xref: /linux/tools/lib/bpf/btf.h (revision 015e7b0b0e8e51f7321ec2aafc1d7fc0a8a5536f)
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 /* Copyright (c) 2018 Facebook */
3 /*! \file */
4 
5 #ifndef __LIBBPF_BTF_H
6 #define __LIBBPF_BTF_H
7 
8 #include <stdarg.h>
9 #include <stdbool.h>
10 #include <linux/btf.h>
11 #include <linux/types.h>
12 
13 #include "libbpf_common.h"
14 
15 #ifdef __cplusplus
16 extern "C" {
17 #endif
18 
19 #define BTF_ELF_SEC ".BTF"
20 #define BTF_EXT_ELF_SEC ".BTF.ext"
21 #define BTF_BASE_ELF_SEC ".BTF.base"
22 #define MAPS_ELF_SEC ".maps"
23 
24 struct btf;
25 struct btf_ext;
26 struct btf_type;
27 
28 struct bpf_object;
29 
30 enum btf_endianness {
31 	BTF_LITTLE_ENDIAN = 0,
32 	BTF_BIG_ENDIAN = 1,
33 };
34 
35 /**
36  * @brief **btf__free()** frees all data of a BTF object
37  * @param btf BTF object to free
38  */
39 LIBBPF_API void btf__free(struct btf *btf);
40 
41 /**
42  * @brief **btf__new()** creates a new instance of a BTF object from the raw
43  * bytes of an ELF's BTF section
44  * @param data raw bytes
45  * @param size number of bytes passed in `data`
46  * @return new BTF object instance which has to be eventually freed with
47  * **btf__free()**
48  *
49  * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
50  * error code from such a pointer `libbpf_get_error()` should be used. If
51  * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
52  * returned on error instead. In both cases thread-local `errno` variable is
53  * always set to error code as well.
54  */
55 LIBBPF_API struct btf *btf__new(const void *data, __u32 size);
56 
57 /**
58  * @brief **btf__new_split()** create a new instance of a BTF object from the
59  * provided raw data bytes. It takes another BTF instance, **base_btf**, which
60  * serves as a base BTF, which is extended by types in a newly created BTF
61  * instance
62  * @param data raw bytes
63  * @param size length of raw bytes
64  * @param base_btf the base BTF object
65  * @return new BTF object instance which has to be eventually freed with
66  * **btf__free()**
67  *
68  * If *base_btf* is NULL, `btf__new_split()` is equivalent to `btf__new()` and
69  * creates non-split BTF.
70  *
71  * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
72  * error code from such a pointer `libbpf_get_error()` should be used. If
73  * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
74  * returned on error instead. In both cases thread-local `errno` variable is
75  * always set to error code as well.
76  */
77 LIBBPF_API struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf);
78 
79 /**
80  * @brief **btf__new_empty()** creates an empty BTF object.  Use
81  * `btf__add_*()` to populate such BTF object.
82  * @return new BTF object instance which has to be eventually freed with
83  * **btf__free()**
84  *
85  * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
86  * error code from such a pointer `libbpf_get_error()` should be used. If
87  * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
88  * returned on error instead. In both cases thread-local `errno` variable is
89  * always set to error code as well.
90  */
91 LIBBPF_API struct btf *btf__new_empty(void);
92 
93 /**
94  * @brief **btf__new_empty_split()** creates an unpopulated BTF object from an
95  * ELF BTF section except with a base BTF on top of which split BTF should be
96  * based
97  * @param base_btf base BTF object
98  * @return new BTF object instance which has to be eventually freed with
99  * **btf__free()**
100  *
101  * If *base_btf* is NULL, `btf__new_empty_split()` is equivalent to
102  * `btf__new_empty()` and creates non-split BTF.
103  *
104  * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
105  * error code from such a pointer `libbpf_get_error()` should be used. If
106  * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
107  * returned on error instead. In both cases thread-local `errno` variable is
108  * always set to error code as well.
109  */
110 LIBBPF_API struct btf *btf__new_empty_split(struct btf *base_btf);
111 
112 /**
113  * @brief **btf__distill_base()** creates new versions of the split BTF
114  * *src_btf* and its base BTF. The new base BTF will only contain the types
115  * needed to improve robustness of the split BTF to small changes in base BTF.
116  * When that split BTF is loaded against a (possibly changed) base, this
117  * distilled base BTF will help update references to that (possibly changed)
118  * base BTF.
119  * @param src_btf source split BTF object
120  * @param new_base_btf pointer to where the new base BTF object pointer will be stored
121  * @param new_split_btf pointer to where the new split BTF object pointer will be stored
122  * @return 0 on success; negative error code, otherwise
123  *
124  * Both the new split and its associated new base BTF must be freed by
125  * the caller.
126  *
127  * If successful, 0 is returned and **new_base_btf** and **new_split_btf**
128  * will point at new base/split BTF. Both the new split and its associated
129  * new base BTF must be freed by the caller.
130  *
131  * A negative value is returned on error and the thread-local `errno` variable
132  * is set to the error code as well.
133  */
134 LIBBPF_API int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
135 				 struct btf **new_split_btf);
136 
137 LIBBPF_API struct btf *btf__parse(const char *path, struct btf_ext **btf_ext);
138 LIBBPF_API struct btf *btf__parse_split(const char *path, struct btf *base_btf);
139 LIBBPF_API struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext);
140 LIBBPF_API struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf);
141 LIBBPF_API struct btf *btf__parse_raw(const char *path);
142 LIBBPF_API struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf);
143 
144 LIBBPF_API struct btf *btf__load_vmlinux_btf(void);
145 LIBBPF_API struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf);
146 
147 LIBBPF_API struct btf *btf__load_from_kernel_by_id(__u32 id);
148 LIBBPF_API struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf);
149 
150 LIBBPF_API int btf__load_into_kernel(struct btf *btf);
151 LIBBPF_API __s32 btf__find_by_name(const struct btf *btf,
152 				   const char *type_name);
153 LIBBPF_API __s32 btf__find_by_name_kind(const struct btf *btf,
154 					const char *type_name, __u32 kind);
155 LIBBPF_API __u32 btf__type_cnt(const struct btf *btf);
156 LIBBPF_API const struct btf *btf__base_btf(const struct btf *btf);
157 LIBBPF_API const struct btf_type *btf__type_by_id(const struct btf *btf,
158 						  __u32 id);
159 LIBBPF_API size_t btf__pointer_size(const struct btf *btf);
160 LIBBPF_API int btf__set_pointer_size(struct btf *btf, size_t ptr_sz);
161 LIBBPF_API enum btf_endianness btf__endianness(const struct btf *btf);
162 LIBBPF_API int btf__set_endianness(struct btf *btf, enum btf_endianness endian);
163 LIBBPF_API __s64 btf__resolve_size(const struct btf *btf, __u32 type_id);
164 LIBBPF_API int btf__resolve_type(const struct btf *btf, __u32 type_id);
165 LIBBPF_API int btf__align_of(const struct btf *btf, __u32 id);
166 LIBBPF_API int btf__fd(const struct btf *btf);
167 LIBBPF_API void btf__set_fd(struct btf *btf, int fd);
168 LIBBPF_API const void *btf__raw_data(const struct btf *btf, __u32 *size);
169 LIBBPF_API const char *btf__name_by_offset(const struct btf *btf, __u32 offset);
170 LIBBPF_API const char *btf__str_by_offset(const struct btf *btf, __u32 offset);
171 
172 LIBBPF_API struct btf_ext *btf_ext__new(const __u8 *data, __u32 size);
173 LIBBPF_API void btf_ext__free(struct btf_ext *btf_ext);
174 LIBBPF_API const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size);
175 LIBBPF_API enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext);
176 LIBBPF_API int btf_ext__set_endianness(struct btf_ext *btf_ext,
177 				       enum btf_endianness endian);
178 
179 LIBBPF_API int btf__find_str(struct btf *btf, const char *s);
180 LIBBPF_API int btf__add_str(struct btf *btf, const char *s);
181 LIBBPF_API int btf__add_type(struct btf *btf, const struct btf *src_btf,
182 			     const struct btf_type *src_type);
183 /**
184  * @brief **btf__add_btf()** appends all the BTF types from *src_btf* into *btf*
185  * @param btf BTF object which all the BTF types and strings are added to
186  * @param src_btf BTF object which all BTF types and referenced strings are copied from
187  * @return BTF type ID of the first appended BTF type, or negative error code
188  *
189  * **btf__add_btf()** can be used to simply and efficiently append the entire
190  * contents of one BTF object to another one. All the BTF type data is copied
191  * over, all referenced type IDs are adjusted by adding a necessary ID offset.
192  * Only strings referenced from BTF types are copied over and deduplicated, so
193  * if there were some unused strings in *src_btf*, those won't be copied over,
194  * which is consistent with the general string deduplication semantics of BTF
195  * writing APIs.
196  *
197  * If any error is encountered during this process, the contents of *btf* is
198  * left intact, which means that **btf__add_btf()** follows the transactional
199  * semantics and the operation as a whole is all-or-nothing.
200  *
201  * *src_btf* has to be non-split BTF, as of now copying types from split BTF
202  * is not supported and will result in -ENOTSUP error code returned.
203  */
204 LIBBPF_API int btf__add_btf(struct btf *btf, const struct btf *src_btf);
205 
206 LIBBPF_API int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding);
207 LIBBPF_API int btf__add_float(struct btf *btf, const char *name, size_t byte_sz);
208 LIBBPF_API int btf__add_ptr(struct btf *btf, int ref_type_id);
209 LIBBPF_API int btf__add_array(struct btf *btf,
210 			      int index_type_id, int elem_type_id, __u32 nr_elems);
211 /* struct/union construction APIs */
212 LIBBPF_API int btf__add_struct(struct btf *btf, const char *name, __u32 sz);
213 LIBBPF_API int btf__add_union(struct btf *btf, const char *name, __u32 sz);
214 LIBBPF_API int btf__add_field(struct btf *btf, const char *name, int field_type_id,
215 			      __u32 bit_offset, __u32 bit_size);
216 
217 /* enum construction APIs */
218 LIBBPF_API int btf__add_enum(struct btf *btf, const char *name, __u32 bytes_sz);
219 LIBBPF_API int btf__add_enum_value(struct btf *btf, const char *name, __s64 value);
220 LIBBPF_API int btf__add_enum64(struct btf *btf, const char *name, __u32 bytes_sz, bool is_signed);
221 LIBBPF_API int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value);
222 
223 enum btf_fwd_kind {
224 	BTF_FWD_STRUCT = 0,
225 	BTF_FWD_UNION = 1,
226 	BTF_FWD_ENUM = 2,
227 };
228 
229 LIBBPF_API int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind);
230 LIBBPF_API int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id);
231 LIBBPF_API int btf__add_volatile(struct btf *btf, int ref_type_id);
232 LIBBPF_API int btf__add_const(struct btf *btf, int ref_type_id);
233 LIBBPF_API int btf__add_restrict(struct btf *btf, int ref_type_id);
234 LIBBPF_API int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id);
235 LIBBPF_API int btf__add_type_attr(struct btf *btf, const char *value, int ref_type_id);
236 
237 /* func and func_proto construction APIs */
238 LIBBPF_API int btf__add_func(struct btf *btf, const char *name,
239 			     enum btf_func_linkage linkage, int proto_type_id);
240 LIBBPF_API int btf__add_func_proto(struct btf *btf, int ret_type_id);
241 LIBBPF_API int btf__add_func_param(struct btf *btf, const char *name, int type_id);
242 
243 /* var & datasec construction APIs */
244 LIBBPF_API int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id);
245 LIBBPF_API int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz);
246 LIBBPF_API int btf__add_datasec_var_info(struct btf *btf, int var_type_id,
247 					 __u32 offset, __u32 byte_sz);
248 
249 /* tag construction API */
250 LIBBPF_API int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
251 			    int component_idx);
252 LIBBPF_API int btf__add_decl_attr(struct btf *btf, const char *value, int ref_type_id,
253 				  int component_idx);
254 
255 struct btf_dedup_opts {
256 	size_t sz;
257 	/* optional .BTF.ext info to dedup along the main BTF info */
258 	struct btf_ext *btf_ext;
259 	/* force hash collisions (used for testing) */
260 	bool force_collisions;
261 	size_t :0;
262 };
263 #define btf_dedup_opts__last_field force_collisions
264 
265 LIBBPF_API int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts);
266 
267 /**
268  * @brief **btf__relocate()** will check the split BTF *btf* for references
269  * to base BTF kinds, and verify those references are compatible with
270  * *base_btf*; if they are, *btf* is adjusted such that is re-parented to
271  * *base_btf* and type ids and strings are adjusted to accommodate this.
272  * @param btf split BTF object to relocate
273  * @param base_btf base BTF object
274  * @return 0 on success; negative error code, otherwise
275  *
276  * If successful, 0 is returned and **btf** now has **base_btf** as its
277  * base.
278  *
279  * A negative value is returned on error and the thread-local `errno` variable
280  * is set to the error code as well.
281  */
282 LIBBPF_API int btf__relocate(struct btf *btf, const struct btf *base_btf);
283 
284 struct btf_dump;
285 
286 struct btf_dump_opts {
287 	size_t sz;
288 };
289 #define btf_dump_opts__last_field sz
290 
291 typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args);
292 
293 LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf,
294 					  btf_dump_printf_fn_t printf_fn,
295 					  void *ctx,
296 					  const struct btf_dump_opts *opts);
297 
298 LIBBPF_API void btf_dump__free(struct btf_dump *d);
299 
300 LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id);
301 
302 struct btf_dump_emit_type_decl_opts {
303 	/* size of this struct, for forward/backward compatibility */
304 	size_t sz;
305 	/* optional field name for type declaration, e.g.:
306 	 * - struct my_struct <FNAME>
307 	 * - void (*<FNAME>)(int)
308 	 * - char (*<FNAME>)[123]
309 	 */
310 	const char *field_name;
311 	/* extra indentation level (in number of tabs) to emit for multi-line
312 	 * type declarations (e.g., anonymous struct); applies for lines
313 	 * starting from the second one (first line is assumed to have
314 	 * necessary indentation already
315 	 */
316 	int indent_level;
317 	/* strip all the const/volatile/restrict mods */
318 	bool strip_mods;
319 	size_t :0;
320 };
321 #define btf_dump_emit_type_decl_opts__last_field strip_mods
322 
323 LIBBPF_API int
324 btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
325 			 const struct btf_dump_emit_type_decl_opts *opts);
326 
327 
328 struct btf_dump_type_data_opts {
329 	/* size of this struct, for forward/backward compatibility */
330 	size_t sz;
331 	const char *indent_str;
332 	int indent_level;
333 	/* below match "show" flags for bpf_show_snprintf() */
334 	bool compact;		/* no newlines/indentation */
335 	bool skip_names;	/* skip member/type names */
336 	bool emit_zeroes;	/* show 0-valued fields */
337 	bool emit_strings;	/* print char arrays as strings */
338 	size_t :0;
339 };
340 #define btf_dump_type_data_opts__last_field emit_strings
341 
342 LIBBPF_API int
343 btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
344 			 const void *data, size_t data_sz,
345 			 const struct btf_dump_type_data_opts *opts);
346 
347 /*
348  * A set of helpers for easier BTF types handling.
349  *
350  * The inline functions below rely on constants from the kernel headers which
351  * may not be available for applications including this header file. To avoid
352  * compilation errors, we define all the constants here that were added after
353  * the initial introduction of the BTF_KIND* constants.
354  */
355 #ifndef BTF_KIND_FUNC
356 #define BTF_KIND_FUNC		12	/* Function	*/
357 #define BTF_KIND_FUNC_PROTO	13	/* Function Proto	*/
358 #endif
359 #ifndef BTF_KIND_VAR
360 #define BTF_KIND_VAR		14	/* Variable	*/
361 #define BTF_KIND_DATASEC	15	/* Section	*/
362 #endif
363 #ifndef BTF_KIND_FLOAT
364 #define BTF_KIND_FLOAT		16	/* Floating point	*/
365 #endif
366 /* The kernel header switched to enums, so the following were never #defined */
367 #define BTF_KIND_DECL_TAG	17	/* Decl Tag */
368 #define BTF_KIND_TYPE_TAG	18	/* Type Tag */
369 #define BTF_KIND_ENUM64		19	/* Enum for up-to 64bit values */
370 
371 static inline __u16 btf_kind(const struct btf_type *t)
372 {
373 	return BTF_INFO_KIND(t->info);
374 }
375 
376 static inline __u16 btf_vlen(const struct btf_type *t)
377 {
378 	return BTF_INFO_VLEN(t->info);
379 }
380 
381 static inline bool btf_kflag(const struct btf_type *t)
382 {
383 	return BTF_INFO_KFLAG(t->info);
384 }
385 
386 static inline bool btf_is_void(const struct btf_type *t)
387 {
388 	return btf_kind(t) == BTF_KIND_UNKN;
389 }
390 
391 static inline bool btf_is_int(const struct btf_type *t)
392 {
393 	return btf_kind(t) == BTF_KIND_INT;
394 }
395 
396 static inline bool btf_is_ptr(const struct btf_type *t)
397 {
398 	return btf_kind(t) == BTF_KIND_PTR;
399 }
400 
401 static inline bool btf_is_array(const struct btf_type *t)
402 {
403 	return btf_kind(t) == BTF_KIND_ARRAY;
404 }
405 
406 static inline bool btf_is_struct(const struct btf_type *t)
407 {
408 	return btf_kind(t) == BTF_KIND_STRUCT;
409 }
410 
411 static inline bool btf_is_union(const struct btf_type *t)
412 {
413 	return btf_kind(t) == BTF_KIND_UNION;
414 }
415 
416 static inline bool btf_is_composite(const struct btf_type *t)
417 {
418 	__u16 kind = btf_kind(t);
419 
420 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
421 }
422 
423 static inline bool btf_is_enum(const struct btf_type *t)
424 {
425 	return btf_kind(t) == BTF_KIND_ENUM;
426 }
427 
428 static inline bool btf_is_enum64(const struct btf_type *t)
429 {
430 	return btf_kind(t) == BTF_KIND_ENUM64;
431 }
432 
433 static inline bool btf_is_fwd(const struct btf_type *t)
434 {
435 	return btf_kind(t) == BTF_KIND_FWD;
436 }
437 
438 static inline bool btf_is_typedef(const struct btf_type *t)
439 {
440 	return btf_kind(t) == BTF_KIND_TYPEDEF;
441 }
442 
443 static inline bool btf_is_volatile(const struct btf_type *t)
444 {
445 	return btf_kind(t) == BTF_KIND_VOLATILE;
446 }
447 
448 static inline bool btf_is_const(const struct btf_type *t)
449 {
450 	return btf_kind(t) == BTF_KIND_CONST;
451 }
452 
453 static inline bool btf_is_restrict(const struct btf_type *t)
454 {
455 	return btf_kind(t) == BTF_KIND_RESTRICT;
456 }
457 
458 static inline bool btf_is_mod(const struct btf_type *t)
459 {
460 	__u16 kind = btf_kind(t);
461 
462 	return kind == BTF_KIND_VOLATILE ||
463 	       kind == BTF_KIND_CONST ||
464 	       kind == BTF_KIND_RESTRICT ||
465 	       kind == BTF_KIND_TYPE_TAG;
466 }
467 
468 static inline bool btf_is_func(const struct btf_type *t)
469 {
470 	return btf_kind(t) == BTF_KIND_FUNC;
471 }
472 
473 static inline bool btf_is_func_proto(const struct btf_type *t)
474 {
475 	return btf_kind(t) == BTF_KIND_FUNC_PROTO;
476 }
477 
478 static inline bool btf_is_var(const struct btf_type *t)
479 {
480 	return btf_kind(t) == BTF_KIND_VAR;
481 }
482 
483 static inline bool btf_is_datasec(const struct btf_type *t)
484 {
485 	return btf_kind(t) == BTF_KIND_DATASEC;
486 }
487 
488 static inline bool btf_is_float(const struct btf_type *t)
489 {
490 	return btf_kind(t) == BTF_KIND_FLOAT;
491 }
492 
493 static inline bool btf_is_decl_tag(const struct btf_type *t)
494 {
495 	return btf_kind(t) == BTF_KIND_DECL_TAG;
496 }
497 
498 static inline bool btf_is_type_tag(const struct btf_type *t)
499 {
500 	return btf_kind(t) == BTF_KIND_TYPE_TAG;
501 }
502 
503 static inline bool btf_is_any_enum(const struct btf_type *t)
504 {
505 	return btf_is_enum(t) || btf_is_enum64(t);
506 }
507 
508 static inline bool btf_kind_core_compat(const struct btf_type *t1,
509 					const struct btf_type *t2)
510 {
511 	return btf_kind(t1) == btf_kind(t2) ||
512 	       (btf_is_any_enum(t1) && btf_is_any_enum(t2));
513 }
514 
515 static inline __u8 btf_int_encoding(const struct btf_type *t)
516 {
517 	return BTF_INT_ENCODING(*(__u32 *)(t + 1));
518 }
519 
520 static inline __u8 btf_int_offset(const struct btf_type *t)
521 {
522 	return BTF_INT_OFFSET(*(__u32 *)(t + 1));
523 }
524 
525 static inline __u8 btf_int_bits(const struct btf_type *t)
526 {
527 	return BTF_INT_BITS(*(__u32 *)(t + 1));
528 }
529 
530 static inline struct btf_array *btf_array(const struct btf_type *t)
531 {
532 	return (struct btf_array *)(t + 1);
533 }
534 
535 static inline struct btf_enum *btf_enum(const struct btf_type *t)
536 {
537 	return (struct btf_enum *)(t + 1);
538 }
539 
540 struct btf_enum64;
541 
542 static inline struct btf_enum64 *btf_enum64(const struct btf_type *t)
543 {
544 	return (struct btf_enum64 *)(t + 1);
545 }
546 
547 static inline __u64 btf_enum64_value(const struct btf_enum64 *e)
548 {
549 	/* struct btf_enum64 is introduced in Linux 6.0, which is very
550 	 * bleeding-edge. Here we are avoiding relying on struct btf_enum64
551 	 * definition coming from kernel UAPI headers to support wider range
552 	 * of system-wide kernel headers.
553 	 *
554 	 * Given this header can be also included from C++ applications, that
555 	 * further restricts C tricks we can use (like using compatible
556 	 * anonymous struct). So just treat struct btf_enum64 as
557 	 * a three-element array of u32 and access second (lo32) and third
558 	 * (hi32) elements directly.
559 	 *
560 	 * For reference, here is a struct btf_enum64 definition:
561 	 *
562 	 * const struct btf_enum64 {
563 	 *	__u32	name_off;
564 	 *	__u32	val_lo32;
565 	 *	__u32	val_hi32;
566 	 * };
567 	 */
568 	const __u32 *e64 = (const __u32 *)e;
569 
570 	return ((__u64)e64[2] << 32) | e64[1];
571 }
572 
573 static inline struct btf_member *btf_members(const struct btf_type *t)
574 {
575 	return (struct btf_member *)(t + 1);
576 }
577 
578 /* Get bit offset of a member with specified index. */
579 static inline __u32 btf_member_bit_offset(const struct btf_type *t,
580 					  __u32 member_idx)
581 {
582 	const struct btf_member *m = btf_members(t) + member_idx;
583 	bool kflag = btf_kflag(t);
584 
585 	return kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
586 }
587 /*
588  * Get bitfield size of a member, assuming t is BTF_KIND_STRUCT or
589  * BTF_KIND_UNION. If member is not a bitfield, zero is returned.
590  */
591 static inline __u32 btf_member_bitfield_size(const struct btf_type *t,
592 					     __u32 member_idx)
593 {
594 	const struct btf_member *m = btf_members(t) + member_idx;
595 	bool kflag = btf_kflag(t);
596 
597 	return kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
598 }
599 
600 static inline struct btf_param *btf_params(const struct btf_type *t)
601 {
602 	return (struct btf_param *)(t + 1);
603 }
604 
605 static inline struct btf_var *btf_var(const struct btf_type *t)
606 {
607 	return (struct btf_var *)(t + 1);
608 }
609 
610 static inline struct btf_var_secinfo *
611 btf_var_secinfos(const struct btf_type *t)
612 {
613 	return (struct btf_var_secinfo *)(t + 1);
614 }
615 
616 struct btf_decl_tag;
617 static inline struct btf_decl_tag *btf_decl_tag(const struct btf_type *t)
618 {
619 	return (struct btf_decl_tag *)(t + 1);
620 }
621 
622 #ifdef __cplusplus
623 } /* extern "C" */
624 #endif
625 
626 #endif /* __LIBBPF_BTF_H */
627