xref: /linux/fs/ntfs3/index.c (revision a9b38767c607e0de219b66a2b1ba0cb37beaba08)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit_le(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit_le(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ?
435 			     (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436 			     false;
437 		put_bh(bh);
438 
439 		if (ok) {
440 			*ret += 8 * vbo;
441 			return 0;
442 		}
443 
444 		if (++vblock >= eblock) {
445 			*ret = MINUS_ONE_T;
446 			return 0;
447 		}
448 	}
449 	blk = 0;
450 	vcn_next = vcn + clen;
451 	down_read(lock);
452 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453 	if (!ok)
454 		vcn = vcn_next;
455 	up_read(lock);
456 	goto next_run;
457 }
458 
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460 {
461 	size_t pos = find_next_zero_bit_le(buf, bits, bit);
462 
463 	if (pos >= bits)
464 		return false;
465 	*ret = pos;
466 	return true;
467 }
468 
469 /*
470  * indx_find_free - Look for free bit.
471  *
472  * Return: -1 if no free bits.
473  */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 			  size_t *bit, struct ATTRIB **bitmap)
476 {
477 	struct ATTRIB *b;
478 	struct ATTR_LIST_ENTRY *le = NULL;
479 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
480 	int err;
481 
482 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483 			 NULL, NULL);
484 
485 	if (!b)
486 		return -ENOENT;
487 
488 	*bitmap = b;
489 	*bit = MINUS_ONE_T;
490 
491 	if (!b->non_res) {
492 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493 		size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
494 
495 		if (pos < nbits)
496 			*bit = pos;
497 	} else {
498 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499 
500 		if (err)
501 			return err;
502 	}
503 
504 	return 0;
505 }
506 
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508 {
509 	size_t pos = find_next_bit_le(buf, bits, bit);
510 
511 	if (pos >= bits)
512 		return false;
513 	*ret = pos;
514 	return true;
515 }
516 
517 /*
518  * indx_used_bit - Look for used bit.
519  *
520  * Return: MINUS_ONE_T if no used bits.
521  */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523 {
524 	struct ATTRIB *b;
525 	struct ATTR_LIST_ENTRY *le = NULL;
526 	size_t from = *bit;
527 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
528 	int err;
529 
530 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531 			 NULL, NULL);
532 
533 	if (!b)
534 		return -ENOENT;
535 
536 	*bit = MINUS_ONE_T;
537 
538 	if (!b->non_res) {
539 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540 		size_t pos = find_next_bit_le(resident_data(b), nbits, from);
541 
542 		if (pos < nbits)
543 			*bit = pos;
544 	} else {
545 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546 		if (err)
547 			return err;
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * hdr_find_split
555  *
556  * Find a point at which the index allocation buffer would like to be split.
557  * NOTE: This function should never return 'END' entry NULL returns on error.
558  */
hdr_find_split(const struct INDEX_HDR * hdr)559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560 {
561 	size_t o;
562 	const struct NTFS_DE *e = hdr_first_de(hdr);
563 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564 	u16 esize;
565 
566 	if (!e || de_is_last(e))
567 		return NULL;
568 
569 	esize = le16_to_cpu(e->size);
570 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 		const struct NTFS_DE *p = e;
572 
573 		e = Add2Ptr(hdr, o);
574 
575 		/* We must not return END entry. */
576 		if (de_is_last(e))
577 			return p;
578 
579 		esize = le16_to_cpu(e->size);
580 	}
581 
582 	return e;
583 }
584 
585 /*
586  * hdr_insert_head - Insert some entries at the beginning of the buffer.
587  *
588  * It is used to insert entries into a newly-created buffer.
589  */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 					     const void *ins, u32 ins_bytes)
592 {
593 	u32 to_move;
594 	struct NTFS_DE *e = hdr_first_de(hdr);
595 	u32 used = le32_to_cpu(hdr->used);
596 
597 	if (!e)
598 		return NULL;
599 
600 	/* Now we just make room for the inserted entries and jam it in. */
601 	to_move = used - le32_to_cpu(hdr->de_off);
602 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 	memcpy(e, ins, ins_bytes);
604 	hdr->used = cpu_to_le32(used + ins_bytes);
605 
606 	return e;
607 }
608 
609 /*
610  * index_hdr_check
611  *
612  * return true if INDEX_HDR is valid
613  */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615 {
616 	u32 end = le32_to_cpu(hdr->used);
617 	u32 tot = le32_to_cpu(hdr->total);
618 	u32 off = le32_to_cpu(hdr->de_off);
619 
620 	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 	    size_add(off, sizeof(struct NTFS_DE)) > end) {
622 		/* incorrect index buffer. */
623 		return false;
624 	}
625 
626 	return true;
627 }
628 
629 /*
630  * index_buf_check
631  *
632  * return true if INDEX_BUFFER seems is valid
633  */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635 			    const CLST *vbn)
636 {
637 	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 	u16 fo = le16_to_cpu(rhdr->fix_off);
639 	u16 fn = le16_to_cpu(rhdr->fix_num);
640 
641 	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 	    rhdr->sign != NTFS_INDX_SIGNATURE ||
643 	    fo < sizeof(struct INDEX_BUFFER)
644 	    /* Check index buffer vbn. */
645 	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 	    fo + fn * sizeof(short) >= bytes ||
647 	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 		/* incorrect index buffer. */
649 		return false;
650 	}
651 
652 	return index_hdr_check(&ib->ihdr,
653 			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
654 }
655 
fnd_clear(struct ntfs_fnd * fnd)656 void fnd_clear(struct ntfs_fnd *fnd)
657 {
658 	int i;
659 
660 	for (i = fnd->level - 1; i >= 0; i--) {
661 		struct indx_node *n = fnd->nodes[i];
662 
663 		if (!n)
664 			continue;
665 
666 		put_indx_node(n);
667 		fnd->nodes[i] = NULL;
668 	}
669 	fnd->level = 0;
670 	fnd->root_de = NULL;
671 }
672 
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674 		    struct NTFS_DE *e)
675 {
676 	int i = fnd->level;
677 
678 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 		return -EINVAL;
680 	fnd->nodes[i] = n;
681 	fnd->de[i] = e;
682 	fnd->level += 1;
683 	return 0;
684 }
685 
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 	struct indx_node *n;
689 	int i = fnd->level;
690 
691 	i -= 1;
692 	n = fnd->nodes[i];
693 	fnd->nodes[i] = NULL;
694 	fnd->level = i;
695 
696 	return n;
697 }
698 
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 	if (!fnd->level)
702 		return !fnd->root_de;
703 
704 	return !fnd->de[fnd->level - 1];
705 }
706 
707 /*
708  * hdr_find_e - Locate an entry the index buffer.
709  *
710  * If no matching entry is found, it returns the first entry which is greater
711  * than the desired entry If the search key is greater than all the entries the
712  * buffer, it returns the 'end' entry. This function does a binary search of the
713  * current index buffer, for the first entry that is <= to the search value.
714  *
715  * Return: NULL if error.
716  */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 				  const struct INDEX_HDR *hdr, const void *key,
719 				  size_t key_len, const void *ctx, int *diff)
720 {
721 	struct NTFS_DE *e, *found = NULL;
722 	NTFS_CMP_FUNC cmp = indx->cmp;
723 	int min_idx = 0, mid_idx, max_idx = 0;
724 	int diff2;
725 	int table_size = 8;
726 	u32 e_size, e_key_len;
727 	u32 end = le32_to_cpu(hdr->used);
728 	u32 off = le32_to_cpu(hdr->de_off);
729 	u32 total = le32_to_cpu(hdr->total);
730 	u16 offs[128];
731 
732 	if (unlikely(!cmp))
733 		return NULL;
734 
735 fill_table:
736 	if (end > total)
737 		return NULL;
738 
739 	if (size_add(off, sizeof(struct NTFS_DE)) > end)
740 		return NULL;
741 
742 	e = Add2Ptr(hdr, off);
743 	e_size = le16_to_cpu(e->size);
744 
745 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 		return NULL;
747 
748 	if (!de_is_last(e)) {
749 		offs[max_idx] = off;
750 		off += e_size;
751 
752 		max_idx++;
753 		if (max_idx < table_size)
754 			goto fill_table;
755 
756 		max_idx--;
757 	}
758 
759 binary_search:
760 	e_key_len = le16_to_cpu(e->key_size);
761 
762 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 	if (diff2 > 0) {
764 		if (found) {
765 			min_idx = mid_idx + 1;
766 		} else {
767 			if (de_is_last(e))
768 				return NULL;
769 
770 			max_idx = 0;
771 			table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772 			goto fill_table;
773 		}
774 	} else if (diff2 < 0) {
775 		if (found)
776 			max_idx = mid_idx - 1;
777 		else
778 			max_idx--;
779 
780 		found = e;
781 	} else {
782 		*diff = 0;
783 		return e;
784 	}
785 
786 	if (min_idx > max_idx) {
787 		*diff = -1;
788 		return found;
789 	}
790 
791 	mid_idx = (min_idx + max_idx) >> 1;
792 	e = Add2Ptr(hdr, offs[mid_idx]);
793 
794 	goto binary_search;
795 }
796 
797 /*
798  * hdr_insert_de - Insert an index entry into the buffer.
799  *
800  * 'before' should be a pointer previously returned from hdr_find_e.
801  */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)802 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803 				     struct INDEX_HDR *hdr,
804 				     const struct NTFS_DE *de,
805 				     struct NTFS_DE *before, const void *ctx)
806 {
807 	int diff;
808 	size_t off = PtrOffset(hdr, before);
809 	u32 used = le32_to_cpu(hdr->used);
810 	u32 total = le32_to_cpu(hdr->total);
811 	u16 de_size = le16_to_cpu(de->size);
812 
813 	/* First, check to see if there's enough room. */
814 	if (used + de_size > total)
815 		return NULL;
816 
817 	/* We know there's enough space, so we know we'll succeed. */
818 	if (before) {
819 		/* Check that before is inside Index. */
820 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821 		    off + le16_to_cpu(before->size) > total) {
822 			return NULL;
823 		}
824 		goto ok;
825 	}
826 	/* No insert point is applied. Get it manually. */
827 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828 			    &diff);
829 	if (!before)
830 		return NULL;
831 	off = PtrOffset(hdr, before);
832 
833 ok:
834 	/* Now we just make room for the entry and jam it in. */
835 	memmove(Add2Ptr(before, de_size), before, used - off);
836 
837 	hdr->used = cpu_to_le32(used + de_size);
838 	memcpy(before, de, de_size);
839 
840 	return before;
841 }
842 
843 /*
844  * hdr_delete_de - Remove an entry from the index buffer.
845  */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)846 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847 					    struct NTFS_DE *re)
848 {
849 	u32 used = le32_to_cpu(hdr->used);
850 	u16 esize = le16_to_cpu(re->size);
851 	u32 off = PtrOffset(hdr, re);
852 	int bytes = used - (off + esize);
853 
854 	/* check INDEX_HDR valid before using INDEX_HDR */
855 	if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856 		return NULL;
857 
858 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
859 	    bytes < sizeof(struct NTFS_DE))
860 		return NULL;
861 
862 	hdr->used = cpu_to_le32(used - esize);
863 	memmove(re, Add2Ptr(re, esize), bytes);
864 
865 	return re;
866 }
867 
indx_clear(struct ntfs_index * indx)868 void indx_clear(struct ntfs_index *indx)
869 {
870 	run_close(&indx->alloc_run);
871 	run_close(&indx->bitmap_run);
872 }
873 
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)874 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875 	      const struct ATTRIB *attr, enum index_mutex_classed type)
876 {
877 	u32 t32;
878 	const struct INDEX_ROOT *root = resident_data(attr);
879 
880 	t32 = le32_to_cpu(attr->res.data_size);
881 	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882 	    !index_hdr_check(&root->ihdr,
883 			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884 		goto out;
885 	}
886 
887 	/* Check root fields. */
888 	if (!root->index_block_clst)
889 		goto out;
890 
891 	indx->type = type;
892 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
893 
894 	t32 = le32_to_cpu(root->index_block_size);
895 	indx->index_bits = blksize_bits(t32);
896 
897 	/* Check index record size. */
898 	if (t32 < sbi->cluster_size) {
899 		/* Index record is smaller than a cluster, use 512 blocks. */
900 		if (t32 != root->index_block_clst * SECTOR_SIZE)
901 			goto out;
902 
903 		/* Check alignment to a cluster. */
904 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 		    (root->index_block_clst - 1)) {
906 			goto out;
907 		}
908 
909 		indx->vbn2vbo_bits = SECTOR_SHIFT;
910 	} else {
911 		/* Index record must be a multiple of cluster size. */
912 		if (t32 != root->index_block_clst << sbi->cluster_bits)
913 			goto out;
914 
915 		indx->vbn2vbo_bits = sbi->cluster_bits;
916 	}
917 
918 	init_rwsem(&indx->run_lock);
919 
920 	indx->cmp = get_cmp_func(root);
921 	if (!indx->cmp)
922 		goto out;
923 
924 	return 0;
925 
926 out:
927 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928 	return -EINVAL;
929 }
930 
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)931 static struct indx_node *indx_new(struct ntfs_index *indx,
932 				  struct ntfs_inode *ni, CLST vbn,
933 				  const __le64 *sub_vbn)
934 {
935 	int err;
936 	struct NTFS_DE *e;
937 	struct indx_node *r;
938 	struct INDEX_HDR *hdr;
939 	struct INDEX_BUFFER *index;
940 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941 	u32 bytes = 1u << indx->index_bits;
942 	u16 fn;
943 	u32 eo;
944 
945 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
946 	if (!r)
947 		return ERR_PTR(-ENOMEM);
948 
949 	index = kzalloc(bytes, GFP_NOFS);
950 	if (!index) {
951 		kfree(r);
952 		return ERR_PTR(-ENOMEM);
953 	}
954 
955 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
956 
957 	if (err) {
958 		kfree(index);
959 		kfree(r);
960 		return ERR_PTR(err);
961 	}
962 
963 	/* Create header. */
964 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
965 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967 	index->rhdr.fix_num = cpu_to_le16(fn);
968 	index->vbn = cpu_to_le64(vbn);
969 	hdr = &index->ihdr;
970 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971 	hdr->de_off = cpu_to_le32(eo);
972 
973 	e = Add2Ptr(hdr, eo);
974 
975 	if (sub_vbn) {
976 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978 		hdr->used =
979 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980 		de_set_vbn_le(e, *sub_vbn);
981 		hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
982 	} else {
983 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985 		e->flags = NTFS_IE_LAST;
986 	}
987 
988 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989 
990 	r->index = index;
991 	return r;
992 }
993 
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)994 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995 				 struct ATTRIB **attr, struct mft_inode **mi)
996 {
997 	struct ATTR_LIST_ENTRY *le = NULL;
998 	struct ATTRIB *a;
999 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000 	struct INDEX_ROOT *root;
1001 
1002 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003 			 mi);
1004 	if (!a)
1005 		return NULL;
1006 
1007 	if (attr)
1008 		*attr = a;
1009 
1010 	root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 
1012 	/* length check */
1013 	if (root &&
1014 	    offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015 		    le32_to_cpu(a->res.data_size)) {
1016 		return NULL;
1017 	}
1018 
1019 	return root;
1020 }
1021 
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023 		      struct indx_node *node, int sync)
1024 {
1025 	struct INDEX_BUFFER *ib = node->index;
1026 
1027 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029 
1030 /*
1031  * indx_read
1032  *
1033  * If ntfs_readdir calls this function
1034  * inode is shared locked and no ni_lock.
1035  * Use rw_semaphore for read/write access to alloc_run.
1036  */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038 	      struct indx_node **node)
1039 {
1040 	int err;
1041 	struct INDEX_BUFFER *ib;
1042 	struct runs_tree *run = &indx->alloc_run;
1043 	struct rw_semaphore *lock = &indx->run_lock;
1044 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045 	u32 bytes = 1u << indx->index_bits;
1046 	struct indx_node *in = *node;
1047 	const struct INDEX_NAMES *name;
1048 
1049 	if (!in) {
1050 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051 		if (!in)
1052 			return -ENOMEM;
1053 	} else {
1054 		nb_put(&in->nb);
1055 	}
1056 
1057 	ib = in->index;
1058 	if (!ib) {
1059 		ib = kmalloc(bytes, GFP_NOFS);
1060 		if (!ib) {
1061 			err = -ENOMEM;
1062 			goto out;
1063 		}
1064 	}
1065 
1066 	down_read(lock);
1067 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068 	up_read(lock);
1069 	if (!err)
1070 		goto ok;
1071 
1072 	if (err == -E_NTFS_FIXUP)
1073 		goto ok;
1074 
1075 	if (err != -ENOENT)
1076 		goto out;
1077 
1078 	name = &s_index_names[indx->type];
1079 	down_write(lock);
1080 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081 				   run, vbo, vbo + bytes);
1082 	up_write(lock);
1083 	if (err)
1084 		goto out;
1085 
1086 	down_read(lock);
1087 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088 	up_read(lock);
1089 	if (err == -E_NTFS_FIXUP)
1090 		goto ok;
1091 
1092 	if (err)
1093 		goto out;
1094 
1095 ok:
1096 	if (!index_buf_check(ib, bytes, &vbn)) {
1097 		_ntfs_bad_inode(&ni->vfs_inode);
1098 		err = -EINVAL;
1099 		goto out;
1100 	}
1101 
1102 	if (err == -E_NTFS_FIXUP) {
1103 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1104 		err = 0;
1105 	}
1106 
1107 	/* check for index header length */
1108 	if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1109 	    bytes) {
1110 		err = -EINVAL;
1111 		goto out;
1112 	}
1113 
1114 	in->index = ib;
1115 	*node = in;
1116 
1117 out:
1118 	if (err == -E_NTFS_CORRUPT) {
1119 		_ntfs_bad_inode(&ni->vfs_inode);
1120 		err = -EINVAL;
1121 	}
1122 
1123 	if (ib != in->index)
1124 		kfree(ib);
1125 
1126 	if (*node != in) {
1127 		nb_put(&in->nb);
1128 		kfree(in);
1129 	}
1130 
1131 	return err;
1132 }
1133 
1134 /*
1135  * indx_find - Scan NTFS directory for given entry.
1136  */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1137 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1138 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1139 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1140 	      struct ntfs_fnd *fnd)
1141 {
1142 	int err;
1143 	struct NTFS_DE *e;
1144 	struct indx_node *node;
1145 
1146 	if (!root)
1147 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1148 
1149 	if (!root) {
1150 		/* Should not happen. */
1151 		return -EINVAL;
1152 	}
1153 
1154 	/* Check cache. */
1155 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1156 	if (e && !de_is_last(e) &&
1157 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1158 		*entry = e;
1159 		*diff = 0;
1160 		return 0;
1161 	}
1162 
1163 	/* Soft finder reset. */
1164 	fnd_clear(fnd);
1165 
1166 	/* Lookup entry that is <= to the search value. */
1167 	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1168 	if (!e)
1169 		return -EINVAL;
1170 
1171 	fnd->root_de = e;
1172 
1173 	for (;;) {
1174 		node = NULL;
1175 		if (*diff >= 0 || !de_has_vcn_ex(e))
1176 			break;
1177 
1178 		/* Read next level. */
1179 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1180 		if (err) {
1181 			/* io error? */
1182 			return err;
1183 		}
1184 
1185 		/* Lookup entry that is <= to the search value. */
1186 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1187 			       diff);
1188 		if (!e) {
1189 			put_indx_node(node);
1190 			return -EINVAL;
1191 		}
1192 
1193 		fnd_push(fnd, node, e);
1194 	}
1195 
1196 	*entry = e;
1197 	return 0;
1198 }
1199 
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1200 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1201 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1202 		   struct ntfs_fnd *fnd)
1203 {
1204 	int err;
1205 	struct indx_node *n = NULL;
1206 	struct NTFS_DE *e;
1207 	size_t iter = 0;
1208 	int level = fnd->level;
1209 
1210 	if (!*entry) {
1211 		/* Start find. */
1212 		e = hdr_first_de(&root->ihdr);
1213 		if (!e)
1214 			return 0;
1215 		fnd_clear(fnd);
1216 		fnd->root_de = e;
1217 	} else if (!level) {
1218 		if (de_is_last(fnd->root_de)) {
1219 			*entry = NULL;
1220 			return 0;
1221 		}
1222 
1223 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1224 		if (!e)
1225 			return -EINVAL;
1226 		fnd->root_de = e;
1227 	} else {
1228 		n = fnd->nodes[level - 1];
1229 		e = fnd->de[level - 1];
1230 
1231 		if (de_is_last(e))
1232 			goto pop_level;
1233 
1234 		e = hdr_next_de(&n->index->ihdr, e);
1235 		if (!e)
1236 			return -EINVAL;
1237 
1238 		fnd->de[level - 1] = e;
1239 	}
1240 
1241 	/* Just to avoid tree cycle. */
1242 next_iter:
1243 	if (iter++ >= 1000)
1244 		return -EINVAL;
1245 
1246 	while (de_has_vcn_ex(e)) {
1247 		if (le16_to_cpu(e->size) <
1248 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1249 			if (n) {
1250 				fnd_pop(fnd);
1251 				kfree(n);
1252 			}
1253 			return -EINVAL;
1254 		}
1255 
1256 		/* Read next level. */
1257 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1258 		if (err)
1259 			return err;
1260 
1261 		/* Try next level. */
1262 		e = hdr_first_de(&n->index->ihdr);
1263 		if (!e) {
1264 			kfree(n);
1265 			return -EINVAL;
1266 		}
1267 
1268 		fnd_push(fnd, n, e);
1269 	}
1270 
1271 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1272 		*entry = e;
1273 		return 0;
1274 	}
1275 
1276 pop_level:
1277 	for (;;) {
1278 		if (!de_is_last(e))
1279 			goto next_iter;
1280 
1281 		/* Pop one level. */
1282 		if (n) {
1283 			fnd_pop(fnd);
1284 			kfree(n);
1285 		}
1286 
1287 		level = fnd->level;
1288 
1289 		if (level) {
1290 			n = fnd->nodes[level - 1];
1291 			e = fnd->de[level - 1];
1292 		} else if (fnd->root_de) {
1293 			n = NULL;
1294 			e = fnd->root_de;
1295 			fnd->root_de = NULL;
1296 		} else {
1297 			*entry = NULL;
1298 			return 0;
1299 		}
1300 
1301 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1302 			*entry = e;
1303 			if (!fnd->root_de)
1304 				fnd->root_de = e;
1305 			return 0;
1306 		}
1307 	}
1308 }
1309 
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1310 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1311 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1312 		  size_t *off, struct ntfs_fnd *fnd)
1313 {
1314 	int err;
1315 	struct indx_node *n = NULL;
1316 	struct NTFS_DE *e = NULL;
1317 	struct NTFS_DE *e2;
1318 	size_t bit;
1319 	CLST next_used_vbn;
1320 	CLST next_vbn;
1321 	u32 record_size = ni->mi.sbi->record_size;
1322 
1323 	/* Use non sorted algorithm. */
1324 	if (!*entry) {
1325 		/* This is the first call. */
1326 		e = hdr_first_de(&root->ihdr);
1327 		if (!e)
1328 			return 0;
1329 		fnd_clear(fnd);
1330 		fnd->root_de = e;
1331 
1332 		/* The first call with setup of initial element. */
1333 		if (*off >= record_size) {
1334 			next_vbn = (((*off - record_size) >> indx->index_bits))
1335 				   << indx->idx2vbn_bits;
1336 			/* Jump inside cycle 'for'. */
1337 			goto next;
1338 		}
1339 
1340 		/* Start enumeration from root. */
1341 		*off = 0;
1342 	} else if (!fnd->root_de)
1343 		return -EINVAL;
1344 
1345 	for (;;) {
1346 		/* Check if current entry can be used. */
1347 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1348 			goto ok;
1349 
1350 		if (!fnd->level) {
1351 			/* Continue to enumerate root. */
1352 			if (!de_is_last(fnd->root_de)) {
1353 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1354 				if (!e)
1355 					return -EINVAL;
1356 				fnd->root_de = e;
1357 				continue;
1358 			}
1359 
1360 			/* Start to enumerate indexes from 0. */
1361 			next_vbn = 0;
1362 		} else {
1363 			/* Continue to enumerate indexes. */
1364 			e2 = fnd->de[fnd->level - 1];
1365 
1366 			n = fnd->nodes[fnd->level - 1];
1367 
1368 			if (!de_is_last(e2)) {
1369 				e = hdr_next_de(&n->index->ihdr, e2);
1370 				if (!e)
1371 					return -EINVAL;
1372 				fnd->de[fnd->level - 1] = e;
1373 				continue;
1374 			}
1375 
1376 			/* Continue with next index. */
1377 			next_vbn = le64_to_cpu(n->index->vbn) +
1378 				   root->index_block_clst;
1379 		}
1380 
1381 next:
1382 		/* Release current index. */
1383 		if (n) {
1384 			fnd_pop(fnd);
1385 			put_indx_node(n);
1386 			n = NULL;
1387 		}
1388 
1389 		/* Skip all free indexes. */
1390 		bit = next_vbn >> indx->idx2vbn_bits;
1391 		err = indx_used_bit(indx, ni, &bit);
1392 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1393 			/* No used indexes. */
1394 			*entry = NULL;
1395 			return 0;
1396 		}
1397 
1398 		next_used_vbn = bit << indx->idx2vbn_bits;
1399 
1400 		/* Read buffer into memory. */
1401 		err = indx_read(indx, ni, next_used_vbn, &n);
1402 		if (err)
1403 			return err;
1404 
1405 		e = hdr_first_de(&n->index->ihdr);
1406 		fnd_push(fnd, n, e);
1407 		if (!e)
1408 			return -EINVAL;
1409 	}
1410 
1411 ok:
1412 	/* Return offset to restore enumerator if necessary. */
1413 	if (!n) {
1414 		/* 'e' points in root, */
1415 		*off = PtrOffset(&root->ihdr, e);
1416 	} else {
1417 		/* 'e' points in index, */
1418 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1419 		       record_size + PtrOffset(&n->index->ihdr, e);
1420 	}
1421 
1422 	*entry = e;
1423 	return 0;
1424 }
1425 
1426 /*
1427  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1428  */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1429 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1430 				CLST *vbn)
1431 {
1432 	int err;
1433 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1434 	struct ATTRIB *bitmap;
1435 	struct ATTRIB *alloc;
1436 	u32 data_size = 1u << indx->index_bits;
1437 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1438 	CLST len = alloc_size >> sbi->cluster_bits;
1439 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1440 	CLST alen;
1441 	struct runs_tree run;
1442 
1443 	run_init(&run);
1444 
1445 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1446 				     &alen, 0, NULL, NULL);
1447 	if (err)
1448 		goto out;
1449 
1450 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1451 				    &run, 0, len, 0, &alloc, NULL, NULL);
1452 	if (err)
1453 		goto out1;
1454 
1455 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1456 
1457 	err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP,
1458 				 in->name, in->name_len, &bitmap, NULL, NULL);
1459 	if (err)
1460 		goto out2;
1461 
1462 	if (in->name == I30_NAME) {
1463 		i_size_write(&ni->vfs_inode, data_size);
1464 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1465 	}
1466 
1467 	memcpy(&indx->alloc_run, &run, sizeof(run));
1468 
1469 	*vbn = 0;
1470 
1471 	return 0;
1472 
1473 out2:
1474 	mi_remove_attr(NULL, &ni->mi, alloc);
1475 
1476 out1:
1477 	run_deallocate(sbi, &run, false);
1478 
1479 out:
1480 	return err;
1481 }
1482 
1483 /*
1484  * indx_add_allocate - Add clusters to index.
1485  */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1486 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1487 			     CLST *vbn)
1488 {
1489 	int err;
1490 	size_t bit;
1491 	u64 data_size;
1492 	u64 bmp_size, bmp_size_v;
1493 	struct ATTRIB *bmp, *alloc;
1494 	struct mft_inode *mi;
1495 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1496 
1497 	err = indx_find_free(indx, ni, &bit, &bmp);
1498 	if (err)
1499 		goto out1;
1500 
1501 	if (bit != MINUS_ONE_T) {
1502 		bmp = NULL;
1503 	} else {
1504 		if (bmp->non_res) {
1505 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1506 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1507 		} else {
1508 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1509 		}
1510 
1511 		/*
1512 		 * Index blocks exist, but $BITMAP has zero valid bits.
1513 		 * This implies an on-disk corruption and must be rejected.
1514 		 */
1515 		if (in->name == I30_NAME &&
1516 		    unlikely(bmp_size_v == 0 && indx->alloc_run.count)) {
1517 			err = -EINVAL;
1518 			goto out1;
1519 		}
1520 
1521 		bit = bmp_size << 3;
1522 	}
1523 
1524 	data_size = (u64)(bit + 1) << indx->index_bits;
1525 
1526 	if (bmp) {
1527 		/* Increase bitmap. */
1528 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1529 				    &indx->bitmap_run,
1530 				    ntfs3_bitmap_size(bit + 1), NULL, true,
1531 				    NULL);
1532 		if (err)
1533 			goto out1;
1534 	}
1535 
1536 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1537 			     NULL, &mi);
1538 	if (!alloc) {
1539 		err = -EINVAL;
1540 		if (bmp)
1541 			goto out2;
1542 		goto out1;
1543 	}
1544 
1545 	if (data_size <= le64_to_cpu(alloc->nres.data_size)) {
1546 		/* Reuse index. */
1547 		goto out;
1548 	}
1549 
1550 	/* Increase allocation. */
1551 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1552 			    &indx->alloc_run, data_size, &data_size, true,
1553 			    NULL);
1554 	if (err) {
1555 		if (bmp)
1556 			goto out2;
1557 		goto out1;
1558 	}
1559 
1560 	if (in->name == I30_NAME)
1561 		i_size_write(&ni->vfs_inode, data_size);
1562 
1563 out:
1564 	*vbn = bit << indx->idx2vbn_bits;
1565 
1566 	return 0;
1567 
1568 out2:
1569 	/* Ops. No space? */
1570 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1571 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1572 
1573 out1:
1574 	return err;
1575 }
1576 
1577 /*
1578  * indx_insert_into_root - Attempt to insert an entry into the index root.
1579  *
1580  * @undo - True if we undoing previous remove.
1581  * If necessary, it will twiddle the index b-tree.
1582  */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1583 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1584 				 const struct NTFS_DE *new_de,
1585 				 struct NTFS_DE *root_de, const void *ctx,
1586 				 struct ntfs_fnd *fnd, bool undo)
1587 {
1588 	int err = 0;
1589 	struct NTFS_DE *e, *e0, *re;
1590 	struct mft_inode *mi;
1591 	struct ATTRIB *attr;
1592 	struct INDEX_HDR *hdr;
1593 	struct indx_node *n;
1594 	CLST new_vbn;
1595 	__le64 *sub_vbn, t_vbn;
1596 	u16 new_de_size;
1597 	u32 hdr_used, hdr_total, asize, to_move;
1598 	u32 root_size, new_root_size;
1599 	struct ntfs_sb_info *sbi;
1600 	int ds_root;
1601 	struct INDEX_ROOT *root, *a_root;
1602 
1603 	/* Get the record this root placed in. */
1604 	root = indx_get_root(indx, ni, &attr, &mi);
1605 	if (!root)
1606 		return -EINVAL;
1607 
1608 	/*
1609 	 * Try easy case:
1610 	 * hdr_insert_de will succeed if there's
1611 	 * room the root for the new entry.
1612 	 */
1613 	hdr = &root->ihdr;
1614 	sbi = ni->mi.sbi;
1615 	new_de_size = le16_to_cpu(new_de->size);
1616 	hdr_used = le32_to_cpu(hdr->used);
1617 	hdr_total = le32_to_cpu(hdr->total);
1618 	asize = le32_to_cpu(attr->size);
1619 	root_size = le32_to_cpu(attr->res.data_size);
1620 
1621 	ds_root = new_de_size + hdr_used - hdr_total;
1622 
1623 	/* If 'undo' is set then reduce requirements. */
1624 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1625 	    mi_resize_attr(mi, attr, ds_root)) {
1626 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1627 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1628 		WARN_ON(!e);
1629 		fnd_clear(fnd);
1630 		fnd->root_de = e;
1631 
1632 		return 0;
1633 	}
1634 
1635 	/* Make a copy of root attribute to restore if error. */
1636 	a_root = kmemdup(attr, asize, GFP_NOFS);
1637 	if (!a_root)
1638 		return -ENOMEM;
1639 
1640 	/*
1641 	 * Copy all the non-end entries from
1642 	 * the index root to the new buffer.
1643 	 */
1644 	to_move = 0;
1645 	e0 = hdr_first_de(hdr);
1646 
1647 	/* Calculate the size to copy. */
1648 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1649 		if (!e) {
1650 			err = -EINVAL;
1651 			goto out_free_root;
1652 		}
1653 
1654 		if (de_is_last(e))
1655 			break;
1656 		to_move += le16_to_cpu(e->size);
1657 	}
1658 
1659 	if (!to_move) {
1660 		re = NULL;
1661 	} else {
1662 		re = kmemdup(e0, to_move, GFP_NOFS);
1663 		if (!re) {
1664 			err = -ENOMEM;
1665 			goto out_free_root;
1666 		}
1667 	}
1668 
1669 	sub_vbn = NULL;
1670 	if (de_has_vcn(e)) {
1671 		t_vbn = de_get_vbn_le(e);
1672 		sub_vbn = &t_vbn;
1673 	}
1674 
1675 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1676 			sizeof(u64);
1677 	ds_root = new_root_size - root_size;
1678 
1679 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1680 		/* Make root external. */
1681 		err = -EOPNOTSUPP;
1682 		goto out_free_re;
1683 	}
1684 
1685 	if (ds_root)
1686 		mi_resize_attr(mi, attr, ds_root);
1687 
1688 	/* Fill first entry (vcn will be set later). */
1689 	e = (struct NTFS_DE *)(root + 1);
1690 	memset(e, 0, sizeof(struct NTFS_DE));
1691 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1692 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1693 
1694 	hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
1695 	hdr->used = hdr->total =
1696 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1697 
1698 	fnd->root_de = hdr_first_de(hdr);
1699 	mi->dirty = true;
1700 
1701 	/* Create alloc and bitmap attributes (if not). */
1702 	err = run_is_empty(&indx->alloc_run) ?
1703 		      indx_create_allocate(indx, ni, &new_vbn) :
1704 		      indx_add_allocate(indx, ni, &new_vbn);
1705 
1706 	/* Layout of record may be changed, so rescan root. */
1707 	root = indx_get_root(indx, ni, &attr, &mi);
1708 	if (!root) {
1709 		/* Bug? */
1710 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1711 		err = -EINVAL;
1712 		goto out_free_re;
1713 	}
1714 
1715 	if (err) {
1716 		/* Restore root. */
1717 		if (mi_resize_attr(mi, attr, -ds_root)) {
1718 			memcpy(attr, a_root, asize);
1719 		} else {
1720 			/* Bug? */
1721 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1722 		}
1723 		goto out_free_re;
1724 	}
1725 
1726 	e = (struct NTFS_DE *)(root + 1);
1727 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1728 	mi->dirty = true;
1729 
1730 	/* Now we can create/format the new buffer and copy the entries into. */
1731 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1732 	if (IS_ERR(n)) {
1733 		err = PTR_ERR(n);
1734 		goto out_free_re;
1735 	}
1736 
1737 	hdr = &n->index->ihdr;
1738 	hdr_used = le32_to_cpu(hdr->used);
1739 	hdr_total = le32_to_cpu(hdr->total);
1740 
1741 	/* Copy root entries into new buffer. */
1742 	hdr_insert_head(hdr, re, to_move);
1743 
1744 	/* Update bitmap attribute. */
1745 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1746 
1747 	/* Check if we can insert new entry new index buffer. */
1748 	if (hdr_used + new_de_size > hdr_total) {
1749 		/*
1750 		 * This occurs if MFT record is the same or bigger than index
1751 		 * buffer. Move all root new index and have no space to add
1752 		 * new entry classic case when MFT record is 1K and index
1753 		 * buffer 4K the problem should not occurs.
1754 		 */
1755 		kfree(re);
1756 		indx_write(indx, ni, n, 0);
1757 
1758 		put_indx_node(n);
1759 		fnd_clear(fnd);
1760 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1761 		goto out_free_root;
1762 	}
1763 
1764 	/*
1765 	 * Now root is a parent for new index buffer.
1766 	 * Insert NewEntry a new buffer.
1767 	 */
1768 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1769 	if (!e) {
1770 		err = -EINVAL;
1771 		goto out_put_n;
1772 	}
1773 	fnd_push(fnd, n, e);
1774 
1775 	/* Just write updates index into disk. */
1776 	indx_write(indx, ni, n, 0);
1777 
1778 	n = NULL;
1779 
1780 out_put_n:
1781 	put_indx_node(n);
1782 out_free_re:
1783 	kfree(re);
1784 out_free_root:
1785 	kfree(a_root);
1786 	return err;
1787 }
1788 
1789 /*
1790  * indx_insert_into_buffer
1791  *
1792  * Attempt to insert an entry into an Index Allocation Buffer.
1793  * If necessary, it will split the buffer.
1794  */
1795 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1796 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1797 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1798 			const void *ctx, int level, struct ntfs_fnd *fnd)
1799 {
1800 	int err;
1801 	const struct NTFS_DE *sp;
1802 	struct NTFS_DE *e, *de_t, *up_e;
1803 	struct indx_node *n2;
1804 	struct indx_node *n1 = fnd->nodes[level];
1805 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1806 	struct INDEX_HDR *hdr2;
1807 	u32 to_copy, used, used1;
1808 	CLST new_vbn;
1809 	__le64 t_vbn, *sub_vbn;
1810 	u16 sp_size;
1811 	void *hdr1_saved = NULL;
1812 
1813 	/* Try the most easy case. */
1814 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1815 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1816 	fnd->de[level] = e;
1817 	if (e) {
1818 		/* Just write updated index into disk. */
1819 		indx_write(indx, ni, n1, 0);
1820 		return 0;
1821 	}
1822 
1823 	/*
1824 	 * No space to insert into buffer. Split it.
1825 	 * To split we:
1826 	 *  - Save split point ('cause index buffers will be changed)
1827 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1828 	 * - Remove all entries (sp including) from TargetBuffer
1829 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1830 	 *     NewEntry)
1831 	 * - Insert sp into parent buffer (or root)
1832 	 * - Make sp a parent for new buffer
1833 	 */
1834 	sp = hdr_find_split(hdr1);
1835 	if (!sp)
1836 		return -EINVAL;
1837 
1838 	sp_size = le16_to_cpu(sp->size);
1839 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1840 	if (!up_e)
1841 		return -ENOMEM;
1842 	memcpy(up_e, sp, sp_size);
1843 
1844 	used1 = le32_to_cpu(hdr1->used);
1845 	hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1846 	if (!hdr1_saved) {
1847 		err = -ENOMEM;
1848 		goto out;
1849 	}
1850 
1851 	if (!hdr1->flags) {
1852 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1853 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1854 		sub_vbn = NULL;
1855 	} else {
1856 		t_vbn = de_get_vbn_le(up_e);
1857 		sub_vbn = &t_vbn;
1858 	}
1859 
1860 	/* Allocate on disk a new index allocation buffer. */
1861 	err = indx_add_allocate(indx, ni, &new_vbn);
1862 	if (err)
1863 		goto out;
1864 
1865 	/* Allocate and format memory a new index buffer. */
1866 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1867 	if (IS_ERR(n2)) {
1868 		err = PTR_ERR(n2);
1869 		goto out;
1870 	}
1871 
1872 	hdr2 = &n2->index->ihdr;
1873 
1874 	/* Make sp a parent for new buffer. */
1875 	de_set_vbn(up_e, new_vbn);
1876 
1877 	/* Copy all the entries <= sp into the new buffer. */
1878 	de_t = hdr_first_de(hdr1);
1879 	to_copy = PtrOffset(de_t, sp);
1880 	hdr_insert_head(hdr2, de_t, to_copy);
1881 
1882 	/* Remove all entries (sp including) from hdr1. */
1883 	used = used1 - to_copy - sp_size;
1884 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1885 	hdr1->used = cpu_to_le32(used);
1886 
1887 	/*
1888 	 * Insert new entry into left or right buffer
1889 	 * (depending on sp <=> new_de).
1890 	 */
1891 	hdr_insert_de(indx,
1892 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1893 				   up_e + 1, le16_to_cpu(up_e->key_size),
1894 				   ctx) < 0 ?
1895 			      hdr2 :
1896 			      hdr1,
1897 		      new_de, NULL, ctx);
1898 
1899 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1900 
1901 	indx_write(indx, ni, n1, 0);
1902 	indx_write(indx, ni, n2, 0);
1903 
1904 	put_indx_node(n2);
1905 
1906 	/*
1907 	 * We've finished splitting everybody, so we are ready to
1908 	 * insert the promoted entry into the parent.
1909 	 */
1910 	if (!level) {
1911 		/* Insert in root. */
1912 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1913 	} else {
1914 		/*
1915 		 * The target buffer's parent is another index buffer.
1916 		 * TODO: Remove recursion.
1917 		 */
1918 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1919 					      level - 1, fnd);
1920 	}
1921 
1922 	if (err) {
1923 		/*
1924 		 * Undo critical operations.
1925 		 */
1926 		indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1927 		memcpy(hdr1, hdr1_saved, used1);
1928 		indx_write(indx, ni, n1, 0);
1929 	}
1930 
1931 out:
1932 	kfree(up_e);
1933 	kfree(hdr1_saved);
1934 
1935 	return err;
1936 }
1937 
1938 /*
1939  * indx_insert_entry - Insert new entry into index.
1940  *
1941  * @undo - True if we undoing previous remove.
1942  */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1943 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1944 		      const struct NTFS_DE *new_de, const void *ctx,
1945 		      struct ntfs_fnd *fnd, bool undo)
1946 {
1947 	int err;
1948 	int diff;
1949 	struct NTFS_DE *e;
1950 	struct ntfs_fnd *fnd_a = NULL;
1951 	struct INDEX_ROOT *root;
1952 
1953 	if (!fnd) {
1954 		fnd_a = fnd_get();
1955 		if (!fnd_a) {
1956 			err = -ENOMEM;
1957 			goto out1;
1958 		}
1959 		fnd = fnd_a;
1960 	}
1961 
1962 	root = indx_get_root(indx, ni, NULL, NULL);
1963 	if (!root) {
1964 		err = -EINVAL;
1965 		goto out;
1966 	}
1967 
1968 	if (fnd_is_empty(fnd)) {
1969 		/*
1970 		 * Find the spot the tree where we want to
1971 		 * insert the new entry.
1972 		 */
1973 		err = indx_find(indx, ni, root, new_de + 1,
1974 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1975 				fnd);
1976 		if (err)
1977 			goto out;
1978 
1979 		if (!diff) {
1980 			err = -EEXIST;
1981 			goto out;
1982 		}
1983 	}
1984 
1985 	if (!fnd->level) {
1986 		/*
1987 		 * The root is also a leaf, so we'll insert the
1988 		 * new entry into it.
1989 		 */
1990 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1991 					    fnd, undo);
1992 	} else {
1993 		/*
1994 		 * Found a leaf buffer, so we'll insert the new entry into it.
1995 		 */
1996 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1997 					      fnd->level - 1, fnd);
1998 	}
1999 
2000 out:
2001 	fnd_put(fnd_a);
2002 out1:
2003 	return err;
2004 }
2005 
2006 /*
2007  * indx_find_buffer - Locate a buffer from the tree.
2008  */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)2009 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
2010 					  struct ntfs_inode *ni,
2011 					  const struct INDEX_ROOT *root,
2012 					  __le64 vbn, struct indx_node *n)
2013 {
2014 	int err;
2015 	const struct NTFS_DE *e;
2016 	struct indx_node *r;
2017 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2018 
2019 	/* Step 1: Scan one level. */
2020 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2021 		if (!e)
2022 			return ERR_PTR(-EINVAL);
2023 
2024 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2025 			return n;
2026 
2027 		if (de_is_last(e))
2028 			break;
2029 	}
2030 
2031 	/* Step2: Do recursion. */
2032 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2033 	for (;;) {
2034 		if (de_has_vcn_ex(e)) {
2035 			err = indx_read(indx, ni, de_get_vbn(e), &n);
2036 			if (err)
2037 				return ERR_PTR(err);
2038 
2039 			r = indx_find_buffer(indx, ni, root, vbn, n);
2040 			if (r)
2041 				return r;
2042 		}
2043 
2044 		if (de_is_last(e))
2045 			break;
2046 
2047 		e = Add2Ptr(e, le16_to_cpu(e->size));
2048 	}
2049 
2050 	return NULL;
2051 }
2052 
2053 /*
2054  * indx_shrink - Deallocate unused tail indexes.
2055  */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2056 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2057 		       size_t bit)
2058 {
2059 	int err = 0;
2060 	u64 bpb, new_data;
2061 	size_t nbits;
2062 	struct ATTRIB *b;
2063 	struct ATTR_LIST_ENTRY *le = NULL;
2064 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2065 
2066 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2067 			 NULL, NULL);
2068 
2069 	if (!b)
2070 		return -ENOENT;
2071 
2072 	if (!b->non_res) {
2073 		unsigned long pos;
2074 		const unsigned long *bm = resident_data(b);
2075 
2076 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2077 
2078 		if (bit >= nbits)
2079 			return 0;
2080 
2081 		pos = find_next_bit_le(bm, nbits, bit);
2082 		if (pos < nbits)
2083 			return 0;
2084 	} else {
2085 		size_t used = MINUS_ONE_T;
2086 
2087 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2088 
2089 		if (bit >= nbits)
2090 			return 0;
2091 
2092 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2093 		if (err)
2094 			return err;
2095 
2096 		if (used != MINUS_ONE_T)
2097 			return 0;
2098 	}
2099 
2100 	new_data = (u64)bit << indx->index_bits;
2101 
2102 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2103 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2104 	if (err)
2105 		return err;
2106 
2107 	if (in->name == I30_NAME)
2108 		i_size_write(&ni->vfs_inode, new_data);
2109 
2110 	bpb = ntfs3_bitmap_size(bit);
2111 	if (bpb * 8 == nbits)
2112 		return 0;
2113 
2114 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2115 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2116 
2117 	return err;
2118 }
2119 
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2120 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2121 			      const struct NTFS_DE *e, bool trim)
2122 {
2123 	int err;
2124 	struct indx_node *n = NULL;
2125 	struct INDEX_HDR *hdr;
2126 	CLST vbn = de_get_vbn(e);
2127 	size_t i;
2128 
2129 	err = indx_read(indx, ni, vbn, &n);
2130 	if (err)
2131 		return err;
2132 
2133 	hdr = &n->index->ihdr;
2134 	/* First, recurse into the children, if any. */
2135 	if (hdr_has_subnode(hdr)) {
2136 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2137 			indx_free_children(indx, ni, e, false);
2138 			if (de_is_last(e))
2139 				break;
2140 		}
2141 	}
2142 
2143 	put_indx_node(n);
2144 
2145 	i = vbn >> indx->idx2vbn_bits;
2146 	/*
2147 	 * We've gotten rid of the children; add this buffer to the free list.
2148 	 */
2149 	indx_mark_free(indx, ni, i);
2150 
2151 	if (!trim)
2152 		return 0;
2153 
2154 	/*
2155 	 * If there are no used indexes after current free index
2156 	 * then we can truncate allocation and bitmap.
2157 	 * Use bitmap to estimate the case.
2158 	 */
2159 	indx_shrink(indx, ni, i + 1);
2160 	return 0;
2161 }
2162 
2163 /*
2164  * indx_get_entry_to_replace
2165  *
2166  * Find a replacement entry for a deleted entry.
2167  * Always returns a node entry:
2168  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2169  */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2170 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2171 				     struct ntfs_inode *ni,
2172 				     const struct NTFS_DE *de_next,
2173 				     struct NTFS_DE **de_to_replace,
2174 				     struct ntfs_fnd *fnd)
2175 {
2176 	int err;
2177 	int level = -1;
2178 	CLST vbn;
2179 	struct NTFS_DE *e, *te, *re;
2180 	struct indx_node *n;
2181 	struct INDEX_BUFFER *ib;
2182 
2183 	*de_to_replace = NULL;
2184 
2185 	/* Find first leaf entry down from de_next. */
2186 	vbn = de_get_vbn(de_next);
2187 	for (;;) {
2188 		n = NULL;
2189 		err = indx_read(indx, ni, vbn, &n);
2190 		if (err)
2191 			goto out;
2192 
2193 		e = hdr_first_de(&n->index->ihdr);
2194 		fnd_push(fnd, n, e);
2195 		if (!e) {
2196 			err = -EINVAL;
2197 			goto out;
2198 		}
2199 
2200 		if (!de_is_last(e)) {
2201 			/*
2202 			 * This buffer is non-empty, so its first entry
2203 			 * could be used as the replacement entry.
2204 			 */
2205 			level = fnd->level - 1;
2206 		}
2207 
2208 		if (!de_has_vcn(e))
2209 			break;
2210 
2211 		/* This buffer is a node. Continue to go down. */
2212 		vbn = de_get_vbn(e);
2213 	}
2214 
2215 	if (level == -1)
2216 		goto out;
2217 
2218 	n = fnd->nodes[level];
2219 	te = hdr_first_de(&n->index->ihdr);
2220 	if (!te) {
2221 		err = -EINVAL;
2222 		goto out;
2223 	}
2224 	/* Copy the candidate entry into the replacement entry buffer. */
2225 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2226 	if (!re) {
2227 		err = -ENOMEM;
2228 		goto out;
2229 	}
2230 
2231 	*de_to_replace = re;
2232 	memcpy(re, te, le16_to_cpu(te->size));
2233 
2234 	if (!de_has_vcn(re)) {
2235 		/*
2236 		 * The replacement entry we found doesn't have a sub_vcn.
2237 		 * increase its size to hold one.
2238 		 */
2239 		le16_add_cpu(&re->size, sizeof(u64));
2240 		re->flags |= NTFS_IE_HAS_SUBNODES;
2241 	} else {
2242 		/*
2243 		 * The replacement entry we found was a node entry, which
2244 		 * means that all its child buffers are empty. Return them
2245 		 * to the free pool.
2246 		 */
2247 		indx_free_children(indx, ni, te, true);
2248 	}
2249 
2250 	/*
2251 	 * Expunge the replacement entry from its former location,
2252 	 * and then write that buffer.
2253 	 */
2254 	ib = n->index;
2255 	e = hdr_delete_de(&ib->ihdr, te);
2256 
2257 	fnd->de[level] = e;
2258 	indx_write(indx, ni, n, 0);
2259 
2260 	if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2261 		/* An empty leaf. */
2262 		return 0;
2263 	}
2264 
2265 out:
2266 	fnd_clear(fnd);
2267 	return err;
2268 }
2269 
2270 /*
2271  * indx_delete_entry - Delete an entry from the index.
2272  */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2273 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2274 		      const void *key, u32 key_len, const void *ctx)
2275 {
2276 	int err, diff;
2277 	struct INDEX_ROOT *root;
2278 	struct INDEX_HDR *hdr;
2279 	struct ntfs_fnd *fnd, *fnd2;
2280 	struct INDEX_BUFFER *ib;
2281 	struct NTFS_DE *e, *re, *next, *prev, *me;
2282 	struct indx_node *n, *n2d = NULL;
2283 	__le64 sub_vbn;
2284 	int level, level2;
2285 	struct ATTRIB *attr;
2286 	struct mft_inode *mi;
2287 	u32 e_size, root_size, new_root_size;
2288 	size_t trim_bit;
2289 	const struct INDEX_NAMES *in;
2290 
2291 	fnd = fnd_get();
2292 	if (!fnd) {
2293 		err = -ENOMEM;
2294 		goto out2;
2295 	}
2296 
2297 	fnd2 = fnd_get();
2298 	if (!fnd2) {
2299 		err = -ENOMEM;
2300 		goto out1;
2301 	}
2302 
2303 	root = indx_get_root(indx, ni, &attr, &mi);
2304 	if (!root) {
2305 		err = -EINVAL;
2306 		goto out;
2307 	}
2308 
2309 	/* Locate the entry to remove. */
2310 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2311 	if (err)
2312 		goto out;
2313 
2314 	if (!e || diff) {
2315 		err = -ENOENT;
2316 		goto out;
2317 	}
2318 
2319 	level = fnd->level;
2320 
2321 	if (level) {
2322 		n = fnd->nodes[level - 1];
2323 		e = fnd->de[level - 1];
2324 		ib = n->index;
2325 		hdr = &ib->ihdr;
2326 	} else {
2327 		hdr = &root->ihdr;
2328 		e = fnd->root_de;
2329 		n = NULL;
2330 	}
2331 
2332 	e_size = le16_to_cpu(e->size);
2333 
2334 	if (!de_has_vcn_ex(e)) {
2335 		/* The entry to delete is a leaf, so we can just rip it out. */
2336 		hdr_delete_de(hdr, e);
2337 
2338 		if (!level) {
2339 			hdr->total = hdr->used;
2340 
2341 			/* Shrink resident root attribute. */
2342 			mi_resize_attr(mi, attr, 0 - e_size);
2343 			goto out;
2344 		}
2345 
2346 		indx_write(indx, ni, n, 0);
2347 
2348 		/*
2349 		 * Check to see if removing that entry made
2350 		 * the leaf empty.
2351 		 */
2352 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2353 			fnd_pop(fnd);
2354 			fnd_push(fnd2, n, e);
2355 		}
2356 	} else {
2357 		/*
2358 		 * The entry we wish to delete is a node buffer, so we
2359 		 * have to find a replacement for it.
2360 		 */
2361 		next = de_get_next(e);
2362 
2363 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2364 		if (err)
2365 			goto out;
2366 
2367 		if (re) {
2368 			de_set_vbn_le(re, de_get_vbn_le(e));
2369 			hdr_delete_de(hdr, e);
2370 
2371 			err = level ? indx_insert_into_buffer(indx, ni, root,
2372 							      re, ctx,
2373 							      fnd->level - 1,
2374 							      fnd) :
2375 				      indx_insert_into_root(indx, ni, re, e,
2376 							    ctx, fnd, 0);
2377 			kfree(re);
2378 
2379 			if (err)
2380 				goto out;
2381 		} else {
2382 			/*
2383 			 * There is no replacement for the current entry.
2384 			 * This means that the subtree rooted at its node
2385 			 * is empty, and can be deleted, which turn means
2386 			 * that the node can just inherit the deleted
2387 			 * entry sub_vcn.
2388 			 */
2389 			indx_free_children(indx, ni, next, true);
2390 
2391 			de_set_vbn_le(next, de_get_vbn_le(e));
2392 			hdr_delete_de(hdr, e);
2393 			if (level) {
2394 				indx_write(indx, ni, n, 0);
2395 			} else {
2396 				hdr->total = hdr->used;
2397 
2398 				/* Shrink resident root attribute. */
2399 				mi_resize_attr(mi, attr, 0 - e_size);
2400 			}
2401 		}
2402 	}
2403 
2404 	/* Delete a branch of tree. */
2405 	if (!fnd2 || !fnd2->level)
2406 		goto out;
2407 
2408 	/* Reinit root 'cause it can be changed. */
2409 	root = indx_get_root(indx, ni, &attr, &mi);
2410 	if (!root) {
2411 		err = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	n2d = NULL;
2416 	sub_vbn = fnd2->nodes[0]->index->vbn;
2417 	level2 = 0;
2418 	level = fnd->level;
2419 
2420 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2421 
2422 	/* Scan current level. */
2423 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2424 		if (!e) {
2425 			err = -EINVAL;
2426 			goto out;
2427 		}
2428 
2429 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2430 			break;
2431 
2432 		if (de_is_last(e)) {
2433 			e = NULL;
2434 			break;
2435 		}
2436 	}
2437 
2438 	if (!e) {
2439 		/* Do slow search from root. */
2440 		struct indx_node *in;
2441 
2442 		fnd_clear(fnd);
2443 
2444 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2445 		if (IS_ERR(in)) {
2446 			err = PTR_ERR(in);
2447 			goto out;
2448 		}
2449 
2450 		if (in)
2451 			fnd_push(fnd, in, NULL);
2452 	}
2453 
2454 	/* Merge fnd2 -> fnd. */
2455 	for (level = 0; level < fnd2->level; level++) {
2456 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2457 		fnd2->nodes[level] = NULL;
2458 	}
2459 	fnd2->level = 0;
2460 
2461 	hdr = NULL;
2462 	for (level = fnd->level; level; level--) {
2463 		struct indx_node *in = fnd->nodes[level - 1];
2464 
2465 		ib = in->index;
2466 		if (ib_is_empty(ib)) {
2467 			sub_vbn = ib->vbn;
2468 		} else {
2469 			hdr = &ib->ihdr;
2470 			n2d = in;
2471 			level2 = level;
2472 			break;
2473 		}
2474 	}
2475 
2476 	if (!hdr)
2477 		hdr = &root->ihdr;
2478 
2479 	e = hdr_first_de(hdr);
2480 	if (!e) {
2481 		err = -EINVAL;
2482 		goto out;
2483 	}
2484 
2485 	if (hdr != &root->ihdr || !de_is_last(e)) {
2486 		prev = NULL;
2487 		while (!de_is_last(e)) {
2488 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2489 				break;
2490 			prev = e;
2491 			e = hdr_next_de(hdr, e);
2492 			if (!e) {
2493 				err = -EINVAL;
2494 				goto out;
2495 			}
2496 		}
2497 
2498 		if (sub_vbn != de_get_vbn_le(e)) {
2499 			/*
2500 			 * Didn't find the parent entry, although this buffer
2501 			 * is the parent trail. Something is corrupt.
2502 			 */
2503 			err = -EINVAL;
2504 			goto out;
2505 		}
2506 
2507 		if (de_is_last(e)) {
2508 			/*
2509 			 * Since we can't remove the end entry, we'll remove
2510 			 * its predecessor instead. This means we have to
2511 			 * transfer the predecessor's sub_vcn to the end entry.
2512 			 * Note: This index block is not empty, so the
2513 			 * predecessor must exist.
2514 			 */
2515 			if (!prev) {
2516 				err = -EINVAL;
2517 				goto out;
2518 			}
2519 
2520 			if (de_has_vcn(prev)) {
2521 				de_set_vbn_le(e, de_get_vbn_le(prev));
2522 			} else if (de_has_vcn(e)) {
2523 				le16_sub_cpu(&e->size, sizeof(u64));
2524 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2525 				le32_sub_cpu(&hdr->used, sizeof(u64));
2526 			}
2527 			e = prev;
2528 		}
2529 
2530 		/*
2531 		 * Copy the current entry into a temporary buffer (stripping
2532 		 * off its down-pointer, if any) and delete it from the current
2533 		 * buffer or root, as appropriate.
2534 		 */
2535 		e_size = le16_to_cpu(e->size);
2536 		me = kmemdup(e, e_size, GFP_NOFS);
2537 		if (!me) {
2538 			err = -ENOMEM;
2539 			goto out;
2540 		}
2541 
2542 		if (de_has_vcn(me)) {
2543 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2544 			le16_sub_cpu(&me->size, sizeof(u64));
2545 		}
2546 
2547 		hdr_delete_de(hdr, e);
2548 
2549 		if (hdr == &root->ihdr) {
2550 			level = 0;
2551 			hdr->total = hdr->used;
2552 
2553 			/* Shrink resident root attribute. */
2554 			mi_resize_attr(mi, attr, 0 - e_size);
2555 		} else {
2556 			indx_write(indx, ni, n2d, 0);
2557 			level = level2;
2558 		}
2559 
2560 		/* Mark unused buffers as free. */
2561 		trim_bit = -1;
2562 		for (; level < fnd->level; level++) {
2563 			ib = fnd->nodes[level]->index;
2564 			if (ib_is_empty(ib)) {
2565 				size_t k = le64_to_cpu(ib->vbn) >>
2566 					   indx->idx2vbn_bits;
2567 
2568 				indx_mark_free(indx, ni, k);
2569 				if (k < trim_bit)
2570 					trim_bit = k;
2571 			}
2572 		}
2573 
2574 		fnd_clear(fnd);
2575 		/*fnd->root_de = NULL;*/
2576 
2577 		/*
2578 		 * Re-insert the entry into the tree.
2579 		 * Find the spot the tree where we want to insert the new entry.
2580 		 */
2581 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2582 		kfree(me);
2583 		if (err)
2584 			goto out;
2585 
2586 		if (trim_bit != -1)
2587 			indx_shrink(indx, ni, trim_bit);
2588 	} else {
2589 		/*
2590 		 * This tree needs to be collapsed down to an empty root.
2591 		 * Recreate the index root as an empty leaf and free all
2592 		 * the bits the index allocation bitmap.
2593 		 */
2594 		fnd_clear(fnd);
2595 		fnd_clear(fnd2);
2596 
2597 		in = &s_index_names[indx->type];
2598 
2599 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2600 				    &indx->alloc_run, 0, NULL, false, NULL);
2601 		if (in->name == I30_NAME)
2602 			i_size_write(&ni->vfs_inode, 0);
2603 
2604 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2605 				     false, NULL);
2606 		run_close(&indx->alloc_run);
2607 
2608 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2609 				    &indx->bitmap_run, 0, NULL, false, NULL);
2610 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2611 				     false, NULL);
2612 		run_close(&indx->bitmap_run);
2613 
2614 		root = indx_get_root(indx, ni, &attr, &mi);
2615 		if (!root) {
2616 			err = -EINVAL;
2617 			goto out;
2618 		}
2619 
2620 		root_size = le32_to_cpu(attr->res.data_size);
2621 		new_root_size =
2622 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2623 
2624 		if (new_root_size != root_size &&
2625 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2626 			err = -EINVAL;
2627 			goto out;
2628 		}
2629 
2630 		/* Fill first entry. */
2631 		e = (struct NTFS_DE *)(root + 1);
2632 		e->ref.low = 0;
2633 		e->ref.high = 0;
2634 		e->ref.seq = 0;
2635 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2636 		e->flags = NTFS_IE_LAST; // 0x02
2637 		e->key_size = 0;
2638 		e->res = 0;
2639 
2640 		hdr = &root->ihdr;
2641 		hdr->flags = 0;
2642 		hdr->used = hdr->total = cpu_to_le32(
2643 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2644 		mi->dirty = true;
2645 	}
2646 
2647 out:
2648 	fnd_put(fnd2);
2649 out1:
2650 	fnd_put(fnd);
2651 out2:
2652 	return err;
2653 }
2654 
2655 /*
2656  * Update duplicated information in directory entry
2657  * 'dup' - info from MFT record
2658  */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2659 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2660 		    const struct ATTR_FILE_NAME *fname,
2661 		    const struct NTFS_DUP_INFO *dup, int sync)
2662 {
2663 	int err, diff;
2664 	struct NTFS_DE *e = NULL;
2665 	struct ATTR_FILE_NAME *e_fname;
2666 	struct ntfs_fnd *fnd;
2667 	struct INDEX_ROOT *root;
2668 	struct mft_inode *mi;
2669 	struct ntfs_index *indx = &ni->dir;
2670 
2671 	fnd = fnd_get();
2672 	if (!fnd)
2673 		return -ENOMEM;
2674 
2675 	root = indx_get_root(indx, ni, NULL, &mi);
2676 	if (!root) {
2677 		err = -EINVAL;
2678 		goto out;
2679 	}
2680 
2681 	/* Find entry in directory. */
2682 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2683 			&diff, &e, fnd);
2684 	if (err)
2685 		goto out;
2686 
2687 	if (!e) {
2688 		err = -EINVAL;
2689 		goto out;
2690 	}
2691 
2692 	if (diff) {
2693 		err = -EINVAL;
2694 		goto out;
2695 	}
2696 
2697 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2698 
2699 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2700 		/*
2701 		 * Nothing to update in index! Try to avoid this call.
2702 		 */
2703 		goto out;
2704 	}
2705 
2706 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2707 
2708 	if (fnd->level) {
2709 		/* Directory entry in index. */
2710 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2711 	} else {
2712 		/* Directory entry in directory MFT record. */
2713 		mi->dirty = true;
2714 		if (sync)
2715 			err = mi_write(mi, 1);
2716 		else
2717 			mark_inode_dirty(&ni->vfs_inode);
2718 	}
2719 
2720 out:
2721 	fnd_put(fnd);
2722 	return err;
2723 }
2724