xref: /linux/mm/vmscan.c (revision 2516a87153183e1797021879121ca25c95f1ea3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 
100 	/* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 	unsigned int may_deactivate:2;
104 	unsigned int force_deactivate:1;
105 	unsigned int skipped_deactivate:1;
106 
107 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
108 	unsigned int may_writepage:1;
109 
110 	/* Can mapped folios be reclaimed? */
111 	unsigned int may_unmap:1;
112 
113 	/* Can folios be swapped as part of reclaim? */
114 	unsigned int may_swap:1;
115 
116 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 	unsigned int no_cache_trim_mode:1;
118 
119 	/* Has cache_trim_mode failed at least once? */
120 	unsigned int cache_trim_mode_failed:1;
121 
122 	/* Proactive reclaim invoked by userspace */
123 	unsigned int proactive:1;
124 
125 	/*
126 	 * Cgroup memory below memory.low is protected as long as we
127 	 * don't threaten to OOM. If any cgroup is reclaimed at
128 	 * reduced force or passed over entirely due to its memory.low
129 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 	 * result, then go back for one more cycle that reclaims the protected
131 	 * memory (memcg_low_reclaim) to avert OOM.
132 	 */
133 	unsigned int memcg_low_reclaim:1;
134 	unsigned int memcg_low_skipped:1;
135 
136 	/* Shared cgroup tree walk failed, rescan the whole tree */
137 	unsigned int memcg_full_walk:1;
138 
139 	unsigned int hibernation_mode:1;
140 
141 	/* One of the zones is ready for compaction */
142 	unsigned int compaction_ready:1;
143 
144 	/* There is easily reclaimable cold cache in the current node */
145 	unsigned int cache_trim_mode:1;
146 
147 	/* The file folios on the current node are dangerously low */
148 	unsigned int file_is_tiny:1;
149 
150 	/* Always discard instead of demoting to lower tier memory */
151 	unsigned int no_demotion:1;
152 
153 	/* Allocation order */
154 	s8 order;
155 
156 	/* Scan (total_size >> priority) pages at once */
157 	s8 priority;
158 
159 	/* The highest zone to isolate folios for reclaim from */
160 	s8 reclaim_idx;
161 
162 	/* This context's GFP mask */
163 	gfp_t gfp_mask;
164 
165 	/* Incremented by the number of inactive pages that were scanned */
166 	unsigned long nr_scanned;
167 
168 	/* Number of pages freed so far during a call to shrink_zones() */
169 	unsigned long nr_reclaimed;
170 
171 	struct {
172 		unsigned int dirty;
173 		unsigned int unqueued_dirty;
174 		unsigned int congested;
175 		unsigned int writeback;
176 		unsigned int immediate;
177 		unsigned int file_taken;
178 		unsigned int taken;
179 	} nr;
180 
181 	/* for recording the reclaimed slab by now */
182 	struct reclaim_state reclaim_state;
183 };
184 
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
187 	do {								\
188 		if ((_folio)->lru.prev != _base) {			\
189 			struct folio *prev;				\
190 									\
191 			prev = lru_to_folio(&(_folio->lru));		\
192 			prefetchw(&prev->_field);			\
193 		}							\
194 	} while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198 
199 /*
200  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
201  */
202 int vm_swappiness = 60;
203 
204 #ifdef CONFIG_MEMCG
205 
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 	return sc->target_mem_cgroup;
210 }
211 
212 /*
213  * Returns true for reclaim on the root cgroup. This is true for direct
214  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215  */
root_reclaim(struct scan_control * sc)216 static bool root_reclaim(struct scan_control *sc)
217 {
218 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220 
221 /**
222  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223  * @sc: scan_control in question
224  *
225  * The normal page dirty throttling mechanism in balance_dirty_pages() is
226  * completely broken with the legacy memcg and direct stalling in
227  * shrink_folio_list() is used for throttling instead, which lacks all the
228  * niceties such as fairness, adaptive pausing, bandwidth proportional
229  * allocation and configurability.
230  *
231  * This function tests whether the vmscan currently in progress can assume
232  * that the normal dirty throttling mechanism is operational.
233  */
writeback_throttling_sane(struct scan_control * sc)234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 	if (!cgroup_reclaim(sc))
237 		return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 		return true;
241 #endif
242 	return false;
243 }
244 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 	if (sc->proactive && sc->proactive_swappiness)
248 		return *sc->proactive_swappiness;
249 	return mem_cgroup_swappiness(memcg);
250 }
251 #else
cgroup_reclaim(struct scan_control * sc)252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 	return false;
255 }
256 
root_reclaim(struct scan_control * sc)257 static bool root_reclaim(struct scan_control *sc)
258 {
259 	return true;
260 }
261 
writeback_throttling_sane(struct scan_control * sc)262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 	return true;
265 }
266 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 	return READ_ONCE(vm_swappiness);
270 }
271 #endif
272 
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274  * and including the specified highidx
275  * @zone: The current zone in the iterator
276  * @pgdat: The pgdat which node_zones are being iterated
277  * @idx: The index variable
278  * @highidx: The index of the highest zone to return
279  *
280  * This macro iterates through all managed zones up to and including the specified highidx.
281  * The zone iterator enters an invalid state after macro call and must be reinitialized
282  * before it can be used again.
283  */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
285 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
286 	    (idx) <= (highidx);					\
287 	    (idx)++, (zone)++)					\
288 		if (!managed_zone(zone))			\
289 			continue;				\
290 		else
291 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)292 static void set_task_reclaim_state(struct task_struct *task,
293 				   struct reclaim_state *rs)
294 {
295 	/* Check for an overwrite */
296 	WARN_ON_ONCE(rs && task->reclaim_state);
297 
298 	/* Check for the nulling of an already-nulled member */
299 	WARN_ON_ONCE(!rs && !task->reclaim_state);
300 
301 	task->reclaim_state = rs;
302 }
303 
304 /*
305  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306  * scan_control->nr_reclaimed.
307  */
flush_reclaim_state(struct scan_control * sc)308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 	/*
311 	 * Currently, reclaim_state->reclaimed includes three types of pages
312 	 * freed outside of vmscan:
313 	 * (1) Slab pages.
314 	 * (2) Clean file pages from pruned inodes (on highmem systems).
315 	 * (3) XFS freed buffer pages.
316 	 *
317 	 * For all of these cases, we cannot universally link the pages to a
318 	 * single memcg. For example, a memcg-aware shrinker can free one object
319 	 * charged to the target memcg, causing an entire page to be freed.
320 	 * If we count the entire page as reclaimed from the memcg, we end up
321 	 * overestimating the reclaimed amount (potentially under-reclaiming).
322 	 *
323 	 * Only count such pages for global reclaim to prevent under-reclaiming
324 	 * from the target memcg; preventing unnecessary retries during memcg
325 	 * charging and false positives from proactive reclaim.
326 	 *
327 	 * For uncommon cases where the freed pages were actually mostly
328 	 * charged to the target memcg, we end up underestimating the reclaimed
329 	 * amount. This should be fine. The freed pages will be uncharged
330 	 * anyway, even if they are not counted here properly, and we will be
331 	 * able to make forward progress in charging (which is usually in a
332 	 * retry loop).
333 	 *
334 	 * We can go one step further, and report the uncharged objcg pages in
335 	 * memcg reclaim, to make reporting more accurate and reduce
336 	 * underestimation, but it's probably not worth the complexity for now.
337 	 */
338 	if (current->reclaim_state && root_reclaim(sc)) {
339 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 		current->reclaim_state->reclaimed = 0;
341 	}
342 }
343 
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)344 static bool can_demote(int nid, struct scan_control *sc,
345 		       struct mem_cgroup *memcg)
346 {
347 	int demotion_nid;
348 
349 	if (!numa_demotion_enabled)
350 		return false;
351 	if (sc && sc->no_demotion)
352 		return false;
353 
354 	demotion_nid = next_demotion_node(nid);
355 	if (demotion_nid == NUMA_NO_NODE)
356 		return false;
357 
358 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 	return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 					  int nid,
364 					  struct scan_control *sc)
365 {
366 	if (memcg == NULL) {
367 		/*
368 		 * For non-memcg reclaim, is there
369 		 * space in any swap device?
370 		 */
371 		if (get_nr_swap_pages() > 0)
372 			return true;
373 	} else {
374 		/* Is the memcg below its swap limit? */
375 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 			return true;
377 	}
378 
379 	/*
380 	 * The page can not be swapped.
381 	 *
382 	 * Can it be reclaimed from this node via demotion?
383 	 */
384 	return can_demote(nid, sc, memcg);
385 }
386 
387 /*
388  * This misses isolated folios which are not accounted for to save counters.
389  * As the data only determines if reclaim or compaction continues, it is
390  * not expected that isolated folios will be a dominating factor.
391  */
zone_reclaimable_pages(struct zone * zone)392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 	unsigned long nr;
395 
396 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401 
402 	return nr;
403 }
404 
405 /**
406  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
407  * @lruvec: lru vector
408  * @lru: lru to use
409  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
410  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
412 				     int zone_idx)
413 {
414 	unsigned long size = 0;
415 	int zid;
416 	struct zone *zone;
417 
418 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
419 		if (!mem_cgroup_disabled())
420 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
421 		else
422 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
423 	}
424 	return size;
425 }
426 
drop_slab_node(int nid)427 static unsigned long drop_slab_node(int nid)
428 {
429 	unsigned long freed = 0;
430 	struct mem_cgroup *memcg = NULL;
431 
432 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
433 	do {
434 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
435 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
436 
437 	return freed;
438 }
439 
drop_slab(void)440 void drop_slab(void)
441 {
442 	int nid;
443 	int shift = 0;
444 	unsigned long freed;
445 
446 	do {
447 		freed = 0;
448 		for_each_online_node(nid) {
449 			if (fatal_signal_pending(current))
450 				return;
451 
452 			freed += drop_slab_node(nid);
453 		}
454 	} while ((freed >> shift++) > 1);
455 }
456 
457 #define CHECK_RECLAIMER_OFFSET(type)					\
458 	do {								\
459 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
460 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
461 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
462 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
463 	} while (0)
464 
reclaimer_offset(struct scan_control * sc)465 static int reclaimer_offset(struct scan_control *sc)
466 {
467 	CHECK_RECLAIMER_OFFSET(DIRECT);
468 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
469 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
470 
471 	if (current_is_kswapd())
472 		return 0;
473 	if (current_is_khugepaged())
474 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
475 	if (sc->proactive)
476 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
477 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
478 }
479 
480 /*
481  * We detected a synchronous write error writing a folio out.  Probably
482  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
483  * fsync(), msync() or close().
484  *
485  * The tricky part is that after writepage we cannot touch the mapping: nothing
486  * prevents it from being freed up.  But we have a ref on the folio and once
487  * that folio is locked, the mapping is pinned.
488  *
489  * We're allowed to run sleeping folio_lock() here because we know the caller has
490  * __GFP_FS.
491  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)492 static void handle_write_error(struct address_space *mapping,
493 				struct folio *folio, int error)
494 {
495 	folio_lock(folio);
496 	if (folio_mapping(folio) == mapping)
497 		mapping_set_error(mapping, error);
498 	folio_unlock(folio);
499 }
500 
skip_throttle_noprogress(pg_data_t * pgdat)501 static bool skip_throttle_noprogress(pg_data_t *pgdat)
502 {
503 	int reclaimable = 0, write_pending = 0;
504 	int i;
505 	struct zone *zone;
506 	/*
507 	 * If kswapd is disabled, reschedule if necessary but do not
508 	 * throttle as the system is likely near OOM.
509 	 */
510 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
511 		return true;
512 
513 	/*
514 	 * If there are a lot of dirty/writeback folios then do not
515 	 * throttle as throttling will occur when the folios cycle
516 	 * towards the end of the LRU if still under writeback.
517 	 */
518 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
519 		reclaimable += zone_reclaimable_pages(zone);
520 		write_pending += zone_page_state_snapshot(zone,
521 						  NR_ZONE_WRITE_PENDING);
522 	}
523 	if (2 * write_pending <= reclaimable)
524 		return true;
525 
526 	return false;
527 }
528 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)529 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
530 {
531 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
532 	long timeout, ret;
533 	DEFINE_WAIT(wait);
534 
535 	/*
536 	 * Do not throttle user workers, kthreads other than kswapd or
537 	 * workqueues. They may be required for reclaim to make
538 	 * forward progress (e.g. journalling workqueues or kthreads).
539 	 */
540 	if (!current_is_kswapd() &&
541 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
542 		cond_resched();
543 		return;
544 	}
545 
546 	/*
547 	 * These figures are pulled out of thin air.
548 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
549 	 * parallel reclaimers which is a short-lived event so the timeout is
550 	 * short. Failing to make progress or waiting on writeback are
551 	 * potentially long-lived events so use a longer timeout. This is shaky
552 	 * logic as a failure to make progress could be due to anything from
553 	 * writeback to a slow device to excessive referenced folios at the tail
554 	 * of the inactive LRU.
555 	 */
556 	switch(reason) {
557 	case VMSCAN_THROTTLE_WRITEBACK:
558 		timeout = HZ/10;
559 
560 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
561 			WRITE_ONCE(pgdat->nr_reclaim_start,
562 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
563 		}
564 
565 		break;
566 	case VMSCAN_THROTTLE_CONGESTED:
567 		fallthrough;
568 	case VMSCAN_THROTTLE_NOPROGRESS:
569 		if (skip_throttle_noprogress(pgdat)) {
570 			cond_resched();
571 			return;
572 		}
573 
574 		timeout = 1;
575 
576 		break;
577 	case VMSCAN_THROTTLE_ISOLATED:
578 		timeout = HZ/50;
579 		break;
580 	default:
581 		WARN_ON_ONCE(1);
582 		timeout = HZ;
583 		break;
584 	}
585 
586 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
587 	ret = schedule_timeout(timeout);
588 	finish_wait(wqh, &wait);
589 
590 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
591 		atomic_dec(&pgdat->nr_writeback_throttled);
592 
593 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
594 				jiffies_to_usecs(timeout - ret),
595 				reason);
596 }
597 
598 /*
599  * Account for folios written if tasks are throttled waiting on dirty
600  * folios to clean. If enough folios have been cleaned since throttling
601  * started then wakeup the throttled tasks.
602  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)603 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
604 							int nr_throttled)
605 {
606 	unsigned long nr_written;
607 
608 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
609 
610 	/*
611 	 * This is an inaccurate read as the per-cpu deltas may not
612 	 * be synchronised. However, given that the system is
613 	 * writeback throttled, it is not worth taking the penalty
614 	 * of getting an accurate count. At worst, the throttle
615 	 * timeout guarantees forward progress.
616 	 */
617 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
618 		READ_ONCE(pgdat->nr_reclaim_start);
619 
620 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
621 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
622 }
623 
624 /* possible outcome of pageout() */
625 typedef enum {
626 	/* failed to write folio out, folio is locked */
627 	PAGE_KEEP,
628 	/* move folio to the active list, folio is locked */
629 	PAGE_ACTIVATE,
630 	/* folio has been sent to the disk successfully, folio is unlocked */
631 	PAGE_SUCCESS,
632 	/* folio is clean and locked */
633 	PAGE_CLEAN,
634 } pageout_t;
635 
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)636 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
637 		struct swap_iocb **plug, struct list_head *folio_list)
638 {
639 	int res;
640 
641 	folio_set_reclaim(folio);
642 
643 	/*
644 	 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
645 	 * or we failed to allocate contiguous swap entries, in which case
646 	 * the split out folios get added back to folio_list.
647 	 */
648 	if (shmem_mapping(mapping))
649 		res = shmem_writeout(folio, plug, folio_list);
650 	else
651 		res = swap_writeout(folio, plug);
652 
653 	if (res < 0)
654 		handle_write_error(mapping, folio, res);
655 	if (res == AOP_WRITEPAGE_ACTIVATE) {
656 		folio_clear_reclaim(folio);
657 		return PAGE_ACTIVATE;
658 	}
659 
660 	/* synchronous write? */
661 	if (!folio_test_writeback(folio))
662 		folio_clear_reclaim(folio);
663 
664 	trace_mm_vmscan_write_folio(folio);
665 	node_stat_add_folio(folio, NR_VMSCAN_WRITE);
666 	return PAGE_SUCCESS;
667 }
668 
669 /*
670  * pageout is called by shrink_folio_list() for each dirty folio.
671  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)672 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
673 			 struct swap_iocb **plug, struct list_head *folio_list)
674 {
675 	/*
676 	 * We no longer attempt to writeback filesystem folios here, other
677 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
678 	 * If we find a dirty filesystem folio at the end of the LRU list,
679 	 * typically that means the filesystem is saturating the storage
680 	 * with contiguous writes and telling it to write a folio here
681 	 * would only make the situation worse by injecting an element
682 	 * of random access.
683 	 *
684 	 * If the folio is swapcache, write it back even if that would
685 	 * block, for some throttling. This happens by accident, because
686 	 * swap_backing_dev_info is bust: it doesn't reflect the
687 	 * congestion state of the swapdevs.  Easy to fix, if needed.
688 	 *
689 	 * A freeable shmem or swapcache folio is referenced only by the
690 	 * caller that isolated the folio and the page cache.
691 	 */
692 	if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
693 		return PAGE_KEEP;
694 	if (!shmem_mapping(mapping) && !folio_test_anon(folio))
695 		return PAGE_ACTIVATE;
696 	if (!folio_clear_dirty_for_io(folio))
697 		return PAGE_CLEAN;
698 	return writeout(folio, mapping, plug, folio_list);
699 }
700 
701 /*
702  * Same as remove_mapping, but if the folio is removed from the mapping, it
703  * gets returned with a refcount of 0.
704  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)705 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
706 			    bool reclaimed, struct mem_cgroup *target_memcg)
707 {
708 	int refcount;
709 	void *shadow = NULL;
710 	struct swap_cluster_info *ci;
711 
712 	BUG_ON(!folio_test_locked(folio));
713 	BUG_ON(mapping != folio_mapping(folio));
714 
715 	if (folio_test_swapcache(folio)) {
716 		ci = swap_cluster_get_and_lock_irq(folio);
717 	} else {
718 		spin_lock(&mapping->host->i_lock);
719 		xa_lock_irq(&mapping->i_pages);
720 	}
721 
722 	/*
723 	 * The non racy check for a busy folio.
724 	 *
725 	 * Must be careful with the order of the tests. When someone has
726 	 * a ref to the folio, it may be possible that they dirty it then
727 	 * drop the reference. So if the dirty flag is tested before the
728 	 * refcount here, then the following race may occur:
729 	 *
730 	 * get_user_pages(&page);
731 	 * [user mapping goes away]
732 	 * write_to(page);
733 	 *				!folio_test_dirty(folio)    [good]
734 	 * folio_set_dirty(folio);
735 	 * folio_put(folio);
736 	 *				!refcount(folio)   [good, discard it]
737 	 *
738 	 * [oops, our write_to data is lost]
739 	 *
740 	 * Reversing the order of the tests ensures such a situation cannot
741 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
742 	 * load is not satisfied before that of folio->_refcount.
743 	 *
744 	 * Note that if the dirty flag is always set via folio_mark_dirty,
745 	 * and thus under the i_pages lock, then this ordering is not required.
746 	 */
747 	refcount = 1 + folio_nr_pages(folio);
748 	if (!folio_ref_freeze(folio, refcount))
749 		goto cannot_free;
750 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
751 	if (unlikely(folio_test_dirty(folio))) {
752 		folio_ref_unfreeze(folio, refcount);
753 		goto cannot_free;
754 	}
755 
756 	if (folio_test_swapcache(folio)) {
757 		swp_entry_t swap = folio->swap;
758 
759 		if (reclaimed && !mapping_exiting(mapping))
760 			shadow = workingset_eviction(folio, target_memcg);
761 		__swap_cache_del_folio(ci, folio, swap, shadow);
762 		memcg1_swapout(folio, swap);
763 		swap_cluster_unlock_irq(ci);
764 		put_swap_folio(folio, swap);
765 	} else {
766 		void (*free_folio)(struct folio *);
767 
768 		free_folio = mapping->a_ops->free_folio;
769 		/*
770 		 * Remember a shadow entry for reclaimed file cache in
771 		 * order to detect refaults, thus thrashing, later on.
772 		 *
773 		 * But don't store shadows in an address space that is
774 		 * already exiting.  This is not just an optimization,
775 		 * inode reclaim needs to empty out the radix tree or
776 		 * the nodes are lost.  Don't plant shadows behind its
777 		 * back.
778 		 *
779 		 * We also don't store shadows for DAX mappings because the
780 		 * only page cache folios found in these are zero pages
781 		 * covering holes, and because we don't want to mix DAX
782 		 * exceptional entries and shadow exceptional entries in the
783 		 * same address_space.
784 		 */
785 		if (reclaimed && folio_is_file_lru(folio) &&
786 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
787 			shadow = workingset_eviction(folio, target_memcg);
788 		__filemap_remove_folio(folio, shadow);
789 		xa_unlock_irq(&mapping->i_pages);
790 		if (mapping_shrinkable(mapping))
791 			inode_lru_list_add(mapping->host);
792 		spin_unlock(&mapping->host->i_lock);
793 
794 		if (free_folio)
795 			free_folio(folio);
796 	}
797 
798 	return 1;
799 
800 cannot_free:
801 	if (folio_test_swapcache(folio)) {
802 		swap_cluster_unlock_irq(ci);
803 	} else {
804 		xa_unlock_irq(&mapping->i_pages);
805 		spin_unlock(&mapping->host->i_lock);
806 	}
807 	return 0;
808 }
809 
810 /**
811  * remove_mapping() - Attempt to remove a folio from its mapping.
812  * @mapping: The address space.
813  * @folio: The folio to remove.
814  *
815  * If the folio is dirty, under writeback or if someone else has a ref
816  * on it, removal will fail.
817  * Return: The number of pages removed from the mapping.  0 if the folio
818  * could not be removed.
819  * Context: The caller should have a single refcount on the folio and
820  * hold its lock.
821  */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 	if (__remove_mapping(mapping, folio, false, NULL)) {
825 		/*
826 		 * Unfreezing the refcount with 1 effectively
827 		 * drops the pagecache ref for us without requiring another
828 		 * atomic operation.
829 		 */
830 		folio_ref_unfreeze(folio, 1);
831 		return folio_nr_pages(folio);
832 	}
833 	return 0;
834 }
835 
836 /**
837  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838  * @folio: Folio to be returned to an LRU list.
839  *
840  * Add previously isolated @folio to appropriate LRU list.
841  * The folio may still be unevictable for other reasons.
842  *
843  * Context: lru_lock must not be held, interrupts must be enabled.
844  */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 	folio_add_lru(folio);
848 	folio_put(folio);		/* drop ref from isolate */
849 }
850 
851 enum folio_references {
852 	FOLIOREF_RECLAIM,
853 	FOLIOREF_RECLAIM_CLEAN,
854 	FOLIOREF_KEEP,
855 	FOLIOREF_ACTIVATE,
856 };
857 
858 #ifdef CONFIG_LRU_GEN
859 /*
860  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
861  * needs to be done by taking the folio off the LRU list and then adding it back
862  * with PG_active set. In contrast, the aging (page table walk) path uses
863  * folio_update_gen().
864  */
lru_gen_set_refs(struct folio * folio)865 static bool lru_gen_set_refs(struct folio *folio)
866 {
867 	/* see the comment on LRU_REFS_FLAGS */
868 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
869 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
870 		return false;
871 	}
872 
873 	set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
874 	return true;
875 }
876 #else
lru_gen_set_refs(struct folio * folio)877 static bool lru_gen_set_refs(struct folio *folio)
878 {
879 	return false;
880 }
881 #endif /* CONFIG_LRU_GEN */
882 
folio_check_references(struct folio * folio,struct scan_control * sc)883 static enum folio_references folio_check_references(struct folio *folio,
884 						  struct scan_control *sc)
885 {
886 	int referenced_ptes, referenced_folio;
887 	vm_flags_t vm_flags;
888 
889 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
890 					   &vm_flags);
891 
892 	/*
893 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
894 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
895 	 */
896 	if (vm_flags & VM_LOCKED)
897 		return FOLIOREF_ACTIVATE;
898 
899 	/*
900 	 * There are two cases to consider.
901 	 * 1) Rmap lock contention: rotate.
902 	 * 2) Skip the non-shared swapbacked folio mapped solely by
903 	 *    the exiting or OOM-reaped process.
904 	 */
905 	if (referenced_ptes == -1)
906 		return FOLIOREF_KEEP;
907 
908 	if (lru_gen_enabled()) {
909 		if (!referenced_ptes)
910 			return FOLIOREF_RECLAIM;
911 
912 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
913 	}
914 
915 	referenced_folio = folio_test_clear_referenced(folio);
916 
917 	if (referenced_ptes) {
918 		/*
919 		 * All mapped folios start out with page table
920 		 * references from the instantiating fault, so we need
921 		 * to look twice if a mapped file/anon folio is used more
922 		 * than once.
923 		 *
924 		 * Mark it and spare it for another trip around the
925 		 * inactive list.  Another page table reference will
926 		 * lead to its activation.
927 		 *
928 		 * Note: the mark is set for activated folios as well
929 		 * so that recently deactivated but used folios are
930 		 * quickly recovered.
931 		 */
932 		folio_set_referenced(folio);
933 
934 		if (referenced_folio || referenced_ptes > 1)
935 			return FOLIOREF_ACTIVATE;
936 
937 		/*
938 		 * Activate file-backed executable folios after first usage.
939 		 */
940 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
941 			return FOLIOREF_ACTIVATE;
942 
943 		return FOLIOREF_KEEP;
944 	}
945 
946 	/* Reclaim if clean, defer dirty folios to writeback */
947 	if (referenced_folio && folio_is_file_lru(folio))
948 		return FOLIOREF_RECLAIM_CLEAN;
949 
950 	return FOLIOREF_RECLAIM;
951 }
952 
953 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)954 static void folio_check_dirty_writeback(struct folio *folio,
955 				       bool *dirty, bool *writeback)
956 {
957 	struct address_space *mapping;
958 
959 	/*
960 	 * Anonymous folios are not handled by flushers and must be written
961 	 * from reclaim context. Do not stall reclaim based on them.
962 	 * MADV_FREE anonymous folios are put into inactive file list too.
963 	 * They could be mistakenly treated as file lru. So further anon
964 	 * test is needed.
965 	 */
966 	if (!folio_is_file_lru(folio) ||
967 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
968 		*dirty = false;
969 		*writeback = false;
970 		return;
971 	}
972 
973 	/* By default assume that the folio flags are accurate */
974 	*dirty = folio_test_dirty(folio);
975 	*writeback = folio_test_writeback(folio);
976 
977 	/* Verify dirty/writeback state if the filesystem supports it */
978 	if (!folio_test_private(folio))
979 		return;
980 
981 	mapping = folio_mapping(folio);
982 	if (mapping && mapping->a_ops->is_dirty_writeback)
983 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
984 }
985 
alloc_demote_folio(struct folio * src,unsigned long private)986 static struct folio *alloc_demote_folio(struct folio *src,
987 		unsigned long private)
988 {
989 	struct folio *dst;
990 	nodemask_t *allowed_mask;
991 	struct migration_target_control *mtc;
992 
993 	mtc = (struct migration_target_control *)private;
994 
995 	allowed_mask = mtc->nmask;
996 	/*
997 	 * make sure we allocate from the target node first also trying to
998 	 * demote or reclaim pages from the target node via kswapd if we are
999 	 * low on free memory on target node. If we don't do this and if
1000 	 * we have free memory on the slower(lower) memtier, we would start
1001 	 * allocating pages from slower(lower) memory tiers without even forcing
1002 	 * a demotion of cold pages from the target memtier. This can result
1003 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1004 	 */
1005 	mtc->nmask = NULL;
1006 	mtc->gfp_mask |= __GFP_THISNODE;
1007 	dst = alloc_migration_target(src, (unsigned long)mtc);
1008 	if (dst)
1009 		return dst;
1010 
1011 	mtc->gfp_mask &= ~__GFP_THISNODE;
1012 	mtc->nmask = allowed_mask;
1013 
1014 	return alloc_migration_target(src, (unsigned long)mtc);
1015 }
1016 
1017 /*
1018  * Take folios on @demote_folios and attempt to demote them to another node.
1019  * Folios which are not demoted are left on @demote_folios.
1020  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1021 static unsigned int demote_folio_list(struct list_head *demote_folios,
1022 				     struct pglist_data *pgdat)
1023 {
1024 	int target_nid = next_demotion_node(pgdat->node_id);
1025 	unsigned int nr_succeeded;
1026 	nodemask_t allowed_mask;
1027 
1028 	struct migration_target_control mtc = {
1029 		/*
1030 		 * Allocate from 'node', or fail quickly and quietly.
1031 		 * When this happens, 'page' will likely just be discarded
1032 		 * instead of migrated.
1033 		 */
1034 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1035 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1036 		.nid = target_nid,
1037 		.nmask = &allowed_mask,
1038 		.reason = MR_DEMOTION,
1039 	};
1040 
1041 	if (list_empty(demote_folios))
1042 		return 0;
1043 
1044 	if (target_nid == NUMA_NO_NODE)
1045 		return 0;
1046 
1047 	node_get_allowed_targets(pgdat, &allowed_mask);
1048 
1049 	/* Demotion ignores all cpuset and mempolicy settings */
1050 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1051 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1052 		      &nr_succeeded);
1053 
1054 	return nr_succeeded;
1055 }
1056 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1057 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1058 {
1059 	if (gfp_mask & __GFP_FS)
1060 		return true;
1061 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1062 		return false;
1063 	/*
1064 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1065 	 * providing this isn't SWP_FS_OPS.
1066 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1067 	 * but that will never affect SWP_FS_OPS, so the data_race
1068 	 * is safe.
1069 	 */
1070 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1071 }
1072 
1073 /*
1074  * shrink_folio_list() returns the number of reclaimed pages
1075  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1076 static unsigned int shrink_folio_list(struct list_head *folio_list,
1077 		struct pglist_data *pgdat, struct scan_control *sc,
1078 		struct reclaim_stat *stat, bool ignore_references,
1079 		struct mem_cgroup *memcg)
1080 {
1081 	struct folio_batch free_folios;
1082 	LIST_HEAD(ret_folios);
1083 	LIST_HEAD(demote_folios);
1084 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1085 	unsigned int pgactivate = 0;
1086 	bool do_demote_pass;
1087 	struct swap_iocb *plug = NULL;
1088 
1089 	folio_batch_init(&free_folios);
1090 	memset(stat, 0, sizeof(*stat));
1091 	cond_resched();
1092 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1093 
1094 retry:
1095 	while (!list_empty(folio_list)) {
1096 		struct address_space *mapping;
1097 		struct folio *folio;
1098 		enum folio_references references = FOLIOREF_RECLAIM;
1099 		bool dirty, writeback;
1100 		unsigned int nr_pages;
1101 
1102 		cond_resched();
1103 
1104 		folio = lru_to_folio(folio_list);
1105 		list_del(&folio->lru);
1106 
1107 		if (!folio_trylock(folio))
1108 			goto keep;
1109 
1110 		if (folio_contain_hwpoisoned_page(folio)) {
1111 			/*
1112 			 * unmap_poisoned_folio() can't handle large
1113 			 * folio, just skip it. memory_failure() will
1114 			 * handle it if the UCE is triggered again.
1115 			 */
1116 			if (folio_test_large(folio))
1117 				goto keep_locked;
1118 
1119 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1120 			folio_unlock(folio);
1121 			folio_put(folio);
1122 			continue;
1123 		}
1124 
1125 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1126 
1127 		nr_pages = folio_nr_pages(folio);
1128 
1129 		/* Account the number of base pages */
1130 		sc->nr_scanned += nr_pages;
1131 
1132 		if (unlikely(!folio_evictable(folio)))
1133 			goto activate_locked;
1134 
1135 		if (!sc->may_unmap && folio_mapped(folio))
1136 			goto keep_locked;
1137 
1138 		/*
1139 		 * The number of dirty pages determines if a node is marked
1140 		 * reclaim_congested. kswapd will stall and start writing
1141 		 * folios if the tail of the LRU is all dirty unqueued folios.
1142 		 */
1143 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1144 		if (dirty || writeback)
1145 			stat->nr_dirty += nr_pages;
1146 
1147 		if (dirty && !writeback)
1148 			stat->nr_unqueued_dirty += nr_pages;
1149 
1150 		/*
1151 		 * Treat this folio as congested if folios are cycling
1152 		 * through the LRU so quickly that the folios marked
1153 		 * for immediate reclaim are making it to the end of
1154 		 * the LRU a second time.
1155 		 */
1156 		if (writeback && folio_test_reclaim(folio))
1157 			stat->nr_congested += nr_pages;
1158 
1159 		/*
1160 		 * If a folio at the tail of the LRU is under writeback, there
1161 		 * are three cases to consider.
1162 		 *
1163 		 * 1) If reclaim is encountering an excessive number
1164 		 *    of folios under writeback and this folio has both
1165 		 *    the writeback and reclaim flags set, then it
1166 		 *    indicates that folios are being queued for I/O but
1167 		 *    are being recycled through the LRU before the I/O
1168 		 *    can complete. Waiting on the folio itself risks an
1169 		 *    indefinite stall if it is impossible to writeback
1170 		 *    the folio due to I/O error or disconnected storage
1171 		 *    so instead note that the LRU is being scanned too
1172 		 *    quickly and the caller can stall after the folio
1173 		 *    list has been processed.
1174 		 *
1175 		 * 2) Global or new memcg reclaim encounters a folio that is
1176 		 *    not marked for immediate reclaim, or the caller does not
1177 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1178 		 *    not to fs), or the folio belongs to a mapping where
1179 		 *    waiting on writeback during reclaim may lead to a deadlock.
1180 		 *    In this case mark the folio for immediate reclaim and
1181 		 *    continue scanning.
1182 		 *
1183 		 *    Require may_enter_fs() because we would wait on fs, which
1184 		 *    may not have submitted I/O yet. And the loop driver might
1185 		 *    enter reclaim, and deadlock if it waits on a folio for
1186 		 *    which it is needed to do the write (loop masks off
1187 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1188 		 *    would probably show more reasons.
1189 		 *
1190 		 * 3) Legacy memcg encounters a folio that already has the
1191 		 *    reclaim flag set. memcg does not have any dirty folio
1192 		 *    throttling so we could easily OOM just because too many
1193 		 *    folios are in writeback and there is nothing else to
1194 		 *    reclaim. Wait for the writeback to complete.
1195 		 *
1196 		 * In cases 1) and 2) we activate the folios to get them out of
1197 		 * the way while we continue scanning for clean folios on the
1198 		 * inactive list and refilling from the active list. The
1199 		 * observation here is that waiting for disk writes is more
1200 		 * expensive than potentially causing reloads down the line.
1201 		 * Since they're marked for immediate reclaim, they won't put
1202 		 * memory pressure on the cache working set any longer than it
1203 		 * takes to write them to disk.
1204 		 */
1205 		if (folio_test_writeback(folio)) {
1206 			mapping = folio_mapping(folio);
1207 
1208 			/* Case 1 above */
1209 			if (current_is_kswapd() &&
1210 			    folio_test_reclaim(folio) &&
1211 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 				stat->nr_immediate += nr_pages;
1213 				goto activate_locked;
1214 
1215 			/* Case 2 above */
1216 			} else if (writeback_throttling_sane(sc) ||
1217 			    !folio_test_reclaim(folio) ||
1218 			    !may_enter_fs(folio, sc->gfp_mask) ||
1219 			    (mapping &&
1220 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1221 				/*
1222 				 * This is slightly racy -
1223 				 * folio_end_writeback() might have
1224 				 * just cleared the reclaim flag, then
1225 				 * setting the reclaim flag here ends up
1226 				 * interpreted as the readahead flag - but
1227 				 * that does not matter enough to care.
1228 				 * What we do want is for this folio to
1229 				 * have the reclaim flag set next time
1230 				 * memcg reclaim reaches the tests above,
1231 				 * so it will then wait for writeback to
1232 				 * avoid OOM; and it's also appropriate
1233 				 * in global reclaim.
1234 				 */
1235 				folio_set_reclaim(folio);
1236 				stat->nr_writeback += nr_pages;
1237 				goto activate_locked;
1238 
1239 			/* Case 3 above */
1240 			} else {
1241 				folio_unlock(folio);
1242 				folio_wait_writeback(folio);
1243 				/* then go back and try same folio again */
1244 				list_add_tail(&folio->lru, folio_list);
1245 				continue;
1246 			}
1247 		}
1248 
1249 		if (!ignore_references)
1250 			references = folio_check_references(folio, sc);
1251 
1252 		switch (references) {
1253 		case FOLIOREF_ACTIVATE:
1254 			goto activate_locked;
1255 		case FOLIOREF_KEEP:
1256 			stat->nr_ref_keep += nr_pages;
1257 			goto keep_locked;
1258 		case FOLIOREF_RECLAIM:
1259 		case FOLIOREF_RECLAIM_CLEAN:
1260 			; /* try to reclaim the folio below */
1261 		}
1262 
1263 		/*
1264 		 * Before reclaiming the folio, try to relocate
1265 		 * its contents to another node.
1266 		 */
1267 		if (do_demote_pass &&
1268 		    (thp_migration_supported() || !folio_test_large(folio))) {
1269 			list_add(&folio->lru, &demote_folios);
1270 			folio_unlock(folio);
1271 			continue;
1272 		}
1273 
1274 		/*
1275 		 * Anonymous process memory has backing store?
1276 		 * Try to allocate it some swap space here.
1277 		 * Lazyfree folio could be freed directly
1278 		 */
1279 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1280 			if (!folio_test_swapcache(folio)) {
1281 				if (!(sc->gfp_mask & __GFP_IO))
1282 					goto keep_locked;
1283 				if (folio_maybe_dma_pinned(folio))
1284 					goto keep_locked;
1285 				if (folio_test_large(folio)) {
1286 					/* cannot split folio, skip it */
1287 					if (folio_expected_ref_count(folio) !=
1288 					    folio_ref_count(folio) - 1)
1289 						goto activate_locked;
1290 					/*
1291 					 * Split partially mapped folios right away.
1292 					 * We can free the unmapped pages without IO.
1293 					 */
1294 					if (data_race(!list_empty(&folio->_deferred_list) &&
1295 					    folio_test_partially_mapped(folio)) &&
1296 					    split_folio_to_list(folio, folio_list))
1297 						goto activate_locked;
1298 				}
1299 				if (folio_alloc_swap(folio)) {
1300 					int __maybe_unused order = folio_order(folio);
1301 
1302 					if (!folio_test_large(folio))
1303 						goto activate_locked_split;
1304 					/* Fallback to swap normal pages */
1305 					if (split_folio_to_list(folio, folio_list))
1306 						goto activate_locked;
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 					if (nr_pages >= HPAGE_PMD_NR) {
1309 						count_memcg_folio_events(folio,
1310 							THP_SWPOUT_FALLBACK, 1);
1311 						count_vm_event(THP_SWPOUT_FALLBACK);
1312 					}
1313 #endif
1314 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1315 					if (folio_alloc_swap(folio))
1316 						goto activate_locked_split;
1317 				}
1318 				/*
1319 				 * Normally the folio will be dirtied in unmap because its
1320 				 * pte should be dirty. A special case is MADV_FREE page. The
1321 				 * page's pte could have dirty bit cleared but the folio's
1322 				 * SwapBacked flag is still set because clearing the dirty bit
1323 				 * and SwapBacked flag has no lock protected. For such folio,
1324 				 * unmap will not set dirty bit for it, so folio reclaim will
1325 				 * not write the folio out. This can cause data corruption when
1326 				 * the folio is swapped in later. Always setting the dirty flag
1327 				 * for the folio solves the problem.
1328 				 */
1329 				folio_mark_dirty(folio);
1330 			}
1331 		}
1332 
1333 		/*
1334 		 * If the folio was split above, the tail pages will make
1335 		 * their own pass through this function and be accounted
1336 		 * then.
1337 		 */
1338 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1339 			sc->nr_scanned -= (nr_pages - 1);
1340 			nr_pages = 1;
1341 		}
1342 
1343 		/*
1344 		 * The folio is mapped into the page tables of one or more
1345 		 * processes. Try to unmap it here.
1346 		 */
1347 		if (folio_mapped(folio)) {
1348 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1349 			bool was_swapbacked = folio_test_swapbacked(folio);
1350 
1351 			if (folio_test_pmd_mappable(folio))
1352 				flags |= TTU_SPLIT_HUGE_PMD;
1353 			/*
1354 			 * Without TTU_SYNC, try_to_unmap will only begin to
1355 			 * hold PTL from the first present PTE within a large
1356 			 * folio. Some initial PTEs might be skipped due to
1357 			 * races with parallel PTE writes in which PTEs can be
1358 			 * cleared temporarily before being written new present
1359 			 * values. This will lead to a large folio is still
1360 			 * mapped while some subpages have been partially
1361 			 * unmapped after try_to_unmap; TTU_SYNC helps
1362 			 * try_to_unmap acquire PTL from the first PTE,
1363 			 * eliminating the influence of temporary PTE values.
1364 			 */
1365 			if (folio_test_large(folio))
1366 				flags |= TTU_SYNC;
1367 
1368 			try_to_unmap(folio, flags);
1369 			if (folio_mapped(folio)) {
1370 				stat->nr_unmap_fail += nr_pages;
1371 				if (!was_swapbacked &&
1372 				    folio_test_swapbacked(folio))
1373 					stat->nr_lazyfree_fail += nr_pages;
1374 				goto activate_locked;
1375 			}
1376 		}
1377 
1378 		/*
1379 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1380 		 * No point in trying to reclaim folio if it is pinned.
1381 		 * Furthermore we don't want to reclaim underlying fs metadata
1382 		 * if the folio is pinned and thus potentially modified by the
1383 		 * pinning process as that may upset the filesystem.
1384 		 */
1385 		if (folio_maybe_dma_pinned(folio))
1386 			goto activate_locked;
1387 
1388 		mapping = folio_mapping(folio);
1389 		if (folio_test_dirty(folio)) {
1390 			if (folio_is_file_lru(folio)) {
1391 				/*
1392 				 * Immediately reclaim when written back.
1393 				 * Similar in principle to folio_deactivate()
1394 				 * except we already have the folio isolated
1395 				 * and know it's dirty
1396 				 */
1397 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1398 						nr_pages);
1399 				if (!folio_test_reclaim(folio))
1400 					folio_set_reclaim(folio);
1401 
1402 				goto activate_locked;
1403 			}
1404 
1405 			if (references == FOLIOREF_RECLAIM_CLEAN)
1406 				goto keep_locked;
1407 			if (!may_enter_fs(folio, sc->gfp_mask))
1408 				goto keep_locked;
1409 			if (!sc->may_writepage)
1410 				goto keep_locked;
1411 
1412 			/*
1413 			 * Folio is dirty. Flush the TLB if a writable entry
1414 			 * potentially exists to avoid CPU writes after I/O
1415 			 * starts and then write it out here.
1416 			 */
1417 			try_to_unmap_flush_dirty();
1418 			switch (pageout(folio, mapping, &plug, folio_list)) {
1419 			case PAGE_KEEP:
1420 				goto keep_locked;
1421 			case PAGE_ACTIVATE:
1422 				/*
1423 				 * If shmem folio is split when writeback to swap,
1424 				 * the tail pages will make their own pass through
1425 				 * this function and be accounted then.
1426 				 */
1427 				if (nr_pages > 1 && !folio_test_large(folio)) {
1428 					sc->nr_scanned -= (nr_pages - 1);
1429 					nr_pages = 1;
1430 				}
1431 				goto activate_locked;
1432 			case PAGE_SUCCESS:
1433 				if (nr_pages > 1 && !folio_test_large(folio)) {
1434 					sc->nr_scanned -= (nr_pages - 1);
1435 					nr_pages = 1;
1436 				}
1437 				stat->nr_pageout += nr_pages;
1438 
1439 				if (folio_test_writeback(folio))
1440 					goto keep;
1441 				if (folio_test_dirty(folio))
1442 					goto keep;
1443 
1444 				/*
1445 				 * A synchronous write - probably a ramdisk.  Go
1446 				 * ahead and try to reclaim the folio.
1447 				 */
1448 				if (!folio_trylock(folio))
1449 					goto keep;
1450 				if (folio_test_dirty(folio) ||
1451 				    folio_test_writeback(folio))
1452 					goto keep_locked;
1453 				mapping = folio_mapping(folio);
1454 				fallthrough;
1455 			case PAGE_CLEAN:
1456 				; /* try to free the folio below */
1457 			}
1458 		}
1459 
1460 		/*
1461 		 * If the folio has buffers, try to free the buffer
1462 		 * mappings associated with this folio. If we succeed
1463 		 * we try to free the folio as well.
1464 		 *
1465 		 * We do this even if the folio is dirty.
1466 		 * filemap_release_folio() does not perform I/O, but it
1467 		 * is possible for a folio to have the dirty flag set,
1468 		 * but it is actually clean (all its buffers are clean).
1469 		 * This happens if the buffers were written out directly,
1470 		 * with submit_bh(). ext3 will do this, as well as
1471 		 * the blockdev mapping.  filemap_release_folio() will
1472 		 * discover that cleanness and will drop the buffers
1473 		 * and mark the folio clean - it can be freed.
1474 		 *
1475 		 * Rarely, folios can have buffers and no ->mapping.
1476 		 * These are the folios which were not successfully
1477 		 * invalidated in truncate_cleanup_folio().  We try to
1478 		 * drop those buffers here and if that worked, and the
1479 		 * folio is no longer mapped into process address space
1480 		 * (refcount == 1) it can be freed.  Otherwise, leave
1481 		 * the folio on the LRU so it is swappable.
1482 		 */
1483 		if (folio_needs_release(folio)) {
1484 			if (!filemap_release_folio(folio, sc->gfp_mask))
1485 				goto activate_locked;
1486 			if (!mapping && folio_ref_count(folio) == 1) {
1487 				folio_unlock(folio);
1488 				if (folio_put_testzero(folio))
1489 					goto free_it;
1490 				else {
1491 					/*
1492 					 * rare race with speculative reference.
1493 					 * the speculative reference will free
1494 					 * this folio shortly, so we may
1495 					 * increment nr_reclaimed here (and
1496 					 * leave it off the LRU).
1497 					 */
1498 					nr_reclaimed += nr_pages;
1499 					continue;
1500 				}
1501 			}
1502 		}
1503 
1504 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1505 			/* follow __remove_mapping for reference */
1506 			if (!folio_ref_freeze(folio, 1))
1507 				goto keep_locked;
1508 			/*
1509 			 * The folio has only one reference left, which is
1510 			 * from the isolation. After the caller puts the
1511 			 * folio back on the lru and drops the reference, the
1512 			 * folio will be freed anyway. It doesn't matter
1513 			 * which lru it goes on. So we don't bother checking
1514 			 * the dirty flag here.
1515 			 */
1516 			count_vm_events(PGLAZYFREED, nr_pages);
1517 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1518 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1519 							 sc->target_mem_cgroup))
1520 			goto keep_locked;
1521 
1522 		folio_unlock(folio);
1523 free_it:
1524 		/*
1525 		 * Folio may get swapped out as a whole, need to account
1526 		 * all pages in it.
1527 		 */
1528 		nr_reclaimed += nr_pages;
1529 
1530 		folio_unqueue_deferred_split(folio);
1531 		if (folio_batch_add(&free_folios, folio) == 0) {
1532 			mem_cgroup_uncharge_folios(&free_folios);
1533 			try_to_unmap_flush();
1534 			free_unref_folios(&free_folios);
1535 		}
1536 		continue;
1537 
1538 activate_locked_split:
1539 		/*
1540 		 * The tail pages that are failed to add into swap cache
1541 		 * reach here.  Fixup nr_scanned and nr_pages.
1542 		 */
1543 		if (nr_pages > 1) {
1544 			sc->nr_scanned -= (nr_pages - 1);
1545 			nr_pages = 1;
1546 		}
1547 activate_locked:
1548 		/* Not a candidate for swapping, so reclaim swap space. */
1549 		if (folio_test_swapcache(folio) &&
1550 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1551 			folio_free_swap(folio);
1552 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1553 		if (!folio_test_mlocked(folio)) {
1554 			int type = folio_is_file_lru(folio);
1555 			folio_set_active(folio);
1556 			stat->nr_activate[type] += nr_pages;
1557 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1558 		}
1559 keep_locked:
1560 		folio_unlock(folio);
1561 keep:
1562 		list_add(&folio->lru, &ret_folios);
1563 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1564 				folio_test_unevictable(folio), folio);
1565 	}
1566 	/* 'folio_list' is always empty here */
1567 
1568 	/* Migrate folios selected for demotion */
1569 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1570 	nr_reclaimed += nr_demoted;
1571 	stat->nr_demoted += nr_demoted;
1572 	/* Folios that could not be demoted are still in @demote_folios */
1573 	if (!list_empty(&demote_folios)) {
1574 		/* Folios which weren't demoted go back on @folio_list */
1575 		list_splice_init(&demote_folios, folio_list);
1576 
1577 		/*
1578 		 * goto retry to reclaim the undemoted folios in folio_list if
1579 		 * desired.
1580 		 *
1581 		 * Reclaiming directly from top tier nodes is not often desired
1582 		 * due to it breaking the LRU ordering: in general memory
1583 		 * should be reclaimed from lower tier nodes and demoted from
1584 		 * top tier nodes.
1585 		 *
1586 		 * However, disabling reclaim from top tier nodes entirely
1587 		 * would cause ooms in edge scenarios where lower tier memory
1588 		 * is unreclaimable for whatever reason, eg memory being
1589 		 * mlocked or too hot to reclaim. We can disable reclaim
1590 		 * from top tier nodes in proactive reclaim though as that is
1591 		 * not real memory pressure.
1592 		 */
1593 		if (!sc->proactive) {
1594 			do_demote_pass = false;
1595 			goto retry;
1596 		}
1597 	}
1598 
1599 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1600 
1601 	mem_cgroup_uncharge_folios(&free_folios);
1602 	try_to_unmap_flush();
1603 	free_unref_folios(&free_folios);
1604 
1605 	list_splice(&ret_folios, folio_list);
1606 	count_vm_events(PGACTIVATE, pgactivate);
1607 
1608 	if (plug)
1609 		swap_write_unplug(plug);
1610 	return nr_reclaimed;
1611 }
1612 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1613 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1614 					   struct list_head *folio_list)
1615 {
1616 	struct scan_control sc = {
1617 		.gfp_mask = GFP_KERNEL,
1618 		.may_unmap = 1,
1619 	};
1620 	struct reclaim_stat stat;
1621 	unsigned int nr_reclaimed;
1622 	struct folio *folio, *next;
1623 	LIST_HEAD(clean_folios);
1624 	unsigned int noreclaim_flag;
1625 
1626 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1627 		/* TODO: these pages should not even appear in this list. */
1628 		if (page_has_movable_ops(&folio->page))
1629 			continue;
1630 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1631 		    !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1632 			folio_clear_active(folio);
1633 			list_move(&folio->lru, &clean_folios);
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * We should be safe here since we are only dealing with file pages and
1639 	 * we are not kswapd and therefore cannot write dirty file pages. But
1640 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1641 	 * change in the future.
1642 	 */
1643 	noreclaim_flag = memalloc_noreclaim_save();
1644 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1645 					&stat, true, NULL);
1646 	memalloc_noreclaim_restore(noreclaim_flag);
1647 
1648 	list_splice(&clean_folios, folio_list);
1649 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1650 			    -(long)nr_reclaimed);
1651 	/*
1652 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1653 	 * they will rotate back to anonymous LRU in the end if it failed to
1654 	 * discard so isolated count will be mismatched.
1655 	 * Compensate the isolated count for both LRU lists.
1656 	 */
1657 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1658 			    stat.nr_lazyfree_fail);
1659 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1660 			    -(long)stat.nr_lazyfree_fail);
1661 	return nr_reclaimed;
1662 }
1663 
1664 /*
1665  * Update LRU sizes after isolating pages. The LRU size updates must
1666  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1667  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1668 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1669 			enum lru_list lru, unsigned long *nr_zone_taken)
1670 {
1671 	int zid;
1672 
1673 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1674 		if (!nr_zone_taken[zid])
1675 			continue;
1676 
1677 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1678 	}
1679 
1680 }
1681 
1682 /*
1683  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1684  *
1685  * lruvec->lru_lock is heavily contended.  Some of the functions that
1686  * shrink the lists perform better by taking out a batch of pages
1687  * and working on them outside the LRU lock.
1688  *
1689  * For pagecache intensive workloads, this function is the hottest
1690  * spot in the kernel (apart from copy_*_user functions).
1691  *
1692  * Lru_lock must be held before calling this function.
1693  *
1694  * @nr_to_scan:	The number of eligible pages to look through on the list.
1695  * @lruvec:	The LRU vector to pull pages from.
1696  * @dst:	The temp list to put pages on to.
1697  * @nr_scanned:	The number of pages that were scanned.
1698  * @sc:		The scan_control struct for this reclaim session
1699  * @lru:	LRU list id for isolating
1700  *
1701  * returns how many pages were moved onto *@dst.
1702  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1703 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1704 		struct lruvec *lruvec, struct list_head *dst,
1705 		unsigned long *nr_scanned, struct scan_control *sc,
1706 		enum lru_list lru)
1707 {
1708 	struct list_head *src = &lruvec->lists[lru];
1709 	unsigned long nr_taken = 0;
1710 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1711 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1712 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1713 	unsigned long nr_pages;
1714 	unsigned long max_nr_skipped = 0;
1715 	LIST_HEAD(folios_skipped);
1716 
1717 	while (scan < nr_to_scan && !list_empty(src)) {
1718 		struct list_head *move_to = src;
1719 		struct folio *folio;
1720 
1721 		folio = lru_to_folio(src);
1722 		prefetchw_prev_lru_folio(folio, src, flags);
1723 
1724 		nr_pages = folio_nr_pages(folio);
1725 		total_scan += nr_pages;
1726 
1727 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1728 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1729 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1730 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1731 			move_to = &folios_skipped;
1732 			max_nr_skipped++;
1733 			goto move;
1734 		}
1735 
1736 		/*
1737 		 * Do not count skipped folios because that makes the function
1738 		 * return with no isolated folios if the LRU mostly contains
1739 		 * ineligible folios.  This causes the VM to not reclaim any
1740 		 * folios, triggering a premature OOM.
1741 		 * Account all pages in a folio.
1742 		 */
1743 		scan += nr_pages;
1744 
1745 		if (!folio_test_lru(folio))
1746 			goto move;
1747 		if (!sc->may_unmap && folio_mapped(folio))
1748 			goto move;
1749 
1750 		/*
1751 		 * Be careful not to clear the lru flag until after we're
1752 		 * sure the folio is not being freed elsewhere -- the
1753 		 * folio release code relies on it.
1754 		 */
1755 		if (unlikely(!folio_try_get(folio)))
1756 			goto move;
1757 
1758 		if (!folio_test_clear_lru(folio)) {
1759 			/* Another thread is already isolating this folio */
1760 			folio_put(folio);
1761 			goto move;
1762 		}
1763 
1764 		nr_taken += nr_pages;
1765 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1766 		move_to = dst;
1767 move:
1768 		list_move(&folio->lru, move_to);
1769 	}
1770 
1771 	/*
1772 	 * Splice any skipped folios to the start of the LRU list. Note that
1773 	 * this disrupts the LRU order when reclaiming for lower zones but
1774 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1775 	 * scanning would soon rescan the same folios to skip and waste lots
1776 	 * of cpu cycles.
1777 	 */
1778 	if (!list_empty(&folios_skipped)) {
1779 		int zid;
1780 
1781 		list_splice(&folios_skipped, src);
1782 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1783 			if (!nr_skipped[zid])
1784 				continue;
1785 
1786 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1787 			skipped += nr_skipped[zid];
1788 		}
1789 	}
1790 	*nr_scanned = total_scan;
1791 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1792 				    total_scan, skipped, nr_taken, lru);
1793 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1794 	return nr_taken;
1795 }
1796 
1797 /**
1798  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1799  * @folio: Folio to isolate from its LRU list.
1800  *
1801  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1802  * corresponding to whatever LRU list the folio was on.
1803  *
1804  * The folio will have its LRU flag cleared.  If it was found on the
1805  * active list, it will have the Active flag set.  If it was found on the
1806  * unevictable list, it will have the Unevictable flag set.  These flags
1807  * may need to be cleared by the caller before letting the page go.
1808  *
1809  * Context:
1810  *
1811  * (1) Must be called with an elevated refcount on the folio. This is a
1812  *     fundamental difference from isolate_lru_folios() (which is called
1813  *     without a stable reference).
1814  * (2) The lru_lock must not be held.
1815  * (3) Interrupts must be enabled.
1816  *
1817  * Return: true if the folio was removed from an LRU list.
1818  * false if the folio was not on an LRU list.
1819  */
folio_isolate_lru(struct folio * folio)1820 bool folio_isolate_lru(struct folio *folio)
1821 {
1822 	bool ret = false;
1823 
1824 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1825 
1826 	if (folio_test_clear_lru(folio)) {
1827 		struct lruvec *lruvec;
1828 
1829 		folio_get(folio);
1830 		lruvec = folio_lruvec_lock_irq(folio);
1831 		lruvec_del_folio(lruvec, folio);
1832 		unlock_page_lruvec_irq(lruvec);
1833 		ret = true;
1834 	}
1835 
1836 	return ret;
1837 }
1838 
1839 /*
1840  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1841  * then get rescheduled. When there are massive number of tasks doing page
1842  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1843  * the LRU list will go small and be scanned faster than necessary, leading to
1844  * unnecessary swapping, thrashing and OOM.
1845  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1846 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1847 		struct scan_control *sc)
1848 {
1849 	unsigned long inactive, isolated;
1850 	bool too_many;
1851 
1852 	if (current_is_kswapd())
1853 		return false;
1854 
1855 	if (!writeback_throttling_sane(sc))
1856 		return false;
1857 
1858 	if (file) {
1859 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1860 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1861 	} else {
1862 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1863 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1864 	}
1865 
1866 	/*
1867 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1868 	 * won't get blocked by normal direct-reclaimers, forming a circular
1869 	 * deadlock.
1870 	 */
1871 	if (gfp_has_io_fs(sc->gfp_mask))
1872 		inactive >>= 3;
1873 
1874 	too_many = isolated > inactive;
1875 
1876 	/* Wake up tasks throttled due to too_many_isolated. */
1877 	if (!too_many)
1878 		wake_throttle_isolated(pgdat);
1879 
1880 	return too_many;
1881 }
1882 
1883 /*
1884  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1885  *
1886  * Returns the number of pages moved to the given lruvec.
1887  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1888 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1889 		struct list_head *list)
1890 {
1891 	int nr_pages, nr_moved = 0;
1892 	struct folio_batch free_folios;
1893 
1894 	folio_batch_init(&free_folios);
1895 	while (!list_empty(list)) {
1896 		struct folio *folio = lru_to_folio(list);
1897 
1898 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1899 		list_del(&folio->lru);
1900 		if (unlikely(!folio_evictable(folio))) {
1901 			spin_unlock_irq(&lruvec->lru_lock);
1902 			folio_putback_lru(folio);
1903 			spin_lock_irq(&lruvec->lru_lock);
1904 			continue;
1905 		}
1906 
1907 		/*
1908 		 * The folio_set_lru needs to be kept here for list integrity.
1909 		 * Otherwise:
1910 		 *   #0 move_folios_to_lru             #1 release_pages
1911 		 *   if (!folio_put_testzero())
1912 		 *				      if (folio_put_testzero())
1913 		 *				        !lru //skip lru_lock
1914 		 *     folio_set_lru()
1915 		 *     list_add(&folio->lru,)
1916 		 *                                        list_add(&folio->lru,)
1917 		 */
1918 		folio_set_lru(folio);
1919 
1920 		if (unlikely(folio_put_testzero(folio))) {
1921 			__folio_clear_lru_flags(folio);
1922 
1923 			folio_unqueue_deferred_split(folio);
1924 			if (folio_batch_add(&free_folios, folio) == 0) {
1925 				spin_unlock_irq(&lruvec->lru_lock);
1926 				mem_cgroup_uncharge_folios(&free_folios);
1927 				free_unref_folios(&free_folios);
1928 				spin_lock_irq(&lruvec->lru_lock);
1929 			}
1930 
1931 			continue;
1932 		}
1933 
1934 		/*
1935 		 * All pages were isolated from the same lruvec (and isolation
1936 		 * inhibits memcg migration).
1937 		 */
1938 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1939 		lruvec_add_folio(lruvec, folio);
1940 		nr_pages = folio_nr_pages(folio);
1941 		nr_moved += nr_pages;
1942 		if (folio_test_active(folio))
1943 			workingset_age_nonresident(lruvec, nr_pages);
1944 	}
1945 
1946 	if (free_folios.nr) {
1947 		spin_unlock_irq(&lruvec->lru_lock);
1948 		mem_cgroup_uncharge_folios(&free_folios);
1949 		free_unref_folios(&free_folios);
1950 		spin_lock_irq(&lruvec->lru_lock);
1951 	}
1952 
1953 	return nr_moved;
1954 }
1955 
1956 /*
1957  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1958  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1959  * we should not throttle.  Otherwise it is safe to do so.
1960  */
current_may_throttle(void)1961 static int current_may_throttle(void)
1962 {
1963 	return !(current->flags & PF_LOCAL_THROTTLE);
1964 }
1965 
1966 /*
1967  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1968  * of reclaimed pages
1969  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1970 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1971 		struct lruvec *lruvec, struct scan_control *sc,
1972 		enum lru_list lru)
1973 {
1974 	LIST_HEAD(folio_list);
1975 	unsigned long nr_scanned;
1976 	unsigned int nr_reclaimed = 0;
1977 	unsigned long nr_taken;
1978 	struct reclaim_stat stat;
1979 	bool file = is_file_lru(lru);
1980 	enum vm_event_item item;
1981 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982 	bool stalled = false;
1983 
1984 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1985 		if (stalled)
1986 			return 0;
1987 
1988 		/* wait a bit for the reclaimer. */
1989 		stalled = true;
1990 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1991 
1992 		/* We are about to die and free our memory. Return now. */
1993 		if (fatal_signal_pending(current))
1994 			return SWAP_CLUSTER_MAX;
1995 	}
1996 
1997 	lru_add_drain();
1998 
1999 	spin_lock_irq(&lruvec->lru_lock);
2000 
2001 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2002 				     &nr_scanned, sc, lru);
2003 
2004 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2005 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2006 	if (!cgroup_reclaim(sc))
2007 		__count_vm_events(item, nr_scanned);
2008 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2009 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2010 
2011 	spin_unlock_irq(&lruvec->lru_lock);
2012 
2013 	if (nr_taken == 0)
2014 		return 0;
2015 
2016 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2017 					 lruvec_memcg(lruvec));
2018 
2019 	spin_lock_irq(&lruvec->lru_lock);
2020 	move_folios_to_lru(lruvec, &folio_list);
2021 
2022 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2023 					stat.nr_demoted);
2024 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2025 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2026 	if (!cgroup_reclaim(sc))
2027 		__count_vm_events(item, nr_reclaimed);
2028 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2029 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2030 
2031 	lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2032 					nr_scanned - nr_reclaimed);
2033 
2034 	/*
2035 	 * If dirty folios are scanned that are not queued for IO, it
2036 	 * implies that flushers are not doing their job. This can
2037 	 * happen when memory pressure pushes dirty folios to the end of
2038 	 * the LRU before the dirty limits are breached and the dirty
2039 	 * data has expired. It can also happen when the proportion of
2040 	 * dirty folios grows not through writes but through memory
2041 	 * pressure reclaiming all the clean cache. And in some cases,
2042 	 * the flushers simply cannot keep up with the allocation
2043 	 * rate. Nudge the flusher threads in case they are asleep.
2044 	 */
2045 	if (stat.nr_unqueued_dirty == nr_taken) {
2046 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2047 		/*
2048 		 * For cgroupv1 dirty throttling is achieved by waking up
2049 		 * the kernel flusher here and later waiting on folios
2050 		 * which are in writeback to finish (see shrink_folio_list()).
2051 		 *
2052 		 * Flusher may not be able to issue writeback quickly
2053 		 * enough for cgroupv1 writeback throttling to work
2054 		 * on a large system.
2055 		 */
2056 		if (!writeback_throttling_sane(sc))
2057 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2058 	}
2059 
2060 	sc->nr.dirty += stat.nr_dirty;
2061 	sc->nr.congested += stat.nr_congested;
2062 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2063 	sc->nr.writeback += stat.nr_writeback;
2064 	sc->nr.immediate += stat.nr_immediate;
2065 	sc->nr.taken += nr_taken;
2066 	if (file)
2067 		sc->nr.file_taken += nr_taken;
2068 
2069 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2070 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2071 	return nr_reclaimed;
2072 }
2073 
2074 /*
2075  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2076  *
2077  * We move them the other way if the folio is referenced by one or more
2078  * processes.
2079  *
2080  * If the folios are mostly unmapped, the processing is fast and it is
2081  * appropriate to hold lru_lock across the whole operation.  But if
2082  * the folios are mapped, the processing is slow (folio_referenced()), so
2083  * we should drop lru_lock around each folio.  It's impossible to balance
2084  * this, so instead we remove the folios from the LRU while processing them.
2085  * It is safe to rely on the active flag against the non-LRU folios in here
2086  * because nobody will play with that bit on a non-LRU folio.
2087  *
2088  * The downside is that we have to touch folio->_refcount against each folio.
2089  * But we had to alter folio->flags anyway.
2090  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2091 static void shrink_active_list(unsigned long nr_to_scan,
2092 			       struct lruvec *lruvec,
2093 			       struct scan_control *sc,
2094 			       enum lru_list lru)
2095 {
2096 	unsigned long nr_taken;
2097 	unsigned long nr_scanned;
2098 	vm_flags_t vm_flags;
2099 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2100 	LIST_HEAD(l_active);
2101 	LIST_HEAD(l_inactive);
2102 	unsigned nr_deactivate, nr_activate;
2103 	unsigned nr_rotated = 0;
2104 	bool file = is_file_lru(lru);
2105 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2106 
2107 	lru_add_drain();
2108 
2109 	spin_lock_irq(&lruvec->lru_lock);
2110 
2111 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2112 				     &nr_scanned, sc, lru);
2113 
2114 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2115 
2116 	if (!cgroup_reclaim(sc))
2117 		__count_vm_events(PGREFILL, nr_scanned);
2118 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2119 
2120 	spin_unlock_irq(&lruvec->lru_lock);
2121 
2122 	while (!list_empty(&l_hold)) {
2123 		struct folio *folio;
2124 
2125 		cond_resched();
2126 		folio = lru_to_folio(&l_hold);
2127 		list_del(&folio->lru);
2128 
2129 		if (unlikely(!folio_evictable(folio))) {
2130 			folio_putback_lru(folio);
2131 			continue;
2132 		}
2133 
2134 		if (unlikely(buffer_heads_over_limit)) {
2135 			if (folio_needs_release(folio) &&
2136 			    folio_trylock(folio)) {
2137 				filemap_release_folio(folio, 0);
2138 				folio_unlock(folio);
2139 			}
2140 		}
2141 
2142 		/* Referenced or rmap lock contention: rotate */
2143 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2144 				     &vm_flags) != 0) {
2145 			/*
2146 			 * Identify referenced, file-backed active folios and
2147 			 * give them one more trip around the active list. So
2148 			 * that executable code get better chances to stay in
2149 			 * memory under moderate memory pressure.  Anon folios
2150 			 * are not likely to be evicted by use-once streaming
2151 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2152 			 * so we ignore them here.
2153 			 */
2154 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2155 				nr_rotated += folio_nr_pages(folio);
2156 				list_add(&folio->lru, &l_active);
2157 				continue;
2158 			}
2159 		}
2160 
2161 		folio_clear_active(folio);	/* we are de-activating */
2162 		folio_set_workingset(folio);
2163 		list_add(&folio->lru, &l_inactive);
2164 	}
2165 
2166 	/*
2167 	 * Move folios back to the lru list.
2168 	 */
2169 	spin_lock_irq(&lruvec->lru_lock);
2170 
2171 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2172 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2173 
2174 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2175 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2176 
2177 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2178 
2179 	lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2180 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2181 			nr_deactivate, nr_rotated, sc->priority, file);
2182 }
2183 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2184 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2185 				      struct pglist_data *pgdat)
2186 {
2187 	struct reclaim_stat stat;
2188 	unsigned int nr_reclaimed;
2189 	struct folio *folio;
2190 	struct scan_control sc = {
2191 		.gfp_mask = GFP_KERNEL,
2192 		.may_writepage = 1,
2193 		.may_unmap = 1,
2194 		.may_swap = 1,
2195 		.no_demotion = 1,
2196 	};
2197 
2198 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2199 	while (!list_empty(folio_list)) {
2200 		folio = lru_to_folio(folio_list);
2201 		list_del(&folio->lru);
2202 		folio_putback_lru(folio);
2203 	}
2204 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2205 
2206 	return nr_reclaimed;
2207 }
2208 
reclaim_pages(struct list_head * folio_list)2209 unsigned long reclaim_pages(struct list_head *folio_list)
2210 {
2211 	int nid;
2212 	unsigned int nr_reclaimed = 0;
2213 	LIST_HEAD(node_folio_list);
2214 	unsigned int noreclaim_flag;
2215 
2216 	if (list_empty(folio_list))
2217 		return nr_reclaimed;
2218 
2219 	noreclaim_flag = memalloc_noreclaim_save();
2220 
2221 	nid = folio_nid(lru_to_folio(folio_list));
2222 	do {
2223 		struct folio *folio = lru_to_folio(folio_list);
2224 
2225 		if (nid == folio_nid(folio)) {
2226 			folio_clear_active(folio);
2227 			list_move(&folio->lru, &node_folio_list);
2228 			continue;
2229 		}
2230 
2231 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2232 		nid = folio_nid(lru_to_folio(folio_list));
2233 	} while (!list_empty(folio_list));
2234 
2235 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2236 
2237 	memalloc_noreclaim_restore(noreclaim_flag);
2238 
2239 	return nr_reclaimed;
2240 }
2241 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2242 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2243 				 struct lruvec *lruvec, struct scan_control *sc)
2244 {
2245 	if (is_active_lru(lru)) {
2246 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2247 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2248 		else
2249 			sc->skipped_deactivate = 1;
2250 		return 0;
2251 	}
2252 
2253 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2254 }
2255 
2256 /*
2257  * The inactive anon list should be small enough that the VM never has
2258  * to do too much work.
2259  *
2260  * The inactive file list should be small enough to leave most memory
2261  * to the established workingset on the scan-resistant active list,
2262  * but large enough to avoid thrashing the aggregate readahead window.
2263  *
2264  * Both inactive lists should also be large enough that each inactive
2265  * folio has a chance to be referenced again before it is reclaimed.
2266  *
2267  * If that fails and refaulting is observed, the inactive list grows.
2268  *
2269  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2270  * on this LRU, maintained by the pageout code. An inactive_ratio
2271  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2272  *
2273  * total     target    max
2274  * memory    ratio     inactive
2275  * -------------------------------------
2276  *   10MB       1         5MB
2277  *  100MB       1        50MB
2278  *    1GB       3       250MB
2279  *   10GB      10       0.9GB
2280  *  100GB      31         3GB
2281  *    1TB     101        10GB
2282  *   10TB     320        32GB
2283  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2284 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2285 {
2286 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2287 	unsigned long inactive, active;
2288 	unsigned long inactive_ratio;
2289 	unsigned long gb;
2290 
2291 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2292 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2293 
2294 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2295 	if (gb)
2296 		inactive_ratio = int_sqrt(10 * gb);
2297 	else
2298 		inactive_ratio = 1;
2299 
2300 	return inactive * inactive_ratio < active;
2301 }
2302 
2303 enum scan_balance {
2304 	SCAN_EQUAL,
2305 	SCAN_FRACT,
2306 	SCAN_ANON,
2307 	SCAN_FILE,
2308 };
2309 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2310 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2311 {
2312 	unsigned long file;
2313 	struct lruvec *target_lruvec;
2314 
2315 	if (lru_gen_enabled())
2316 		return;
2317 
2318 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2319 
2320 	/*
2321 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2322 	 * most accurate stats here. We may switch to regular stats flushing
2323 	 * in the future once it is cheap enough.
2324 	 */
2325 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2326 
2327 	/*
2328 	 * Determine the scan balance between anon and file LRUs.
2329 	 */
2330 	spin_lock_irq(&target_lruvec->lru_lock);
2331 	sc->anon_cost = target_lruvec->anon_cost;
2332 	sc->file_cost = target_lruvec->file_cost;
2333 	spin_unlock_irq(&target_lruvec->lru_lock);
2334 
2335 	/*
2336 	 * Target desirable inactive:active list ratios for the anon
2337 	 * and file LRU lists.
2338 	 */
2339 	if (!sc->force_deactivate) {
2340 		unsigned long refaults;
2341 
2342 		/*
2343 		 * When refaults are being observed, it means a new
2344 		 * workingset is being established. Deactivate to get
2345 		 * rid of any stale active pages quickly.
2346 		 */
2347 		refaults = lruvec_page_state(target_lruvec,
2348 				WORKINGSET_ACTIVATE_ANON);
2349 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2350 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2351 			sc->may_deactivate |= DEACTIVATE_ANON;
2352 		else
2353 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2354 
2355 		refaults = lruvec_page_state(target_lruvec,
2356 				WORKINGSET_ACTIVATE_FILE);
2357 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2358 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2359 			sc->may_deactivate |= DEACTIVATE_FILE;
2360 		else
2361 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2362 	} else
2363 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2364 
2365 	/*
2366 	 * If we have plenty of inactive file pages that aren't
2367 	 * thrashing, try to reclaim those first before touching
2368 	 * anonymous pages.
2369 	 */
2370 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2371 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2372 	    !sc->no_cache_trim_mode)
2373 		sc->cache_trim_mode = 1;
2374 	else
2375 		sc->cache_trim_mode = 0;
2376 
2377 	/*
2378 	 * Prevent the reclaimer from falling into the cache trap: as
2379 	 * cache pages start out inactive, every cache fault will tip
2380 	 * the scan balance towards the file LRU.  And as the file LRU
2381 	 * shrinks, so does the window for rotation from references.
2382 	 * This means we have a runaway feedback loop where a tiny
2383 	 * thrashing file LRU becomes infinitely more attractive than
2384 	 * anon pages.  Try to detect this based on file LRU size.
2385 	 */
2386 	if (!cgroup_reclaim(sc)) {
2387 		unsigned long total_high_wmark = 0;
2388 		unsigned long free, anon;
2389 		int z;
2390 		struct zone *zone;
2391 
2392 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2393 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2394 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2395 
2396 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2397 			total_high_wmark += high_wmark_pages(zone);
2398 		}
2399 
2400 		/*
2401 		 * Consider anon: if that's low too, this isn't a
2402 		 * runaway file reclaim problem, but rather just
2403 		 * extreme pressure. Reclaim as per usual then.
2404 		 */
2405 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2406 
2407 		sc->file_is_tiny =
2408 			file + free <= total_high_wmark &&
2409 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2410 			anon >> sc->priority;
2411 	}
2412 }
2413 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2414 static inline void calculate_pressure_balance(struct scan_control *sc,
2415 			int swappiness, u64 *fraction, u64 *denominator)
2416 {
2417 	unsigned long anon_cost, file_cost, total_cost;
2418 	unsigned long ap, fp;
2419 
2420 	/*
2421 	 * Calculate the pressure balance between anon and file pages.
2422 	 *
2423 	 * The amount of pressure we put on each LRU is inversely
2424 	 * proportional to the cost of reclaiming each list, as
2425 	 * determined by the share of pages that are refaulting, times
2426 	 * the relative IO cost of bringing back a swapped out
2427 	 * anonymous page vs reloading a filesystem page (swappiness).
2428 	 *
2429 	 * Although we limit that influence to ensure no list gets
2430 	 * left behind completely: at least a third of the pressure is
2431 	 * applied, before swappiness.
2432 	 *
2433 	 * With swappiness at 100, anon and file have equal IO cost.
2434 	 */
2435 	total_cost = sc->anon_cost + sc->file_cost;
2436 	anon_cost = total_cost + sc->anon_cost;
2437 	file_cost = total_cost + sc->file_cost;
2438 	total_cost = anon_cost + file_cost;
2439 
2440 	ap = swappiness * (total_cost + 1);
2441 	ap /= anon_cost + 1;
2442 
2443 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2444 	fp /= file_cost + 1;
2445 
2446 	fraction[WORKINGSET_ANON] = ap;
2447 	fraction[WORKINGSET_FILE] = fp;
2448 	*denominator = ap + fp;
2449 }
2450 
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2451 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2452 		struct scan_control *sc, unsigned long scan)
2453 {
2454 	unsigned long min, low;
2455 
2456 	mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2457 
2458 	if (min || low) {
2459 		/*
2460 		 * Scale a cgroup's reclaim pressure by proportioning
2461 		 * its current usage to its memory.low or memory.min
2462 		 * setting.
2463 		 *
2464 		 * This is important, as otherwise scanning aggression
2465 		 * becomes extremely binary -- from nothing as we
2466 		 * approach the memory protection threshold, to totally
2467 		 * nominal as we exceed it.  This results in requiring
2468 		 * setting extremely liberal protection thresholds. It
2469 		 * also means we simply get no protection at all if we
2470 		 * set it too low, which is not ideal.
2471 		 *
2472 		 * If there is any protection in place, we reduce scan
2473 		 * pressure by how much of the total memory used is
2474 		 * within protection thresholds.
2475 		 *
2476 		 * There is one special case: in the first reclaim pass,
2477 		 * we skip over all groups that are within their low
2478 		 * protection. If that fails to reclaim enough pages to
2479 		 * satisfy the reclaim goal, we come back and override
2480 		 * the best-effort low protection. However, we still
2481 		 * ideally want to honor how well-behaved groups are in
2482 		 * that case instead of simply punishing them all
2483 		 * equally. As such, we reclaim them based on how much
2484 		 * memory they are using, reducing the scan pressure
2485 		 * again by how much of the total memory used is under
2486 		 * hard protection.
2487 		 */
2488 		unsigned long cgroup_size = mem_cgroup_size(memcg);
2489 		unsigned long protection;
2490 
2491 		/* memory.low scaling, make sure we retry before OOM */
2492 		if (!sc->memcg_low_reclaim && low > min) {
2493 			protection = low;
2494 			sc->memcg_low_skipped = 1;
2495 		} else {
2496 			protection = min;
2497 		}
2498 
2499 		/* Avoid TOCTOU with earlier protection check */
2500 		cgroup_size = max(cgroup_size, protection);
2501 
2502 		scan -= scan * protection / (cgroup_size + 1);
2503 
2504 		/*
2505 		 * Minimally target SWAP_CLUSTER_MAX pages to keep
2506 		 * reclaim moving forwards, avoiding decrementing
2507 		 * sc->priority further than desirable.
2508 		 */
2509 		scan = max(scan, SWAP_CLUSTER_MAX);
2510 	}
2511 	return scan;
2512 }
2513 
2514 /*
2515  * Determine how aggressively the anon and file LRU lists should be
2516  * scanned.
2517  *
2518  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2519  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2520  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2521 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2522 			   unsigned long *nr)
2523 {
2524 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2525 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2526 	int swappiness = sc_swappiness(sc, memcg);
2527 	u64 fraction[ANON_AND_FILE];
2528 	u64 denominator = 0;	/* gcc */
2529 	enum scan_balance scan_balance;
2530 	enum lru_list lru;
2531 
2532 	/* If we have no swap space, do not bother scanning anon folios. */
2533 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2534 		scan_balance = SCAN_FILE;
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * Global reclaim will swap to prevent OOM even with no
2540 	 * swappiness, but memcg users want to use this knob to
2541 	 * disable swapping for individual groups completely when
2542 	 * using the memory controller's swap limit feature would be
2543 	 * too expensive.
2544 	 */
2545 	if (cgroup_reclaim(sc) && !swappiness) {
2546 		scan_balance = SCAN_FILE;
2547 		goto out;
2548 	}
2549 
2550 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2551 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2552 		WARN_ON_ONCE(!sc->proactive);
2553 		scan_balance = SCAN_ANON;
2554 		goto out;
2555 	}
2556 
2557 	/*
2558 	 * Do not apply any pressure balancing cleverness when the
2559 	 * system is close to OOM, scan both anon and file equally
2560 	 * (unless the swappiness setting disagrees with swapping).
2561 	 */
2562 	if (!sc->priority && swappiness) {
2563 		scan_balance = SCAN_EQUAL;
2564 		goto out;
2565 	}
2566 
2567 	/*
2568 	 * If the system is almost out of file pages, force-scan anon.
2569 	 */
2570 	if (sc->file_is_tiny) {
2571 		scan_balance = SCAN_ANON;
2572 		goto out;
2573 	}
2574 
2575 	/*
2576 	 * If there is enough inactive page cache, we do not reclaim
2577 	 * anything from the anonymous working right now to make sure
2578          * a streaming file access pattern doesn't cause swapping.
2579 	 */
2580 	if (sc->cache_trim_mode) {
2581 		scan_balance = SCAN_FILE;
2582 		goto out;
2583 	}
2584 
2585 	scan_balance = SCAN_FRACT;
2586 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2587 
2588 out:
2589 	for_each_evictable_lru(lru) {
2590 		bool file = is_file_lru(lru);
2591 		unsigned long lruvec_size;
2592 		unsigned long scan;
2593 
2594 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2595 		scan = apply_proportional_protection(memcg, sc, lruvec_size);
2596 		scan >>= sc->priority;
2597 
2598 		/*
2599 		 * If the cgroup's already been deleted, make sure to
2600 		 * scrape out the remaining cache.
2601 		 */
2602 		if (!scan && !mem_cgroup_online(memcg))
2603 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2604 
2605 		switch (scan_balance) {
2606 		case SCAN_EQUAL:
2607 			/* Scan lists relative to size */
2608 			break;
2609 		case SCAN_FRACT:
2610 			/*
2611 			 * Scan types proportional to swappiness and
2612 			 * their relative recent reclaim efficiency.
2613 			 * Make sure we don't miss the last page on
2614 			 * the offlined memory cgroups because of a
2615 			 * round-off error.
2616 			 */
2617 			scan = mem_cgroup_online(memcg) ?
2618 			       div64_u64(scan * fraction[file], denominator) :
2619 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2620 						  denominator);
2621 			break;
2622 		case SCAN_FILE:
2623 		case SCAN_ANON:
2624 			/* Scan one type exclusively */
2625 			if ((scan_balance == SCAN_FILE) != file)
2626 				scan = 0;
2627 			break;
2628 		default:
2629 			/* Look ma, no brain */
2630 			BUG();
2631 		}
2632 
2633 		nr[lru] = scan;
2634 	}
2635 }
2636 
2637 /*
2638  * Anonymous LRU management is a waste if there is
2639  * ultimately no way to reclaim the memory.
2640  */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2641 static bool can_age_anon_pages(struct lruvec *lruvec,
2642 			       struct scan_control *sc)
2643 {
2644 	/* Aging the anon LRU is valuable if swap is present: */
2645 	if (total_swap_pages > 0)
2646 		return true;
2647 
2648 	/* Also valuable if anon pages can be demoted: */
2649 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2650 			  lruvec_memcg(lruvec));
2651 }
2652 
2653 #ifdef CONFIG_LRU_GEN
2654 
2655 #ifdef CONFIG_LRU_GEN_ENABLED
2656 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2657 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2658 #else
2659 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2660 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2661 #endif
2662 
should_walk_mmu(void)2663 static bool should_walk_mmu(void)
2664 {
2665 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2666 }
2667 
should_clear_pmd_young(void)2668 static bool should_clear_pmd_young(void)
2669 {
2670 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2671 }
2672 
2673 /******************************************************************************
2674  *                          shorthand helpers
2675  ******************************************************************************/
2676 
2677 #define DEFINE_MAX_SEQ(lruvec)						\
2678 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2679 
2680 #define DEFINE_MIN_SEQ(lruvec)						\
2681 	unsigned long min_seq[ANON_AND_FILE] = {			\
2682 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2683 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2684 	}
2685 
2686 /* Get the min/max evictable type based on swappiness */
2687 #define min_type(swappiness) (!(swappiness))
2688 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2689 
2690 #define evictable_min_seq(min_seq, swappiness)				\
2691 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2692 
2693 #define for_each_gen_type_zone(gen, type, zone)				\
2694 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2695 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2696 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2697 
2698 #define for_each_evictable_type(type, swappiness)			\
2699 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2700 
2701 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2702 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2703 
get_lruvec(struct mem_cgroup * memcg,int nid)2704 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2705 {
2706 	struct pglist_data *pgdat = NODE_DATA(nid);
2707 
2708 #ifdef CONFIG_MEMCG
2709 	if (memcg) {
2710 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2711 
2712 		/* see the comment in mem_cgroup_lruvec() */
2713 		if (!lruvec->pgdat)
2714 			lruvec->pgdat = pgdat;
2715 
2716 		return lruvec;
2717 	}
2718 #endif
2719 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2720 
2721 	return &pgdat->__lruvec;
2722 }
2723 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2724 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2725 {
2726 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2727 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2728 
2729 	if (!sc->may_swap)
2730 		return 0;
2731 
2732 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2733 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2734 		return 0;
2735 
2736 	return sc_swappiness(sc, memcg);
2737 }
2738 
get_nr_gens(struct lruvec * lruvec,int type)2739 static int get_nr_gens(struct lruvec *lruvec, int type)
2740 {
2741 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2742 }
2743 
seq_is_valid(struct lruvec * lruvec)2744 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2745 {
2746 	int type;
2747 
2748 	for (type = 0; type < ANON_AND_FILE; type++) {
2749 		int n = get_nr_gens(lruvec, type);
2750 
2751 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2752 			return false;
2753 	}
2754 
2755 	return true;
2756 }
2757 
2758 /******************************************************************************
2759  *                          Bloom filters
2760  ******************************************************************************/
2761 
2762 /*
2763  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2764  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2765  * bits in a bitmap, k is the number of hash functions and n is the number of
2766  * inserted items.
2767  *
2768  * Page table walkers use one of the two filters to reduce their search space.
2769  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2770  * aging uses the double-buffering technique to flip to the other filter each
2771  * time it produces a new generation. For non-leaf entries that have enough
2772  * leaf entries, the aging carries them over to the next generation in
2773  * walk_pmd_range(); the eviction also report them when walking the rmap
2774  * in lru_gen_look_around().
2775  *
2776  * For future optimizations:
2777  * 1. It's not necessary to keep both filters all the time. The spare one can be
2778  *    freed after the RCU grace period and reallocated if needed again.
2779  * 2. And when reallocating, it's worth scaling its size according to the number
2780  *    of inserted entries in the other filter, to reduce the memory overhead on
2781  *    small systems and false positives on large systems.
2782  * 3. Jenkins' hash function is an alternative to Knuth's.
2783  */
2784 #define BLOOM_FILTER_SHIFT	15
2785 
filter_gen_from_seq(unsigned long seq)2786 static inline int filter_gen_from_seq(unsigned long seq)
2787 {
2788 	return seq % NR_BLOOM_FILTERS;
2789 }
2790 
get_item_key(void * item,int * key)2791 static void get_item_key(void *item, int *key)
2792 {
2793 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2794 
2795 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2796 
2797 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2798 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2799 }
2800 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2801 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2802 			      void *item)
2803 {
2804 	int key[2];
2805 	unsigned long *filter;
2806 	int gen = filter_gen_from_seq(seq);
2807 
2808 	filter = READ_ONCE(mm_state->filters[gen]);
2809 	if (!filter)
2810 		return true;
2811 
2812 	get_item_key(item, key);
2813 
2814 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2815 }
2816 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2817 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2818 				void *item)
2819 {
2820 	int key[2];
2821 	unsigned long *filter;
2822 	int gen = filter_gen_from_seq(seq);
2823 
2824 	filter = READ_ONCE(mm_state->filters[gen]);
2825 	if (!filter)
2826 		return;
2827 
2828 	get_item_key(item, key);
2829 
2830 	if (!test_bit(key[0], filter))
2831 		set_bit(key[0], filter);
2832 	if (!test_bit(key[1], filter))
2833 		set_bit(key[1], filter);
2834 }
2835 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2836 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2837 {
2838 	unsigned long *filter;
2839 	int gen = filter_gen_from_seq(seq);
2840 
2841 	filter = mm_state->filters[gen];
2842 	if (filter) {
2843 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2844 		return;
2845 	}
2846 
2847 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2848 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2849 	WRITE_ONCE(mm_state->filters[gen], filter);
2850 }
2851 
2852 /******************************************************************************
2853  *                          mm_struct list
2854  ******************************************************************************/
2855 
2856 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2857 
get_mm_list(struct mem_cgroup * memcg)2858 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2859 {
2860 	static struct lru_gen_mm_list mm_list = {
2861 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2862 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2863 	};
2864 
2865 #ifdef CONFIG_MEMCG
2866 	if (memcg)
2867 		return &memcg->mm_list;
2868 #endif
2869 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2870 
2871 	return &mm_list;
2872 }
2873 
get_mm_state(struct lruvec * lruvec)2874 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2875 {
2876 	return &lruvec->mm_state;
2877 }
2878 
get_next_mm(struct lru_gen_mm_walk * walk)2879 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2880 {
2881 	int key;
2882 	struct mm_struct *mm;
2883 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2884 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2885 
2886 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2887 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2888 
2889 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2890 		return NULL;
2891 
2892 	clear_bit(key, &mm->lru_gen.bitmap);
2893 
2894 	return mmget_not_zero(mm) ? mm : NULL;
2895 }
2896 
lru_gen_add_mm(struct mm_struct * mm)2897 void lru_gen_add_mm(struct mm_struct *mm)
2898 {
2899 	int nid;
2900 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2901 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2902 
2903 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2904 #ifdef CONFIG_MEMCG
2905 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2906 	mm->lru_gen.memcg = memcg;
2907 #endif
2908 	spin_lock(&mm_list->lock);
2909 
2910 	for_each_node_state(nid, N_MEMORY) {
2911 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2912 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2913 
2914 		/* the first addition since the last iteration */
2915 		if (mm_state->tail == &mm_list->fifo)
2916 			mm_state->tail = &mm->lru_gen.list;
2917 	}
2918 
2919 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2920 
2921 	spin_unlock(&mm_list->lock);
2922 }
2923 
lru_gen_del_mm(struct mm_struct * mm)2924 void lru_gen_del_mm(struct mm_struct *mm)
2925 {
2926 	int nid;
2927 	struct lru_gen_mm_list *mm_list;
2928 	struct mem_cgroup *memcg = NULL;
2929 
2930 	if (list_empty(&mm->lru_gen.list))
2931 		return;
2932 
2933 #ifdef CONFIG_MEMCG
2934 	memcg = mm->lru_gen.memcg;
2935 #endif
2936 	mm_list = get_mm_list(memcg);
2937 
2938 	spin_lock(&mm_list->lock);
2939 
2940 	for_each_node(nid) {
2941 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2942 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2943 
2944 		/* where the current iteration continues after */
2945 		if (mm_state->head == &mm->lru_gen.list)
2946 			mm_state->head = mm_state->head->prev;
2947 
2948 		/* where the last iteration ended before */
2949 		if (mm_state->tail == &mm->lru_gen.list)
2950 			mm_state->tail = mm_state->tail->next;
2951 	}
2952 
2953 	list_del_init(&mm->lru_gen.list);
2954 
2955 	spin_unlock(&mm_list->lock);
2956 
2957 #ifdef CONFIG_MEMCG
2958 	mem_cgroup_put(mm->lru_gen.memcg);
2959 	mm->lru_gen.memcg = NULL;
2960 #endif
2961 }
2962 
2963 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2964 void lru_gen_migrate_mm(struct mm_struct *mm)
2965 {
2966 	struct mem_cgroup *memcg;
2967 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2968 
2969 	VM_WARN_ON_ONCE(task->mm != mm);
2970 	lockdep_assert_held(&task->alloc_lock);
2971 
2972 	/* for mm_update_next_owner() */
2973 	if (mem_cgroup_disabled())
2974 		return;
2975 
2976 	/* migration can happen before addition */
2977 	if (!mm->lru_gen.memcg)
2978 		return;
2979 
2980 	rcu_read_lock();
2981 	memcg = mem_cgroup_from_task(task);
2982 	rcu_read_unlock();
2983 	if (memcg == mm->lru_gen.memcg)
2984 		return;
2985 
2986 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2987 
2988 	lru_gen_del_mm(mm);
2989 	lru_gen_add_mm(mm);
2990 }
2991 #endif
2992 
2993 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2994 
get_mm_list(struct mem_cgroup * memcg)2995 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2996 {
2997 	return NULL;
2998 }
2999 
get_mm_state(struct lruvec * lruvec)3000 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3001 {
3002 	return NULL;
3003 }
3004 
get_next_mm(struct lru_gen_mm_walk * walk)3005 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3006 {
3007 	return NULL;
3008 }
3009 
3010 #endif
3011 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3012 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3013 {
3014 	int i;
3015 	int hist;
3016 	struct lruvec *lruvec = walk->lruvec;
3017 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3018 
3019 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3020 
3021 	hist = lru_hist_from_seq(walk->seq);
3022 
3023 	for (i = 0; i < NR_MM_STATS; i++) {
3024 		WRITE_ONCE(mm_state->stats[hist][i],
3025 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3026 		walk->mm_stats[i] = 0;
3027 	}
3028 
3029 	if (NR_HIST_GENS > 1 && last) {
3030 		hist = lru_hist_from_seq(walk->seq + 1);
3031 
3032 		for (i = 0; i < NR_MM_STATS; i++)
3033 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3034 	}
3035 }
3036 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3037 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3038 {
3039 	bool first = false;
3040 	bool last = false;
3041 	struct mm_struct *mm = NULL;
3042 	struct lruvec *lruvec = walk->lruvec;
3043 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3044 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3045 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3046 
3047 	/*
3048 	 * mm_state->seq is incremented after each iteration of mm_list. There
3049 	 * are three interesting cases for this page table walker:
3050 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3051 	 *    nothing left to do.
3052 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3053 	 *    so that a fresh set of PTE tables can be recorded.
3054 	 * 3. It ended the current iteration: it needs to reset the mm stats
3055 	 *    counters and tell its caller to increment max_seq.
3056 	 */
3057 	spin_lock(&mm_list->lock);
3058 
3059 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3060 
3061 	if (walk->seq <= mm_state->seq)
3062 		goto done;
3063 
3064 	if (!mm_state->head)
3065 		mm_state->head = &mm_list->fifo;
3066 
3067 	if (mm_state->head == &mm_list->fifo)
3068 		first = true;
3069 
3070 	do {
3071 		mm_state->head = mm_state->head->next;
3072 		if (mm_state->head == &mm_list->fifo) {
3073 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3074 			last = true;
3075 			break;
3076 		}
3077 
3078 		/* force scan for those added after the last iteration */
3079 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3080 			mm_state->tail = mm_state->head->next;
3081 			walk->force_scan = true;
3082 		}
3083 	} while (!(mm = get_next_mm(walk)));
3084 done:
3085 	if (*iter || last)
3086 		reset_mm_stats(walk, last);
3087 
3088 	spin_unlock(&mm_list->lock);
3089 
3090 	if (mm && first)
3091 		reset_bloom_filter(mm_state, walk->seq + 1);
3092 
3093 	if (*iter)
3094 		mmput_async(*iter);
3095 
3096 	*iter = mm;
3097 
3098 	return last;
3099 }
3100 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3101 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3102 {
3103 	bool success = false;
3104 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3105 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3106 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3107 
3108 	spin_lock(&mm_list->lock);
3109 
3110 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3111 
3112 	if (seq > mm_state->seq) {
3113 		mm_state->head = NULL;
3114 		mm_state->tail = NULL;
3115 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3116 		success = true;
3117 	}
3118 
3119 	spin_unlock(&mm_list->lock);
3120 
3121 	return success;
3122 }
3123 
3124 /******************************************************************************
3125  *                          PID controller
3126  ******************************************************************************/
3127 
3128 /*
3129  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3130  *
3131  * The P term is refaulted/(evicted+protected) from a tier in the generation
3132  * currently being evicted; the I term is the exponential moving average of the
3133  * P term over the generations previously evicted, using the smoothing factor
3134  * 1/2; the D term isn't supported.
3135  *
3136  * The setpoint (SP) is always the first tier of one type; the process variable
3137  * (PV) is either any tier of the other type or any other tier of the same
3138  * type.
3139  *
3140  * The error is the difference between the SP and the PV; the correction is to
3141  * turn off protection when SP>PV or turn on protection when SP<PV.
3142  *
3143  * For future optimizations:
3144  * 1. The D term may discount the other two terms over time so that long-lived
3145  *    generations can resist stale information.
3146  */
3147 struct ctrl_pos {
3148 	unsigned long refaulted;
3149 	unsigned long total;
3150 	int gain;
3151 };
3152 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3153 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3154 			  struct ctrl_pos *pos)
3155 {
3156 	int i;
3157 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3158 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3159 
3160 	pos->gain = gain;
3161 	pos->refaulted = pos->total = 0;
3162 
3163 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3164 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3165 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3166 		pos->total += lrugen->avg_total[type][i] +
3167 			      lrugen->protected[hist][type][i] +
3168 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3169 	}
3170 }
3171 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3172 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3173 {
3174 	int hist, tier;
3175 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3176 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3177 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3178 
3179 	lockdep_assert_held(&lruvec->lru_lock);
3180 
3181 	if (!carryover && !clear)
3182 		return;
3183 
3184 	hist = lru_hist_from_seq(seq);
3185 
3186 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3187 		if (carryover) {
3188 			unsigned long sum;
3189 
3190 			sum = lrugen->avg_refaulted[type][tier] +
3191 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3192 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3193 
3194 			sum = lrugen->avg_total[type][tier] +
3195 			      lrugen->protected[hist][type][tier] +
3196 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3197 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3198 		}
3199 
3200 		if (clear) {
3201 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3202 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3203 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3204 		}
3205 	}
3206 }
3207 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3208 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3209 {
3210 	/*
3211 	 * Return true if the PV has a limited number of refaults or a lower
3212 	 * refaulted/total than the SP.
3213 	 */
3214 	return pv->refaulted < MIN_LRU_BATCH ||
3215 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3216 	       (sp->refaulted + 1) * pv->total * pv->gain;
3217 }
3218 
3219 /******************************************************************************
3220  *                          the aging
3221  ******************************************************************************/
3222 
3223 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3224 static int folio_update_gen(struct folio *folio, int gen)
3225 {
3226 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3227 
3228 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3229 
3230 	/* see the comment on LRU_REFS_FLAGS */
3231 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3232 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
3233 		return -1;
3234 	}
3235 
3236 	do {
3237 		/* lru_gen_del_folio() has isolated this page? */
3238 		if (!(old_flags & LRU_GEN_MASK))
3239 			return -1;
3240 
3241 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3242 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3243 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3244 
3245 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3246 }
3247 
3248 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3249 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3250 {
3251 	int type = folio_is_file_lru(folio);
3252 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3253 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3254 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3255 
3256 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3257 
3258 	do {
3259 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3260 		/* folio_update_gen() has promoted this page? */
3261 		if (new_gen >= 0 && new_gen != old_gen)
3262 			return new_gen;
3263 
3264 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3265 
3266 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3267 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3268 		/* for folio_end_writeback() */
3269 		if (reclaiming)
3270 			new_flags |= BIT(PG_reclaim);
3271 	} while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3272 
3273 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3274 
3275 	return new_gen;
3276 }
3277 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3278 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3279 			      int old_gen, int new_gen)
3280 {
3281 	int type = folio_is_file_lru(folio);
3282 	int zone = folio_zonenum(folio);
3283 	int delta = folio_nr_pages(folio);
3284 
3285 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3286 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3287 
3288 	walk->batched++;
3289 
3290 	walk->nr_pages[old_gen][type][zone] -= delta;
3291 	walk->nr_pages[new_gen][type][zone] += delta;
3292 }
3293 
reset_batch_size(struct lru_gen_mm_walk * walk)3294 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3295 {
3296 	int gen, type, zone;
3297 	struct lruvec *lruvec = walk->lruvec;
3298 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3299 
3300 	walk->batched = 0;
3301 
3302 	for_each_gen_type_zone(gen, type, zone) {
3303 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3304 		int delta = walk->nr_pages[gen][type][zone];
3305 
3306 		if (!delta)
3307 			continue;
3308 
3309 		walk->nr_pages[gen][type][zone] = 0;
3310 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3311 			   lrugen->nr_pages[gen][type][zone] + delta);
3312 
3313 		if (lru_gen_is_active(lruvec, gen))
3314 			lru += LRU_ACTIVE;
3315 		__update_lru_size(lruvec, lru, zone, delta);
3316 	}
3317 }
3318 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3319 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3320 {
3321 	struct address_space *mapping;
3322 	struct vm_area_struct *vma = args->vma;
3323 	struct lru_gen_mm_walk *walk = args->private;
3324 
3325 	if (!vma_is_accessible(vma))
3326 		return true;
3327 
3328 	if (is_vm_hugetlb_page(vma))
3329 		return true;
3330 
3331 	if (!vma_has_recency(vma))
3332 		return true;
3333 
3334 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3335 		return true;
3336 
3337 	if (vma == get_gate_vma(vma->vm_mm))
3338 		return true;
3339 
3340 	if (vma_is_anonymous(vma))
3341 		return !walk->swappiness;
3342 
3343 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3344 		return true;
3345 
3346 	mapping = vma->vm_file->f_mapping;
3347 	if (mapping_unevictable(mapping))
3348 		return true;
3349 
3350 	if (shmem_mapping(mapping))
3351 		return !walk->swappiness;
3352 
3353 	if (walk->swappiness > MAX_SWAPPINESS)
3354 		return true;
3355 
3356 	/* to exclude special mappings like dax, etc. */
3357 	return !mapping->a_ops->read_folio;
3358 }
3359 
3360 /*
3361  * Some userspace memory allocators map many single-page VMAs. Instead of
3362  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3363  * table to reduce zigzags and improve cache performance.
3364  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3365 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3366 			 unsigned long *vm_start, unsigned long *vm_end)
3367 {
3368 	unsigned long start = round_up(*vm_end, size);
3369 	unsigned long end = (start | ~mask) + 1;
3370 	VMA_ITERATOR(vmi, args->mm, start);
3371 
3372 	VM_WARN_ON_ONCE(mask & size);
3373 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3374 
3375 	for_each_vma(vmi, args->vma) {
3376 		if (end && end <= args->vma->vm_start)
3377 			return false;
3378 
3379 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3380 			continue;
3381 
3382 		*vm_start = max(start, args->vma->vm_start);
3383 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3384 
3385 		return true;
3386 	}
3387 
3388 	return false;
3389 }
3390 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3391 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3392 				 struct pglist_data *pgdat)
3393 {
3394 	unsigned long pfn = pte_pfn(pte);
3395 
3396 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3397 
3398 	if (!pte_present(pte) || is_zero_pfn(pfn))
3399 		return -1;
3400 
3401 	if (WARN_ON_ONCE(pte_special(pte)))
3402 		return -1;
3403 
3404 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3405 		return -1;
3406 
3407 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3408 		return -1;
3409 
3410 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3411 		return -1;
3412 
3413 	return pfn;
3414 }
3415 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3416 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3417 				 struct pglist_data *pgdat)
3418 {
3419 	unsigned long pfn = pmd_pfn(pmd);
3420 
3421 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3422 
3423 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3424 		return -1;
3425 
3426 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3427 		return -1;
3428 
3429 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3430 		return -1;
3431 
3432 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3433 		return -1;
3434 
3435 	return pfn;
3436 }
3437 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3438 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3439 				   struct pglist_data *pgdat)
3440 {
3441 	struct folio *folio = pfn_folio(pfn);
3442 
3443 	if (folio_lru_gen(folio) < 0)
3444 		return NULL;
3445 
3446 	if (folio_nid(folio) != pgdat->node_id)
3447 		return NULL;
3448 
3449 	if (folio_memcg(folio) != memcg)
3450 		return NULL;
3451 
3452 	return folio;
3453 }
3454 
suitable_to_scan(int total,int young)3455 static bool suitable_to_scan(int total, int young)
3456 {
3457 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3458 
3459 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3460 	return young * n >= total;
3461 }
3462 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3463 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3464 			      int new_gen, bool dirty)
3465 {
3466 	int old_gen;
3467 
3468 	if (!folio)
3469 		return;
3470 
3471 	if (dirty && !folio_test_dirty(folio) &&
3472 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3473 	      !folio_test_swapcache(folio)))
3474 		folio_mark_dirty(folio);
3475 
3476 	if (walk) {
3477 		old_gen = folio_update_gen(folio, new_gen);
3478 		if (old_gen >= 0 && old_gen != new_gen)
3479 			update_batch_size(walk, folio, old_gen, new_gen);
3480 	} else if (lru_gen_set_refs(folio)) {
3481 		old_gen = folio_lru_gen(folio);
3482 		if (old_gen >= 0 && old_gen != new_gen)
3483 			folio_activate(folio);
3484 	}
3485 }
3486 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3487 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3488 			   struct mm_walk *args)
3489 {
3490 	int i;
3491 	bool dirty;
3492 	pte_t *pte;
3493 	spinlock_t *ptl;
3494 	unsigned long addr;
3495 	int total = 0;
3496 	int young = 0;
3497 	struct folio *last = NULL;
3498 	struct lru_gen_mm_walk *walk = args->private;
3499 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3500 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3501 	DEFINE_MAX_SEQ(walk->lruvec);
3502 	int gen = lru_gen_from_seq(max_seq);
3503 	pmd_t pmdval;
3504 
3505 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3506 	if (!pte)
3507 		return false;
3508 
3509 	if (!spin_trylock(ptl)) {
3510 		pte_unmap(pte);
3511 		return true;
3512 	}
3513 
3514 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3515 		pte_unmap_unlock(pte, ptl);
3516 		return false;
3517 	}
3518 
3519 	arch_enter_lazy_mmu_mode();
3520 restart:
3521 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3522 		unsigned long pfn;
3523 		struct folio *folio;
3524 		pte_t ptent = ptep_get(pte + i);
3525 
3526 		total++;
3527 		walk->mm_stats[MM_LEAF_TOTAL]++;
3528 
3529 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3530 		if (pfn == -1)
3531 			continue;
3532 
3533 		folio = get_pfn_folio(pfn, memcg, pgdat);
3534 		if (!folio)
3535 			continue;
3536 
3537 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3538 			continue;
3539 
3540 		if (last != folio) {
3541 			walk_update_folio(walk, last, gen, dirty);
3542 
3543 			last = folio;
3544 			dirty = false;
3545 		}
3546 
3547 		if (pte_dirty(ptent))
3548 			dirty = true;
3549 
3550 		young++;
3551 		walk->mm_stats[MM_LEAF_YOUNG]++;
3552 	}
3553 
3554 	walk_update_folio(walk, last, gen, dirty);
3555 	last = NULL;
3556 
3557 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3558 		goto restart;
3559 
3560 	arch_leave_lazy_mmu_mode();
3561 	pte_unmap_unlock(pte, ptl);
3562 
3563 	return suitable_to_scan(total, young);
3564 }
3565 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3566 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3567 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3568 {
3569 	int i;
3570 	bool dirty;
3571 	pmd_t *pmd;
3572 	spinlock_t *ptl;
3573 	struct folio *last = NULL;
3574 	struct lru_gen_mm_walk *walk = args->private;
3575 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3576 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3577 	DEFINE_MAX_SEQ(walk->lruvec);
3578 	int gen = lru_gen_from_seq(max_seq);
3579 
3580 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3581 
3582 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3583 	if (*first == -1) {
3584 		*first = addr;
3585 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3586 		return;
3587 	}
3588 
3589 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3590 	if (i && i <= MIN_LRU_BATCH) {
3591 		__set_bit(i - 1, bitmap);
3592 		return;
3593 	}
3594 
3595 	pmd = pmd_offset(pud, *first);
3596 
3597 	ptl = pmd_lockptr(args->mm, pmd);
3598 	if (!spin_trylock(ptl))
3599 		goto done;
3600 
3601 	arch_enter_lazy_mmu_mode();
3602 
3603 	do {
3604 		unsigned long pfn;
3605 		struct folio *folio;
3606 
3607 		/* don't round down the first address */
3608 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3609 
3610 		if (!pmd_present(pmd[i]))
3611 			goto next;
3612 
3613 		if (!pmd_trans_huge(pmd[i])) {
3614 			if (!walk->force_scan && should_clear_pmd_young() &&
3615 			    !mm_has_notifiers(args->mm))
3616 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3617 			goto next;
3618 		}
3619 
3620 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3621 		if (pfn == -1)
3622 			goto next;
3623 
3624 		folio = get_pfn_folio(pfn, memcg, pgdat);
3625 		if (!folio)
3626 			goto next;
3627 
3628 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3629 			goto next;
3630 
3631 		if (last != folio) {
3632 			walk_update_folio(walk, last, gen, dirty);
3633 
3634 			last = folio;
3635 			dirty = false;
3636 		}
3637 
3638 		if (pmd_dirty(pmd[i]))
3639 			dirty = true;
3640 
3641 		walk->mm_stats[MM_LEAF_YOUNG]++;
3642 next:
3643 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3644 	} while (i <= MIN_LRU_BATCH);
3645 
3646 	walk_update_folio(walk, last, gen, dirty);
3647 
3648 	arch_leave_lazy_mmu_mode();
3649 	spin_unlock(ptl);
3650 done:
3651 	*first = -1;
3652 }
3653 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3654 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3655 			   struct mm_walk *args)
3656 {
3657 	int i;
3658 	pmd_t *pmd;
3659 	unsigned long next;
3660 	unsigned long addr;
3661 	struct vm_area_struct *vma;
3662 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3663 	unsigned long first = -1;
3664 	struct lru_gen_mm_walk *walk = args->private;
3665 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3666 
3667 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3668 
3669 	/*
3670 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3671 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3672 	 * the PMD lock to clear the accessed bit in PMD entries.
3673 	 */
3674 	pmd = pmd_offset(pud, start & PUD_MASK);
3675 restart:
3676 	/* walk_pte_range() may call get_next_vma() */
3677 	vma = args->vma;
3678 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3679 		pmd_t val = pmdp_get_lockless(pmd + i);
3680 
3681 		next = pmd_addr_end(addr, end);
3682 
3683 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3684 			walk->mm_stats[MM_LEAF_TOTAL]++;
3685 			continue;
3686 		}
3687 
3688 		if (pmd_trans_huge(val)) {
3689 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3690 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3691 
3692 			walk->mm_stats[MM_LEAF_TOTAL]++;
3693 
3694 			if (pfn != -1)
3695 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3696 			continue;
3697 		}
3698 
3699 		if (!walk->force_scan && should_clear_pmd_young() &&
3700 		    !mm_has_notifiers(args->mm)) {
3701 			if (!pmd_young(val))
3702 				continue;
3703 
3704 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3705 		}
3706 
3707 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3708 			continue;
3709 
3710 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3711 
3712 		if (!walk_pte_range(&val, addr, next, args))
3713 			continue;
3714 
3715 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3716 
3717 		/* carry over to the next generation */
3718 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3719 	}
3720 
3721 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3722 
3723 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3724 		goto restart;
3725 }
3726 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3727 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3728 			  struct mm_walk *args)
3729 {
3730 	int i;
3731 	pud_t *pud;
3732 	unsigned long addr;
3733 	unsigned long next;
3734 	struct lru_gen_mm_walk *walk = args->private;
3735 
3736 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3737 
3738 	pud = pud_offset(p4d, start & P4D_MASK);
3739 restart:
3740 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3741 		pud_t val = pudp_get(pud + i);
3742 
3743 		next = pud_addr_end(addr, end);
3744 
3745 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3746 			continue;
3747 
3748 		walk_pmd_range(&val, addr, next, args);
3749 
3750 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3751 			end = (addr | ~PUD_MASK) + 1;
3752 			goto done;
3753 		}
3754 	}
3755 
3756 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3757 		goto restart;
3758 
3759 	end = round_up(end, P4D_SIZE);
3760 done:
3761 	if (!end || !args->vma)
3762 		return 1;
3763 
3764 	walk->next_addr = max(end, args->vma->vm_start);
3765 
3766 	return -EAGAIN;
3767 }
3768 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3769 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3770 {
3771 	static const struct mm_walk_ops mm_walk_ops = {
3772 		.test_walk = should_skip_vma,
3773 		.p4d_entry = walk_pud_range,
3774 		.walk_lock = PGWALK_RDLOCK,
3775 	};
3776 	int err;
3777 	struct lruvec *lruvec = walk->lruvec;
3778 
3779 	walk->next_addr = FIRST_USER_ADDRESS;
3780 
3781 	do {
3782 		DEFINE_MAX_SEQ(lruvec);
3783 
3784 		err = -EBUSY;
3785 
3786 		/* another thread might have called inc_max_seq() */
3787 		if (walk->seq != max_seq)
3788 			break;
3789 
3790 		/* the caller might be holding the lock for write */
3791 		if (mmap_read_trylock(mm)) {
3792 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3793 
3794 			mmap_read_unlock(mm);
3795 		}
3796 
3797 		if (walk->batched) {
3798 			spin_lock_irq(&lruvec->lru_lock);
3799 			reset_batch_size(walk);
3800 			spin_unlock_irq(&lruvec->lru_lock);
3801 		}
3802 
3803 		cond_resched();
3804 	} while (err == -EAGAIN);
3805 }
3806 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3807 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3808 {
3809 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3810 
3811 	if (pgdat && current_is_kswapd()) {
3812 		VM_WARN_ON_ONCE(walk);
3813 
3814 		walk = &pgdat->mm_walk;
3815 	} else if (!walk && force_alloc) {
3816 		VM_WARN_ON_ONCE(current_is_kswapd());
3817 
3818 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3819 	}
3820 
3821 	current->reclaim_state->mm_walk = walk;
3822 
3823 	return walk;
3824 }
3825 
clear_mm_walk(void)3826 static void clear_mm_walk(void)
3827 {
3828 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3829 
3830 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3831 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3832 
3833 	current->reclaim_state->mm_walk = NULL;
3834 
3835 	if (!current_is_kswapd())
3836 		kfree(walk);
3837 }
3838 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3839 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3840 {
3841 	int zone;
3842 	int remaining = MAX_LRU_BATCH;
3843 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3844 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3845 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3846 
3847 	/* For file type, skip the check if swappiness is anon only */
3848 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3849 		goto done;
3850 
3851 	/* For anon type, skip the check if swappiness is zero (file only) */
3852 	if (!type && !swappiness)
3853 		goto done;
3854 
3855 	/* prevent cold/hot inversion if the type is evictable */
3856 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3857 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3858 
3859 		while (!list_empty(head)) {
3860 			struct folio *folio = lru_to_folio(head);
3861 			int refs = folio_lru_refs(folio);
3862 			bool workingset = folio_test_workingset(folio);
3863 
3864 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3865 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3866 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3867 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3868 
3869 			new_gen = folio_inc_gen(lruvec, folio, false);
3870 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3871 
3872 			/* don't count the workingset being lazily promoted */
3873 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3874 				int tier = lru_tier_from_refs(refs, workingset);
3875 				int delta = folio_nr_pages(folio);
3876 
3877 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3878 					   lrugen->protected[hist][type][tier] + delta);
3879 			}
3880 
3881 			if (!--remaining)
3882 				return false;
3883 		}
3884 	}
3885 done:
3886 	reset_ctrl_pos(lruvec, type, true);
3887 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3888 
3889 	return true;
3890 }
3891 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3892 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3893 {
3894 	int gen, type, zone;
3895 	bool success = false;
3896 	bool seq_inc_flag = false;
3897 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3898 	DEFINE_MIN_SEQ(lruvec);
3899 
3900 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3901 
3902 	/* find the oldest populated generation */
3903 	for_each_evictable_type(type, swappiness) {
3904 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3905 			gen = lru_gen_from_seq(min_seq[type]);
3906 
3907 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3908 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3909 					goto next;
3910 			}
3911 
3912 			min_seq[type]++;
3913 			seq_inc_flag = true;
3914 		}
3915 next:
3916 		;
3917 	}
3918 
3919 	/*
3920 	 * If min_seq[type] of both anonymous and file is not increased,
3921 	 * we can directly return false to avoid unnecessary checking
3922 	 * overhead later.
3923 	 */
3924 	if (!seq_inc_flag)
3925 		return success;
3926 
3927 	/* see the comment on lru_gen_folio */
3928 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3929 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3930 
3931 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3932 			min_seq[LRU_GEN_ANON] = seq;
3933 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3934 			min_seq[LRU_GEN_FILE] = seq;
3935 	}
3936 
3937 	for_each_evictable_type(type, swappiness) {
3938 		if (min_seq[type] <= lrugen->min_seq[type])
3939 			continue;
3940 
3941 		reset_ctrl_pos(lruvec, type, true);
3942 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3943 		success = true;
3944 	}
3945 
3946 	return success;
3947 }
3948 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3949 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3950 {
3951 	bool success;
3952 	int prev, next;
3953 	int type, zone;
3954 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3955 restart:
3956 	if (seq < READ_ONCE(lrugen->max_seq))
3957 		return false;
3958 
3959 	spin_lock_irq(&lruvec->lru_lock);
3960 
3961 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3962 
3963 	success = seq == lrugen->max_seq;
3964 	if (!success)
3965 		goto unlock;
3966 
3967 	for (type = 0; type < ANON_AND_FILE; type++) {
3968 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3969 			continue;
3970 
3971 		if (inc_min_seq(lruvec, type, swappiness))
3972 			continue;
3973 
3974 		spin_unlock_irq(&lruvec->lru_lock);
3975 		cond_resched();
3976 		goto restart;
3977 	}
3978 
3979 	/*
3980 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3981 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3982 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3983 	 * overlap, cold/hot inversion happens.
3984 	 */
3985 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3986 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3987 
3988 	for (type = 0; type < ANON_AND_FILE; type++) {
3989 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3990 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3991 			long delta = lrugen->nr_pages[prev][type][zone] -
3992 				     lrugen->nr_pages[next][type][zone];
3993 
3994 			if (!delta)
3995 				continue;
3996 
3997 			__update_lru_size(lruvec, lru, zone, delta);
3998 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3999 		}
4000 	}
4001 
4002 	for (type = 0; type < ANON_AND_FILE; type++)
4003 		reset_ctrl_pos(lruvec, type, false);
4004 
4005 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4006 	/* make sure preceding modifications appear */
4007 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4008 unlock:
4009 	spin_unlock_irq(&lruvec->lru_lock);
4010 
4011 	return success;
4012 }
4013 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4014 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4015 			       int swappiness, bool force_scan)
4016 {
4017 	bool success;
4018 	struct lru_gen_mm_walk *walk;
4019 	struct mm_struct *mm = NULL;
4020 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4021 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4022 
4023 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4024 
4025 	if (!mm_state)
4026 		return inc_max_seq(lruvec, seq, swappiness);
4027 
4028 	/* see the comment in iterate_mm_list() */
4029 	if (seq <= READ_ONCE(mm_state->seq))
4030 		return false;
4031 
4032 	/*
4033 	 * If the hardware doesn't automatically set the accessed bit, fallback
4034 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4035 	 * handful of PTEs. Spreading the work out over a period of time usually
4036 	 * is less efficient, but it avoids bursty page faults.
4037 	 */
4038 	if (!should_walk_mmu()) {
4039 		success = iterate_mm_list_nowalk(lruvec, seq);
4040 		goto done;
4041 	}
4042 
4043 	walk = set_mm_walk(NULL, true);
4044 	if (!walk) {
4045 		success = iterate_mm_list_nowalk(lruvec, seq);
4046 		goto done;
4047 	}
4048 
4049 	walk->lruvec = lruvec;
4050 	walk->seq = seq;
4051 	walk->swappiness = swappiness;
4052 	walk->force_scan = force_scan;
4053 
4054 	do {
4055 		success = iterate_mm_list(walk, &mm);
4056 		if (mm)
4057 			walk_mm(mm, walk);
4058 	} while (mm);
4059 done:
4060 	if (success) {
4061 		success = inc_max_seq(lruvec, seq, swappiness);
4062 		WARN_ON_ONCE(!success);
4063 	}
4064 
4065 	return success;
4066 }
4067 
4068 /******************************************************************************
4069  *                          working set protection
4070  ******************************************************************************/
4071 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4072 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4073 {
4074 	int priority;
4075 	unsigned long reclaimable;
4076 
4077 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4078 		return;
4079 	/*
4080 	 * Determine the initial priority based on
4081 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4082 	 * where reclaimed_to_scanned_ratio = inactive / total.
4083 	 */
4084 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4085 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4086 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4087 
4088 	/* round down reclaimable and round up sc->nr_to_reclaim */
4089 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4090 
4091 	/*
4092 	 * The estimation is based on LRU pages only, so cap it to prevent
4093 	 * overshoots of shrinker objects by large margins.
4094 	 */
4095 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4096 }
4097 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4098 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4099 {
4100 	int gen, type, zone;
4101 	unsigned long total = 0;
4102 	int swappiness = get_swappiness(lruvec, sc);
4103 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4104 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4105 	DEFINE_MAX_SEQ(lruvec);
4106 	DEFINE_MIN_SEQ(lruvec);
4107 
4108 	for_each_evictable_type(type, swappiness) {
4109 		unsigned long seq;
4110 
4111 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4112 			gen = lru_gen_from_seq(seq);
4113 
4114 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4115 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4116 		}
4117 	}
4118 
4119 	/* whether the size is big enough to be helpful */
4120 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4121 }
4122 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4123 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4124 				  unsigned long min_ttl)
4125 {
4126 	int gen;
4127 	unsigned long birth;
4128 	int swappiness = get_swappiness(lruvec, sc);
4129 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4130 	DEFINE_MIN_SEQ(lruvec);
4131 
4132 	if (mem_cgroup_below_min(NULL, memcg))
4133 		return false;
4134 
4135 	if (!lruvec_is_sizable(lruvec, sc))
4136 		return false;
4137 
4138 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4139 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4140 
4141 	return time_is_before_jiffies(birth + min_ttl);
4142 }
4143 
4144 /* to protect the working set of the last N jiffies */
4145 static unsigned long lru_gen_min_ttl __read_mostly;
4146 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4147 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4148 {
4149 	struct mem_cgroup *memcg;
4150 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4151 	bool reclaimable = !min_ttl;
4152 
4153 	VM_WARN_ON_ONCE(!current_is_kswapd());
4154 
4155 	set_initial_priority(pgdat, sc);
4156 
4157 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4158 	do {
4159 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4160 
4161 		mem_cgroup_calculate_protection(NULL, memcg);
4162 
4163 		if (!reclaimable)
4164 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4165 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4166 
4167 	/*
4168 	 * The main goal is to OOM kill if every generation from all memcgs is
4169 	 * younger than min_ttl. However, another possibility is all memcgs are
4170 	 * either too small or below min.
4171 	 */
4172 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4173 		struct oom_control oc = {
4174 			.gfp_mask = sc->gfp_mask,
4175 		};
4176 
4177 		out_of_memory(&oc);
4178 
4179 		mutex_unlock(&oom_lock);
4180 	}
4181 }
4182 
4183 /******************************************************************************
4184  *                          rmap/PT walk feedback
4185  ******************************************************************************/
4186 
4187 /*
4188  * This function exploits spatial locality when shrink_folio_list() walks the
4189  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4190  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4191  * the PTE table to the Bloom filter. This forms a feedback loop between the
4192  * eviction and the aging.
4193  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4194 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4195 {
4196 	int i;
4197 	bool dirty;
4198 	unsigned long start;
4199 	unsigned long end;
4200 	struct lru_gen_mm_walk *walk;
4201 	struct folio *last = NULL;
4202 	int young = 1;
4203 	pte_t *pte = pvmw->pte;
4204 	unsigned long addr = pvmw->address;
4205 	struct vm_area_struct *vma = pvmw->vma;
4206 	struct folio *folio = pfn_folio(pvmw->pfn);
4207 	struct mem_cgroup *memcg = folio_memcg(folio);
4208 	struct pglist_data *pgdat = folio_pgdat(folio);
4209 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4210 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4211 	DEFINE_MAX_SEQ(lruvec);
4212 	int gen = lru_gen_from_seq(max_seq);
4213 
4214 	lockdep_assert_held(pvmw->ptl);
4215 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4216 
4217 	if (!ptep_clear_young_notify(vma, addr, pte))
4218 		return false;
4219 
4220 	if (spin_is_contended(pvmw->ptl))
4221 		return true;
4222 
4223 	/* exclude special VMAs containing anon pages from COW */
4224 	if (vma->vm_flags & VM_SPECIAL)
4225 		return true;
4226 
4227 	/* avoid taking the LRU lock under the PTL when possible */
4228 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4229 
4230 	start = max(addr & PMD_MASK, vma->vm_start);
4231 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4232 
4233 	if (end - start == PAGE_SIZE)
4234 		return true;
4235 
4236 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4237 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4238 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4239 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4240 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4241 		else {
4242 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4243 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4244 		}
4245 	}
4246 
4247 	arch_enter_lazy_mmu_mode();
4248 
4249 	pte -= (addr - start) / PAGE_SIZE;
4250 
4251 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4252 		unsigned long pfn;
4253 		pte_t ptent = ptep_get(pte + i);
4254 
4255 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4256 		if (pfn == -1)
4257 			continue;
4258 
4259 		folio = get_pfn_folio(pfn, memcg, pgdat);
4260 		if (!folio)
4261 			continue;
4262 
4263 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4264 			continue;
4265 
4266 		if (last != folio) {
4267 			walk_update_folio(walk, last, gen, dirty);
4268 
4269 			last = folio;
4270 			dirty = false;
4271 		}
4272 
4273 		if (pte_dirty(ptent))
4274 			dirty = true;
4275 
4276 		young++;
4277 	}
4278 
4279 	walk_update_folio(walk, last, gen, dirty);
4280 
4281 	arch_leave_lazy_mmu_mode();
4282 
4283 	/* feedback from rmap walkers to page table walkers */
4284 	if (mm_state && suitable_to_scan(i, young))
4285 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4286 
4287 	return true;
4288 }
4289 
4290 /******************************************************************************
4291  *                          memcg LRU
4292  ******************************************************************************/
4293 
4294 /* see the comment on MEMCG_NR_GENS */
4295 enum {
4296 	MEMCG_LRU_NOP,
4297 	MEMCG_LRU_HEAD,
4298 	MEMCG_LRU_TAIL,
4299 	MEMCG_LRU_OLD,
4300 	MEMCG_LRU_YOUNG,
4301 };
4302 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4303 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4304 {
4305 	int seg;
4306 	int old, new;
4307 	unsigned long flags;
4308 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4309 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4310 
4311 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4312 
4313 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4314 
4315 	seg = 0;
4316 	new = old = lruvec->lrugen.gen;
4317 
4318 	/* see the comment on MEMCG_NR_GENS */
4319 	if (op == MEMCG_LRU_HEAD)
4320 		seg = MEMCG_LRU_HEAD;
4321 	else if (op == MEMCG_LRU_TAIL)
4322 		seg = MEMCG_LRU_TAIL;
4323 	else if (op == MEMCG_LRU_OLD)
4324 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4325 	else if (op == MEMCG_LRU_YOUNG)
4326 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4327 	else
4328 		VM_WARN_ON_ONCE(true);
4329 
4330 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4331 	WRITE_ONCE(lruvec->lrugen.gen, new);
4332 
4333 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4334 
4335 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4336 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4337 	else
4338 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4339 
4340 	pgdat->memcg_lru.nr_memcgs[old]--;
4341 	pgdat->memcg_lru.nr_memcgs[new]++;
4342 
4343 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4344 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4345 
4346 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4347 }
4348 
4349 #ifdef CONFIG_MEMCG
4350 
lru_gen_online_memcg(struct mem_cgroup * memcg)4351 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4352 {
4353 	int gen;
4354 	int nid;
4355 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4356 
4357 	for_each_node(nid) {
4358 		struct pglist_data *pgdat = NODE_DATA(nid);
4359 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4360 
4361 		spin_lock_irq(&pgdat->memcg_lru.lock);
4362 
4363 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4364 
4365 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4366 
4367 		lruvec->lrugen.gen = gen;
4368 
4369 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4370 		pgdat->memcg_lru.nr_memcgs[gen]++;
4371 
4372 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4373 	}
4374 }
4375 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4376 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4377 {
4378 	int nid;
4379 
4380 	for_each_node(nid) {
4381 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4382 
4383 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4384 	}
4385 }
4386 
lru_gen_release_memcg(struct mem_cgroup * memcg)4387 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4388 {
4389 	int gen;
4390 	int nid;
4391 
4392 	for_each_node(nid) {
4393 		struct pglist_data *pgdat = NODE_DATA(nid);
4394 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4395 
4396 		spin_lock_irq(&pgdat->memcg_lru.lock);
4397 
4398 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4399 			goto unlock;
4400 
4401 		gen = lruvec->lrugen.gen;
4402 
4403 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4404 		pgdat->memcg_lru.nr_memcgs[gen]--;
4405 
4406 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4407 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4408 unlock:
4409 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4410 	}
4411 }
4412 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4413 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4414 {
4415 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4416 
4417 	/* see the comment on MEMCG_NR_GENS */
4418 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4419 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4420 }
4421 
4422 #endif /* CONFIG_MEMCG */
4423 
4424 /******************************************************************************
4425  *                          the eviction
4426  ******************************************************************************/
4427 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4428 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4429 		       int tier_idx)
4430 {
4431 	bool success;
4432 	bool dirty, writeback;
4433 	int gen = folio_lru_gen(folio);
4434 	int type = folio_is_file_lru(folio);
4435 	int zone = folio_zonenum(folio);
4436 	int delta = folio_nr_pages(folio);
4437 	int refs = folio_lru_refs(folio);
4438 	bool workingset = folio_test_workingset(folio);
4439 	int tier = lru_tier_from_refs(refs, workingset);
4440 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4441 
4442 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4443 
4444 	/* unevictable */
4445 	if (!folio_evictable(folio)) {
4446 		success = lru_gen_del_folio(lruvec, folio, true);
4447 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4448 		folio_set_unevictable(folio);
4449 		lruvec_add_folio(lruvec, folio);
4450 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4451 		return true;
4452 	}
4453 
4454 	/* promoted */
4455 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4456 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4457 		return true;
4458 	}
4459 
4460 	/* protected */
4461 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4462 		gen = folio_inc_gen(lruvec, folio, false);
4463 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4464 
4465 		/* don't count the workingset being lazily promoted */
4466 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4467 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4468 
4469 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4470 				   lrugen->protected[hist][type][tier] + delta);
4471 		}
4472 		return true;
4473 	}
4474 
4475 	/* ineligible */
4476 	if (zone > sc->reclaim_idx) {
4477 		gen = folio_inc_gen(lruvec, folio, false);
4478 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4479 		return true;
4480 	}
4481 
4482 	dirty = folio_test_dirty(folio);
4483 	writeback = folio_test_writeback(folio);
4484 	if (type == LRU_GEN_FILE && dirty) {
4485 		sc->nr.file_taken += delta;
4486 		if (!writeback)
4487 			sc->nr.unqueued_dirty += delta;
4488 	}
4489 
4490 	/* waiting for writeback */
4491 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4492 		gen = folio_inc_gen(lruvec, folio, true);
4493 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4494 		return true;
4495 	}
4496 
4497 	return false;
4498 }
4499 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4500 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4501 {
4502 	bool success;
4503 
4504 	/* swap constrained */
4505 	if (!(sc->gfp_mask & __GFP_IO) &&
4506 	    (folio_test_dirty(folio) ||
4507 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4508 		return false;
4509 
4510 	/* raced with release_pages() */
4511 	if (!folio_try_get(folio))
4512 		return false;
4513 
4514 	/* raced with another isolation */
4515 	if (!folio_test_clear_lru(folio)) {
4516 		folio_put(folio);
4517 		return false;
4518 	}
4519 
4520 	/* see the comment on LRU_REFS_FLAGS */
4521 	if (!folio_test_referenced(folio))
4522 		set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
4523 
4524 	/* for shrink_folio_list() */
4525 	folio_clear_reclaim(folio);
4526 
4527 	success = lru_gen_del_folio(lruvec, folio, true);
4528 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4529 
4530 	return true;
4531 }
4532 
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4533 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4534 		       struct scan_control *sc, int type, int tier,
4535 		       struct list_head *list)
4536 {
4537 	int i;
4538 	int gen;
4539 	enum vm_event_item item;
4540 	int sorted = 0;
4541 	int scanned = 0;
4542 	int isolated = 0;
4543 	int skipped = 0;
4544 	int scan_batch = min(nr_to_scan, MAX_LRU_BATCH);
4545 	int remaining = scan_batch;
4546 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4547 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4548 
4549 	VM_WARN_ON_ONCE(!list_empty(list));
4550 
4551 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4552 		return 0;
4553 
4554 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4555 
4556 	for (i = MAX_NR_ZONES; i > 0; i--) {
4557 		LIST_HEAD(moved);
4558 		int skipped_zone = 0;
4559 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4560 		struct list_head *head = &lrugen->folios[gen][type][zone];
4561 
4562 		while (!list_empty(head)) {
4563 			struct folio *folio = lru_to_folio(head);
4564 			int delta = folio_nr_pages(folio);
4565 
4566 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4567 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4568 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4569 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4570 
4571 			scanned += delta;
4572 
4573 			if (sort_folio(lruvec, folio, sc, tier))
4574 				sorted += delta;
4575 			else if (isolate_folio(lruvec, folio, sc)) {
4576 				list_add(&folio->lru, list);
4577 				isolated += delta;
4578 			} else {
4579 				list_move(&folio->lru, &moved);
4580 				skipped_zone += delta;
4581 			}
4582 
4583 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4584 				break;
4585 		}
4586 
4587 		if (skipped_zone) {
4588 			list_splice(&moved, head);
4589 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4590 			skipped += skipped_zone;
4591 		}
4592 
4593 		if (!remaining || isolated >= MIN_LRU_BATCH)
4594 			break;
4595 	}
4596 
4597 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4598 	if (!cgroup_reclaim(sc)) {
4599 		__count_vm_events(item, isolated);
4600 		__count_vm_events(PGREFILL, sorted);
4601 	}
4602 	count_memcg_events(memcg, item, isolated);
4603 	count_memcg_events(memcg, PGREFILL, sorted);
4604 	__count_vm_events(PGSCAN_ANON + type, isolated);
4605 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, scan_batch,
4606 				scanned, skipped, isolated,
4607 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4608 	if (type == LRU_GEN_FILE)
4609 		sc->nr.file_taken += isolated;
4610 	/*
4611 	 * There might not be eligible folios due to reclaim_idx. Check the
4612 	 * remaining to prevent livelock if it's not making progress.
4613 	 */
4614 	return isolated || !remaining ? scanned : 0;
4615 }
4616 
get_tier_idx(struct lruvec * lruvec,int type)4617 static int get_tier_idx(struct lruvec *lruvec, int type)
4618 {
4619 	int tier;
4620 	struct ctrl_pos sp, pv;
4621 
4622 	/*
4623 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4624 	 * This value is chosen because any other tier would have at least twice
4625 	 * as many refaults as the first tier.
4626 	 */
4627 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4628 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4629 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4630 		if (!positive_ctrl_err(&sp, &pv))
4631 			break;
4632 	}
4633 
4634 	return tier - 1;
4635 }
4636 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4637 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4638 {
4639 	struct ctrl_pos sp, pv;
4640 
4641 	if (swappiness <= MIN_SWAPPINESS + 1)
4642 		return LRU_GEN_FILE;
4643 
4644 	if (swappiness >= MAX_SWAPPINESS)
4645 		return LRU_GEN_ANON;
4646 	/*
4647 	 * Compare the sum of all tiers of anon with that of file to determine
4648 	 * which type to scan.
4649 	 */
4650 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4651 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4652 
4653 	return positive_ctrl_err(&sp, &pv);
4654 }
4655 
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4656 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4657 			  struct scan_control *sc, int swappiness,
4658 			  int *type_scanned, struct list_head *list)
4659 {
4660 	int i;
4661 	int type = get_type_to_scan(lruvec, swappiness);
4662 
4663 	for_each_evictable_type(i, swappiness) {
4664 		int scanned;
4665 		int tier = get_tier_idx(lruvec, type);
4666 
4667 		*type_scanned = type;
4668 
4669 		scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4670 		if (scanned)
4671 			return scanned;
4672 
4673 		type = !type;
4674 	}
4675 
4676 	return 0;
4677 }
4678 
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4679 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4680 			struct scan_control *sc, int swappiness)
4681 {
4682 	int type;
4683 	int scanned;
4684 	int reclaimed;
4685 	LIST_HEAD(list);
4686 	LIST_HEAD(clean);
4687 	struct folio *folio;
4688 	struct folio *next;
4689 	enum vm_event_item item;
4690 	struct reclaim_stat stat;
4691 	struct lru_gen_mm_walk *walk;
4692 	bool skip_retry = false;
4693 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4694 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4695 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4696 
4697 	spin_lock_irq(&lruvec->lru_lock);
4698 
4699 	scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4700 
4701 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4702 
4703 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4704 		scanned = 0;
4705 
4706 	spin_unlock_irq(&lruvec->lru_lock);
4707 
4708 	if (list_empty(&list))
4709 		return scanned;
4710 retry:
4711 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4712 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4713 	sc->nr_reclaimed += reclaimed;
4714 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4715 			scanned, reclaimed, &stat, sc->priority,
4716 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4717 
4718 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4719 		DEFINE_MIN_SEQ(lruvec);
4720 
4721 		if (!folio_evictable(folio)) {
4722 			list_del(&folio->lru);
4723 			folio_putback_lru(folio);
4724 			continue;
4725 		}
4726 
4727 		/* retry folios that may have missed folio_rotate_reclaimable() */
4728 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4729 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4730 			list_move(&folio->lru, &clean);
4731 			continue;
4732 		}
4733 
4734 		/* don't add rejected folios to the oldest generation */
4735 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4736 			set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
4737 	}
4738 
4739 	spin_lock_irq(&lruvec->lru_lock);
4740 
4741 	move_folios_to_lru(lruvec, &list);
4742 
4743 	walk = current->reclaim_state->mm_walk;
4744 	if (walk && walk->batched) {
4745 		walk->lruvec = lruvec;
4746 		reset_batch_size(walk);
4747 	}
4748 
4749 	mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4750 					stat.nr_demoted);
4751 
4752 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4753 	if (!cgroup_reclaim(sc))
4754 		__count_vm_events(item, reclaimed);
4755 	count_memcg_events(memcg, item, reclaimed);
4756 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4757 
4758 	spin_unlock_irq(&lruvec->lru_lock);
4759 
4760 	list_splice_init(&clean, &list);
4761 
4762 	if (!list_empty(&list)) {
4763 		skip_retry = true;
4764 		goto retry;
4765 	}
4766 
4767 	return scanned;
4768 }
4769 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4770 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4771 			     int swappiness, unsigned long *nr_to_scan)
4772 {
4773 	int gen, type, zone;
4774 	unsigned long size = 0;
4775 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4776 	DEFINE_MIN_SEQ(lruvec);
4777 
4778 	*nr_to_scan = 0;
4779 	/* have to run aging, since eviction is not possible anymore */
4780 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4781 		return true;
4782 
4783 	for_each_evictable_type(type, swappiness) {
4784 		unsigned long seq;
4785 
4786 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4787 			gen = lru_gen_from_seq(seq);
4788 
4789 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4790 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4791 		}
4792 	}
4793 
4794 	*nr_to_scan = size;
4795 	/* better to run aging even though eviction is still possible */
4796 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4797 }
4798 
4799 /*
4800  * For future optimizations:
4801  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4802  *    reclaim.
4803  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4804 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4805 {
4806 	bool success;
4807 	unsigned long nr_to_scan;
4808 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4809 	DEFINE_MAX_SEQ(lruvec);
4810 
4811 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4812 		return -1;
4813 
4814 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4815 
4816 	/* try to scrape all its memory if this memcg was deleted */
4817 	if (nr_to_scan && !mem_cgroup_online(memcg))
4818 		return nr_to_scan;
4819 
4820 	nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4821 
4822 	/* try to get away with not aging at the default priority */
4823 	if (!success || sc->priority == DEF_PRIORITY)
4824 		return nr_to_scan >> sc->priority;
4825 
4826 	/* stop scanning this lruvec as it's low on cold folios */
4827 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4828 }
4829 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4830 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4831 {
4832 	int i;
4833 	enum zone_watermarks mark;
4834 
4835 	/* don't abort memcg reclaim to ensure fairness */
4836 	if (!root_reclaim(sc))
4837 		return false;
4838 
4839 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4840 		return true;
4841 
4842 	/* check the order to exclude compaction-induced reclaim */
4843 	if (!current_is_kswapd() || sc->order)
4844 		return false;
4845 
4846 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4847 	       WMARK_PROMO : WMARK_HIGH;
4848 
4849 	for (i = 0; i <= sc->reclaim_idx; i++) {
4850 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4851 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4852 
4853 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4854 			return false;
4855 	}
4856 
4857 	/* kswapd should abort if all eligible zones are safe */
4858 	return true;
4859 }
4860 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4861 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4862 {
4863 	long nr_to_scan;
4864 	unsigned long scanned = 0;
4865 	int swappiness = get_swappiness(lruvec, sc);
4866 
4867 	while (true) {
4868 		int delta;
4869 
4870 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4871 		if (nr_to_scan <= 0)
4872 			break;
4873 
4874 		delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4875 		if (!delta)
4876 			break;
4877 
4878 		scanned += delta;
4879 		if (scanned >= nr_to_scan)
4880 			break;
4881 
4882 		if (should_abort_scan(lruvec, sc))
4883 			break;
4884 
4885 		cond_resched();
4886 	}
4887 
4888 	/*
4889 	 * If too many file cache in the coldest generation can't be evicted
4890 	 * due to being dirty, wake up the flusher.
4891 	 */
4892 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4893 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4894 
4895 	/* whether this lruvec should be rotated */
4896 	return nr_to_scan < 0;
4897 }
4898 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4899 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4900 {
4901 	bool success;
4902 	unsigned long scanned = sc->nr_scanned;
4903 	unsigned long reclaimed = sc->nr_reclaimed;
4904 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4905 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4906 
4907 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4908 	if (mem_cgroup_below_min(NULL, memcg))
4909 		return MEMCG_LRU_YOUNG;
4910 
4911 	if (mem_cgroup_below_low(NULL, memcg)) {
4912 		/* see the comment on MEMCG_NR_GENS */
4913 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4914 			return MEMCG_LRU_TAIL;
4915 
4916 		memcg_memory_event(memcg, MEMCG_LOW);
4917 	}
4918 
4919 	success = try_to_shrink_lruvec(lruvec, sc);
4920 
4921 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4922 
4923 	if (!sc->proactive)
4924 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4925 			   sc->nr_reclaimed - reclaimed);
4926 
4927 	flush_reclaim_state(sc);
4928 
4929 	if (success && mem_cgroup_online(memcg))
4930 		return MEMCG_LRU_YOUNG;
4931 
4932 	if (!success && lruvec_is_sizable(lruvec, sc))
4933 		return 0;
4934 
4935 	/* one retry if offlined or too small */
4936 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4937 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4938 }
4939 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4940 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4941 {
4942 	int op;
4943 	int gen;
4944 	int bin;
4945 	int first_bin;
4946 	struct lruvec *lruvec;
4947 	struct lru_gen_folio *lrugen;
4948 	struct mem_cgroup *memcg;
4949 	struct hlist_nulls_node *pos;
4950 
4951 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4952 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4953 restart:
4954 	op = 0;
4955 	memcg = NULL;
4956 
4957 	rcu_read_lock();
4958 
4959 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4960 		if (op) {
4961 			lru_gen_rotate_memcg(lruvec, op);
4962 			op = 0;
4963 		}
4964 
4965 		mem_cgroup_put(memcg);
4966 		memcg = NULL;
4967 
4968 		if (gen != READ_ONCE(lrugen->gen))
4969 			continue;
4970 
4971 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4972 		memcg = lruvec_memcg(lruvec);
4973 
4974 		if (!mem_cgroup_tryget(memcg)) {
4975 			lru_gen_release_memcg(memcg);
4976 			memcg = NULL;
4977 			continue;
4978 		}
4979 
4980 		rcu_read_unlock();
4981 
4982 		op = shrink_one(lruvec, sc);
4983 
4984 		rcu_read_lock();
4985 
4986 		if (should_abort_scan(lruvec, sc))
4987 			break;
4988 	}
4989 
4990 	rcu_read_unlock();
4991 
4992 	if (op)
4993 		lru_gen_rotate_memcg(lruvec, op);
4994 
4995 	mem_cgroup_put(memcg);
4996 
4997 	if (!is_a_nulls(pos))
4998 		return;
4999 
5000 	/* restart if raced with lru_gen_rotate_memcg() */
5001 	if (gen != get_nulls_value(pos))
5002 		goto restart;
5003 
5004 	/* try the rest of the bins of the current generation */
5005 	bin = get_memcg_bin(bin + 1);
5006 	if (bin != first_bin)
5007 		goto restart;
5008 }
5009 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5010 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5011 {
5012 	struct blk_plug plug;
5013 
5014 	VM_WARN_ON_ONCE(root_reclaim(sc));
5015 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5016 
5017 	lru_add_drain();
5018 
5019 	blk_start_plug(&plug);
5020 
5021 	set_mm_walk(NULL, sc->proactive);
5022 
5023 	if (try_to_shrink_lruvec(lruvec, sc))
5024 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5025 
5026 	clear_mm_walk();
5027 
5028 	blk_finish_plug(&plug);
5029 }
5030 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5031 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5032 {
5033 	struct blk_plug plug;
5034 	unsigned long reclaimed = sc->nr_reclaimed;
5035 
5036 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5037 
5038 	/*
5039 	 * Unmapped clean folios are already prioritized. Scanning for more of
5040 	 * them is likely futile and can cause high reclaim latency when there
5041 	 * is a large number of memcgs.
5042 	 */
5043 	if (!sc->may_writepage || !sc->may_unmap)
5044 		goto done;
5045 
5046 	lru_add_drain();
5047 
5048 	blk_start_plug(&plug);
5049 
5050 	set_mm_walk(pgdat, sc->proactive);
5051 
5052 	set_initial_priority(pgdat, sc);
5053 
5054 	if (current_is_kswapd())
5055 		sc->nr_reclaimed = 0;
5056 
5057 	if (mem_cgroup_disabled())
5058 		shrink_one(&pgdat->__lruvec, sc);
5059 	else
5060 		shrink_many(pgdat, sc);
5061 
5062 	if (current_is_kswapd())
5063 		sc->nr_reclaimed += reclaimed;
5064 
5065 	clear_mm_walk();
5066 
5067 	blk_finish_plug(&plug);
5068 done:
5069 	if (sc->nr_reclaimed > reclaimed)
5070 		atomic_set(&pgdat->kswapd_failures, 0);
5071 }
5072 
5073 /******************************************************************************
5074  *                          state change
5075  ******************************************************************************/
5076 
state_is_valid(struct lruvec * lruvec)5077 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5078 {
5079 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5080 
5081 	if (lrugen->enabled) {
5082 		enum lru_list lru;
5083 
5084 		for_each_evictable_lru(lru) {
5085 			if (!list_empty(&lruvec->lists[lru]))
5086 				return false;
5087 		}
5088 	} else {
5089 		int gen, type, zone;
5090 
5091 		for_each_gen_type_zone(gen, type, zone) {
5092 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5093 				return false;
5094 		}
5095 	}
5096 
5097 	return true;
5098 }
5099 
fill_evictable(struct lruvec * lruvec)5100 static bool fill_evictable(struct lruvec *lruvec)
5101 {
5102 	enum lru_list lru;
5103 	int remaining = MAX_LRU_BATCH;
5104 
5105 	for_each_evictable_lru(lru) {
5106 		int type = is_file_lru(lru);
5107 		bool active = is_active_lru(lru);
5108 		struct list_head *head = &lruvec->lists[lru];
5109 
5110 		while (!list_empty(head)) {
5111 			bool success;
5112 			struct folio *folio = lru_to_folio(head);
5113 
5114 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5115 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5116 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5117 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5118 
5119 			lruvec_del_folio(lruvec, folio);
5120 			success = lru_gen_add_folio(lruvec, folio, false);
5121 			VM_WARN_ON_ONCE(!success);
5122 
5123 			if (!--remaining)
5124 				return false;
5125 		}
5126 	}
5127 
5128 	return true;
5129 }
5130 
drain_evictable(struct lruvec * lruvec)5131 static bool drain_evictable(struct lruvec *lruvec)
5132 {
5133 	int gen, type, zone;
5134 	int remaining = MAX_LRU_BATCH;
5135 
5136 	for_each_gen_type_zone(gen, type, zone) {
5137 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5138 
5139 		while (!list_empty(head)) {
5140 			bool success;
5141 			struct folio *folio = lru_to_folio(head);
5142 
5143 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5144 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5145 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5146 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5147 
5148 			success = lru_gen_del_folio(lruvec, folio, false);
5149 			VM_WARN_ON_ONCE(!success);
5150 			lruvec_add_folio(lruvec, folio);
5151 
5152 			if (!--remaining)
5153 				return false;
5154 		}
5155 	}
5156 
5157 	return true;
5158 }
5159 
lru_gen_change_state(bool enabled)5160 static void lru_gen_change_state(bool enabled)
5161 {
5162 	static DEFINE_MUTEX(state_mutex);
5163 
5164 	struct mem_cgroup *memcg;
5165 
5166 	cgroup_lock();
5167 	cpus_read_lock();
5168 	get_online_mems();
5169 	mutex_lock(&state_mutex);
5170 
5171 	if (enabled == lru_gen_enabled())
5172 		goto unlock;
5173 
5174 	if (enabled)
5175 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5176 	else
5177 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5178 
5179 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5180 	do {
5181 		int nid;
5182 
5183 		for_each_node(nid) {
5184 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5185 
5186 			spin_lock_irq(&lruvec->lru_lock);
5187 
5188 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5189 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5190 
5191 			lruvec->lrugen.enabled = enabled;
5192 
5193 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5194 				spin_unlock_irq(&lruvec->lru_lock);
5195 				cond_resched();
5196 				spin_lock_irq(&lruvec->lru_lock);
5197 			}
5198 
5199 			spin_unlock_irq(&lruvec->lru_lock);
5200 		}
5201 
5202 		cond_resched();
5203 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5204 unlock:
5205 	mutex_unlock(&state_mutex);
5206 	put_online_mems();
5207 	cpus_read_unlock();
5208 	cgroup_unlock();
5209 }
5210 
5211 /******************************************************************************
5212  *                          sysfs interface
5213  ******************************************************************************/
5214 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5215 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5216 {
5217 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5218 }
5219 
5220 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5221 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5222 				const char *buf, size_t len)
5223 {
5224 	unsigned int msecs;
5225 
5226 	if (kstrtouint(buf, 0, &msecs))
5227 		return -EINVAL;
5228 
5229 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5230 
5231 	return len;
5232 }
5233 
5234 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5235 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5236 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5237 {
5238 	unsigned int caps = 0;
5239 
5240 	if (get_cap(LRU_GEN_CORE))
5241 		caps |= BIT(LRU_GEN_CORE);
5242 
5243 	if (should_walk_mmu())
5244 		caps |= BIT(LRU_GEN_MM_WALK);
5245 
5246 	if (should_clear_pmd_young())
5247 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5248 
5249 	return sysfs_emit(buf, "0x%04x\n", caps);
5250 }
5251 
5252 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5253 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5254 			     const char *buf, size_t len)
5255 {
5256 	int i;
5257 	unsigned int caps;
5258 
5259 	if (tolower(*buf) == 'n')
5260 		caps = 0;
5261 	else if (tolower(*buf) == 'y')
5262 		caps = -1;
5263 	else if (kstrtouint(buf, 0, &caps))
5264 		return -EINVAL;
5265 
5266 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5267 		bool enabled = caps & BIT(i);
5268 
5269 		if (i == LRU_GEN_CORE)
5270 			lru_gen_change_state(enabled);
5271 		else if (enabled)
5272 			static_branch_enable(&lru_gen_caps[i]);
5273 		else
5274 			static_branch_disable(&lru_gen_caps[i]);
5275 	}
5276 
5277 	return len;
5278 }
5279 
5280 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5281 
5282 static struct attribute *lru_gen_attrs[] = {
5283 	&lru_gen_min_ttl_attr.attr,
5284 	&lru_gen_enabled_attr.attr,
5285 	NULL
5286 };
5287 
5288 static const struct attribute_group lru_gen_attr_group = {
5289 	.name = "lru_gen",
5290 	.attrs = lru_gen_attrs,
5291 };
5292 
5293 /******************************************************************************
5294  *                          debugfs interface
5295  ******************************************************************************/
5296 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5297 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5298 {
5299 	struct mem_cgroup *memcg;
5300 	loff_t nr_to_skip = *pos;
5301 
5302 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5303 	if (!m->private)
5304 		return ERR_PTR(-ENOMEM);
5305 
5306 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5307 	do {
5308 		int nid;
5309 
5310 		for_each_node_state(nid, N_MEMORY) {
5311 			if (!nr_to_skip--)
5312 				return get_lruvec(memcg, nid);
5313 		}
5314 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5315 
5316 	return NULL;
5317 }
5318 
lru_gen_seq_stop(struct seq_file * m,void * v)5319 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5320 {
5321 	if (!IS_ERR_OR_NULL(v))
5322 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5323 
5324 	kvfree(m->private);
5325 	m->private = NULL;
5326 }
5327 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5328 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5329 {
5330 	int nid = lruvec_pgdat(v)->node_id;
5331 	struct mem_cgroup *memcg = lruvec_memcg(v);
5332 
5333 	++*pos;
5334 
5335 	nid = next_memory_node(nid);
5336 	if (nid == MAX_NUMNODES) {
5337 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5338 		if (!memcg)
5339 			return NULL;
5340 
5341 		nid = first_memory_node;
5342 	}
5343 
5344 	return get_lruvec(memcg, nid);
5345 }
5346 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5347 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5348 				  unsigned long max_seq, unsigned long *min_seq,
5349 				  unsigned long seq)
5350 {
5351 	int i;
5352 	int type, tier;
5353 	int hist = lru_hist_from_seq(seq);
5354 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5355 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5356 
5357 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5358 		seq_printf(m, "            %10d", tier);
5359 		for (type = 0; type < ANON_AND_FILE; type++) {
5360 			const char *s = "xxx";
5361 			unsigned long n[3] = {};
5362 
5363 			if (seq == max_seq) {
5364 				s = "RTx";
5365 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5366 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5367 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5368 				s = "rep";
5369 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5370 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5371 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5372 			}
5373 
5374 			for (i = 0; i < 3; i++)
5375 				seq_printf(m, " %10lu%c", n[i], s[i]);
5376 		}
5377 		seq_putc(m, '\n');
5378 	}
5379 
5380 	if (!mm_state)
5381 		return;
5382 
5383 	seq_puts(m, "                      ");
5384 	for (i = 0; i < NR_MM_STATS; i++) {
5385 		const char *s = "xxxx";
5386 		unsigned long n = 0;
5387 
5388 		if (seq == max_seq && NR_HIST_GENS == 1) {
5389 			s = "TYFA";
5390 			n = READ_ONCE(mm_state->stats[hist][i]);
5391 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5392 			s = "tyfa";
5393 			n = READ_ONCE(mm_state->stats[hist][i]);
5394 		}
5395 
5396 		seq_printf(m, " %10lu%c", n, s[i]);
5397 	}
5398 	seq_putc(m, '\n');
5399 }
5400 
5401 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5402 static int lru_gen_seq_show(struct seq_file *m, void *v)
5403 {
5404 	unsigned long seq;
5405 	bool full = debugfs_get_aux_num(m->file);
5406 	struct lruvec *lruvec = v;
5407 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5408 	int nid = lruvec_pgdat(lruvec)->node_id;
5409 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5410 	DEFINE_MAX_SEQ(lruvec);
5411 	DEFINE_MIN_SEQ(lruvec);
5412 
5413 	if (nid == first_memory_node) {
5414 		const char *path = memcg ? m->private : "";
5415 
5416 #ifdef CONFIG_MEMCG
5417 		if (memcg)
5418 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5419 #endif
5420 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5421 	}
5422 
5423 	seq_printf(m, " node %5d\n", nid);
5424 
5425 	if (!full)
5426 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5427 	else if (max_seq >= MAX_NR_GENS)
5428 		seq = max_seq - MAX_NR_GENS + 1;
5429 	else
5430 		seq = 0;
5431 
5432 	for (; seq <= max_seq; seq++) {
5433 		int type, zone;
5434 		int gen = lru_gen_from_seq(seq);
5435 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5436 
5437 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5438 
5439 		for (type = 0; type < ANON_AND_FILE; type++) {
5440 			unsigned long size = 0;
5441 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5442 
5443 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5444 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5445 
5446 			seq_printf(m, " %10lu%c", size, mark);
5447 		}
5448 
5449 		seq_putc(m, '\n');
5450 
5451 		if (full)
5452 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5453 	}
5454 
5455 	return 0;
5456 }
5457 
5458 static const struct seq_operations lru_gen_seq_ops = {
5459 	.start = lru_gen_seq_start,
5460 	.stop = lru_gen_seq_stop,
5461 	.next = lru_gen_seq_next,
5462 	.show = lru_gen_seq_show,
5463 };
5464 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5465 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5466 		     int swappiness, bool force_scan)
5467 {
5468 	DEFINE_MAX_SEQ(lruvec);
5469 
5470 	if (seq > max_seq)
5471 		return -EINVAL;
5472 
5473 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5474 }
5475 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5476 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5477 			int swappiness, unsigned long nr_to_reclaim)
5478 {
5479 	DEFINE_MAX_SEQ(lruvec);
5480 
5481 	if (seq + MIN_NR_GENS > max_seq)
5482 		return -EINVAL;
5483 
5484 	sc->nr_reclaimed = 0;
5485 
5486 	while (!signal_pending(current)) {
5487 		DEFINE_MIN_SEQ(lruvec);
5488 
5489 		if (seq < evictable_min_seq(min_seq, swappiness))
5490 			return 0;
5491 
5492 		if (sc->nr_reclaimed >= nr_to_reclaim)
5493 			return 0;
5494 
5495 		if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5496 				  swappiness))
5497 			return 0;
5498 
5499 		cond_resched();
5500 	}
5501 
5502 	return -EINTR;
5503 }
5504 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5505 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5506 		   struct scan_control *sc, int swappiness, unsigned long opt)
5507 {
5508 	struct lruvec *lruvec;
5509 	int err = -EINVAL;
5510 	struct mem_cgroup *memcg = NULL;
5511 
5512 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5513 		return -EINVAL;
5514 
5515 	if (!mem_cgroup_disabled()) {
5516 		rcu_read_lock();
5517 
5518 		memcg = mem_cgroup_from_id(memcg_id);
5519 		if (!mem_cgroup_tryget(memcg))
5520 			memcg = NULL;
5521 
5522 		rcu_read_unlock();
5523 
5524 		if (!memcg)
5525 			return -EINVAL;
5526 	}
5527 
5528 	if (memcg_id != mem_cgroup_id(memcg))
5529 		goto done;
5530 
5531 	sc->target_mem_cgroup = memcg;
5532 	lruvec = get_lruvec(memcg, nid);
5533 
5534 	if (swappiness < MIN_SWAPPINESS)
5535 		swappiness = get_swappiness(lruvec, sc);
5536 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5537 		goto done;
5538 
5539 	switch (cmd) {
5540 	case '+':
5541 		err = run_aging(lruvec, seq, swappiness, opt);
5542 		break;
5543 	case '-':
5544 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5545 		break;
5546 	}
5547 done:
5548 	mem_cgroup_put(memcg);
5549 
5550 	return err;
5551 }
5552 
5553 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5554 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5555 				 size_t len, loff_t *pos)
5556 {
5557 	void *buf;
5558 	char *cur, *next;
5559 	unsigned int flags;
5560 	struct blk_plug plug;
5561 	int err = -EINVAL;
5562 	struct scan_control sc = {
5563 		.may_writepage = true,
5564 		.may_unmap = true,
5565 		.may_swap = true,
5566 		.reclaim_idx = MAX_NR_ZONES - 1,
5567 		.gfp_mask = GFP_KERNEL,
5568 		.proactive = true,
5569 	};
5570 
5571 	buf = kvmalloc(len + 1, GFP_KERNEL);
5572 	if (!buf)
5573 		return -ENOMEM;
5574 
5575 	if (copy_from_user(buf, src, len)) {
5576 		kvfree(buf);
5577 		return -EFAULT;
5578 	}
5579 
5580 	set_task_reclaim_state(current, &sc.reclaim_state);
5581 	flags = memalloc_noreclaim_save();
5582 	blk_start_plug(&plug);
5583 	if (!set_mm_walk(NULL, true)) {
5584 		err = -ENOMEM;
5585 		goto done;
5586 	}
5587 
5588 	next = buf;
5589 	next[len] = '\0';
5590 
5591 	while ((cur = strsep(&next, ",;\n"))) {
5592 		int n;
5593 		int end;
5594 		char cmd, swap_string[5];
5595 		unsigned int memcg_id;
5596 		unsigned int nid;
5597 		unsigned long seq;
5598 		unsigned int swappiness;
5599 		unsigned long opt = -1;
5600 
5601 		cur = skip_spaces(cur);
5602 		if (!*cur)
5603 			continue;
5604 
5605 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5606 			   &seq, &end, swap_string, &end, &opt, &end);
5607 		if (n < 4 || cur[end]) {
5608 			err = -EINVAL;
5609 			break;
5610 		}
5611 
5612 		if (n == 4) {
5613 			swappiness = -1;
5614 		} else if (!strcmp("max", swap_string)) {
5615 			/* set by userspace for anonymous memory only */
5616 			swappiness = SWAPPINESS_ANON_ONLY;
5617 		} else {
5618 			err = kstrtouint(swap_string, 0, &swappiness);
5619 			if (err)
5620 				break;
5621 		}
5622 
5623 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5624 		if (err)
5625 			break;
5626 	}
5627 done:
5628 	clear_mm_walk();
5629 	blk_finish_plug(&plug);
5630 	memalloc_noreclaim_restore(flags);
5631 	set_task_reclaim_state(current, NULL);
5632 
5633 	kvfree(buf);
5634 
5635 	return err ? : len;
5636 }
5637 
lru_gen_seq_open(struct inode * inode,struct file * file)5638 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5639 {
5640 	return seq_open(file, &lru_gen_seq_ops);
5641 }
5642 
5643 static const struct file_operations lru_gen_rw_fops = {
5644 	.open = lru_gen_seq_open,
5645 	.read = seq_read,
5646 	.write = lru_gen_seq_write,
5647 	.llseek = seq_lseek,
5648 	.release = seq_release,
5649 };
5650 
5651 static const struct file_operations lru_gen_ro_fops = {
5652 	.open = lru_gen_seq_open,
5653 	.read = seq_read,
5654 	.llseek = seq_lseek,
5655 	.release = seq_release,
5656 };
5657 
5658 /******************************************************************************
5659  *                          initialization
5660  ******************************************************************************/
5661 
lru_gen_init_pgdat(struct pglist_data * pgdat)5662 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5663 {
5664 	int i, j;
5665 
5666 	spin_lock_init(&pgdat->memcg_lru.lock);
5667 
5668 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5669 		for (j = 0; j < MEMCG_NR_BINS; j++)
5670 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5671 	}
5672 }
5673 
lru_gen_init_lruvec(struct lruvec * lruvec)5674 void lru_gen_init_lruvec(struct lruvec *lruvec)
5675 {
5676 	int i;
5677 	int gen, type, zone;
5678 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5679 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5680 
5681 	lrugen->max_seq = MIN_NR_GENS + 1;
5682 	lrugen->enabled = lru_gen_enabled();
5683 
5684 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5685 		lrugen->timestamps[i] = jiffies;
5686 
5687 	for_each_gen_type_zone(gen, type, zone)
5688 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5689 
5690 	if (mm_state)
5691 		mm_state->seq = MIN_NR_GENS;
5692 }
5693 
5694 #ifdef CONFIG_MEMCG
5695 
lru_gen_init_memcg(struct mem_cgroup * memcg)5696 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5697 {
5698 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5699 
5700 	if (!mm_list)
5701 		return;
5702 
5703 	INIT_LIST_HEAD(&mm_list->fifo);
5704 	spin_lock_init(&mm_list->lock);
5705 }
5706 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5707 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5708 {
5709 	int i;
5710 	int nid;
5711 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5712 
5713 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5714 
5715 	for_each_node(nid) {
5716 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5717 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5718 
5719 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5720 					   sizeof(lruvec->lrugen.nr_pages)));
5721 
5722 		lruvec->lrugen.list.next = LIST_POISON1;
5723 
5724 		if (!mm_state)
5725 			continue;
5726 
5727 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5728 			bitmap_free(mm_state->filters[i]);
5729 			mm_state->filters[i] = NULL;
5730 		}
5731 	}
5732 }
5733 
5734 #endif /* CONFIG_MEMCG */
5735 
init_lru_gen(void)5736 static int __init init_lru_gen(void)
5737 {
5738 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5739 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5740 
5741 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5742 		pr_err("lru_gen: failed to create sysfs group\n");
5743 
5744 	debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
5745 				    &lru_gen_rw_fops);
5746 	debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
5747 				    &lru_gen_ro_fops);
5748 
5749 	return 0;
5750 };
5751 late_initcall(init_lru_gen);
5752 
5753 #else /* !CONFIG_LRU_GEN */
5754 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5755 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5756 {
5757 	BUILD_BUG();
5758 }
5759 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5760 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5761 {
5762 	BUILD_BUG();
5763 }
5764 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5765 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5766 {
5767 	BUILD_BUG();
5768 }
5769 
5770 #endif /* CONFIG_LRU_GEN */
5771 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5772 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5773 {
5774 	unsigned long nr[NR_LRU_LISTS];
5775 	unsigned long targets[NR_LRU_LISTS];
5776 	unsigned long nr_to_scan;
5777 	enum lru_list lru;
5778 	unsigned long nr_reclaimed = 0;
5779 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5780 	bool proportional_reclaim;
5781 	struct blk_plug plug;
5782 
5783 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5784 		lru_gen_shrink_lruvec(lruvec, sc);
5785 		return;
5786 	}
5787 
5788 	get_scan_count(lruvec, sc, nr);
5789 
5790 	/* Record the original scan target for proportional adjustments later */
5791 	memcpy(targets, nr, sizeof(nr));
5792 
5793 	/*
5794 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5795 	 * event that can occur when there is little memory pressure e.g.
5796 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5797 	 * when the requested number of pages are reclaimed when scanning at
5798 	 * DEF_PRIORITY on the assumption that the fact we are direct
5799 	 * reclaiming implies that kswapd is not keeping up and it is best to
5800 	 * do a batch of work at once. For memcg reclaim one check is made to
5801 	 * abort proportional reclaim if either the file or anon lru has already
5802 	 * dropped to zero at the first pass.
5803 	 */
5804 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5805 				sc->priority == DEF_PRIORITY);
5806 
5807 	blk_start_plug(&plug);
5808 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5809 					nr[LRU_INACTIVE_FILE]) {
5810 		unsigned long nr_anon, nr_file, percentage;
5811 		unsigned long nr_scanned;
5812 
5813 		for_each_evictable_lru(lru) {
5814 			if (nr[lru]) {
5815 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5816 				nr[lru] -= nr_to_scan;
5817 
5818 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5819 							    lruvec, sc);
5820 			}
5821 		}
5822 
5823 		cond_resched();
5824 
5825 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5826 			continue;
5827 
5828 		/*
5829 		 * For kswapd and memcg, reclaim at least the number of pages
5830 		 * requested. Ensure that the anon and file LRUs are scanned
5831 		 * proportionally what was requested by get_scan_count(). We
5832 		 * stop reclaiming one LRU and reduce the amount scanning
5833 		 * proportional to the original scan target.
5834 		 */
5835 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5836 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5837 
5838 		/*
5839 		 * It's just vindictive to attack the larger once the smaller
5840 		 * has gone to zero.  And given the way we stop scanning the
5841 		 * smaller below, this makes sure that we only make one nudge
5842 		 * towards proportionality once we've got nr_to_reclaim.
5843 		 */
5844 		if (!nr_file || !nr_anon)
5845 			break;
5846 
5847 		if (nr_file > nr_anon) {
5848 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5849 						targets[LRU_ACTIVE_ANON] + 1;
5850 			lru = LRU_BASE;
5851 			percentage = nr_anon * 100 / scan_target;
5852 		} else {
5853 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5854 						targets[LRU_ACTIVE_FILE] + 1;
5855 			lru = LRU_FILE;
5856 			percentage = nr_file * 100 / scan_target;
5857 		}
5858 
5859 		/* Stop scanning the smaller of the LRU */
5860 		nr[lru] = 0;
5861 		nr[lru + LRU_ACTIVE] = 0;
5862 
5863 		/*
5864 		 * Recalculate the other LRU scan count based on its original
5865 		 * scan target and the percentage scanning already complete
5866 		 */
5867 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5868 		nr_scanned = targets[lru] - nr[lru];
5869 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5870 		nr[lru] -= min(nr[lru], nr_scanned);
5871 
5872 		lru += LRU_ACTIVE;
5873 		nr_scanned = targets[lru] - nr[lru];
5874 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5875 		nr[lru] -= min(nr[lru], nr_scanned);
5876 	}
5877 	blk_finish_plug(&plug);
5878 	sc->nr_reclaimed += nr_reclaimed;
5879 
5880 	/*
5881 	 * Even if we did not try to evict anon pages at all, we want to
5882 	 * rebalance the anon lru active/inactive ratio.
5883 	 */
5884 	if (can_age_anon_pages(lruvec, sc) &&
5885 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5886 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5887 				   sc, LRU_ACTIVE_ANON);
5888 }
5889 
5890 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5891 static bool in_reclaim_compaction(struct scan_control *sc)
5892 {
5893 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5894 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5895 			 sc->priority < DEF_PRIORITY - 2))
5896 		return true;
5897 
5898 	return false;
5899 }
5900 
5901 /*
5902  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5903  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5904  * true if more pages should be reclaimed such that when the page allocator
5905  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5906  * It will give up earlier than that if there is difficulty reclaiming pages.
5907  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5908 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5909 					unsigned long nr_reclaimed,
5910 					struct scan_control *sc)
5911 {
5912 	unsigned long pages_for_compaction;
5913 	unsigned long inactive_lru_pages;
5914 	int z;
5915 	struct zone *zone;
5916 
5917 	/* If not in reclaim/compaction mode, stop */
5918 	if (!in_reclaim_compaction(sc))
5919 		return false;
5920 
5921 	/*
5922 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5923 	 * number of pages that were scanned. This will return to the caller
5924 	 * with the risk reclaim/compaction and the resulting allocation attempt
5925 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5926 	 * allocations through requiring that the full LRU list has been scanned
5927 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5928 	 * scan, but that approximation was wrong, and there were corner cases
5929 	 * where always a non-zero amount of pages were scanned.
5930 	 */
5931 	if (!nr_reclaimed)
5932 		return false;
5933 
5934 	/* If compaction would go ahead or the allocation would succeed, stop */
5935 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5936 		unsigned long watermark = min_wmark_pages(zone);
5937 
5938 		/* Allocation can already succeed, nothing to do */
5939 		if (zone_watermark_ok(zone, sc->order, watermark,
5940 				      sc->reclaim_idx, 0))
5941 			return false;
5942 
5943 		if (compaction_suitable(zone, sc->order, watermark,
5944 					sc->reclaim_idx))
5945 			return false;
5946 	}
5947 
5948 	/*
5949 	 * If we have not reclaimed enough pages for compaction and the
5950 	 * inactive lists are large enough, continue reclaiming
5951 	 */
5952 	pages_for_compaction = compact_gap(sc->order);
5953 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5954 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5955 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5956 
5957 	return inactive_lru_pages > pages_for_compaction;
5958 }
5959 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5960 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5961 {
5962 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5963 	struct mem_cgroup_reclaim_cookie reclaim = {
5964 		.pgdat = pgdat,
5965 	};
5966 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5967 	struct mem_cgroup *memcg;
5968 
5969 	/*
5970 	 * In most cases, direct reclaimers can do partial walks
5971 	 * through the cgroup tree, using an iterator state that
5972 	 * persists across invocations. This strikes a balance between
5973 	 * fairness and allocation latency.
5974 	 *
5975 	 * For kswapd, reliable forward progress is more important
5976 	 * than a quick return to idle. Always do full walks.
5977 	 */
5978 	if (current_is_kswapd() || sc->memcg_full_walk)
5979 		partial = NULL;
5980 
5981 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5982 	do {
5983 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5984 		unsigned long reclaimed;
5985 		unsigned long scanned;
5986 
5987 		/*
5988 		 * This loop can become CPU-bound when target memcgs
5989 		 * aren't eligible for reclaim - either because they
5990 		 * don't have any reclaimable pages, or because their
5991 		 * memory is explicitly protected. Avoid soft lockups.
5992 		 */
5993 		cond_resched();
5994 
5995 		mem_cgroup_calculate_protection(target_memcg, memcg);
5996 
5997 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5998 			/*
5999 			 * Hard protection.
6000 			 * If there is no reclaimable memory, OOM.
6001 			 */
6002 			continue;
6003 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6004 			/*
6005 			 * Soft protection.
6006 			 * Respect the protection only as long as
6007 			 * there is an unprotected supply
6008 			 * of reclaimable memory from other cgroups.
6009 			 */
6010 			if (!sc->memcg_low_reclaim) {
6011 				sc->memcg_low_skipped = 1;
6012 				continue;
6013 			}
6014 			memcg_memory_event(memcg, MEMCG_LOW);
6015 		}
6016 
6017 		reclaimed = sc->nr_reclaimed;
6018 		scanned = sc->nr_scanned;
6019 
6020 		shrink_lruvec(lruvec, sc);
6021 
6022 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6023 			    sc->priority);
6024 
6025 		/* Record the group's reclaim efficiency */
6026 		if (!sc->proactive)
6027 			vmpressure(sc->gfp_mask, memcg, false,
6028 				   sc->nr_scanned - scanned,
6029 				   sc->nr_reclaimed - reclaimed);
6030 
6031 		/* If partial walks are allowed, bail once goal is reached */
6032 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6033 			mem_cgroup_iter_break(target_memcg, memcg);
6034 			break;
6035 		}
6036 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6037 }
6038 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6039 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6040 {
6041 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6042 	struct lruvec *target_lruvec;
6043 	bool reclaimable = false;
6044 
6045 	if (lru_gen_enabled() && root_reclaim(sc)) {
6046 		memset(&sc->nr, 0, sizeof(sc->nr));
6047 		lru_gen_shrink_node(pgdat, sc);
6048 		return;
6049 	}
6050 
6051 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6052 
6053 again:
6054 	memset(&sc->nr, 0, sizeof(sc->nr));
6055 
6056 	nr_reclaimed = sc->nr_reclaimed;
6057 	nr_scanned = sc->nr_scanned;
6058 
6059 	prepare_scan_control(pgdat, sc);
6060 
6061 	shrink_node_memcgs(pgdat, sc);
6062 
6063 	flush_reclaim_state(sc);
6064 
6065 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6066 
6067 	/* Record the subtree's reclaim efficiency */
6068 	if (!sc->proactive)
6069 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6070 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6071 
6072 	if (nr_node_reclaimed)
6073 		reclaimable = true;
6074 
6075 	if (current_is_kswapd()) {
6076 		/*
6077 		 * If reclaim is isolating dirty pages under writeback,
6078 		 * it implies that the long-lived page allocation rate
6079 		 * is exceeding the page laundering rate. Either the
6080 		 * global limits are not being effective at throttling
6081 		 * processes due to the page distribution throughout
6082 		 * zones or there is heavy usage of a slow backing
6083 		 * device. The only option is to throttle from reclaim
6084 		 * context which is not ideal as there is no guarantee
6085 		 * the dirtying process is throttled in the same way
6086 		 * balance_dirty_pages() manages.
6087 		 *
6088 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6089 		 * count the number of pages under pages flagged for
6090 		 * immediate reclaim and stall if any are encountered
6091 		 * in the nr_immediate check below.
6092 		 */
6093 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6094 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6095 
6096 		/*
6097 		 * If kswapd scans pages marked for immediate
6098 		 * reclaim and under writeback (nr_immediate), it
6099 		 * implies that pages are cycling through the LRU
6100 		 * faster than they are written so forcibly stall
6101 		 * until some pages complete writeback.
6102 		 */
6103 		if (sc->nr.immediate)
6104 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6105 	}
6106 
6107 	/*
6108 	 * Tag a node/memcg as congested if all the dirty pages were marked
6109 	 * for writeback and immediate reclaim (counted in nr.congested).
6110 	 *
6111 	 * Legacy memcg will stall in page writeback so avoid forcibly
6112 	 * stalling in reclaim_throttle().
6113 	 */
6114 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6115 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6116 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6117 
6118 		if (current_is_kswapd())
6119 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6120 	}
6121 
6122 	/*
6123 	 * Stall direct reclaim for IO completions if the lruvec is
6124 	 * node is congested. Allow kswapd to continue until it
6125 	 * starts encountering unqueued dirty pages or cycling through
6126 	 * the LRU too quickly.
6127 	 */
6128 	if (!current_is_kswapd() && current_may_throttle() &&
6129 	    !sc->hibernation_mode &&
6130 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6131 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6132 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6133 
6134 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6135 		goto again;
6136 
6137 	/*
6138 	 * Kswapd gives up on balancing particular nodes after too
6139 	 * many failures to reclaim anything from them and goes to
6140 	 * sleep. On reclaim progress, reset the failure counter. A
6141 	 * successful direct reclaim run will revive a dormant kswapd.
6142 	 */
6143 	if (reclaimable)
6144 		atomic_set(&pgdat->kswapd_failures, 0);
6145 	else if (sc->cache_trim_mode)
6146 		sc->cache_trim_mode_failed = 1;
6147 }
6148 
6149 /*
6150  * Returns true if compaction should go ahead for a costly-order request, or
6151  * the allocation would already succeed without compaction. Return false if we
6152  * should reclaim first.
6153  */
compaction_ready(struct zone * zone,struct scan_control * sc)6154 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6155 {
6156 	unsigned long watermark;
6157 
6158 	if (!gfp_compaction_allowed(sc->gfp_mask))
6159 		return false;
6160 
6161 	/* Allocation can already succeed, nothing to do */
6162 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6163 			      sc->reclaim_idx, 0))
6164 		return true;
6165 
6166 	/*
6167 	 * Direct reclaim usually targets the min watermark, but compaction
6168 	 * takes time to run and there are potentially other callers using the
6169 	 * pages just freed. So target a higher buffer to give compaction a
6170 	 * reasonable chance of completing and allocating the pages.
6171 	 *
6172 	 * Note that we won't actually reclaim the whole buffer in one attempt
6173 	 * as the target watermark in should_continue_reclaim() is lower. But if
6174 	 * we are already above the high+gap watermark, don't reclaim at all.
6175 	 */
6176 	watermark = high_wmark_pages(zone);
6177 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6178 		return true;
6179 
6180 	return false;
6181 }
6182 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6183 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6184 {
6185 	/*
6186 	 * If reclaim is making progress greater than 12% efficiency then
6187 	 * wake all the NOPROGRESS throttled tasks.
6188 	 */
6189 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6190 		wait_queue_head_t *wqh;
6191 
6192 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6193 		if (waitqueue_active(wqh))
6194 			wake_up(wqh);
6195 
6196 		return;
6197 	}
6198 
6199 	/*
6200 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6201 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6202 	 * under writeback and marked for immediate reclaim at the tail of the
6203 	 * LRU.
6204 	 */
6205 	if (current_is_kswapd() || cgroup_reclaim(sc))
6206 		return;
6207 
6208 	/* Throttle if making no progress at high prioities. */
6209 	if (sc->priority == 1 && !sc->nr_reclaimed)
6210 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6211 }
6212 
6213 /*
6214  * This is the direct reclaim path, for page-allocating processes.  We only
6215  * try to reclaim pages from zones which will satisfy the caller's allocation
6216  * request.
6217  *
6218  * If a zone is deemed to be full of pinned pages then just give it a light
6219  * scan then give up on it.
6220  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6221 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6222 {
6223 	struct zoneref *z;
6224 	struct zone *zone;
6225 	unsigned long nr_soft_reclaimed;
6226 	unsigned long nr_soft_scanned;
6227 	gfp_t orig_mask;
6228 	pg_data_t *last_pgdat = NULL;
6229 	pg_data_t *first_pgdat = NULL;
6230 
6231 	/*
6232 	 * If the number of buffer_heads in the machine exceeds the maximum
6233 	 * allowed level, force direct reclaim to scan the highmem zone as
6234 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6235 	 */
6236 	orig_mask = sc->gfp_mask;
6237 	if (buffer_heads_over_limit) {
6238 		sc->gfp_mask |= __GFP_HIGHMEM;
6239 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6240 	}
6241 
6242 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6243 					sc->reclaim_idx, sc->nodemask) {
6244 		/*
6245 		 * Take care memory controller reclaiming has small influence
6246 		 * to global LRU.
6247 		 */
6248 		if (!cgroup_reclaim(sc)) {
6249 			if (!cpuset_zone_allowed(zone,
6250 						 GFP_KERNEL | __GFP_HARDWALL))
6251 				continue;
6252 
6253 			/*
6254 			 * If we already have plenty of memory free for
6255 			 * compaction in this zone, don't free any more.
6256 			 * Even though compaction is invoked for any
6257 			 * non-zero order, only frequent costly order
6258 			 * reclamation is disruptive enough to become a
6259 			 * noticeable problem, like transparent huge
6260 			 * page allocations.
6261 			 */
6262 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6263 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6264 			    compaction_ready(zone, sc)) {
6265 				sc->compaction_ready = true;
6266 				continue;
6267 			}
6268 
6269 			/*
6270 			 * Shrink each node in the zonelist once. If the
6271 			 * zonelist is ordered by zone (not the default) then a
6272 			 * node may be shrunk multiple times but in that case
6273 			 * the user prefers lower zones being preserved.
6274 			 */
6275 			if (zone->zone_pgdat == last_pgdat)
6276 				continue;
6277 
6278 			/*
6279 			 * This steals pages from memory cgroups over softlimit
6280 			 * and returns the number of reclaimed pages and
6281 			 * scanned pages. This works for global memory pressure
6282 			 * and balancing, not for a memcg's limit.
6283 			 */
6284 			nr_soft_scanned = 0;
6285 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6286 								      sc->order, sc->gfp_mask,
6287 								      &nr_soft_scanned);
6288 			sc->nr_reclaimed += nr_soft_reclaimed;
6289 			sc->nr_scanned += nr_soft_scanned;
6290 			/* need some check for avoid more shrink_zone() */
6291 		}
6292 
6293 		if (!first_pgdat)
6294 			first_pgdat = zone->zone_pgdat;
6295 
6296 		/* See comment about same check for global reclaim above */
6297 		if (zone->zone_pgdat == last_pgdat)
6298 			continue;
6299 		last_pgdat = zone->zone_pgdat;
6300 		shrink_node(zone->zone_pgdat, sc);
6301 	}
6302 
6303 	if (first_pgdat)
6304 		consider_reclaim_throttle(first_pgdat, sc);
6305 
6306 	/*
6307 	 * Restore to original mask to avoid the impact on the caller if we
6308 	 * promoted it to __GFP_HIGHMEM.
6309 	 */
6310 	sc->gfp_mask = orig_mask;
6311 }
6312 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6313 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6314 {
6315 	struct lruvec *target_lruvec;
6316 	unsigned long refaults;
6317 
6318 	if (lru_gen_enabled())
6319 		return;
6320 
6321 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6322 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6323 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6324 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6325 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6326 }
6327 
6328 /*
6329  * This is the main entry point to direct page reclaim.
6330  *
6331  * If a full scan of the inactive list fails to free enough memory then we
6332  * are "out of memory" and something needs to be killed.
6333  *
6334  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6335  * high - the zone may be full of dirty or under-writeback pages, which this
6336  * caller can't do much about.  We kick the writeback threads and take explicit
6337  * naps in the hope that some of these pages can be written.  But if the
6338  * allocating task holds filesystem locks which prevent writeout this might not
6339  * work, and the allocation attempt will fail.
6340  *
6341  * returns:	0, if no pages reclaimed
6342  * 		else, the number of pages reclaimed
6343  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6344 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6345 					  struct scan_control *sc)
6346 {
6347 	int initial_priority = sc->priority;
6348 	pg_data_t *last_pgdat;
6349 	struct zoneref *z;
6350 	struct zone *zone;
6351 retry:
6352 	delayacct_freepages_start();
6353 
6354 	if (!cgroup_reclaim(sc))
6355 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6356 
6357 	do {
6358 		if (!sc->proactive)
6359 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6360 					sc->priority);
6361 		sc->nr_scanned = 0;
6362 		shrink_zones(zonelist, sc);
6363 
6364 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6365 			break;
6366 
6367 		if (sc->compaction_ready)
6368 			break;
6369 
6370 		/*
6371 		 * If we're getting trouble reclaiming, start doing
6372 		 * writepage even in laptop mode.
6373 		 */
6374 		if (sc->priority < DEF_PRIORITY - 2)
6375 			sc->may_writepage = 1;
6376 	} while (--sc->priority >= 0);
6377 
6378 	last_pgdat = NULL;
6379 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6380 					sc->nodemask) {
6381 		if (zone->zone_pgdat == last_pgdat)
6382 			continue;
6383 		last_pgdat = zone->zone_pgdat;
6384 
6385 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6386 
6387 		if (cgroup_reclaim(sc)) {
6388 			struct lruvec *lruvec;
6389 
6390 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6391 						   zone->zone_pgdat);
6392 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6393 		}
6394 	}
6395 
6396 	delayacct_freepages_end();
6397 
6398 	if (sc->nr_reclaimed)
6399 		return sc->nr_reclaimed;
6400 
6401 	/* Aborted reclaim to try compaction? don't OOM, then */
6402 	if (sc->compaction_ready)
6403 		return 1;
6404 
6405 	/*
6406 	 * In most cases, direct reclaimers can do partial walks
6407 	 * through the cgroup tree to meet the reclaim goal while
6408 	 * keeping latency low. Since the iterator state is shared
6409 	 * among all direct reclaim invocations (to retain fairness
6410 	 * among cgroups), though, high concurrency can result in
6411 	 * individual threads not seeing enough cgroups to make
6412 	 * meaningful forward progress. Avoid false OOMs in this case.
6413 	 */
6414 	if (!sc->memcg_full_walk) {
6415 		sc->priority = initial_priority;
6416 		sc->memcg_full_walk = 1;
6417 		goto retry;
6418 	}
6419 
6420 	/*
6421 	 * We make inactive:active ratio decisions based on the node's
6422 	 * composition of memory, but a restrictive reclaim_idx or a
6423 	 * memory.low cgroup setting can exempt large amounts of
6424 	 * memory from reclaim. Neither of which are very common, so
6425 	 * instead of doing costly eligibility calculations of the
6426 	 * entire cgroup subtree up front, we assume the estimates are
6427 	 * good, and retry with forcible deactivation if that fails.
6428 	 */
6429 	if (sc->skipped_deactivate) {
6430 		sc->priority = initial_priority;
6431 		sc->force_deactivate = 1;
6432 		sc->skipped_deactivate = 0;
6433 		goto retry;
6434 	}
6435 
6436 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6437 	if (sc->memcg_low_skipped) {
6438 		sc->priority = initial_priority;
6439 		sc->force_deactivate = 0;
6440 		sc->memcg_low_reclaim = 1;
6441 		sc->memcg_low_skipped = 0;
6442 		goto retry;
6443 	}
6444 
6445 	return 0;
6446 }
6447 
allow_direct_reclaim(pg_data_t * pgdat)6448 static bool allow_direct_reclaim(pg_data_t *pgdat)
6449 {
6450 	struct zone *zone;
6451 	unsigned long pfmemalloc_reserve = 0;
6452 	unsigned long free_pages = 0;
6453 	int i;
6454 	bool wmark_ok;
6455 
6456 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6457 		return true;
6458 
6459 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6460 		if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
6461 			continue;
6462 
6463 		pfmemalloc_reserve += min_wmark_pages(zone);
6464 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6465 	}
6466 
6467 	/* If there are no reserves (unexpected config) then do not throttle */
6468 	if (!pfmemalloc_reserve)
6469 		return true;
6470 
6471 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6472 
6473 	/* kswapd must be awake if processes are being throttled */
6474 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6475 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6476 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6477 
6478 		wake_up_interruptible(&pgdat->kswapd_wait);
6479 	}
6480 
6481 	return wmark_ok;
6482 }
6483 
6484 /*
6485  * Throttle direct reclaimers if backing storage is backed by the network
6486  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6487  * depleted. kswapd will continue to make progress and wake the processes
6488  * when the low watermark is reached.
6489  *
6490  * Returns true if a fatal signal was delivered during throttling. If this
6491  * happens, the page allocator should not consider triggering the OOM killer.
6492  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6493 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6494 					nodemask_t *nodemask)
6495 {
6496 	struct zoneref *z;
6497 	struct zone *zone;
6498 	pg_data_t *pgdat = NULL;
6499 
6500 	/*
6501 	 * Kernel threads should not be throttled as they may be indirectly
6502 	 * responsible for cleaning pages necessary for reclaim to make forward
6503 	 * progress. kjournald for example may enter direct reclaim while
6504 	 * committing a transaction where throttling it could forcing other
6505 	 * processes to block on log_wait_commit().
6506 	 */
6507 	if (current->flags & PF_KTHREAD)
6508 		goto out;
6509 
6510 	/*
6511 	 * If a fatal signal is pending, this process should not throttle.
6512 	 * It should return quickly so it can exit and free its memory
6513 	 */
6514 	if (fatal_signal_pending(current))
6515 		goto out;
6516 
6517 	/*
6518 	 * Check if the pfmemalloc reserves are ok by finding the first node
6519 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6520 	 * GFP_KERNEL will be required for allocating network buffers when
6521 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6522 	 *
6523 	 * Throttling is based on the first usable node and throttled processes
6524 	 * wait on a queue until kswapd makes progress and wakes them. There
6525 	 * is an affinity then between processes waking up and where reclaim
6526 	 * progress has been made assuming the process wakes on the same node.
6527 	 * More importantly, processes running on remote nodes will not compete
6528 	 * for remote pfmemalloc reserves and processes on different nodes
6529 	 * should make reasonable progress.
6530 	 */
6531 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6532 					gfp_zone(gfp_mask), nodemask) {
6533 		if (zone_idx(zone) > ZONE_NORMAL)
6534 			continue;
6535 
6536 		/* Throttle based on the first usable node */
6537 		pgdat = zone->zone_pgdat;
6538 		if (allow_direct_reclaim(pgdat))
6539 			goto out;
6540 		break;
6541 	}
6542 
6543 	/* If no zone was usable by the allocation flags then do not throttle */
6544 	if (!pgdat)
6545 		goto out;
6546 
6547 	/* Account for the throttling */
6548 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6549 
6550 	/*
6551 	 * If the caller cannot enter the filesystem, it's possible that it
6552 	 * is due to the caller holding an FS lock or performing a journal
6553 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6554 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6555 	 * blocked waiting on the same lock. Instead, throttle for up to a
6556 	 * second before continuing.
6557 	 */
6558 	if (!(gfp_mask & __GFP_FS))
6559 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6560 			allow_direct_reclaim(pgdat), HZ);
6561 	else
6562 		/* Throttle until kswapd wakes the process */
6563 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6564 			allow_direct_reclaim(pgdat));
6565 
6566 	if (fatal_signal_pending(current))
6567 		return true;
6568 
6569 out:
6570 	return false;
6571 }
6572 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6573 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6574 				gfp_t gfp_mask, nodemask_t *nodemask)
6575 {
6576 	unsigned long nr_reclaimed;
6577 	struct scan_control sc = {
6578 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6579 		.gfp_mask = current_gfp_context(gfp_mask),
6580 		.reclaim_idx = gfp_zone(gfp_mask),
6581 		.order = order,
6582 		.nodemask = nodemask,
6583 		.priority = DEF_PRIORITY,
6584 		.may_writepage = !laptop_mode,
6585 		.may_unmap = 1,
6586 		.may_swap = 1,
6587 	};
6588 
6589 	/*
6590 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6591 	 * Confirm they are large enough for max values.
6592 	 */
6593 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6594 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6595 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6596 
6597 	/*
6598 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6599 	 * 1 is returned so that the page allocator does not OOM kill at this
6600 	 * point.
6601 	 */
6602 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6603 		return 1;
6604 
6605 	set_task_reclaim_state(current, &sc.reclaim_state);
6606 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6607 
6608 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6609 
6610 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6611 	set_task_reclaim_state(current, NULL);
6612 
6613 	return nr_reclaimed;
6614 }
6615 
6616 #ifdef CONFIG_MEMCG
6617 
6618 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6619 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6620 						gfp_t gfp_mask, bool noswap,
6621 						pg_data_t *pgdat,
6622 						unsigned long *nr_scanned)
6623 {
6624 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6625 	struct scan_control sc = {
6626 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6627 		.target_mem_cgroup = memcg,
6628 		.may_writepage = !laptop_mode,
6629 		.may_unmap = 1,
6630 		.reclaim_idx = MAX_NR_ZONES - 1,
6631 		.may_swap = !noswap,
6632 	};
6633 
6634 	WARN_ON_ONCE(!current->reclaim_state);
6635 
6636 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6637 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6638 
6639 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6640 						      sc.gfp_mask);
6641 
6642 	/*
6643 	 * NOTE: Although we can get the priority field, using it
6644 	 * here is not a good idea, since it limits the pages we can scan.
6645 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6646 	 * will pick up pages from other mem cgroup's as well. We hack
6647 	 * the priority and make it zero.
6648 	 */
6649 	shrink_lruvec(lruvec, &sc);
6650 
6651 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6652 
6653 	*nr_scanned = sc.nr_scanned;
6654 
6655 	return sc.nr_reclaimed;
6656 }
6657 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6658 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6659 					   unsigned long nr_pages,
6660 					   gfp_t gfp_mask,
6661 					   unsigned int reclaim_options,
6662 					   int *swappiness)
6663 {
6664 	unsigned long nr_reclaimed;
6665 	unsigned int noreclaim_flag;
6666 	struct scan_control sc = {
6667 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6668 		.proactive_swappiness = swappiness,
6669 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6670 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6671 		.reclaim_idx = MAX_NR_ZONES - 1,
6672 		.target_mem_cgroup = memcg,
6673 		.priority = DEF_PRIORITY,
6674 		.may_writepage = !laptop_mode,
6675 		.may_unmap = 1,
6676 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6677 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6678 	};
6679 	/*
6680 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6681 	 * equal pressure on all the nodes. This is based on the assumption that
6682 	 * the reclaim does not bail out early.
6683 	 */
6684 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6685 
6686 	set_task_reclaim_state(current, &sc.reclaim_state);
6687 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6688 	noreclaim_flag = memalloc_noreclaim_save();
6689 
6690 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6691 
6692 	memalloc_noreclaim_restore(noreclaim_flag);
6693 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6694 	set_task_reclaim_state(current, NULL);
6695 
6696 	return nr_reclaimed;
6697 }
6698 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6699 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6700 					   unsigned long nr_pages,
6701 					   gfp_t gfp_mask,
6702 					   unsigned int reclaim_options,
6703 					   int *swappiness)
6704 {
6705 	return 0;
6706 }
6707 #endif
6708 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6709 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6710 {
6711 	struct mem_cgroup *memcg;
6712 	struct lruvec *lruvec;
6713 
6714 	if (lru_gen_enabled()) {
6715 		lru_gen_age_node(pgdat, sc);
6716 		return;
6717 	}
6718 
6719 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6720 	if (!can_age_anon_pages(lruvec, sc))
6721 		return;
6722 
6723 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6724 		return;
6725 
6726 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6727 	do {
6728 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6729 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6730 				   sc, LRU_ACTIVE_ANON);
6731 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6732 	} while (memcg);
6733 }
6734 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6735 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6736 {
6737 	int i;
6738 	struct zone *zone;
6739 
6740 	/*
6741 	 * Check for watermark boosts top-down as the higher zones
6742 	 * are more likely to be boosted. Both watermarks and boosts
6743 	 * should not be checked at the same time as reclaim would
6744 	 * start prematurely when there is no boosting and a lower
6745 	 * zone is balanced.
6746 	 */
6747 	for (i = highest_zoneidx; i >= 0; i--) {
6748 		zone = pgdat->node_zones + i;
6749 		if (!managed_zone(zone))
6750 			continue;
6751 
6752 		if (zone->watermark_boost)
6753 			return true;
6754 	}
6755 
6756 	return false;
6757 }
6758 
6759 /*
6760  * Returns true if there is an eligible zone balanced for the request order
6761  * and highest_zoneidx
6762  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6763 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6764 {
6765 	int i;
6766 	unsigned long mark = -1;
6767 	struct zone *zone;
6768 
6769 	/*
6770 	 * Check watermarks bottom-up as lower zones are more likely to
6771 	 * meet watermarks.
6772 	 */
6773 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6774 		enum zone_stat_item item;
6775 		unsigned long free_pages;
6776 
6777 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6778 			mark = promo_wmark_pages(zone);
6779 		else
6780 			mark = high_wmark_pages(zone);
6781 
6782 		/*
6783 		 * In defrag_mode, watermarks must be met in whole
6784 		 * blocks to avoid polluting allocator fallbacks.
6785 		 *
6786 		 * However, kswapd usually cannot accomplish this on
6787 		 * its own and needs kcompactd support. Once it's
6788 		 * reclaimed a compaction gap, and kswapd_shrink_node
6789 		 * has dropped order, simply ensure there are enough
6790 		 * base pages for compaction, wake kcompactd & sleep.
6791 		 */
6792 		if (defrag_mode && order)
6793 			item = NR_FREE_PAGES_BLOCKS;
6794 		else
6795 			item = NR_FREE_PAGES;
6796 
6797 		/*
6798 		 * When there is a high number of CPUs in the system,
6799 		 * the cumulative error from the vmstat per-cpu cache
6800 		 * can blur the line between the watermarks. In that
6801 		 * case, be safe and get an accurate snapshot.
6802 		 *
6803 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6804 		 * pageblock_nr_pages, while the vmstat pcp threshold
6805 		 * is limited to 125. On many configurations that
6806 		 * counter won't actually be per-cpu cached. But keep
6807 		 * things simple for now; revisit when somebody cares.
6808 		 */
6809 		free_pages = zone_page_state(zone, item);
6810 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6811 			free_pages = zone_page_state_snapshot(zone, item);
6812 
6813 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6814 					0, free_pages))
6815 			return true;
6816 	}
6817 
6818 	/*
6819 	 * If a node has no managed zone within highest_zoneidx, it does not
6820 	 * need balancing by definition. This can happen if a zone-restricted
6821 	 * allocation tries to wake a remote kswapd.
6822 	 */
6823 	if (mark == -1)
6824 		return true;
6825 
6826 	return false;
6827 }
6828 
6829 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6830 static void clear_pgdat_congested(pg_data_t *pgdat)
6831 {
6832 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6833 
6834 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6835 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6836 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6837 }
6838 
6839 /*
6840  * Prepare kswapd for sleeping. This verifies that there are no processes
6841  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6842  *
6843  * Returns true if kswapd is ready to sleep
6844  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6845 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6846 				int highest_zoneidx)
6847 {
6848 	/*
6849 	 * The throttled processes are normally woken up in balance_pgdat() as
6850 	 * soon as allow_direct_reclaim() is true. But there is a potential
6851 	 * race between when kswapd checks the watermarks and a process gets
6852 	 * throttled. There is also a potential race if processes get
6853 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6854 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6855 	 * the wake up checks. If kswapd is going to sleep, no process should
6856 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6857 	 * the wake up is premature, processes will wake kswapd and get
6858 	 * throttled again. The difference from wake ups in balance_pgdat() is
6859 	 * that here we are under prepare_to_wait().
6860 	 */
6861 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6862 		wake_up_all(&pgdat->pfmemalloc_wait);
6863 
6864 	/* Hopeless node, leave it to direct reclaim */
6865 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6866 		return true;
6867 
6868 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6869 		clear_pgdat_congested(pgdat);
6870 		return true;
6871 	}
6872 
6873 	return false;
6874 }
6875 
6876 /*
6877  * kswapd shrinks a node of pages that are at or below the highest usable
6878  * zone that is currently unbalanced.
6879  *
6880  * Returns true if kswapd scanned at least the requested number of pages to
6881  * reclaim or if the lack of progress was due to pages under writeback.
6882  * This is used to determine if the scanning priority needs to be raised.
6883  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6884 static bool kswapd_shrink_node(pg_data_t *pgdat,
6885 			       struct scan_control *sc)
6886 {
6887 	struct zone *zone;
6888 	int z;
6889 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6890 
6891 	/* Reclaim a number of pages proportional to the number of zones */
6892 	sc->nr_to_reclaim = 0;
6893 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6894 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6895 	}
6896 
6897 	/*
6898 	 * Historically care was taken to put equal pressure on all zones but
6899 	 * now pressure is applied based on node LRU order.
6900 	 */
6901 	shrink_node(pgdat, sc);
6902 
6903 	/*
6904 	 * Fragmentation may mean that the system cannot be rebalanced for
6905 	 * high-order allocations. If twice the allocation size has been
6906 	 * reclaimed then recheck watermarks only at order-0 to prevent
6907 	 * excessive reclaim. Assume that a process requested a high-order
6908 	 * can direct reclaim/compact.
6909 	 */
6910 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6911 		sc->order = 0;
6912 
6913 	/* account for progress from mm_account_reclaimed_pages() */
6914 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6915 }
6916 
6917 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6918 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6919 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6920 {
6921 	int i;
6922 	struct zone *zone;
6923 
6924 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6925 		if (active)
6926 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6927 		else
6928 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6929 	}
6930 }
6931 
6932 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6933 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6934 {
6935 	update_reclaim_active(pgdat, highest_zoneidx, true);
6936 }
6937 
6938 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6939 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6940 {
6941 	update_reclaim_active(pgdat, highest_zoneidx, false);
6942 }
6943 
6944 /*
6945  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6946  * that are eligible for use by the caller until at least one zone is
6947  * balanced.
6948  *
6949  * Returns the order kswapd finished reclaiming at.
6950  *
6951  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6952  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6953  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6954  * or lower is eligible for reclaim until at least one usable zone is
6955  * balanced.
6956  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6957 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6958 {
6959 	int i;
6960 	unsigned long nr_soft_reclaimed;
6961 	unsigned long nr_soft_scanned;
6962 	unsigned long pflags;
6963 	unsigned long nr_boost_reclaim;
6964 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6965 	bool boosted;
6966 	struct zone *zone;
6967 	struct scan_control sc = {
6968 		.gfp_mask = GFP_KERNEL,
6969 		.order = order,
6970 		.may_unmap = 1,
6971 	};
6972 
6973 	set_task_reclaim_state(current, &sc.reclaim_state);
6974 	psi_memstall_enter(&pflags);
6975 	__fs_reclaim_acquire(_THIS_IP_);
6976 
6977 	count_vm_event(PAGEOUTRUN);
6978 
6979 	/*
6980 	 * Account for the reclaim boost. Note that the zone boost is left in
6981 	 * place so that parallel allocations that are near the watermark will
6982 	 * stall or direct reclaim until kswapd is finished.
6983 	 */
6984 	nr_boost_reclaim = 0;
6985 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6986 		nr_boost_reclaim += zone->watermark_boost;
6987 		zone_boosts[i] = zone->watermark_boost;
6988 	}
6989 	boosted = nr_boost_reclaim;
6990 
6991 restart:
6992 	set_reclaim_active(pgdat, highest_zoneidx);
6993 	sc.priority = DEF_PRIORITY;
6994 	do {
6995 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6996 		bool raise_priority = true;
6997 		bool balanced;
6998 		bool ret;
6999 		bool was_frozen;
7000 
7001 		sc.reclaim_idx = highest_zoneidx;
7002 
7003 		/*
7004 		 * If the number of buffer_heads exceeds the maximum allowed
7005 		 * then consider reclaiming from all zones. This has a dual
7006 		 * purpose -- on 64-bit systems it is expected that
7007 		 * buffer_heads are stripped during active rotation. On 32-bit
7008 		 * systems, highmem pages can pin lowmem memory and shrinking
7009 		 * buffers can relieve lowmem pressure. Reclaim may still not
7010 		 * go ahead if all eligible zones for the original allocation
7011 		 * request are balanced to avoid excessive reclaim from kswapd.
7012 		 */
7013 		if (buffer_heads_over_limit) {
7014 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7015 				zone = pgdat->node_zones + i;
7016 				if (!managed_zone(zone))
7017 					continue;
7018 
7019 				sc.reclaim_idx = i;
7020 				break;
7021 			}
7022 		}
7023 
7024 		/*
7025 		 * If the pgdat is imbalanced then ignore boosting and preserve
7026 		 * the watermarks for a later time and restart. Note that the
7027 		 * zone watermarks will be still reset at the end of balancing
7028 		 * on the grounds that the normal reclaim should be enough to
7029 		 * re-evaluate if boosting is required when kswapd next wakes.
7030 		 */
7031 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7032 		if (!balanced && nr_boost_reclaim) {
7033 			nr_boost_reclaim = 0;
7034 			goto restart;
7035 		}
7036 
7037 		/*
7038 		 * If boosting is not active then only reclaim if there are no
7039 		 * eligible zones. Note that sc.reclaim_idx is not used as
7040 		 * buffer_heads_over_limit may have adjusted it.
7041 		 */
7042 		if (!nr_boost_reclaim && balanced)
7043 			goto out;
7044 
7045 		/* Limit the priority of boosting to avoid reclaim writeback */
7046 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7047 			raise_priority = false;
7048 
7049 		/*
7050 		 * Do not writeback or swap pages for boosted reclaim. The
7051 		 * intent is to relieve pressure not issue sub-optimal IO
7052 		 * from reclaim context. If no pages are reclaimed, the
7053 		 * reclaim will be aborted.
7054 		 */
7055 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7056 		sc.may_swap = !nr_boost_reclaim;
7057 
7058 		/*
7059 		 * Do some background aging, to give pages a chance to be
7060 		 * referenced before reclaiming. All pages are rotated
7061 		 * regardless of classzone as this is about consistent aging.
7062 		 */
7063 		kswapd_age_node(pgdat, &sc);
7064 
7065 		/*
7066 		 * If we're getting trouble reclaiming, start doing writepage
7067 		 * even in laptop mode.
7068 		 */
7069 		if (sc.priority < DEF_PRIORITY - 2)
7070 			sc.may_writepage = 1;
7071 
7072 		/* Call soft limit reclaim before calling shrink_node. */
7073 		sc.nr_scanned = 0;
7074 		nr_soft_scanned = 0;
7075 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7076 							      sc.gfp_mask, &nr_soft_scanned);
7077 		sc.nr_reclaimed += nr_soft_reclaimed;
7078 
7079 		/*
7080 		 * There should be no need to raise the scanning priority if
7081 		 * enough pages are already being scanned that that high
7082 		 * watermark would be met at 100% efficiency.
7083 		 */
7084 		if (kswapd_shrink_node(pgdat, &sc))
7085 			raise_priority = false;
7086 
7087 		/*
7088 		 * If the low watermark is met there is no need for processes
7089 		 * to be throttled on pfmemalloc_wait as they should not be
7090 		 * able to safely make forward progress. Wake them
7091 		 */
7092 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7093 				allow_direct_reclaim(pgdat))
7094 			wake_up_all(&pgdat->pfmemalloc_wait);
7095 
7096 		/* Check if kswapd should be suspending */
7097 		__fs_reclaim_release(_THIS_IP_);
7098 		ret = kthread_freezable_should_stop(&was_frozen);
7099 		__fs_reclaim_acquire(_THIS_IP_);
7100 		if (was_frozen || ret)
7101 			break;
7102 
7103 		/*
7104 		 * Raise priority if scanning rate is too low or there was no
7105 		 * progress in reclaiming pages
7106 		 */
7107 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7108 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7109 
7110 		/*
7111 		 * If reclaim made no progress for a boost, stop reclaim as
7112 		 * IO cannot be queued and it could be an infinite loop in
7113 		 * extreme circumstances.
7114 		 */
7115 		if (nr_boost_reclaim && !nr_reclaimed)
7116 			break;
7117 
7118 		if (raise_priority || !nr_reclaimed)
7119 			sc.priority--;
7120 	} while (sc.priority >= 1);
7121 
7122 	/*
7123 	 * Restart only if it went through the priority loop all the way,
7124 	 * but cache_trim_mode didn't work.
7125 	 */
7126 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7127 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7128 		sc.no_cache_trim_mode = 1;
7129 		goto restart;
7130 	}
7131 
7132 	/*
7133 	 * If the reclaim was boosted, we might still be far from the
7134 	 * watermark_high at this point. We need to avoid increasing the
7135 	 * failure count to prevent the kswapd thread from stopping.
7136 	 */
7137 	if (!sc.nr_reclaimed && !boosted)
7138 		atomic_inc(&pgdat->kswapd_failures);
7139 
7140 out:
7141 	clear_reclaim_active(pgdat, highest_zoneidx);
7142 
7143 	/* If reclaim was boosted, account for the reclaim done in this pass */
7144 	if (boosted) {
7145 		unsigned long flags;
7146 
7147 		for (i = 0; i <= highest_zoneidx; i++) {
7148 			if (!zone_boosts[i])
7149 				continue;
7150 
7151 			/* Increments are under the zone lock */
7152 			zone = pgdat->node_zones + i;
7153 			spin_lock_irqsave(&zone->lock, flags);
7154 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7155 			spin_unlock_irqrestore(&zone->lock, flags);
7156 		}
7157 
7158 		/*
7159 		 * As there is now likely space, wakeup kcompact to defragment
7160 		 * pageblocks.
7161 		 */
7162 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7163 	}
7164 
7165 	snapshot_refaults(NULL, pgdat);
7166 	__fs_reclaim_release(_THIS_IP_);
7167 	psi_memstall_leave(&pflags);
7168 	set_task_reclaim_state(current, NULL);
7169 
7170 	/*
7171 	 * Return the order kswapd stopped reclaiming at as
7172 	 * prepare_kswapd_sleep() takes it into account. If another caller
7173 	 * entered the allocator slow path while kswapd was awake, order will
7174 	 * remain at the higher level.
7175 	 */
7176 	return sc.order;
7177 }
7178 
7179 /*
7180  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7181  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7182  * not a valid index then either kswapd runs for first time or kswapd couldn't
7183  * sleep after previous reclaim attempt (node is still unbalanced). In that
7184  * case return the zone index of the previous kswapd reclaim cycle.
7185  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7186 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7187 					   enum zone_type prev_highest_zoneidx)
7188 {
7189 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7190 
7191 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7192 }
7193 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7194 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7195 				unsigned int highest_zoneidx)
7196 {
7197 	long remaining = 0;
7198 	DEFINE_WAIT(wait);
7199 
7200 	if (freezing(current) || kthread_should_stop())
7201 		return;
7202 
7203 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7204 
7205 	/*
7206 	 * Try to sleep for a short interval. Note that kcompactd will only be
7207 	 * woken if it is possible to sleep for a short interval. This is
7208 	 * deliberate on the assumption that if reclaim cannot keep an
7209 	 * eligible zone balanced that it's also unlikely that compaction will
7210 	 * succeed.
7211 	 */
7212 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7213 		/*
7214 		 * Compaction records what page blocks it recently failed to
7215 		 * isolate pages from and skips them in the future scanning.
7216 		 * When kswapd is going to sleep, it is reasonable to assume
7217 		 * that pages and compaction may succeed so reset the cache.
7218 		 */
7219 		reset_isolation_suitable(pgdat);
7220 
7221 		/*
7222 		 * We have freed the memory, now we should compact it to make
7223 		 * allocation of the requested order possible.
7224 		 */
7225 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7226 
7227 		remaining = schedule_timeout(HZ/10);
7228 
7229 		/*
7230 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7231 		 * order. The values will either be from a wakeup request or
7232 		 * the previous request that slept prematurely.
7233 		 */
7234 		if (remaining) {
7235 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7236 					kswapd_highest_zoneidx(pgdat,
7237 							highest_zoneidx));
7238 
7239 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7240 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7241 		}
7242 
7243 		finish_wait(&pgdat->kswapd_wait, &wait);
7244 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7245 	}
7246 
7247 	/*
7248 	 * After a short sleep, check if it was a premature sleep. If not, then
7249 	 * go fully to sleep until explicitly woken up.
7250 	 */
7251 	if (!remaining &&
7252 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7253 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7254 
7255 		/*
7256 		 * vmstat counters are not perfectly accurate and the estimated
7257 		 * value for counters such as NR_FREE_PAGES can deviate from the
7258 		 * true value by nr_online_cpus * threshold. To avoid the zone
7259 		 * watermarks being breached while under pressure, we reduce the
7260 		 * per-cpu vmstat threshold while kswapd is awake and restore
7261 		 * them before going back to sleep.
7262 		 */
7263 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7264 
7265 		if (!kthread_should_stop())
7266 			schedule();
7267 
7268 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7269 	} else {
7270 		if (remaining)
7271 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7272 		else
7273 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7274 	}
7275 	finish_wait(&pgdat->kswapd_wait, &wait);
7276 }
7277 
7278 /*
7279  * The background pageout daemon, started as a kernel thread
7280  * from the init process.
7281  *
7282  * This basically trickles out pages so that we have _some_
7283  * free memory available even if there is no other activity
7284  * that frees anything up. This is needed for things like routing
7285  * etc, where we otherwise might have all activity going on in
7286  * asynchronous contexts that cannot page things out.
7287  *
7288  * If there are applications that are active memory-allocators
7289  * (most normal use), this basically shouldn't matter.
7290  */
kswapd(void * p)7291 static int kswapd(void *p)
7292 {
7293 	unsigned int alloc_order, reclaim_order;
7294 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7295 	pg_data_t *pgdat = (pg_data_t *)p;
7296 	struct task_struct *tsk = current;
7297 
7298 	/*
7299 	 * Tell the memory management that we're a "memory allocator",
7300 	 * and that if we need more memory we should get access to it
7301 	 * regardless (see "__alloc_pages()"). "kswapd" should
7302 	 * never get caught in the normal page freeing logic.
7303 	 *
7304 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7305 	 * you need a small amount of memory in order to be able to
7306 	 * page out something else, and this flag essentially protects
7307 	 * us from recursively trying to free more memory as we're
7308 	 * trying to free the first piece of memory in the first place).
7309 	 */
7310 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7311 	set_freezable();
7312 
7313 	WRITE_ONCE(pgdat->kswapd_order, 0);
7314 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7315 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7316 	for ( ; ; ) {
7317 		bool was_frozen;
7318 
7319 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7320 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7321 							highest_zoneidx);
7322 
7323 kswapd_try_sleep:
7324 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7325 					highest_zoneidx);
7326 
7327 		/* Read the new order and highest_zoneidx */
7328 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7329 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7330 							highest_zoneidx);
7331 		WRITE_ONCE(pgdat->kswapd_order, 0);
7332 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7333 
7334 		if (kthread_freezable_should_stop(&was_frozen))
7335 			break;
7336 
7337 		/*
7338 		 * We can speed up thawing tasks if we don't call balance_pgdat
7339 		 * after returning from the refrigerator
7340 		 */
7341 		if (was_frozen)
7342 			continue;
7343 
7344 		/*
7345 		 * Reclaim begins at the requested order but if a high-order
7346 		 * reclaim fails then kswapd falls back to reclaiming for
7347 		 * order-0. If that happens, kswapd will consider sleeping
7348 		 * for the order it finished reclaiming at (reclaim_order)
7349 		 * but kcompactd is woken to compact for the original
7350 		 * request (alloc_order).
7351 		 */
7352 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7353 						alloc_order);
7354 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7355 						highest_zoneidx);
7356 		if (reclaim_order < alloc_order)
7357 			goto kswapd_try_sleep;
7358 	}
7359 
7360 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7361 
7362 	return 0;
7363 }
7364 
7365 /*
7366  * A zone is low on free memory or too fragmented for high-order memory.  If
7367  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7368  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7369  * has failed or is not needed, still wake up kcompactd if only compaction is
7370  * needed.
7371  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7372 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7373 		   enum zone_type highest_zoneidx)
7374 {
7375 	pg_data_t *pgdat;
7376 	enum zone_type curr_idx;
7377 
7378 	if (!managed_zone(zone))
7379 		return;
7380 
7381 	if (!cpuset_zone_allowed(zone, gfp_flags))
7382 		return;
7383 
7384 	pgdat = zone->zone_pgdat;
7385 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7386 
7387 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7388 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7389 
7390 	if (READ_ONCE(pgdat->kswapd_order) < order)
7391 		WRITE_ONCE(pgdat->kswapd_order, order);
7392 
7393 	if (!waitqueue_active(&pgdat->kswapd_wait))
7394 		return;
7395 
7396 	/* Hopeless node, leave it to direct reclaim if possible */
7397 	if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES ||
7398 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7399 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7400 		/*
7401 		 * There may be plenty of free memory available, but it's too
7402 		 * fragmented for high-order allocations.  Wake up kcompactd
7403 		 * and rely on compaction_suitable() to determine if it's
7404 		 * needed.  If it fails, it will defer subsequent attempts to
7405 		 * ratelimit its work.
7406 		 */
7407 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7408 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7409 		return;
7410 	}
7411 
7412 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7413 				      gfp_flags);
7414 	wake_up_interruptible(&pgdat->kswapd_wait);
7415 }
7416 
7417 #ifdef CONFIG_HIBERNATION
7418 /*
7419  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7420  * freed pages.
7421  *
7422  * Rather than trying to age LRUs the aim is to preserve the overall
7423  * LRU order by reclaiming preferentially
7424  * inactive > active > active referenced > active mapped
7425  */
shrink_all_memory(unsigned long nr_to_reclaim)7426 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7427 {
7428 	struct scan_control sc = {
7429 		.nr_to_reclaim = nr_to_reclaim,
7430 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7431 		.reclaim_idx = MAX_NR_ZONES - 1,
7432 		.priority = DEF_PRIORITY,
7433 		.may_writepage = 1,
7434 		.may_unmap = 1,
7435 		.may_swap = 1,
7436 		.hibernation_mode = 1,
7437 	};
7438 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7439 	unsigned long nr_reclaimed;
7440 	unsigned int noreclaim_flag;
7441 
7442 	fs_reclaim_acquire(sc.gfp_mask);
7443 	noreclaim_flag = memalloc_noreclaim_save();
7444 	set_task_reclaim_state(current, &sc.reclaim_state);
7445 
7446 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7447 
7448 	set_task_reclaim_state(current, NULL);
7449 	memalloc_noreclaim_restore(noreclaim_flag);
7450 	fs_reclaim_release(sc.gfp_mask);
7451 
7452 	return nr_reclaimed;
7453 }
7454 #endif /* CONFIG_HIBERNATION */
7455 
7456 /*
7457  * This kswapd start function will be called by init and node-hot-add.
7458  */
kswapd_run(int nid)7459 void __meminit kswapd_run(int nid)
7460 {
7461 	pg_data_t *pgdat = NODE_DATA(nid);
7462 
7463 	pgdat_kswapd_lock(pgdat);
7464 	if (!pgdat->kswapd) {
7465 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7466 		if (IS_ERR(pgdat->kswapd)) {
7467 			/* failure at boot is fatal */
7468 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7469 				   nid, PTR_ERR(pgdat->kswapd));
7470 			BUG_ON(system_state < SYSTEM_RUNNING);
7471 			pgdat->kswapd = NULL;
7472 		} else {
7473 			wake_up_process(pgdat->kswapd);
7474 		}
7475 	}
7476 	pgdat_kswapd_unlock(pgdat);
7477 }
7478 
7479 /*
7480  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7481  * be holding mem_hotplug_begin/done().
7482  */
kswapd_stop(int nid)7483 void __meminit kswapd_stop(int nid)
7484 {
7485 	pg_data_t *pgdat = NODE_DATA(nid);
7486 	struct task_struct *kswapd;
7487 
7488 	pgdat_kswapd_lock(pgdat);
7489 	kswapd = pgdat->kswapd;
7490 	if (kswapd) {
7491 		kthread_stop(kswapd);
7492 		pgdat->kswapd = NULL;
7493 	}
7494 	pgdat_kswapd_unlock(pgdat);
7495 }
7496 
7497 static const struct ctl_table vmscan_sysctl_table[] = {
7498 	{
7499 		.procname	= "swappiness",
7500 		.data		= &vm_swappiness,
7501 		.maxlen		= sizeof(vm_swappiness),
7502 		.mode		= 0644,
7503 		.proc_handler	= proc_dointvec_minmax,
7504 		.extra1		= SYSCTL_ZERO,
7505 		.extra2		= SYSCTL_TWO_HUNDRED,
7506 	},
7507 #ifdef CONFIG_NUMA
7508 	{
7509 		.procname	= "zone_reclaim_mode",
7510 		.data		= &node_reclaim_mode,
7511 		.maxlen		= sizeof(node_reclaim_mode),
7512 		.mode		= 0644,
7513 		.proc_handler	= proc_dointvec_minmax,
7514 		.extra1		= SYSCTL_ZERO,
7515 	}
7516 #endif
7517 };
7518 
kswapd_init(void)7519 static int __init kswapd_init(void)
7520 {
7521 	int nid;
7522 
7523 	swap_setup();
7524 	for_each_node_state(nid, N_MEMORY)
7525  		kswapd_run(nid);
7526 	register_sysctl_init("vm", vmscan_sysctl_table);
7527 	return 0;
7528 }
7529 
7530 module_init(kswapd_init)
7531 
7532 #ifdef CONFIG_NUMA
7533 /*
7534  * Node reclaim mode
7535  *
7536  * If non-zero call node_reclaim when the number of free pages falls below
7537  * the watermarks.
7538  */
7539 int node_reclaim_mode __read_mostly;
7540 
7541 /*
7542  * Priority for NODE_RECLAIM. This determines the fraction of pages
7543  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7544  * a zone.
7545  */
7546 #define NODE_RECLAIM_PRIORITY 4
7547 
7548 /*
7549  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7550  * occur.
7551  */
7552 int sysctl_min_unmapped_ratio = 1;
7553 
7554 /*
7555  * If the number of slab pages in a zone grows beyond this percentage then
7556  * slab reclaim needs to occur.
7557  */
7558 int sysctl_min_slab_ratio = 5;
7559 
node_unmapped_file_pages(struct pglist_data * pgdat)7560 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7561 {
7562 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7563 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7564 		node_page_state(pgdat, NR_ACTIVE_FILE);
7565 
7566 	/*
7567 	 * It's possible for there to be more file mapped pages than
7568 	 * accounted for by the pages on the file LRU lists because
7569 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7570 	 */
7571 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7572 }
7573 
7574 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7575 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7576 {
7577 	unsigned long nr_pagecache_reclaimable;
7578 	unsigned long delta = 0;
7579 
7580 	/*
7581 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7582 	 * potentially reclaimable. Otherwise, we have to worry about
7583 	 * pages like swapcache and node_unmapped_file_pages() provides
7584 	 * a better estimate
7585 	 */
7586 	if (node_reclaim_mode & RECLAIM_UNMAP)
7587 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7588 	else
7589 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7590 
7591 	/*
7592 	 * Since we can't clean folios through reclaim, remove dirty file
7593 	 * folios from consideration.
7594 	 */
7595 	delta += node_page_state(pgdat, NR_FILE_DIRTY);
7596 
7597 	/* Watch for any possible underflows due to delta */
7598 	if (unlikely(delta > nr_pagecache_reclaimable))
7599 		delta = nr_pagecache_reclaimable;
7600 
7601 	return nr_pagecache_reclaimable - delta;
7602 }
7603 
7604 /*
7605  * Try to free up some pages from this node through reclaim.
7606  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7607 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7608 				    unsigned long nr_pages,
7609 				    struct scan_control *sc)
7610 {
7611 	struct task_struct *p = current;
7612 	unsigned int noreclaim_flag;
7613 	unsigned long pflags;
7614 
7615 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7616 					   sc->gfp_mask);
7617 
7618 	cond_resched();
7619 	psi_memstall_enter(&pflags);
7620 	delayacct_freepages_start();
7621 	fs_reclaim_acquire(sc->gfp_mask);
7622 	/*
7623 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7624 	 */
7625 	noreclaim_flag = memalloc_noreclaim_save();
7626 	set_task_reclaim_state(p, &sc->reclaim_state);
7627 
7628 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7629 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7630 		/*
7631 		 * Free memory by calling shrink node with increasing
7632 		 * priorities until we have enough memory freed.
7633 		 */
7634 		do {
7635 			shrink_node(pgdat, sc);
7636 		} while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7637 	}
7638 
7639 	set_task_reclaim_state(p, NULL);
7640 	memalloc_noreclaim_restore(noreclaim_flag);
7641 	fs_reclaim_release(sc->gfp_mask);
7642 	delayacct_freepages_end();
7643 	psi_memstall_leave(&pflags);
7644 
7645 	trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7646 
7647 	return sc->nr_reclaimed;
7648 }
7649 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7650 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7651 {
7652 	int ret;
7653 	/* Minimum pages needed in order to stay on node */
7654 	const unsigned long nr_pages = 1 << order;
7655 	struct scan_control sc = {
7656 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7657 		.gfp_mask = current_gfp_context(gfp_mask),
7658 		.order = order,
7659 		.priority = NODE_RECLAIM_PRIORITY,
7660 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7661 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7662 		.may_swap = 1,
7663 		.reclaim_idx = gfp_zone(gfp_mask),
7664 	};
7665 
7666 	/*
7667 	 * Node reclaim reclaims unmapped file backed pages and
7668 	 * slab pages if we are over the defined limits.
7669 	 *
7670 	 * A small portion of unmapped file backed pages is needed for
7671 	 * file I/O otherwise pages read by file I/O will be immediately
7672 	 * thrown out if the node is overallocated. So we do not reclaim
7673 	 * if less than a specified percentage of the node is used by
7674 	 * unmapped file backed pages.
7675 	 */
7676 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7677 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7678 	    pgdat->min_slab_pages)
7679 		return NODE_RECLAIM_FULL;
7680 
7681 	/*
7682 	 * Do not scan if the allocation should not be delayed.
7683 	 */
7684 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7685 		return NODE_RECLAIM_NOSCAN;
7686 
7687 	/*
7688 	 * Only run node reclaim on the local node or on nodes that do not
7689 	 * have associated processors. This will favor the local processor
7690 	 * over remote processors and spread off node memory allocations
7691 	 * as wide as possible.
7692 	 */
7693 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7694 		return NODE_RECLAIM_NOSCAN;
7695 
7696 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7697 		return NODE_RECLAIM_NOSCAN;
7698 
7699 	ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7700 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7701 
7702 	if (ret)
7703 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7704 	else
7705 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7706 
7707 	return ret;
7708 }
7709 
7710 enum {
7711 	MEMORY_RECLAIM_SWAPPINESS = 0,
7712 	MEMORY_RECLAIM_SWAPPINESS_MAX,
7713 	MEMORY_RECLAIM_NULL,
7714 };
7715 static const match_table_t tokens = {
7716 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7717 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7718 	{ MEMORY_RECLAIM_NULL, NULL },
7719 };
7720 
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7721 int user_proactive_reclaim(char *buf,
7722 			   struct mem_cgroup *memcg, pg_data_t *pgdat)
7723 {
7724 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7725 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
7726 	int swappiness = -1;
7727 	char *old_buf, *start;
7728 	substring_t args[MAX_OPT_ARGS];
7729 	gfp_t gfp_mask = GFP_KERNEL;
7730 
7731 	if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7732 		return -EINVAL;
7733 
7734 	buf = strstrip(buf);
7735 
7736 	old_buf = buf;
7737 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7738 	if (buf == old_buf)
7739 		return -EINVAL;
7740 
7741 	buf = strstrip(buf);
7742 
7743 	while ((start = strsep(&buf, " ")) != NULL) {
7744 		if (!strlen(start))
7745 			continue;
7746 		switch (match_token(start, tokens, args)) {
7747 		case MEMORY_RECLAIM_SWAPPINESS:
7748 			if (match_int(&args[0], &swappiness))
7749 				return -EINVAL;
7750 			if (swappiness < MIN_SWAPPINESS ||
7751 			    swappiness > MAX_SWAPPINESS)
7752 				return -EINVAL;
7753 			break;
7754 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
7755 			swappiness = SWAPPINESS_ANON_ONLY;
7756 			break;
7757 		default:
7758 			return -EINVAL;
7759 		}
7760 	}
7761 
7762 	while (nr_reclaimed < nr_to_reclaim) {
7763 		/* Will converge on zero, but reclaim enforces a minimum */
7764 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7765 		unsigned long reclaimed;
7766 
7767 		if (signal_pending(current))
7768 			return -EINTR;
7769 
7770 		/*
7771 		 * This is the final attempt, drain percpu lru caches in the
7772 		 * hope of introducing more evictable pages.
7773 		 */
7774 		if (!nr_retries)
7775 			lru_add_drain_all();
7776 
7777 		if (memcg) {
7778 			unsigned int reclaim_options;
7779 
7780 			reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7781 					  MEMCG_RECLAIM_PROACTIVE;
7782 			reclaimed = try_to_free_mem_cgroup_pages(memcg,
7783 						 batch_size, gfp_mask,
7784 						 reclaim_options,
7785 						 swappiness == -1 ? NULL : &swappiness);
7786 		} else {
7787 			struct scan_control sc = {
7788 				.gfp_mask = current_gfp_context(gfp_mask),
7789 				.reclaim_idx = gfp_zone(gfp_mask),
7790 				.proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7791 				.priority = DEF_PRIORITY,
7792 				.may_writepage = !laptop_mode,
7793 				.nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7794 				.may_unmap = 1,
7795 				.may_swap = 1,
7796 				.proactive = 1,
7797 			};
7798 
7799 			if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7800 						  &pgdat->flags))
7801 				return -EBUSY;
7802 
7803 			reclaimed = __node_reclaim(pgdat, gfp_mask,
7804 						   batch_size, &sc);
7805 			clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7806 		}
7807 
7808 		if (!reclaimed && !nr_retries--)
7809 			return -EAGAIN;
7810 
7811 		nr_reclaimed += reclaimed;
7812 	}
7813 
7814 	return 0;
7815 }
7816 
7817 #endif
7818 
7819 /**
7820  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7821  * lru list
7822  * @fbatch: Batch of lru folios to check.
7823  *
7824  * Checks folios for evictability, if an evictable folio is in the unevictable
7825  * lru list, moves it to the appropriate evictable lru list. This function
7826  * should be only used for lru folios.
7827  */
check_move_unevictable_folios(struct folio_batch * fbatch)7828 void check_move_unevictable_folios(struct folio_batch *fbatch)
7829 {
7830 	struct lruvec *lruvec = NULL;
7831 	int pgscanned = 0;
7832 	int pgrescued = 0;
7833 	int i;
7834 
7835 	for (i = 0; i < fbatch->nr; i++) {
7836 		struct folio *folio = fbatch->folios[i];
7837 		int nr_pages = folio_nr_pages(folio);
7838 
7839 		pgscanned += nr_pages;
7840 
7841 		/* block memcg migration while the folio moves between lrus */
7842 		if (!folio_test_clear_lru(folio))
7843 			continue;
7844 
7845 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7846 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7847 			lruvec_del_folio(lruvec, folio);
7848 			folio_clear_unevictable(folio);
7849 			lruvec_add_folio(lruvec, folio);
7850 			pgrescued += nr_pages;
7851 		}
7852 		folio_set_lru(folio);
7853 	}
7854 
7855 	if (lruvec) {
7856 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7857 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7858 		unlock_page_lruvec_irq(lruvec);
7859 	} else if (pgscanned) {
7860 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7861 	}
7862 }
7863 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7864 
7865 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7866 static ssize_t reclaim_store(struct device *dev,
7867 			     struct device_attribute *attr,
7868 			     const char *buf, size_t count)
7869 {
7870 	int ret, nid = dev->id;
7871 
7872 	ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7873 	return ret ? -EAGAIN : count;
7874 }
7875 
7876 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7877 int reclaim_register_node(struct node *node)
7878 {
7879 	return device_create_file(&node->dev, &dev_attr_reclaim);
7880 }
7881 
reclaim_unregister_node(struct node * node)7882 void reclaim_unregister_node(struct node *node)
7883 {
7884 	return device_remove_file(&node->dev, &dev_attr_reclaim);
7885 }
7886 #endif
7887