1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, fmt, 9 prelude::*, 10 sync::aref::ARef, 11 types::{ForeignOwnable, Opaque}, 12 }; 13 use core::{any::TypeId, marker::PhantomData, ptr}; 14 15 #[cfg(CONFIG_PRINTK)] 16 use crate::c_str; 17 use crate::str::CStrExt as _; 18 19 pub mod property; 20 21 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`. 22 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>()); 23 24 /// The core representation of a device in the kernel's driver model. 25 /// 26 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 27 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 28 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 29 /// 30 /// # Device Types 31 /// 32 /// A [`Device`] can represent either a bus device or a class device. 33 /// 34 /// ## Bus Devices 35 /// 36 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 37 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 38 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 39 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 40 /// 41 /// ## Class Devices 42 /// 43 /// A class device is a [`Device`] that is associated with a logical category of functionality 44 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 45 /// cards, and input devices. Class devices are grouped under a common class and exposed to 46 /// userspace via entries in `/sys/class/<class-name>/`. 47 /// 48 /// # Device Context 49 /// 50 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 51 /// a [`Device`]. 52 /// 53 /// As the name indicates, this type state represents the context of the scope the [`Device`] 54 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 55 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 56 /// 57 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 58 /// 59 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 60 /// itself has no additional requirements. 61 /// 62 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 63 /// type for the corresponding scope the [`Device`] reference is created in. 64 /// 65 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 66 /// [bus devices](#bus-devices) only. 67 /// 68 /// # Implementing Bus Devices 69 /// 70 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or 71 /// [`platform::Device`]. 72 /// 73 /// A bus specific device should be defined as follows. 74 /// 75 /// ```ignore 76 /// #[repr(transparent)] 77 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 78 /// Opaque<bindings::bus_device_type>, 79 /// PhantomData<Ctx>, 80 /// ); 81 /// ``` 82 /// 83 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 84 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 85 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 86 /// 87 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 88 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 89 /// 90 /// ```ignore 91 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 92 /// // generic argument. 93 /// kernel::impl_device_context_deref!(unsafe { Device }); 94 /// ``` 95 /// 96 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 97 /// the following macro call. 98 /// 99 /// ```ignore 100 /// kernel::impl_device_context_into_aref!(Device); 101 /// ``` 102 /// 103 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 104 /// easily derive a generic [`Device`] reference. 105 /// 106 /// ```ignore 107 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 108 /// fn as_ref(&self) -> &device::Device<Ctx> { 109 /// ... 110 /// } 111 /// } 112 /// ``` 113 /// 114 /// # Implementing Class Devices 115 /// 116 /// Class device implementations require less infrastructure and depend slightly more on the 117 /// specific subsystem. 118 /// 119 /// An example implementation for a class device could look like this. 120 /// 121 /// ```ignore 122 /// #[repr(C)] 123 /// pub struct Device<T: class::Driver> { 124 /// dev: Opaque<bindings::class_device_type>, 125 /// data: T::Data, 126 /// } 127 /// ``` 128 /// 129 /// This class device uses the sub-classing pattern to embed the driver's private data within the 130 /// allocation of the class device. For this to be possible the class device is generic over the 131 /// class specific `Driver` trait implementation. 132 /// 133 /// Just like any device, class devices are reference counted and should hence implement 134 /// [`AlwaysRefCounted`] for `Device`. 135 /// 136 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 137 /// easily derive a generic [`Device`] reference. 138 /// 139 /// ```ignore 140 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 141 /// fn as_ref(&self) -> &device::Device { 142 /// ... 143 /// } 144 /// } 145 /// ``` 146 /// 147 /// An example for a class device implementation is 148 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] 149 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] 150 /// 151 /// # Invariants 152 /// 153 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 154 /// 155 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 156 /// that the allocation remains valid at least until the matching call to `put_device`. 157 /// 158 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 159 /// dropped from any thread. 160 /// 161 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 162 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 163 /// [`pci::Device`]: kernel::pci::Device 164 /// [`platform::Device`]: kernel::platform::Device 165 #[repr(transparent)] 166 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 167 168 impl Device { 169 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 170 /// 171 /// # Safety 172 /// 173 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 174 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 175 /// can't drop to zero, for the duration of this function call. 176 /// 177 /// It must also be ensured that `bindings::device::release` can be called from any thread. 178 /// While not officially documented, this should be the case for any `struct device`. get_device(ptr: *mut bindings::device) -> ARef<Self>179 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 180 // SAFETY: By the safety requirements ptr is valid 181 unsafe { Self::from_raw(ptr) }.into() 182 } 183 184 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 185 /// 186 /// # Safety 187 /// 188 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 189 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. as_bound(&self) -> &Device<Bound>190 pub unsafe fn as_bound(&self) -> &Device<Bound> { 191 let ptr = core::ptr::from_ref(self); 192 193 // CAST: By the safety requirements the caller is responsible to guarantee that the 194 // returned reference only lives as long as the device is actually bound. 195 let ptr = ptr.cast(); 196 197 // SAFETY: 198 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 199 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 200 unsafe { &*ptr } 201 } 202 } 203 204 impl Device<CoreInternal> { set_type_id<T: 'static>(&self)205 fn set_type_id<T: 'static>(&self) { 206 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 207 let private = unsafe { (*self.as_raw()).p }; 208 209 // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is 210 // guaranteed to be a valid pointer to a `struct device_private`. 211 let driver_type = unsafe { &raw mut (*private).driver_type }; 212 213 // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`. 214 unsafe { 215 driver_type 216 .cast::<TypeId>() 217 .write_unaligned(TypeId::of::<T>()) 218 }; 219 } 220 221 /// Store a pointer to the bound driver's private data. set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result222 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result { 223 let data = KBox::pin_init(data, GFP_KERNEL)?; 224 225 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 226 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }; 227 self.set_type_id::<T>(); 228 229 Ok(()) 230 } 231 232 /// Take ownership of the private data stored in this [`Device`]. 233 /// 234 /// # Safety 235 /// 236 /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. 237 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 238 /// [`Device::set_drvdata`]. drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>>239 pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> { 240 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 241 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 242 243 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 244 unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) }; 245 246 // SAFETY: 247 // - By the safety requirements of this function, `ptr` comes from a previous call to 248 // `into_foreign()`. 249 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 250 // in `into_foreign()`. 251 unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) } 252 } 253 254 /// Borrow the driver's private data bound to this [`Device`]. 255 /// 256 /// # Safety 257 /// 258 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 259 /// [`Device::drvdata_obtain`]. 260 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 261 /// [`Device::set_drvdata`]. drvdata_borrow<T: 'static>(&self) -> Pin<&T>262 pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> { 263 // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones 264 // required by this method. 265 unsafe { self.drvdata_unchecked() } 266 } 267 } 268 269 impl Device<Bound> { 270 /// Borrow the driver's private data bound to this [`Device`]. 271 /// 272 /// # Safety 273 /// 274 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 275 /// [`Device::drvdata_obtain`]. 276 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 277 /// [`Device::set_drvdata`]. drvdata_unchecked<T: 'static>(&self) -> Pin<&T>278 unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> { 279 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 280 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 281 282 // SAFETY: 283 // - By the safety requirements of this function, `ptr` comes from a previous call to 284 // `into_foreign()`. 285 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 286 // in `into_foreign()`. 287 unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) } 288 } 289 match_type_id<T: 'static>(&self) -> Result290 fn match_type_id<T: 'static>(&self) -> Result { 291 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 292 let private = unsafe { (*self.as_raw()).p }; 293 294 // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a 295 // `struct device_private`. 296 let driver_type = unsafe { &raw mut (*private).driver_type }; 297 298 // SAFETY: 299 // - `driver_type` is valid for (unaligned) reads of a `TypeId`. 300 // - A bound device guarantees that `driver_type` contains a valid `TypeId` value. 301 let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() }; 302 303 if type_id != TypeId::of::<T>() { 304 return Err(EINVAL); 305 } 306 307 Ok(()) 308 } 309 310 /// Access a driver's private data. 311 /// 312 /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match 313 /// the asserted type `T`. drvdata<T: 'static>(&self) -> Result<Pin<&T>>314 pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> { 315 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 316 if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() { 317 return Err(ENOENT); 318 } 319 320 self.match_type_id::<T>()?; 321 322 // SAFETY: 323 // - The above check of `dev_get_drvdata()` guarantees that we are called after 324 // `set_drvdata()` and before `drvdata_obtain()`. 325 // - We've just checked that the type of the driver's private data is in fact `T`. 326 Ok(unsafe { self.drvdata_unchecked() }) 327 } 328 } 329 330 impl<Ctx: DeviceContext> Device<Ctx> { 331 /// Obtain the raw `struct device *`. as_raw(&self) -> *mut bindings::device332 pub(crate) fn as_raw(&self) -> *mut bindings::device { 333 self.0.get() 334 } 335 336 /// Returns a reference to the parent device, if any. 337 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] parent(&self) -> Option<&Device>338 pub(crate) fn parent(&self) -> Option<&Device> { 339 // SAFETY: 340 // - By the type invariant `self.as_raw()` is always valid. 341 // - The parent device is only ever set at device creation. 342 let parent = unsafe { (*self.as_raw()).parent }; 343 344 if parent.is_null() { 345 None 346 } else { 347 // SAFETY: 348 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 349 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 350 // reference count of its parent. 351 Some(unsafe { Device::from_raw(parent) }) 352 } 353 } 354 355 /// Convert a raw C `struct device` pointer to a `&'a Device`. 356 /// 357 /// # Safety 358 /// 359 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 360 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 361 /// can't drop to zero, for the duration of this function call and the entire duration when the 362 /// returned reference exists. from_raw<'a>(ptr: *mut bindings::device) -> &'a Self363 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 364 // SAFETY: Guaranteed by the safety requirements of the function. 365 unsafe { &*ptr.cast() } 366 } 367 368 /// Prints an emergency-level message (level 0) prefixed with device information. 369 /// 370 /// More details are available from [`dev_emerg`]. 371 /// 372 /// [`dev_emerg`]: crate::dev_emerg pr_emerg(&self, args: fmt::Arguments<'_>)373 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 374 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 375 unsafe { self.printk(bindings::KERN_EMERG, args) }; 376 } 377 378 /// Prints an alert-level message (level 1) prefixed with device information. 379 /// 380 /// More details are available from [`dev_alert`]. 381 /// 382 /// [`dev_alert`]: crate::dev_alert pr_alert(&self, args: fmt::Arguments<'_>)383 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 384 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 385 unsafe { self.printk(bindings::KERN_ALERT, args) }; 386 } 387 388 /// Prints a critical-level message (level 2) prefixed with device information. 389 /// 390 /// More details are available from [`dev_crit`]. 391 /// 392 /// [`dev_crit`]: crate::dev_crit pr_crit(&self, args: fmt::Arguments<'_>)393 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 394 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 395 unsafe { self.printk(bindings::KERN_CRIT, args) }; 396 } 397 398 /// Prints an error-level message (level 3) prefixed with device information. 399 /// 400 /// More details are available from [`dev_err`]. 401 /// 402 /// [`dev_err`]: crate::dev_err pr_err(&self, args: fmt::Arguments<'_>)403 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 404 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 405 unsafe { self.printk(bindings::KERN_ERR, args) }; 406 } 407 408 /// Prints a warning-level message (level 4) prefixed with device information. 409 /// 410 /// More details are available from [`dev_warn`]. 411 /// 412 /// [`dev_warn`]: crate::dev_warn pr_warn(&self, args: fmt::Arguments<'_>)413 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 414 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 415 unsafe { self.printk(bindings::KERN_WARNING, args) }; 416 } 417 418 /// Prints a notice-level message (level 5) prefixed with device information. 419 /// 420 /// More details are available from [`dev_notice`]. 421 /// 422 /// [`dev_notice`]: crate::dev_notice pr_notice(&self, args: fmt::Arguments<'_>)423 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 424 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 425 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 426 } 427 428 /// Prints an info-level message (level 6) prefixed with device information. 429 /// 430 /// More details are available from [`dev_info`]. 431 /// 432 /// [`dev_info`]: crate::dev_info pr_info(&self, args: fmt::Arguments<'_>)433 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 434 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 435 unsafe { self.printk(bindings::KERN_INFO, args) }; 436 } 437 438 /// Prints a debug-level message (level 7) prefixed with device information. 439 /// 440 /// More details are available from [`dev_dbg`]. 441 /// 442 /// [`dev_dbg`]: crate::dev_dbg pr_dbg(&self, args: fmt::Arguments<'_>)443 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 444 if cfg!(debug_assertions) { 445 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 446 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 447 } 448 } 449 450 /// Prints the provided message to the console. 451 /// 452 /// # Safety 453 /// 454 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 455 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 456 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>)457 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 458 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 459 // is valid because `self` is valid. The "%pA" format string expects a pointer to 460 // `fmt::Arguments`, which is what we're passing as the last argument. 461 #[cfg(CONFIG_PRINTK)] 462 unsafe { 463 bindings::_dev_printk( 464 klevel.as_ptr().cast::<crate::ffi::c_char>(), 465 self.as_raw(), 466 c_str!("%pA").as_char_ptr(), 467 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 468 ) 469 }; 470 } 471 472 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. fwnode(&self) -> Option<&property::FwNode>473 pub fn fwnode(&self) -> Option<&property::FwNode> { 474 // SAFETY: `self` is valid. 475 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 476 if fwnode_handle.is_null() { 477 return None; 478 } 479 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 480 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 481 // doesn't increment the refcount. It is safe to cast from a 482 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 483 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 484 Some(unsafe { &*fwnode_handle.cast() }) 485 } 486 } 487 488 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 489 // argument. 490 kernel::impl_device_context_deref!(unsafe { Device }); 491 kernel::impl_device_context_into_aref!(Device); 492 493 // SAFETY: Instances of `Device` are always reference-counted. 494 unsafe impl crate::sync::aref::AlwaysRefCounted for Device { inc_ref(&self)495 fn inc_ref(&self) { 496 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 497 unsafe { bindings::get_device(self.as_raw()) }; 498 } 499 dec_ref(obj: ptr::NonNull<Self>)500 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 501 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 502 unsafe { bindings::put_device(obj.cast().as_ptr()) } 503 } 504 } 505 506 // SAFETY: As by the type invariant `Device` can be sent to any thread. 507 unsafe impl Send for Device {} 508 509 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 510 // synchronization in `struct device`. 511 unsafe impl Sync for Device {} 512 513 /// Marker trait for the context or scope of a bus specific device. 514 /// 515 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 516 /// [`Device`]. 517 /// 518 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 519 /// 520 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 521 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 522 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 523 /// 524 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 525 /// 526 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 527 /// 528 /// Bus devices can automatically implement the dereference hierarchy by using 529 /// [`impl_device_context_deref`]. 530 /// 531 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 532 /// from the specific scope the [`Device`] reference is valid in. 533 /// 534 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 535 pub trait DeviceContext: private::Sealed {} 536 537 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 538 /// 539 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 540 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 541 /// [`AlwaysRefCounted`] for. 542 /// 543 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 544 pub struct Normal; 545 546 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 547 /// any bus specific callback, such as `probe()`. 548 /// 549 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 550 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 551 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 552 /// from bus callbacks. 553 pub struct Core; 554 555 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 556 /// abstraction. 557 /// 558 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 559 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 560 /// abstraction. 561 /// 562 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 563 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 564 pub struct CoreInternal; 565 566 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 567 /// be bound to a driver. 568 /// 569 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 570 /// reference, the [`Device`] is guaranteed to be bound to a driver. 571 /// 572 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 573 /// which can be proven with the [`Bound`] device context. 574 /// 575 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 576 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 577 /// from optimizations for accessing device resources, see also [`Devres::access`]. 578 /// 579 /// [`Devres`]: kernel::devres::Devres 580 /// [`Devres::access`]: kernel::devres::Devres::access 581 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 582 pub struct Bound; 583 584 mod private { 585 pub trait Sealed {} 586 587 impl Sealed for super::Bound {} 588 impl Sealed for super::Core {} 589 impl Sealed for super::CoreInternal {} 590 impl Sealed for super::Normal {} 591 } 592 593 impl DeviceContext for Bound {} 594 impl DeviceContext for Core {} 595 impl DeviceContext for CoreInternal {} 596 impl DeviceContext for Normal {} 597 598 /// Convert device references to bus device references. 599 /// 600 /// Bus devices can implement this trait to allow abstractions to provide the bus device in 601 /// class device callbacks. 602 /// 603 /// This must not be used by drivers and is intended for bus and class device abstractions only. 604 /// 605 /// # Safety 606 /// 607 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a 608 /// bus device structure. 609 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> { 610 /// The relative offset to the device field. 611 /// 612 /// Use `offset_of!(bindings, field)` macro to avoid breakage. 613 const OFFSET: usize; 614 615 /// Convert a reference to [`Device`] into `Self`. 616 /// 617 /// # Safety 618 /// 619 /// `dev` must be contained in `Self`. from_device(dev: &Device<Ctx>) -> &Self where Self: Sized,620 unsafe fn from_device(dev: &Device<Ctx>) -> &Self 621 where 622 Self: Sized, 623 { 624 let raw = dev.as_raw(); 625 // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements 626 // to be a valid pointer to `Self`. 627 unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() } 628 } 629 } 630 631 /// # Safety 632 /// 633 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 634 /// generic argument of `$device`. 635 #[doc(hidden)] 636 #[macro_export] 637 macro_rules! __impl_device_context_deref { 638 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 639 impl ::core::ops::Deref for $device<$src> { 640 type Target = $device<$dst>; 641 642 fn deref(&self) -> &Self::Target { 643 let ptr: *const Self = self; 644 645 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 646 // safety requirement of the macro. 647 let ptr = ptr.cast::<Self::Target>(); 648 649 // SAFETY: `ptr` was derived from `&self`. 650 unsafe { &*ptr } 651 } 652 } 653 }; 654 } 655 656 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 657 /// specific) device. 658 /// 659 /// # Safety 660 /// 661 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 662 /// generic argument of `$device`. 663 #[macro_export] 664 macro_rules! impl_device_context_deref { 665 (unsafe { $device:ident }) => { 666 // SAFETY: This macro has the exact same safety requirement as 667 // `__impl_device_context_deref!`. 668 ::kernel::__impl_device_context_deref!(unsafe { 669 $device, 670 $crate::device::CoreInternal => $crate::device::Core 671 }); 672 673 // SAFETY: This macro has the exact same safety requirement as 674 // `__impl_device_context_deref!`. 675 ::kernel::__impl_device_context_deref!(unsafe { 676 $device, 677 $crate::device::Core => $crate::device::Bound 678 }); 679 680 // SAFETY: This macro has the exact same safety requirement as 681 // `__impl_device_context_deref!`. 682 ::kernel::__impl_device_context_deref!(unsafe { 683 $device, 684 $crate::device::Bound => $crate::device::Normal 685 }); 686 }; 687 } 688 689 #[doc(hidden)] 690 #[macro_export] 691 macro_rules! __impl_device_context_into_aref { 692 ($src:ty, $device:tt) => { 693 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { 694 fn from(dev: &$device<$src>) -> Self { 695 (&**dev).into() 696 } 697 } 698 }; 699 } 700 701 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 702 /// `ARef<Device>`. 703 #[macro_export] 704 macro_rules! impl_device_context_into_aref { 705 ($device:tt) => { 706 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 707 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 708 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 709 }; 710 } 711 712 #[doc(hidden)] 713 #[macro_export] 714 macro_rules! dev_printk { 715 ($method:ident, $dev:expr, $($f:tt)*) => { 716 { 717 ($dev).$method($crate::prelude::fmt!($($f)*)); 718 } 719 } 720 } 721 722 /// Prints an emergency-level message (level 0) prefixed with device information. 723 /// 724 /// This level should be used if the system is unusable. 725 /// 726 /// Equivalent to the kernel's `dev_emerg` macro. 727 /// 728 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 729 /// [`core::fmt`] and [`std::format!`]. 730 /// 731 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 732 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 733 /// 734 /// # Examples 735 /// 736 /// ``` 737 /// # use kernel::device::Device; 738 /// 739 /// fn example(dev: &Device) { 740 /// dev_emerg!(dev, "hello {}\n", "there"); 741 /// } 742 /// ``` 743 #[macro_export] 744 macro_rules! dev_emerg { 745 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 746 } 747 748 /// Prints an alert-level message (level 1) prefixed with device information. 749 /// 750 /// This level should be used if action must be taken immediately. 751 /// 752 /// Equivalent to the kernel's `dev_alert` macro. 753 /// 754 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 755 /// [`core::fmt`] and [`std::format!`]. 756 /// 757 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 758 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 759 /// 760 /// # Examples 761 /// 762 /// ``` 763 /// # use kernel::device::Device; 764 /// 765 /// fn example(dev: &Device) { 766 /// dev_alert!(dev, "hello {}\n", "there"); 767 /// } 768 /// ``` 769 #[macro_export] 770 macro_rules! dev_alert { 771 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 772 } 773 774 /// Prints a critical-level message (level 2) prefixed with device information. 775 /// 776 /// This level should be used in critical conditions. 777 /// 778 /// Equivalent to the kernel's `dev_crit` macro. 779 /// 780 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 781 /// [`core::fmt`] and [`std::format!`]. 782 /// 783 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 784 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 785 /// 786 /// # Examples 787 /// 788 /// ``` 789 /// # use kernel::device::Device; 790 /// 791 /// fn example(dev: &Device) { 792 /// dev_crit!(dev, "hello {}\n", "there"); 793 /// } 794 /// ``` 795 #[macro_export] 796 macro_rules! dev_crit { 797 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 798 } 799 800 /// Prints an error-level message (level 3) prefixed with device information. 801 /// 802 /// This level should be used in error conditions. 803 /// 804 /// Equivalent to the kernel's `dev_err` macro. 805 /// 806 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 807 /// [`core::fmt`] and [`std::format!`]. 808 /// 809 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 810 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 811 /// 812 /// # Examples 813 /// 814 /// ``` 815 /// # use kernel::device::Device; 816 /// 817 /// fn example(dev: &Device) { 818 /// dev_err!(dev, "hello {}\n", "there"); 819 /// } 820 /// ``` 821 #[macro_export] 822 macro_rules! dev_err { 823 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 824 } 825 826 /// Prints a warning-level message (level 4) prefixed with device information. 827 /// 828 /// This level should be used in warning conditions. 829 /// 830 /// Equivalent to the kernel's `dev_warn` macro. 831 /// 832 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 833 /// [`core::fmt`] and [`std::format!`]. 834 /// 835 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 836 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 837 /// 838 /// # Examples 839 /// 840 /// ``` 841 /// # use kernel::device::Device; 842 /// 843 /// fn example(dev: &Device) { 844 /// dev_warn!(dev, "hello {}\n", "there"); 845 /// } 846 /// ``` 847 #[macro_export] 848 macro_rules! dev_warn { 849 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 850 } 851 852 /// Prints a notice-level message (level 5) prefixed with device information. 853 /// 854 /// This level should be used in normal but significant conditions. 855 /// 856 /// Equivalent to the kernel's `dev_notice` macro. 857 /// 858 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 859 /// [`core::fmt`] and [`std::format!`]. 860 /// 861 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 862 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 863 /// 864 /// # Examples 865 /// 866 /// ``` 867 /// # use kernel::device::Device; 868 /// 869 /// fn example(dev: &Device) { 870 /// dev_notice!(dev, "hello {}\n", "there"); 871 /// } 872 /// ``` 873 #[macro_export] 874 macro_rules! dev_notice { 875 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 876 } 877 878 /// Prints an info-level message (level 6) prefixed with device information. 879 /// 880 /// This level should be used for informational messages. 881 /// 882 /// Equivalent to the kernel's `dev_info` macro. 883 /// 884 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 885 /// [`core::fmt`] and [`std::format!`]. 886 /// 887 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 888 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 889 /// 890 /// # Examples 891 /// 892 /// ``` 893 /// # use kernel::device::Device; 894 /// 895 /// fn example(dev: &Device) { 896 /// dev_info!(dev, "hello {}\n", "there"); 897 /// } 898 /// ``` 899 #[macro_export] 900 macro_rules! dev_info { 901 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 902 } 903 904 /// Prints a debug-level message (level 7) prefixed with device information. 905 /// 906 /// This level should be used for debug messages. 907 /// 908 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 909 /// 910 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 911 /// [`core::fmt`] and [`std::format!`]. 912 /// 913 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 914 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 915 /// 916 /// # Examples 917 /// 918 /// ``` 919 /// # use kernel::device::Device; 920 /// 921 /// fn example(dev: &Device) { 922 /// dev_dbg!(dev, "hello {}\n", "there"); 923 /// } 924 /// ``` 925 #[macro_export] 926 macro_rules! dev_dbg { 927 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 928 } 929