1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22 #include "xfs_rtbitmap.h"
23
24 #include <linux/iversion.h>
25
26 struct kmem_cache *xfs_ili_cache; /* inode log item */
27
INODE_ITEM(struct xfs_log_item * lip)28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 {
30 return container_of(lip, struct xfs_inode_log_item, ili_item);
31 }
32
33 static uint64_t
xfs_inode_item_sort(struct xfs_log_item * lip)34 xfs_inode_item_sort(
35 struct xfs_log_item *lip)
36 {
37 return INODE_ITEM(lip)->ili_inode->i_ino;
38 }
39
40 #ifdef DEBUG_EXPENSIVE
41 static void
xfs_inode_item_precommit_check(struct xfs_inode * ip)42 xfs_inode_item_precommit_check(
43 struct xfs_inode *ip)
44 {
45 struct xfs_mount *mp = ip->i_mount;
46 struct xfs_dinode *dip;
47 xfs_failaddr_t fa;
48
49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
50 if (!dip) {
51 ASSERT(dip != NULL);
52 return;
53 }
54
55 xfs_inode_to_disk(ip, dip, 0);
56 xfs_dinode_calc_crc(mp, dip);
57 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
58 if (fa) {
59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
60 sizeof(*dip), fa);
61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
62 ASSERT(fa == NULL);
63 }
64 kfree(dip);
65 }
66 #else
67 # define xfs_inode_item_precommit_check(ip) ((void)0)
68 #endif
69
70 /*
71 * Prior to finally logging the inode, we have to ensure that all the
72 * per-modification inode state changes are applied. This includes VFS inode
73 * state updates, format conversions, verifier state synchronisation and
74 * ensuring the inode buffer remains in memory whilst the inode is dirty.
75 *
76 * We have to be careful when we grab the inode cluster buffer due to lock
77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
79 * not locked until ->precommit, so it happens after everything else has been
80 * modified.
81 *
82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
86 * AGF lock modifying directory blocks.
87 *
88 * Rather than force a complete rework of all the transactions to call
89 * xfs_trans_log_inode() once and once only at the end of every transaction, we
90 * move the pinning of the inode cluster buffer to a ->precommit operation. This
91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
92 * ensures that the inode cluster buffer locking is always done last in a
93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
94 * cluster buffer.
95 *
96 * If we return the inode number as the precommit sort key then we'll also
97 * guarantee that the order all inode cluster buffer locking is the same all the
98 * inodes and unlink items in the transaction.
99 */
100 static int
xfs_inode_item_precommit(struct xfs_trans * tp,struct xfs_log_item * lip)101 xfs_inode_item_precommit(
102 struct xfs_trans *tp,
103 struct xfs_log_item *lip)
104 {
105 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
106 struct xfs_inode *ip = iip->ili_inode;
107 struct inode *inode = VFS_I(ip);
108 unsigned int flags = iip->ili_dirty_flags;
109
110 /*
111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
112 * don't matter - we either will need an extra transaction in 24 hours
113 * to log the timestamps, or will clear already cleared fields in the
114 * worst case.
115 */
116 if (inode->i_state & I_DIRTY_TIME) {
117 spin_lock(&inode->i_lock);
118 inode->i_state &= ~I_DIRTY_TIME;
119 spin_unlock(&inode->i_lock);
120 }
121
122 /*
123 * If we're updating the inode core or the timestamps and it's possible
124 * to upgrade this inode to bigtime format, do so now.
125 */
126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
127 xfs_has_bigtime(ip->i_mount) &&
128 !xfs_inode_has_bigtime(ip)) {
129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
130 flags |= XFS_ILOG_CORE;
131 }
132
133 /*
134 * Inode verifiers do not check that the extent size hint is an integer
135 * multiple of the rt extent size on a directory with both rtinherit
136 * and extszinherit flags set. If we're logging a directory that is
137 * misconfigured in this way, clear the hint.
138 */
139 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
140 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
143 XFS_DIFLAG_EXTSZINHERIT);
144 ip->i_extsize = 0;
145 flags |= XFS_ILOG_CORE;
146 }
147
148 /*
149 * Record the specific change for fdatasync optimisation. This allows
150 * fdatasync to skip log forces for inodes that are only timestamp
151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
153 * (ili_fields) correctly tracks that the version has changed.
154 */
155 spin_lock(&iip->ili_lock);
156 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
157 if (flags & XFS_ILOG_IVERSION)
158 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
159
160 /*
161 * Inode verifiers do not check that the CoW extent size hint is an
162 * integer multiple of the rt extent size on a directory with both
163 * rtinherit and cowextsize flags set. If we're logging a directory
164 * that is misconfigured in this way, clear the hint.
165 */
166 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
167 (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
168 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_cowextsize) > 0) {
169 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
170 ip->i_cowextsize = 0;
171 flags |= XFS_ILOG_CORE;
172 }
173
174 if (!iip->ili_item.li_buf) {
175 struct xfs_buf *bp;
176 int error;
177
178 /*
179 * We hold the ILOCK here, so this inode is not going to be
180 * flushed while we are here. Further, because there is no
181 * buffer attached to the item, we know that there is no IO in
182 * progress, so nothing will clear the ili_fields while we read
183 * in the buffer. Hence we can safely drop the spin lock and
184 * read the buffer knowing that the state will not change from
185 * here.
186 */
187 spin_unlock(&iip->ili_lock);
188 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
189 if (error)
190 return error;
191
192 /*
193 * We need an explicit buffer reference for the log item but
194 * don't want the buffer to remain attached to the transaction.
195 * Hold the buffer but release the transaction reference once
196 * we've attached the inode log item to the buffer log item
197 * list.
198 */
199 xfs_buf_hold(bp);
200 spin_lock(&iip->ili_lock);
201 iip->ili_item.li_buf = bp;
202 bp->b_iodone = xfs_buf_inode_iodone;
203 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
204 xfs_trans_brelse(tp, bp);
205 }
206
207 /*
208 * Always OR in the bits from the ili_last_fields field. This is to
209 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
210 * in the eventual clearing of the ili_fields bits. See the big comment
211 * in xfs_iflush() for an explanation of this coordination mechanism.
212 */
213 iip->ili_fields |= (flags | iip->ili_last_fields);
214 spin_unlock(&iip->ili_lock);
215
216 xfs_inode_item_precommit_check(ip);
217
218 /*
219 * We are done with the log item transaction dirty state, so clear it so
220 * that it doesn't pollute future transactions.
221 */
222 iip->ili_dirty_flags = 0;
223 return 0;
224 }
225
226 /*
227 * The logged size of an inode fork is always the current size of the inode
228 * fork. This means that when an inode fork is relogged, the size of the logged
229 * region is determined by the current state, not the combination of the
230 * previously logged state + the current state. This is different relogging
231 * behaviour to most other log items which will retain the size of the
232 * previously logged changes when smaller regions are relogged.
233 *
234 * Hence operations that remove data from the inode fork (e.g. shortform
235 * dir/attr remove, extent form extent removal, etc), the size of the relogged
236 * inode gets -smaller- rather than stays the same size as the previously logged
237 * size and this can result in the committing transaction reducing the amount of
238 * space being consumed by the CIL.
239 */
240 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)241 xfs_inode_item_data_fork_size(
242 struct xfs_inode_log_item *iip,
243 int *nvecs,
244 int *nbytes)
245 {
246 struct xfs_inode *ip = iip->ili_inode;
247
248 switch (ip->i_df.if_format) {
249 case XFS_DINODE_FMT_EXTENTS:
250 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
251 ip->i_df.if_nextents > 0 &&
252 ip->i_df.if_bytes > 0) {
253 /* worst case, doesn't subtract delalloc extents */
254 *nbytes += xfs_inode_data_fork_size(ip);
255 *nvecs += 1;
256 }
257 break;
258 case XFS_DINODE_FMT_BTREE:
259 case XFS_DINODE_FMT_META_BTREE:
260 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261 ip->i_df.if_broot_bytes > 0) {
262 *nbytes += ip->i_df.if_broot_bytes;
263 *nvecs += 1;
264 }
265 break;
266 case XFS_DINODE_FMT_LOCAL:
267 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
268 ip->i_df.if_bytes > 0) {
269 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
270 *nvecs += 1;
271 }
272 break;
273
274 case XFS_DINODE_FMT_DEV:
275 break;
276 default:
277 ASSERT(0);
278 break;
279 }
280 }
281
282 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)283 xfs_inode_item_attr_fork_size(
284 struct xfs_inode_log_item *iip,
285 int *nvecs,
286 int *nbytes)
287 {
288 struct xfs_inode *ip = iip->ili_inode;
289
290 switch (ip->i_af.if_format) {
291 case XFS_DINODE_FMT_EXTENTS:
292 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
293 ip->i_af.if_nextents > 0 &&
294 ip->i_af.if_bytes > 0) {
295 /* worst case, doesn't subtract unused space */
296 *nbytes += xfs_inode_attr_fork_size(ip);
297 *nvecs += 1;
298 }
299 break;
300 case XFS_DINODE_FMT_BTREE:
301 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
302 ip->i_af.if_broot_bytes > 0) {
303 *nbytes += ip->i_af.if_broot_bytes;
304 *nvecs += 1;
305 }
306 break;
307 case XFS_DINODE_FMT_LOCAL:
308 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
309 ip->i_af.if_bytes > 0) {
310 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
311 *nvecs += 1;
312 }
313 break;
314 default:
315 ASSERT(0);
316 break;
317 }
318 }
319
320 /*
321 * This returns the number of iovecs needed to log the given inode item.
322 *
323 * We need one iovec for the inode log format structure, one for the
324 * inode core, and possibly one for the inode data/extents/b-tree root
325 * and one for the inode attribute data/extents/b-tree root.
326 */
327 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)328 xfs_inode_item_size(
329 struct xfs_log_item *lip,
330 int *nvecs,
331 int *nbytes)
332 {
333 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
334 struct xfs_inode *ip = iip->ili_inode;
335
336 *nvecs += 2;
337 *nbytes += sizeof(struct xfs_inode_log_format) +
338 xfs_log_dinode_size(ip->i_mount);
339
340 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
341 if (xfs_inode_has_attr_fork(ip))
342 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
343 }
344
345 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)346 xfs_inode_item_format_data_fork(
347 struct xfs_inode_log_item *iip,
348 struct xfs_inode_log_format *ilf,
349 struct xfs_log_vec *lv,
350 struct xfs_log_iovec **vecp)
351 {
352 struct xfs_inode *ip = iip->ili_inode;
353 size_t data_bytes;
354
355 switch (ip->i_df.if_format) {
356 case XFS_DINODE_FMT_EXTENTS:
357 iip->ili_fields &=
358 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
359
360 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
361 ip->i_df.if_nextents > 0 &&
362 ip->i_df.if_bytes > 0) {
363 struct xfs_bmbt_rec *p;
364
365 ASSERT(xfs_iext_count(&ip->i_df) > 0);
366
367 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
368 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
369 xlog_finish_iovec(lv, *vecp, data_bytes);
370
371 ASSERT(data_bytes <= ip->i_df.if_bytes);
372
373 ilf->ilf_dsize = data_bytes;
374 ilf->ilf_size++;
375 } else {
376 iip->ili_fields &= ~XFS_ILOG_DEXT;
377 }
378 break;
379 case XFS_DINODE_FMT_BTREE:
380 case XFS_DINODE_FMT_META_BTREE:
381 iip->ili_fields &=
382 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
383
384 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
385 ip->i_df.if_broot_bytes > 0) {
386 ASSERT(ip->i_df.if_broot != NULL);
387 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
388 ip->i_df.if_broot,
389 ip->i_df.if_broot_bytes);
390 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
391 ilf->ilf_size++;
392 } else {
393 ASSERT(!(iip->ili_fields &
394 XFS_ILOG_DBROOT));
395 iip->ili_fields &= ~XFS_ILOG_DBROOT;
396 }
397 break;
398 case XFS_DINODE_FMT_LOCAL:
399 iip->ili_fields &=
400 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
401 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
402 ip->i_df.if_bytes > 0) {
403 ASSERT(ip->i_df.if_data != NULL);
404 ASSERT(ip->i_disk_size > 0);
405 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
406 ip->i_df.if_data, ip->i_df.if_bytes);
407 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
408 ilf->ilf_size++;
409 } else {
410 iip->ili_fields &= ~XFS_ILOG_DDATA;
411 }
412 break;
413 case XFS_DINODE_FMT_DEV:
414 iip->ili_fields &=
415 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
416 if (iip->ili_fields & XFS_ILOG_DEV)
417 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
418 break;
419 default:
420 ASSERT(0);
421 break;
422 }
423 }
424
425 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)426 xfs_inode_item_format_attr_fork(
427 struct xfs_inode_log_item *iip,
428 struct xfs_inode_log_format *ilf,
429 struct xfs_log_vec *lv,
430 struct xfs_log_iovec **vecp)
431 {
432 struct xfs_inode *ip = iip->ili_inode;
433 size_t data_bytes;
434
435 switch (ip->i_af.if_format) {
436 case XFS_DINODE_FMT_EXTENTS:
437 iip->ili_fields &=
438 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
439
440 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
441 ip->i_af.if_nextents > 0 &&
442 ip->i_af.if_bytes > 0) {
443 struct xfs_bmbt_rec *p;
444
445 ASSERT(xfs_iext_count(&ip->i_af) ==
446 ip->i_af.if_nextents);
447
448 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
449 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
450 xlog_finish_iovec(lv, *vecp, data_bytes);
451
452 ilf->ilf_asize = data_bytes;
453 ilf->ilf_size++;
454 } else {
455 iip->ili_fields &= ~XFS_ILOG_AEXT;
456 }
457 break;
458 case XFS_DINODE_FMT_BTREE:
459 iip->ili_fields &=
460 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
461
462 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
463 ip->i_af.if_broot_bytes > 0) {
464 ASSERT(ip->i_af.if_broot != NULL);
465
466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
467 ip->i_af.if_broot,
468 ip->i_af.if_broot_bytes);
469 ilf->ilf_asize = ip->i_af.if_broot_bytes;
470 ilf->ilf_size++;
471 } else {
472 iip->ili_fields &= ~XFS_ILOG_ABROOT;
473 }
474 break;
475 case XFS_DINODE_FMT_LOCAL:
476 iip->ili_fields &=
477 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
478
479 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
480 ip->i_af.if_bytes > 0) {
481 ASSERT(ip->i_af.if_data != NULL);
482 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
483 ip->i_af.if_data, ip->i_af.if_bytes);
484 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
485 ilf->ilf_size++;
486 } else {
487 iip->ili_fields &= ~XFS_ILOG_ADATA;
488 }
489 break;
490 default:
491 ASSERT(0);
492 break;
493 }
494 }
495
496 /*
497 * Convert an incore timestamp to a log timestamp. Note that the log format
498 * specifies host endian format!
499 */
500 static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)501 xfs_inode_to_log_dinode_ts(
502 struct xfs_inode *ip,
503 const struct timespec64 tv)
504 {
505 struct xfs_log_legacy_timestamp *lits;
506 xfs_log_timestamp_t its;
507
508 if (xfs_inode_has_bigtime(ip))
509 return xfs_inode_encode_bigtime(tv);
510
511 lits = (struct xfs_log_legacy_timestamp *)&its;
512 lits->t_sec = tv.tv_sec;
513 lits->t_nsec = tv.tv_nsec;
514
515 return its;
516 }
517
518 /*
519 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
520 * but not in the in-memory one. But we are guaranteed to have an inode buffer
521 * in memory when logging an inode, so we can just copy it from the on-disk
522 * inode to the in-log inode here so that recovery of file system with these
523 * fields set to non-zero values doesn't lose them. For all other cases we zero
524 * the fields.
525 */
526 static void
xfs_copy_dm_fields_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to)527 xfs_copy_dm_fields_to_log_dinode(
528 struct xfs_inode *ip,
529 struct xfs_log_dinode *to)
530 {
531 struct xfs_dinode *dip;
532
533 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
534 ip->i_imap.im_boffset);
535
536 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
537 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
538 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
539 } else {
540 to->di_dmevmask = 0;
541 to->di_dmstate = 0;
542 }
543 }
544
545 static inline void
xfs_inode_to_log_dinode_iext_counters(struct xfs_inode * ip,struct xfs_log_dinode * to)546 xfs_inode_to_log_dinode_iext_counters(
547 struct xfs_inode *ip,
548 struct xfs_log_dinode *to)
549 {
550 if (xfs_inode_has_large_extent_counts(ip)) {
551 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
552 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
553 to->di_nrext64_pad = 0;
554 } else {
555 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
556 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
557 }
558 }
559
560 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)561 xfs_inode_to_log_dinode(
562 struct xfs_inode *ip,
563 struct xfs_log_dinode *to,
564 xfs_lsn_t lsn)
565 {
566 struct inode *inode = VFS_I(ip);
567
568 to->di_magic = XFS_DINODE_MAGIC;
569 to->di_format = xfs_ifork_format(&ip->i_df);
570 to->di_uid = i_uid_read(inode);
571 to->di_gid = i_gid_read(inode);
572 to->di_projid_lo = ip->i_projid & 0xffff;
573 to->di_projid_hi = ip->i_projid >> 16;
574
575 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
576 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
577 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
578 to->di_nlink = inode->i_nlink;
579 to->di_gen = inode->i_generation;
580 to->di_mode = inode->i_mode;
581
582 to->di_size = ip->i_disk_size;
583 to->di_nblocks = ip->i_nblocks;
584 to->di_extsize = ip->i_extsize;
585 to->di_forkoff = ip->i_forkoff;
586 to->di_aformat = xfs_ifork_format(&ip->i_af);
587 to->di_flags = ip->i_diflags;
588
589 xfs_copy_dm_fields_to_log_dinode(ip, to);
590
591 /* log a dummy value to ensure log structure is fully initialised */
592 to->di_next_unlinked = NULLAGINO;
593
594 if (xfs_has_v3inodes(ip->i_mount)) {
595 to->di_version = 3;
596 to->di_changecount = inode_peek_iversion(inode);
597 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
598 to->di_flags2 = ip->i_diflags2;
599 to->di_cowextsize = ip->i_cowextsize;
600 to->di_ino = ip->i_ino;
601 to->di_lsn = lsn;
602 memset(to->di_pad2, 0, sizeof(to->di_pad2));
603 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
604 to->di_v3_pad = 0;
605
606 /* dummy value for initialisation */
607 to->di_crc = 0;
608
609 if (xfs_is_metadir_inode(ip))
610 to->di_metatype = ip->i_metatype;
611 else
612 to->di_metatype = 0;
613 } else {
614 to->di_version = 2;
615 to->di_flushiter = ip->i_flushiter;
616 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
617 to->di_metatype = 0;
618 }
619
620 xfs_inode_to_log_dinode_iext_counters(ip, to);
621 }
622
623 /*
624 * Format the inode core. Current timestamp data is only in the VFS inode
625 * fields, so we need to grab them from there. Hence rather than just copying
626 * the XFS inode core structure, format the fields directly into the iovec.
627 */
628 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)629 xfs_inode_item_format_core(
630 struct xfs_inode *ip,
631 struct xfs_log_vec *lv,
632 struct xfs_log_iovec **vecp)
633 {
634 struct xfs_log_dinode *dic;
635
636 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
637 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
638 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
639 }
640
641 /*
642 * This is called to fill in the vector of log iovecs for the given inode
643 * log item. It fills the first item with an inode log format structure,
644 * the second with the on-disk inode structure, and a possible third and/or
645 * fourth with the inode data/extents/b-tree root and inode attributes
646 * data/extents/b-tree root.
647 *
648 * Note: Always use the 64 bit inode log format structure so we don't
649 * leave an uninitialised hole in the format item on 64 bit systems. Log
650 * recovery on 32 bit systems handles this just fine, so there's no reason
651 * for not using an initialising the properly padded structure all the time.
652 */
653 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)654 xfs_inode_item_format(
655 struct xfs_log_item *lip,
656 struct xfs_log_vec *lv)
657 {
658 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
659 struct xfs_inode *ip = iip->ili_inode;
660 struct xfs_log_iovec *vecp = NULL;
661 struct xfs_inode_log_format *ilf;
662
663 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
664 ilf->ilf_type = XFS_LI_INODE;
665 ilf->ilf_ino = ip->i_ino;
666 ilf->ilf_blkno = ip->i_imap.im_blkno;
667 ilf->ilf_len = ip->i_imap.im_len;
668 ilf->ilf_boffset = ip->i_imap.im_boffset;
669 ilf->ilf_fields = XFS_ILOG_CORE;
670 ilf->ilf_size = 2; /* format + core */
671
672 /*
673 * make sure we don't leak uninitialised data into the log in the case
674 * when we don't log every field in the inode.
675 */
676 ilf->ilf_dsize = 0;
677 ilf->ilf_asize = 0;
678 ilf->ilf_pad = 0;
679 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
680
681 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
682
683 xfs_inode_item_format_core(ip, lv, &vecp);
684 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
685 if (xfs_inode_has_attr_fork(ip)) {
686 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
687 } else {
688 iip->ili_fields &=
689 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
690 }
691
692 /* update the format with the exact fields we actually logged */
693 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
694 }
695
696 /*
697 * This is called to pin the inode associated with the inode log
698 * item in memory so it cannot be written out.
699 */
700 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)701 xfs_inode_item_pin(
702 struct xfs_log_item *lip)
703 {
704 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
705
706 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
707 ASSERT(lip->li_buf);
708
709 trace_xfs_inode_pin(ip, _RET_IP_);
710 atomic_inc(&ip->i_pincount);
711 }
712
713
714 /*
715 * This is called to unpin the inode associated with the inode log
716 * item which was previously pinned with a call to xfs_inode_item_pin().
717 *
718 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
719 *
720 * Note that unpin can race with inode cluster buffer freeing marking the buffer
721 * stale. In that case, flush completions are run from the buffer unpin call,
722 * which may happen before the inode is unpinned. If we lose the race, there
723 * will be no buffer attached to the log item, but the inode will be marked
724 * XFS_ISTALE.
725 */
726 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)727 xfs_inode_item_unpin(
728 struct xfs_log_item *lip,
729 int remove)
730 {
731 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
732
733 trace_xfs_inode_unpin(ip, _RET_IP_);
734 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
735 ASSERT(atomic_read(&ip->i_pincount) > 0);
736 if (atomic_dec_and_test(&ip->i_pincount))
737 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
738 }
739
740 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)741 xfs_inode_item_push(
742 struct xfs_log_item *lip,
743 struct list_head *buffer_list)
744 __releases(&lip->li_ailp->ail_lock)
745 __acquires(&lip->li_ailp->ail_lock)
746 {
747 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
748 struct xfs_inode *ip = iip->ili_inode;
749 struct xfs_buf *bp = lip->li_buf;
750 uint rval = XFS_ITEM_SUCCESS;
751 int error;
752
753 if (!bp || (ip->i_flags & XFS_ISTALE)) {
754 /*
755 * Inode item/buffer is being aborted due to cluster
756 * buffer deletion. Trigger a log force to have that operation
757 * completed and items removed from the AIL before the next push
758 * attempt.
759 */
760 return XFS_ITEM_PINNED;
761 }
762
763 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
764 return XFS_ITEM_PINNED;
765
766 if (xfs_iflags_test(ip, XFS_IFLUSHING))
767 return XFS_ITEM_FLUSHING;
768
769 if (!xfs_buf_trylock(bp))
770 return XFS_ITEM_LOCKED;
771
772 spin_unlock(&lip->li_ailp->ail_lock);
773
774 /*
775 * We need to hold a reference for flushing the cluster buffer as it may
776 * fail the buffer without IO submission. In which case, we better get a
777 * reference for that completion because otherwise we don't get a
778 * reference for IO until we queue the buffer for delwri submission.
779 */
780 xfs_buf_hold(bp);
781 error = xfs_iflush_cluster(bp);
782 if (!error) {
783 if (!xfs_buf_delwri_queue(bp, buffer_list))
784 rval = XFS_ITEM_FLUSHING;
785 xfs_buf_relse(bp);
786 } else {
787 /*
788 * Release the buffer if we were unable to flush anything. On
789 * any other error, the buffer has already been released.
790 */
791 if (error == -EAGAIN)
792 xfs_buf_relse(bp);
793 rval = XFS_ITEM_LOCKED;
794 }
795
796 spin_lock(&lip->li_ailp->ail_lock);
797 return rval;
798 }
799
800 /*
801 * Unlock the inode associated with the inode log item.
802 */
803 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)804 xfs_inode_item_release(
805 struct xfs_log_item *lip)
806 {
807 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
808 struct xfs_inode *ip = iip->ili_inode;
809 unsigned short lock_flags;
810
811 ASSERT(ip->i_itemp != NULL);
812 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
813
814 lock_flags = iip->ili_lock_flags;
815 iip->ili_lock_flags = 0;
816 if (lock_flags)
817 xfs_iunlock(ip, lock_flags);
818 }
819
820 /*
821 * This is called to find out where the oldest active copy of the inode log
822 * item in the on disk log resides now that the last log write of it completed
823 * at the given lsn. Since we always re-log all dirty data in an inode, the
824 * latest copy in the on disk log is the only one that matters. Therefore,
825 * simply return the given lsn.
826 *
827 * If the inode has been marked stale because the cluster is being freed, we
828 * don't want to (re-)insert this inode into the AIL. There is a race condition
829 * where the cluster buffer may be unpinned before the inode is inserted into
830 * the AIL during transaction committed processing. If the buffer is unpinned
831 * before the inode item has been committed and inserted, then it is possible
832 * for the buffer to be written and IO completes before the inode is inserted
833 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
834 * AIL which will never get removed. It will, however, get reclaimed which
835 * triggers an assert in xfs_inode_free() complaining about freein an inode
836 * still in the AIL.
837 *
838 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
839 * transaction committed code knows that it does not need to do any further
840 * processing on the item.
841 */
842 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)843 xfs_inode_item_committed(
844 struct xfs_log_item *lip,
845 xfs_lsn_t lsn)
846 {
847 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
848 struct xfs_inode *ip = iip->ili_inode;
849
850 if (xfs_iflags_test(ip, XFS_ISTALE)) {
851 xfs_inode_item_unpin(lip, 0);
852 return -1;
853 }
854 return lsn;
855 }
856
857 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)858 xfs_inode_item_committing(
859 struct xfs_log_item *lip,
860 xfs_csn_t seq)
861 {
862 INODE_ITEM(lip)->ili_commit_seq = seq;
863 return xfs_inode_item_release(lip);
864 }
865
866 static const struct xfs_item_ops xfs_inode_item_ops = {
867 .iop_sort = xfs_inode_item_sort,
868 .iop_precommit = xfs_inode_item_precommit,
869 .iop_size = xfs_inode_item_size,
870 .iop_format = xfs_inode_item_format,
871 .iop_pin = xfs_inode_item_pin,
872 .iop_unpin = xfs_inode_item_unpin,
873 .iop_release = xfs_inode_item_release,
874 .iop_committed = xfs_inode_item_committed,
875 .iop_push = xfs_inode_item_push,
876 .iop_committing = xfs_inode_item_committing,
877 };
878
879
880 /*
881 * Initialize the inode log item for a newly allocated (in-core) inode.
882 */
883 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)884 xfs_inode_item_init(
885 struct xfs_inode *ip,
886 struct xfs_mount *mp)
887 {
888 struct xfs_inode_log_item *iip;
889
890 ASSERT(ip->i_itemp == NULL);
891 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
892 GFP_KERNEL | __GFP_NOFAIL);
893
894 iip->ili_inode = ip;
895 spin_lock_init(&iip->ili_lock);
896 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
897 &xfs_inode_item_ops);
898 }
899
900 /*
901 * Free the inode log item and any memory hanging off of it.
902 */
903 void
xfs_inode_item_destroy(struct xfs_inode * ip)904 xfs_inode_item_destroy(
905 struct xfs_inode *ip)
906 {
907 struct xfs_inode_log_item *iip = ip->i_itemp;
908
909 ASSERT(iip->ili_item.li_buf == NULL);
910
911 ip->i_itemp = NULL;
912 kvfree(iip->ili_item.li_lv_shadow);
913 kmem_cache_free(xfs_ili_cache, iip);
914 }
915
916
917 /*
918 * We only want to pull the item from the AIL if it is actually there
919 * and its location in the log has not changed since we started the
920 * flush. Thus, we only bother if the inode's lsn has not changed.
921 */
922 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)923 xfs_iflush_ail_updates(
924 struct xfs_ail *ailp,
925 struct list_head *list)
926 {
927 struct xfs_log_item *lip;
928 xfs_lsn_t tail_lsn = 0;
929
930 /* this is an opencoded batch version of xfs_trans_ail_delete */
931 spin_lock(&ailp->ail_lock);
932 list_for_each_entry(lip, list, li_bio_list) {
933 xfs_lsn_t lsn;
934
935 clear_bit(XFS_LI_FAILED, &lip->li_flags);
936 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
937 continue;
938
939 /*
940 * dgc: Not sure how this happens, but it happens very
941 * occassionaly via generic/388. xfs_iflush_abort() also
942 * silently handles this same "under writeback but not in AIL at
943 * shutdown" condition via xfs_trans_ail_delete().
944 */
945 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
946 ASSERT(xlog_is_shutdown(lip->li_log));
947 continue;
948 }
949
950 lsn = xfs_ail_delete_one(ailp, lip);
951 if (!tail_lsn && lsn)
952 tail_lsn = lsn;
953 }
954 xfs_ail_update_finish(ailp, tail_lsn);
955 }
956
957 /*
958 * Walk the list of inodes that have completed their IOs. If they are clean
959 * remove them from the list and dissociate them from the buffer. Buffers that
960 * are still dirty remain linked to the buffer and on the list. Caller must
961 * handle them appropriately.
962 */
963 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)964 xfs_iflush_finish(
965 struct xfs_buf *bp,
966 struct list_head *list)
967 {
968 struct xfs_log_item *lip, *n;
969
970 list_for_each_entry_safe(lip, n, list, li_bio_list) {
971 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
972 bool drop_buffer = false;
973
974 spin_lock(&iip->ili_lock);
975
976 /*
977 * Remove the reference to the cluster buffer if the inode is
978 * clean in memory and drop the buffer reference once we've
979 * dropped the locks we hold.
980 */
981 ASSERT(iip->ili_item.li_buf == bp);
982 if (!iip->ili_fields) {
983 iip->ili_item.li_buf = NULL;
984 list_del_init(&lip->li_bio_list);
985 drop_buffer = true;
986 }
987 iip->ili_last_fields = 0;
988 iip->ili_flush_lsn = 0;
989 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
990 spin_unlock(&iip->ili_lock);
991 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
992 if (drop_buffer)
993 xfs_buf_rele(bp);
994 }
995 }
996
997 /*
998 * Inode buffer IO completion routine. It is responsible for removing inodes
999 * attached to the buffer from the AIL if they have not been re-logged and
1000 * completing the inode flush.
1001 */
1002 void
xfs_buf_inode_iodone(struct xfs_buf * bp)1003 xfs_buf_inode_iodone(
1004 struct xfs_buf *bp)
1005 {
1006 struct xfs_log_item *lip, *n;
1007 LIST_HEAD(flushed_inodes);
1008 LIST_HEAD(ail_updates);
1009
1010 /*
1011 * Pull the attached inodes from the buffer one at a time and take the
1012 * appropriate action on them.
1013 */
1014 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
1015 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
1016
1017 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
1018 xfs_iflush_abort(iip->ili_inode);
1019 continue;
1020 }
1021 if (!iip->ili_last_fields)
1022 continue;
1023
1024 /* Do an unlocked check for needing the AIL lock. */
1025 if (iip->ili_flush_lsn == lip->li_lsn ||
1026 test_bit(XFS_LI_FAILED, &lip->li_flags))
1027 list_move_tail(&lip->li_bio_list, &ail_updates);
1028 else
1029 list_move_tail(&lip->li_bio_list, &flushed_inodes);
1030 }
1031
1032 if (!list_empty(&ail_updates)) {
1033 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1034 list_splice_tail(&ail_updates, &flushed_inodes);
1035 }
1036
1037 xfs_iflush_finish(bp, &flushed_inodes);
1038 if (!list_empty(&flushed_inodes))
1039 list_splice_tail(&flushed_inodes, &bp->b_li_list);
1040 }
1041
1042 /*
1043 * Clear the inode logging fields so no more flushes are attempted. If we are
1044 * on a buffer list, it is now safe to remove it because the buffer is
1045 * guaranteed to be locked. The caller will drop the reference to the buffer
1046 * the log item held.
1047 */
1048 static void
xfs_iflush_abort_clean(struct xfs_inode_log_item * iip)1049 xfs_iflush_abort_clean(
1050 struct xfs_inode_log_item *iip)
1051 {
1052 iip->ili_last_fields = 0;
1053 iip->ili_fields = 0;
1054 iip->ili_fsync_fields = 0;
1055 iip->ili_flush_lsn = 0;
1056 iip->ili_item.li_buf = NULL;
1057 list_del_init(&iip->ili_item.li_bio_list);
1058 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1059 }
1060
1061 /*
1062 * Abort flushing the inode from a context holding the cluster buffer locked.
1063 *
1064 * This is the normal runtime method of aborting writeback of an inode that is
1065 * attached to a cluster buffer. It occurs when the inode and the backing
1066 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1067 * flushing or buffer IO completion encounters a log shutdown situation.
1068 *
1069 * If we need to abort inode writeback and we don't already hold the buffer
1070 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1071 * necessary in a shutdown situation.
1072 */
1073 void
xfs_iflush_abort(struct xfs_inode * ip)1074 xfs_iflush_abort(
1075 struct xfs_inode *ip)
1076 {
1077 struct xfs_inode_log_item *iip = ip->i_itemp;
1078 struct xfs_buf *bp;
1079
1080 if (!iip) {
1081 /* clean inode, nothing to do */
1082 xfs_iflags_clear(ip, XFS_IFLUSHING);
1083 return;
1084 }
1085
1086 /*
1087 * Remove the inode item from the AIL before we clear its internal
1088 * state. Whilst the inode is in the AIL, it should have a valid buffer
1089 * pointer for push operations to access - it is only safe to remove the
1090 * inode from the buffer once it has been removed from the AIL.
1091 *
1092 * We also clear the failed bit before removing the item from the AIL
1093 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1094 * references the inode item owns and needs to hold until we've fully
1095 * aborted the inode log item and detached it from the buffer.
1096 */
1097 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1098 xfs_trans_ail_delete(&iip->ili_item, 0);
1099
1100 /*
1101 * Grab the inode buffer so can we release the reference the inode log
1102 * item holds on it.
1103 */
1104 spin_lock(&iip->ili_lock);
1105 bp = iip->ili_item.li_buf;
1106 xfs_iflush_abort_clean(iip);
1107 spin_unlock(&iip->ili_lock);
1108
1109 xfs_iflags_clear(ip, XFS_IFLUSHING);
1110 if (bp)
1111 xfs_buf_rele(bp);
1112 }
1113
1114 /*
1115 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1116 * from anywhere with just an inode reference and does not require holding the
1117 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1118 * it will grab and lock it safely, then abort the inode flush.
1119 */
1120 void
xfs_iflush_shutdown_abort(struct xfs_inode * ip)1121 xfs_iflush_shutdown_abort(
1122 struct xfs_inode *ip)
1123 {
1124 struct xfs_inode_log_item *iip = ip->i_itemp;
1125 struct xfs_buf *bp;
1126
1127 if (!iip) {
1128 /* clean inode, nothing to do */
1129 xfs_iflags_clear(ip, XFS_IFLUSHING);
1130 return;
1131 }
1132
1133 spin_lock(&iip->ili_lock);
1134 bp = iip->ili_item.li_buf;
1135 if (!bp) {
1136 spin_unlock(&iip->ili_lock);
1137 xfs_iflush_abort(ip);
1138 return;
1139 }
1140
1141 /*
1142 * We have to take a reference to the buffer so that it doesn't get
1143 * freed when we drop the ili_lock and then wait to lock the buffer.
1144 * We'll clean up the extra reference after we pick up the ili_lock
1145 * again.
1146 */
1147 xfs_buf_hold(bp);
1148 spin_unlock(&iip->ili_lock);
1149 xfs_buf_lock(bp);
1150
1151 spin_lock(&iip->ili_lock);
1152 if (!iip->ili_item.li_buf) {
1153 /*
1154 * Raced with another removal, hold the only reference
1155 * to bp now. Inode should not be in the AIL now, so just clean
1156 * up and return;
1157 */
1158 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1159 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1160 xfs_iflush_abort_clean(iip);
1161 spin_unlock(&iip->ili_lock);
1162 xfs_iflags_clear(ip, XFS_IFLUSHING);
1163 xfs_buf_relse(bp);
1164 return;
1165 }
1166
1167 /*
1168 * Got two references to bp. The first will get dropped by
1169 * xfs_iflush_abort() when the item is removed from the buffer list, but
1170 * we can't drop our reference until _abort() returns because we have to
1171 * unlock the buffer as well. Hence we abort and then unlock and release
1172 * our reference to the buffer.
1173 */
1174 ASSERT(iip->ili_item.li_buf == bp);
1175 spin_unlock(&iip->ili_lock);
1176 xfs_iflush_abort(ip);
1177 xfs_buf_relse(bp);
1178 }
1179
1180
1181 /*
1182 * convert an xfs_inode_log_format struct from the old 32 bit version
1183 * (which can have different field alignments) to the native 64 bit version
1184 */
1185 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)1186 xfs_inode_item_format_convert(
1187 struct xfs_log_iovec *buf,
1188 struct xfs_inode_log_format *in_f)
1189 {
1190 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1191
1192 if (buf->i_len != sizeof(*in_f32)) {
1193 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1194 return -EFSCORRUPTED;
1195 }
1196
1197 in_f->ilf_type = in_f32->ilf_type;
1198 in_f->ilf_size = in_f32->ilf_size;
1199 in_f->ilf_fields = in_f32->ilf_fields;
1200 in_f->ilf_asize = in_f32->ilf_asize;
1201 in_f->ilf_dsize = in_f32->ilf_dsize;
1202 in_f->ilf_ino = in_f32->ilf_ino;
1203 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1204 in_f->ilf_blkno = in_f32->ilf_blkno;
1205 in_f->ilf_len = in_f32->ilf_len;
1206 in_f->ilf_boffset = in_f32->ilf_boffset;
1207 return 0;
1208 }
1209