1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25
26 /*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36 {
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64 }
65
66 /*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71 {
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83 }
84
85 /*
86 * cmp_sdh - $SDH of $Secure
87 */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90 {
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118 }
119
120 /*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125 {
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166 }
167
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192 }
193
194 struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202 };
203
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206 {
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284 }
285
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308 out:
309 unlock_buffer(bh);
310 put_bh(bh);
311 }
312
313 /*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318 {
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit_le(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331 }
332
333 /*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338 {
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit_le(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351 }
352
353 /*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365 {
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396 next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ?
435 (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436 false;
437 put_bh(bh);
438
439 if (ok) {
440 *ret += 8 * vbo;
441 return 0;
442 }
443
444 if (++vblock >= eblock) {
445 *ret = MINUS_ONE_T;
446 return 0;
447 }
448 }
449 blk = 0;
450 vcn_next = vcn + clen;
451 down_read(lock);
452 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453 if (!ok)
454 vcn = vcn_next;
455 up_read(lock);
456 goto next_run;
457 }
458
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460 {
461 size_t pos = find_next_zero_bit_le(buf, bits, bit);
462
463 if (pos >= bits)
464 return false;
465 *ret = pos;
466 return true;
467 }
468
469 /*
470 * indx_find_free - Look for free bit.
471 *
472 * Return: -1 if no free bits.
473 */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 size_t *bit, struct ATTRIB **bitmap)
476 {
477 struct ATTRIB *b;
478 struct ATTR_LIST_ENTRY *le = NULL;
479 const struct INDEX_NAMES *in = &s_index_names[indx->type];
480 int err;
481
482 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483 NULL, NULL);
484
485 if (!b)
486 return -ENOENT;
487
488 *bitmap = b;
489 *bit = MINUS_ONE_T;
490
491 if (!b->non_res) {
492 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
494
495 if (pos < nbits)
496 *bit = pos;
497 } else {
498 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499
500 if (err)
501 return err;
502 }
503
504 return 0;
505 }
506
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508 {
509 size_t pos = find_next_bit_le(buf, bits, bit);
510
511 if (pos >= bits)
512 return false;
513 *ret = pos;
514 return true;
515 }
516
517 /*
518 * indx_used_bit - Look for used bit.
519 *
520 * Return: MINUS_ONE_T if no used bits.
521 */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523 {
524 struct ATTRIB *b;
525 struct ATTR_LIST_ENTRY *le = NULL;
526 size_t from = *bit;
527 const struct INDEX_NAMES *in = &s_index_names[indx->type];
528 int err;
529
530 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531 NULL, NULL);
532
533 if (!b)
534 return -ENOENT;
535
536 *bit = MINUS_ONE_T;
537
538 if (!b->non_res) {
539 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540 size_t pos = find_next_bit_le(resident_data(b), nbits, from);
541
542 if (pos < nbits)
543 *bit = pos;
544 } else {
545 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546 if (err)
547 return err;
548 }
549
550 return 0;
551 }
552
553 /*
554 * hdr_find_split
555 *
556 * Find a point at which the index allocation buffer would like to be split.
557 * NOTE: This function should never return 'END' entry NULL returns on error.
558 */
hdr_find_split(const struct INDEX_HDR * hdr)559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560 {
561 size_t o;
562 const struct NTFS_DE *e = hdr_first_de(hdr);
563 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564 u16 esize;
565
566 if (!e || de_is_last(e))
567 return NULL;
568
569 esize = le16_to_cpu(e->size);
570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 const struct NTFS_DE *p = e;
572
573 e = Add2Ptr(hdr, o);
574
575 /* We must not return END entry. */
576 if (de_is_last(e))
577 return p;
578
579 esize = le16_to_cpu(e->size);
580 }
581
582 return e;
583 }
584
585 /*
586 * hdr_insert_head - Insert some entries at the beginning of the buffer.
587 *
588 * It is used to insert entries into a newly-created buffer.
589 */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 const void *ins, u32 ins_bytes)
592 {
593 u32 to_move;
594 struct NTFS_DE *e = hdr_first_de(hdr);
595 u32 used = le32_to_cpu(hdr->used);
596
597 if (!e)
598 return NULL;
599
600 /* Now we just make room for the inserted entries and jam it in. */
601 to_move = used - le32_to_cpu(hdr->de_off);
602 memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 memcpy(e, ins, ins_bytes);
604 hdr->used = cpu_to_le32(used + ins_bytes);
605
606 return e;
607 }
608
609 /*
610 * index_hdr_check
611 *
612 * return true if INDEX_HDR is valid
613 */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615 {
616 u32 end = le32_to_cpu(hdr->used);
617 u32 tot = le32_to_cpu(hdr->total);
618 u32 off = le32_to_cpu(hdr->de_off);
619
620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 size_add(off, sizeof(struct NTFS_DE)) > end) {
622 /* incorrect index buffer. */
623 return false;
624 }
625
626 return true;
627 }
628
629 /*
630 * index_buf_check
631 *
632 * return true if INDEX_BUFFER seems is valid
633 */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635 const CLST *vbn)
636 {
637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 u16 fo = le16_to_cpu(rhdr->fix_off);
639 u16 fn = le16_to_cpu(rhdr->fix_num);
640
641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 rhdr->sign != NTFS_INDX_SIGNATURE ||
643 fo < sizeof(struct INDEX_BUFFER)
644 /* Check index buffer vbn. */
645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 fo + fn * sizeof(short) >= bytes ||
647 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 /* incorrect index buffer. */
649 return false;
650 }
651
652 return index_hdr_check(&ib->ihdr,
653 bytes - offsetof(struct INDEX_BUFFER, ihdr));
654 }
655
fnd_clear(struct ntfs_fnd * fnd)656 void fnd_clear(struct ntfs_fnd *fnd)
657 {
658 int i;
659
660 for (i = fnd->level - 1; i >= 0; i--) {
661 struct indx_node *n = fnd->nodes[i];
662
663 if (!n)
664 continue;
665
666 put_indx_node(n);
667 fnd->nodes[i] = NULL;
668 }
669 fnd->level = 0;
670 fnd->root_de = NULL;
671 }
672
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674 struct NTFS_DE *e)
675 {
676 int i = fnd->level;
677
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 return -EINVAL;
680 fnd->nodes[i] = n;
681 fnd->de[i] = e;
682 fnd->level += 1;
683 return 0;
684 }
685
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 struct indx_node *n;
689 int i = fnd->level;
690
691 i -= 1;
692 n = fnd->nodes[i];
693 fnd->nodes[i] = NULL;
694 fnd->level = i;
695
696 return n;
697 }
698
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 if (!fnd->level)
702 return !fnd->root_de;
703
704 return !fnd->de[fnd->level - 1];
705 }
706
707 /*
708 * hdr_find_e - Locate an entry the index buffer.
709 *
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
716 */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
720 {
721 struct NTFS_DE *e, *found = NULL;
722 NTFS_CMP_FUNC cmp = indx->cmp;
723 int min_idx = 0, mid_idx, max_idx = 0;
724 int diff2;
725 int table_size = 8;
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
729 u32 total = le32_to_cpu(hdr->total);
730 u16 offs[128];
731
732 if (unlikely(!cmp))
733 return NULL;
734
735 fill_table:
736 if (end > total)
737 return NULL;
738
739 if (size_add(off, sizeof(struct NTFS_DE)) > end)
740 return NULL;
741
742 e = Add2Ptr(hdr, off);
743 e_size = le16_to_cpu(e->size);
744
745 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 return NULL;
747
748 if (!de_is_last(e)) {
749 offs[max_idx] = off;
750 off += e_size;
751
752 max_idx++;
753 if (max_idx < table_size)
754 goto fill_table;
755
756 max_idx--;
757 }
758
759 binary_search:
760 e_key_len = le16_to_cpu(e->key_size);
761
762 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 if (diff2 > 0) {
764 if (found) {
765 min_idx = mid_idx + 1;
766 } else {
767 if (de_is_last(e))
768 return NULL;
769
770 max_idx = 0;
771 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772 goto fill_table;
773 }
774 } else if (diff2 < 0) {
775 if (found)
776 max_idx = mid_idx - 1;
777 else
778 max_idx--;
779
780 found = e;
781 } else {
782 *diff = 0;
783 return e;
784 }
785
786 if (min_idx > max_idx) {
787 *diff = -1;
788 return found;
789 }
790
791 mid_idx = (min_idx + max_idx) >> 1;
792 e = Add2Ptr(hdr, offs[mid_idx]);
793
794 goto binary_search;
795 }
796
797 /*
798 * hdr_insert_de - Insert an index entry into the buffer.
799 *
800 * 'before' should be a pointer previously returned from hdr_find_e.
801 */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)802 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803 struct INDEX_HDR *hdr,
804 const struct NTFS_DE *de,
805 struct NTFS_DE *before, const void *ctx)
806 {
807 int diff;
808 size_t off = PtrOffset(hdr, before);
809 u32 used = le32_to_cpu(hdr->used);
810 u32 total = le32_to_cpu(hdr->total);
811 u16 de_size = le16_to_cpu(de->size);
812
813 /* First, check to see if there's enough room. */
814 if (used + de_size > total)
815 return NULL;
816
817 /* We know there's enough space, so we know we'll succeed. */
818 if (before) {
819 /* Check that before is inside Index. */
820 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821 off + le16_to_cpu(before->size) > total) {
822 return NULL;
823 }
824 goto ok;
825 }
826 /* No insert point is applied. Get it manually. */
827 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828 &diff);
829 if (!before)
830 return NULL;
831 off = PtrOffset(hdr, before);
832
833 ok:
834 /* Now we just make room for the entry and jam it in. */
835 memmove(Add2Ptr(before, de_size), before, used - off);
836
837 hdr->used = cpu_to_le32(used + de_size);
838 memcpy(before, de, de_size);
839
840 return before;
841 }
842
843 /*
844 * hdr_delete_de - Remove an entry from the index buffer.
845 */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)846 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847 struct NTFS_DE *re)
848 {
849 u32 used = le32_to_cpu(hdr->used);
850 u16 esize = le16_to_cpu(re->size);
851 u32 off = PtrOffset(hdr, re);
852 int bytes = used - (off + esize);
853
854 /* check INDEX_HDR valid before using INDEX_HDR */
855 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856 return NULL;
857
858 if (off >= used || esize < sizeof(struct NTFS_DE) ||
859 bytes < sizeof(struct NTFS_DE))
860 return NULL;
861
862 hdr->used = cpu_to_le32(used - esize);
863 memmove(re, Add2Ptr(re, esize), bytes);
864
865 return re;
866 }
867
indx_clear(struct ntfs_index * indx)868 void indx_clear(struct ntfs_index *indx)
869 {
870 run_close(&indx->alloc_run);
871 run_close(&indx->bitmap_run);
872 }
873
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)874 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875 const struct ATTRIB *attr, enum index_mutex_classed type)
876 {
877 u32 t32;
878 const struct INDEX_ROOT *root = resident_data(attr);
879
880 t32 = le32_to_cpu(attr->res.data_size);
881 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882 !index_hdr_check(&root->ihdr,
883 t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884 goto out;
885 }
886
887 /* Check root fields. */
888 if (!root->index_block_clst)
889 goto out;
890
891 indx->type = type;
892 indx->idx2vbn_bits = __ffs(root->index_block_clst);
893
894 t32 = le32_to_cpu(root->index_block_size);
895 indx->index_bits = blksize_bits(t32);
896
897 /* Check index record size. */
898 if (t32 < sbi->cluster_size) {
899 /* Index record is smaller than a cluster, use 512 blocks. */
900 if (t32 != root->index_block_clst * SECTOR_SIZE)
901 goto out;
902
903 /* Check alignment to a cluster. */
904 if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 (root->index_block_clst - 1)) {
906 goto out;
907 }
908
909 indx->vbn2vbo_bits = SECTOR_SHIFT;
910 } else {
911 /* Index record must be a multiple of cluster size. */
912 if (t32 != root->index_block_clst << sbi->cluster_bits)
913 goto out;
914
915 indx->vbn2vbo_bits = sbi->cluster_bits;
916 }
917
918 init_rwsem(&indx->run_lock);
919
920 indx->cmp = get_cmp_func(root);
921 if (!indx->cmp)
922 goto out;
923
924 return 0;
925
926 out:
927 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928 return -EINVAL;
929 }
930
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)931 static struct indx_node *indx_new(struct ntfs_index *indx,
932 struct ntfs_inode *ni, CLST vbn,
933 const __le64 *sub_vbn)
934 {
935 int err;
936 struct NTFS_DE *e;
937 struct indx_node *r;
938 struct INDEX_HDR *hdr;
939 struct INDEX_BUFFER *index;
940 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941 u32 bytes = 1u << indx->index_bits;
942 u16 fn;
943 u32 eo;
944
945 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
946 if (!r)
947 return ERR_PTR(-ENOMEM);
948
949 index = kzalloc(bytes, GFP_NOFS);
950 if (!index) {
951 kfree(r);
952 return ERR_PTR(-ENOMEM);
953 }
954
955 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
956
957 if (err) {
958 kfree(index);
959 kfree(r);
960 return ERR_PTR(err);
961 }
962
963 /* Create header. */
964 index->rhdr.sign = NTFS_INDX_SIGNATURE;
965 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967 index->rhdr.fix_num = cpu_to_le16(fn);
968 index->vbn = cpu_to_le64(vbn);
969 hdr = &index->ihdr;
970 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971 hdr->de_off = cpu_to_le32(eo);
972
973 e = Add2Ptr(hdr, eo);
974
975 if (sub_vbn) {
976 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978 hdr->used =
979 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980 de_set_vbn_le(e, *sub_vbn);
981 hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
982 } else {
983 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985 e->flags = NTFS_IE_LAST;
986 }
987
988 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989
990 r->index = index;
991 return r;
992 }
993
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)994 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995 struct ATTRIB **attr, struct mft_inode **mi)
996 {
997 struct ATTR_LIST_ENTRY *le = NULL;
998 struct ATTRIB *a;
999 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000 struct INDEX_ROOT *root;
1001
1002 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003 mi);
1004 if (!a)
1005 return NULL;
1006
1007 if (attr)
1008 *attr = a;
1009
1010 root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011
1012 /* length check */
1013 if (root &&
1014 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 le32_to_cpu(a->res.data_size)) {
1016 return NULL;
1017 }
1018
1019 return root;
1020 }
1021
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 struct indx_node *node, int sync)
1024 {
1025 struct INDEX_BUFFER *ib = node->index;
1026
1027 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029
1030 /*
1031 * indx_read
1032 *
1033 * If ntfs_readdir calls this function
1034 * inode is shared locked and no ni_lock.
1035 * Use rw_semaphore for read/write access to alloc_run.
1036 */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 struct indx_node **node)
1039 {
1040 int err;
1041 struct INDEX_BUFFER *ib;
1042 struct runs_tree *run = &indx->alloc_run;
1043 struct rw_semaphore *lock = &indx->run_lock;
1044 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 u32 bytes = 1u << indx->index_bits;
1046 struct indx_node *in = *node;
1047 const struct INDEX_NAMES *name;
1048
1049 if (!in) {
1050 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051 if (!in)
1052 return -ENOMEM;
1053 } else {
1054 nb_put(&in->nb);
1055 }
1056
1057 ib = in->index;
1058 if (!ib) {
1059 ib = kmalloc(bytes, GFP_NOFS);
1060 if (!ib) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064 }
1065
1066 down_read(lock);
1067 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068 up_read(lock);
1069 if (!err)
1070 goto ok;
1071
1072 if (err == -E_NTFS_FIXUP)
1073 goto ok;
1074
1075 if (err != -ENOENT)
1076 goto out;
1077
1078 name = &s_index_names[indx->type];
1079 down_write(lock);
1080 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081 run, vbo, vbo + bytes);
1082 up_write(lock);
1083 if (err)
1084 goto out;
1085
1086 down_read(lock);
1087 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088 up_read(lock);
1089 if (err == -E_NTFS_FIXUP)
1090 goto ok;
1091
1092 if (err)
1093 goto out;
1094
1095 ok:
1096 if (!index_buf_check(ib, bytes, &vbn)) {
1097 _ntfs_bad_inode(&ni->vfs_inode);
1098 err = -EINVAL;
1099 goto out;
1100 }
1101
1102 if (err == -E_NTFS_FIXUP) {
1103 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1104 err = 0;
1105 }
1106
1107 /* check for index header length */
1108 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1109 bytes) {
1110 err = -EINVAL;
1111 goto out;
1112 }
1113
1114 in->index = ib;
1115 *node = in;
1116
1117 out:
1118 if (err == -E_NTFS_CORRUPT) {
1119 _ntfs_bad_inode(&ni->vfs_inode);
1120 err = -EINVAL;
1121 }
1122
1123 if (ib != in->index)
1124 kfree(ib);
1125
1126 if (*node != in) {
1127 nb_put(&in->nb);
1128 kfree(in);
1129 }
1130
1131 return err;
1132 }
1133
1134 /*
1135 * indx_find - Scan NTFS directory for given entry.
1136 */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1137 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1138 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1139 const void *ctx, int *diff, struct NTFS_DE **entry,
1140 struct ntfs_fnd *fnd)
1141 {
1142 int err;
1143 struct NTFS_DE *e;
1144 struct indx_node *node;
1145
1146 if (!root)
1147 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1148
1149 if (!root) {
1150 /* Should not happen. */
1151 return -EINVAL;
1152 }
1153
1154 /* Check cache. */
1155 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1156 if (e && !de_is_last(e) &&
1157 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1158 *entry = e;
1159 *diff = 0;
1160 return 0;
1161 }
1162
1163 /* Soft finder reset. */
1164 fnd_clear(fnd);
1165
1166 /* Lookup entry that is <= to the search value. */
1167 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1168 if (!e)
1169 return -EINVAL;
1170
1171 fnd->root_de = e;
1172
1173 for (;;) {
1174 node = NULL;
1175 if (*diff >= 0 || !de_has_vcn_ex(e))
1176 break;
1177
1178 /* Read next level. */
1179 err = indx_read(indx, ni, de_get_vbn(e), &node);
1180 if (err) {
1181 /* io error? */
1182 return err;
1183 }
1184
1185 /* Lookup entry that is <= to the search value. */
1186 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1187 diff);
1188 if (!e) {
1189 put_indx_node(node);
1190 return -EINVAL;
1191 }
1192
1193 fnd_push(fnd, node, e);
1194 }
1195
1196 *entry = e;
1197 return 0;
1198 }
1199
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1200 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1201 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1202 struct ntfs_fnd *fnd)
1203 {
1204 int err;
1205 struct indx_node *n = NULL;
1206 struct NTFS_DE *e;
1207 size_t iter = 0;
1208 int level = fnd->level;
1209
1210 if (!*entry) {
1211 /* Start find. */
1212 e = hdr_first_de(&root->ihdr);
1213 if (!e)
1214 return 0;
1215 fnd_clear(fnd);
1216 fnd->root_de = e;
1217 } else if (!level) {
1218 if (de_is_last(fnd->root_de)) {
1219 *entry = NULL;
1220 return 0;
1221 }
1222
1223 e = hdr_next_de(&root->ihdr, fnd->root_de);
1224 if (!e)
1225 return -EINVAL;
1226 fnd->root_de = e;
1227 } else {
1228 n = fnd->nodes[level - 1];
1229 e = fnd->de[level - 1];
1230
1231 if (de_is_last(e))
1232 goto pop_level;
1233
1234 e = hdr_next_de(&n->index->ihdr, e);
1235 if (!e)
1236 return -EINVAL;
1237
1238 fnd->de[level - 1] = e;
1239 }
1240
1241 /* Just to avoid tree cycle. */
1242 next_iter:
1243 if (iter++ >= 1000)
1244 return -EINVAL;
1245
1246 while (de_has_vcn_ex(e)) {
1247 if (le16_to_cpu(e->size) <
1248 sizeof(struct NTFS_DE) + sizeof(u64)) {
1249 if (n) {
1250 fnd_pop(fnd);
1251 kfree(n);
1252 }
1253 return -EINVAL;
1254 }
1255
1256 /* Read next level. */
1257 err = indx_read(indx, ni, de_get_vbn(e), &n);
1258 if (err)
1259 return err;
1260
1261 /* Try next level. */
1262 e = hdr_first_de(&n->index->ihdr);
1263 if (!e) {
1264 kfree(n);
1265 return -EINVAL;
1266 }
1267
1268 fnd_push(fnd, n, e);
1269 }
1270
1271 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1272 *entry = e;
1273 return 0;
1274 }
1275
1276 pop_level:
1277 for (;;) {
1278 if (!de_is_last(e))
1279 goto next_iter;
1280
1281 /* Pop one level. */
1282 if (n) {
1283 fnd_pop(fnd);
1284 kfree(n);
1285 }
1286
1287 level = fnd->level;
1288
1289 if (level) {
1290 n = fnd->nodes[level - 1];
1291 e = fnd->de[level - 1];
1292 } else if (fnd->root_de) {
1293 n = NULL;
1294 e = fnd->root_de;
1295 fnd->root_de = NULL;
1296 } else {
1297 *entry = NULL;
1298 return 0;
1299 }
1300
1301 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1302 *entry = e;
1303 if (!fnd->root_de)
1304 fnd->root_de = e;
1305 return 0;
1306 }
1307 }
1308 }
1309
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1310 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1311 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1312 size_t *off, struct ntfs_fnd *fnd)
1313 {
1314 int err;
1315 struct indx_node *n = NULL;
1316 struct NTFS_DE *e = NULL;
1317 struct NTFS_DE *e2;
1318 size_t bit;
1319 CLST next_used_vbn;
1320 CLST next_vbn;
1321 u32 record_size = ni->mi.sbi->record_size;
1322
1323 /* Use non sorted algorithm. */
1324 if (!*entry) {
1325 /* This is the first call. */
1326 e = hdr_first_de(&root->ihdr);
1327 if (!e)
1328 return 0;
1329 fnd_clear(fnd);
1330 fnd->root_de = e;
1331
1332 /* The first call with setup of initial element. */
1333 if (*off >= record_size) {
1334 next_vbn = (((*off - record_size) >> indx->index_bits))
1335 << indx->idx2vbn_bits;
1336 /* Jump inside cycle 'for'. */
1337 goto next;
1338 }
1339
1340 /* Start enumeration from root. */
1341 *off = 0;
1342 } else if (!fnd->root_de)
1343 return -EINVAL;
1344
1345 for (;;) {
1346 /* Check if current entry can be used. */
1347 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1348 goto ok;
1349
1350 if (!fnd->level) {
1351 /* Continue to enumerate root. */
1352 if (!de_is_last(fnd->root_de)) {
1353 e = hdr_next_de(&root->ihdr, fnd->root_de);
1354 if (!e)
1355 return -EINVAL;
1356 fnd->root_de = e;
1357 continue;
1358 }
1359
1360 /* Start to enumerate indexes from 0. */
1361 next_vbn = 0;
1362 } else {
1363 /* Continue to enumerate indexes. */
1364 e2 = fnd->de[fnd->level - 1];
1365
1366 n = fnd->nodes[fnd->level - 1];
1367
1368 if (!de_is_last(e2)) {
1369 e = hdr_next_de(&n->index->ihdr, e2);
1370 if (!e)
1371 return -EINVAL;
1372 fnd->de[fnd->level - 1] = e;
1373 continue;
1374 }
1375
1376 /* Continue with next index. */
1377 next_vbn = le64_to_cpu(n->index->vbn) +
1378 root->index_block_clst;
1379 }
1380
1381 next:
1382 /* Release current index. */
1383 if (n) {
1384 fnd_pop(fnd);
1385 put_indx_node(n);
1386 n = NULL;
1387 }
1388
1389 /* Skip all free indexes. */
1390 bit = next_vbn >> indx->idx2vbn_bits;
1391 err = indx_used_bit(indx, ni, &bit);
1392 if (err == -ENOENT || bit == MINUS_ONE_T) {
1393 /* No used indexes. */
1394 *entry = NULL;
1395 return 0;
1396 }
1397
1398 next_used_vbn = bit << indx->idx2vbn_bits;
1399
1400 /* Read buffer into memory. */
1401 err = indx_read(indx, ni, next_used_vbn, &n);
1402 if (err)
1403 return err;
1404
1405 e = hdr_first_de(&n->index->ihdr);
1406 fnd_push(fnd, n, e);
1407 if (!e)
1408 return -EINVAL;
1409 }
1410
1411 ok:
1412 /* Return offset to restore enumerator if necessary. */
1413 if (!n) {
1414 /* 'e' points in root, */
1415 *off = PtrOffset(&root->ihdr, e);
1416 } else {
1417 /* 'e' points in index, */
1418 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1419 record_size + PtrOffset(&n->index->ihdr, e);
1420 }
1421
1422 *entry = e;
1423 return 0;
1424 }
1425
1426 /*
1427 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1428 */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1429 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1430 CLST *vbn)
1431 {
1432 int err;
1433 struct ntfs_sb_info *sbi = ni->mi.sbi;
1434 struct ATTRIB *bitmap;
1435 struct ATTRIB *alloc;
1436 u32 data_size = 1u << indx->index_bits;
1437 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1438 CLST len = alloc_size >> sbi->cluster_bits;
1439 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1440 CLST alen;
1441 struct runs_tree run;
1442
1443 run_init(&run);
1444
1445 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1446 &alen, 0, NULL, NULL);
1447 if (err)
1448 goto out;
1449
1450 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1451 &run, 0, len, 0, &alloc, NULL, NULL);
1452 if (err)
1453 goto out1;
1454
1455 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1456
1457 err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP,
1458 in->name, in->name_len, &bitmap, NULL, NULL);
1459 if (err)
1460 goto out2;
1461
1462 if (in->name == I30_NAME) {
1463 i_size_write(&ni->vfs_inode, data_size);
1464 inode_set_bytes(&ni->vfs_inode, alloc_size);
1465 }
1466
1467 memcpy(&indx->alloc_run, &run, sizeof(run));
1468
1469 *vbn = 0;
1470
1471 return 0;
1472
1473 out2:
1474 mi_remove_attr(NULL, &ni->mi, alloc);
1475
1476 out1:
1477 run_deallocate(sbi, &run, false);
1478
1479 out:
1480 return err;
1481 }
1482
1483 /*
1484 * indx_add_allocate - Add clusters to index.
1485 */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1486 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1487 CLST *vbn)
1488 {
1489 int err;
1490 size_t bit;
1491 u64 data_size;
1492 u64 bmp_size, bmp_size_v;
1493 struct ATTRIB *bmp, *alloc;
1494 struct mft_inode *mi;
1495 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1496
1497 err = indx_find_free(indx, ni, &bit, &bmp);
1498 if (err)
1499 goto out1;
1500
1501 if (bit != MINUS_ONE_T) {
1502 bmp = NULL;
1503 } else {
1504 if (bmp->non_res) {
1505 bmp_size = le64_to_cpu(bmp->nres.data_size);
1506 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1507 } else {
1508 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1509 }
1510
1511 /*
1512 * Index blocks exist, but $BITMAP has zero valid bits.
1513 * This implies an on-disk corruption and must be rejected.
1514 */
1515 if (in->name == I30_NAME &&
1516 unlikely(bmp_size_v == 0 && indx->alloc_run.count)) {
1517 err = -EINVAL;
1518 goto out1;
1519 }
1520
1521 bit = bmp_size << 3;
1522 }
1523
1524 data_size = (u64)(bit + 1) << indx->index_bits;
1525
1526 if (bmp) {
1527 /* Increase bitmap. */
1528 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1529 &indx->bitmap_run,
1530 ntfs3_bitmap_size(bit + 1), NULL, true,
1531 NULL);
1532 if (err)
1533 goto out1;
1534 }
1535
1536 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1537 NULL, &mi);
1538 if (!alloc) {
1539 err = -EINVAL;
1540 if (bmp)
1541 goto out2;
1542 goto out1;
1543 }
1544
1545 if (data_size <= le64_to_cpu(alloc->nres.data_size)) {
1546 /* Reuse index. */
1547 goto out;
1548 }
1549
1550 /* Increase allocation. */
1551 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1552 &indx->alloc_run, data_size, &data_size, true,
1553 NULL);
1554 if (err) {
1555 if (bmp)
1556 goto out2;
1557 goto out1;
1558 }
1559
1560 if (in->name == I30_NAME)
1561 i_size_write(&ni->vfs_inode, data_size);
1562
1563 out:
1564 *vbn = bit << indx->idx2vbn_bits;
1565
1566 return 0;
1567
1568 out2:
1569 /* Ops. No space? */
1570 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1571 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1572
1573 out1:
1574 return err;
1575 }
1576
1577 /*
1578 * indx_insert_into_root - Attempt to insert an entry into the index root.
1579 *
1580 * @undo - True if we undoing previous remove.
1581 * If necessary, it will twiddle the index b-tree.
1582 */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1583 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1584 const struct NTFS_DE *new_de,
1585 struct NTFS_DE *root_de, const void *ctx,
1586 struct ntfs_fnd *fnd, bool undo)
1587 {
1588 int err = 0;
1589 struct NTFS_DE *e, *e0, *re;
1590 struct mft_inode *mi;
1591 struct ATTRIB *attr;
1592 struct INDEX_HDR *hdr;
1593 struct indx_node *n;
1594 CLST new_vbn;
1595 __le64 *sub_vbn, t_vbn;
1596 u16 new_de_size;
1597 u32 hdr_used, hdr_total, asize, to_move;
1598 u32 root_size, new_root_size;
1599 struct ntfs_sb_info *sbi;
1600 int ds_root;
1601 struct INDEX_ROOT *root, *a_root;
1602
1603 /* Get the record this root placed in. */
1604 root = indx_get_root(indx, ni, &attr, &mi);
1605 if (!root)
1606 return -EINVAL;
1607
1608 /*
1609 * Try easy case:
1610 * hdr_insert_de will succeed if there's
1611 * room the root for the new entry.
1612 */
1613 hdr = &root->ihdr;
1614 sbi = ni->mi.sbi;
1615 new_de_size = le16_to_cpu(new_de->size);
1616 hdr_used = le32_to_cpu(hdr->used);
1617 hdr_total = le32_to_cpu(hdr->total);
1618 asize = le32_to_cpu(attr->size);
1619 root_size = le32_to_cpu(attr->res.data_size);
1620
1621 ds_root = new_de_size + hdr_used - hdr_total;
1622
1623 /* If 'undo' is set then reduce requirements. */
1624 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1625 mi_resize_attr(mi, attr, ds_root)) {
1626 hdr->total = cpu_to_le32(hdr_total + ds_root);
1627 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1628 WARN_ON(!e);
1629 fnd_clear(fnd);
1630 fnd->root_de = e;
1631
1632 return 0;
1633 }
1634
1635 /* Make a copy of root attribute to restore if error. */
1636 a_root = kmemdup(attr, asize, GFP_NOFS);
1637 if (!a_root)
1638 return -ENOMEM;
1639
1640 /*
1641 * Copy all the non-end entries from
1642 * the index root to the new buffer.
1643 */
1644 to_move = 0;
1645 e0 = hdr_first_de(hdr);
1646
1647 /* Calculate the size to copy. */
1648 for (e = e0;; e = hdr_next_de(hdr, e)) {
1649 if (!e) {
1650 err = -EINVAL;
1651 goto out_free_root;
1652 }
1653
1654 if (de_is_last(e))
1655 break;
1656 to_move += le16_to_cpu(e->size);
1657 }
1658
1659 if (!to_move) {
1660 re = NULL;
1661 } else {
1662 re = kmemdup(e0, to_move, GFP_NOFS);
1663 if (!re) {
1664 err = -ENOMEM;
1665 goto out_free_root;
1666 }
1667 }
1668
1669 sub_vbn = NULL;
1670 if (de_has_vcn(e)) {
1671 t_vbn = de_get_vbn_le(e);
1672 sub_vbn = &t_vbn;
1673 }
1674
1675 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1676 sizeof(u64);
1677 ds_root = new_root_size - root_size;
1678
1679 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1680 /* Make root external. */
1681 err = -EOPNOTSUPP;
1682 goto out_free_re;
1683 }
1684
1685 if (ds_root)
1686 mi_resize_attr(mi, attr, ds_root);
1687
1688 /* Fill first entry (vcn will be set later). */
1689 e = (struct NTFS_DE *)(root + 1);
1690 memset(e, 0, sizeof(struct NTFS_DE));
1691 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1692 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1693
1694 hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
1695 hdr->used = hdr->total =
1696 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1697
1698 fnd->root_de = hdr_first_de(hdr);
1699 mi->dirty = true;
1700
1701 /* Create alloc and bitmap attributes (if not). */
1702 err = run_is_empty(&indx->alloc_run) ?
1703 indx_create_allocate(indx, ni, &new_vbn) :
1704 indx_add_allocate(indx, ni, &new_vbn);
1705
1706 /* Layout of record may be changed, so rescan root. */
1707 root = indx_get_root(indx, ni, &attr, &mi);
1708 if (!root) {
1709 /* Bug? */
1710 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1711 err = -EINVAL;
1712 goto out_free_re;
1713 }
1714
1715 if (err) {
1716 /* Restore root. */
1717 if (mi_resize_attr(mi, attr, -ds_root)) {
1718 memcpy(attr, a_root, asize);
1719 } else {
1720 /* Bug? */
1721 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1722 }
1723 goto out_free_re;
1724 }
1725
1726 e = (struct NTFS_DE *)(root + 1);
1727 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1728 mi->dirty = true;
1729
1730 /* Now we can create/format the new buffer and copy the entries into. */
1731 n = indx_new(indx, ni, new_vbn, sub_vbn);
1732 if (IS_ERR(n)) {
1733 err = PTR_ERR(n);
1734 goto out_free_re;
1735 }
1736
1737 hdr = &n->index->ihdr;
1738 hdr_used = le32_to_cpu(hdr->used);
1739 hdr_total = le32_to_cpu(hdr->total);
1740
1741 /* Copy root entries into new buffer. */
1742 hdr_insert_head(hdr, re, to_move);
1743
1744 /* Update bitmap attribute. */
1745 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1746
1747 /* Check if we can insert new entry new index buffer. */
1748 if (hdr_used + new_de_size > hdr_total) {
1749 /*
1750 * This occurs if MFT record is the same or bigger than index
1751 * buffer. Move all root new index and have no space to add
1752 * new entry classic case when MFT record is 1K and index
1753 * buffer 4K the problem should not occurs.
1754 */
1755 kfree(re);
1756 indx_write(indx, ni, n, 0);
1757
1758 put_indx_node(n);
1759 fnd_clear(fnd);
1760 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1761 goto out_free_root;
1762 }
1763
1764 /*
1765 * Now root is a parent for new index buffer.
1766 * Insert NewEntry a new buffer.
1767 */
1768 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1769 if (!e) {
1770 err = -EINVAL;
1771 goto out_put_n;
1772 }
1773 fnd_push(fnd, n, e);
1774
1775 /* Just write updates index into disk. */
1776 indx_write(indx, ni, n, 0);
1777
1778 n = NULL;
1779
1780 out_put_n:
1781 put_indx_node(n);
1782 out_free_re:
1783 kfree(re);
1784 out_free_root:
1785 kfree(a_root);
1786 return err;
1787 }
1788
1789 /*
1790 * indx_insert_into_buffer
1791 *
1792 * Attempt to insert an entry into an Index Allocation Buffer.
1793 * If necessary, it will split the buffer.
1794 */
1795 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1796 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1797 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1798 const void *ctx, int level, struct ntfs_fnd *fnd)
1799 {
1800 int err;
1801 const struct NTFS_DE *sp;
1802 struct NTFS_DE *e, *de_t, *up_e;
1803 struct indx_node *n2;
1804 struct indx_node *n1 = fnd->nodes[level];
1805 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1806 struct INDEX_HDR *hdr2;
1807 u32 to_copy, used, used1;
1808 CLST new_vbn;
1809 __le64 t_vbn, *sub_vbn;
1810 u16 sp_size;
1811 void *hdr1_saved = NULL;
1812
1813 /* Try the most easy case. */
1814 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1815 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1816 fnd->de[level] = e;
1817 if (e) {
1818 /* Just write updated index into disk. */
1819 indx_write(indx, ni, n1, 0);
1820 return 0;
1821 }
1822
1823 /*
1824 * No space to insert into buffer. Split it.
1825 * To split we:
1826 * - Save split point ('cause index buffers will be changed)
1827 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1828 * - Remove all entries (sp including) from TargetBuffer
1829 * - Insert NewEntry into left or right buffer (depending on sp <=>
1830 * NewEntry)
1831 * - Insert sp into parent buffer (or root)
1832 * - Make sp a parent for new buffer
1833 */
1834 sp = hdr_find_split(hdr1);
1835 if (!sp)
1836 return -EINVAL;
1837
1838 sp_size = le16_to_cpu(sp->size);
1839 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1840 if (!up_e)
1841 return -ENOMEM;
1842 memcpy(up_e, sp, sp_size);
1843
1844 used1 = le32_to_cpu(hdr1->used);
1845 hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1846 if (!hdr1_saved) {
1847 err = -ENOMEM;
1848 goto out;
1849 }
1850
1851 if (!hdr1->flags) {
1852 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1853 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1854 sub_vbn = NULL;
1855 } else {
1856 t_vbn = de_get_vbn_le(up_e);
1857 sub_vbn = &t_vbn;
1858 }
1859
1860 /* Allocate on disk a new index allocation buffer. */
1861 err = indx_add_allocate(indx, ni, &new_vbn);
1862 if (err)
1863 goto out;
1864
1865 /* Allocate and format memory a new index buffer. */
1866 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1867 if (IS_ERR(n2)) {
1868 err = PTR_ERR(n2);
1869 goto out;
1870 }
1871
1872 hdr2 = &n2->index->ihdr;
1873
1874 /* Make sp a parent for new buffer. */
1875 de_set_vbn(up_e, new_vbn);
1876
1877 /* Copy all the entries <= sp into the new buffer. */
1878 de_t = hdr_first_de(hdr1);
1879 to_copy = PtrOffset(de_t, sp);
1880 hdr_insert_head(hdr2, de_t, to_copy);
1881
1882 /* Remove all entries (sp including) from hdr1. */
1883 used = used1 - to_copy - sp_size;
1884 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1885 hdr1->used = cpu_to_le32(used);
1886
1887 /*
1888 * Insert new entry into left or right buffer
1889 * (depending on sp <=> new_de).
1890 */
1891 hdr_insert_de(indx,
1892 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1893 up_e + 1, le16_to_cpu(up_e->key_size),
1894 ctx) < 0 ?
1895 hdr2 :
1896 hdr1,
1897 new_de, NULL, ctx);
1898
1899 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1900
1901 indx_write(indx, ni, n1, 0);
1902 indx_write(indx, ni, n2, 0);
1903
1904 put_indx_node(n2);
1905
1906 /*
1907 * We've finished splitting everybody, so we are ready to
1908 * insert the promoted entry into the parent.
1909 */
1910 if (!level) {
1911 /* Insert in root. */
1912 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1913 } else {
1914 /*
1915 * The target buffer's parent is another index buffer.
1916 * TODO: Remove recursion.
1917 */
1918 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1919 level - 1, fnd);
1920 }
1921
1922 if (err) {
1923 /*
1924 * Undo critical operations.
1925 */
1926 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1927 memcpy(hdr1, hdr1_saved, used1);
1928 indx_write(indx, ni, n1, 0);
1929 }
1930
1931 out:
1932 kfree(up_e);
1933 kfree(hdr1_saved);
1934
1935 return err;
1936 }
1937
1938 /*
1939 * indx_insert_entry - Insert new entry into index.
1940 *
1941 * @undo - True if we undoing previous remove.
1942 */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1943 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1944 const struct NTFS_DE *new_de, const void *ctx,
1945 struct ntfs_fnd *fnd, bool undo)
1946 {
1947 int err;
1948 int diff;
1949 struct NTFS_DE *e;
1950 struct ntfs_fnd *fnd_a = NULL;
1951 struct INDEX_ROOT *root;
1952
1953 if (!fnd) {
1954 fnd_a = fnd_get();
1955 if (!fnd_a) {
1956 err = -ENOMEM;
1957 goto out1;
1958 }
1959 fnd = fnd_a;
1960 }
1961
1962 root = indx_get_root(indx, ni, NULL, NULL);
1963 if (!root) {
1964 err = -EINVAL;
1965 goto out;
1966 }
1967
1968 if (fnd_is_empty(fnd)) {
1969 /*
1970 * Find the spot the tree where we want to
1971 * insert the new entry.
1972 */
1973 err = indx_find(indx, ni, root, new_de + 1,
1974 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1975 fnd);
1976 if (err)
1977 goto out;
1978
1979 if (!diff) {
1980 err = -EEXIST;
1981 goto out;
1982 }
1983 }
1984
1985 if (!fnd->level) {
1986 /*
1987 * The root is also a leaf, so we'll insert the
1988 * new entry into it.
1989 */
1990 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1991 fnd, undo);
1992 } else {
1993 /*
1994 * Found a leaf buffer, so we'll insert the new entry into it.
1995 */
1996 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1997 fnd->level - 1, fnd);
1998 }
1999
2000 out:
2001 fnd_put(fnd_a);
2002 out1:
2003 return err;
2004 }
2005
2006 /*
2007 * indx_find_buffer - Locate a buffer from the tree.
2008 */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)2009 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
2010 struct ntfs_inode *ni,
2011 const struct INDEX_ROOT *root,
2012 __le64 vbn, struct indx_node *n)
2013 {
2014 int err;
2015 const struct NTFS_DE *e;
2016 struct indx_node *r;
2017 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2018
2019 /* Step 1: Scan one level. */
2020 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2021 if (!e)
2022 return ERR_PTR(-EINVAL);
2023
2024 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2025 return n;
2026
2027 if (de_is_last(e))
2028 break;
2029 }
2030
2031 /* Step2: Do recursion. */
2032 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2033 for (;;) {
2034 if (de_has_vcn_ex(e)) {
2035 err = indx_read(indx, ni, de_get_vbn(e), &n);
2036 if (err)
2037 return ERR_PTR(err);
2038
2039 r = indx_find_buffer(indx, ni, root, vbn, n);
2040 if (r)
2041 return r;
2042 }
2043
2044 if (de_is_last(e))
2045 break;
2046
2047 e = Add2Ptr(e, le16_to_cpu(e->size));
2048 }
2049
2050 return NULL;
2051 }
2052
2053 /*
2054 * indx_shrink - Deallocate unused tail indexes.
2055 */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2056 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2057 size_t bit)
2058 {
2059 int err = 0;
2060 u64 bpb, new_data;
2061 size_t nbits;
2062 struct ATTRIB *b;
2063 struct ATTR_LIST_ENTRY *le = NULL;
2064 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2065
2066 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2067 NULL, NULL);
2068
2069 if (!b)
2070 return -ENOENT;
2071
2072 if (!b->non_res) {
2073 unsigned long pos;
2074 const unsigned long *bm = resident_data(b);
2075
2076 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2077
2078 if (bit >= nbits)
2079 return 0;
2080
2081 pos = find_next_bit_le(bm, nbits, bit);
2082 if (pos < nbits)
2083 return 0;
2084 } else {
2085 size_t used = MINUS_ONE_T;
2086
2087 nbits = le64_to_cpu(b->nres.data_size) * 8;
2088
2089 if (bit >= nbits)
2090 return 0;
2091
2092 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2093 if (err)
2094 return err;
2095
2096 if (used != MINUS_ONE_T)
2097 return 0;
2098 }
2099
2100 new_data = (u64)bit << indx->index_bits;
2101
2102 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2103 &indx->alloc_run, new_data, &new_data, false, NULL);
2104 if (err)
2105 return err;
2106
2107 if (in->name == I30_NAME)
2108 i_size_write(&ni->vfs_inode, new_data);
2109
2110 bpb = ntfs3_bitmap_size(bit);
2111 if (bpb * 8 == nbits)
2112 return 0;
2113
2114 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2115 &indx->bitmap_run, bpb, &bpb, false, NULL);
2116
2117 return err;
2118 }
2119
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2120 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2121 const struct NTFS_DE *e, bool trim)
2122 {
2123 int err;
2124 struct indx_node *n = NULL;
2125 struct INDEX_HDR *hdr;
2126 CLST vbn = de_get_vbn(e);
2127 size_t i;
2128
2129 err = indx_read(indx, ni, vbn, &n);
2130 if (err)
2131 return err;
2132
2133 hdr = &n->index->ihdr;
2134 /* First, recurse into the children, if any. */
2135 if (hdr_has_subnode(hdr)) {
2136 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2137 indx_free_children(indx, ni, e, false);
2138 if (de_is_last(e))
2139 break;
2140 }
2141 }
2142
2143 put_indx_node(n);
2144
2145 i = vbn >> indx->idx2vbn_bits;
2146 /*
2147 * We've gotten rid of the children; add this buffer to the free list.
2148 */
2149 indx_mark_free(indx, ni, i);
2150
2151 if (!trim)
2152 return 0;
2153
2154 /*
2155 * If there are no used indexes after current free index
2156 * then we can truncate allocation and bitmap.
2157 * Use bitmap to estimate the case.
2158 */
2159 indx_shrink(indx, ni, i + 1);
2160 return 0;
2161 }
2162
2163 /*
2164 * indx_get_entry_to_replace
2165 *
2166 * Find a replacement entry for a deleted entry.
2167 * Always returns a node entry:
2168 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2169 */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2170 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2171 struct ntfs_inode *ni,
2172 const struct NTFS_DE *de_next,
2173 struct NTFS_DE **de_to_replace,
2174 struct ntfs_fnd *fnd)
2175 {
2176 int err;
2177 int level = -1;
2178 CLST vbn;
2179 struct NTFS_DE *e, *te, *re;
2180 struct indx_node *n;
2181 struct INDEX_BUFFER *ib;
2182
2183 *de_to_replace = NULL;
2184
2185 /* Find first leaf entry down from de_next. */
2186 vbn = de_get_vbn(de_next);
2187 for (;;) {
2188 n = NULL;
2189 err = indx_read(indx, ni, vbn, &n);
2190 if (err)
2191 goto out;
2192
2193 e = hdr_first_de(&n->index->ihdr);
2194 fnd_push(fnd, n, e);
2195 if (!e) {
2196 err = -EINVAL;
2197 goto out;
2198 }
2199
2200 if (!de_is_last(e)) {
2201 /*
2202 * This buffer is non-empty, so its first entry
2203 * could be used as the replacement entry.
2204 */
2205 level = fnd->level - 1;
2206 }
2207
2208 if (!de_has_vcn(e))
2209 break;
2210
2211 /* This buffer is a node. Continue to go down. */
2212 vbn = de_get_vbn(e);
2213 }
2214
2215 if (level == -1)
2216 goto out;
2217
2218 n = fnd->nodes[level];
2219 te = hdr_first_de(&n->index->ihdr);
2220 if (!te) {
2221 err = -EINVAL;
2222 goto out;
2223 }
2224 /* Copy the candidate entry into the replacement entry buffer. */
2225 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2226 if (!re) {
2227 err = -ENOMEM;
2228 goto out;
2229 }
2230
2231 *de_to_replace = re;
2232 memcpy(re, te, le16_to_cpu(te->size));
2233
2234 if (!de_has_vcn(re)) {
2235 /*
2236 * The replacement entry we found doesn't have a sub_vcn.
2237 * increase its size to hold one.
2238 */
2239 le16_add_cpu(&re->size, sizeof(u64));
2240 re->flags |= NTFS_IE_HAS_SUBNODES;
2241 } else {
2242 /*
2243 * The replacement entry we found was a node entry, which
2244 * means that all its child buffers are empty. Return them
2245 * to the free pool.
2246 */
2247 indx_free_children(indx, ni, te, true);
2248 }
2249
2250 /*
2251 * Expunge the replacement entry from its former location,
2252 * and then write that buffer.
2253 */
2254 ib = n->index;
2255 e = hdr_delete_de(&ib->ihdr, te);
2256
2257 fnd->de[level] = e;
2258 indx_write(indx, ni, n, 0);
2259
2260 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2261 /* An empty leaf. */
2262 return 0;
2263 }
2264
2265 out:
2266 fnd_clear(fnd);
2267 return err;
2268 }
2269
2270 /*
2271 * indx_delete_entry - Delete an entry from the index.
2272 */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2273 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2274 const void *key, u32 key_len, const void *ctx)
2275 {
2276 int err, diff;
2277 struct INDEX_ROOT *root;
2278 struct INDEX_HDR *hdr;
2279 struct ntfs_fnd *fnd, *fnd2;
2280 struct INDEX_BUFFER *ib;
2281 struct NTFS_DE *e, *re, *next, *prev, *me;
2282 struct indx_node *n, *n2d = NULL;
2283 __le64 sub_vbn;
2284 int level, level2;
2285 struct ATTRIB *attr;
2286 struct mft_inode *mi;
2287 u32 e_size, root_size, new_root_size;
2288 size_t trim_bit;
2289 const struct INDEX_NAMES *in;
2290
2291 fnd = fnd_get();
2292 if (!fnd) {
2293 err = -ENOMEM;
2294 goto out2;
2295 }
2296
2297 fnd2 = fnd_get();
2298 if (!fnd2) {
2299 err = -ENOMEM;
2300 goto out1;
2301 }
2302
2303 root = indx_get_root(indx, ni, &attr, &mi);
2304 if (!root) {
2305 err = -EINVAL;
2306 goto out;
2307 }
2308
2309 /* Locate the entry to remove. */
2310 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2311 if (err)
2312 goto out;
2313
2314 if (!e || diff) {
2315 err = -ENOENT;
2316 goto out;
2317 }
2318
2319 level = fnd->level;
2320
2321 if (level) {
2322 n = fnd->nodes[level - 1];
2323 e = fnd->de[level - 1];
2324 ib = n->index;
2325 hdr = &ib->ihdr;
2326 } else {
2327 hdr = &root->ihdr;
2328 e = fnd->root_de;
2329 n = NULL;
2330 }
2331
2332 e_size = le16_to_cpu(e->size);
2333
2334 if (!de_has_vcn_ex(e)) {
2335 /* The entry to delete is a leaf, so we can just rip it out. */
2336 hdr_delete_de(hdr, e);
2337
2338 if (!level) {
2339 hdr->total = hdr->used;
2340
2341 /* Shrink resident root attribute. */
2342 mi_resize_attr(mi, attr, 0 - e_size);
2343 goto out;
2344 }
2345
2346 indx_write(indx, ni, n, 0);
2347
2348 /*
2349 * Check to see if removing that entry made
2350 * the leaf empty.
2351 */
2352 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2353 fnd_pop(fnd);
2354 fnd_push(fnd2, n, e);
2355 }
2356 } else {
2357 /*
2358 * The entry we wish to delete is a node buffer, so we
2359 * have to find a replacement for it.
2360 */
2361 next = de_get_next(e);
2362
2363 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2364 if (err)
2365 goto out;
2366
2367 if (re) {
2368 de_set_vbn_le(re, de_get_vbn_le(e));
2369 hdr_delete_de(hdr, e);
2370
2371 err = level ? indx_insert_into_buffer(indx, ni, root,
2372 re, ctx,
2373 fnd->level - 1,
2374 fnd) :
2375 indx_insert_into_root(indx, ni, re, e,
2376 ctx, fnd, 0);
2377 kfree(re);
2378
2379 if (err)
2380 goto out;
2381 } else {
2382 /*
2383 * There is no replacement for the current entry.
2384 * This means that the subtree rooted at its node
2385 * is empty, and can be deleted, which turn means
2386 * that the node can just inherit the deleted
2387 * entry sub_vcn.
2388 */
2389 indx_free_children(indx, ni, next, true);
2390
2391 de_set_vbn_le(next, de_get_vbn_le(e));
2392 hdr_delete_de(hdr, e);
2393 if (level) {
2394 indx_write(indx, ni, n, 0);
2395 } else {
2396 hdr->total = hdr->used;
2397
2398 /* Shrink resident root attribute. */
2399 mi_resize_attr(mi, attr, 0 - e_size);
2400 }
2401 }
2402 }
2403
2404 /* Delete a branch of tree. */
2405 if (!fnd2 || !fnd2->level)
2406 goto out;
2407
2408 /* Reinit root 'cause it can be changed. */
2409 root = indx_get_root(indx, ni, &attr, &mi);
2410 if (!root) {
2411 err = -EINVAL;
2412 goto out;
2413 }
2414
2415 n2d = NULL;
2416 sub_vbn = fnd2->nodes[0]->index->vbn;
2417 level2 = 0;
2418 level = fnd->level;
2419
2420 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2421
2422 /* Scan current level. */
2423 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2424 if (!e) {
2425 err = -EINVAL;
2426 goto out;
2427 }
2428
2429 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2430 break;
2431
2432 if (de_is_last(e)) {
2433 e = NULL;
2434 break;
2435 }
2436 }
2437
2438 if (!e) {
2439 /* Do slow search from root. */
2440 struct indx_node *in;
2441
2442 fnd_clear(fnd);
2443
2444 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2445 if (IS_ERR(in)) {
2446 err = PTR_ERR(in);
2447 goto out;
2448 }
2449
2450 if (in)
2451 fnd_push(fnd, in, NULL);
2452 }
2453
2454 /* Merge fnd2 -> fnd. */
2455 for (level = 0; level < fnd2->level; level++) {
2456 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2457 fnd2->nodes[level] = NULL;
2458 }
2459 fnd2->level = 0;
2460
2461 hdr = NULL;
2462 for (level = fnd->level; level; level--) {
2463 struct indx_node *in = fnd->nodes[level - 1];
2464
2465 ib = in->index;
2466 if (ib_is_empty(ib)) {
2467 sub_vbn = ib->vbn;
2468 } else {
2469 hdr = &ib->ihdr;
2470 n2d = in;
2471 level2 = level;
2472 break;
2473 }
2474 }
2475
2476 if (!hdr)
2477 hdr = &root->ihdr;
2478
2479 e = hdr_first_de(hdr);
2480 if (!e) {
2481 err = -EINVAL;
2482 goto out;
2483 }
2484
2485 if (hdr != &root->ihdr || !de_is_last(e)) {
2486 prev = NULL;
2487 while (!de_is_last(e)) {
2488 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2489 break;
2490 prev = e;
2491 e = hdr_next_de(hdr, e);
2492 if (!e) {
2493 err = -EINVAL;
2494 goto out;
2495 }
2496 }
2497
2498 if (sub_vbn != de_get_vbn_le(e)) {
2499 /*
2500 * Didn't find the parent entry, although this buffer
2501 * is the parent trail. Something is corrupt.
2502 */
2503 err = -EINVAL;
2504 goto out;
2505 }
2506
2507 if (de_is_last(e)) {
2508 /*
2509 * Since we can't remove the end entry, we'll remove
2510 * its predecessor instead. This means we have to
2511 * transfer the predecessor's sub_vcn to the end entry.
2512 * Note: This index block is not empty, so the
2513 * predecessor must exist.
2514 */
2515 if (!prev) {
2516 err = -EINVAL;
2517 goto out;
2518 }
2519
2520 if (de_has_vcn(prev)) {
2521 de_set_vbn_le(e, de_get_vbn_le(prev));
2522 } else if (de_has_vcn(e)) {
2523 le16_sub_cpu(&e->size, sizeof(u64));
2524 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2525 le32_sub_cpu(&hdr->used, sizeof(u64));
2526 }
2527 e = prev;
2528 }
2529
2530 /*
2531 * Copy the current entry into a temporary buffer (stripping
2532 * off its down-pointer, if any) and delete it from the current
2533 * buffer or root, as appropriate.
2534 */
2535 e_size = le16_to_cpu(e->size);
2536 me = kmemdup(e, e_size, GFP_NOFS);
2537 if (!me) {
2538 err = -ENOMEM;
2539 goto out;
2540 }
2541
2542 if (de_has_vcn(me)) {
2543 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2544 le16_sub_cpu(&me->size, sizeof(u64));
2545 }
2546
2547 hdr_delete_de(hdr, e);
2548
2549 if (hdr == &root->ihdr) {
2550 level = 0;
2551 hdr->total = hdr->used;
2552
2553 /* Shrink resident root attribute. */
2554 mi_resize_attr(mi, attr, 0 - e_size);
2555 } else {
2556 indx_write(indx, ni, n2d, 0);
2557 level = level2;
2558 }
2559
2560 /* Mark unused buffers as free. */
2561 trim_bit = -1;
2562 for (; level < fnd->level; level++) {
2563 ib = fnd->nodes[level]->index;
2564 if (ib_is_empty(ib)) {
2565 size_t k = le64_to_cpu(ib->vbn) >>
2566 indx->idx2vbn_bits;
2567
2568 indx_mark_free(indx, ni, k);
2569 if (k < trim_bit)
2570 trim_bit = k;
2571 }
2572 }
2573
2574 fnd_clear(fnd);
2575 /*fnd->root_de = NULL;*/
2576
2577 /*
2578 * Re-insert the entry into the tree.
2579 * Find the spot the tree where we want to insert the new entry.
2580 */
2581 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2582 kfree(me);
2583 if (err)
2584 goto out;
2585
2586 if (trim_bit != -1)
2587 indx_shrink(indx, ni, trim_bit);
2588 } else {
2589 /*
2590 * This tree needs to be collapsed down to an empty root.
2591 * Recreate the index root as an empty leaf and free all
2592 * the bits the index allocation bitmap.
2593 */
2594 fnd_clear(fnd);
2595 fnd_clear(fnd2);
2596
2597 in = &s_index_names[indx->type];
2598
2599 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2600 &indx->alloc_run, 0, NULL, false, NULL);
2601 if (in->name == I30_NAME)
2602 i_size_write(&ni->vfs_inode, 0);
2603
2604 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2605 false, NULL);
2606 run_close(&indx->alloc_run);
2607
2608 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2609 &indx->bitmap_run, 0, NULL, false, NULL);
2610 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2611 false, NULL);
2612 run_close(&indx->bitmap_run);
2613
2614 root = indx_get_root(indx, ni, &attr, &mi);
2615 if (!root) {
2616 err = -EINVAL;
2617 goto out;
2618 }
2619
2620 root_size = le32_to_cpu(attr->res.data_size);
2621 new_root_size =
2622 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2623
2624 if (new_root_size != root_size &&
2625 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2626 err = -EINVAL;
2627 goto out;
2628 }
2629
2630 /* Fill first entry. */
2631 e = (struct NTFS_DE *)(root + 1);
2632 e->ref.low = 0;
2633 e->ref.high = 0;
2634 e->ref.seq = 0;
2635 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2636 e->flags = NTFS_IE_LAST; // 0x02
2637 e->key_size = 0;
2638 e->res = 0;
2639
2640 hdr = &root->ihdr;
2641 hdr->flags = 0;
2642 hdr->used = hdr->total = cpu_to_le32(
2643 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2644 mi->dirty = true;
2645 }
2646
2647 out:
2648 fnd_put(fnd2);
2649 out1:
2650 fnd_put(fnd);
2651 out2:
2652 return err;
2653 }
2654
2655 /*
2656 * Update duplicated information in directory entry
2657 * 'dup' - info from MFT record
2658 */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2659 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2660 const struct ATTR_FILE_NAME *fname,
2661 const struct NTFS_DUP_INFO *dup, int sync)
2662 {
2663 int err, diff;
2664 struct NTFS_DE *e = NULL;
2665 struct ATTR_FILE_NAME *e_fname;
2666 struct ntfs_fnd *fnd;
2667 struct INDEX_ROOT *root;
2668 struct mft_inode *mi;
2669 struct ntfs_index *indx = &ni->dir;
2670
2671 fnd = fnd_get();
2672 if (!fnd)
2673 return -ENOMEM;
2674
2675 root = indx_get_root(indx, ni, NULL, &mi);
2676 if (!root) {
2677 err = -EINVAL;
2678 goto out;
2679 }
2680
2681 /* Find entry in directory. */
2682 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2683 &diff, &e, fnd);
2684 if (err)
2685 goto out;
2686
2687 if (!e) {
2688 err = -EINVAL;
2689 goto out;
2690 }
2691
2692 if (diff) {
2693 err = -EINVAL;
2694 goto out;
2695 }
2696
2697 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2698
2699 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2700 /*
2701 * Nothing to update in index! Try to avoid this call.
2702 */
2703 goto out;
2704 }
2705
2706 memcpy(&e_fname->dup, dup, sizeof(*dup));
2707
2708 if (fnd->level) {
2709 /* Directory entry in index. */
2710 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2711 } else {
2712 /* Directory entry in directory MFT record. */
2713 mi->dirty = true;
2714 if (sync)
2715 err = mi_write(mi, 1);
2716 else
2717 mark_inode_dirty(&ni->vfs_inode);
2718 }
2719
2720 out:
2721 fnd_put(fnd);
2722 return err;
2723 }
2724