xref: /linux/net/ipv4/inet_connection_sock.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 			return false;
162 
163 		if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 			return true;
165 	}
166 #endif
167 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169 
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 			       kuid_t sk_uid, bool relax,
172 			       bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 	int bound_dev_if2;
175 
176 	if (sk == sk2)
177 		return false;
178 
179 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180 
181 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 	    sk->sk_bound_dev_if == bound_dev_if2) {
183 		if (sk->sk_reuse && sk2->sk_reuse &&
184 		    sk2->sk_state != TCP_LISTEN) {
185 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 				       sk2->sk_reuseport && reuseport_cb_ok &&
187 				       (sk2->sk_state == TCP_TIME_WAIT ||
188 					uid_eq(sk_uid, sock_i_uid(sk2)))))
189 				return true;
190 		} else if (!reuseport_ok || !sk->sk_reuseport ||
191 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
192 			   (sk2->sk_state != TCP_TIME_WAIT &&
193 			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
194 			return true;
195 		}
196 	}
197 	return false;
198 }
199 
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 				   kuid_t sk_uid, bool relax,
202 				   bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 	if (ipv6_only_sock(sk2)) {
205 		if (sk->sk_family == AF_INET)
206 			return false;
207 
208 #if IS_ENABLED(CONFIG_IPV6)
209 		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 			return false;
211 #endif
212 	}
213 
214 	return inet_bind_conflict(sk, sk2, sk_uid, relax,
215 				  reuseport_cb_ok, reuseport_ok);
216 }
217 
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 				 const struct inet_bind2_bucket *tb2,
220 				 kuid_t sk_uid,
221 				 bool relax, bool reuseport_cb_ok,
222 				 bool reuseport_ok)
223 {
224 	struct sock *sk2;
225 
226 	sk_for_each_bound(sk2, &tb2->owners) {
227 		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228 					   reuseport_cb_ok, reuseport_ok))
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
236 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
237 		sk_for_each_bound((__sk), &(__tb2)->owners)
238 
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 				  const struct inet_bind_bucket *tb,
242 				  const struct inet_bind2_bucket *tb2, /* may be null */
243 				  bool relax, bool reuseport_ok)
244 {
245 	kuid_t uid = sock_i_uid((struct sock *)sk);
246 	struct sock_reuseport *reuseport_cb;
247 	bool reuseport_cb_ok;
248 	struct sock *sk2;
249 
250 	rcu_read_lock();
251 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 	rcu_read_unlock();
255 
256 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 	 * ipv4) should have been checked already. We need to do these two
258 	 * checks separately because their spinlocks have to be acquired/released
259 	 * independently of each other, to prevent possible deadlocks
260 	 */
261 	if (inet_use_bhash2_on_bind(sk))
262 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 						   reuseport_cb_ok, reuseport_ok);
264 
265 	/* Unlike other sk lookup places we do not check
266 	 * for sk_net here, since _all_ the socks listed
267 	 * in tb->owners and tb2->owners list belong
268 	 * to the same net - the one this bucket belongs to.
269 	 */
270 	sk_for_each_bound_bhash(sk2, tb2, tb) {
271 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 			continue;
273 
274 		if (inet_rcv_saddr_equal(sk, sk2, true))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282  * INADDR_ANY (if ipv4) socket.
283  *
284  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285  * against concurrent binds on the port for addr any
286  */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 					  bool relax, bool reuseport_ok)
289 {
290 	kuid_t uid = sock_i_uid((struct sock *)sk);
291 	const struct net *net = sock_net(sk);
292 	struct sock_reuseport *reuseport_cb;
293 	struct inet_bind_hashbucket *head2;
294 	struct inet_bind2_bucket *tb2;
295 	bool conflict = false;
296 	bool reuseport_cb_ok;
297 
298 	rcu_read_lock();
299 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 	rcu_read_unlock();
303 
304 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305 
306 	spin_lock(&head2->lock);
307 
308 	inet_bind_bucket_for_each(tb2, &head2->chain) {
309 		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 			continue;
311 
312 		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
313 			continue;
314 
315 		conflict = true;
316 		break;
317 	}
318 
319 	spin_unlock(&head2->lock);
320 
321 	return conflict;
322 }
323 
324 /*
325  * Find an open port number for the socket.  Returns with the
326  * inet_bind_hashbucket locks held if successful.
327  */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 			struct inet_bind2_bucket **tb2_ret,
331 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
334 	int i, low, high, attempt_half, port, l3mdev;
335 	struct inet_bind_hashbucket *head, *head2;
336 	struct net *net = sock_net(sk);
337 	struct inet_bind2_bucket *tb2;
338 	struct inet_bind_bucket *tb;
339 	u32 remaining, offset;
340 	bool relax = false;
341 
342 	l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 	inet_sk_get_local_port_range(sk, &low, &high);
347 	high++; /* [32768, 60999] -> [32768, 61000[ */
348 	if (high - low < 4)
349 		attempt_half = 0;
350 	if (attempt_half) {
351 		int half = low + (((high - low) >> 2) << 1);
352 
353 		if (attempt_half == 1)
354 			high = half;
355 		else
356 			low = half;
357 	}
358 	remaining = high - low;
359 	if (likely(remaining > 1))
360 		remaining &= ~1U;
361 
362 	offset = get_random_u32_below(remaining);
363 	/* __inet_hash_connect() favors ports having @low parity
364 	 * We do the opposite to not pollute connect() users.
365 	 */
366 	offset |= 1U;
367 
368 other_parity_scan:
369 	port = low + offset;
370 	for (i = 0; i < remaining; i += 2, port += 2) {
371 		if (unlikely(port >= high))
372 			port -= remaining;
373 		if (inet_is_local_reserved_port(net, port))
374 			continue;
375 		head = &hinfo->bhash[inet_bhashfn(net, port,
376 						  hinfo->bhash_size)];
377 		spin_lock_bh(&head->lock);
378 		if (inet_use_bhash2_on_bind(sk)) {
379 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 				goto next_port;
381 		}
382 
383 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 		spin_lock(&head2->lock);
385 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 		inet_bind_bucket_for_each(tb, &head->chain)
387 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 				if (!inet_csk_bind_conflict(sk, tb, tb2,
389 							    relax, false))
390 					goto success;
391 				spin_unlock(&head2->lock);
392 				goto next_port;
393 			}
394 		tb = NULL;
395 		goto success;
396 next_port:
397 		spin_unlock_bh(&head->lock);
398 		cond_resched();
399 	}
400 
401 	offset--;
402 	if (!(offset & 1))
403 		goto other_parity_scan;
404 
405 	if (attempt_half == 1) {
406 		/* OK we now try the upper half of the range */
407 		attempt_half = 2;
408 		goto other_half_scan;
409 	}
410 
411 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 		/* We still have a chance to connect to different destinations */
413 		relax = true;
414 		goto ports_exhausted;
415 	}
416 	return NULL;
417 success:
418 	*port_ret = port;
419 	*tb_ret = tb;
420 	*tb2_ret = tb2;
421 	*head2_ret = head2;
422 	return head;
423 }
424 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 				     struct sock *sk)
427 {
428 	kuid_t uid = sock_i_uid(sk);
429 
430 	if (tb->fastreuseport <= 0)
431 		return 0;
432 	if (!sk->sk_reuseport)
433 		return 0;
434 	if (rcu_access_pointer(sk->sk_reuseport_cb))
435 		return 0;
436 	if (!uid_eq(tb->fastuid, uid))
437 		return 0;
438 	/* We only need to check the rcv_saddr if this tb was once marked
439 	 * without fastreuseport and then was reset, as we can only know that
440 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
441 	 * owners list.
442 	 */
443 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
444 		return 1;
445 #if IS_ENABLED(CONFIG_IPV6)
446 	if (tb->fast_sk_family == AF_INET6)
447 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
448 					    inet6_rcv_saddr(sk),
449 					    tb->fast_rcv_saddr,
450 					    sk->sk_rcv_saddr,
451 					    tb->fast_ipv6_only,
452 					    ipv6_only_sock(sk), true, false);
453 #endif
454 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455 				    ipv6_only_sock(sk), true, false);
456 }
457 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
459 			       struct sock *sk)
460 {
461 	kuid_t uid = sock_i_uid(sk);
462 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
463 
464 	if (hlist_empty(&tb->bhash2)) {
465 		tb->fastreuse = reuse;
466 		if (sk->sk_reuseport) {
467 			tb->fastreuseport = FASTREUSEPORT_ANY;
468 			tb->fastuid = uid;
469 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 			tb->fast_ipv6_only = ipv6_only_sock(sk);
471 			tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475 		} else {
476 			tb->fastreuseport = 0;
477 		}
478 	} else {
479 		if (!reuse)
480 			tb->fastreuse = 0;
481 		if (sk->sk_reuseport) {
482 			/* We didn't match or we don't have fastreuseport set on
483 			 * the tb, but we have sk_reuseport set on this socket
484 			 * and we know that there are no bind conflicts with
485 			 * this socket in this tb, so reset our tb's reuseport
486 			 * settings so that any subsequent sockets that match
487 			 * our current socket will be put on the fast path.
488 			 *
489 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
490 			 * do extra checking for all subsequent sk_reuseport
491 			 * socks.
492 			 */
493 			if (!sk_reuseport_match(tb, sk)) {
494 				tb->fastreuseport = FASTREUSEPORT_STRICT;
495 				tb->fastuid = uid;
496 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497 				tb->fast_ipv6_only = ipv6_only_sock(sk);
498 				tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
501 #endif
502 			}
503 		} else {
504 			tb->fastreuseport = 0;
505 		}
506 	}
507 }
508 
509 /* Obtain a reference to a local port for the given sock,
510  * if snum is zero it means select any available local port.
511  * We try to allocate an odd port (and leave even ports for connect())
512  */
inet_csk_get_port(struct sock * sk,unsigned short snum)513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
514 {
515 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
516 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
517 	bool found_port = false, check_bind_conflict = true;
518 	bool bhash_created = false, bhash2_created = false;
519 	int ret = -EADDRINUSE, port = snum, l3mdev;
520 	struct inet_bind_hashbucket *head, *head2;
521 	struct inet_bind2_bucket *tb2 = NULL;
522 	struct inet_bind_bucket *tb = NULL;
523 	bool head2_lock_acquired = false;
524 	struct net *net = sock_net(sk);
525 
526 	l3mdev = inet_sk_bound_l3mdev(sk);
527 
528 	if (!port) {
529 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
530 		if (!head)
531 			return ret;
532 
533 		head2_lock_acquired = true;
534 
535 		if (tb && tb2)
536 			goto success;
537 		found_port = true;
538 	} else {
539 		head = &hinfo->bhash[inet_bhashfn(net, port,
540 						  hinfo->bhash_size)];
541 		spin_lock_bh(&head->lock);
542 		inet_bind_bucket_for_each(tb, &head->chain)
543 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
544 				break;
545 	}
546 
547 	if (!tb) {
548 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
549 					     head, port, l3mdev);
550 		if (!tb)
551 			goto fail_unlock;
552 		bhash_created = true;
553 	}
554 
555 	if (!found_port) {
556 		if (!hlist_empty(&tb->bhash2)) {
557 			if (sk->sk_reuse == SK_FORCE_REUSE ||
558 			    (tb->fastreuse > 0 && reuse) ||
559 			    sk_reuseport_match(tb, sk))
560 				check_bind_conflict = false;
561 		}
562 
563 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
565 				goto fail_unlock;
566 		}
567 
568 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569 		spin_lock(&head2->lock);
570 		head2_lock_acquired = true;
571 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
572 	}
573 
574 	if (!tb2) {
575 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
576 					       net, head2, tb, sk);
577 		if (!tb2)
578 			goto fail_unlock;
579 		bhash2_created = true;
580 	}
581 
582 	if (!found_port && check_bind_conflict) {
583 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
584 			goto fail_unlock;
585 	}
586 
587 success:
588 	inet_csk_update_fastreuse(tb, sk);
589 
590 	if (!inet_csk(sk)->icsk_bind_hash)
591 		inet_bind_hash(sk, tb, tb2, port);
592 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
594 	ret = 0;
595 
596 fail_unlock:
597 	if (ret) {
598 		if (bhash2_created)
599 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
600 		if (bhash_created)
601 			inet_bind_bucket_destroy(tb);
602 	}
603 	if (head2_lock_acquired)
604 		spin_unlock(&head2->lock);
605 	spin_unlock_bh(&head->lock);
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
609 
610 /*
611  * Wait for an incoming connection, avoid race conditions. This must be called
612  * with the socket locked.
613  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
615 {
616 	struct inet_connection_sock *icsk = inet_csk(sk);
617 	DEFINE_WAIT(wait);
618 	int err;
619 
620 	/*
621 	 * True wake-one mechanism for incoming connections: only
622 	 * one process gets woken up, not the 'whole herd'.
623 	 * Since we do not 'race & poll' for established sockets
624 	 * anymore, the common case will execute the loop only once.
625 	 *
626 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
627 	 * after any current non-exclusive waiters, and we know that
628 	 * it will always _stay_ after any new non-exclusive waiters
629 	 * because all non-exclusive waiters are added at the
630 	 * beginning of the wait-queue. As such, it's ok to "drop"
631 	 * our exclusiveness temporarily when we get woken up without
632 	 * having to remove and re-insert us on the wait queue.
633 	 */
634 	for (;;) {
635 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
636 					  TASK_INTERRUPTIBLE);
637 		release_sock(sk);
638 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639 			timeo = schedule_timeout(timeo);
640 		sched_annotate_sleep();
641 		lock_sock(sk);
642 		err = 0;
643 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
644 			break;
645 		err = -EINVAL;
646 		if (sk->sk_state != TCP_LISTEN)
647 			break;
648 		err = sock_intr_errno(timeo);
649 		if (signal_pending(current))
650 			break;
651 		err = -EAGAIN;
652 		if (!timeo)
653 			break;
654 	}
655 	finish_wait(sk_sleep(sk), &wait);
656 	return err;
657 }
658 
659 /*
660  * This will accept the next outstanding connection.
661  */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
663 {
664 	struct inet_connection_sock *icsk = inet_csk(sk);
665 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666 	struct request_sock *req;
667 	struct sock *newsk;
668 	int error;
669 
670 	lock_sock(sk);
671 
672 	/* We need to make sure that this socket is listening,
673 	 * and that it has something pending.
674 	 */
675 	error = -EINVAL;
676 	if (sk->sk_state != TCP_LISTEN)
677 		goto out_err;
678 
679 	/* Find already established connection */
680 	if (reqsk_queue_empty(queue)) {
681 		long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
682 
683 		/* If this is a non blocking socket don't sleep */
684 		error = -EAGAIN;
685 		if (!timeo)
686 			goto out_err;
687 
688 		error = inet_csk_wait_for_connect(sk, timeo);
689 		if (error)
690 			goto out_err;
691 	}
692 	req = reqsk_queue_remove(queue, sk);
693 	arg->is_empty = reqsk_queue_empty(queue);
694 	newsk = req->sk;
695 
696 	if (sk->sk_protocol == IPPROTO_TCP &&
697 	    tcp_rsk(req)->tfo_listener) {
698 		spin_lock_bh(&queue->fastopenq.lock);
699 		if (tcp_rsk(req)->tfo_listener) {
700 			/* We are still waiting for the final ACK from 3WHS
701 			 * so can't free req now. Instead, we set req->sk to
702 			 * NULL to signify that the child socket is taken
703 			 * so reqsk_fastopen_remove() will free the req
704 			 * when 3WHS finishes (or is aborted).
705 			 */
706 			req->sk = NULL;
707 			req = NULL;
708 		}
709 		spin_unlock_bh(&queue->fastopenq.lock);
710 	}
711 
712 out:
713 	release_sock(sk);
714 	if (newsk && mem_cgroup_sockets_enabled) {
715 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
716 		int amt = 0;
717 
718 		/* atomically get the memory usage, set and charge the
719 		 * newsk->sk_memcg.
720 		 */
721 		lock_sock(newsk);
722 
723 		mem_cgroup_sk_alloc(newsk);
724 		if (newsk->sk_memcg) {
725 			/* The socket has not been accepted yet, no need
726 			 * to look at newsk->sk_wmem_queued.
727 			 */
728 			amt = sk_mem_pages(newsk->sk_forward_alloc +
729 					   atomic_read(&newsk->sk_rmem_alloc));
730 		}
731 
732 		if (amt)
733 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734 		kmem_cache_charge(newsk, gfp);
735 
736 		release_sock(newsk);
737 	}
738 	if (req)
739 		reqsk_put(req);
740 
741 	if (newsk)
742 		inet_init_csk_locks(newsk);
743 
744 	return newsk;
745 out_err:
746 	newsk = NULL;
747 	req = NULL;
748 	arg->err = error;
749 	goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752 
753 /*
754  * Using different timers for retransmit, delayed acks and probes
755  * We may wish use just one timer maintaining a list of expire jiffies
756  * to optimize.
757  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))758 void inet_csk_init_xmit_timers(struct sock *sk,
759 			       void (*retransmit_handler)(struct timer_list *t),
760 			       void (*delack_handler)(struct timer_list *t),
761 			       void (*keepalive_handler)(struct timer_list *t))
762 {
763 	struct inet_connection_sock *icsk = inet_csk(sk);
764 
765 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
768 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
771 
inet_csk_clear_xmit_timers(struct sock * sk)772 void inet_csk_clear_xmit_timers(struct sock *sk)
773 {
774 	struct inet_connection_sock *icsk = inet_csk(sk);
775 
776 	smp_store_release(&icsk->icsk_pending, 0);
777 	smp_store_release(&icsk->icsk_ack.pending, 0);
778 
779 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
780 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
781 	sk_stop_timer(sk, &sk->sk_timer);
782 }
783 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
784 
inet_csk_clear_xmit_timers_sync(struct sock * sk)785 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
786 {
787 	struct inet_connection_sock *icsk = inet_csk(sk);
788 
789 	/* ongoing timer handlers need to acquire socket lock. */
790 	sock_not_owned_by_me(sk);
791 
792 	smp_store_release(&icsk->icsk_pending, 0);
793 	smp_store_release(&icsk->icsk_ack.pending, 0);
794 
795 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
796 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
797 	sk_stop_timer_sync(sk, &sk->sk_timer);
798 }
799 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)800 struct dst_entry *inet_csk_route_req(const struct sock *sk,
801 				     struct flowi4 *fl4,
802 				     const struct request_sock *req)
803 {
804 	const struct inet_request_sock *ireq = inet_rsk(req);
805 	struct net *net = read_pnet(&ireq->ireq_net);
806 	struct ip_options_rcu *opt;
807 	struct rtable *rt;
808 
809 	rcu_read_lock();
810 	opt = rcu_dereference(ireq->ireq_opt);
811 
812 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
813 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
814 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
815 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
816 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
817 			   htons(ireq->ir_num), sk->sk_uid);
818 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
819 	rt = ip_route_output_flow(net, fl4, sk);
820 	if (IS_ERR(rt))
821 		goto no_route;
822 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
823 		goto route_err;
824 	rcu_read_unlock();
825 	return &rt->dst;
826 
827 route_err:
828 	ip_rt_put(rt);
829 no_route:
830 	rcu_read_unlock();
831 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
832 	return NULL;
833 }
834 EXPORT_SYMBOL_GPL(inet_csk_route_req);
835 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)836 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
837 					    struct sock *newsk,
838 					    const struct request_sock *req)
839 {
840 	const struct inet_request_sock *ireq = inet_rsk(req);
841 	struct net *net = read_pnet(&ireq->ireq_net);
842 	struct inet_sock *newinet = inet_sk(newsk);
843 	struct ip_options_rcu *opt;
844 	struct flowi4 *fl4;
845 	struct rtable *rt;
846 
847 	opt = rcu_dereference(ireq->ireq_opt);
848 	fl4 = &newinet->cork.fl.u.ip4;
849 
850 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
851 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
852 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
853 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
854 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
855 			   htons(ireq->ir_num), sk->sk_uid);
856 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
857 	rt = ip_route_output_flow(net, fl4, sk);
858 	if (IS_ERR(rt))
859 		goto no_route;
860 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
861 		goto route_err;
862 	return &rt->dst;
863 
864 route_err:
865 	ip_rt_put(rt);
866 no_route:
867 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
868 	return NULL;
869 }
870 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
871 
872 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)873 static void syn_ack_recalc(struct request_sock *req,
874 			   const int max_syn_ack_retries,
875 			   const u8 rskq_defer_accept,
876 			   int *expire, int *resend)
877 {
878 	if (!rskq_defer_accept) {
879 		*expire = req->num_timeout >= max_syn_ack_retries;
880 		*resend = 1;
881 		return;
882 	}
883 	*expire = req->num_timeout >= max_syn_ack_retries &&
884 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
885 	/* Do not resend while waiting for data after ACK,
886 	 * start to resend on end of deferring period to give
887 	 * last chance for data or ACK to create established socket.
888 	 */
889 	*resend = !inet_rsk(req)->acked ||
890 		  req->num_timeout >= rskq_defer_accept - 1;
891 }
892 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)893 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
894 {
895 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
896 
897 	if (!err)
898 		req->num_retrans++;
899 	return err;
900 }
901 EXPORT_SYMBOL(inet_rtx_syn_ack);
902 
903 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)904 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
905 		   bool attach_listener)
906 {
907 	struct request_sock *req;
908 
909 	req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
910 	if (!req)
911 		return NULL;
912 	req->rsk_listener = NULL;
913 	if (attach_listener) {
914 		if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
915 			kmem_cache_free(ops->slab, req);
916 			return NULL;
917 		}
918 		req->rsk_listener = sk_listener;
919 	}
920 	req->rsk_ops = ops;
921 	req_to_sk(req)->sk_prot = sk_listener->sk_prot;
922 	sk_node_init(&req_to_sk(req)->sk_node);
923 	sk_tx_queue_clear(req_to_sk(req));
924 	req->saved_syn = NULL;
925 	req->syncookie = 0;
926 	req->timeout = 0;
927 	req->num_timeout = 0;
928 	req->num_retrans = 0;
929 	req->sk = NULL;
930 	refcount_set(&req->rsk_refcnt, 0);
931 
932 	return req;
933 }
934 #define reqsk_alloc(...)	alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
935 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)936 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
937 				      struct sock *sk_listener,
938 				      bool attach_listener)
939 {
940 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
941 					       attach_listener);
942 
943 	if (req) {
944 		struct inet_request_sock *ireq = inet_rsk(req);
945 
946 		ireq->ireq_opt = NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948 		ireq->pktopts = NULL;
949 #endif
950 		atomic64_set(&ireq->ir_cookie, 0);
951 		ireq->ireq_state = TCP_NEW_SYN_RECV;
952 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
953 		ireq->ireq_family = sk_listener->sk_family;
954 		req->timeout = TCP_TIMEOUT_INIT;
955 	}
956 
957 	return req;
958 }
959 EXPORT_SYMBOL(inet_reqsk_alloc);
960 
inet_reqsk_clone(struct request_sock * req,struct sock * sk)961 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
962 					     struct sock *sk)
963 {
964 	struct sock *req_sk, *nreq_sk;
965 	struct request_sock *nreq;
966 
967 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
968 	if (!nreq) {
969 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
970 
971 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
972 		sock_put(sk);
973 		return NULL;
974 	}
975 
976 	req_sk = req_to_sk(req);
977 	nreq_sk = req_to_sk(nreq);
978 
979 	memcpy(nreq_sk, req_sk,
980 	       offsetof(struct sock, sk_dontcopy_begin));
981 	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
982 		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
983 		      /* alloc is larger than struct, see above */);
984 
985 	sk_node_init(&nreq_sk->sk_node);
986 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
988 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
989 #endif
990 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
991 
992 	nreq->rsk_listener = sk;
993 
994 	/* We need not acquire fastopenq->lock
995 	 * because the child socket is locked in inet_csk_listen_stop().
996 	 */
997 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
998 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
999 
1000 	return nreq;
1001 }
1002 
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)1003 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1004 				 const struct request_sock *req)
1005 {
1006 	if (req->num_timeout == 0)
1007 		atomic_inc(&queue->young);
1008 	atomic_inc(&queue->qlen);
1009 }
1010 
reqsk_migrate_reset(struct request_sock * req)1011 static void reqsk_migrate_reset(struct request_sock *req)
1012 {
1013 	req->saved_syn = NULL;
1014 #if IS_ENABLED(CONFIG_IPV6)
1015 	inet_rsk(req)->ipv6_opt = NULL;
1016 	inet_rsk(req)->pktopts = NULL;
1017 #else
1018 	inet_rsk(req)->ireq_opt = NULL;
1019 #endif
1020 }
1021 
1022 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1023 static bool reqsk_queue_unlink(struct request_sock *req)
1024 {
1025 	struct sock *sk = req_to_sk(req);
1026 	bool found = false;
1027 
1028 	if (sk_hashed(sk)) {
1029 		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
1030 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1031 
1032 		spin_lock(lock);
1033 		found = __sk_nulls_del_node_init_rcu(sk);
1034 		spin_unlock(lock);
1035 	}
1036 
1037 	return found;
1038 }
1039 
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1040 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1041 					struct request_sock *req,
1042 					bool from_timer)
1043 {
1044 	bool unlinked = reqsk_queue_unlink(req);
1045 
1046 	if (!from_timer && timer_delete_sync(&req->rsk_timer))
1047 		reqsk_put(req);
1048 
1049 	if (unlinked) {
1050 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1051 		reqsk_put(req);
1052 	}
1053 
1054 	return unlinked;
1055 }
1056 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1057 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1058 {
1059 	return __inet_csk_reqsk_queue_drop(sk, req, false);
1060 }
1061 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1062 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1063 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1064 {
1065 	inet_csk_reqsk_queue_drop(sk, req);
1066 	reqsk_put(req);
1067 }
1068 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1069 
reqsk_timer_handler(struct timer_list * t)1070 static void reqsk_timer_handler(struct timer_list *t)
1071 {
1072 	struct request_sock *req = from_timer(req, t, rsk_timer);
1073 	struct request_sock *nreq = NULL, *oreq = req;
1074 	struct sock *sk_listener = req->rsk_listener;
1075 	struct inet_connection_sock *icsk;
1076 	struct request_sock_queue *queue;
1077 	struct net *net;
1078 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1079 
1080 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1081 		struct sock *nsk;
1082 
1083 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1084 		if (!nsk)
1085 			goto drop;
1086 
1087 		nreq = inet_reqsk_clone(req, nsk);
1088 		if (!nreq)
1089 			goto drop;
1090 
1091 		/* The new timer for the cloned req can decrease the 2
1092 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1093 		 * hold another count to prevent use-after-free and
1094 		 * call reqsk_put() just before return.
1095 		 */
1096 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1097 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1098 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1099 
1100 		req = nreq;
1101 		sk_listener = nsk;
1102 	}
1103 
1104 	icsk = inet_csk(sk_listener);
1105 	net = sock_net(sk_listener);
1106 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1107 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1108 	/* Normally all the openreqs are young and become mature
1109 	 * (i.e. converted to established socket) for first timeout.
1110 	 * If synack was not acknowledged for 1 second, it means
1111 	 * one of the following things: synack was lost, ack was lost,
1112 	 * rtt is high or nobody planned to ack (i.e. synflood).
1113 	 * When server is a bit loaded, queue is populated with old
1114 	 * open requests, reducing effective size of queue.
1115 	 * When server is well loaded, queue size reduces to zero
1116 	 * after several minutes of work. It is not synflood,
1117 	 * it is normal operation. The solution is pruning
1118 	 * too old entries overriding normal timeout, when
1119 	 * situation becomes dangerous.
1120 	 *
1121 	 * Essentially, we reserve half of room for young
1122 	 * embrions; and abort old ones without pity, if old
1123 	 * ones are about to clog our table.
1124 	 */
1125 	queue = &icsk->icsk_accept_queue;
1126 	qlen = reqsk_queue_len(queue);
1127 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1128 		int young = reqsk_queue_len_young(queue) << 1;
1129 
1130 		while (max_syn_ack_retries > 2) {
1131 			if (qlen < young)
1132 				break;
1133 			max_syn_ack_retries--;
1134 			young <<= 1;
1135 		}
1136 	}
1137 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1138 		       &expire, &resend);
1139 	req->rsk_ops->syn_ack_timeout(req);
1140 	if (!expire &&
1141 	    (!resend ||
1142 	     !inet_rtx_syn_ack(sk_listener, req) ||
1143 	     inet_rsk(req)->acked)) {
1144 		if (req->num_timeout++ == 0)
1145 			atomic_dec(&queue->young);
1146 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1147 
1148 		if (!nreq)
1149 			return;
1150 
1151 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1152 			/* delete timer */
1153 			__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1154 			goto no_ownership;
1155 		}
1156 
1157 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1158 		reqsk_migrate_reset(oreq);
1159 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1160 		reqsk_put(oreq);
1161 
1162 		reqsk_put(nreq);
1163 		return;
1164 	}
1165 
1166 	/* Even if we can clone the req, we may need not retransmit any more
1167 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1168 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1169 	 */
1170 	if (nreq) {
1171 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1172 no_ownership:
1173 		reqsk_migrate_reset(nreq);
1174 		reqsk_queue_removed(queue, nreq);
1175 		__reqsk_free(nreq);
1176 	}
1177 
1178 drop:
1179 	__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1180 	reqsk_put(oreq);
1181 }
1182 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1183 static bool reqsk_queue_hash_req(struct request_sock *req,
1184 				 unsigned long timeout)
1185 {
1186 	bool found_dup_sk = false;
1187 
1188 	if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1189 		return false;
1190 
1191 	/* The timer needs to be setup after a successful insertion. */
1192 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1193 	mod_timer(&req->rsk_timer, jiffies + timeout);
1194 
1195 	/* before letting lookups find us, make sure all req fields
1196 	 * are committed to memory and refcnt initialized.
1197 	 */
1198 	smp_wmb();
1199 	refcount_set(&req->rsk_refcnt, 2 + 1);
1200 	return true;
1201 }
1202 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1203 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1204 				   unsigned long timeout)
1205 {
1206 	if (!reqsk_queue_hash_req(req, timeout))
1207 		return false;
1208 
1209 	inet_csk_reqsk_queue_added(sk);
1210 	return true;
1211 }
1212 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1213 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1214 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1215 			   const gfp_t priority)
1216 {
1217 	struct inet_connection_sock *icsk = inet_csk(newsk);
1218 
1219 	if (!icsk->icsk_ulp_ops)
1220 		return;
1221 
1222 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1223 }
1224 
1225 /**
1226  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1227  *	@sk: the socket to clone
1228  *	@req: request_sock
1229  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1230  *
1231  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1232  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1233 struct sock *inet_csk_clone_lock(const struct sock *sk,
1234 				 const struct request_sock *req,
1235 				 const gfp_t priority)
1236 {
1237 	struct sock *newsk = sk_clone_lock(sk, priority);
1238 	struct inet_connection_sock *newicsk;
1239 	struct inet_request_sock *ireq;
1240 	struct inet_sock *newinet;
1241 
1242 	if (!newsk)
1243 		return NULL;
1244 
1245 	newicsk = inet_csk(newsk);
1246 	newinet = inet_sk(newsk);
1247 	ireq = inet_rsk(req);
1248 
1249 	newicsk->icsk_bind_hash = NULL;
1250 	newicsk->icsk_bind2_hash = NULL;
1251 
1252 	newinet->inet_dport = ireq->ir_rmt_port;
1253 	newinet->inet_num = ireq->ir_num;
1254 	newinet->inet_sport = htons(ireq->ir_num);
1255 
1256 	newsk->sk_bound_dev_if = ireq->ir_iif;
1257 
1258 	newsk->sk_daddr = ireq->ir_rmt_addr;
1259 	newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1260 	newinet->inet_saddr = ireq->ir_loc_addr;
1261 
1262 #if IS_ENABLED(CONFIG_IPV6)
1263 	newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1264 	newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1265 #endif
1266 
1267 	/* listeners have SOCK_RCU_FREE, not the children */
1268 	sock_reset_flag(newsk, SOCK_RCU_FREE);
1269 
1270 	inet_sk(newsk)->mc_list = NULL;
1271 
1272 	newsk->sk_mark = inet_rsk(req)->ir_mark;
1273 	atomic64_set(&newsk->sk_cookie,
1274 		     atomic64_read(&inet_rsk(req)->ir_cookie));
1275 
1276 	newicsk->icsk_retransmits = 0;
1277 	newicsk->icsk_backoff	  = 0;
1278 	newicsk->icsk_probes_out  = 0;
1279 	newicsk->icsk_probes_tstamp = 0;
1280 
1281 	/* Deinitialize accept_queue to trap illegal accesses. */
1282 	memset(&newicsk->icsk_accept_queue, 0,
1283 	       sizeof(newicsk->icsk_accept_queue));
1284 
1285 	inet_sk_set_state(newsk, TCP_SYN_RECV);
1286 
1287 	inet_clone_ulp(req, newsk, priority);
1288 
1289 	security_inet_csk_clone(newsk, req);
1290 
1291 	return newsk;
1292 }
1293 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1294 
1295 /*
1296  * At this point, there should be no process reference to this
1297  * socket, and thus no user references at all.  Therefore we
1298  * can assume the socket waitqueue is inactive and nobody will
1299  * try to jump onto it.
1300  */
inet_csk_destroy_sock(struct sock * sk)1301 void inet_csk_destroy_sock(struct sock *sk)
1302 {
1303 	WARN_ON(sk->sk_state != TCP_CLOSE);
1304 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1305 
1306 	/* It cannot be in hash table! */
1307 	WARN_ON(!sk_unhashed(sk));
1308 
1309 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1310 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1311 
1312 	sk->sk_prot->destroy(sk);
1313 
1314 	sk_stream_kill_queues(sk);
1315 
1316 	xfrm_sk_free_policy(sk);
1317 
1318 	this_cpu_dec(*sk->sk_prot->orphan_count);
1319 
1320 	sock_put(sk);
1321 }
1322 EXPORT_SYMBOL(inet_csk_destroy_sock);
1323 
1324 /* This function allows to force a closure of a socket after the call to
1325  * tcp/dccp_create_openreq_child().
1326  */
inet_csk_prepare_forced_close(struct sock * sk)1327 void inet_csk_prepare_forced_close(struct sock *sk)
1328 	__releases(&sk->sk_lock.slock)
1329 {
1330 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1331 	bh_unlock_sock(sk);
1332 	sock_put(sk);
1333 	inet_csk_prepare_for_destroy_sock(sk);
1334 	inet_sk(sk)->inet_num = 0;
1335 }
1336 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1337 
inet_ulp_can_listen(const struct sock * sk)1338 static int inet_ulp_can_listen(const struct sock *sk)
1339 {
1340 	const struct inet_connection_sock *icsk = inet_csk(sk);
1341 
1342 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1343 		return -EINVAL;
1344 
1345 	return 0;
1346 }
1347 
inet_csk_listen_start(struct sock * sk)1348 int inet_csk_listen_start(struct sock *sk)
1349 {
1350 	struct inet_connection_sock *icsk = inet_csk(sk);
1351 	struct inet_sock *inet = inet_sk(sk);
1352 	int err;
1353 
1354 	err = inet_ulp_can_listen(sk);
1355 	if (unlikely(err))
1356 		return err;
1357 
1358 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1359 
1360 	sk->sk_ack_backlog = 0;
1361 	inet_csk_delack_init(sk);
1362 
1363 	/* There is race window here: we announce ourselves listening,
1364 	 * but this transition is still not validated by get_port().
1365 	 * It is OK, because this socket enters to hash table only
1366 	 * after validation is complete.
1367 	 */
1368 	inet_sk_state_store(sk, TCP_LISTEN);
1369 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1370 	if (!err) {
1371 		inet->inet_sport = htons(inet->inet_num);
1372 
1373 		sk_dst_reset(sk);
1374 		err = sk->sk_prot->hash(sk);
1375 
1376 		if (likely(!err))
1377 			return 0;
1378 	}
1379 
1380 	inet_sk_set_state(sk, TCP_CLOSE);
1381 	return err;
1382 }
1383 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1384 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1385 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1386 			      struct sock *child)
1387 {
1388 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1389 
1390 	sock_orphan(child);
1391 
1392 	this_cpu_inc(*sk->sk_prot->orphan_count);
1393 
1394 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1395 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1396 		BUG_ON(sk != req->rsk_listener);
1397 
1398 		/* Paranoid, to prevent race condition if
1399 		 * an inbound pkt destined for child is
1400 		 * blocked by sock lock in tcp_v4_rcv().
1401 		 * Also to satisfy an assertion in
1402 		 * tcp_v4_destroy_sock().
1403 		 */
1404 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1405 	}
1406 	inet_csk_destroy_sock(child);
1407 }
1408 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1409 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1410 				      struct request_sock *req,
1411 				      struct sock *child)
1412 {
1413 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1414 
1415 	spin_lock(&queue->rskq_lock);
1416 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1417 		inet_child_forget(sk, req, child);
1418 		child = NULL;
1419 	} else {
1420 		req->sk = child;
1421 		req->dl_next = NULL;
1422 		if (queue->rskq_accept_head == NULL)
1423 			WRITE_ONCE(queue->rskq_accept_head, req);
1424 		else
1425 			queue->rskq_accept_tail->dl_next = req;
1426 		queue->rskq_accept_tail = req;
1427 		sk_acceptq_added(sk);
1428 	}
1429 	spin_unlock(&queue->rskq_lock);
1430 	return child;
1431 }
1432 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1433 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1434 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1435 					 struct request_sock *req, bool own_req)
1436 {
1437 	if (own_req) {
1438 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1439 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1440 
1441 		if (sk != req->rsk_listener) {
1442 			/* another listening sk has been selected,
1443 			 * migrate the req to it.
1444 			 */
1445 			struct request_sock *nreq;
1446 
1447 			/* hold a refcnt for the nreq->rsk_listener
1448 			 * which is assigned in inet_reqsk_clone()
1449 			 */
1450 			sock_hold(sk);
1451 			nreq = inet_reqsk_clone(req, sk);
1452 			if (!nreq) {
1453 				inet_child_forget(sk, req, child);
1454 				goto child_put;
1455 			}
1456 
1457 			refcount_set(&nreq->rsk_refcnt, 1);
1458 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1459 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1460 				reqsk_migrate_reset(req);
1461 				reqsk_put(req);
1462 				return child;
1463 			}
1464 
1465 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1466 			reqsk_migrate_reset(nreq);
1467 			__reqsk_free(nreq);
1468 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1469 			return child;
1470 		}
1471 	}
1472 	/* Too bad, another child took ownership of the request, undo. */
1473 child_put:
1474 	bh_unlock_sock(child);
1475 	sock_put(child);
1476 	return NULL;
1477 }
1478 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1479 
1480 /*
1481  *	This routine closes sockets which have been at least partially
1482  *	opened, but not yet accepted.
1483  */
inet_csk_listen_stop(struct sock * sk)1484 void inet_csk_listen_stop(struct sock *sk)
1485 {
1486 	struct inet_connection_sock *icsk = inet_csk(sk);
1487 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1488 	struct request_sock *next, *req;
1489 
1490 	/* Following specs, it would be better either to send FIN
1491 	 * (and enter FIN-WAIT-1, it is normal close)
1492 	 * or to send active reset (abort).
1493 	 * Certainly, it is pretty dangerous while synflood, but it is
1494 	 * bad justification for our negligence 8)
1495 	 * To be honest, we are not able to make either
1496 	 * of the variants now.			--ANK
1497 	 */
1498 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1499 		struct sock *child = req->sk, *nsk;
1500 		struct request_sock *nreq;
1501 
1502 		local_bh_disable();
1503 		bh_lock_sock(child);
1504 		WARN_ON(sock_owned_by_user(child));
1505 		sock_hold(child);
1506 
1507 		nsk = reuseport_migrate_sock(sk, child, NULL);
1508 		if (nsk) {
1509 			nreq = inet_reqsk_clone(req, nsk);
1510 			if (nreq) {
1511 				refcount_set(&nreq->rsk_refcnt, 1);
1512 
1513 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1514 					__NET_INC_STATS(sock_net(nsk),
1515 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1516 					reqsk_migrate_reset(req);
1517 				} else {
1518 					__NET_INC_STATS(sock_net(nsk),
1519 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1520 					reqsk_migrate_reset(nreq);
1521 					__reqsk_free(nreq);
1522 				}
1523 
1524 				/* inet_csk_reqsk_queue_add() has already
1525 				 * called inet_child_forget() on failure case.
1526 				 */
1527 				goto skip_child_forget;
1528 			}
1529 		}
1530 
1531 		inet_child_forget(sk, req, child);
1532 skip_child_forget:
1533 		reqsk_put(req);
1534 		bh_unlock_sock(child);
1535 		local_bh_enable();
1536 		sock_put(child);
1537 
1538 		cond_resched();
1539 	}
1540 	if (queue->fastopenq.rskq_rst_head) {
1541 		/* Free all the reqs queued in rskq_rst_head. */
1542 		spin_lock_bh(&queue->fastopenq.lock);
1543 		req = queue->fastopenq.rskq_rst_head;
1544 		queue->fastopenq.rskq_rst_head = NULL;
1545 		spin_unlock_bh(&queue->fastopenq.lock);
1546 		while (req != NULL) {
1547 			next = req->dl_next;
1548 			reqsk_put(req);
1549 			req = next;
1550 		}
1551 	}
1552 	WARN_ON_ONCE(sk->sk_ack_backlog);
1553 }
1554 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1555 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1556 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1557 {
1558 	const struct inet_sock *inet = inet_sk(sk);
1559 	struct flowi4 *fl4;
1560 	struct rtable *rt;
1561 
1562 	rcu_read_lock();
1563 	fl4 = &fl->u.ip4;
1564 	inet_sk_init_flowi4(inet, fl4);
1565 	rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1566 	if (IS_ERR(rt))
1567 		rt = NULL;
1568 	if (rt)
1569 		sk_setup_caps(sk, &rt->dst);
1570 	rcu_read_unlock();
1571 
1572 	return &rt->dst;
1573 }
1574 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1575 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1576 {
1577 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1578 	struct inet_sock *inet = inet_sk(sk);
1579 
1580 	if (!dst) {
1581 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1582 		if (!dst)
1583 			goto out;
1584 	}
1585 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1586 
1587 	dst = __sk_dst_check(sk, 0);
1588 	if (!dst)
1589 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1590 out:
1591 	return dst;
1592 }
1593 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1594