB_TCPMIGRATEREQFAILURE);
1520 reqsk_migrate_reset(nreq);
1521 __reqsk_free(nreq);
1522 }
1523
1524 /* inet_csk_reqsk_queue_add() has already
1525 * called inet_child_forget() on failure case.
1526 */
1527 goto skip_child_forget;
1528 }
1529 }
1530
1531 inet_child_forget(sk, req, child);
1532 skip_child_forget:
1533 reqsk_put(req);
1534 bh_unlock_sock(child);
1535 local_bh_enable();
1536 sock_put(child);
1537
1538 cond_resched();
1539 }
1540 if (queue->fastopenq.rskq_rst_head) {
1541 /* Free all the reqs queued in rskq_rst_head. */
1542 spin_lock_bh(&queue->fastopenq.lock);
1543 req = queue->fastopenq.rskq_rst_head;
1544 queue->fastopenq.rskq_rst_head = NULL;
1545 spin_unlock_bh(&queue->fastopenq.lock);
1546 while (req != NULL) {
1547 next = req->dl_next;
1548 reqsk_put(req);
1549 req = next;
1550 }
1551 }
1552 WARN_ON_ONCE(sk->sk_ack_backlog);
1553 }
1554 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1555
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1556 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1557 {
1558 const struct inet_sock *inet = inet_sk(sk);
1559 struct flowi4 *fl4;
1560 struct rtable *rt;
1561
1562 rcu_read_lock();
1563 fl4 = &fl->u.ip4;
1564 inet_sk_init_flowi4(inet, fl4);
1565 rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1566 if (IS_ERR(rt))
1567 rt = NULL;
1568 if (rt)
1569 sk_setup_caps(sk, &rt->dst);
1570 rcu_read_unlock();
1571
1572 return &rt->dst;
1573 }
1574
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1575 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1576 {
1577 struct dst_entry *dst = __sk_dst_check(sk, 0);
1578 struct inet_sock *inet = inet_sk(sk);
1579
1580 if (!dst) {
1581 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1582 if (!dst)
1583 goto out;
1584 }
1585 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1586
1587 dst = __sk_dst_check(sk, 0);
1588 if (!dst)
1589 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1590 out:
1591 return dst;
1592 }
1593 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1594