1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> /* anon_vma_prepare */ 20 #include <linux/mmu_notifier.h> 21 #include <linux/swap.h> /* folio_free_swap */ 22 #include <linux/ptrace.h> /* user_enable_single_step */ 23 #include <linux/kdebug.h> /* notifier mechanism */ 24 #include <linux/percpu-rwsem.h> 25 #include <linux/task_work.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/khugepaged.h> 28 #include <linux/rcupdate_trace.h> 29 #include <linux/workqueue.h> 30 #include <linux/srcu.h> 31 32 #include <linux/uprobes.h> 33 34 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 35 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 36 37 static struct rb_root uprobes_tree = RB_ROOT; 38 /* 39 * allows us to skip the uprobe_mmap if there are no uprobe events active 40 * at this time. Probably a fine grained per inode count is better? 41 */ 42 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 43 44 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 45 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); 46 47 #define UPROBES_HASH_SZ 13 48 /* serialize uprobe->pending_list */ 49 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 50 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 51 52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 53 54 /* Covers return_instance's uprobe lifetime. */ 55 DEFINE_STATIC_SRCU(uretprobes_srcu); 56 57 /* Have a copy of original instruction */ 58 #define UPROBE_COPY_INSN 0 59 60 struct uprobe { 61 struct rb_node rb_node; /* node in the rb tree */ 62 refcount_t ref; 63 struct rw_semaphore register_rwsem; 64 struct rw_semaphore consumer_rwsem; 65 struct list_head pending_list; 66 struct list_head consumers; 67 struct inode *inode; /* Also hold a ref to inode */ 68 union { 69 struct rcu_head rcu; 70 struct work_struct work; 71 }; 72 loff_t offset; 73 loff_t ref_ctr_offset; 74 unsigned long flags; /* "unsigned long" so bitops work */ 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 struct delayed_uprobe { 90 struct list_head list; 91 struct uprobe *uprobe; 92 struct mm_struct *mm; 93 }; 94 95 static DEFINE_MUTEX(delayed_uprobe_lock); 96 static LIST_HEAD(delayed_uprobe_list); 97 98 /* 99 * Execute out of line area: anonymous executable mapping installed 100 * by the probed task to execute the copy of the original instruction 101 * mangled by set_swbp(). 102 * 103 * On a breakpoint hit, thread contests for a slot. It frees the 104 * slot after singlestep. Currently a fixed number of slots are 105 * allocated. 106 */ 107 struct xol_area { 108 wait_queue_head_t wq; /* if all slots are busy */ 109 unsigned long *bitmap; /* 0 = free slot */ 110 111 struct page *page; 112 /* 113 * We keep the vma's vm_start rather than a pointer to the vma 114 * itself. The probed process or a naughty kernel module could make 115 * the vma go away, and we must handle that reasonably gracefully. 116 */ 117 unsigned long vaddr; /* Page(s) of instruction slots */ 118 }; 119 120 static void uprobe_warn(struct task_struct *t, const char *msg) 121 { 122 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); 123 } 124 125 /* 126 * valid_vma: Verify if the specified vma is an executable vma 127 * Relax restrictions while unregistering: vm_flags might have 128 * changed after breakpoint was inserted. 129 * - is_register: indicates if we are in register context. 130 * - Return 1 if the specified virtual address is in an 131 * executable vma. 132 */ 133 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 134 { 135 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 136 137 if (is_register) 138 flags |= VM_WRITE; 139 140 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 141 } 142 143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 144 { 145 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 146 } 147 148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 149 { 150 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 151 } 152 153 /** 154 * __replace_page - replace page in vma by new page. 155 * based on replace_page in mm/ksm.c 156 * 157 * @vma: vma that holds the pte pointing to page 158 * @addr: address the old @page is mapped at 159 * @old_page: the page we are replacing by new_page 160 * @new_page: the modified page we replace page by 161 * 162 * If @new_page is NULL, only unmap @old_page. 163 * 164 * Returns 0 on success, negative error code otherwise. 165 */ 166 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 167 struct page *old_page, struct page *new_page) 168 { 169 struct folio *old_folio = page_folio(old_page); 170 struct folio *new_folio; 171 struct mm_struct *mm = vma->vm_mm; 172 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 173 int err; 174 struct mmu_notifier_range range; 175 176 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 177 addr + PAGE_SIZE); 178 179 if (new_page) { 180 new_folio = page_folio(new_page); 181 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 182 if (err) 183 return err; 184 } 185 186 /* For folio_free_swap() below */ 187 folio_lock(old_folio); 188 189 mmu_notifier_invalidate_range_start(&range); 190 err = -EAGAIN; 191 if (!page_vma_mapped_walk(&pvmw)) 192 goto unlock; 193 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 194 195 if (new_page) { 196 folio_get(new_folio); 197 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE); 198 folio_add_lru_vma(new_folio, vma); 199 } else 200 /* no new page, just dec_mm_counter for old_page */ 201 dec_mm_counter(mm, MM_ANONPAGES); 202 203 if (!folio_test_anon(old_folio)) { 204 dec_mm_counter(mm, mm_counter_file(old_folio)); 205 inc_mm_counter(mm, MM_ANONPAGES); 206 } 207 208 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); 209 ptep_clear_flush(vma, addr, pvmw.pte); 210 if (new_page) 211 set_pte_at(mm, addr, pvmw.pte, 212 mk_pte(new_page, vma->vm_page_prot)); 213 214 folio_remove_rmap_pte(old_folio, old_page, vma); 215 if (!folio_mapped(old_folio)) 216 folio_free_swap(old_folio); 217 page_vma_mapped_walk_done(&pvmw); 218 folio_put(old_folio); 219 220 err = 0; 221 unlock: 222 mmu_notifier_invalidate_range_end(&range); 223 folio_unlock(old_folio); 224 return err; 225 } 226 227 /** 228 * is_swbp_insn - check if instruction is breakpoint instruction. 229 * @insn: instruction to be checked. 230 * Default implementation of is_swbp_insn 231 * Returns true if @insn is a breakpoint instruction. 232 */ 233 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 234 { 235 return *insn == UPROBE_SWBP_INSN; 236 } 237 238 /** 239 * is_trap_insn - check if instruction is breakpoint instruction. 240 * @insn: instruction to be checked. 241 * Default implementation of is_trap_insn 242 * Returns true if @insn is a breakpoint instruction. 243 * 244 * This function is needed for the case where an architecture has multiple 245 * trap instructions (like powerpc). 246 */ 247 bool __weak is_trap_insn(uprobe_opcode_t *insn) 248 { 249 return is_swbp_insn(insn); 250 } 251 252 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 253 { 254 void *kaddr = kmap_atomic(page); 255 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 256 kunmap_atomic(kaddr); 257 } 258 259 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 260 { 261 void *kaddr = kmap_atomic(page); 262 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 263 kunmap_atomic(kaddr); 264 } 265 266 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 267 { 268 uprobe_opcode_t old_opcode; 269 bool is_swbp; 270 271 /* 272 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 273 * We do not check if it is any other 'trap variant' which could 274 * be conditional trap instruction such as the one powerpc supports. 275 * 276 * The logic is that we do not care if the underlying instruction 277 * is a trap variant; uprobes always wins over any other (gdb) 278 * breakpoint. 279 */ 280 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 281 is_swbp = is_swbp_insn(&old_opcode); 282 283 if (is_swbp_insn(new_opcode)) { 284 if (is_swbp) /* register: already installed? */ 285 return 0; 286 } else { 287 if (!is_swbp) /* unregister: was it changed by us? */ 288 return 0; 289 } 290 291 return 1; 292 } 293 294 static struct delayed_uprobe * 295 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 296 { 297 struct delayed_uprobe *du; 298 299 list_for_each_entry(du, &delayed_uprobe_list, list) 300 if (du->uprobe == uprobe && du->mm == mm) 301 return du; 302 return NULL; 303 } 304 305 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 306 { 307 struct delayed_uprobe *du; 308 309 if (delayed_uprobe_check(uprobe, mm)) 310 return 0; 311 312 du = kzalloc(sizeof(*du), GFP_KERNEL); 313 if (!du) 314 return -ENOMEM; 315 316 du->uprobe = uprobe; 317 du->mm = mm; 318 list_add(&du->list, &delayed_uprobe_list); 319 return 0; 320 } 321 322 static void delayed_uprobe_delete(struct delayed_uprobe *du) 323 { 324 if (WARN_ON(!du)) 325 return; 326 list_del(&du->list); 327 kfree(du); 328 } 329 330 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 331 { 332 struct list_head *pos, *q; 333 struct delayed_uprobe *du; 334 335 if (!uprobe && !mm) 336 return; 337 338 list_for_each_safe(pos, q, &delayed_uprobe_list) { 339 du = list_entry(pos, struct delayed_uprobe, list); 340 341 if (uprobe && du->uprobe != uprobe) 342 continue; 343 if (mm && du->mm != mm) 344 continue; 345 346 delayed_uprobe_delete(du); 347 } 348 } 349 350 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 351 struct vm_area_struct *vma) 352 { 353 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 354 355 return uprobe->ref_ctr_offset && 356 vma->vm_file && 357 file_inode(vma->vm_file) == uprobe->inode && 358 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 359 vma->vm_start <= vaddr && 360 vma->vm_end > vaddr; 361 } 362 363 static struct vm_area_struct * 364 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 365 { 366 VMA_ITERATOR(vmi, mm, 0); 367 struct vm_area_struct *tmp; 368 369 for_each_vma(vmi, tmp) 370 if (valid_ref_ctr_vma(uprobe, tmp)) 371 return tmp; 372 373 return NULL; 374 } 375 376 static int 377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 378 { 379 void *kaddr; 380 struct page *page; 381 int ret; 382 short *ptr; 383 384 if (!vaddr || !d) 385 return -EINVAL; 386 387 ret = get_user_pages_remote(mm, vaddr, 1, 388 FOLL_WRITE, &page, NULL); 389 if (unlikely(ret <= 0)) { 390 /* 391 * We are asking for 1 page. If get_user_pages_remote() fails, 392 * it may return 0, in that case we have to return error. 393 */ 394 return ret == 0 ? -EBUSY : ret; 395 } 396 397 kaddr = kmap_atomic(page); 398 ptr = kaddr + (vaddr & ~PAGE_MASK); 399 400 if (unlikely(*ptr + d < 0)) { 401 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 402 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 403 ret = -EINVAL; 404 goto out; 405 } 406 407 *ptr += d; 408 ret = 0; 409 out: 410 kunmap_atomic(kaddr); 411 put_page(page); 412 return ret; 413 } 414 415 static void update_ref_ctr_warn(struct uprobe *uprobe, 416 struct mm_struct *mm, short d) 417 { 418 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 419 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 420 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 421 (unsigned long long) uprobe->offset, 422 (unsigned long long) uprobe->ref_ctr_offset, mm); 423 } 424 425 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 426 short d) 427 { 428 struct vm_area_struct *rc_vma; 429 unsigned long rc_vaddr; 430 int ret = 0; 431 432 rc_vma = find_ref_ctr_vma(uprobe, mm); 433 434 if (rc_vma) { 435 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 436 ret = __update_ref_ctr(mm, rc_vaddr, d); 437 if (ret) 438 update_ref_ctr_warn(uprobe, mm, d); 439 440 if (d > 0) 441 return ret; 442 } 443 444 mutex_lock(&delayed_uprobe_lock); 445 if (d > 0) 446 ret = delayed_uprobe_add(uprobe, mm); 447 else 448 delayed_uprobe_remove(uprobe, mm); 449 mutex_unlock(&delayed_uprobe_lock); 450 451 return ret; 452 } 453 454 /* 455 * NOTE: 456 * Expect the breakpoint instruction to be the smallest size instruction for 457 * the architecture. If an arch has variable length instruction and the 458 * breakpoint instruction is not of the smallest length instruction 459 * supported by that architecture then we need to modify is_trap_at_addr and 460 * uprobe_write_opcode accordingly. This would never be a problem for archs 461 * that have fixed length instructions. 462 * 463 * uprobe_write_opcode - write the opcode at a given virtual address. 464 * @auprobe: arch specific probepoint information. 465 * @mm: the probed process address space. 466 * @vaddr: the virtual address to store the opcode. 467 * @opcode: opcode to be written at @vaddr. 468 * 469 * Called with mm->mmap_lock held for read or write. 470 * Return 0 (success) or a negative errno. 471 */ 472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 473 unsigned long vaddr, uprobe_opcode_t opcode) 474 { 475 struct uprobe *uprobe; 476 struct page *old_page, *new_page; 477 struct vm_area_struct *vma; 478 int ret, is_register, ref_ctr_updated = 0; 479 bool orig_page_huge = false; 480 unsigned int gup_flags = FOLL_FORCE; 481 482 is_register = is_swbp_insn(&opcode); 483 uprobe = container_of(auprobe, struct uprobe, arch); 484 485 retry: 486 if (is_register) 487 gup_flags |= FOLL_SPLIT_PMD; 488 /* Read the page with vaddr into memory */ 489 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 490 if (IS_ERR(old_page)) 491 return PTR_ERR(old_page); 492 493 ret = verify_opcode(old_page, vaddr, &opcode); 494 if (ret <= 0) 495 goto put_old; 496 497 if (WARN(!is_register && PageCompound(old_page), 498 "uprobe unregister should never work on compound page\n")) { 499 ret = -EINVAL; 500 goto put_old; 501 } 502 503 /* We are going to replace instruction, update ref_ctr. */ 504 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 505 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 506 if (ret) 507 goto put_old; 508 509 ref_ctr_updated = 1; 510 } 511 512 ret = 0; 513 if (!is_register && !PageAnon(old_page)) 514 goto put_old; 515 516 ret = anon_vma_prepare(vma); 517 if (ret) 518 goto put_old; 519 520 ret = -ENOMEM; 521 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 522 if (!new_page) 523 goto put_old; 524 525 __SetPageUptodate(new_page); 526 copy_highpage(new_page, old_page); 527 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 528 529 if (!is_register) { 530 struct page *orig_page; 531 pgoff_t index; 532 533 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 534 535 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 536 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 537 index); 538 539 if (orig_page) { 540 if (PageUptodate(orig_page) && 541 pages_identical(new_page, orig_page)) { 542 /* let go new_page */ 543 put_page(new_page); 544 new_page = NULL; 545 546 if (PageCompound(orig_page)) 547 orig_page_huge = true; 548 } 549 put_page(orig_page); 550 } 551 } 552 553 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page); 554 if (new_page) 555 put_page(new_page); 556 put_old: 557 put_page(old_page); 558 559 if (unlikely(ret == -EAGAIN)) 560 goto retry; 561 562 /* Revert back reference counter if instruction update failed. */ 563 if (ret && is_register && ref_ctr_updated) 564 update_ref_ctr(uprobe, mm, -1); 565 566 /* try collapse pmd for compound page */ 567 if (!ret && orig_page_huge) 568 collapse_pte_mapped_thp(mm, vaddr, false); 569 570 return ret; 571 } 572 573 /** 574 * set_swbp - store breakpoint at a given address. 575 * @auprobe: arch specific probepoint information. 576 * @mm: the probed process address space. 577 * @vaddr: the virtual address to insert the opcode. 578 * 579 * For mm @mm, store the breakpoint instruction at @vaddr. 580 * Return 0 (success) or a negative errno. 581 */ 582 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 583 { 584 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 585 } 586 587 /** 588 * set_orig_insn - Restore the original instruction. 589 * @mm: the probed process address space. 590 * @auprobe: arch specific probepoint information. 591 * @vaddr: the virtual address to insert the opcode. 592 * 593 * For mm @mm, restore the original opcode (opcode) at @vaddr. 594 * Return 0 (success) or a negative errno. 595 */ 596 int __weak 597 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 598 { 599 return uprobe_write_opcode(auprobe, mm, vaddr, 600 *(uprobe_opcode_t *)&auprobe->insn); 601 } 602 603 /* uprobe should have guaranteed positive refcount */ 604 static struct uprobe *get_uprobe(struct uprobe *uprobe) 605 { 606 refcount_inc(&uprobe->ref); 607 return uprobe; 608 } 609 610 /* 611 * uprobe should have guaranteed lifetime, which can be either of: 612 * - caller already has refcount taken (and wants an extra one); 613 * - uprobe is RCU protected and won't be freed until after grace period; 614 * - we are holding uprobes_treelock (for read or write, doesn't matter). 615 */ 616 static struct uprobe *try_get_uprobe(struct uprobe *uprobe) 617 { 618 if (refcount_inc_not_zero(&uprobe->ref)) 619 return uprobe; 620 return NULL; 621 } 622 623 static inline bool uprobe_is_active(struct uprobe *uprobe) 624 { 625 return !RB_EMPTY_NODE(&uprobe->rb_node); 626 } 627 628 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) 629 { 630 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 631 632 kfree(uprobe); 633 } 634 635 static void uprobe_free_srcu(struct rcu_head *rcu) 636 { 637 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 638 639 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); 640 } 641 642 static void uprobe_free_deferred(struct work_struct *work) 643 { 644 struct uprobe *uprobe = container_of(work, struct uprobe, work); 645 646 write_lock(&uprobes_treelock); 647 648 if (uprobe_is_active(uprobe)) { 649 write_seqcount_begin(&uprobes_seqcount); 650 rb_erase(&uprobe->rb_node, &uprobes_tree); 651 write_seqcount_end(&uprobes_seqcount); 652 } 653 654 write_unlock(&uprobes_treelock); 655 656 /* 657 * If application munmap(exec_vma) before uprobe_unregister() 658 * gets called, we don't get a chance to remove uprobe from 659 * delayed_uprobe_list from remove_breakpoint(). Do it here. 660 */ 661 mutex_lock(&delayed_uprobe_lock); 662 delayed_uprobe_remove(uprobe, NULL); 663 mutex_unlock(&delayed_uprobe_lock); 664 665 /* start srcu -> rcu_tasks_trace -> kfree chain */ 666 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); 667 } 668 669 static void put_uprobe(struct uprobe *uprobe) 670 { 671 if (!refcount_dec_and_test(&uprobe->ref)) 672 return; 673 674 INIT_WORK(&uprobe->work, uprobe_free_deferred); 675 schedule_work(&uprobe->work); 676 } 677 678 /* Initialize hprobe as SRCU-protected "leased" uprobe */ 679 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) 680 { 681 WARN_ON(!uprobe); 682 hprobe->state = HPROBE_LEASED; 683 hprobe->uprobe = uprobe; 684 hprobe->srcu_idx = srcu_idx; 685 } 686 687 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ 688 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) 689 { 690 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; 691 hprobe->uprobe = uprobe; 692 hprobe->srcu_idx = -1; 693 } 694 695 /* 696 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether 697 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be 698 * used only once for a given hprobe. 699 * 700 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so 701 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever 702 * is appropriate. 703 */ 704 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) 705 { 706 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); 707 switch (*hstate) { 708 case HPROBE_LEASED: 709 case HPROBE_STABLE: 710 return hprobe->uprobe; 711 case HPROBE_GONE: /* uprobe is NULL, no SRCU */ 712 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ 713 return NULL; 714 default: 715 WARN(1, "hprobe invalid state %d", *hstate); 716 return NULL; 717 } 718 } 719 720 /* 721 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. 722 * hprobe_finalize() can only be used from current context after 723 * hprobe_consume() call (which determines uprobe and hstate value). 724 */ 725 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) 726 { 727 switch (hstate) { 728 case HPROBE_LEASED: 729 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 730 break; 731 case HPROBE_STABLE: 732 put_uprobe(hprobe->uprobe); 733 break; 734 case HPROBE_GONE: 735 case HPROBE_CONSUMED: 736 break; 737 default: 738 WARN(1, "hprobe invalid state %d", hstate); 739 break; 740 } 741 } 742 743 /* 744 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) 745 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of 746 * them can win the race to perform SRCU unlocking. Whoever wins must perform 747 * SRCU unlock. 748 * 749 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe 750 * to begin with or we failed to bump its refcount and it's going away. 751 * 752 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU 753 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has 754 * an extra refcount for caller to assume and use. Otherwise, it's not 755 * guaranteed that returned uprobe has a positive refcount, so caller has to 756 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current 757 * SRCU lock region. See dup_utask(). 758 */ 759 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) 760 { 761 enum hprobe_state hstate; 762 763 /* 764 * return_instance's hprobe is protected by RCU. 765 * Underlying uprobe is itself protected from reuse by SRCU. 766 */ 767 lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu)); 768 769 hstate = READ_ONCE(hprobe->state); 770 switch (hstate) { 771 case HPROBE_STABLE: 772 /* uprobe has positive refcount, bump refcount, if necessary */ 773 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; 774 case HPROBE_GONE: 775 /* 776 * SRCU was unlocked earlier and we didn't manage to take 777 * uprobe refcnt, so it's effectively NULL 778 */ 779 return NULL; 780 case HPROBE_CONSUMED: 781 /* 782 * uprobe was consumed, so it's effectively NULL as far as 783 * uretprobe processing logic is concerned 784 */ 785 return NULL; 786 case HPROBE_LEASED: { 787 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); 788 /* 789 * Try to switch hprobe state, guarding against 790 * hprobe_consume() or another hprobe_expire() racing with us. 791 * Note, if we failed to get uprobe refcount, we use special 792 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't 793 * be used as it will be freed after SRCU is unlocked. 794 */ 795 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { 796 /* We won the race, we are the ones to unlock SRCU */ 797 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 798 return get ? get_uprobe(uprobe) : uprobe; 799 } 800 801 /* 802 * We lost the race, undo refcount bump (if it ever happened), 803 * unless caller would like an extra refcount anyways. 804 */ 805 if (uprobe && !get) 806 put_uprobe(uprobe); 807 /* 808 * Even if hprobe_consume() or another hprobe_expire() wins 809 * the state update race and unlocks SRCU from under us, we 810 * still have a guarantee that underyling uprobe won't be 811 * freed due to ongoing caller's SRCU lock region, so we can 812 * return it regardless. Also, if `get` was true, we also have 813 * an extra ref for the caller to own. This is used in dup_utask(). 814 */ 815 return uprobe; 816 } 817 default: 818 WARN(1, "unknown hprobe state %d", hstate); 819 return NULL; 820 } 821 } 822 823 static __always_inline 824 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 825 const struct uprobe *r) 826 { 827 if (l_inode < r->inode) 828 return -1; 829 830 if (l_inode > r->inode) 831 return 1; 832 833 if (l_offset < r->offset) 834 return -1; 835 836 if (l_offset > r->offset) 837 return 1; 838 839 return 0; 840 } 841 842 #define __node_2_uprobe(node) \ 843 rb_entry((node), struct uprobe, rb_node) 844 845 struct __uprobe_key { 846 struct inode *inode; 847 loff_t offset; 848 }; 849 850 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 851 { 852 const struct __uprobe_key *a = key; 853 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 854 } 855 856 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 857 { 858 struct uprobe *u = __node_2_uprobe(a); 859 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 860 } 861 862 /* 863 * Assumes being inside RCU protected region. 864 * No refcount is taken on returned uprobe. 865 */ 866 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) 867 { 868 struct __uprobe_key key = { 869 .inode = inode, 870 .offset = offset, 871 }; 872 struct rb_node *node; 873 unsigned int seq; 874 875 lockdep_assert(rcu_read_lock_trace_held()); 876 877 do { 878 seq = read_seqcount_begin(&uprobes_seqcount); 879 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); 880 /* 881 * Lockless RB-tree lookups can result only in false negatives. 882 * If the element is found, it is correct and can be returned 883 * under RCU protection. If we find nothing, we need to 884 * validate that seqcount didn't change. If it did, we have to 885 * try again as we might have missed the element (false 886 * negative). If seqcount is unchanged, search truly failed. 887 */ 888 if (node) 889 return __node_2_uprobe(node); 890 } while (read_seqcount_retry(&uprobes_seqcount, seq)); 891 892 return NULL; 893 } 894 895 /* 896 * Attempt to insert a new uprobe into uprobes_tree. 897 * 898 * If uprobe already exists (for given inode+offset), we just increment 899 * refcount of previously existing uprobe. 900 * 901 * If not, a provided new instance of uprobe is inserted into the tree (with 902 * assumed initial refcount == 1). 903 * 904 * In any case, we return a uprobe instance that ends up being in uprobes_tree. 905 * Caller has to clean up new uprobe instance, if it ended up not being 906 * inserted into the tree. 907 * 908 * We assume that uprobes_treelock is held for writing. 909 */ 910 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 911 { 912 struct rb_node *node; 913 again: 914 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 915 if (node) { 916 struct uprobe *u = __node_2_uprobe(node); 917 918 if (!try_get_uprobe(u)) { 919 rb_erase(node, &uprobes_tree); 920 RB_CLEAR_NODE(&u->rb_node); 921 goto again; 922 } 923 924 return u; 925 } 926 927 return uprobe; 928 } 929 930 /* 931 * Acquire uprobes_treelock and insert uprobe into uprobes_tree 932 * (or reuse existing one, see __insert_uprobe() comments above). 933 */ 934 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 935 { 936 struct uprobe *u; 937 938 write_lock(&uprobes_treelock); 939 write_seqcount_begin(&uprobes_seqcount); 940 u = __insert_uprobe(uprobe); 941 write_seqcount_end(&uprobes_seqcount); 942 write_unlock(&uprobes_treelock); 943 944 return u; 945 } 946 947 static void 948 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 949 { 950 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 951 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 952 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 953 (unsigned long long) cur_uprobe->ref_ctr_offset, 954 (unsigned long long) uprobe->ref_ctr_offset); 955 } 956 957 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 958 loff_t ref_ctr_offset) 959 { 960 struct uprobe *uprobe, *cur_uprobe; 961 962 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 963 if (!uprobe) 964 return ERR_PTR(-ENOMEM); 965 966 uprobe->inode = inode; 967 uprobe->offset = offset; 968 uprobe->ref_ctr_offset = ref_ctr_offset; 969 INIT_LIST_HEAD(&uprobe->consumers); 970 init_rwsem(&uprobe->register_rwsem); 971 init_rwsem(&uprobe->consumer_rwsem); 972 RB_CLEAR_NODE(&uprobe->rb_node); 973 refcount_set(&uprobe->ref, 1); 974 975 /* add to uprobes_tree, sorted on inode:offset */ 976 cur_uprobe = insert_uprobe(uprobe); 977 /* a uprobe exists for this inode:offset combination */ 978 if (cur_uprobe != uprobe) { 979 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 980 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 981 put_uprobe(cur_uprobe); 982 kfree(uprobe); 983 return ERR_PTR(-EINVAL); 984 } 985 kfree(uprobe); 986 uprobe = cur_uprobe; 987 } 988 989 return uprobe; 990 } 991 992 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 993 { 994 static atomic64_t id; 995 996 down_write(&uprobe->consumer_rwsem); 997 list_add_rcu(&uc->cons_node, &uprobe->consumers); 998 uc->id = (__u64) atomic64_inc_return(&id); 999 up_write(&uprobe->consumer_rwsem); 1000 } 1001 1002 /* 1003 * For uprobe @uprobe, delete the consumer @uc. 1004 * Should never be called with consumer that's not part of @uprobe->consumers. 1005 */ 1006 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 1007 { 1008 down_write(&uprobe->consumer_rwsem); 1009 list_del_rcu(&uc->cons_node); 1010 up_write(&uprobe->consumer_rwsem); 1011 } 1012 1013 static int __copy_insn(struct address_space *mapping, struct file *filp, 1014 void *insn, int nbytes, loff_t offset) 1015 { 1016 struct page *page; 1017 /* 1018 * Ensure that the page that has the original instruction is populated 1019 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 1020 * see uprobe_register(). 1021 */ 1022 if (mapping->a_ops->read_folio) 1023 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 1024 else 1025 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 1026 if (IS_ERR(page)) 1027 return PTR_ERR(page); 1028 1029 copy_from_page(page, offset, insn, nbytes); 1030 put_page(page); 1031 1032 return 0; 1033 } 1034 1035 static int copy_insn(struct uprobe *uprobe, struct file *filp) 1036 { 1037 struct address_space *mapping = uprobe->inode->i_mapping; 1038 loff_t offs = uprobe->offset; 1039 void *insn = &uprobe->arch.insn; 1040 int size = sizeof(uprobe->arch.insn); 1041 int len, err = -EIO; 1042 1043 /* Copy only available bytes, -EIO if nothing was read */ 1044 do { 1045 if (offs >= i_size_read(uprobe->inode)) 1046 break; 1047 1048 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 1049 err = __copy_insn(mapping, filp, insn, len, offs); 1050 if (err) 1051 break; 1052 1053 insn += len; 1054 offs += len; 1055 size -= len; 1056 } while (size); 1057 1058 return err; 1059 } 1060 1061 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 1062 struct mm_struct *mm, unsigned long vaddr) 1063 { 1064 int ret = 0; 1065 1066 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1067 return ret; 1068 1069 /* TODO: move this into _register, until then we abuse this sem. */ 1070 down_write(&uprobe->consumer_rwsem); 1071 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1072 goto out; 1073 1074 ret = copy_insn(uprobe, file); 1075 if (ret) 1076 goto out; 1077 1078 ret = -ENOTSUPP; 1079 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 1080 goto out; 1081 1082 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 1083 if (ret) 1084 goto out; 1085 1086 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 1087 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 1088 1089 out: 1090 up_write(&uprobe->consumer_rwsem); 1091 1092 return ret; 1093 } 1094 1095 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) 1096 { 1097 return !uc->filter || uc->filter(uc, mm); 1098 } 1099 1100 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) 1101 { 1102 struct uprobe_consumer *uc; 1103 bool ret = false; 1104 1105 down_read(&uprobe->consumer_rwsem); 1106 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1107 ret = consumer_filter(uc, mm); 1108 if (ret) 1109 break; 1110 } 1111 up_read(&uprobe->consumer_rwsem); 1112 1113 return ret; 1114 } 1115 1116 static int 1117 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 1118 struct vm_area_struct *vma, unsigned long vaddr) 1119 { 1120 bool first_uprobe; 1121 int ret; 1122 1123 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 1124 if (ret) 1125 return ret; 1126 1127 /* 1128 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 1129 * the task can hit this breakpoint right after __replace_page(). 1130 */ 1131 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 1132 if (first_uprobe) 1133 set_bit(MMF_HAS_UPROBES, &mm->flags); 1134 1135 ret = set_swbp(&uprobe->arch, mm, vaddr); 1136 if (!ret) 1137 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 1138 else if (first_uprobe) 1139 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1140 1141 return ret; 1142 } 1143 1144 static int 1145 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 1146 { 1147 set_bit(MMF_RECALC_UPROBES, &mm->flags); 1148 return set_orig_insn(&uprobe->arch, mm, vaddr); 1149 } 1150 1151 struct map_info { 1152 struct map_info *next; 1153 struct mm_struct *mm; 1154 unsigned long vaddr; 1155 }; 1156 1157 static inline struct map_info *free_map_info(struct map_info *info) 1158 { 1159 struct map_info *next = info->next; 1160 kfree(info); 1161 return next; 1162 } 1163 1164 static struct map_info * 1165 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 1166 { 1167 unsigned long pgoff = offset >> PAGE_SHIFT; 1168 struct vm_area_struct *vma; 1169 struct map_info *curr = NULL; 1170 struct map_info *prev = NULL; 1171 struct map_info *info; 1172 int more = 0; 1173 1174 again: 1175 i_mmap_lock_read(mapping); 1176 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1177 if (!valid_vma(vma, is_register)) 1178 continue; 1179 1180 if (!prev && !more) { 1181 /* 1182 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1183 * reclaim. This is optimistic, no harm done if it fails. 1184 */ 1185 prev = kmalloc(sizeof(struct map_info), 1186 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1187 if (prev) 1188 prev->next = NULL; 1189 } 1190 if (!prev) { 1191 more++; 1192 continue; 1193 } 1194 1195 if (!mmget_not_zero(vma->vm_mm)) 1196 continue; 1197 1198 info = prev; 1199 prev = prev->next; 1200 info->next = curr; 1201 curr = info; 1202 1203 info->mm = vma->vm_mm; 1204 info->vaddr = offset_to_vaddr(vma, offset); 1205 } 1206 i_mmap_unlock_read(mapping); 1207 1208 if (!more) 1209 goto out; 1210 1211 prev = curr; 1212 while (curr) { 1213 mmput(curr->mm); 1214 curr = curr->next; 1215 } 1216 1217 do { 1218 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1219 if (!info) { 1220 curr = ERR_PTR(-ENOMEM); 1221 goto out; 1222 } 1223 info->next = prev; 1224 prev = info; 1225 } while (--more); 1226 1227 goto again; 1228 out: 1229 while (prev) 1230 prev = free_map_info(prev); 1231 return curr; 1232 } 1233 1234 static int 1235 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1236 { 1237 bool is_register = !!new; 1238 struct map_info *info; 1239 int err = 0; 1240 1241 percpu_down_write(&dup_mmap_sem); 1242 info = build_map_info(uprobe->inode->i_mapping, 1243 uprobe->offset, is_register); 1244 if (IS_ERR(info)) { 1245 err = PTR_ERR(info); 1246 goto out; 1247 } 1248 1249 while (info) { 1250 struct mm_struct *mm = info->mm; 1251 struct vm_area_struct *vma; 1252 1253 if (err && is_register) 1254 goto free; 1255 /* 1256 * We take mmap_lock for writing to avoid the race with 1257 * find_active_uprobe_rcu() which takes mmap_lock for reading. 1258 * Thus this install_breakpoint() can not make 1259 * is_trap_at_addr() true right after find_uprobe_rcu() 1260 * returns NULL in find_active_uprobe_rcu(). 1261 */ 1262 mmap_write_lock(mm); 1263 vma = find_vma(mm, info->vaddr); 1264 if (!vma || !valid_vma(vma, is_register) || 1265 file_inode(vma->vm_file) != uprobe->inode) 1266 goto unlock; 1267 1268 if (vma->vm_start > info->vaddr || 1269 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1270 goto unlock; 1271 1272 if (is_register) { 1273 /* consult only the "caller", new consumer. */ 1274 if (consumer_filter(new, mm)) 1275 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1276 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1277 if (!filter_chain(uprobe, mm)) 1278 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1279 } 1280 1281 unlock: 1282 mmap_write_unlock(mm); 1283 free: 1284 mmput(mm); 1285 info = free_map_info(info); 1286 } 1287 out: 1288 percpu_up_write(&dup_mmap_sem); 1289 return err; 1290 } 1291 1292 /** 1293 * uprobe_unregister_nosync - unregister an already registered probe. 1294 * @uprobe: uprobe to remove 1295 * @uc: identify which probe if multiple probes are colocated. 1296 */ 1297 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) 1298 { 1299 int err; 1300 1301 down_write(&uprobe->register_rwsem); 1302 consumer_del(uprobe, uc); 1303 err = register_for_each_vma(uprobe, NULL); 1304 up_write(&uprobe->register_rwsem); 1305 1306 /* TODO : cant unregister? schedule a worker thread */ 1307 if (unlikely(err)) { 1308 uprobe_warn(current, "unregister, leaking uprobe"); 1309 return; 1310 } 1311 1312 put_uprobe(uprobe); 1313 } 1314 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1315 1316 void uprobe_unregister_sync(void) 1317 { 1318 /* 1319 * Now that handler_chain() and handle_uretprobe_chain() iterate over 1320 * uprobe->consumers list under RCU protection without holding 1321 * uprobe->register_rwsem, we need to wait for RCU grace period to 1322 * make sure that we can't call into just unregistered 1323 * uprobe_consumer's callbacks anymore. If we don't do that, fast and 1324 * unlucky enough caller can free consumer's memory and cause 1325 * handler_chain() or handle_uretprobe_chain() to do an use-after-free. 1326 */ 1327 synchronize_rcu_tasks_trace(); 1328 synchronize_srcu(&uretprobes_srcu); 1329 } 1330 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1331 1332 /** 1333 * uprobe_register - register a probe 1334 * @inode: the file in which the probe has to be placed. 1335 * @offset: offset from the start of the file. 1336 * @ref_ctr_offset: offset of SDT marker / reference counter 1337 * @uc: information on howto handle the probe.. 1338 * 1339 * Apart from the access refcount, uprobe_register() takes a creation 1340 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1341 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1342 * tuple). Creation refcount stops uprobe_unregister from freeing the 1343 * @uprobe even before the register operation is complete. Creation 1344 * refcount is released when the last @uc for the @uprobe 1345 * unregisters. Caller of uprobe_register() is required to keep @inode 1346 * (and the containing mount) referenced. 1347 * 1348 * Return: pointer to the new uprobe on success or an ERR_PTR on failure. 1349 */ 1350 struct uprobe *uprobe_register(struct inode *inode, 1351 loff_t offset, loff_t ref_ctr_offset, 1352 struct uprobe_consumer *uc) 1353 { 1354 struct uprobe *uprobe; 1355 int ret; 1356 1357 /* Uprobe must have at least one set consumer */ 1358 if (!uc->handler && !uc->ret_handler) 1359 return ERR_PTR(-EINVAL); 1360 1361 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1362 if (!inode->i_mapping->a_ops->read_folio && 1363 !shmem_mapping(inode->i_mapping)) 1364 return ERR_PTR(-EIO); 1365 /* Racy, just to catch the obvious mistakes */ 1366 if (offset > i_size_read(inode)) 1367 return ERR_PTR(-EINVAL); 1368 1369 /* 1370 * This ensures that copy_from_page(), copy_to_page() and 1371 * __update_ref_ctr() can't cross page boundary. 1372 */ 1373 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1374 return ERR_PTR(-EINVAL); 1375 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1376 return ERR_PTR(-EINVAL); 1377 1378 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1379 if (IS_ERR(uprobe)) 1380 return uprobe; 1381 1382 down_write(&uprobe->register_rwsem); 1383 consumer_add(uprobe, uc); 1384 ret = register_for_each_vma(uprobe, uc); 1385 up_write(&uprobe->register_rwsem); 1386 1387 if (ret) { 1388 uprobe_unregister_nosync(uprobe, uc); 1389 /* 1390 * Registration might have partially succeeded, so we can have 1391 * this consumer being called right at this time. We need to 1392 * sync here. It's ok, it's unlikely slow path. 1393 */ 1394 uprobe_unregister_sync(); 1395 return ERR_PTR(ret); 1396 } 1397 1398 return uprobe; 1399 } 1400 EXPORT_SYMBOL_GPL(uprobe_register); 1401 1402 /** 1403 * uprobe_apply - add or remove the breakpoints according to @uc->filter 1404 * @uprobe: uprobe which "owns" the breakpoint 1405 * @uc: consumer which wants to add more or remove some breakpoints 1406 * @add: add or remove the breakpoints 1407 * Return: 0 on success or negative error code. 1408 */ 1409 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) 1410 { 1411 struct uprobe_consumer *con; 1412 int ret = -ENOENT; 1413 1414 down_write(&uprobe->register_rwsem); 1415 1416 rcu_read_lock_trace(); 1417 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1418 if (con == uc) { 1419 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1420 break; 1421 } 1422 } 1423 rcu_read_unlock_trace(); 1424 1425 up_write(&uprobe->register_rwsem); 1426 1427 return ret; 1428 } 1429 1430 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1431 { 1432 VMA_ITERATOR(vmi, mm, 0); 1433 struct vm_area_struct *vma; 1434 int err = 0; 1435 1436 mmap_read_lock(mm); 1437 for_each_vma(vmi, vma) { 1438 unsigned long vaddr; 1439 loff_t offset; 1440 1441 if (!valid_vma(vma, false) || 1442 file_inode(vma->vm_file) != uprobe->inode) 1443 continue; 1444 1445 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1446 if (uprobe->offset < offset || 1447 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1448 continue; 1449 1450 vaddr = offset_to_vaddr(vma, uprobe->offset); 1451 err |= remove_breakpoint(uprobe, mm, vaddr); 1452 } 1453 mmap_read_unlock(mm); 1454 1455 return err; 1456 } 1457 1458 static struct rb_node * 1459 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1460 { 1461 struct rb_node *n = uprobes_tree.rb_node; 1462 1463 while (n) { 1464 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1465 1466 if (inode < u->inode) { 1467 n = n->rb_left; 1468 } else if (inode > u->inode) { 1469 n = n->rb_right; 1470 } else { 1471 if (max < u->offset) 1472 n = n->rb_left; 1473 else if (min > u->offset) 1474 n = n->rb_right; 1475 else 1476 break; 1477 } 1478 } 1479 1480 return n; 1481 } 1482 1483 /* 1484 * For a given range in vma, build a list of probes that need to be inserted. 1485 */ 1486 static void build_probe_list(struct inode *inode, 1487 struct vm_area_struct *vma, 1488 unsigned long start, unsigned long end, 1489 struct list_head *head) 1490 { 1491 loff_t min, max; 1492 struct rb_node *n, *t; 1493 struct uprobe *u; 1494 1495 INIT_LIST_HEAD(head); 1496 min = vaddr_to_offset(vma, start); 1497 max = min + (end - start) - 1; 1498 1499 read_lock(&uprobes_treelock); 1500 n = find_node_in_range(inode, min, max); 1501 if (n) { 1502 for (t = n; t; t = rb_prev(t)) { 1503 u = rb_entry(t, struct uprobe, rb_node); 1504 if (u->inode != inode || u->offset < min) 1505 break; 1506 /* if uprobe went away, it's safe to ignore it */ 1507 if (try_get_uprobe(u)) 1508 list_add(&u->pending_list, head); 1509 } 1510 for (t = n; (t = rb_next(t)); ) { 1511 u = rb_entry(t, struct uprobe, rb_node); 1512 if (u->inode != inode || u->offset > max) 1513 break; 1514 /* if uprobe went away, it's safe to ignore it */ 1515 if (try_get_uprobe(u)) 1516 list_add(&u->pending_list, head); 1517 } 1518 } 1519 read_unlock(&uprobes_treelock); 1520 } 1521 1522 /* @vma contains reference counter, not the probed instruction. */ 1523 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1524 { 1525 struct list_head *pos, *q; 1526 struct delayed_uprobe *du; 1527 unsigned long vaddr; 1528 int ret = 0, err = 0; 1529 1530 mutex_lock(&delayed_uprobe_lock); 1531 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1532 du = list_entry(pos, struct delayed_uprobe, list); 1533 1534 if (du->mm != vma->vm_mm || 1535 !valid_ref_ctr_vma(du->uprobe, vma)) 1536 continue; 1537 1538 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1539 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1540 if (ret) { 1541 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1542 if (!err) 1543 err = ret; 1544 } 1545 delayed_uprobe_delete(du); 1546 } 1547 mutex_unlock(&delayed_uprobe_lock); 1548 return err; 1549 } 1550 1551 /* 1552 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1553 * 1554 * Currently we ignore all errors and always return 0, the callers 1555 * can't handle the failure anyway. 1556 */ 1557 int uprobe_mmap(struct vm_area_struct *vma) 1558 { 1559 struct list_head tmp_list; 1560 struct uprobe *uprobe, *u; 1561 struct inode *inode; 1562 1563 if (no_uprobe_events()) 1564 return 0; 1565 1566 if (vma->vm_file && 1567 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1568 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1569 delayed_ref_ctr_inc(vma); 1570 1571 if (!valid_vma(vma, true)) 1572 return 0; 1573 1574 inode = file_inode(vma->vm_file); 1575 if (!inode) 1576 return 0; 1577 1578 mutex_lock(uprobes_mmap_hash(inode)); 1579 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1580 /* 1581 * We can race with uprobe_unregister(), this uprobe can be already 1582 * removed. But in this case filter_chain() must return false, all 1583 * consumers have gone away. 1584 */ 1585 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1586 if (!fatal_signal_pending(current) && 1587 filter_chain(uprobe, vma->vm_mm)) { 1588 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1589 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1590 } 1591 put_uprobe(uprobe); 1592 } 1593 mutex_unlock(uprobes_mmap_hash(inode)); 1594 1595 return 0; 1596 } 1597 1598 static bool 1599 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1600 { 1601 loff_t min, max; 1602 struct inode *inode; 1603 struct rb_node *n; 1604 1605 inode = file_inode(vma->vm_file); 1606 1607 min = vaddr_to_offset(vma, start); 1608 max = min + (end - start) - 1; 1609 1610 read_lock(&uprobes_treelock); 1611 n = find_node_in_range(inode, min, max); 1612 read_unlock(&uprobes_treelock); 1613 1614 return !!n; 1615 } 1616 1617 /* 1618 * Called in context of a munmap of a vma. 1619 */ 1620 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1621 { 1622 if (no_uprobe_events() || !valid_vma(vma, false)) 1623 return; 1624 1625 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1626 return; 1627 1628 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1629 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1630 return; 1631 1632 if (vma_has_uprobes(vma, start, end)) 1633 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1634 } 1635 1636 static vm_fault_t xol_fault(const struct vm_special_mapping *sm, 1637 struct vm_area_struct *vma, struct vm_fault *vmf) 1638 { 1639 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; 1640 1641 vmf->page = area->page; 1642 get_page(vmf->page); 1643 return 0; 1644 } 1645 1646 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) 1647 { 1648 return -EPERM; 1649 } 1650 1651 static const struct vm_special_mapping xol_mapping = { 1652 .name = "[uprobes]", 1653 .fault = xol_fault, 1654 .mremap = xol_mremap, 1655 }; 1656 1657 /* Slot allocation for XOL */ 1658 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1659 { 1660 struct vm_area_struct *vma; 1661 int ret; 1662 1663 if (mmap_write_lock_killable(mm)) 1664 return -EINTR; 1665 1666 if (mm->uprobes_state.xol_area) { 1667 ret = -EALREADY; 1668 goto fail; 1669 } 1670 1671 if (!area->vaddr) { 1672 /* Try to map as high as possible, this is only a hint. */ 1673 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1674 PAGE_SIZE, 0, 0); 1675 if (IS_ERR_VALUE(area->vaddr)) { 1676 ret = area->vaddr; 1677 goto fail; 1678 } 1679 } 1680 1681 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1682 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1683 &xol_mapping); 1684 if (IS_ERR(vma)) { 1685 ret = PTR_ERR(vma); 1686 goto fail; 1687 } 1688 1689 ret = 0; 1690 /* pairs with get_xol_area() */ 1691 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1692 fail: 1693 mmap_write_unlock(mm); 1694 1695 return ret; 1696 } 1697 1698 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1699 { 1700 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1701 1702 *psize = UPROBE_SWBP_INSN_SIZE; 1703 return &insn; 1704 } 1705 1706 static struct xol_area *__create_xol_area(unsigned long vaddr) 1707 { 1708 struct mm_struct *mm = current->mm; 1709 unsigned long insns_size; 1710 struct xol_area *area; 1711 void *insns; 1712 1713 area = kzalloc(sizeof(*area), GFP_KERNEL); 1714 if (unlikely(!area)) 1715 goto out; 1716 1717 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1718 GFP_KERNEL); 1719 if (!area->bitmap) 1720 goto free_area; 1721 1722 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1723 if (!area->page) 1724 goto free_bitmap; 1725 1726 area->vaddr = vaddr; 1727 init_waitqueue_head(&area->wq); 1728 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1729 set_bit(0, area->bitmap); 1730 insns = arch_uprobe_trampoline(&insns_size); 1731 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); 1732 1733 if (!xol_add_vma(mm, area)) 1734 return area; 1735 1736 __free_page(area->page); 1737 free_bitmap: 1738 kfree(area->bitmap); 1739 free_area: 1740 kfree(area); 1741 out: 1742 return NULL; 1743 } 1744 1745 /* 1746 * get_xol_area - Allocate process's xol_area if necessary. 1747 * This area will be used for storing instructions for execution out of line. 1748 * 1749 * Returns the allocated area or NULL. 1750 */ 1751 static struct xol_area *get_xol_area(void) 1752 { 1753 struct mm_struct *mm = current->mm; 1754 struct xol_area *area; 1755 1756 if (!mm->uprobes_state.xol_area) 1757 __create_xol_area(0); 1758 1759 /* Pairs with xol_add_vma() smp_store_release() */ 1760 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1761 return area; 1762 } 1763 1764 /* 1765 * uprobe_clear_state - Free the area allocated for slots. 1766 */ 1767 void uprobe_clear_state(struct mm_struct *mm) 1768 { 1769 struct xol_area *area = mm->uprobes_state.xol_area; 1770 1771 mutex_lock(&delayed_uprobe_lock); 1772 delayed_uprobe_remove(NULL, mm); 1773 mutex_unlock(&delayed_uprobe_lock); 1774 1775 if (!area) 1776 return; 1777 1778 put_page(area->page); 1779 kfree(area->bitmap); 1780 kfree(area); 1781 } 1782 1783 void uprobe_start_dup_mmap(void) 1784 { 1785 percpu_down_read(&dup_mmap_sem); 1786 } 1787 1788 void uprobe_end_dup_mmap(void) 1789 { 1790 percpu_up_read(&dup_mmap_sem); 1791 } 1792 1793 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1794 { 1795 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1796 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1797 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1798 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1799 } 1800 } 1801 1802 static unsigned long xol_get_slot_nr(struct xol_area *area) 1803 { 1804 unsigned long slot_nr; 1805 1806 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1807 if (slot_nr < UINSNS_PER_PAGE) { 1808 if (!test_and_set_bit(slot_nr, area->bitmap)) 1809 return slot_nr; 1810 } 1811 1812 return UINSNS_PER_PAGE; 1813 } 1814 1815 /* 1816 * xol_get_insn_slot - allocate a slot for xol. 1817 */ 1818 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) 1819 { 1820 struct xol_area *area = get_xol_area(); 1821 unsigned long slot_nr; 1822 1823 if (!area) 1824 return false; 1825 1826 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); 1827 1828 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; 1829 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, 1830 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1831 return true; 1832 } 1833 1834 /* 1835 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() 1836 */ 1837 static void xol_free_insn_slot(struct uprobe_task *utask) 1838 { 1839 struct xol_area *area = current->mm->uprobes_state.xol_area; 1840 unsigned long offset = utask->xol_vaddr - area->vaddr; 1841 unsigned int slot_nr; 1842 1843 utask->xol_vaddr = 0; 1844 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ 1845 if (WARN_ON_ONCE(offset >= PAGE_SIZE)) 1846 return; 1847 1848 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1849 clear_bit(slot_nr, area->bitmap); 1850 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1851 if (waitqueue_active(&area->wq)) 1852 wake_up(&area->wq); 1853 } 1854 1855 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1856 void *src, unsigned long len) 1857 { 1858 /* Initialize the slot */ 1859 copy_to_page(page, vaddr, src, len); 1860 1861 /* 1862 * We probably need flush_icache_user_page() but it needs vma. 1863 * This should work on most of architectures by default. If 1864 * architecture needs to do something different it can define 1865 * its own version of the function. 1866 */ 1867 flush_dcache_page(page); 1868 } 1869 1870 /** 1871 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1872 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1873 * instruction. 1874 * Return the address of the breakpoint instruction. 1875 */ 1876 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1877 { 1878 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1879 } 1880 1881 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1882 { 1883 struct uprobe_task *utask = current->utask; 1884 1885 if (unlikely(utask && utask->active_uprobe)) 1886 return utask->vaddr; 1887 1888 return instruction_pointer(regs); 1889 } 1890 1891 static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe) 1892 { 1893 struct return_instance *next = ri->next; 1894 1895 if (cleanup_hprobe) { 1896 enum hprobe_state hstate; 1897 1898 (void)hprobe_consume(&ri->hprobe, &hstate); 1899 hprobe_finalize(&ri->hprobe, hstate); 1900 } 1901 1902 kfree_rcu(ri, rcu); 1903 return next; 1904 } 1905 1906 /* 1907 * Called with no locks held. 1908 * Called in context of an exiting or an exec-ing thread. 1909 */ 1910 void uprobe_free_utask(struct task_struct *t) 1911 { 1912 struct uprobe_task *utask = t->utask; 1913 struct return_instance *ri; 1914 1915 if (!utask) 1916 return; 1917 1918 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); 1919 1920 timer_delete_sync(&utask->ri_timer); 1921 1922 ri = utask->return_instances; 1923 while (ri) 1924 ri = free_ret_instance(ri, true /* cleanup_hprobe */); 1925 1926 kfree(utask); 1927 t->utask = NULL; 1928 } 1929 1930 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ 1931 1932 #define for_each_ret_instance_rcu(pos, head) \ 1933 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) 1934 1935 static void ri_timer(struct timer_list *timer) 1936 { 1937 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); 1938 struct return_instance *ri; 1939 1940 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ 1941 guard(srcu)(&uretprobes_srcu); 1942 /* RCU protects return_instance from freeing. */ 1943 guard(rcu)(); 1944 1945 for_each_ret_instance_rcu(ri, utask->return_instances) 1946 hprobe_expire(&ri->hprobe, false); 1947 } 1948 1949 static struct uprobe_task *alloc_utask(void) 1950 { 1951 struct uprobe_task *utask; 1952 1953 utask = kzalloc(sizeof(*utask), GFP_KERNEL); 1954 if (!utask) 1955 return NULL; 1956 1957 timer_setup(&utask->ri_timer, ri_timer, 0); 1958 1959 return utask; 1960 } 1961 1962 /* 1963 * Allocate a uprobe_task object for the task if necessary. 1964 * Called when the thread hits a breakpoint. 1965 * 1966 * Returns: 1967 * - pointer to new uprobe_task on success 1968 * - NULL otherwise 1969 */ 1970 static struct uprobe_task *get_utask(void) 1971 { 1972 if (!current->utask) 1973 current->utask = alloc_utask(); 1974 return current->utask; 1975 } 1976 1977 static size_t ri_size(int consumers_cnt) 1978 { 1979 struct return_instance *ri; 1980 1981 return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt; 1982 } 1983 1984 #define DEF_CNT 4 1985 1986 static struct return_instance *alloc_return_instance(void) 1987 { 1988 struct return_instance *ri; 1989 1990 ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL); 1991 if (!ri) 1992 return ZERO_SIZE_PTR; 1993 1994 ri->consumers_cnt = DEF_CNT; 1995 return ri; 1996 } 1997 1998 static struct return_instance *dup_return_instance(struct return_instance *old) 1999 { 2000 size_t size = ri_size(old->consumers_cnt); 2001 2002 return kmemdup(old, size, GFP_KERNEL); 2003 } 2004 2005 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 2006 { 2007 struct uprobe_task *n_utask; 2008 struct return_instance **p, *o, *n; 2009 struct uprobe *uprobe; 2010 2011 n_utask = alloc_utask(); 2012 if (!n_utask) 2013 return -ENOMEM; 2014 t->utask = n_utask; 2015 2016 /* protect uprobes from freeing, we'll need try_get_uprobe() them */ 2017 guard(srcu)(&uretprobes_srcu); 2018 2019 p = &n_utask->return_instances; 2020 for (o = o_utask->return_instances; o; o = o->next) { 2021 n = dup_return_instance(o); 2022 if (!n) 2023 return -ENOMEM; 2024 2025 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ 2026 uprobe = hprobe_expire(&o->hprobe, true); 2027 2028 /* 2029 * New utask will have stable properly refcounted uprobe or 2030 * NULL. Even if we failed to get refcounted uprobe, we still 2031 * need to preserve full set of return_instances for proper 2032 * uretprobe handling and nesting in forked task. 2033 */ 2034 hprobe_init_stable(&n->hprobe, uprobe); 2035 2036 n->next = NULL; 2037 rcu_assign_pointer(*p, n); 2038 p = &n->next; 2039 2040 n_utask->depth++; 2041 } 2042 2043 return 0; 2044 } 2045 2046 static void dup_xol_work(struct callback_head *work) 2047 { 2048 if (current->flags & PF_EXITING) 2049 return; 2050 2051 if (!__create_xol_area(current->utask->dup_xol_addr) && 2052 !fatal_signal_pending(current)) 2053 uprobe_warn(current, "dup xol area"); 2054 } 2055 2056 /* 2057 * Called in context of a new clone/fork from copy_process. 2058 */ 2059 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 2060 { 2061 struct uprobe_task *utask = current->utask; 2062 struct mm_struct *mm = current->mm; 2063 struct xol_area *area; 2064 2065 t->utask = NULL; 2066 2067 if (!utask || !utask->return_instances) 2068 return; 2069 2070 if (mm == t->mm && !(flags & CLONE_VFORK)) 2071 return; 2072 2073 if (dup_utask(t, utask)) 2074 return uprobe_warn(t, "dup ret instances"); 2075 2076 /* The task can fork() after dup_xol_work() fails */ 2077 area = mm->uprobes_state.xol_area; 2078 if (!area) 2079 return uprobe_warn(t, "dup xol area"); 2080 2081 if (mm == t->mm) 2082 return; 2083 2084 t->utask->dup_xol_addr = area->vaddr; 2085 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 2086 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 2087 } 2088 2089 /* 2090 * Current area->vaddr notion assume the trampoline address is always 2091 * equal area->vaddr. 2092 * 2093 * Returns -1 in case the xol_area is not allocated. 2094 */ 2095 unsigned long uprobe_get_trampoline_vaddr(void) 2096 { 2097 struct xol_area *area; 2098 unsigned long trampoline_vaddr = -1; 2099 2100 /* Pairs with xol_add_vma() smp_store_release() */ 2101 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 2102 if (area) 2103 trampoline_vaddr = area->vaddr; 2104 2105 return trampoline_vaddr; 2106 } 2107 2108 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 2109 struct pt_regs *regs) 2110 { 2111 struct return_instance *ri = utask->return_instances; 2112 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 2113 2114 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 2115 ri = free_ret_instance(ri, true /* cleanup_hprobe */); 2116 utask->depth--; 2117 } 2118 rcu_assign_pointer(utask->return_instances, ri); 2119 } 2120 2121 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, 2122 struct return_instance *ri) 2123 { 2124 struct uprobe_task *utask = current->utask; 2125 unsigned long orig_ret_vaddr, trampoline_vaddr; 2126 bool chained; 2127 int srcu_idx; 2128 2129 if (!get_xol_area()) 2130 goto free; 2131 2132 if (utask->depth >= MAX_URETPROBE_DEPTH) { 2133 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 2134 " nestedness limit pid/tgid=%d/%d\n", 2135 current->pid, current->tgid); 2136 goto free; 2137 } 2138 2139 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 2140 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 2141 if (orig_ret_vaddr == -1) 2142 goto free; 2143 2144 /* drop the entries invalidated by longjmp() */ 2145 chained = (orig_ret_vaddr == trampoline_vaddr); 2146 cleanup_return_instances(utask, chained, regs); 2147 2148 /* 2149 * We don't want to keep trampoline address in stack, rather keep the 2150 * original return address of first caller thru all the consequent 2151 * instances. This also makes breakpoint unwrapping easier. 2152 */ 2153 if (chained) { 2154 if (!utask->return_instances) { 2155 /* 2156 * This situation is not possible. Likely we have an 2157 * attack from user-space. 2158 */ 2159 uprobe_warn(current, "handle tail call"); 2160 goto free; 2161 } 2162 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 2163 } 2164 2165 /* __srcu_read_lock() because SRCU lock survives switch to user space */ 2166 srcu_idx = __srcu_read_lock(&uretprobes_srcu); 2167 2168 ri->func = instruction_pointer(regs); 2169 ri->stack = user_stack_pointer(regs); 2170 ri->orig_ret_vaddr = orig_ret_vaddr; 2171 ri->chained = chained; 2172 2173 utask->depth++; 2174 2175 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); 2176 ri->next = utask->return_instances; 2177 rcu_assign_pointer(utask->return_instances, ri); 2178 2179 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); 2180 2181 return; 2182 free: 2183 kfree(ri); 2184 } 2185 2186 /* Prepare to single-step probed instruction out of line. */ 2187 static int 2188 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 2189 { 2190 struct uprobe_task *utask = current->utask; 2191 int err; 2192 2193 if (!try_get_uprobe(uprobe)) 2194 return -EINVAL; 2195 2196 if (!xol_get_insn_slot(uprobe, utask)) { 2197 err = -ENOMEM; 2198 goto err_out; 2199 } 2200 2201 utask->vaddr = bp_vaddr; 2202 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2203 if (unlikely(err)) { 2204 xol_free_insn_slot(utask); 2205 goto err_out; 2206 } 2207 2208 utask->active_uprobe = uprobe; 2209 utask->state = UTASK_SSTEP; 2210 return 0; 2211 err_out: 2212 put_uprobe(uprobe); 2213 return err; 2214 } 2215 2216 /* 2217 * If we are singlestepping, then ensure this thread is not connected to 2218 * non-fatal signals until completion of singlestep. When xol insn itself 2219 * triggers the signal, restart the original insn even if the task is 2220 * already SIGKILL'ed (since coredump should report the correct ip). This 2221 * is even more important if the task has a handler for SIGSEGV/etc, The 2222 * _same_ instruction should be repeated again after return from the signal 2223 * handler, and SSTEP can never finish in this case. 2224 */ 2225 bool uprobe_deny_signal(void) 2226 { 2227 struct task_struct *t = current; 2228 struct uprobe_task *utask = t->utask; 2229 2230 if (likely(!utask || !utask->active_uprobe)) 2231 return false; 2232 2233 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2234 2235 if (task_sigpending(t)) { 2236 spin_lock_irq(&t->sighand->siglock); 2237 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2238 spin_unlock_irq(&t->sighand->siglock); 2239 2240 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2241 utask->state = UTASK_SSTEP_TRAPPED; 2242 set_tsk_thread_flag(t, TIF_UPROBE); 2243 } 2244 } 2245 2246 return true; 2247 } 2248 2249 static void mmf_recalc_uprobes(struct mm_struct *mm) 2250 { 2251 VMA_ITERATOR(vmi, mm, 0); 2252 struct vm_area_struct *vma; 2253 2254 for_each_vma(vmi, vma) { 2255 if (!valid_vma(vma, false)) 2256 continue; 2257 /* 2258 * This is not strictly accurate, we can race with 2259 * uprobe_unregister() and see the already removed 2260 * uprobe if delete_uprobe() was not yet called. 2261 * Or this uprobe can be filtered out. 2262 */ 2263 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2264 return; 2265 } 2266 2267 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2268 } 2269 2270 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2271 { 2272 struct page *page; 2273 uprobe_opcode_t opcode; 2274 int result; 2275 2276 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2277 return -EINVAL; 2278 2279 pagefault_disable(); 2280 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2281 pagefault_enable(); 2282 2283 if (likely(result == 0)) 2284 goto out; 2285 2286 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); 2287 if (result < 0) 2288 return result; 2289 2290 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2291 put_page(page); 2292 out: 2293 /* This needs to return true for any variant of the trap insn */ 2294 return is_trap_insn(&opcode); 2295 } 2296 2297 /* assumes being inside RCU protected region */ 2298 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) 2299 { 2300 struct mm_struct *mm = current->mm; 2301 struct uprobe *uprobe = NULL; 2302 struct vm_area_struct *vma; 2303 2304 mmap_read_lock(mm); 2305 vma = vma_lookup(mm, bp_vaddr); 2306 if (vma) { 2307 if (valid_vma(vma, false)) { 2308 struct inode *inode = file_inode(vma->vm_file); 2309 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2310 2311 uprobe = find_uprobe_rcu(inode, offset); 2312 } 2313 2314 if (!uprobe) 2315 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2316 } else { 2317 *is_swbp = -EFAULT; 2318 } 2319 2320 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2321 mmf_recalc_uprobes(mm); 2322 mmap_read_unlock(mm); 2323 2324 return uprobe; 2325 } 2326 2327 static struct return_instance* 2328 push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie) 2329 { 2330 if (unlikely(ri == ZERO_SIZE_PTR)) 2331 return ri; 2332 2333 if (unlikely(idx >= ri->consumers_cnt)) { 2334 struct return_instance *old_ri = ri; 2335 2336 ri->consumers_cnt += DEF_CNT; 2337 ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL); 2338 if (!ri) { 2339 kfree(old_ri); 2340 return ZERO_SIZE_PTR; 2341 } 2342 } 2343 2344 ri->consumers[idx].id = id; 2345 ri->consumers[idx].cookie = cookie; 2346 return ri; 2347 } 2348 2349 static struct return_consumer * 2350 return_consumer_find(struct return_instance *ri, int *iter, int id) 2351 { 2352 struct return_consumer *ric; 2353 int idx = *iter; 2354 2355 for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) { 2356 if (ric->id == id) { 2357 *iter = idx + 1; 2358 return ric; 2359 } 2360 } 2361 return NULL; 2362 } 2363 2364 static bool ignore_ret_handler(int rc) 2365 { 2366 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; 2367 } 2368 2369 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2370 { 2371 struct uprobe_consumer *uc; 2372 bool has_consumers = false, remove = true; 2373 struct return_instance *ri = NULL; 2374 int push_idx = 0; 2375 2376 current->utask->auprobe = &uprobe->arch; 2377 2378 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2379 bool session = uc->handler && uc->ret_handler; 2380 __u64 cookie = 0; 2381 int rc = 0; 2382 2383 if (uc->handler) { 2384 rc = uc->handler(uc, regs, &cookie); 2385 WARN(rc < 0 || rc > 2, 2386 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2387 } 2388 2389 remove &= rc == UPROBE_HANDLER_REMOVE; 2390 has_consumers = true; 2391 2392 if (!uc->ret_handler || ignore_ret_handler(rc)) 2393 continue; 2394 2395 if (!ri) 2396 ri = alloc_return_instance(); 2397 2398 if (session) 2399 ri = push_consumer(ri, push_idx++, uc->id, cookie); 2400 } 2401 current->utask->auprobe = NULL; 2402 2403 if (!ZERO_OR_NULL_PTR(ri)) { 2404 /* 2405 * The push_idx value has the final number of return consumers, 2406 * and ri->consumers_cnt has number of allocated consumers. 2407 */ 2408 ri->consumers_cnt = push_idx; 2409 prepare_uretprobe(uprobe, regs, ri); 2410 } 2411 2412 if (remove && has_consumers) { 2413 down_read(&uprobe->register_rwsem); 2414 2415 /* re-check that removal is still required, this time under lock */ 2416 if (!filter_chain(uprobe, current->mm)) { 2417 WARN_ON(!uprobe_is_active(uprobe)); 2418 unapply_uprobe(uprobe, current->mm); 2419 } 2420 2421 up_read(&uprobe->register_rwsem); 2422 } 2423 } 2424 2425 static void 2426 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) 2427 { 2428 struct return_consumer *ric; 2429 struct uprobe_consumer *uc; 2430 int ric_idx = 0; 2431 2432 /* all consumers unsubscribed meanwhile */ 2433 if (unlikely(!uprobe)) 2434 return; 2435 2436 rcu_read_lock_trace(); 2437 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2438 bool session = uc->handler && uc->ret_handler; 2439 2440 if (uc->ret_handler) { 2441 ric = return_consumer_find(ri, &ric_idx, uc->id); 2442 if (!session || ric) 2443 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); 2444 } 2445 } 2446 rcu_read_unlock_trace(); 2447 } 2448 2449 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2450 { 2451 bool chained; 2452 2453 do { 2454 chained = ri->chained; 2455 ri = ri->next; /* can't be NULL if chained */ 2456 } while (chained); 2457 2458 return ri; 2459 } 2460 2461 void uprobe_handle_trampoline(struct pt_regs *regs) 2462 { 2463 struct uprobe_task *utask; 2464 struct return_instance *ri, *next; 2465 struct uprobe *uprobe; 2466 enum hprobe_state hstate; 2467 bool valid; 2468 2469 utask = current->utask; 2470 if (!utask) 2471 goto sigill; 2472 2473 ri = utask->return_instances; 2474 if (!ri) 2475 goto sigill; 2476 2477 do { 2478 /* 2479 * We should throw out the frames invalidated by longjmp(). 2480 * If this chain is valid, then the next one should be alive 2481 * or NULL; the latter case means that nobody but ri->func 2482 * could hit this trampoline on return. TODO: sigaltstack(). 2483 */ 2484 next = find_next_ret_chain(ri); 2485 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2486 2487 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2488 do { 2489 /* pop current instance from the stack of pending return instances, 2490 * as it's not pending anymore: we just fixed up original 2491 * instruction pointer in regs and are about to call handlers; 2492 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2493 * captured stack traces from uretprobe handlers, in which pending 2494 * trampoline addresses on the stack are replaced with correct 2495 * original return addresses 2496 */ 2497 rcu_assign_pointer(utask->return_instances, ri->next); 2498 2499 uprobe = hprobe_consume(&ri->hprobe, &hstate); 2500 if (valid) 2501 handle_uretprobe_chain(ri, uprobe, regs); 2502 hprobe_finalize(&ri->hprobe, hstate); 2503 2504 /* We already took care of hprobe, no need to waste more time on that. */ 2505 ri = free_ret_instance(ri, false /* !cleanup_hprobe */); 2506 utask->depth--; 2507 } while (ri != next); 2508 } while (!valid); 2509 2510 return; 2511 2512 sigill: 2513 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2514 force_sig(SIGILL); 2515 } 2516 2517 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2518 { 2519 return false; 2520 } 2521 2522 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2523 struct pt_regs *regs) 2524 { 2525 return true; 2526 } 2527 2528 /* 2529 * Run handler and ask thread to singlestep. 2530 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2531 */ 2532 static void handle_swbp(struct pt_regs *regs) 2533 { 2534 struct uprobe *uprobe; 2535 unsigned long bp_vaddr; 2536 int is_swbp; 2537 2538 bp_vaddr = uprobe_get_swbp_addr(regs); 2539 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2540 return uprobe_handle_trampoline(regs); 2541 2542 rcu_read_lock_trace(); 2543 2544 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); 2545 if (!uprobe) { 2546 if (is_swbp > 0) { 2547 /* No matching uprobe; signal SIGTRAP. */ 2548 force_sig(SIGTRAP); 2549 } else { 2550 /* 2551 * Either we raced with uprobe_unregister() or we can't 2552 * access this memory. The latter is only possible if 2553 * another thread plays with our ->mm. In both cases 2554 * we can simply restart. If this vma was unmapped we 2555 * can pretend this insn was not executed yet and get 2556 * the (correct) SIGSEGV after restart. 2557 */ 2558 instruction_pointer_set(regs, bp_vaddr); 2559 } 2560 goto out; 2561 } 2562 2563 /* change it in advance for ->handler() and restart */ 2564 instruction_pointer_set(regs, bp_vaddr); 2565 2566 /* 2567 * TODO: move copy_insn/etc into _register and remove this hack. 2568 * After we hit the bp, _unregister + _register can install the 2569 * new and not-yet-analyzed uprobe at the same address, restart. 2570 */ 2571 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2572 goto out; 2573 2574 /* 2575 * Pairs with the smp_wmb() in prepare_uprobe(). 2576 * 2577 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2578 * we must also see the stores to &uprobe->arch performed by the 2579 * prepare_uprobe() call. 2580 */ 2581 smp_rmb(); 2582 2583 /* Tracing handlers use ->utask to communicate with fetch methods */ 2584 if (!get_utask()) 2585 goto out; 2586 2587 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2588 goto out; 2589 2590 handler_chain(uprobe, regs); 2591 2592 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2593 goto out; 2594 2595 if (pre_ssout(uprobe, regs, bp_vaddr)) 2596 goto out; 2597 2598 out: 2599 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2600 rcu_read_unlock_trace(); 2601 } 2602 2603 /* 2604 * Perform required fix-ups and disable singlestep. 2605 * Allow pending signals to take effect. 2606 */ 2607 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2608 { 2609 struct uprobe *uprobe; 2610 int err = 0; 2611 2612 uprobe = utask->active_uprobe; 2613 if (utask->state == UTASK_SSTEP_ACK) 2614 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2615 else if (utask->state == UTASK_SSTEP_TRAPPED) 2616 arch_uprobe_abort_xol(&uprobe->arch, regs); 2617 else 2618 WARN_ON_ONCE(1); 2619 2620 put_uprobe(uprobe); 2621 utask->active_uprobe = NULL; 2622 utask->state = UTASK_RUNNING; 2623 xol_free_insn_slot(utask); 2624 2625 spin_lock_irq(¤t->sighand->siglock); 2626 recalc_sigpending(); /* see uprobe_deny_signal() */ 2627 spin_unlock_irq(¤t->sighand->siglock); 2628 2629 if (unlikely(err)) { 2630 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2631 force_sig(SIGILL); 2632 } 2633 } 2634 2635 /* 2636 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2637 * allows the thread to return from interrupt. After that handle_swbp() 2638 * sets utask->active_uprobe. 2639 * 2640 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2641 * and allows the thread to return from interrupt. 2642 * 2643 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2644 * uprobe_notify_resume(). 2645 */ 2646 void uprobe_notify_resume(struct pt_regs *regs) 2647 { 2648 struct uprobe_task *utask; 2649 2650 clear_thread_flag(TIF_UPROBE); 2651 2652 utask = current->utask; 2653 if (utask && utask->active_uprobe) 2654 handle_singlestep(utask, regs); 2655 else 2656 handle_swbp(regs); 2657 } 2658 2659 /* 2660 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2661 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2662 */ 2663 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2664 { 2665 if (!current->mm) 2666 return 0; 2667 2668 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2669 (!current->utask || !current->utask->return_instances)) 2670 return 0; 2671 2672 set_thread_flag(TIF_UPROBE); 2673 return 1; 2674 } 2675 2676 /* 2677 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2678 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2679 */ 2680 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2681 { 2682 struct uprobe_task *utask = current->utask; 2683 2684 if (!current->mm || !utask || !utask->active_uprobe) 2685 /* task is currently not uprobed */ 2686 return 0; 2687 2688 utask->state = UTASK_SSTEP_ACK; 2689 set_thread_flag(TIF_UPROBE); 2690 return 1; 2691 } 2692 2693 static struct notifier_block uprobe_exception_nb = { 2694 .notifier_call = arch_uprobe_exception_notify, 2695 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2696 }; 2697 2698 void __init uprobes_init(void) 2699 { 2700 int i; 2701 2702 for (i = 0; i < UPROBES_HASH_SZ; i++) 2703 mutex_init(&uprobes_mmap_mutex[i]); 2704 2705 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2706 } 2707