xref: /linux/rust/kernel/device.rs (revision 416f99c3b16f582a3fc6d64a1f77f39d94b76de5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings, fmt,
9     prelude::*,
10     sync::aref::ARef,
11     types::{ForeignOwnable, Opaque},
12 };
13 use core::{any::TypeId, marker::PhantomData, ptr};
14 
15 #[cfg(CONFIG_PRINTK)]
16 use crate::c_str;
17 use crate::str::CStrExt as _;
18 
19 pub mod property;
20 
21 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
22 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
23 
24 /// The core representation of a device in the kernel's driver model.
25 ///
26 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
27 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
28 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
29 ///
30 /// # Device Types
31 ///
32 /// A [`Device`] can represent either a bus device or a class device.
33 ///
34 /// ## Bus Devices
35 ///
36 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
37 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
38 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
39 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
40 ///
41 /// ## Class Devices
42 ///
43 /// A class device is a [`Device`] that is associated with a logical category of functionality
44 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
45 /// cards, and input devices. Class devices are grouped under a common class and exposed to
46 /// userspace via entries in `/sys/class/<class-name>/`.
47 ///
48 /// # Device Context
49 ///
50 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
51 /// a [`Device`].
52 ///
53 /// As the name indicates, this type state represents the context of the scope the [`Device`]
54 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
55 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
56 ///
57 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
58 ///
59 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
60 /// itself has no additional requirements.
61 ///
62 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
63 /// type for the corresponding scope the [`Device`] reference is created in.
64 ///
65 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
66 /// [bus devices](#bus-devices) only.
67 ///
68 /// # Implementing Bus Devices
69 ///
70 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
71 /// [`platform::Device`].
72 ///
73 /// A bus specific device should be defined as follows.
74 ///
75 /// ```ignore
76 /// #[repr(transparent)]
77 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
78 ///     Opaque<bindings::bus_device_type>,
79 ///     PhantomData<Ctx>,
80 /// );
81 /// ```
82 ///
83 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
84 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
85 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
86 ///
87 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
88 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
89 ///
90 /// ```ignore
91 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
92 /// // generic argument.
93 /// kernel::impl_device_context_deref!(unsafe { Device });
94 /// ```
95 ///
96 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
97 /// the following macro call.
98 ///
99 /// ```ignore
100 /// kernel::impl_device_context_into_aref!(Device);
101 /// ```
102 ///
103 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
104 /// easily derive a generic [`Device`] reference.
105 ///
106 /// ```ignore
107 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
108 ///     fn as_ref(&self) -> &device::Device<Ctx> {
109 ///         ...
110 ///     }
111 /// }
112 /// ```
113 ///
114 /// # Implementing Class Devices
115 ///
116 /// Class device implementations require less infrastructure and depend slightly more on the
117 /// specific subsystem.
118 ///
119 /// An example implementation for a class device could look like this.
120 ///
121 /// ```ignore
122 /// #[repr(C)]
123 /// pub struct Device<T: class::Driver> {
124 ///     dev: Opaque<bindings::class_device_type>,
125 ///     data: T::Data,
126 /// }
127 /// ```
128 ///
129 /// This class device uses the sub-classing pattern to embed the driver's private data within the
130 /// allocation of the class device. For this to be possible the class device is generic over the
131 /// class specific `Driver` trait implementation.
132 ///
133 /// Just like any device, class devices are reference counted and should hence implement
134 /// [`AlwaysRefCounted`] for `Device`.
135 ///
136 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
137 /// easily derive a generic [`Device`] reference.
138 ///
139 /// ```ignore
140 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
141 ///     fn as_ref(&self) -> &device::Device {
142 ///         ...
143 ///     }
144 /// }
145 /// ```
146 ///
147 /// An example for a class device implementation is
148 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
149 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
150 ///
151 /// # Invariants
152 ///
153 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
154 ///
155 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
156 /// that the allocation remains valid at least until the matching call to `put_device`.
157 ///
158 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
159 /// dropped from any thread.
160 ///
161 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
162 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
163 /// [`pci::Device`]: kernel::pci::Device
164 /// [`platform::Device`]: kernel::platform::Device
165 #[repr(transparent)]
166 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
167 
168 impl Device {
169     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
170     ///
171     /// # Safety
172     ///
173     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
174     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
175     /// can't drop to zero, for the duration of this function call.
176     ///
177     /// It must also be ensured that `bindings::device::release` can be called from any thread.
178     /// While not officially documented, this should be the case for any `struct device`.
get_device(ptr: *mut bindings::device) -> ARef<Self>179     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
180         // SAFETY: By the safety requirements ptr is valid
181         unsafe { Self::from_raw(ptr) }.into()
182     }
183 
184     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
185     ///
186     /// # Safety
187     ///
188     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
189     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
as_bound(&self) -> &Device<Bound>190     pub unsafe fn as_bound(&self) -> &Device<Bound> {
191         let ptr = core::ptr::from_ref(self);
192 
193         // CAST: By the safety requirements the caller is responsible to guarantee that the
194         // returned reference only lives as long as the device is actually bound.
195         let ptr = ptr.cast();
196 
197         // SAFETY:
198         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
199         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
200         unsafe { &*ptr }
201     }
202 }
203 
204 impl Device<CoreInternal> {
set_type_id<T: 'static>(&self)205     fn set_type_id<T: 'static>(&self) {
206         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
207         let private = unsafe { (*self.as_raw()).p };
208 
209         // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
210         // guaranteed to be a valid pointer to a `struct device_private`.
211         let driver_type = unsafe { &raw mut (*private).driver_type };
212 
213         // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
214         unsafe {
215             driver_type
216                 .cast::<TypeId>()
217                 .write_unaligned(TypeId::of::<T>())
218         };
219     }
220 
221     /// Store a pointer to the bound driver's private data.
set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result222     pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
223         let data = KBox::pin_init(data, GFP_KERNEL)?;
224 
225         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
226         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
227         self.set_type_id::<T>();
228 
229         Ok(())
230     }
231 
232     /// Take ownership of the private data stored in this [`Device`].
233     ///
234     /// # Safety
235     ///
236     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
237     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
238     ///   [`Device::set_drvdata`].
drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>>239     pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
240         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
241         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
242 
243         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
244         unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
245 
246         // SAFETY:
247         // - By the safety requirements of this function, `ptr` comes from a previous call to
248         //   `into_foreign()`.
249         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
250         //   in `into_foreign()`.
251         unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
252     }
253 
254     /// Borrow the driver's private data bound to this [`Device`].
255     ///
256     /// # Safety
257     ///
258     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
259     ///   [`Device::drvdata_obtain`].
260     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
261     ///   [`Device::set_drvdata`].
drvdata_borrow<T: 'static>(&self) -> Pin<&T>262     pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
263         // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
264         // required by this method.
265         unsafe { self.drvdata_unchecked() }
266     }
267 }
268 
269 impl Device<Bound> {
270     /// Borrow the driver's private data bound to this [`Device`].
271     ///
272     /// # Safety
273     ///
274     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
275     ///   [`Device::drvdata_obtain`].
276     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
277     ///   [`Device::set_drvdata`].
drvdata_unchecked<T: 'static>(&self) -> Pin<&T>278     unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
279         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
280         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
281 
282         // SAFETY:
283         // - By the safety requirements of this function, `ptr` comes from a previous call to
284         //   `into_foreign()`.
285         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
286         //   in `into_foreign()`.
287         unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
288     }
289 
match_type_id<T: 'static>(&self) -> Result290     fn match_type_id<T: 'static>(&self) -> Result {
291         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
292         let private = unsafe { (*self.as_raw()).p };
293 
294         // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
295         // `struct device_private`.
296         let driver_type = unsafe { &raw mut (*private).driver_type };
297 
298         // SAFETY:
299         // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
300         // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
301         let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
302 
303         if type_id != TypeId::of::<T>() {
304             return Err(EINVAL);
305         }
306 
307         Ok(())
308     }
309 
310     /// Access a driver's private data.
311     ///
312     /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
313     /// the asserted type `T`.
drvdata<T: 'static>(&self) -> Result<Pin<&T>>314     pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
315         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
316         if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
317             return Err(ENOENT);
318         }
319 
320         self.match_type_id::<T>()?;
321 
322         // SAFETY:
323         // - The above check of `dev_get_drvdata()` guarantees that we are called after
324         //   `set_drvdata()` and before `drvdata_obtain()`.
325         // - We've just checked that the type of the driver's private data is in fact `T`.
326         Ok(unsafe { self.drvdata_unchecked() })
327     }
328 }
329 
330 impl<Ctx: DeviceContext> Device<Ctx> {
331     /// Obtain the raw `struct device *`.
as_raw(&self) -> *mut bindings::device332     pub(crate) fn as_raw(&self) -> *mut bindings::device {
333         self.0.get()
334     }
335 
336     /// Returns a reference to the parent device, if any.
337     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
parent(&self) -> Option<&Device>338     pub(crate) fn parent(&self) -> Option<&Device> {
339         // SAFETY:
340         // - By the type invariant `self.as_raw()` is always valid.
341         // - The parent device is only ever set at device creation.
342         let parent = unsafe { (*self.as_raw()).parent };
343 
344         if parent.is_null() {
345             None
346         } else {
347             // SAFETY:
348             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
349             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
350             //   reference count of its parent.
351             Some(unsafe { Device::from_raw(parent) })
352         }
353     }
354 
355     /// Convert a raw C `struct device` pointer to a `&'a Device`.
356     ///
357     /// # Safety
358     ///
359     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
360     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
361     /// can't drop to zero, for the duration of this function call and the entire duration when the
362     /// returned reference exists.
from_raw<'a>(ptr: *mut bindings::device) -> &'a Self363     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
364         // SAFETY: Guaranteed by the safety requirements of the function.
365         unsafe { &*ptr.cast() }
366     }
367 
368     /// Prints an emergency-level message (level 0) prefixed with device information.
369     ///
370     /// More details are available from [`dev_emerg`].
371     ///
372     /// [`dev_emerg`]: crate::dev_emerg
pr_emerg(&self, args: fmt::Arguments<'_>)373     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
374         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
375         unsafe { self.printk(bindings::KERN_EMERG, args) };
376     }
377 
378     /// Prints an alert-level message (level 1) prefixed with device information.
379     ///
380     /// More details are available from [`dev_alert`].
381     ///
382     /// [`dev_alert`]: crate::dev_alert
pr_alert(&self, args: fmt::Arguments<'_>)383     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
384         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
385         unsafe { self.printk(bindings::KERN_ALERT, args) };
386     }
387 
388     /// Prints a critical-level message (level 2) prefixed with device information.
389     ///
390     /// More details are available from [`dev_crit`].
391     ///
392     /// [`dev_crit`]: crate::dev_crit
pr_crit(&self, args: fmt::Arguments<'_>)393     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
394         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
395         unsafe { self.printk(bindings::KERN_CRIT, args) };
396     }
397 
398     /// Prints an error-level message (level 3) prefixed with device information.
399     ///
400     /// More details are available from [`dev_err`].
401     ///
402     /// [`dev_err`]: crate::dev_err
pr_err(&self, args: fmt::Arguments<'_>)403     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
404         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
405         unsafe { self.printk(bindings::KERN_ERR, args) };
406     }
407 
408     /// Prints a warning-level message (level 4) prefixed with device information.
409     ///
410     /// More details are available from [`dev_warn`].
411     ///
412     /// [`dev_warn`]: crate::dev_warn
pr_warn(&self, args: fmt::Arguments<'_>)413     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
414         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
415         unsafe { self.printk(bindings::KERN_WARNING, args) };
416     }
417 
418     /// Prints a notice-level message (level 5) prefixed with device information.
419     ///
420     /// More details are available from [`dev_notice`].
421     ///
422     /// [`dev_notice`]: crate::dev_notice
pr_notice(&self, args: fmt::Arguments<'_>)423     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
424         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
425         unsafe { self.printk(bindings::KERN_NOTICE, args) };
426     }
427 
428     /// Prints an info-level message (level 6) prefixed with device information.
429     ///
430     /// More details are available from [`dev_info`].
431     ///
432     /// [`dev_info`]: crate::dev_info
pr_info(&self, args: fmt::Arguments<'_>)433     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
434         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
435         unsafe { self.printk(bindings::KERN_INFO, args) };
436     }
437 
438     /// Prints a debug-level message (level 7) prefixed with device information.
439     ///
440     /// More details are available from [`dev_dbg`].
441     ///
442     /// [`dev_dbg`]: crate::dev_dbg
pr_dbg(&self, args: fmt::Arguments<'_>)443     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
444         if cfg!(debug_assertions) {
445             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
446             unsafe { self.printk(bindings::KERN_DEBUG, args) };
447         }
448     }
449 
450     /// Prints the provided message to the console.
451     ///
452     /// # Safety
453     ///
454     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
455     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
456     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>)457     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
458         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
459         // is valid because `self` is valid. The "%pA" format string expects a pointer to
460         // `fmt::Arguments`, which is what we're passing as the last argument.
461         #[cfg(CONFIG_PRINTK)]
462         unsafe {
463             bindings::_dev_printk(
464                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
465                 self.as_raw(),
466                 c_str!("%pA").as_char_ptr(),
467                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
468             )
469         };
470     }
471 
472     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
fwnode(&self) -> Option<&property::FwNode>473     pub fn fwnode(&self) -> Option<&property::FwNode> {
474         // SAFETY: `self` is valid.
475         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
476         if fwnode_handle.is_null() {
477             return None;
478         }
479         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
480         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
481         // doesn't increment the refcount. It is safe to cast from a
482         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
483         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
484         Some(unsafe { &*fwnode_handle.cast() })
485     }
486 }
487 
488 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
489 // argument.
490 kernel::impl_device_context_deref!(unsafe { Device });
491 kernel::impl_device_context_into_aref!(Device);
492 
493 // SAFETY: Instances of `Device` are always reference-counted.
494 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
inc_ref(&self)495     fn inc_ref(&self) {
496         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
497         unsafe { bindings::get_device(self.as_raw()) };
498     }
499 
dec_ref(obj: ptr::NonNull<Self>)500     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
501         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
502         unsafe { bindings::put_device(obj.cast().as_ptr()) }
503     }
504 }
505 
506 // SAFETY: As by the type invariant `Device` can be sent to any thread.
507 unsafe impl Send for Device {}
508 
509 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
510 // synchronization in `struct device`.
511 unsafe impl Sync for Device {}
512 
513 /// Marker trait for the context or scope of a bus specific device.
514 ///
515 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
516 /// [`Device`].
517 ///
518 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
519 ///
520 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
521 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
522 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
523 ///
524 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
525 ///
526 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
527 ///
528 /// Bus devices can automatically implement the dereference hierarchy by using
529 /// [`impl_device_context_deref`].
530 ///
531 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
532 /// from the specific scope the [`Device`] reference is valid in.
533 ///
534 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
535 pub trait DeviceContext: private::Sealed {}
536 
537 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
538 ///
539 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
540 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
541 /// [`AlwaysRefCounted`] for.
542 ///
543 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
544 pub struct Normal;
545 
546 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
547 /// any bus specific callback, such as `probe()`.
548 ///
549 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
550 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
551 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
552 /// from bus callbacks.
553 pub struct Core;
554 
555 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
556 /// abstraction.
557 ///
558 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
559 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
560 /// abstraction.
561 ///
562 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
563 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
564 pub struct CoreInternal;
565 
566 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
567 /// be bound to a driver.
568 ///
569 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
570 /// reference, the [`Device`] is guaranteed to be bound to a driver.
571 ///
572 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
573 /// which can be proven with the [`Bound`] device context.
574 ///
575 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
576 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
577 /// from optimizations for accessing device resources, see also [`Devres::access`].
578 ///
579 /// [`Devres`]: kernel::devres::Devres
580 /// [`Devres::access`]: kernel::devres::Devres::access
581 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
582 pub struct Bound;
583 
584 mod private {
585     pub trait Sealed {}
586 
587     impl Sealed for super::Bound {}
588     impl Sealed for super::Core {}
589     impl Sealed for super::CoreInternal {}
590     impl Sealed for super::Normal {}
591 }
592 
593 impl DeviceContext for Bound {}
594 impl DeviceContext for Core {}
595 impl DeviceContext for CoreInternal {}
596 impl DeviceContext for Normal {}
597 
598 /// Convert device references to bus device references.
599 ///
600 /// Bus devices can implement this trait to allow abstractions to provide the bus device in
601 /// class device callbacks.
602 ///
603 /// This must not be used by drivers and is intended for bus and class device abstractions only.
604 ///
605 /// # Safety
606 ///
607 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
608 /// bus device structure.
609 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
610     /// The relative offset to the device field.
611     ///
612     /// Use `offset_of!(bindings, field)` macro to avoid breakage.
613     const OFFSET: usize;
614 
615     /// Convert a reference to [`Device`] into `Self`.
616     ///
617     /// # Safety
618     ///
619     /// `dev` must be contained in `Self`.
from_device(dev: &Device<Ctx>) -> &Self where Self: Sized,620     unsafe fn from_device(dev: &Device<Ctx>) -> &Self
621     where
622         Self: Sized,
623     {
624         let raw = dev.as_raw();
625         // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
626         // to be a valid pointer to `Self`.
627         unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
628     }
629 }
630 
631 /// # Safety
632 ///
633 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
634 /// generic argument of `$device`.
635 #[doc(hidden)]
636 #[macro_export]
637 macro_rules! __impl_device_context_deref {
638     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
639         impl ::core::ops::Deref for $device<$src> {
640             type Target = $device<$dst>;
641 
642             fn deref(&self) -> &Self::Target {
643                 let ptr: *const Self = self;
644 
645                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
646                 // safety requirement of the macro.
647                 let ptr = ptr.cast::<Self::Target>();
648 
649                 // SAFETY: `ptr` was derived from `&self`.
650                 unsafe { &*ptr }
651             }
652         }
653     };
654 }
655 
656 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
657 /// specific) device.
658 ///
659 /// # Safety
660 ///
661 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
662 /// generic argument of `$device`.
663 #[macro_export]
664 macro_rules! impl_device_context_deref {
665     (unsafe { $device:ident }) => {
666         // SAFETY: This macro has the exact same safety requirement as
667         // `__impl_device_context_deref!`.
668         ::kernel::__impl_device_context_deref!(unsafe {
669             $device,
670             $crate::device::CoreInternal => $crate::device::Core
671         });
672 
673         // SAFETY: This macro has the exact same safety requirement as
674         // `__impl_device_context_deref!`.
675         ::kernel::__impl_device_context_deref!(unsafe {
676             $device,
677             $crate::device::Core => $crate::device::Bound
678         });
679 
680         // SAFETY: This macro has the exact same safety requirement as
681         // `__impl_device_context_deref!`.
682         ::kernel::__impl_device_context_deref!(unsafe {
683             $device,
684             $crate::device::Bound => $crate::device::Normal
685         });
686     };
687 }
688 
689 #[doc(hidden)]
690 #[macro_export]
691 macro_rules! __impl_device_context_into_aref {
692     ($src:ty, $device:tt) => {
693         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
694             fn from(dev: &$device<$src>) -> Self {
695                 (&**dev).into()
696             }
697         }
698     };
699 }
700 
701 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
702 /// `ARef<Device>`.
703 #[macro_export]
704 macro_rules! impl_device_context_into_aref {
705     ($device:tt) => {
706         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
707         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
708         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
709     };
710 }
711 
712 #[doc(hidden)]
713 #[macro_export]
714 macro_rules! dev_printk {
715     ($method:ident, $dev:expr, $($f:tt)*) => {
716         {
717             ($dev).$method($crate::prelude::fmt!($($f)*));
718         }
719     }
720 }
721 
722 /// Prints an emergency-level message (level 0) prefixed with device information.
723 ///
724 /// This level should be used if the system is unusable.
725 ///
726 /// Equivalent to the kernel's `dev_emerg` macro.
727 ///
728 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
729 /// [`core::fmt`] and [`std::format!`].
730 ///
731 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
732 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
733 ///
734 /// # Examples
735 ///
736 /// ```
737 /// # use kernel::device::Device;
738 ///
739 /// fn example(dev: &Device) {
740 ///     dev_emerg!(dev, "hello {}\n", "there");
741 /// }
742 /// ```
743 #[macro_export]
744 macro_rules! dev_emerg {
745     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
746 }
747 
748 /// Prints an alert-level message (level 1) prefixed with device information.
749 ///
750 /// This level should be used if action must be taken immediately.
751 ///
752 /// Equivalent to the kernel's `dev_alert` macro.
753 ///
754 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
755 /// [`core::fmt`] and [`std::format!`].
756 ///
757 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
758 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
759 ///
760 /// # Examples
761 ///
762 /// ```
763 /// # use kernel::device::Device;
764 ///
765 /// fn example(dev: &Device) {
766 ///     dev_alert!(dev, "hello {}\n", "there");
767 /// }
768 /// ```
769 #[macro_export]
770 macro_rules! dev_alert {
771     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
772 }
773 
774 /// Prints a critical-level message (level 2) prefixed with device information.
775 ///
776 /// This level should be used in critical conditions.
777 ///
778 /// Equivalent to the kernel's `dev_crit` macro.
779 ///
780 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
781 /// [`core::fmt`] and [`std::format!`].
782 ///
783 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
784 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
785 ///
786 /// # Examples
787 ///
788 /// ```
789 /// # use kernel::device::Device;
790 ///
791 /// fn example(dev: &Device) {
792 ///     dev_crit!(dev, "hello {}\n", "there");
793 /// }
794 /// ```
795 #[macro_export]
796 macro_rules! dev_crit {
797     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
798 }
799 
800 /// Prints an error-level message (level 3) prefixed with device information.
801 ///
802 /// This level should be used in error conditions.
803 ///
804 /// Equivalent to the kernel's `dev_err` macro.
805 ///
806 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
807 /// [`core::fmt`] and [`std::format!`].
808 ///
809 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
810 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
811 ///
812 /// # Examples
813 ///
814 /// ```
815 /// # use kernel::device::Device;
816 ///
817 /// fn example(dev: &Device) {
818 ///     dev_err!(dev, "hello {}\n", "there");
819 /// }
820 /// ```
821 #[macro_export]
822 macro_rules! dev_err {
823     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
824 }
825 
826 /// Prints a warning-level message (level 4) prefixed with device information.
827 ///
828 /// This level should be used in warning conditions.
829 ///
830 /// Equivalent to the kernel's `dev_warn` macro.
831 ///
832 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
833 /// [`core::fmt`] and [`std::format!`].
834 ///
835 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
836 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
837 ///
838 /// # Examples
839 ///
840 /// ```
841 /// # use kernel::device::Device;
842 ///
843 /// fn example(dev: &Device) {
844 ///     dev_warn!(dev, "hello {}\n", "there");
845 /// }
846 /// ```
847 #[macro_export]
848 macro_rules! dev_warn {
849     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
850 }
851 
852 /// Prints a notice-level message (level 5) prefixed with device information.
853 ///
854 /// This level should be used in normal but significant conditions.
855 ///
856 /// Equivalent to the kernel's `dev_notice` macro.
857 ///
858 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
859 /// [`core::fmt`] and [`std::format!`].
860 ///
861 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
862 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
863 ///
864 /// # Examples
865 ///
866 /// ```
867 /// # use kernel::device::Device;
868 ///
869 /// fn example(dev: &Device) {
870 ///     dev_notice!(dev, "hello {}\n", "there");
871 /// }
872 /// ```
873 #[macro_export]
874 macro_rules! dev_notice {
875     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
876 }
877 
878 /// Prints an info-level message (level 6) prefixed with device information.
879 ///
880 /// This level should be used for informational messages.
881 ///
882 /// Equivalent to the kernel's `dev_info` macro.
883 ///
884 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
885 /// [`core::fmt`] and [`std::format!`].
886 ///
887 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
888 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
889 ///
890 /// # Examples
891 ///
892 /// ```
893 /// # use kernel::device::Device;
894 ///
895 /// fn example(dev: &Device) {
896 ///     dev_info!(dev, "hello {}\n", "there");
897 /// }
898 /// ```
899 #[macro_export]
900 macro_rules! dev_info {
901     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
902 }
903 
904 /// Prints a debug-level message (level 7) prefixed with device information.
905 ///
906 /// This level should be used for debug messages.
907 ///
908 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
909 ///
910 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
911 /// [`core::fmt`] and [`std::format!`].
912 ///
913 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
914 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
915 ///
916 /// # Examples
917 ///
918 /// ```
919 /// # use kernel::device::Device;
920 ///
921 /// fn example(dev: &Device) {
922 ///     dev_dbg!(dev, "hello {}\n", "there");
923 /// }
924 /// ```
925 #[macro_export]
926 macro_rules! dev_dbg {
927     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
928 }
929