1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
120 /**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 return false;
162
163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 return true;
165 }
166 #endif
167 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 kuid_t sk_uid, bool relax,
172 bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 int bound_dev_if2;
175
176 if (sk == sk2)
177 return false;
178
179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 sk->sk_bound_dev_if == bound_dev_if2) {
183 if (sk->sk_reuse && sk2->sk_reuse &&
184 sk2->sk_state != TCP_LISTEN) {
185 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 sk2->sk_reuseport && reuseport_cb_ok &&
187 (sk2->sk_state == TCP_TIME_WAIT ||
188 uid_eq(sk_uid, sock_i_uid(sk2)))))
189 return true;
190 } else if (!reuseport_ok || !sk->sk_reuseport ||
191 !sk2->sk_reuseport || !reuseport_cb_ok ||
192 (sk2->sk_state != TCP_TIME_WAIT &&
193 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
194 return true;
195 }
196 }
197 return false;
198 }
199
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 kuid_t sk_uid, bool relax,
202 bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 if (ipv6_only_sock(sk2)) {
205 if (sk->sk_family == AF_INET)
206 return false;
207
208 #if IS_ENABLED(CONFIG_IPV6)
209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 return false;
211 #endif
212 }
213
214 return inet_bind_conflict(sk, sk2, sk_uid, relax,
215 reuseport_cb_ok, reuseport_ok);
216 }
217
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 const struct inet_bind2_bucket *tb2,
220 kuid_t sk_uid,
221 bool relax, bool reuseport_cb_ok,
222 bool reuseport_ok)
223 {
224 struct sock *sk2;
225
226 sk_for_each_bound(sk2, &tb2->owners) {
227 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228 reuseport_cb_ok, reuseport_ok))
229 return true;
230 }
231
232 return false;
233 }
234
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237 sk_for_each_bound((__sk), &(__tb2)->owners)
238
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 const struct inet_bind_bucket *tb,
242 const struct inet_bind2_bucket *tb2, /* may be null */
243 bool relax, bool reuseport_ok)
244 {
245 kuid_t uid = sock_i_uid((struct sock *)sk);
246 struct sock_reuseport *reuseport_cb;
247 bool reuseport_cb_ok;
248 struct sock *sk2;
249
250 rcu_read_lock();
251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 rcu_read_unlock();
255
256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 * ipv4) should have been checked already. We need to do these two
258 * checks separately because their spinlocks have to be acquired/released
259 * independently of each other, to prevent possible deadlocks
260 */
261 if (inet_use_bhash2_on_bind(sk))
262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 reuseport_cb_ok, reuseport_ok);
264
265 /* Unlike other sk lookup places we do not check
266 * for sk_net here, since _all_ the socks listed
267 * in tb->owners and tb2->owners list belong
268 * to the same net - the one this bucket belongs to.
269 */
270 sk_for_each_bound_bhash(sk2, tb2, tb) {
271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 continue;
273
274 if (inet_rcv_saddr_equal(sk, sk2, true))
275 return true;
276 }
277
278 return false;
279 }
280
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282 * INADDR_ANY (if ipv4) socket.
283 *
284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285 * against concurrent binds on the port for addr any
286 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 bool relax, bool reuseport_ok)
289 {
290 kuid_t uid = sock_i_uid((struct sock *)sk);
291 const struct net *net = sock_net(sk);
292 struct sock_reuseport *reuseport_cb;
293 struct inet_bind_hashbucket *head2;
294 struct inet_bind2_bucket *tb2;
295 bool conflict = false;
296 bool reuseport_cb_ok;
297
298 rcu_read_lock();
299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 rcu_read_unlock();
303
304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306 spin_lock(&head2->lock);
307
308 inet_bind_bucket_for_each(tb2, &head2->chain) {
309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 continue;
311
312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313 continue;
314
315 conflict = true;
316 break;
317 }
318
319 spin_unlock(&head2->lock);
320
321 return conflict;
322 }
323
324 /*
325 * Find an open port number for the socket. Returns with the
326 * inet_bind_hashbucket locks held if successful.
327 */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 struct inet_bind2_bucket **tb2_ret,
331 struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 int i, low, high, attempt_half, port, l3mdev;
335 struct inet_bind_hashbucket *head, *head2;
336 struct net *net = sock_net(sk);
337 struct inet_bind2_bucket *tb2;
338 struct inet_bind_bucket *tb;
339 u32 remaining, offset;
340 bool relax = false;
341
342 l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 inet_sk_get_local_port_range(sk, &low, &high);
347 high++; /* [32768, 60999] -> [32768, 61000[ */
348 if (high - low < 4)
349 attempt_half = 0;
350 if (attempt_half) {
351 int half = low + (((high - low) >> 2) << 1);
352
353 if (attempt_half == 1)
354 high = half;
355 else
356 low = half;
357 }
358 remaining = high - low;
359 if (likely(remaining > 1))
360 remaining &= ~1U;
361
362 offset = get_random_u32_below(remaining);
363 /* __inet_hash_connect() favors ports having @low parity
364 * We do the opposite to not pollute connect() users.
365 */
366 offset |= 1U;
367
368 other_parity_scan:
369 port = low + offset;
370 for (i = 0; i < remaining; i += 2, port += 2) {
371 if (unlikely(port >= high))
372 port -= remaining;
373 if (inet_is_local_reserved_port(net, port))
374 continue;
375 head = &hinfo->bhash[inet_bhashfn(net, port,
376 hinfo->bhash_size)];
377 spin_lock_bh(&head->lock);
378 if (inet_use_bhash2_on_bind(sk)) {
379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 goto next_port;
381 }
382
383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 spin_lock(&head2->lock);
385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 inet_bind_bucket_for_each(tb, &head->chain)
387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 if (!inet_csk_bind_conflict(sk, tb, tb2,
389 relax, false))
390 goto success;
391 spin_unlock(&head2->lock);
392 goto next_port;
393 }
394 tb = NULL;
395 goto success;
396 next_port:
397 spin_unlock_bh(&head->lock);
398 cond_resched();
399 }
400
401 offset--;
402 if (!(offset & 1))
403 goto other_parity_scan;
404
405 if (attempt_half == 1) {
406 /* OK we now try the upper half of the range */
407 attempt_half = 2;
408 goto other_half_scan;
409 }
410
411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 /* We still have a chance to connect to different destinations */
413 relax = true;
414 goto ports_exhausted;
415 }
416 return NULL;
417 success:
418 *port_ret = port;
419 *tb_ret = tb;
420 *tb2_ret = tb2;
421 *head2_ret = head2;
422 return head;
423 }
424
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 struct sock *sk)
427 {
428 kuid_t uid = sock_i_uid(sk);
429
430 if (tb->fastreuseport <= 0)
431 return 0;
432 if (!sk->sk_reuseport)
433 return 0;
434 if (rcu_access_pointer(sk->sk_reuseport_cb))
435 return 0;
436 if (!uid_eq(tb->fastuid, uid))
437 return 0;
438 /* We only need to check the rcv_saddr if this tb was once marked
439 * without fastreuseport and then was reset, as we can only know that
440 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
441 * owners list.
442 */
443 if (tb->fastreuseport == FASTREUSEPORT_ANY)
444 return 1;
445 #if IS_ENABLED(CONFIG_IPV6)
446 if (tb->fast_sk_family == AF_INET6)
447 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
448 inet6_rcv_saddr(sk),
449 tb->fast_rcv_saddr,
450 sk->sk_rcv_saddr,
451 tb->fast_ipv6_only,
452 ipv6_only_sock(sk), true, false);
453 #endif
454 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455 ipv6_only_sock(sk), true, false);
456 }
457
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
459 struct sock *sk)
460 {
461 kuid_t uid = sock_i_uid(sk);
462 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
463
464 if (hlist_empty(&tb->bhash2)) {
465 tb->fastreuse = reuse;
466 if (sk->sk_reuseport) {
467 tb->fastreuseport = FASTREUSEPORT_ANY;
468 tb->fastuid = uid;
469 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 tb->fast_ipv6_only = ipv6_only_sock(sk);
471 tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475 } else {
476 tb->fastreuseport = 0;
477 }
478 } else {
479 if (!reuse)
480 tb->fastreuse = 0;
481 if (sk->sk_reuseport) {
482 /* We didn't match or we don't have fastreuseport set on
483 * the tb, but we have sk_reuseport set on this socket
484 * and we know that there are no bind conflicts with
485 * this socket in this tb, so reset our tb's reuseport
486 * settings so that any subsequent sockets that match
487 * our current socket will be put on the fast path.
488 *
489 * If we reset we need to set FASTREUSEPORT_STRICT so we
490 * do extra checking for all subsequent sk_reuseport
491 * socks.
492 */
493 if (!sk_reuseport_match(tb, sk)) {
494 tb->fastreuseport = FASTREUSEPORT_STRICT;
495 tb->fastuid = uid;
496 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497 tb->fast_ipv6_only = ipv6_only_sock(sk);
498 tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
501 #endif
502 }
503 } else {
504 tb->fastreuseport = 0;
505 }
506 }
507 }
508
509 /* Obtain a reference to a local port for the given sock,
510 * if snum is zero it means select any available local port.
511 * We try to allocate an odd port (and leave even ports for connect())
512 */
inet_csk_get_port(struct sock * sk,unsigned short snum)513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
514 {
515 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
516 bool found_port = false, check_bind_conflict = true;
517 bool bhash_created = false, bhash2_created = false;
518 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
519 int ret = -EADDRINUSE, port = snum, l3mdev;
520 struct inet_bind_hashbucket *head, *head2;
521 struct inet_bind2_bucket *tb2 = NULL;
522 struct inet_bind_bucket *tb = NULL;
523 bool head2_lock_acquired = false;
524 struct net *net = sock_net(sk);
525
526 l3mdev = inet_sk_bound_l3mdev(sk);
527
528 if (!port) {
529 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
530 if (!head)
531 return ret;
532
533 head2_lock_acquired = true;
534
535 if (tb && tb2)
536 goto success;
537 found_port = true;
538 } else {
539 head = &hinfo->bhash[inet_bhashfn(net, port,
540 hinfo->bhash_size)];
541 spin_lock_bh(&head->lock);
542 inet_bind_bucket_for_each(tb, &head->chain)
543 if (inet_bind_bucket_match(tb, net, port, l3mdev))
544 break;
545 }
546
547 if (!tb) {
548 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
549 head, port, l3mdev);
550 if (!tb)
551 goto fail_unlock;
552 bhash_created = true;
553 }
554
555 if (!found_port) {
556 if (!hlist_empty(&tb->bhash2)) {
557 if (sk->sk_reuse == SK_FORCE_REUSE ||
558 (tb->fastreuse > 0 && reuse) ||
559 sk_reuseport_match(tb, sk))
560 check_bind_conflict = false;
561 }
562
563 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
565 goto fail_unlock;
566 }
567
568 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569 spin_lock(&head2->lock);
570 head2_lock_acquired = true;
571 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
572 }
573
574 if (!tb2) {
575 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
576 net, head2, tb, sk);
577 if (!tb2)
578 goto fail_unlock;
579 bhash2_created = true;
580 }
581
582 if (!found_port && check_bind_conflict) {
583 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
584 goto fail_unlock;
585 }
586
587 success:
588 inet_csk_update_fastreuse(tb, sk);
589
590 if (!inet_csk(sk)->icsk_bind_hash)
591 inet_bind_hash(sk, tb, tb2, port);
592 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
594 ret = 0;
595
596 fail_unlock:
597 if (ret) {
598 if (bhash2_created)
599 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
600 if (bhash_created)
601 inet_bind_bucket_destroy(tb);
602 }
603 if (head2_lock_acquired)
604 spin_unlock(&head2->lock);
605 spin_unlock_bh(&head->lock);
606 return ret;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
609
610 /*
611 * Wait for an incoming connection, avoid race conditions. This must be called
612 * with the socket locked.
613 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
615 {
616 struct inet_connection_sock *icsk = inet_csk(sk);
617 DEFINE_WAIT(wait);
618 int err;
619
620 /*
621 * True wake-one mechanism for incoming connections: only
622 * one process gets woken up, not the 'whole herd'.
623 * Since we do not 'race & poll' for established sockets
624 * anymore, the common case will execute the loop only once.
625 *
626 * Subtle issue: "add_wait_queue_exclusive()" will be added
627 * after any current non-exclusive waiters, and we know that
628 * it will always _stay_ after any new non-exclusive waiters
629 * because all non-exclusive waiters are added at the
630 * beginning of the wait-queue. As such, it's ok to "drop"
631 * our exclusiveness temporarily when we get woken up without
632 * having to remove and re-insert us on the wait queue.
633 */
634 for (;;) {
635 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
636 TASK_INTERRUPTIBLE);
637 release_sock(sk);
638 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639 timeo = schedule_timeout(timeo);
640 sched_annotate_sleep();
641 lock_sock(sk);
642 err = 0;
643 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
644 break;
645 err = -EINVAL;
646 if (sk->sk_state != TCP_LISTEN)
647 break;
648 err = sock_intr_errno(timeo);
649 if (signal_pending(current))
650 break;
651 err = -EAGAIN;
652 if (!timeo)
653 break;
654 }
655 finish_wait(sk_sleep(sk), &wait);
656 return err;
657 }
658
659 /*
660 * This will accept the next outstanding connection.
661 */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
663 {
664 struct inet_connection_sock *icsk = inet_csk(sk);
665 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666 struct request_sock *req;
667 struct sock *newsk;
668 int error;
669
670 lock_sock(sk);
671
672 /* We need to make sure that this socket is listening,
673 * and that it has something pending.
674 */
675 error = -EINVAL;
676 if (sk->sk_state != TCP_LISTEN)
677 goto out_err;
678
679 /* Find already established connection */
680 if (reqsk_queue_empty(queue)) {
681 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
682
683 /* If this is a non blocking socket don't sleep */
684 error = -EAGAIN;
685 if (!timeo)
686 goto out_err;
687
688 error = inet_csk_wait_for_connect(sk, timeo);
689 if (error)
690 goto out_err;
691 }
692 req = reqsk_queue_remove(queue, sk);
693 arg->is_empty = reqsk_queue_empty(queue);
694 newsk = req->sk;
695
696 if (sk->sk_protocol == IPPROTO_TCP &&
697 tcp_rsk(req)->tfo_listener) {
698 spin_lock_bh(&queue->fastopenq.lock);
699 if (tcp_rsk(req)->tfo_listener) {
700 /* We are still waiting for the final ACK from 3WHS
701 * so can't free req now. Instead, we set req->sk to
702 * NULL to signify that the child socket is taken
703 * so reqsk_fastopen_remove() will free the req
704 * when 3WHS finishes (or is aborted).
705 */
706 req->sk = NULL;
707 req = NULL;
708 }
709 spin_unlock_bh(&queue->fastopenq.lock);
710 }
711
712 out:
713 release_sock(sk);
714 if (newsk && mem_cgroup_sockets_enabled) {
715 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
716 int amt = 0;
717
718 /* atomically get the memory usage, set and charge the
719 * newsk->sk_memcg.
720 */
721 lock_sock(newsk);
722
723 mem_cgroup_sk_alloc(newsk);
724 if (newsk->sk_memcg) {
725 /* The socket has not been accepted yet, no need
726 * to look at newsk->sk_wmem_queued.
727 */
728 amt = sk_mem_pages(newsk->sk_forward_alloc +
729 atomic_read(&newsk->sk_rmem_alloc));
730 }
731
732 if (amt)
733 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734 kmem_cache_charge(newsk, gfp);
735
736 release_sock(newsk);
737 }
738 if (req)
739 reqsk_put(req);
740
741 if (newsk)
742 inet_init_csk_locks(newsk);
743
744 return newsk;
745 out_err:
746 newsk = NULL;
747 req = NULL;
748 arg->err = error;
749 goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752
753 /*
754 * Using different timers for retransmit, delayed acks and probes
755 * We may wish use just one timer maintaining a list of expire jiffies
756 * to optimize.
757 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))758 void inet_csk_init_xmit_timers(struct sock *sk,
759 void (*retransmit_handler)(struct timer_list *t),
760 void (*delack_handler)(struct timer_list *t),
761 void (*keepalive_handler)(struct timer_list *t))
762 {
763 struct inet_connection_sock *icsk = inet_csk(sk);
764
765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767 timer_setup(&sk->sk_timer, keepalive_handler, 0);
768 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770
inet_csk_clear_xmit_timers(struct sock * sk)771 void inet_csk_clear_xmit_timers(struct sock *sk)
772 {
773 struct inet_connection_sock *icsk = inet_csk(sk);
774
775 smp_store_release(&icsk->icsk_pending, 0);
776 smp_store_release(&icsk->icsk_ack.pending, 0);
777
778 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779 sk_stop_timer(sk, &icsk->icsk_delack_timer);
780 sk_stop_timer(sk, &sk->sk_timer);
781 }
782
inet_csk_clear_xmit_timers_sync(struct sock * sk)783 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
784 {
785 struct inet_connection_sock *icsk = inet_csk(sk);
786
787 /* ongoing timer handlers need to acquire socket lock. */
788 sock_not_owned_by_me(sk);
789
790 smp_store_release(&icsk->icsk_pending, 0);
791 smp_store_release(&icsk->icsk_ack.pending, 0);
792
793 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795 sk_stop_timer_sync(sk, &sk->sk_timer);
796 }
797
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)798 struct dst_entry *inet_csk_route_req(const struct sock *sk,
799 struct flowi4 *fl4,
800 const struct request_sock *req)
801 {
802 const struct inet_request_sock *ireq = inet_rsk(req);
803 struct net *net = read_pnet(&ireq->ireq_net);
804 struct ip_options_rcu *opt;
805 struct rtable *rt;
806
807 rcu_read_lock();
808 opt = rcu_dereference(ireq->ireq_opt);
809
810 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
811 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
812 sk->sk_protocol, inet_sk_flowi_flags(sk),
813 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
814 ireq->ir_loc_addr, ireq->ir_rmt_port,
815 htons(ireq->ir_num), sk->sk_uid);
816 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
817 rt = ip_route_output_flow(net, fl4, sk);
818 if (IS_ERR(rt))
819 goto no_route;
820 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
821 goto route_err;
822 rcu_read_unlock();
823 return &rt->dst;
824
825 route_err:
826 ip_rt_put(rt);
827 no_route:
828 rcu_read_unlock();
829 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
830 return NULL;
831 }
832
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
834 struct sock *newsk,
835 const struct request_sock *req)
836 {
837 const struct inet_request_sock *ireq = inet_rsk(req);
838 struct net *net = read_pnet(&ireq->ireq_net);
839 struct inet_sock *newinet = inet_sk(newsk);
840 struct ip_options_rcu *opt;
841 struct flowi4 *fl4;
842 struct rtable *rt;
843
844 opt = rcu_dereference(ireq->ireq_opt);
845 fl4 = &newinet->cork.fl.u.ip4;
846
847 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
848 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
849 sk->sk_protocol, inet_sk_flowi_flags(sk),
850 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
851 ireq->ir_loc_addr, ireq->ir_rmt_port,
852 htons(ireq->ir_num), sk->sk_uid);
853 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
854 rt = ip_route_output_flow(net, fl4, sk);
855 if (IS_ERR(rt))
856 goto no_route;
857 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
858 goto route_err;
859 return &rt->dst;
860
861 route_err:
862 ip_rt_put(rt);
863 no_route:
864 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
865 return NULL;
866 }
867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
868
869 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)870 static void syn_ack_recalc(struct request_sock *req,
871 const int max_syn_ack_retries,
872 const u8 rskq_defer_accept,
873 int *expire, int *resend)
874 {
875 if (!rskq_defer_accept) {
876 *expire = req->num_timeout >= max_syn_ack_retries;
877 *resend = 1;
878 return;
879 }
880 *expire = req->num_timeout >= max_syn_ack_retries &&
881 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
882 /* Do not resend while waiting for data after ACK,
883 * start to resend on end of deferring period to give
884 * last chance for data or ACK to create established socket.
885 */
886 *resend = !inet_rsk(req)->acked ||
887 req->num_timeout >= rskq_defer_accept - 1;
888 }
889
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)890 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
891 {
892 int err = req->rsk_ops->rtx_syn_ack(parent, req);
893
894 if (!err)
895 req->num_retrans++;
896 return err;
897 }
898
899 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)900 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
901 bool attach_listener)
902 {
903 struct request_sock *req;
904
905 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
906 if (!req)
907 return NULL;
908 req->rsk_listener = NULL;
909 if (attach_listener) {
910 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
911 kmem_cache_free(ops->slab, req);
912 return NULL;
913 }
914 req->rsk_listener = sk_listener;
915 }
916 req->rsk_ops = ops;
917 req_to_sk(req)->sk_prot = sk_listener->sk_prot;
918 sk_node_init(&req_to_sk(req)->sk_node);
919 sk_tx_queue_clear(req_to_sk(req));
920 req->saved_syn = NULL;
921 req->syncookie = 0;
922 req->timeout = 0;
923 req->num_timeout = 0;
924 req->num_retrans = 0;
925 req->sk = NULL;
926 refcount_set(&req->rsk_refcnt, 0);
927
928 return req;
929 }
930 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
931
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)932 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
933 struct sock *sk_listener,
934 bool attach_listener)
935 {
936 struct request_sock *req = reqsk_alloc(ops, sk_listener,
937 attach_listener);
938
939 if (req) {
940 struct inet_request_sock *ireq = inet_rsk(req);
941
942 ireq->ireq_opt = NULL;
943 #if IS_ENABLED(CONFIG_IPV6)
944 ireq->pktopts = NULL;
945 #endif
946 atomic64_set(&ireq->ir_cookie, 0);
947 ireq->ireq_state = TCP_NEW_SYN_RECV;
948 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
949 ireq->ireq_family = sk_listener->sk_family;
950 req->timeout = TCP_TIMEOUT_INIT;
951 }
952
953 return req;
954 }
955 EXPORT_SYMBOL(inet_reqsk_alloc);
956
inet_reqsk_clone(struct request_sock * req,struct sock * sk)957 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
958 struct sock *sk)
959 {
960 struct sock *req_sk, *nreq_sk;
961 struct request_sock *nreq;
962
963 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
964 if (!nreq) {
965 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
966
967 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
968 sock_put(sk);
969 return NULL;
970 }
971
972 req_sk = req_to_sk(req);
973 nreq_sk = req_to_sk(nreq);
974
975 memcpy(nreq_sk, req_sk,
976 offsetof(struct sock, sk_dontcopy_begin));
977 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
978 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
979 /* alloc is larger than struct, see above */);
980
981 sk_node_init(&nreq_sk->sk_node);
982 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
984 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
985 #endif
986 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
987
988 nreq->rsk_listener = sk;
989
990 /* We need not acquire fastopenq->lock
991 * because the child socket is locked in inet_csk_listen_stop().
992 */
993 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
994 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
995
996 return nreq;
997 }
998
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)999 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1000 const struct request_sock *req)
1001 {
1002 if (req->num_timeout == 0)
1003 atomic_inc(&queue->young);
1004 atomic_inc(&queue->qlen);
1005 }
1006
reqsk_migrate_reset(struct request_sock * req)1007 static void reqsk_migrate_reset(struct request_sock *req)
1008 {
1009 req->saved_syn = NULL;
1010 #if IS_ENABLED(CONFIG_IPV6)
1011 inet_rsk(req)->ipv6_opt = NULL;
1012 inet_rsk(req)->pktopts = NULL;
1013 #else
1014 inet_rsk(req)->ireq_opt = NULL;
1015 #endif
1016 }
1017
1018 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1019 static bool reqsk_queue_unlink(struct request_sock *req)
1020 {
1021 struct sock *sk = req_to_sk(req);
1022 bool found = false;
1023
1024 if (sk_hashed(sk)) {
1025 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1026 spinlock_t *lock;
1027
1028 lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1029 spin_lock(lock);
1030 found = __sk_nulls_del_node_init_rcu(sk);
1031 spin_unlock(lock);
1032 }
1033
1034 return found;
1035 }
1036
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1037 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1038 struct request_sock *req,
1039 bool from_timer)
1040 {
1041 bool unlinked = reqsk_queue_unlink(req);
1042
1043 if (!from_timer && timer_delete_sync(&req->rsk_timer))
1044 reqsk_put(req);
1045
1046 if (unlinked) {
1047 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1048 reqsk_put(req);
1049 }
1050
1051 return unlinked;
1052 }
1053
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1054 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1055 {
1056 return __inet_csk_reqsk_queue_drop(sk, req, false);
1057 }
1058
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1059 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1060 {
1061 inet_csk_reqsk_queue_drop(sk, req);
1062 reqsk_put(req);
1063 }
1064 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1065
reqsk_timer_handler(struct timer_list * t)1066 static void reqsk_timer_handler(struct timer_list *t)
1067 {
1068 struct request_sock *req = timer_container_of(req, t, rsk_timer);
1069 struct request_sock *nreq = NULL, *oreq = req;
1070 struct sock *sk_listener = req->rsk_listener;
1071 struct inet_connection_sock *icsk;
1072 struct request_sock_queue *queue;
1073 struct net *net;
1074 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1075
1076 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1077 struct sock *nsk;
1078
1079 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1080 if (!nsk)
1081 goto drop;
1082
1083 nreq = inet_reqsk_clone(req, nsk);
1084 if (!nreq)
1085 goto drop;
1086
1087 /* The new timer for the cloned req can decrease the 2
1088 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1089 * hold another count to prevent use-after-free and
1090 * call reqsk_put() just before return.
1091 */
1092 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1093 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1094 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1095
1096 req = nreq;
1097 sk_listener = nsk;
1098 }
1099
1100 icsk = inet_csk(sk_listener);
1101 net = sock_net(sk_listener);
1102 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1103 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1104 /* Normally all the openreqs are young and become mature
1105 * (i.e. converted to established socket) for first timeout.
1106 * If synack was not acknowledged for 1 second, it means
1107 * one of the following things: synack was lost, ack was lost,
1108 * rtt is high or nobody planned to ack (i.e. synflood).
1109 * When server is a bit loaded, queue is populated with old
1110 * open requests, reducing effective size of queue.
1111 * When server is well loaded, queue size reduces to zero
1112 * after several minutes of work. It is not synflood,
1113 * it is normal operation. The solution is pruning
1114 * too old entries overriding normal timeout, when
1115 * situation becomes dangerous.
1116 *
1117 * Essentially, we reserve half of room for young
1118 * embrions; and abort old ones without pity, if old
1119 * ones are about to clog our table.
1120 */
1121 queue = &icsk->icsk_accept_queue;
1122 qlen = reqsk_queue_len(queue);
1123 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1124 int young = reqsk_queue_len_young(queue) << 1;
1125
1126 while (max_syn_ack_retries > 2) {
1127 if (qlen < young)
1128 break;
1129 max_syn_ack_retries--;
1130 young <<= 1;
1131 }
1132 }
1133 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1134 &expire, &resend);
1135 req->rsk_ops->syn_ack_timeout(req);
1136 if (!expire &&
1137 (!resend ||
1138 !inet_rtx_syn_ack(sk_listener, req) ||
1139 inet_rsk(req)->acked)) {
1140 if (req->num_timeout++ == 0)
1141 atomic_dec(&queue->young);
1142 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1143
1144 if (!nreq)
1145 return;
1146
1147 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1148 /* delete timer */
1149 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1150 goto no_ownership;
1151 }
1152
1153 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1154 reqsk_migrate_reset(oreq);
1155 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1156 reqsk_put(oreq);
1157
1158 reqsk_put(nreq);
1159 return;
1160 }
1161
1162 /* Even if we can clone the req, we may need not retransmit any more
1163 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1164 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1165 */
1166 if (nreq) {
1167 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1168 no_ownership:
1169 reqsk_migrate_reset(nreq);
1170 reqsk_queue_removed(queue, nreq);
1171 __reqsk_free(nreq);
1172 }
1173
1174 drop:
1175 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1176 reqsk_put(oreq);
1177 }
1178
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1179 static bool reqsk_queue_hash_req(struct request_sock *req,
1180 unsigned long timeout)
1181 {
1182 bool found_dup_sk = false;
1183
1184 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1185 return false;
1186
1187 /* The timer needs to be setup after a successful insertion. */
1188 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1189 mod_timer(&req->rsk_timer, jiffies + timeout);
1190
1191 /* before letting lookups find us, make sure all req fields
1192 * are committed to memory and refcnt initialized.
1193 */
1194 smp_wmb();
1195 refcount_set(&req->rsk_refcnt, 2 + 1);
1196 return true;
1197 }
1198
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1199 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1200 unsigned long timeout)
1201 {
1202 if (!reqsk_queue_hash_req(req, timeout))
1203 return false;
1204
1205 inet_csk_reqsk_queue_added(sk);
1206 return true;
1207 }
1208
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1209 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1210 const gfp_t priority)
1211 {
1212 struct inet_connection_sock *icsk = inet_csk(newsk);
1213
1214 if (!icsk->icsk_ulp_ops)
1215 return;
1216
1217 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1218 }
1219
1220 /**
1221 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1222 * @sk: the socket to clone
1223 * @req: request_sock
1224 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1225 *
1226 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1227 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1228 struct sock *inet_csk_clone_lock(const struct sock *sk,
1229 const struct request_sock *req,
1230 const gfp_t priority)
1231 {
1232 struct sock *newsk = sk_clone_lock(sk, priority);
1233 struct inet_connection_sock *newicsk;
1234 struct inet_request_sock *ireq;
1235 struct inet_sock *newinet;
1236
1237 if (!newsk)
1238 return NULL;
1239
1240 newicsk = inet_csk(newsk);
1241 newinet = inet_sk(newsk);
1242 ireq = inet_rsk(req);
1243
1244 newicsk->icsk_bind_hash = NULL;
1245 newicsk->icsk_bind2_hash = NULL;
1246
1247 newinet->inet_dport = ireq->ir_rmt_port;
1248 newinet->inet_num = ireq->ir_num;
1249 newinet->inet_sport = htons(ireq->ir_num);
1250
1251 newsk->sk_bound_dev_if = ireq->ir_iif;
1252
1253 newsk->sk_daddr = ireq->ir_rmt_addr;
1254 newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1255 newinet->inet_saddr = ireq->ir_loc_addr;
1256
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1259 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1260 #endif
1261
1262 /* listeners have SOCK_RCU_FREE, not the children */
1263 sock_reset_flag(newsk, SOCK_RCU_FREE);
1264
1265 inet_sk(newsk)->mc_list = NULL;
1266
1267 newsk->sk_mark = inet_rsk(req)->ir_mark;
1268 atomic64_set(&newsk->sk_cookie,
1269 atomic64_read(&inet_rsk(req)->ir_cookie));
1270
1271 newicsk->icsk_retransmits = 0;
1272 newicsk->icsk_backoff = 0;
1273 newicsk->icsk_probes_out = 0;
1274 newicsk->icsk_probes_tstamp = 0;
1275
1276 /* Deinitialize accept_queue to trap illegal accesses. */
1277 memset(&newicsk->icsk_accept_queue, 0,
1278 sizeof(newicsk->icsk_accept_queue));
1279
1280 inet_sk_set_state(newsk, TCP_SYN_RECV);
1281
1282 inet_clone_ulp(req, newsk, priority);
1283
1284 security_inet_csk_clone(newsk, req);
1285
1286 return newsk;
1287 }
1288
1289 /*
1290 * At this point, there should be no process reference to this
1291 * socket, and thus no user references at all. Therefore we
1292 * can assume the socket waitqueue is inactive and nobody will
1293 * try to jump onto it.
1294 */
inet_csk_destroy_sock(struct sock * sk)1295 void inet_csk_destroy_sock(struct sock *sk)
1296 {
1297 WARN_ON(sk->sk_state != TCP_CLOSE);
1298 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1299
1300 /* It cannot be in hash table! */
1301 WARN_ON(!sk_unhashed(sk));
1302
1303 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1304 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1305
1306 sk->sk_prot->destroy(sk);
1307
1308 sk_stream_kill_queues(sk);
1309
1310 xfrm_sk_free_policy(sk);
1311
1312 this_cpu_dec(*sk->sk_prot->orphan_count);
1313
1314 sock_put(sk);
1315 }
1316 EXPORT_SYMBOL(inet_csk_destroy_sock);
1317
1318 /* This function allows to force a closure of a socket after the call to
1319 * tcp_create_openreq_child().
1320 */
inet_csk_prepare_forced_close(struct sock * sk)1321 void inet_csk_prepare_forced_close(struct sock *sk)
1322 __releases(&sk->sk_lock.slock)
1323 {
1324 /* sk_clone_lock locked the socket and set refcnt to 2 */
1325 bh_unlock_sock(sk);
1326 sock_put(sk);
1327 inet_csk_prepare_for_destroy_sock(sk);
1328 inet_sk(sk)->inet_num = 0;
1329 }
1330 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1331
inet_ulp_can_listen(const struct sock * sk)1332 static int inet_ulp_can_listen(const struct sock *sk)
1333 {
1334 const struct inet_connection_sock *icsk = inet_csk(sk);
1335
1336 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1337 return -EINVAL;
1338
1339 return 0;
1340 }
1341
inet_csk_listen_start(struct sock * sk)1342 int inet_csk_listen_start(struct sock *sk)
1343 {
1344 struct inet_connection_sock *icsk = inet_csk(sk);
1345 struct inet_sock *inet = inet_sk(sk);
1346 int err;
1347
1348 err = inet_ulp_can_listen(sk);
1349 if (unlikely(err))
1350 return err;
1351
1352 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1353
1354 sk->sk_ack_backlog = 0;
1355 inet_csk_delack_init(sk);
1356
1357 /* There is race window here: we announce ourselves listening,
1358 * but this transition is still not validated by get_port().
1359 * It is OK, because this socket enters to hash table only
1360 * after validation is complete.
1361 */
1362 inet_sk_state_store(sk, TCP_LISTEN);
1363 err = sk->sk_prot->get_port(sk, inet->inet_num);
1364 if (!err) {
1365 inet->inet_sport = htons(inet->inet_num);
1366
1367 sk_dst_reset(sk);
1368 err = sk->sk_prot->hash(sk);
1369
1370 if (likely(!err))
1371 return 0;
1372 }
1373
1374 inet_sk_set_state(sk, TCP_CLOSE);
1375 return err;
1376 }
1377
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1378 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1379 struct sock *child)
1380 {
1381 sk->sk_prot->disconnect(child, O_NONBLOCK);
1382
1383 sock_orphan(child);
1384
1385 this_cpu_inc(*sk->sk_prot->orphan_count);
1386
1387 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1388 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1389 BUG_ON(sk != req->rsk_listener);
1390
1391 /* Paranoid, to prevent race condition if
1392 * an inbound pkt destined for child is
1393 * blocked by sock lock in tcp_v4_rcv().
1394 * Also to satisfy an assertion in
1395 * tcp_v4_destroy_sock().
1396 */
1397 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1398 }
1399 inet_csk_destroy_sock(child);
1400 }
1401
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1402 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1403 struct request_sock *req,
1404 struct sock *child)
1405 {
1406 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1407
1408 spin_lock(&queue->rskq_lock);
1409 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1410 inet_child_forget(sk, req, child);
1411 child = NULL;
1412 } else {
1413 req->sk = child;
1414 req->dl_next = NULL;
1415 if (queue->rskq_accept_head == NULL)
1416 WRITE_ONCE(queue->rskq_accept_head, req);
1417 else
1418 queue->rskq_accept_tail->dl_next = req;
1419 queue->rskq_accept_tail = req;
1420 sk_acceptq_added(sk);
1421 }
1422 spin_unlock(&queue->rskq_lock);
1423 return child;
1424 }
1425 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1426
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1427 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1428 struct request_sock *req, bool own_req)
1429 {
1430 if (own_req) {
1431 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1432 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1433
1434 if (sk != req->rsk_listener) {
1435 /* another listening sk has been selected,
1436 * migrate the req to it.
1437 */
1438 struct request_sock *nreq;
1439
1440 /* hold a refcnt for the nreq->rsk_listener
1441 * which is assigned in inet_reqsk_clone()
1442 */
1443 sock_hold(sk);
1444 nreq = inet_reqsk_clone(req, sk);
1445 if (!nreq) {
1446 inet_child_forget(sk, req, child);
1447 goto child_put;
1448 }
1449
1450 refcount_set(&nreq->rsk_refcnt, 1);
1451 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1452 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1453 reqsk_migrate_reset(req);
1454 reqsk_put(req);
1455 return child;
1456 }
1457
1458 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1459 reqsk_migrate_reset(nreq);
1460 __reqsk_free(nreq);
1461 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1462 return child;
1463 }
1464 }
1465 /* Too bad, another child took ownership of the request, undo. */
1466 child_put:
1467 bh_unlock_sock(child);
1468 sock_put(child);
1469 return NULL;
1470 }
1471
1472 /*
1473 * This routine closes sockets which have been at least partially
1474 * opened, but not yet accepted.
1475 */
inet_csk_listen_stop(struct sock * sk)1476 void inet_csk_listen_stop(struct sock *sk)
1477 {
1478 struct inet_connection_sock *icsk = inet_csk(sk);
1479 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1480 struct request_sock *next, *req;
1481
1482 /* Following specs, it would be better either to send FIN
1483 * (and enter FIN-WAIT-1, it is normal close)
1484 * or to send active reset (abort).
1485 * Certainly, it is pretty dangerous while synflood, but it is
1486 * bad justification for our negligence 8)
1487 * To be honest, we are not able to make either
1488 * of the variants now. --ANK
1489 */
1490 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1491 struct sock *child = req->sk, *nsk;
1492 struct request_sock *nreq;
1493
1494 local_bh_disable();
1495 bh_lock_sock(child);
1496 WARN_ON(sock_owned_by_user(child));
1497 sock_hold(child);
1498
1499 nsk = reuseport_migrate_sock(sk, child, NULL);
1500 if (nsk) {
1501 nreq = inet_reqsk_clone(req, nsk);
1502 if (nreq) {
1503 refcount_set(&nreq->rsk_refcnt, 1);
1504
1505 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1506 __NET_INC_STATS(sock_net(nsk),
1507 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1508 reqsk_migrate_reset(req);
1509 } else {
1510 __NET_INC_STATS(sock_net(nsk),
1511 LINUX_MIB_TCPMIGRATEREQFAILURE);
1512 reqsk_migrate_reset(nreq);
1513 __reqsk_free(nreq);
1514 }
1515
1516 /* inet_csk_reqsk_queue_add() has already
1517 * called inet_child_forget() on failure case.
1518 */
1519 goto skip_child_forget;
1520 }
1521 }
1522
1523 inet_child_forget(sk, req, child);
1524 skip_child_forget:
1525 reqsk_put(req);
1526 bh_unlock_sock(child);
1527 local_bh_enable();
1528 sock_put(child);
1529
1530 cond_resched();
1531 }
1532 if (queue->fastopenq.rskq_rst_head) {
1533 /* Free all the reqs queued in rskq_rst_head. */
1534 spin_lock_bh(&queue->fastopenq.lock);
1535 req = queue->fastopenq.rskq_rst_head;
1536 queue->fastopenq.rskq_rst_head = NULL;
1537 spin_unlock_bh(&queue->fastopenq.lock);
1538 while (req != NULL) {
1539 next = req->dl_next;
1540 reqsk_put(req);
1541 req = next;
1542 }
1543 }
1544 WARN_ON_ONCE(sk->sk_ack_backlog);
1545 }
1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1547
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1548 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1549 {
1550 const struct inet_sock *inet = inet_sk(sk);
1551 struct flowi4 *fl4;
1552 struct rtable *rt;
1553
1554 rcu_read_lock();
1555 fl4 = &fl->u.ip4;
1556 inet_sk_init_flowi4(inet, fl4);
1557 rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1558 if (IS_ERR(rt))
1559 rt = NULL;
1560 if (rt)
1561 sk_setup_caps(sk, &rt->dst);
1562 rcu_read_unlock();
1563
1564 return &rt->dst;
1565 }
1566
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1567 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1568 {
1569 struct dst_entry *dst = __sk_dst_check(sk, 0);
1570 struct inet_sock *inet = inet_sk(sk);
1571
1572 if (!dst) {
1573 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1574 if (!dst)
1575 goto out;
1576 }
1577 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1578
1579 dst = __sk_dst_check(sk, 0);
1580 if (!dst)
1581 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1582 out:
1583 return dst;
1584 }
1585