1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/kernel.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit_le(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit_le(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? 435 (*fn)((ulong *)bh->b_data, from, nbits, ret) : 436 false; 437 put_bh(bh); 438 439 if (ok) { 440 *ret += 8 * vbo; 441 return 0; 442 } 443 444 if (++vblock >= eblock) { 445 *ret = MINUS_ONE_T; 446 return 0; 447 } 448 } 449 blk = 0; 450 vcn_next = vcn + clen; 451 down_read(lock); 452 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 453 if (!ok) 454 vcn = vcn_next; 455 up_read(lock); 456 goto next_run; 457 } 458 459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 460 { 461 size_t pos = find_next_zero_bit_le(buf, bits, bit); 462 463 if (pos >= bits) 464 return false; 465 *ret = pos; 466 return true; 467 } 468 469 /* 470 * indx_find_free - Look for free bit. 471 * 472 * Return: -1 if no free bits. 473 */ 474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 475 size_t *bit, struct ATTRIB **bitmap) 476 { 477 struct ATTRIB *b; 478 struct ATTR_LIST_ENTRY *le = NULL; 479 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 480 int err; 481 482 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 483 NULL, NULL); 484 485 if (!b) 486 return -ENOENT; 487 488 *bitmap = b; 489 *bit = MINUS_ONE_T; 490 491 if (!b->non_res) { 492 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 493 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0); 494 495 if (pos < nbits) 496 *bit = pos; 497 } else { 498 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 499 500 if (err) 501 return err; 502 } 503 504 return 0; 505 } 506 507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 508 { 509 size_t pos = find_next_bit_le(buf, bits, bit); 510 511 if (pos >= bits) 512 return false; 513 *ret = pos; 514 return true; 515 } 516 517 /* 518 * indx_used_bit - Look for used bit. 519 * 520 * Return: MINUS_ONE_T if no used bits. 521 */ 522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 523 { 524 struct ATTRIB *b; 525 struct ATTR_LIST_ENTRY *le = NULL; 526 size_t from = *bit; 527 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 528 int err; 529 530 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 531 NULL, NULL); 532 533 if (!b) 534 return -ENOENT; 535 536 *bit = MINUS_ONE_T; 537 538 if (!b->non_res) { 539 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 540 size_t pos = find_next_bit_le(resident_data(b), nbits, from); 541 542 if (pos < nbits) 543 *bit = pos; 544 } else { 545 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 546 if (err) 547 return err; 548 } 549 550 return 0; 551 } 552 553 /* 554 * hdr_find_split 555 * 556 * Find a point at which the index allocation buffer would like to be split. 557 * NOTE: This function should never return 'END' entry NULL returns on error. 558 */ 559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 560 { 561 size_t o; 562 const struct NTFS_DE *e = hdr_first_de(hdr); 563 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 564 u16 esize; 565 566 if (!e || de_is_last(e)) 567 return NULL; 568 569 esize = le16_to_cpu(e->size); 570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 571 const struct NTFS_DE *p = e; 572 573 e = Add2Ptr(hdr, o); 574 575 /* We must not return END entry. */ 576 if (de_is_last(e)) 577 return p; 578 579 esize = le16_to_cpu(e->size); 580 } 581 582 return e; 583 } 584 585 /* 586 * hdr_insert_head - Insert some entries at the beginning of the buffer. 587 * 588 * It is used to insert entries into a newly-created buffer. 589 */ 590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 591 const void *ins, u32 ins_bytes) 592 { 593 u32 to_move; 594 struct NTFS_DE *e = hdr_first_de(hdr); 595 u32 used = le32_to_cpu(hdr->used); 596 597 if (!e) 598 return NULL; 599 600 /* Now we just make room for the inserted entries and jam it in. */ 601 to_move = used - le32_to_cpu(hdr->de_off); 602 memmove(Add2Ptr(e, ins_bytes), e, to_move); 603 memcpy(e, ins, ins_bytes); 604 hdr->used = cpu_to_le32(used + ins_bytes); 605 606 return e; 607 } 608 609 /* 610 * index_hdr_check 611 * 612 * return true if INDEX_HDR is valid 613 */ 614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes) 615 { 616 u32 end = le32_to_cpu(hdr->used); 617 u32 tot = le32_to_cpu(hdr->total); 618 u32 off = le32_to_cpu(hdr->de_off); 619 620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot || 621 size_add(off, sizeof(struct NTFS_DE)) > end) { 622 /* incorrect index buffer. */ 623 return false; 624 } 625 626 return true; 627 } 628 629 /* 630 * index_buf_check 631 * 632 * return true if INDEX_BUFFER seems is valid 633 */ 634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes, 635 const CLST *vbn) 636 { 637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr; 638 u16 fo = le16_to_cpu(rhdr->fix_off); 639 u16 fn = le16_to_cpu(rhdr->fix_num); 640 641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) || 642 rhdr->sign != NTFS_INDX_SIGNATURE || 643 fo < sizeof(struct INDEX_BUFFER) 644 /* Check index buffer vbn. */ 645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) || 646 fo + fn * sizeof(short) >= bytes || 647 fn != ((bytes >> SECTOR_SHIFT) + 1)) { 648 /* incorrect index buffer. */ 649 return false; 650 } 651 652 return index_hdr_check(&ib->ihdr, 653 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 654 } 655 656 void fnd_clear(struct ntfs_fnd *fnd) 657 { 658 int i; 659 660 for (i = fnd->level - 1; i >= 0; i--) { 661 struct indx_node *n = fnd->nodes[i]; 662 663 if (!n) 664 continue; 665 666 put_indx_node(n); 667 fnd->nodes[i] = NULL; 668 } 669 fnd->level = 0; 670 fnd->root_de = NULL; 671 } 672 673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 674 struct NTFS_DE *e) 675 { 676 int i = fnd->level; 677 678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 679 return -EINVAL; 680 fnd->nodes[i] = n; 681 fnd->de[i] = e; 682 fnd->level += 1; 683 return 0; 684 } 685 686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 687 { 688 struct indx_node *n; 689 int i = fnd->level; 690 691 i -= 1; 692 n = fnd->nodes[i]; 693 fnd->nodes[i] = NULL; 694 fnd->level = i; 695 696 return n; 697 } 698 699 static bool fnd_is_empty(struct ntfs_fnd *fnd) 700 { 701 if (!fnd->level) 702 return !fnd->root_de; 703 704 return !fnd->de[fnd->level - 1]; 705 } 706 707 /* 708 * hdr_find_e - Locate an entry the index buffer. 709 * 710 * If no matching entry is found, it returns the first entry which is greater 711 * than the desired entry If the search key is greater than all the entries the 712 * buffer, it returns the 'end' entry. This function does a binary search of the 713 * current index buffer, for the first entry that is <= to the search value. 714 * 715 * Return: NULL if error. 716 */ 717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 718 const struct INDEX_HDR *hdr, const void *key, 719 size_t key_len, const void *ctx, int *diff) 720 { 721 struct NTFS_DE *e, *found = NULL; 722 NTFS_CMP_FUNC cmp = indx->cmp; 723 int min_idx = 0, mid_idx, max_idx = 0; 724 int diff2; 725 int table_size = 8; 726 u32 e_size, e_key_len; 727 u32 end = le32_to_cpu(hdr->used); 728 u32 off = le32_to_cpu(hdr->de_off); 729 u32 total = le32_to_cpu(hdr->total); 730 u16 offs[128]; 731 732 if (unlikely(!cmp)) 733 return NULL; 734 735 fill_table: 736 if (end > total) 737 return NULL; 738 739 if (size_add(off, sizeof(struct NTFS_DE)) > end) 740 return NULL; 741 742 e = Add2Ptr(hdr, off); 743 e_size = le16_to_cpu(e->size); 744 745 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 746 return NULL; 747 748 if (!de_is_last(e)) { 749 offs[max_idx] = off; 750 off += e_size; 751 752 max_idx++; 753 if (max_idx < table_size) 754 goto fill_table; 755 756 max_idx--; 757 } 758 759 binary_search: 760 e_key_len = le16_to_cpu(e->key_size); 761 762 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 763 if (diff2 > 0) { 764 if (found) { 765 min_idx = mid_idx + 1; 766 } else { 767 if (de_is_last(e)) 768 return NULL; 769 770 max_idx = 0; 771 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs)); 772 goto fill_table; 773 } 774 } else if (diff2 < 0) { 775 if (found) 776 max_idx = mid_idx - 1; 777 else 778 max_idx--; 779 780 found = e; 781 } else { 782 *diff = 0; 783 return e; 784 } 785 786 if (min_idx > max_idx) { 787 *diff = -1; 788 return found; 789 } 790 791 mid_idx = (min_idx + max_idx) >> 1; 792 e = Add2Ptr(hdr, offs[mid_idx]); 793 794 goto binary_search; 795 } 796 797 /* 798 * hdr_insert_de - Insert an index entry into the buffer. 799 * 800 * 'before' should be a pointer previously returned from hdr_find_e. 801 */ 802 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 803 struct INDEX_HDR *hdr, 804 const struct NTFS_DE *de, 805 struct NTFS_DE *before, const void *ctx) 806 { 807 int diff; 808 size_t off = PtrOffset(hdr, before); 809 u32 used = le32_to_cpu(hdr->used); 810 u32 total = le32_to_cpu(hdr->total); 811 u16 de_size = le16_to_cpu(de->size); 812 813 /* First, check to see if there's enough room. */ 814 if (used + de_size > total) 815 return NULL; 816 817 /* We know there's enough space, so we know we'll succeed. */ 818 if (before) { 819 /* Check that before is inside Index. */ 820 if (off >= used || off < le32_to_cpu(hdr->de_off) || 821 off + le16_to_cpu(before->size) > total) { 822 return NULL; 823 } 824 goto ok; 825 } 826 /* No insert point is applied. Get it manually. */ 827 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 828 &diff); 829 if (!before) 830 return NULL; 831 off = PtrOffset(hdr, before); 832 833 ok: 834 /* Now we just make room for the entry and jam it in. */ 835 memmove(Add2Ptr(before, de_size), before, used - off); 836 837 hdr->used = cpu_to_le32(used + de_size); 838 memcpy(before, de, de_size); 839 840 return before; 841 } 842 843 /* 844 * hdr_delete_de - Remove an entry from the index buffer. 845 */ 846 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 847 struct NTFS_DE *re) 848 { 849 u32 used = le32_to_cpu(hdr->used); 850 u16 esize = le16_to_cpu(re->size); 851 u32 off = PtrOffset(hdr, re); 852 int bytes = used - (off + esize); 853 854 /* check INDEX_HDR valid before using INDEX_HDR */ 855 if (!check_index_header(hdr, le32_to_cpu(hdr->total))) 856 return NULL; 857 858 if (off >= used || esize < sizeof(struct NTFS_DE) || 859 bytes < sizeof(struct NTFS_DE)) 860 return NULL; 861 862 hdr->used = cpu_to_le32(used - esize); 863 memmove(re, Add2Ptr(re, esize), bytes); 864 865 return re; 866 } 867 868 void indx_clear(struct ntfs_index *indx) 869 { 870 run_close(&indx->alloc_run); 871 run_close(&indx->bitmap_run); 872 } 873 874 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 875 const struct ATTRIB *attr, enum index_mutex_classed type) 876 { 877 u32 t32; 878 const struct INDEX_ROOT *root = resident_data(attr); 879 880 t32 = le32_to_cpu(attr->res.data_size); 881 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) || 882 !index_hdr_check(&root->ihdr, 883 t32 - offsetof(struct INDEX_ROOT, ihdr))) { 884 goto out; 885 } 886 887 /* Check root fields. */ 888 if (!root->index_block_clst) 889 goto out; 890 891 indx->type = type; 892 indx->idx2vbn_bits = __ffs(root->index_block_clst); 893 894 t32 = le32_to_cpu(root->index_block_size); 895 indx->index_bits = blksize_bits(t32); 896 897 /* Check index record size. */ 898 if (t32 < sbi->cluster_size) { 899 /* Index record is smaller than a cluster, use 512 blocks. */ 900 if (t32 != root->index_block_clst * SECTOR_SIZE) 901 goto out; 902 903 /* Check alignment to a cluster. */ 904 if ((sbi->cluster_size >> SECTOR_SHIFT) & 905 (root->index_block_clst - 1)) { 906 goto out; 907 } 908 909 indx->vbn2vbo_bits = SECTOR_SHIFT; 910 } else { 911 /* Index record must be a multiple of cluster size. */ 912 if (t32 != root->index_block_clst << sbi->cluster_bits) 913 goto out; 914 915 indx->vbn2vbo_bits = sbi->cluster_bits; 916 } 917 918 init_rwsem(&indx->run_lock); 919 920 indx->cmp = get_cmp_func(root); 921 if (!indx->cmp) 922 goto out; 923 924 return 0; 925 926 out: 927 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 928 return -EINVAL; 929 } 930 931 static struct indx_node *indx_new(struct ntfs_index *indx, 932 struct ntfs_inode *ni, CLST vbn, 933 const __le64 *sub_vbn) 934 { 935 int err; 936 struct NTFS_DE *e; 937 struct indx_node *r; 938 struct INDEX_HDR *hdr; 939 struct INDEX_BUFFER *index; 940 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 941 u32 bytes = 1u << indx->index_bits; 942 u16 fn; 943 u32 eo; 944 945 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 946 if (!r) 947 return ERR_PTR(-ENOMEM); 948 949 index = kzalloc(bytes, GFP_NOFS); 950 if (!index) { 951 kfree(r); 952 return ERR_PTR(-ENOMEM); 953 } 954 955 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 956 957 if (err) { 958 kfree(index); 959 kfree(r); 960 return ERR_PTR(err); 961 } 962 963 /* Create header. */ 964 index->rhdr.sign = NTFS_INDX_SIGNATURE; 965 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 966 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 967 index->rhdr.fix_num = cpu_to_le16(fn); 968 index->vbn = cpu_to_le64(vbn); 969 hdr = &index->ihdr; 970 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 971 hdr->de_off = cpu_to_le32(eo); 972 973 e = Add2Ptr(hdr, eo); 974 975 if (sub_vbn) { 976 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 977 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 978 hdr->used = 979 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 980 de_set_vbn_le(e, *sub_vbn); 981 hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES; 982 } else { 983 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 984 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 985 e->flags = NTFS_IE_LAST; 986 } 987 988 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 989 990 r->index = index; 991 return r; 992 } 993 994 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 995 struct ATTRIB **attr, struct mft_inode **mi) 996 { 997 struct ATTR_LIST_ENTRY *le = NULL; 998 struct ATTRIB *a; 999 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1000 struct INDEX_ROOT *root; 1001 1002 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 1003 mi); 1004 if (!a) 1005 return NULL; 1006 1007 if (attr) 1008 *attr = a; 1009 1010 root = resident_data_ex(a, sizeof(struct INDEX_ROOT)); 1011 1012 /* length check */ 1013 if (root && 1014 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) > 1015 le32_to_cpu(a->res.data_size)) { 1016 return NULL; 1017 } 1018 1019 return root; 1020 } 1021 1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 1023 struct indx_node *node, int sync) 1024 { 1025 struct INDEX_BUFFER *ib = node->index; 1026 1027 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 1028 } 1029 1030 /* 1031 * indx_read 1032 * 1033 * If ntfs_readdir calls this function 1034 * inode is shared locked and no ni_lock. 1035 * Use rw_semaphore for read/write access to alloc_run. 1036 */ 1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 1038 struct indx_node **node) 1039 { 1040 int err; 1041 struct INDEX_BUFFER *ib; 1042 struct runs_tree *run = &indx->alloc_run; 1043 struct rw_semaphore *lock = &indx->run_lock; 1044 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 1045 u32 bytes = 1u << indx->index_bits; 1046 struct indx_node *in = *node; 1047 const struct INDEX_NAMES *name; 1048 1049 if (!in) { 1050 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 1051 if (!in) 1052 return -ENOMEM; 1053 } else { 1054 nb_put(&in->nb); 1055 } 1056 1057 ib = in->index; 1058 if (!ib) { 1059 ib = kmalloc(bytes, GFP_NOFS); 1060 if (!ib) { 1061 err = -ENOMEM; 1062 goto out; 1063 } 1064 } 1065 1066 down_read(lock); 1067 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1068 up_read(lock); 1069 if (!err) 1070 goto ok; 1071 1072 if (err == -E_NTFS_FIXUP) 1073 goto ok; 1074 1075 if (err != -ENOENT) 1076 goto out; 1077 1078 name = &s_index_names[indx->type]; 1079 down_write(lock); 1080 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1081 run, vbo, vbo + bytes); 1082 up_write(lock); 1083 if (err) 1084 goto out; 1085 1086 down_read(lock); 1087 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1088 up_read(lock); 1089 if (err == -E_NTFS_FIXUP) 1090 goto ok; 1091 1092 if (err) 1093 goto out; 1094 1095 ok: 1096 if (!index_buf_check(ib, bytes, &vbn)) { 1097 _ntfs_bad_inode(&ni->vfs_inode); 1098 err = -EINVAL; 1099 goto out; 1100 } 1101 1102 if (err == -E_NTFS_FIXUP) { 1103 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1104 err = 0; 1105 } 1106 1107 /* check for index header length */ 1108 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) > 1109 bytes) { 1110 err = -EINVAL; 1111 goto out; 1112 } 1113 1114 in->index = ib; 1115 *node = in; 1116 1117 out: 1118 if (err == -E_NTFS_CORRUPT) { 1119 _ntfs_bad_inode(&ni->vfs_inode); 1120 err = -EINVAL; 1121 } 1122 1123 if (ib != in->index) 1124 kfree(ib); 1125 1126 if (*node != in) { 1127 nb_put(&in->nb); 1128 kfree(in); 1129 } 1130 1131 return err; 1132 } 1133 1134 /* 1135 * indx_find - Scan NTFS directory for given entry. 1136 */ 1137 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1138 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1139 const void *ctx, int *diff, struct NTFS_DE **entry, 1140 struct ntfs_fnd *fnd) 1141 { 1142 int err; 1143 struct NTFS_DE *e; 1144 struct indx_node *node; 1145 1146 if (!root) 1147 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1148 1149 if (!root) { 1150 /* Should not happen. */ 1151 return -EINVAL; 1152 } 1153 1154 /* Check cache. */ 1155 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1156 if (e && !de_is_last(e) && 1157 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1158 *entry = e; 1159 *diff = 0; 1160 return 0; 1161 } 1162 1163 /* Soft finder reset. */ 1164 fnd_clear(fnd); 1165 1166 /* Lookup entry that is <= to the search value. */ 1167 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); 1168 if (!e) 1169 return -EINVAL; 1170 1171 fnd->root_de = e; 1172 1173 for (;;) { 1174 node = NULL; 1175 if (*diff >= 0 || !de_has_vcn_ex(e)) 1176 break; 1177 1178 /* Read next level. */ 1179 err = indx_read(indx, ni, de_get_vbn(e), &node); 1180 if (err) { 1181 /* io error? */ 1182 return err; 1183 } 1184 1185 /* Lookup entry that is <= to the search value. */ 1186 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1187 diff); 1188 if (!e) { 1189 put_indx_node(node); 1190 return -EINVAL; 1191 } 1192 1193 fnd_push(fnd, node, e); 1194 } 1195 1196 *entry = e; 1197 return 0; 1198 } 1199 1200 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1201 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1202 struct ntfs_fnd *fnd) 1203 { 1204 int err; 1205 struct indx_node *n = NULL; 1206 struct NTFS_DE *e; 1207 size_t iter = 0; 1208 int level = fnd->level; 1209 1210 if (!*entry) { 1211 /* Start find. */ 1212 e = hdr_first_de(&root->ihdr); 1213 if (!e) 1214 return 0; 1215 fnd_clear(fnd); 1216 fnd->root_de = e; 1217 } else if (!level) { 1218 if (de_is_last(fnd->root_de)) { 1219 *entry = NULL; 1220 return 0; 1221 } 1222 1223 e = hdr_next_de(&root->ihdr, fnd->root_de); 1224 if (!e) 1225 return -EINVAL; 1226 fnd->root_de = e; 1227 } else { 1228 n = fnd->nodes[level - 1]; 1229 e = fnd->de[level - 1]; 1230 1231 if (de_is_last(e)) 1232 goto pop_level; 1233 1234 e = hdr_next_de(&n->index->ihdr, e); 1235 if (!e) 1236 return -EINVAL; 1237 1238 fnd->de[level - 1] = e; 1239 } 1240 1241 /* Just to avoid tree cycle. */ 1242 next_iter: 1243 if (iter++ >= 1000) 1244 return -EINVAL; 1245 1246 while (de_has_vcn_ex(e)) { 1247 if (le16_to_cpu(e->size) < 1248 sizeof(struct NTFS_DE) + sizeof(u64)) { 1249 if (n) { 1250 fnd_pop(fnd); 1251 kfree(n); 1252 } 1253 return -EINVAL; 1254 } 1255 1256 /* Read next level. */ 1257 err = indx_read(indx, ni, de_get_vbn(e), &n); 1258 if (err) 1259 return err; 1260 1261 /* Try next level. */ 1262 e = hdr_first_de(&n->index->ihdr); 1263 if (!e) { 1264 kfree(n); 1265 return -EINVAL; 1266 } 1267 1268 fnd_push(fnd, n, e); 1269 } 1270 1271 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1272 *entry = e; 1273 return 0; 1274 } 1275 1276 pop_level: 1277 for (;;) { 1278 if (!de_is_last(e)) 1279 goto next_iter; 1280 1281 /* Pop one level. */ 1282 if (n) { 1283 fnd_pop(fnd); 1284 kfree(n); 1285 } 1286 1287 level = fnd->level; 1288 1289 if (level) { 1290 n = fnd->nodes[level - 1]; 1291 e = fnd->de[level - 1]; 1292 } else if (fnd->root_de) { 1293 n = NULL; 1294 e = fnd->root_de; 1295 fnd->root_de = NULL; 1296 } else { 1297 *entry = NULL; 1298 return 0; 1299 } 1300 1301 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1302 *entry = e; 1303 if (!fnd->root_de) 1304 fnd->root_de = e; 1305 return 0; 1306 } 1307 } 1308 } 1309 1310 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1311 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1312 size_t *off, struct ntfs_fnd *fnd) 1313 { 1314 int err; 1315 struct indx_node *n = NULL; 1316 struct NTFS_DE *e = NULL; 1317 struct NTFS_DE *e2; 1318 size_t bit; 1319 CLST next_used_vbn; 1320 CLST next_vbn; 1321 u32 record_size = ni->mi.sbi->record_size; 1322 1323 /* Use non sorted algorithm. */ 1324 if (!*entry) { 1325 /* This is the first call. */ 1326 e = hdr_first_de(&root->ihdr); 1327 if (!e) 1328 return 0; 1329 fnd_clear(fnd); 1330 fnd->root_de = e; 1331 1332 /* The first call with setup of initial element. */ 1333 if (*off >= record_size) { 1334 next_vbn = (((*off - record_size) >> indx->index_bits)) 1335 << indx->idx2vbn_bits; 1336 /* Jump inside cycle 'for'. */ 1337 goto next; 1338 } 1339 1340 /* Start enumeration from root. */ 1341 *off = 0; 1342 } else if (!fnd->root_de) 1343 return -EINVAL; 1344 1345 for (;;) { 1346 /* Check if current entry can be used. */ 1347 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1348 goto ok; 1349 1350 if (!fnd->level) { 1351 /* Continue to enumerate root. */ 1352 if (!de_is_last(fnd->root_de)) { 1353 e = hdr_next_de(&root->ihdr, fnd->root_de); 1354 if (!e) 1355 return -EINVAL; 1356 fnd->root_de = e; 1357 continue; 1358 } 1359 1360 /* Start to enumerate indexes from 0. */ 1361 next_vbn = 0; 1362 } else { 1363 /* Continue to enumerate indexes. */ 1364 e2 = fnd->de[fnd->level - 1]; 1365 1366 n = fnd->nodes[fnd->level - 1]; 1367 1368 if (!de_is_last(e2)) { 1369 e = hdr_next_de(&n->index->ihdr, e2); 1370 if (!e) 1371 return -EINVAL; 1372 fnd->de[fnd->level - 1] = e; 1373 continue; 1374 } 1375 1376 /* Continue with next index. */ 1377 next_vbn = le64_to_cpu(n->index->vbn) + 1378 root->index_block_clst; 1379 } 1380 1381 next: 1382 /* Release current index. */ 1383 if (n) { 1384 fnd_pop(fnd); 1385 put_indx_node(n); 1386 n = NULL; 1387 } 1388 1389 /* Skip all free indexes. */ 1390 bit = next_vbn >> indx->idx2vbn_bits; 1391 err = indx_used_bit(indx, ni, &bit); 1392 if (err == -ENOENT || bit == MINUS_ONE_T) { 1393 /* No used indexes. */ 1394 *entry = NULL; 1395 return 0; 1396 } 1397 1398 next_used_vbn = bit << indx->idx2vbn_bits; 1399 1400 /* Read buffer into memory. */ 1401 err = indx_read(indx, ni, next_used_vbn, &n); 1402 if (err) 1403 return err; 1404 1405 e = hdr_first_de(&n->index->ihdr); 1406 fnd_push(fnd, n, e); 1407 if (!e) 1408 return -EINVAL; 1409 } 1410 1411 ok: 1412 /* Return offset to restore enumerator if necessary. */ 1413 if (!n) { 1414 /* 'e' points in root, */ 1415 *off = PtrOffset(&root->ihdr, e); 1416 } else { 1417 /* 'e' points in index, */ 1418 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1419 record_size + PtrOffset(&n->index->ihdr, e); 1420 } 1421 1422 *entry = e; 1423 return 0; 1424 } 1425 1426 /* 1427 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1428 */ 1429 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1430 CLST *vbn) 1431 { 1432 int err; 1433 struct ntfs_sb_info *sbi = ni->mi.sbi; 1434 struct ATTRIB *bitmap; 1435 struct ATTRIB *alloc; 1436 u32 data_size = 1u << indx->index_bits; 1437 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1438 CLST len = alloc_size >> sbi->cluster_bits; 1439 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1440 CLST alen; 1441 struct runs_tree run; 1442 1443 run_init(&run); 1444 1445 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF, 1446 &alen, 0, NULL, NULL); 1447 if (err) 1448 goto out; 1449 1450 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1451 &run, 0, len, 0, &alloc, NULL, NULL); 1452 if (err) 1453 goto out1; 1454 1455 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1456 1457 err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP, 1458 in->name, in->name_len, &bitmap, NULL, NULL); 1459 if (err) 1460 goto out2; 1461 1462 if (in->name == I30_NAME) { 1463 i_size_write(&ni->vfs_inode, data_size); 1464 inode_set_bytes(&ni->vfs_inode, alloc_size); 1465 } 1466 1467 memcpy(&indx->alloc_run, &run, sizeof(run)); 1468 1469 *vbn = 0; 1470 1471 return 0; 1472 1473 out2: 1474 mi_remove_attr(NULL, &ni->mi, alloc); 1475 1476 out1: 1477 run_deallocate(sbi, &run, false); 1478 1479 out: 1480 return err; 1481 } 1482 1483 /* 1484 * indx_add_allocate - Add clusters to index. 1485 */ 1486 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1487 CLST *vbn) 1488 { 1489 int err; 1490 size_t bit; 1491 u64 data_size; 1492 u64 bmp_size, bmp_size_v; 1493 struct ATTRIB *bmp, *alloc; 1494 struct mft_inode *mi; 1495 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1496 1497 err = indx_find_free(indx, ni, &bit, &bmp); 1498 if (err) 1499 goto out1; 1500 1501 if (bit != MINUS_ONE_T) { 1502 bmp = NULL; 1503 } else { 1504 if (bmp->non_res) { 1505 bmp_size = le64_to_cpu(bmp->nres.data_size); 1506 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1507 } else { 1508 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1509 } 1510 1511 /* 1512 * Index blocks exist, but $BITMAP has zero valid bits. 1513 * This implies an on-disk corruption and must be rejected. 1514 */ 1515 if (in->name == I30_NAME && 1516 unlikely(bmp_size_v == 0 && indx->alloc_run.count)) { 1517 err = -EINVAL; 1518 goto out1; 1519 } 1520 1521 bit = bmp_size << 3; 1522 } 1523 1524 data_size = (u64)(bit + 1) << indx->index_bits; 1525 1526 if (bmp) { 1527 /* Increase bitmap. */ 1528 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1529 &indx->bitmap_run, 1530 ntfs3_bitmap_size(bit + 1), NULL, true, 1531 NULL); 1532 if (err) 1533 goto out1; 1534 } 1535 1536 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1537 NULL, &mi); 1538 if (!alloc) { 1539 err = -EINVAL; 1540 if (bmp) 1541 goto out2; 1542 goto out1; 1543 } 1544 1545 if (data_size <= le64_to_cpu(alloc->nres.data_size)) { 1546 /* Reuse index. */ 1547 goto out; 1548 } 1549 1550 /* Increase allocation. */ 1551 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1552 &indx->alloc_run, data_size, &data_size, true, 1553 NULL); 1554 if (err) { 1555 if (bmp) 1556 goto out2; 1557 goto out1; 1558 } 1559 1560 if (in->name == I30_NAME) 1561 i_size_write(&ni->vfs_inode, data_size); 1562 1563 out: 1564 *vbn = bit << indx->idx2vbn_bits; 1565 1566 return 0; 1567 1568 out2: 1569 /* Ops. No space? */ 1570 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1571 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1572 1573 out1: 1574 return err; 1575 } 1576 1577 /* 1578 * indx_insert_into_root - Attempt to insert an entry into the index root. 1579 * 1580 * @undo - True if we undoing previous remove. 1581 * If necessary, it will twiddle the index b-tree. 1582 */ 1583 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1584 const struct NTFS_DE *new_de, 1585 struct NTFS_DE *root_de, const void *ctx, 1586 struct ntfs_fnd *fnd, bool undo) 1587 { 1588 int err = 0; 1589 struct NTFS_DE *e, *e0, *re; 1590 struct mft_inode *mi; 1591 struct ATTRIB *attr; 1592 struct INDEX_HDR *hdr; 1593 struct indx_node *n; 1594 CLST new_vbn; 1595 __le64 *sub_vbn, t_vbn; 1596 u16 new_de_size; 1597 u32 hdr_used, hdr_total, asize, to_move; 1598 u32 root_size, new_root_size; 1599 struct ntfs_sb_info *sbi; 1600 int ds_root; 1601 struct INDEX_ROOT *root, *a_root; 1602 1603 /* Get the record this root placed in. */ 1604 root = indx_get_root(indx, ni, &attr, &mi); 1605 if (!root) 1606 return -EINVAL; 1607 1608 /* 1609 * Try easy case: 1610 * hdr_insert_de will succeed if there's 1611 * room the root for the new entry. 1612 */ 1613 hdr = &root->ihdr; 1614 sbi = ni->mi.sbi; 1615 new_de_size = le16_to_cpu(new_de->size); 1616 hdr_used = le32_to_cpu(hdr->used); 1617 hdr_total = le32_to_cpu(hdr->total); 1618 asize = le32_to_cpu(attr->size); 1619 root_size = le32_to_cpu(attr->res.data_size); 1620 1621 ds_root = new_de_size + hdr_used - hdr_total; 1622 1623 /* If 'undo' is set then reduce requirements. */ 1624 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1625 mi_resize_attr(mi, attr, ds_root)) { 1626 hdr->total = cpu_to_le32(hdr_total + ds_root); 1627 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1628 WARN_ON(!e); 1629 fnd_clear(fnd); 1630 fnd->root_de = e; 1631 1632 return 0; 1633 } 1634 1635 /* Make a copy of root attribute to restore if error. */ 1636 a_root = kmemdup(attr, asize, GFP_NOFS); 1637 if (!a_root) 1638 return -ENOMEM; 1639 1640 /* 1641 * Copy all the non-end entries from 1642 * the index root to the new buffer. 1643 */ 1644 to_move = 0; 1645 e0 = hdr_first_de(hdr); 1646 1647 /* Calculate the size to copy. */ 1648 for (e = e0;; e = hdr_next_de(hdr, e)) { 1649 if (!e) { 1650 err = -EINVAL; 1651 goto out_free_root; 1652 } 1653 1654 if (de_is_last(e)) 1655 break; 1656 to_move += le16_to_cpu(e->size); 1657 } 1658 1659 if (!to_move) { 1660 re = NULL; 1661 } else { 1662 re = kmemdup(e0, to_move, GFP_NOFS); 1663 if (!re) { 1664 err = -ENOMEM; 1665 goto out_free_root; 1666 } 1667 } 1668 1669 sub_vbn = NULL; 1670 if (de_has_vcn(e)) { 1671 t_vbn = de_get_vbn_le(e); 1672 sub_vbn = &t_vbn; 1673 } 1674 1675 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1676 sizeof(u64); 1677 ds_root = new_root_size - root_size; 1678 1679 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1680 /* Make root external. */ 1681 err = -EOPNOTSUPP; 1682 goto out_free_re; 1683 } 1684 1685 if (ds_root) 1686 mi_resize_attr(mi, attr, ds_root); 1687 1688 /* Fill first entry (vcn will be set later). */ 1689 e = (struct NTFS_DE *)(root + 1); 1690 memset(e, 0, sizeof(struct NTFS_DE)); 1691 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1692 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1693 1694 hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES; 1695 hdr->used = hdr->total = 1696 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1697 1698 fnd->root_de = hdr_first_de(hdr); 1699 mi->dirty = true; 1700 1701 /* Create alloc and bitmap attributes (if not). */ 1702 err = run_is_empty(&indx->alloc_run) ? 1703 indx_create_allocate(indx, ni, &new_vbn) : 1704 indx_add_allocate(indx, ni, &new_vbn); 1705 1706 /* Layout of record may be changed, so rescan root. */ 1707 root = indx_get_root(indx, ni, &attr, &mi); 1708 if (!root) { 1709 /* Bug? */ 1710 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1711 err = -EINVAL; 1712 goto out_free_re; 1713 } 1714 1715 if (err) { 1716 /* Restore root. */ 1717 if (mi_resize_attr(mi, attr, -ds_root)) { 1718 memcpy(attr, a_root, asize); 1719 } else { 1720 /* Bug? */ 1721 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1722 } 1723 goto out_free_re; 1724 } 1725 1726 e = (struct NTFS_DE *)(root + 1); 1727 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1728 mi->dirty = true; 1729 1730 /* Now we can create/format the new buffer and copy the entries into. */ 1731 n = indx_new(indx, ni, new_vbn, sub_vbn); 1732 if (IS_ERR(n)) { 1733 err = PTR_ERR(n); 1734 goto out_free_re; 1735 } 1736 1737 hdr = &n->index->ihdr; 1738 hdr_used = le32_to_cpu(hdr->used); 1739 hdr_total = le32_to_cpu(hdr->total); 1740 1741 /* Copy root entries into new buffer. */ 1742 hdr_insert_head(hdr, re, to_move); 1743 1744 /* Update bitmap attribute. */ 1745 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1746 1747 /* Check if we can insert new entry new index buffer. */ 1748 if (hdr_used + new_de_size > hdr_total) { 1749 /* 1750 * This occurs if MFT record is the same or bigger than index 1751 * buffer. Move all root new index and have no space to add 1752 * new entry classic case when MFT record is 1K and index 1753 * buffer 4K the problem should not occurs. 1754 */ 1755 kfree(re); 1756 indx_write(indx, ni, n, 0); 1757 1758 put_indx_node(n); 1759 fnd_clear(fnd); 1760 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1761 goto out_free_root; 1762 } 1763 1764 /* 1765 * Now root is a parent for new index buffer. 1766 * Insert NewEntry a new buffer. 1767 */ 1768 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1769 if (!e) { 1770 err = -EINVAL; 1771 goto out_put_n; 1772 } 1773 fnd_push(fnd, n, e); 1774 1775 /* Just write updates index into disk. */ 1776 indx_write(indx, ni, n, 0); 1777 1778 n = NULL; 1779 1780 out_put_n: 1781 put_indx_node(n); 1782 out_free_re: 1783 kfree(re); 1784 out_free_root: 1785 kfree(a_root); 1786 return err; 1787 } 1788 1789 /* 1790 * indx_insert_into_buffer 1791 * 1792 * Attempt to insert an entry into an Index Allocation Buffer. 1793 * If necessary, it will split the buffer. 1794 */ 1795 static int 1796 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1797 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1798 const void *ctx, int level, struct ntfs_fnd *fnd) 1799 { 1800 int err; 1801 const struct NTFS_DE *sp; 1802 struct NTFS_DE *e, *de_t, *up_e; 1803 struct indx_node *n2; 1804 struct indx_node *n1 = fnd->nodes[level]; 1805 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1806 struct INDEX_HDR *hdr2; 1807 u32 to_copy, used, used1; 1808 CLST new_vbn; 1809 __le64 t_vbn, *sub_vbn; 1810 u16 sp_size; 1811 void *hdr1_saved = NULL; 1812 1813 /* Try the most easy case. */ 1814 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1815 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1816 fnd->de[level] = e; 1817 if (e) { 1818 /* Just write updated index into disk. */ 1819 indx_write(indx, ni, n1, 0); 1820 return 0; 1821 } 1822 1823 /* 1824 * No space to insert into buffer. Split it. 1825 * To split we: 1826 * - Save split point ('cause index buffers will be changed) 1827 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1828 * - Remove all entries (sp including) from TargetBuffer 1829 * - Insert NewEntry into left or right buffer (depending on sp <=> 1830 * NewEntry) 1831 * - Insert sp into parent buffer (or root) 1832 * - Make sp a parent for new buffer 1833 */ 1834 sp = hdr_find_split(hdr1); 1835 if (!sp) 1836 return -EINVAL; 1837 1838 sp_size = le16_to_cpu(sp->size); 1839 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1840 if (!up_e) 1841 return -ENOMEM; 1842 memcpy(up_e, sp, sp_size); 1843 1844 used1 = le32_to_cpu(hdr1->used); 1845 hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS); 1846 if (!hdr1_saved) { 1847 err = -ENOMEM; 1848 goto out; 1849 } 1850 1851 if (!hdr1->flags) { 1852 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1853 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1854 sub_vbn = NULL; 1855 } else { 1856 t_vbn = de_get_vbn_le(up_e); 1857 sub_vbn = &t_vbn; 1858 } 1859 1860 /* Allocate on disk a new index allocation buffer. */ 1861 err = indx_add_allocate(indx, ni, &new_vbn); 1862 if (err) 1863 goto out; 1864 1865 /* Allocate and format memory a new index buffer. */ 1866 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1867 if (IS_ERR(n2)) { 1868 err = PTR_ERR(n2); 1869 goto out; 1870 } 1871 1872 hdr2 = &n2->index->ihdr; 1873 1874 /* Make sp a parent for new buffer. */ 1875 de_set_vbn(up_e, new_vbn); 1876 1877 /* Copy all the entries <= sp into the new buffer. */ 1878 de_t = hdr_first_de(hdr1); 1879 to_copy = PtrOffset(de_t, sp); 1880 hdr_insert_head(hdr2, de_t, to_copy); 1881 1882 /* Remove all entries (sp including) from hdr1. */ 1883 used = used1 - to_copy - sp_size; 1884 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1885 hdr1->used = cpu_to_le32(used); 1886 1887 /* 1888 * Insert new entry into left or right buffer 1889 * (depending on sp <=> new_de). 1890 */ 1891 hdr_insert_de(indx, 1892 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1893 up_e + 1, le16_to_cpu(up_e->key_size), 1894 ctx) < 0 ? 1895 hdr2 : 1896 hdr1, 1897 new_de, NULL, ctx); 1898 1899 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1900 1901 indx_write(indx, ni, n1, 0); 1902 indx_write(indx, ni, n2, 0); 1903 1904 put_indx_node(n2); 1905 1906 /* 1907 * We've finished splitting everybody, so we are ready to 1908 * insert the promoted entry into the parent. 1909 */ 1910 if (!level) { 1911 /* Insert in root. */ 1912 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1913 } else { 1914 /* 1915 * The target buffer's parent is another index buffer. 1916 * TODO: Remove recursion. 1917 */ 1918 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1919 level - 1, fnd); 1920 } 1921 1922 if (err) { 1923 /* 1924 * Undo critical operations. 1925 */ 1926 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits); 1927 unsafe_memcpy(hdr1, hdr1_saved, used1, 1928 "There are entries after the structure"); 1929 indx_write(indx, ni, n1, 0); 1930 } 1931 1932 out: 1933 kfree(up_e); 1934 kfree(hdr1_saved); 1935 1936 return err; 1937 } 1938 1939 /* 1940 * indx_insert_entry - Insert new entry into index. 1941 * 1942 * @undo - True if we undoing previous remove. 1943 */ 1944 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1945 const struct NTFS_DE *new_de, const void *ctx, 1946 struct ntfs_fnd *fnd, bool undo) 1947 { 1948 int err; 1949 int diff; 1950 struct NTFS_DE *e; 1951 struct ntfs_fnd *fnd_a = NULL; 1952 struct INDEX_ROOT *root; 1953 1954 if (!fnd) { 1955 fnd_a = fnd_get(); 1956 if (!fnd_a) { 1957 err = -ENOMEM; 1958 goto out1; 1959 } 1960 fnd = fnd_a; 1961 } 1962 1963 root = indx_get_root(indx, ni, NULL, NULL); 1964 if (!root) { 1965 err = -EINVAL; 1966 goto out; 1967 } 1968 1969 if (fnd_is_empty(fnd)) { 1970 /* 1971 * Find the spot the tree where we want to 1972 * insert the new entry. 1973 */ 1974 err = indx_find(indx, ni, root, new_de + 1, 1975 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1976 fnd); 1977 if (err) 1978 goto out; 1979 1980 if (!diff) { 1981 err = -EEXIST; 1982 goto out; 1983 } 1984 } 1985 1986 if (!fnd->level) { 1987 /* 1988 * The root is also a leaf, so we'll insert the 1989 * new entry into it. 1990 */ 1991 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1992 fnd, undo); 1993 } else { 1994 /* 1995 * Found a leaf buffer, so we'll insert the new entry into it. 1996 */ 1997 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1998 fnd->level - 1, fnd); 1999 } 2000 2001 out: 2002 fnd_put(fnd_a); 2003 out1: 2004 return err; 2005 } 2006 2007 /* 2008 * indx_find_buffer - Locate a buffer from the tree. 2009 */ 2010 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 2011 struct ntfs_inode *ni, 2012 const struct INDEX_ROOT *root, 2013 __le64 vbn, struct indx_node *n) 2014 { 2015 int err; 2016 const struct NTFS_DE *e; 2017 struct indx_node *r; 2018 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 2019 2020 /* Step 1: Scan one level. */ 2021 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2022 if (!e) 2023 return ERR_PTR(-EINVAL); 2024 2025 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 2026 return n; 2027 2028 if (de_is_last(e)) 2029 break; 2030 } 2031 2032 /* Step2: Do recursion. */ 2033 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 2034 for (;;) { 2035 if (de_has_vcn_ex(e)) { 2036 err = indx_read(indx, ni, de_get_vbn(e), &n); 2037 if (err) 2038 return ERR_PTR(err); 2039 2040 r = indx_find_buffer(indx, ni, root, vbn, n); 2041 if (r) 2042 return r; 2043 } 2044 2045 if (de_is_last(e)) 2046 break; 2047 2048 e = Add2Ptr(e, le16_to_cpu(e->size)); 2049 } 2050 2051 return NULL; 2052 } 2053 2054 /* 2055 * indx_shrink - Deallocate unused tail indexes. 2056 */ 2057 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 2058 size_t bit) 2059 { 2060 int err = 0; 2061 u64 bpb, new_data; 2062 size_t nbits; 2063 struct ATTRIB *b; 2064 struct ATTR_LIST_ENTRY *le = NULL; 2065 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 2066 2067 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 2068 NULL, NULL); 2069 2070 if (!b) 2071 return -ENOENT; 2072 2073 if (!b->non_res) { 2074 unsigned long pos; 2075 const unsigned long *bm = resident_data(b); 2076 2077 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 2078 2079 if (bit >= nbits) 2080 return 0; 2081 2082 pos = find_next_bit_le(bm, nbits, bit); 2083 if (pos < nbits) 2084 return 0; 2085 } else { 2086 size_t used = MINUS_ONE_T; 2087 2088 nbits = le64_to_cpu(b->nres.data_size) * 8; 2089 2090 if (bit >= nbits) 2091 return 0; 2092 2093 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 2094 if (err) 2095 return err; 2096 2097 if (used != MINUS_ONE_T) 2098 return 0; 2099 } 2100 2101 new_data = (u64)bit << indx->index_bits; 2102 2103 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2104 &indx->alloc_run, new_data, &new_data, false, NULL); 2105 if (err) 2106 return err; 2107 2108 if (in->name == I30_NAME) 2109 i_size_write(&ni->vfs_inode, new_data); 2110 2111 bpb = ntfs3_bitmap_size(bit); 2112 if (bpb * 8 == nbits) 2113 return 0; 2114 2115 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2116 &indx->bitmap_run, bpb, &bpb, false, NULL); 2117 2118 return err; 2119 } 2120 2121 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 2122 const struct NTFS_DE *e, bool trim) 2123 { 2124 int err; 2125 struct indx_node *n = NULL; 2126 struct INDEX_HDR *hdr; 2127 CLST vbn = de_get_vbn(e); 2128 size_t i; 2129 2130 err = indx_read(indx, ni, vbn, &n); 2131 if (err) 2132 return err; 2133 2134 hdr = &n->index->ihdr; 2135 /* First, recurse into the children, if any. */ 2136 if (hdr_has_subnode(hdr)) { 2137 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2138 indx_free_children(indx, ni, e, false); 2139 if (de_is_last(e)) 2140 break; 2141 } 2142 } 2143 2144 put_indx_node(n); 2145 2146 i = vbn >> indx->idx2vbn_bits; 2147 /* 2148 * We've gotten rid of the children; add this buffer to the free list. 2149 */ 2150 indx_mark_free(indx, ni, i); 2151 2152 if (!trim) 2153 return 0; 2154 2155 /* 2156 * If there are no used indexes after current free index 2157 * then we can truncate allocation and bitmap. 2158 * Use bitmap to estimate the case. 2159 */ 2160 indx_shrink(indx, ni, i + 1); 2161 return 0; 2162 } 2163 2164 /* 2165 * indx_get_entry_to_replace 2166 * 2167 * Find a replacement entry for a deleted entry. 2168 * Always returns a node entry: 2169 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2170 */ 2171 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2172 struct ntfs_inode *ni, 2173 const struct NTFS_DE *de_next, 2174 struct NTFS_DE **de_to_replace, 2175 struct ntfs_fnd *fnd) 2176 { 2177 int err; 2178 int level = -1; 2179 CLST vbn; 2180 struct NTFS_DE *e, *te, *re; 2181 struct indx_node *n; 2182 struct INDEX_BUFFER *ib; 2183 2184 *de_to_replace = NULL; 2185 2186 /* Find first leaf entry down from de_next. */ 2187 vbn = de_get_vbn(de_next); 2188 for (;;) { 2189 n = NULL; 2190 err = indx_read(indx, ni, vbn, &n); 2191 if (err) 2192 goto out; 2193 2194 e = hdr_first_de(&n->index->ihdr); 2195 fnd_push(fnd, n, e); 2196 if (!e) { 2197 err = -EINVAL; 2198 goto out; 2199 } 2200 2201 if (!de_is_last(e)) { 2202 /* 2203 * This buffer is non-empty, so its first entry 2204 * could be used as the replacement entry. 2205 */ 2206 level = fnd->level - 1; 2207 } 2208 2209 if (!de_has_vcn(e)) 2210 break; 2211 2212 /* This buffer is a node. Continue to go down. */ 2213 vbn = de_get_vbn(e); 2214 } 2215 2216 if (level == -1) 2217 goto out; 2218 2219 n = fnd->nodes[level]; 2220 te = hdr_first_de(&n->index->ihdr); 2221 if (!te) { 2222 err = -EINVAL; 2223 goto out; 2224 } 2225 /* Copy the candidate entry into the replacement entry buffer. */ 2226 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2227 if (!re) { 2228 err = -ENOMEM; 2229 goto out; 2230 } 2231 2232 *de_to_replace = re; 2233 memcpy(re, te, le16_to_cpu(te->size)); 2234 2235 if (!de_has_vcn(re)) { 2236 /* 2237 * The replacement entry we found doesn't have a sub_vcn. 2238 * increase its size to hold one. 2239 */ 2240 le16_add_cpu(&re->size, sizeof(u64)); 2241 re->flags |= NTFS_IE_HAS_SUBNODES; 2242 } else { 2243 /* 2244 * The replacement entry we found was a node entry, which 2245 * means that all its child buffers are empty. Return them 2246 * to the free pool. 2247 */ 2248 indx_free_children(indx, ni, te, true); 2249 } 2250 2251 /* 2252 * Expunge the replacement entry from its former location, 2253 * and then write that buffer. 2254 */ 2255 ib = n->index; 2256 e = hdr_delete_de(&ib->ihdr, te); 2257 2258 fnd->de[level] = e; 2259 indx_write(indx, ni, n, 0); 2260 2261 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2262 /* An empty leaf. */ 2263 return 0; 2264 } 2265 2266 out: 2267 fnd_clear(fnd); 2268 return err; 2269 } 2270 2271 /* 2272 * indx_delete_entry - Delete an entry from the index. 2273 */ 2274 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2275 const void *key, u32 key_len, const void *ctx) 2276 { 2277 int err, diff; 2278 struct INDEX_ROOT *root; 2279 struct INDEX_HDR *hdr; 2280 struct ntfs_fnd *fnd, *fnd2; 2281 struct INDEX_BUFFER *ib; 2282 struct NTFS_DE *e, *re, *next, *prev, *me; 2283 struct indx_node *n, *n2d = NULL; 2284 __le64 sub_vbn; 2285 int level, level2; 2286 struct ATTRIB *attr; 2287 struct mft_inode *mi; 2288 u32 e_size, root_size, new_root_size; 2289 size_t trim_bit; 2290 const struct INDEX_NAMES *in; 2291 2292 fnd = fnd_get(); 2293 if (!fnd) { 2294 err = -ENOMEM; 2295 goto out2; 2296 } 2297 2298 fnd2 = fnd_get(); 2299 if (!fnd2) { 2300 err = -ENOMEM; 2301 goto out1; 2302 } 2303 2304 root = indx_get_root(indx, ni, &attr, &mi); 2305 if (!root) { 2306 err = -EINVAL; 2307 goto out; 2308 } 2309 2310 /* Locate the entry to remove. */ 2311 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2312 if (err) 2313 goto out; 2314 2315 if (!e || diff) { 2316 err = -ENOENT; 2317 goto out; 2318 } 2319 2320 level = fnd->level; 2321 2322 if (level) { 2323 n = fnd->nodes[level - 1]; 2324 e = fnd->de[level - 1]; 2325 ib = n->index; 2326 hdr = &ib->ihdr; 2327 } else { 2328 hdr = &root->ihdr; 2329 e = fnd->root_de; 2330 n = NULL; 2331 } 2332 2333 e_size = le16_to_cpu(e->size); 2334 2335 if (!de_has_vcn_ex(e)) { 2336 /* The entry to delete is a leaf, so we can just rip it out. */ 2337 hdr_delete_de(hdr, e); 2338 2339 if (!level) { 2340 hdr->total = hdr->used; 2341 2342 /* Shrink resident root attribute. */ 2343 mi_resize_attr(mi, attr, 0 - e_size); 2344 goto out; 2345 } 2346 2347 indx_write(indx, ni, n, 0); 2348 2349 /* 2350 * Check to see if removing that entry made 2351 * the leaf empty. 2352 */ 2353 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2354 fnd_pop(fnd); 2355 fnd_push(fnd2, n, e); 2356 } 2357 } else { 2358 /* 2359 * The entry we wish to delete is a node buffer, so we 2360 * have to find a replacement for it. 2361 */ 2362 next = de_get_next(e); 2363 2364 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2365 if (err) 2366 goto out; 2367 2368 if (re) { 2369 de_set_vbn_le(re, de_get_vbn_le(e)); 2370 hdr_delete_de(hdr, e); 2371 2372 err = level ? indx_insert_into_buffer(indx, ni, root, 2373 re, ctx, 2374 fnd->level - 1, 2375 fnd) : 2376 indx_insert_into_root(indx, ni, re, e, 2377 ctx, fnd, 0); 2378 kfree(re); 2379 2380 if (err) 2381 goto out; 2382 } else { 2383 /* 2384 * There is no replacement for the current entry. 2385 * This means that the subtree rooted at its node 2386 * is empty, and can be deleted, which turn means 2387 * that the node can just inherit the deleted 2388 * entry sub_vcn. 2389 */ 2390 indx_free_children(indx, ni, next, true); 2391 2392 de_set_vbn_le(next, de_get_vbn_le(e)); 2393 hdr_delete_de(hdr, e); 2394 if (level) { 2395 indx_write(indx, ni, n, 0); 2396 } else { 2397 hdr->total = hdr->used; 2398 2399 /* Shrink resident root attribute. */ 2400 mi_resize_attr(mi, attr, 0 - e_size); 2401 } 2402 } 2403 } 2404 2405 /* Delete a branch of tree. */ 2406 if (!fnd2 || !fnd2->level) 2407 goto out; 2408 2409 /* Reinit root 'cause it can be changed. */ 2410 root = indx_get_root(indx, ni, &attr, &mi); 2411 if (!root) { 2412 err = -EINVAL; 2413 goto out; 2414 } 2415 2416 n2d = NULL; 2417 sub_vbn = fnd2->nodes[0]->index->vbn; 2418 level2 = 0; 2419 level = fnd->level; 2420 2421 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2422 2423 /* Scan current level. */ 2424 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2425 if (!e) { 2426 err = -EINVAL; 2427 goto out; 2428 } 2429 2430 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2431 break; 2432 2433 if (de_is_last(e)) { 2434 e = NULL; 2435 break; 2436 } 2437 } 2438 2439 if (!e) { 2440 /* Do slow search from root. */ 2441 struct indx_node *in; 2442 2443 fnd_clear(fnd); 2444 2445 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2446 if (IS_ERR(in)) { 2447 err = PTR_ERR(in); 2448 goto out; 2449 } 2450 2451 if (in) 2452 fnd_push(fnd, in, NULL); 2453 } 2454 2455 /* Merge fnd2 -> fnd. */ 2456 for (level = 0; level < fnd2->level; level++) { 2457 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2458 fnd2->nodes[level] = NULL; 2459 } 2460 fnd2->level = 0; 2461 2462 hdr = NULL; 2463 for (level = fnd->level; level; level--) { 2464 struct indx_node *in = fnd->nodes[level - 1]; 2465 2466 ib = in->index; 2467 if (ib_is_empty(ib)) { 2468 sub_vbn = ib->vbn; 2469 } else { 2470 hdr = &ib->ihdr; 2471 n2d = in; 2472 level2 = level; 2473 break; 2474 } 2475 } 2476 2477 if (!hdr) 2478 hdr = &root->ihdr; 2479 2480 e = hdr_first_de(hdr); 2481 if (!e) { 2482 err = -EINVAL; 2483 goto out; 2484 } 2485 2486 if (hdr != &root->ihdr || !de_is_last(e)) { 2487 prev = NULL; 2488 while (!de_is_last(e)) { 2489 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2490 break; 2491 prev = e; 2492 e = hdr_next_de(hdr, e); 2493 if (!e) { 2494 err = -EINVAL; 2495 goto out; 2496 } 2497 } 2498 2499 if (sub_vbn != de_get_vbn_le(e)) { 2500 /* 2501 * Didn't find the parent entry, although this buffer 2502 * is the parent trail. Something is corrupt. 2503 */ 2504 err = -EINVAL; 2505 goto out; 2506 } 2507 2508 if (de_is_last(e)) { 2509 /* 2510 * Since we can't remove the end entry, we'll remove 2511 * its predecessor instead. This means we have to 2512 * transfer the predecessor's sub_vcn to the end entry. 2513 * Note: This index block is not empty, so the 2514 * predecessor must exist. 2515 */ 2516 if (!prev) { 2517 err = -EINVAL; 2518 goto out; 2519 } 2520 2521 if (de_has_vcn(prev)) { 2522 de_set_vbn_le(e, de_get_vbn_le(prev)); 2523 } else if (de_has_vcn(e)) { 2524 le16_sub_cpu(&e->size, sizeof(u64)); 2525 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2526 le32_sub_cpu(&hdr->used, sizeof(u64)); 2527 } 2528 e = prev; 2529 } 2530 2531 /* 2532 * Copy the current entry into a temporary buffer (stripping 2533 * off its down-pointer, if any) and delete it from the current 2534 * buffer or root, as appropriate. 2535 */ 2536 e_size = le16_to_cpu(e->size); 2537 me = kmemdup(e, e_size, GFP_NOFS); 2538 if (!me) { 2539 err = -ENOMEM; 2540 goto out; 2541 } 2542 2543 if (de_has_vcn(me)) { 2544 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2545 le16_sub_cpu(&me->size, sizeof(u64)); 2546 } 2547 2548 hdr_delete_de(hdr, e); 2549 2550 if (hdr == &root->ihdr) { 2551 level = 0; 2552 hdr->total = hdr->used; 2553 2554 /* Shrink resident root attribute. */ 2555 mi_resize_attr(mi, attr, 0 - e_size); 2556 } else { 2557 indx_write(indx, ni, n2d, 0); 2558 level = level2; 2559 } 2560 2561 /* Mark unused buffers as free. */ 2562 trim_bit = -1; 2563 for (; level < fnd->level; level++) { 2564 ib = fnd->nodes[level]->index; 2565 if (ib_is_empty(ib)) { 2566 size_t k = le64_to_cpu(ib->vbn) >> 2567 indx->idx2vbn_bits; 2568 2569 indx_mark_free(indx, ni, k); 2570 if (k < trim_bit) 2571 trim_bit = k; 2572 } 2573 } 2574 2575 fnd_clear(fnd); 2576 /*fnd->root_de = NULL;*/ 2577 2578 /* 2579 * Re-insert the entry into the tree. 2580 * Find the spot the tree where we want to insert the new entry. 2581 */ 2582 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2583 kfree(me); 2584 if (err) 2585 goto out; 2586 2587 if (trim_bit != -1) 2588 indx_shrink(indx, ni, trim_bit); 2589 } else { 2590 /* 2591 * This tree needs to be collapsed down to an empty root. 2592 * Recreate the index root as an empty leaf and free all 2593 * the bits the index allocation bitmap. 2594 */ 2595 fnd_clear(fnd); 2596 fnd_clear(fnd2); 2597 2598 in = &s_index_names[indx->type]; 2599 2600 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2601 &indx->alloc_run, 0, NULL, false, NULL); 2602 if (in->name == I30_NAME) 2603 i_size_write(&ni->vfs_inode, 0); 2604 2605 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2606 false, NULL); 2607 run_close(&indx->alloc_run); 2608 2609 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2610 &indx->bitmap_run, 0, NULL, false, NULL); 2611 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2612 false, NULL); 2613 run_close(&indx->bitmap_run); 2614 2615 root = indx_get_root(indx, ni, &attr, &mi); 2616 if (!root) { 2617 err = -EINVAL; 2618 goto out; 2619 } 2620 2621 root_size = le32_to_cpu(attr->res.data_size); 2622 new_root_size = 2623 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2624 2625 if (new_root_size != root_size && 2626 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2627 err = -EINVAL; 2628 goto out; 2629 } 2630 2631 /* Fill first entry. */ 2632 e = (struct NTFS_DE *)(root + 1); 2633 e->ref.low = 0; 2634 e->ref.high = 0; 2635 e->ref.seq = 0; 2636 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2637 e->flags = NTFS_IE_LAST; // 0x02 2638 e->key_size = 0; 2639 e->res = 0; 2640 2641 hdr = &root->ihdr; 2642 hdr->flags = 0; 2643 hdr->used = hdr->total = cpu_to_le32( 2644 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2645 mi->dirty = true; 2646 } 2647 2648 out: 2649 fnd_put(fnd2); 2650 out1: 2651 fnd_put(fnd); 2652 out2: 2653 return err; 2654 } 2655 2656 /* 2657 * Update duplicated information in directory entry 2658 * 'dup' - info from MFT record 2659 */ 2660 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2661 const struct ATTR_FILE_NAME *fname, 2662 const struct NTFS_DUP_INFO *dup, int sync) 2663 { 2664 int err, diff; 2665 struct NTFS_DE *e = NULL; 2666 struct ATTR_FILE_NAME *e_fname; 2667 struct ntfs_fnd *fnd; 2668 struct INDEX_ROOT *root; 2669 struct mft_inode *mi; 2670 struct ntfs_index *indx = &ni->dir; 2671 2672 fnd = fnd_get(); 2673 if (!fnd) 2674 return -ENOMEM; 2675 2676 root = indx_get_root(indx, ni, NULL, &mi); 2677 if (!root) { 2678 err = -EINVAL; 2679 goto out; 2680 } 2681 2682 /* Find entry in directory. */ 2683 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2684 &diff, &e, fnd); 2685 if (err) 2686 goto out; 2687 2688 if (!e) { 2689 err = -EINVAL; 2690 goto out; 2691 } 2692 2693 if (diff) { 2694 err = -EINVAL; 2695 goto out; 2696 } 2697 2698 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2699 2700 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2701 /* 2702 * Nothing to update in index! Try to avoid this call. 2703 */ 2704 goto out; 2705 } 2706 2707 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2708 2709 if (fnd->level) { 2710 /* Directory entry in index. */ 2711 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2712 } else { 2713 /* Directory entry in directory MFT record. */ 2714 mi->dirty = true; 2715 if (sync) 2716 err = mi_write(mi, 1); 2717 else 2718 mark_inode_dirty(&ni->vfs_inode); 2719 } 2720 2721 out: 2722 fnd_put(fnd); 2723 return err; 2724 } 2725