1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/fsverity.h> 18 #include <linux/mount.h> 19 #include <linux/posix_acl.h> 20 #include <linux/buffer_head.h> /* for inode_has_buffers */ 21 #include <linux/ratelimit.h> 22 #include <linux/list_lru.h> 23 #include <linux/iversion.h> 24 #include <linux/rw_hint.h> 25 #include <linux/seq_file.h> 26 #include <linux/debugfs.h> 27 #include <trace/events/writeback.h> 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/timestamp.h> 30 31 #include "internal.h" 32 33 /* 34 * Inode locking rules: 35 * 36 * inode->i_lock protects: 37 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 38 * Inode LRU list locks protect: 39 * inode->i_sb->s_inode_lru, inode->i_lru 40 * inode->i_sb->s_inode_list_lock protects: 41 * inode->i_sb->s_inodes, inode->i_sb_list 42 * bdi->wb.list_lock protects: 43 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 44 * inode_hash_lock protects: 45 * inode_hashtable, inode->i_hash 46 * 47 * Lock ordering: 48 * 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * Inode LRU list locks 52 * 53 * bdi->wb.list_lock 54 * inode->i_lock 55 * 56 * inode_hash_lock 57 * inode->i_sb->s_inode_list_lock 58 * inode->i_lock 59 * 60 * iunique_lock 61 * inode_hash_lock 62 */ 63 64 static unsigned int i_hash_mask __ro_after_init; 65 static unsigned int i_hash_shift __ro_after_init; 66 static struct hlist_head *inode_hashtable __ro_after_init; 67 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 68 69 /* 70 * Empty aops. Can be used for the cases where the user does not 71 * define any of the address_space operations. 72 */ 73 const struct address_space_operations empty_aops = { 74 }; 75 EXPORT_SYMBOL(empty_aops); 76 77 static DEFINE_PER_CPU(unsigned long, nr_inodes); 78 static DEFINE_PER_CPU(unsigned long, nr_unused); 79 80 static struct kmem_cache *inode_cachep __ro_after_init; 81 82 static long get_nr_inodes(void) 83 { 84 int i; 85 long sum = 0; 86 for_each_possible_cpu(i) 87 sum += per_cpu(nr_inodes, i); 88 return sum < 0 ? 0 : sum; 89 } 90 91 static inline long get_nr_inodes_unused(void) 92 { 93 int i; 94 long sum = 0; 95 for_each_possible_cpu(i) 96 sum += per_cpu(nr_unused, i); 97 return sum < 0 ? 0 : sum; 98 } 99 100 long get_nr_dirty_inodes(void) 101 { 102 /* not actually dirty inodes, but a wild approximation */ 103 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 104 return nr_dirty > 0 ? nr_dirty : 0; 105 } 106 107 #ifdef CONFIG_DEBUG_FS 108 static DEFINE_PER_CPU(long, mg_ctime_updates); 109 static DEFINE_PER_CPU(long, mg_fine_stamps); 110 static DEFINE_PER_CPU(long, mg_ctime_swaps); 111 112 static unsigned long get_mg_ctime_updates(void) 113 { 114 unsigned long sum = 0; 115 int i; 116 117 for_each_possible_cpu(i) 118 sum += data_race(per_cpu(mg_ctime_updates, i)); 119 return sum; 120 } 121 122 static unsigned long get_mg_fine_stamps(void) 123 { 124 unsigned long sum = 0; 125 int i; 126 127 for_each_possible_cpu(i) 128 sum += data_race(per_cpu(mg_fine_stamps, i)); 129 return sum; 130 } 131 132 static unsigned long get_mg_ctime_swaps(void) 133 { 134 unsigned long sum = 0; 135 int i; 136 137 for_each_possible_cpu(i) 138 sum += data_race(per_cpu(mg_ctime_swaps, i)); 139 return sum; 140 } 141 142 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 143 144 static int mgts_show(struct seq_file *s, void *p) 145 { 146 unsigned long ctime_updates = get_mg_ctime_updates(); 147 unsigned long ctime_swaps = get_mg_ctime_swaps(); 148 unsigned long fine_stamps = get_mg_fine_stamps(); 149 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 150 151 seq_printf(s, "%lu %lu %lu %lu\n", 152 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 153 return 0; 154 } 155 156 DEFINE_SHOW_ATTRIBUTE(mgts); 157 158 static int __init mg_debugfs_init(void) 159 { 160 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 161 return 0; 162 } 163 late_initcall(mg_debugfs_init); 164 165 #else /* ! CONFIG_DEBUG_FS */ 166 167 #define mgtime_counter_inc(__var) do { } while (0) 168 169 #endif /* CONFIG_DEBUG_FS */ 170 171 /* 172 * Handle nr_inode sysctl 173 */ 174 #ifdef CONFIG_SYSCTL 175 /* 176 * Statistics gathering.. 177 */ 178 static struct inodes_stat_t inodes_stat; 179 180 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 181 size_t *lenp, loff_t *ppos) 182 { 183 inodes_stat.nr_inodes = get_nr_inodes(); 184 inodes_stat.nr_unused = get_nr_inodes_unused(); 185 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 186 } 187 188 static const struct ctl_table inodes_sysctls[] = { 189 { 190 .procname = "inode-nr", 191 .data = &inodes_stat, 192 .maxlen = 2*sizeof(long), 193 .mode = 0444, 194 .proc_handler = proc_nr_inodes, 195 }, 196 { 197 .procname = "inode-state", 198 .data = &inodes_stat, 199 .maxlen = 7*sizeof(long), 200 .mode = 0444, 201 .proc_handler = proc_nr_inodes, 202 }, 203 }; 204 205 static int __init init_fs_inode_sysctls(void) 206 { 207 register_sysctl_init("fs", inodes_sysctls); 208 return 0; 209 } 210 early_initcall(init_fs_inode_sysctls); 211 #endif 212 213 static int no_open(struct inode *inode, struct file *file) 214 { 215 return -ENXIO; 216 } 217 218 /** 219 * inode_init_always_gfp - perform inode structure initialisation 220 * @sb: superblock inode belongs to 221 * @inode: inode to initialise 222 * @gfp: allocation flags 223 * 224 * These are initializations that need to be done on every inode 225 * allocation as the fields are not initialised by slab allocation. 226 * If there are additional allocations required @gfp is used. 227 */ 228 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 229 { 230 static const struct inode_operations empty_iops; 231 static const struct file_operations no_open_fops = {.open = no_open}; 232 struct address_space *const mapping = &inode->i_data; 233 234 inode->i_sb = sb; 235 inode->i_blkbits = sb->s_blocksize_bits; 236 inode->i_flags = 0; 237 inode_state_assign_raw(inode, 0); 238 atomic64_set(&inode->i_sequence, 0); 239 atomic_set(&inode->i_count, 1); 240 inode->i_op = &empty_iops; 241 inode->i_fop = &no_open_fops; 242 inode->i_ino = 0; 243 inode->__i_nlink = 1; 244 inode->i_opflags = 0; 245 if (sb->s_xattr) 246 inode->i_opflags |= IOP_XATTR; 247 if (sb->s_type->fs_flags & FS_MGTIME) 248 inode->i_opflags |= IOP_MGTIME; 249 i_uid_write(inode, 0); 250 i_gid_write(inode, 0); 251 atomic_set(&inode->i_writecount, 0); 252 inode->i_size = 0; 253 inode->i_write_hint = WRITE_LIFE_NOT_SET; 254 inode->i_blocks = 0; 255 inode->i_bytes = 0; 256 inode->i_generation = 0; 257 inode->i_pipe = NULL; 258 inode->i_cdev = NULL; 259 inode->i_link = NULL; 260 inode->i_dir_seq = 0; 261 inode->i_rdev = 0; 262 inode->dirtied_when = 0; 263 264 #ifdef CONFIG_CGROUP_WRITEBACK 265 inode->i_wb_frn_winner = 0; 266 inode->i_wb_frn_avg_time = 0; 267 inode->i_wb_frn_history = 0; 268 #endif 269 270 spin_lock_init(&inode->i_lock); 271 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 272 273 init_rwsem(&inode->i_rwsem); 274 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 275 276 atomic_set(&inode->i_dio_count, 0); 277 278 mapping->a_ops = &empty_aops; 279 mapping->host = inode; 280 mapping->flags = 0; 281 mapping->wb_err = 0; 282 atomic_set(&mapping->i_mmap_writable, 0); 283 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 284 atomic_set(&mapping->nr_thps, 0); 285 #endif 286 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 287 mapping->i_private_data = NULL; 288 mapping->writeback_index = 0; 289 init_rwsem(&mapping->invalidate_lock); 290 lockdep_set_class_and_name(&mapping->invalidate_lock, 291 &sb->s_type->invalidate_lock_key, 292 "mapping.invalidate_lock"); 293 if (sb->s_iflags & SB_I_STABLE_WRITES) 294 mapping_set_stable_writes(mapping); 295 inode->i_private = NULL; 296 inode->i_mapping = mapping; 297 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 298 #ifdef CONFIG_FS_POSIX_ACL 299 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 300 #endif 301 302 #ifdef CONFIG_FSNOTIFY 303 inode->i_fsnotify_mask = 0; 304 #endif 305 inode->i_flctx = NULL; 306 307 if (unlikely(security_inode_alloc(inode, gfp))) 308 return -ENOMEM; 309 310 this_cpu_inc(nr_inodes); 311 312 return 0; 313 } 314 EXPORT_SYMBOL(inode_init_always_gfp); 315 316 void free_inode_nonrcu(struct inode *inode) 317 { 318 kmem_cache_free(inode_cachep, inode); 319 } 320 EXPORT_SYMBOL(free_inode_nonrcu); 321 322 static void i_callback(struct rcu_head *head) 323 { 324 struct inode *inode = container_of(head, struct inode, i_rcu); 325 if (inode->free_inode) 326 inode->free_inode(inode); 327 else 328 free_inode_nonrcu(inode); 329 } 330 331 /** 332 * alloc_inode - obtain an inode 333 * @sb: superblock 334 * 335 * Allocates a new inode for given superblock. 336 * Inode wont be chained in superblock s_inodes list 337 * This means : 338 * - fs can't be unmount 339 * - quotas, fsnotify, writeback can't work 340 */ 341 struct inode *alloc_inode(struct super_block *sb) 342 { 343 const struct super_operations *ops = sb->s_op; 344 struct inode *inode; 345 346 if (ops->alloc_inode) 347 inode = ops->alloc_inode(sb); 348 else 349 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 350 351 if (!inode) 352 return NULL; 353 354 if (unlikely(inode_init_always(sb, inode))) { 355 if (ops->destroy_inode) { 356 ops->destroy_inode(inode); 357 if (!ops->free_inode) 358 return NULL; 359 } 360 inode->free_inode = ops->free_inode; 361 i_callback(&inode->i_rcu); 362 return NULL; 363 } 364 365 return inode; 366 } 367 368 void __destroy_inode(struct inode *inode) 369 { 370 BUG_ON(inode_has_buffers(inode)); 371 inode_detach_wb(inode); 372 security_inode_free(inode); 373 fsnotify_inode_delete(inode); 374 locks_free_lock_context(inode); 375 if (!inode->i_nlink) { 376 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 377 atomic_long_dec(&inode->i_sb->s_remove_count); 378 } 379 380 #ifdef CONFIG_FS_POSIX_ACL 381 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 382 posix_acl_release(inode->i_acl); 383 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 384 posix_acl_release(inode->i_default_acl); 385 #endif 386 this_cpu_dec(nr_inodes); 387 } 388 EXPORT_SYMBOL(__destroy_inode); 389 390 static void destroy_inode(struct inode *inode) 391 { 392 const struct super_operations *ops = inode->i_sb->s_op; 393 394 BUG_ON(!list_empty(&inode->i_lru)); 395 __destroy_inode(inode); 396 if (ops->destroy_inode) { 397 ops->destroy_inode(inode); 398 if (!ops->free_inode) 399 return; 400 } 401 inode->free_inode = ops->free_inode; 402 call_rcu(&inode->i_rcu, i_callback); 403 } 404 405 /** 406 * drop_nlink - directly drop an inode's link count 407 * @inode: inode 408 * 409 * This is a low-level filesystem helper to replace any 410 * direct filesystem manipulation of i_nlink. In cases 411 * where we are attempting to track writes to the 412 * filesystem, a decrement to zero means an imminent 413 * write when the file is truncated and actually unlinked 414 * on the filesystem. 415 */ 416 void drop_nlink(struct inode *inode) 417 { 418 WARN_ON(inode->i_nlink == 0); 419 inode->__i_nlink--; 420 if (!inode->i_nlink) 421 atomic_long_inc(&inode->i_sb->s_remove_count); 422 } 423 EXPORT_SYMBOL(drop_nlink); 424 425 /** 426 * clear_nlink - directly zero an inode's link count 427 * @inode: inode 428 * 429 * This is a low-level filesystem helper to replace any 430 * direct filesystem manipulation of i_nlink. See 431 * drop_nlink() for why we care about i_nlink hitting zero. 432 */ 433 void clear_nlink(struct inode *inode) 434 { 435 if (inode->i_nlink) { 436 inode->__i_nlink = 0; 437 atomic_long_inc(&inode->i_sb->s_remove_count); 438 } 439 } 440 EXPORT_SYMBOL(clear_nlink); 441 442 /** 443 * set_nlink - directly set an inode's link count 444 * @inode: inode 445 * @nlink: new nlink (should be non-zero) 446 * 447 * This is a low-level filesystem helper to replace any 448 * direct filesystem manipulation of i_nlink. 449 */ 450 void set_nlink(struct inode *inode, unsigned int nlink) 451 { 452 if (!nlink) { 453 clear_nlink(inode); 454 } else { 455 /* Yes, some filesystems do change nlink from zero to one */ 456 if (inode->i_nlink == 0) 457 atomic_long_dec(&inode->i_sb->s_remove_count); 458 459 inode->__i_nlink = nlink; 460 } 461 } 462 EXPORT_SYMBOL(set_nlink); 463 464 /** 465 * inc_nlink - directly increment an inode's link count 466 * @inode: inode 467 * 468 * This is a low-level filesystem helper to replace any 469 * direct filesystem manipulation of i_nlink. Currently, 470 * it is only here for parity with dec_nlink(). 471 */ 472 void inc_nlink(struct inode *inode) 473 { 474 if (unlikely(inode->i_nlink == 0)) { 475 WARN_ON(!(inode_state_read_once(inode) & I_LINKABLE)); 476 atomic_long_dec(&inode->i_sb->s_remove_count); 477 } 478 479 inode->__i_nlink++; 480 } 481 EXPORT_SYMBOL(inc_nlink); 482 483 static void __address_space_init_once(struct address_space *mapping) 484 { 485 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 486 init_rwsem(&mapping->i_mmap_rwsem); 487 INIT_LIST_HEAD(&mapping->i_private_list); 488 spin_lock_init(&mapping->i_private_lock); 489 mapping->i_mmap = RB_ROOT_CACHED; 490 } 491 492 void address_space_init_once(struct address_space *mapping) 493 { 494 memset(mapping, 0, sizeof(*mapping)); 495 __address_space_init_once(mapping); 496 } 497 EXPORT_SYMBOL(address_space_init_once); 498 499 /* 500 * These are initializations that only need to be done 501 * once, because the fields are idempotent across use 502 * of the inode, so let the slab aware of that. 503 */ 504 void inode_init_once(struct inode *inode) 505 { 506 memset(inode, 0, sizeof(*inode)); 507 INIT_HLIST_NODE(&inode->i_hash); 508 INIT_LIST_HEAD(&inode->i_devices); 509 INIT_LIST_HEAD(&inode->i_io_list); 510 INIT_LIST_HEAD(&inode->i_wb_list); 511 INIT_LIST_HEAD(&inode->i_lru); 512 INIT_LIST_HEAD(&inode->i_sb_list); 513 __address_space_init_once(&inode->i_data); 514 i_size_ordered_init(inode); 515 } 516 EXPORT_SYMBOL(inode_init_once); 517 518 static void init_once(void *foo) 519 { 520 struct inode *inode = (struct inode *) foo; 521 522 inode_init_once(inode); 523 } 524 525 /* 526 * get additional reference to inode; caller must already hold one. 527 */ 528 void ihold(struct inode *inode) 529 { 530 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 531 } 532 EXPORT_SYMBOL(ihold); 533 534 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 535 struct inode *inode, u32 bit) 536 { 537 void *bit_address; 538 539 bit_address = inode_state_wait_address(inode, bit); 540 init_wait_var_entry(wqe, bit_address, 0); 541 return __var_waitqueue(bit_address); 542 } 543 EXPORT_SYMBOL(inode_bit_waitqueue); 544 545 void wait_on_new_inode(struct inode *inode) 546 { 547 struct wait_bit_queue_entry wqe; 548 struct wait_queue_head *wq_head; 549 550 spin_lock(&inode->i_lock); 551 if (!(inode_state_read(inode) & I_NEW)) { 552 spin_unlock(&inode->i_lock); 553 return; 554 } 555 556 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 557 for (;;) { 558 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 559 if (!(inode_state_read(inode) & I_NEW)) 560 break; 561 spin_unlock(&inode->i_lock); 562 schedule(); 563 spin_lock(&inode->i_lock); 564 } 565 finish_wait(wq_head, &wqe.wq_entry); 566 WARN_ON(inode_state_read(inode) & I_NEW); 567 spin_unlock(&inode->i_lock); 568 } 569 EXPORT_SYMBOL(wait_on_new_inode); 570 571 static void __inode_lru_list_add(struct inode *inode, bool rotate) 572 { 573 lockdep_assert_held(&inode->i_lock); 574 575 if (inode_state_read(inode) & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 576 return; 577 if (icount_read(inode)) 578 return; 579 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 580 return; 581 if (!mapping_shrinkable(&inode->i_data)) 582 return; 583 584 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 585 this_cpu_inc(nr_unused); 586 else if (rotate) 587 inode_state_set(inode, I_REFERENCED); 588 } 589 590 /* 591 * Add inode to LRU if needed (inode is unused and clean). 592 */ 593 void inode_lru_list_add(struct inode *inode) 594 { 595 __inode_lru_list_add(inode, false); 596 } 597 598 static void inode_lru_list_del(struct inode *inode) 599 { 600 if (list_empty(&inode->i_lru)) 601 return; 602 603 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 604 this_cpu_dec(nr_unused); 605 } 606 607 static void inode_pin_lru_isolating(struct inode *inode) 608 { 609 lockdep_assert_held(&inode->i_lock); 610 WARN_ON(inode_state_read(inode) & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 611 inode_state_set(inode, I_LRU_ISOLATING); 612 } 613 614 static void inode_unpin_lru_isolating(struct inode *inode) 615 { 616 spin_lock(&inode->i_lock); 617 WARN_ON(!(inode_state_read(inode) & I_LRU_ISOLATING)); 618 inode_state_clear(inode, I_LRU_ISOLATING); 619 /* Called with inode->i_lock which ensures memory ordering. */ 620 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 621 spin_unlock(&inode->i_lock); 622 } 623 624 static void inode_wait_for_lru_isolating(struct inode *inode) 625 { 626 struct wait_bit_queue_entry wqe; 627 struct wait_queue_head *wq_head; 628 629 lockdep_assert_held(&inode->i_lock); 630 if (!(inode_state_read(inode) & I_LRU_ISOLATING)) 631 return; 632 633 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 634 for (;;) { 635 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 636 /* 637 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 638 * memory ordering. 639 */ 640 if (!(inode_state_read(inode) & I_LRU_ISOLATING)) 641 break; 642 spin_unlock(&inode->i_lock); 643 schedule(); 644 spin_lock(&inode->i_lock); 645 } 646 finish_wait(wq_head, &wqe.wq_entry); 647 WARN_ON(inode_state_read(inode) & I_LRU_ISOLATING); 648 } 649 650 /** 651 * inode_sb_list_add - add inode to the superblock list of inodes 652 * @inode: inode to add 653 */ 654 void inode_sb_list_add(struct inode *inode) 655 { 656 struct super_block *sb = inode->i_sb; 657 658 spin_lock(&sb->s_inode_list_lock); 659 list_add(&inode->i_sb_list, &sb->s_inodes); 660 spin_unlock(&sb->s_inode_list_lock); 661 } 662 EXPORT_SYMBOL_GPL(inode_sb_list_add); 663 664 static inline void inode_sb_list_del(struct inode *inode) 665 { 666 struct super_block *sb = inode->i_sb; 667 668 if (!list_empty(&inode->i_sb_list)) { 669 spin_lock(&sb->s_inode_list_lock); 670 list_del_init(&inode->i_sb_list); 671 spin_unlock(&sb->s_inode_list_lock); 672 } 673 } 674 675 static unsigned long hash(struct super_block *sb, unsigned long hashval) 676 { 677 unsigned long tmp; 678 679 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 680 L1_CACHE_BYTES; 681 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 682 return tmp & i_hash_mask; 683 } 684 685 /** 686 * __insert_inode_hash - hash an inode 687 * @inode: unhashed inode 688 * @hashval: unsigned long value used to locate this object in the 689 * inode_hashtable. 690 * 691 * Add an inode to the inode hash for this superblock. 692 */ 693 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 694 { 695 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 696 697 spin_lock(&inode_hash_lock); 698 spin_lock(&inode->i_lock); 699 hlist_add_head_rcu(&inode->i_hash, b); 700 spin_unlock(&inode->i_lock); 701 spin_unlock(&inode_hash_lock); 702 } 703 EXPORT_SYMBOL(__insert_inode_hash); 704 705 /** 706 * __remove_inode_hash - remove an inode from the hash 707 * @inode: inode to unhash 708 * 709 * Remove an inode from the superblock. 710 */ 711 void __remove_inode_hash(struct inode *inode) 712 { 713 spin_lock(&inode_hash_lock); 714 spin_lock(&inode->i_lock); 715 hlist_del_init_rcu(&inode->i_hash); 716 spin_unlock(&inode->i_lock); 717 spin_unlock(&inode_hash_lock); 718 } 719 EXPORT_SYMBOL(__remove_inode_hash); 720 721 void dump_mapping(const struct address_space *mapping) 722 { 723 struct inode *host; 724 const struct address_space_operations *a_ops; 725 struct hlist_node *dentry_first; 726 struct dentry *dentry_ptr; 727 struct dentry dentry; 728 char fname[64] = {}; 729 unsigned long ino; 730 731 /* 732 * If mapping is an invalid pointer, we don't want to crash 733 * accessing it, so probe everything depending on it carefully. 734 */ 735 if (get_kernel_nofault(host, &mapping->host) || 736 get_kernel_nofault(a_ops, &mapping->a_ops)) { 737 pr_warn("invalid mapping:%px\n", mapping); 738 return; 739 } 740 741 if (!host) { 742 pr_warn("aops:%ps\n", a_ops); 743 return; 744 } 745 746 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 747 get_kernel_nofault(ino, &host->i_ino)) { 748 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 749 return; 750 } 751 752 if (!dentry_first) { 753 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 754 return; 755 } 756 757 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 758 if (get_kernel_nofault(dentry, dentry_ptr) || 759 !dentry.d_parent || !dentry.d_name.name) { 760 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 761 a_ops, ino, dentry_ptr); 762 return; 763 } 764 765 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 766 strscpy(fname, "<invalid>"); 767 /* 768 * Even if strncpy_from_kernel_nofault() succeeded, 769 * the fname could be unreliable 770 */ 771 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 772 a_ops, ino, fname); 773 } 774 775 void clear_inode(struct inode *inode) 776 { 777 /* 778 * Only IS_VERITY() inodes can have verity info, so start by checking 779 * for IS_VERITY() (which is faster than retrieving the pointer to the 780 * verity info). This minimizes overhead for non-verity inodes. 781 */ 782 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 783 fsverity_cleanup_inode(inode); 784 785 /* 786 * We have to cycle the i_pages lock here because reclaim can be in the 787 * process of removing the last page (in __filemap_remove_folio()) 788 * and we must not free the mapping under it. 789 */ 790 xa_lock_irq(&inode->i_data.i_pages); 791 BUG_ON(inode->i_data.nrpages); 792 /* 793 * Almost always, mapping_empty(&inode->i_data) here; but there are 794 * two known and long-standing ways in which nodes may get left behind 795 * (when deep radix-tree node allocation failed partway; or when THP 796 * collapse_file() failed). Until those two known cases are cleaned up, 797 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 798 * nor even WARN_ON(!mapping_empty). 799 */ 800 xa_unlock_irq(&inode->i_data.i_pages); 801 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 802 BUG_ON(!(inode_state_read_once(inode) & I_FREEING)); 803 BUG_ON(inode_state_read_once(inode) & I_CLEAR); 804 BUG_ON(!list_empty(&inode->i_wb_list)); 805 /* don't need i_lock here, no concurrent mods to i_state */ 806 inode_state_assign_raw(inode, I_FREEING | I_CLEAR); 807 } 808 EXPORT_SYMBOL(clear_inode); 809 810 /* 811 * Free the inode passed in, removing it from the lists it is still connected 812 * to. We remove any pages still attached to the inode and wait for any IO that 813 * is still in progress before finally destroying the inode. 814 * 815 * An inode must already be marked I_FREEING so that we avoid the inode being 816 * moved back onto lists if we race with other code that manipulates the lists 817 * (e.g. writeback_single_inode). The caller is responsible for setting this. 818 * 819 * An inode must already be removed from the LRU list before being evicted from 820 * the cache. This should occur atomically with setting the I_FREEING state 821 * flag, so no inodes here should ever be on the LRU when being evicted. 822 */ 823 static void evict(struct inode *inode) 824 { 825 const struct super_operations *op = inode->i_sb->s_op; 826 827 BUG_ON(!(inode_state_read_once(inode) & I_FREEING)); 828 BUG_ON(!list_empty(&inode->i_lru)); 829 830 inode_io_list_del(inode); 831 inode_sb_list_del(inode); 832 833 spin_lock(&inode->i_lock); 834 inode_wait_for_lru_isolating(inode); 835 836 /* 837 * Wait for flusher thread to be done with the inode so that filesystem 838 * does not start destroying it while writeback is still running. Since 839 * the inode has I_FREEING set, flusher thread won't start new work on 840 * the inode. We just have to wait for running writeback to finish. 841 */ 842 inode_wait_for_writeback(inode); 843 spin_unlock(&inode->i_lock); 844 845 if (op->evict_inode) { 846 op->evict_inode(inode); 847 } else { 848 truncate_inode_pages_final(&inode->i_data); 849 clear_inode(inode); 850 } 851 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 852 cd_forget(inode); 853 854 remove_inode_hash(inode); 855 856 /* 857 * Wake up waiters in __wait_on_freeing_inode(). 858 * 859 * It is an invariant that any thread we need to wake up is already 860 * accounted for before remove_inode_hash() acquires ->i_lock -- both 861 * sides take the lock and sleep is aborted if the inode is found 862 * unhashed. Thus either the sleeper wins and goes off CPU, or removal 863 * wins and the sleeper aborts after testing with the lock. 864 * 865 * This also means we don't need any fences for the call below. 866 */ 867 inode_wake_up_bit(inode, __I_NEW); 868 BUG_ON(inode_state_read_once(inode) != (I_FREEING | I_CLEAR)); 869 870 destroy_inode(inode); 871 } 872 873 /* 874 * dispose_list - dispose of the contents of a local list 875 * @head: the head of the list to free 876 * 877 * Dispose-list gets a local list with local inodes in it, so it doesn't 878 * need to worry about list corruption and SMP locks. 879 */ 880 static void dispose_list(struct list_head *head) 881 { 882 while (!list_empty(head)) { 883 struct inode *inode; 884 885 inode = list_first_entry(head, struct inode, i_lru); 886 list_del_init(&inode->i_lru); 887 888 evict(inode); 889 cond_resched(); 890 } 891 } 892 893 /** 894 * evict_inodes - evict all evictable inodes for a superblock 895 * @sb: superblock to operate on 896 * 897 * Make sure that no inodes with zero refcount are retained. This is 898 * called by superblock shutdown after having SB_ACTIVE flag removed, 899 * so any inode reaching zero refcount during or after that call will 900 * be immediately evicted. 901 */ 902 void evict_inodes(struct super_block *sb) 903 { 904 struct inode *inode; 905 LIST_HEAD(dispose); 906 907 again: 908 spin_lock(&sb->s_inode_list_lock); 909 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 910 if (icount_read(inode)) 911 continue; 912 913 spin_lock(&inode->i_lock); 914 if (icount_read(inode)) { 915 spin_unlock(&inode->i_lock); 916 continue; 917 } 918 if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) { 919 spin_unlock(&inode->i_lock); 920 continue; 921 } 922 923 inode_state_set(inode, I_FREEING); 924 inode_lru_list_del(inode); 925 spin_unlock(&inode->i_lock); 926 list_add(&inode->i_lru, &dispose); 927 928 /* 929 * We can have a ton of inodes to evict at unmount time given 930 * enough memory, check to see if we need to go to sleep for a 931 * bit so we don't livelock. 932 */ 933 if (need_resched()) { 934 spin_unlock(&sb->s_inode_list_lock); 935 cond_resched(); 936 dispose_list(&dispose); 937 goto again; 938 } 939 } 940 spin_unlock(&sb->s_inode_list_lock); 941 942 dispose_list(&dispose); 943 } 944 EXPORT_SYMBOL_GPL(evict_inodes); 945 946 /* 947 * Isolate the inode from the LRU in preparation for freeing it. 948 * 949 * If the inode has the I_REFERENCED flag set, then it means that it has been 950 * used recently - the flag is set in iput_final(). When we encounter such an 951 * inode, clear the flag and move it to the back of the LRU so it gets another 952 * pass through the LRU before it gets reclaimed. This is necessary because of 953 * the fact we are doing lazy LRU updates to minimise lock contention so the 954 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 955 * with this flag set because they are the inodes that are out of order. 956 */ 957 static enum lru_status inode_lru_isolate(struct list_head *item, 958 struct list_lru_one *lru, void *arg) 959 { 960 struct list_head *freeable = arg; 961 struct inode *inode = container_of(item, struct inode, i_lru); 962 963 /* 964 * We are inverting the lru lock/inode->i_lock here, so use a 965 * trylock. If we fail to get the lock, just skip it. 966 */ 967 if (!spin_trylock(&inode->i_lock)) 968 return LRU_SKIP; 969 970 /* 971 * Inodes can get referenced, redirtied, or repopulated while 972 * they're already on the LRU, and this can make them 973 * unreclaimable for a while. Remove them lazily here; iput, 974 * sync, or the last page cache deletion will requeue them. 975 */ 976 if (icount_read(inode) || 977 (inode_state_read(inode) & ~I_REFERENCED) || 978 !mapping_shrinkable(&inode->i_data)) { 979 list_lru_isolate(lru, &inode->i_lru); 980 spin_unlock(&inode->i_lock); 981 this_cpu_dec(nr_unused); 982 return LRU_REMOVED; 983 } 984 985 /* Recently referenced inodes get one more pass */ 986 if (inode_state_read(inode) & I_REFERENCED) { 987 inode_state_clear(inode, I_REFERENCED); 988 spin_unlock(&inode->i_lock); 989 return LRU_ROTATE; 990 } 991 992 /* 993 * On highmem systems, mapping_shrinkable() permits dropping 994 * page cache in order to free up struct inodes: lowmem might 995 * be under pressure before the cache inside the highmem zone. 996 */ 997 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 998 inode_pin_lru_isolating(inode); 999 spin_unlock(&inode->i_lock); 1000 spin_unlock(&lru->lock); 1001 if (remove_inode_buffers(inode)) { 1002 unsigned long reap; 1003 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 1004 if (current_is_kswapd()) 1005 __count_vm_events(KSWAPD_INODESTEAL, reap); 1006 else 1007 __count_vm_events(PGINODESTEAL, reap); 1008 mm_account_reclaimed_pages(reap); 1009 } 1010 inode_unpin_lru_isolating(inode); 1011 return LRU_RETRY; 1012 } 1013 1014 WARN_ON(inode_state_read(inode) & I_NEW); 1015 inode_state_set(inode, I_FREEING); 1016 list_lru_isolate_move(lru, &inode->i_lru, freeable); 1017 spin_unlock(&inode->i_lock); 1018 1019 this_cpu_dec(nr_unused); 1020 return LRU_REMOVED; 1021 } 1022 1023 /* 1024 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 1025 * This is called from the superblock shrinker function with a number of inodes 1026 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 1027 * then are freed outside inode_lock by dispose_list(). 1028 */ 1029 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 1030 { 1031 LIST_HEAD(freeable); 1032 long freed; 1033 1034 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 1035 inode_lru_isolate, &freeable); 1036 dispose_list(&freeable); 1037 return freed; 1038 } 1039 1040 static void __wait_on_freeing_inode(struct inode *inode, bool hash_locked, bool rcu_locked); 1041 1042 /* 1043 * Called with the inode lock held. 1044 */ 1045 static struct inode *find_inode(struct super_block *sb, 1046 struct hlist_head *head, 1047 int (*test)(struct inode *, void *), 1048 void *data, bool hash_locked, 1049 bool *isnew) 1050 { 1051 struct inode *inode = NULL; 1052 1053 if (hash_locked) 1054 lockdep_assert_held(&inode_hash_lock); 1055 else 1056 lockdep_assert_not_held(&inode_hash_lock); 1057 1058 rcu_read_lock(); 1059 repeat: 1060 hlist_for_each_entry_rcu(inode, head, i_hash) { 1061 if (inode->i_sb != sb) 1062 continue; 1063 if (!test(inode, data)) 1064 continue; 1065 spin_lock(&inode->i_lock); 1066 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) { 1067 __wait_on_freeing_inode(inode, hash_locked, true); 1068 goto repeat; 1069 } 1070 if (unlikely(inode_state_read(inode) & I_CREATING)) { 1071 spin_unlock(&inode->i_lock); 1072 rcu_read_unlock(); 1073 return ERR_PTR(-ESTALE); 1074 } 1075 __iget(inode); 1076 *isnew = !!(inode_state_read(inode) & I_NEW); 1077 spin_unlock(&inode->i_lock); 1078 rcu_read_unlock(); 1079 return inode; 1080 } 1081 rcu_read_unlock(); 1082 return NULL; 1083 } 1084 1085 /* 1086 * find_inode_fast is the fast path version of find_inode, see the comment at 1087 * iget_locked for details. 1088 */ 1089 static struct inode *find_inode_fast(struct super_block *sb, 1090 struct hlist_head *head, unsigned long ino, 1091 bool hash_locked, bool *isnew) 1092 { 1093 struct inode *inode = NULL; 1094 1095 if (hash_locked) 1096 lockdep_assert_held(&inode_hash_lock); 1097 else 1098 lockdep_assert_not_held(&inode_hash_lock); 1099 1100 rcu_read_lock(); 1101 repeat: 1102 hlist_for_each_entry_rcu(inode, head, i_hash) { 1103 if (inode->i_ino != ino) 1104 continue; 1105 if (inode->i_sb != sb) 1106 continue; 1107 spin_lock(&inode->i_lock); 1108 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) { 1109 __wait_on_freeing_inode(inode, hash_locked, true); 1110 goto repeat; 1111 } 1112 if (unlikely(inode_state_read(inode) & I_CREATING)) { 1113 spin_unlock(&inode->i_lock); 1114 rcu_read_unlock(); 1115 return ERR_PTR(-ESTALE); 1116 } 1117 __iget(inode); 1118 *isnew = !!(inode_state_read(inode) & I_NEW); 1119 spin_unlock(&inode->i_lock); 1120 rcu_read_unlock(); 1121 return inode; 1122 } 1123 rcu_read_unlock(); 1124 return NULL; 1125 } 1126 1127 /* 1128 * Each cpu owns a range of LAST_INO_BATCH numbers. 1129 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1130 * to renew the exhausted range. 1131 * 1132 * This does not significantly increase overflow rate because every CPU can 1133 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1134 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1135 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1136 * overflow rate by 2x, which does not seem too significant. 1137 * 1138 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1139 * error if st_ino won't fit in target struct field. Use 32bit counter 1140 * here to attempt to avoid that. 1141 */ 1142 #define LAST_INO_BATCH 1024 1143 static DEFINE_PER_CPU(unsigned int, last_ino); 1144 1145 unsigned int get_next_ino(void) 1146 { 1147 unsigned int *p = &get_cpu_var(last_ino); 1148 unsigned int res = *p; 1149 1150 #ifdef CONFIG_SMP 1151 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1152 static atomic_t shared_last_ino; 1153 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1154 1155 res = next - LAST_INO_BATCH; 1156 } 1157 #endif 1158 1159 res++; 1160 /* get_next_ino should not provide a 0 inode number */ 1161 if (unlikely(!res)) 1162 res++; 1163 *p = res; 1164 put_cpu_var(last_ino); 1165 return res; 1166 } 1167 EXPORT_SYMBOL(get_next_ino); 1168 1169 /** 1170 * new_inode - obtain an inode 1171 * @sb: superblock 1172 * 1173 * Allocates a new inode for given superblock. The default gfp_mask 1174 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1175 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1176 * for the page cache are not reclaimable or migratable, 1177 * mapping_set_gfp_mask() must be called with suitable flags on the 1178 * newly created inode's mapping 1179 * 1180 */ 1181 struct inode *new_inode(struct super_block *sb) 1182 { 1183 struct inode *inode; 1184 1185 inode = alloc_inode(sb); 1186 if (inode) 1187 inode_sb_list_add(inode); 1188 return inode; 1189 } 1190 EXPORT_SYMBOL(new_inode); 1191 1192 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1193 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1194 { 1195 if (S_ISDIR(inode->i_mode)) { 1196 struct file_system_type *type = inode->i_sb->s_type; 1197 1198 /* Set new key only if filesystem hasn't already changed it */ 1199 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1200 /* 1201 * ensure nobody is actually holding i_rwsem 1202 */ 1203 init_rwsem(&inode->i_rwsem); 1204 lockdep_set_class(&inode->i_rwsem, 1205 &type->i_mutex_dir_key); 1206 } 1207 } 1208 } 1209 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1210 #endif 1211 1212 /** 1213 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1214 * @inode: new inode to unlock 1215 * 1216 * Called when the inode is fully initialised to clear the new state of the 1217 * inode and wake up anyone waiting for the inode to finish initialisation. 1218 */ 1219 void unlock_new_inode(struct inode *inode) 1220 { 1221 lockdep_annotate_inode_mutex_key(inode); 1222 spin_lock(&inode->i_lock); 1223 WARN_ON(!(inode_state_read(inode) & I_NEW)); 1224 inode_state_clear(inode, I_NEW | I_CREATING); 1225 inode_wake_up_bit(inode, __I_NEW); 1226 spin_unlock(&inode->i_lock); 1227 } 1228 EXPORT_SYMBOL(unlock_new_inode); 1229 1230 void discard_new_inode(struct inode *inode) 1231 { 1232 lockdep_annotate_inode_mutex_key(inode); 1233 spin_lock(&inode->i_lock); 1234 WARN_ON(!(inode_state_read(inode) & I_NEW)); 1235 inode_state_clear(inode, I_NEW); 1236 inode_wake_up_bit(inode, __I_NEW); 1237 spin_unlock(&inode->i_lock); 1238 iput(inode); 1239 } 1240 EXPORT_SYMBOL(discard_new_inode); 1241 1242 /** 1243 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1244 * 1245 * Lock any non-NULL argument. Passed objects must not be directories. 1246 * Zero, one or two objects may be locked by this function. 1247 * 1248 * @inode1: first inode to lock 1249 * @inode2: second inode to lock 1250 */ 1251 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1252 { 1253 if (inode1) 1254 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1255 if (inode2) 1256 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1257 if (inode1 > inode2) 1258 swap(inode1, inode2); 1259 if (inode1) 1260 inode_lock(inode1); 1261 if (inode2 && inode2 != inode1) 1262 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1263 } 1264 EXPORT_SYMBOL(lock_two_nondirectories); 1265 1266 /** 1267 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1268 * @inode1: first inode to unlock 1269 * @inode2: second inode to unlock 1270 */ 1271 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1272 { 1273 if (inode1) { 1274 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1275 inode_unlock(inode1); 1276 } 1277 if (inode2 && inode2 != inode1) { 1278 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1279 inode_unlock(inode2); 1280 } 1281 } 1282 EXPORT_SYMBOL(unlock_two_nondirectories); 1283 1284 /** 1285 * inode_insert5 - obtain an inode from a mounted file system 1286 * @inode: pre-allocated inode to use for insert to cache 1287 * @hashval: hash value (usually inode number) to get 1288 * @test: callback used for comparisons between inodes 1289 * @set: callback used to initialize a new struct inode 1290 * @data: opaque data pointer to pass to @test and @set 1291 * @isnew: pointer to a bool which will indicate whether I_NEW is set 1292 * 1293 * Search for the inode specified by @hashval and @data in the inode cache, 1294 * and if present return it with an increased reference count. This is a 1295 * variant of iget5_locked() that doesn't allocate an inode. 1296 * 1297 * If the inode is not present in the cache, insert the pre-allocated inode and 1298 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1299 * to fill it in before unlocking it via unlock_new_inode(). 1300 * 1301 * Note that both @test and @set are called with the inode_hash_lock held, so 1302 * they can't sleep. 1303 */ 1304 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1305 int (*test)(struct inode *, void *), 1306 int (*set)(struct inode *, void *), void *data) 1307 { 1308 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1309 struct inode *old; 1310 bool isnew; 1311 1312 might_sleep(); 1313 1314 again: 1315 spin_lock(&inode_hash_lock); 1316 old = find_inode(inode->i_sb, head, test, data, true, &isnew); 1317 if (unlikely(old)) { 1318 /* 1319 * Uhhuh, somebody else created the same inode under us. 1320 * Use the old inode instead of the preallocated one. 1321 */ 1322 spin_unlock(&inode_hash_lock); 1323 if (IS_ERR(old)) 1324 return NULL; 1325 if (unlikely(isnew)) 1326 wait_on_new_inode(old); 1327 if (unlikely(inode_unhashed(old))) { 1328 iput(old); 1329 goto again; 1330 } 1331 return old; 1332 } 1333 1334 if (set && unlikely(set(inode, data))) { 1335 spin_unlock(&inode_hash_lock); 1336 return NULL; 1337 } 1338 1339 /* 1340 * Return the locked inode with I_NEW set, the 1341 * caller is responsible for filling in the contents 1342 */ 1343 spin_lock(&inode->i_lock); 1344 inode_state_set(inode, I_NEW); 1345 hlist_add_head_rcu(&inode->i_hash, head); 1346 spin_unlock(&inode->i_lock); 1347 1348 spin_unlock(&inode_hash_lock); 1349 1350 /* 1351 * Add inode to the sb list if it's not already. It has I_NEW at this 1352 * point, so it should be safe to test i_sb_list locklessly. 1353 */ 1354 if (list_empty(&inode->i_sb_list)) 1355 inode_sb_list_add(inode); 1356 1357 return inode; 1358 } 1359 EXPORT_SYMBOL(inode_insert5); 1360 1361 /** 1362 * iget5_locked - obtain an inode from a mounted file system 1363 * @sb: super block of file system 1364 * @hashval: hash value (usually inode number) to get 1365 * @test: callback used for comparisons between inodes 1366 * @set: callback used to initialize a new struct inode 1367 * @data: opaque data pointer to pass to @test and @set 1368 * 1369 * Search for the inode specified by @hashval and @data in the inode cache, 1370 * and if present return it with an increased reference count. This is a 1371 * generalized version of iget_locked() for file systems where the inode 1372 * number is not sufficient for unique identification of an inode. 1373 * 1374 * If the inode is not present in the cache, allocate and insert a new inode 1375 * and return it locked, hashed, and with the I_NEW flag set. The file system 1376 * gets to fill it in before unlocking it via unlock_new_inode(). 1377 * 1378 * Note that both @test and @set are called with the inode_hash_lock held, so 1379 * they can't sleep. 1380 */ 1381 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1382 int (*test)(struct inode *, void *), 1383 int (*set)(struct inode *, void *), void *data) 1384 { 1385 struct inode *inode = ilookup5(sb, hashval, test, data); 1386 1387 if (!inode) { 1388 struct inode *new = alloc_inode(sb); 1389 1390 if (new) { 1391 inode = inode_insert5(new, hashval, test, set, data); 1392 if (unlikely(inode != new)) 1393 destroy_inode(new); 1394 } 1395 } 1396 return inode; 1397 } 1398 EXPORT_SYMBOL(iget5_locked); 1399 1400 /** 1401 * iget5_locked_rcu - obtain an inode from a mounted file system 1402 * @sb: super block of file system 1403 * @hashval: hash value (usually inode number) to get 1404 * @test: callback used for comparisons between inodes 1405 * @set: callback used to initialize a new struct inode 1406 * @data: opaque data pointer to pass to @test and @set 1407 * 1408 * This is equivalent to iget5_locked, except the @test callback must 1409 * tolerate the inode not being stable, including being mid-teardown. 1410 */ 1411 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1412 int (*test)(struct inode *, void *), 1413 int (*set)(struct inode *, void *), void *data) 1414 { 1415 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1416 struct inode *inode, *new; 1417 bool isnew; 1418 1419 might_sleep(); 1420 1421 again: 1422 inode = find_inode(sb, head, test, data, false, &isnew); 1423 if (inode) { 1424 if (IS_ERR(inode)) 1425 return NULL; 1426 if (unlikely(isnew)) 1427 wait_on_new_inode(inode); 1428 if (unlikely(inode_unhashed(inode))) { 1429 iput(inode); 1430 goto again; 1431 } 1432 return inode; 1433 } 1434 1435 new = alloc_inode(sb); 1436 if (new) { 1437 inode = inode_insert5(new, hashval, test, set, data); 1438 if (unlikely(inode != new)) 1439 destroy_inode(new); 1440 } 1441 return inode; 1442 } 1443 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1444 1445 /** 1446 * iget_locked - obtain an inode from a mounted file system 1447 * @sb: super block of file system 1448 * @ino: inode number to get 1449 * 1450 * Search for the inode specified by @ino in the inode cache and if present 1451 * return it with an increased reference count. This is for file systems 1452 * where the inode number is sufficient for unique identification of an inode. 1453 * 1454 * If the inode is not in cache, allocate a new inode and return it locked, 1455 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1456 * before unlocking it via unlock_new_inode(). 1457 */ 1458 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1459 { 1460 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1461 struct inode *inode; 1462 bool isnew; 1463 1464 might_sleep(); 1465 1466 again: 1467 inode = find_inode_fast(sb, head, ino, false, &isnew); 1468 if (inode) { 1469 if (IS_ERR(inode)) 1470 return NULL; 1471 if (unlikely(isnew)) 1472 wait_on_new_inode(inode); 1473 if (unlikely(inode_unhashed(inode))) { 1474 iput(inode); 1475 goto again; 1476 } 1477 return inode; 1478 } 1479 1480 inode = alloc_inode(sb); 1481 if (inode) { 1482 struct inode *old; 1483 1484 spin_lock(&inode_hash_lock); 1485 /* We released the lock, so.. */ 1486 old = find_inode_fast(sb, head, ino, true, &isnew); 1487 if (!old) { 1488 inode->i_ino = ino; 1489 spin_lock(&inode->i_lock); 1490 inode_state_assign(inode, I_NEW); 1491 hlist_add_head_rcu(&inode->i_hash, head); 1492 spin_unlock(&inode->i_lock); 1493 spin_unlock(&inode_hash_lock); 1494 inode_sb_list_add(inode); 1495 1496 /* Return the locked inode with I_NEW set, the 1497 * caller is responsible for filling in the contents 1498 */ 1499 return inode; 1500 } 1501 1502 /* 1503 * Uhhuh, somebody else created the same inode under 1504 * us. Use the old inode instead of the one we just 1505 * allocated. 1506 */ 1507 spin_unlock(&inode_hash_lock); 1508 destroy_inode(inode); 1509 if (IS_ERR(old)) 1510 return NULL; 1511 inode = old; 1512 if (unlikely(isnew)) 1513 wait_on_new_inode(inode); 1514 if (unlikely(inode_unhashed(inode))) { 1515 iput(inode); 1516 goto again; 1517 } 1518 } 1519 return inode; 1520 } 1521 EXPORT_SYMBOL(iget_locked); 1522 1523 /* 1524 * search the inode cache for a matching inode number. 1525 * If we find one, then the inode number we are trying to 1526 * allocate is not unique and so we should not use it. 1527 * 1528 * Returns 1 if the inode number is unique, 0 if it is not. 1529 */ 1530 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1531 { 1532 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1533 struct inode *inode; 1534 1535 hlist_for_each_entry_rcu(inode, b, i_hash) { 1536 if (inode->i_ino == ino && inode->i_sb == sb) 1537 return 0; 1538 } 1539 return 1; 1540 } 1541 1542 /** 1543 * iunique - get a unique inode number 1544 * @sb: superblock 1545 * @max_reserved: highest reserved inode number 1546 * 1547 * Obtain an inode number that is unique on the system for a given 1548 * superblock. This is used by file systems that have no natural 1549 * permanent inode numbering system. An inode number is returned that 1550 * is higher than the reserved limit but unique. 1551 * 1552 * BUGS: 1553 * With a large number of inodes live on the file system this function 1554 * currently becomes quite slow. 1555 */ 1556 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1557 { 1558 /* 1559 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1560 * error if st_ino won't fit in target struct field. Use 32bit counter 1561 * here to attempt to avoid that. 1562 */ 1563 static DEFINE_SPINLOCK(iunique_lock); 1564 static unsigned int counter; 1565 ino_t res; 1566 1567 rcu_read_lock(); 1568 spin_lock(&iunique_lock); 1569 do { 1570 if (counter <= max_reserved) 1571 counter = max_reserved + 1; 1572 res = counter++; 1573 } while (!test_inode_iunique(sb, res)); 1574 spin_unlock(&iunique_lock); 1575 rcu_read_unlock(); 1576 1577 return res; 1578 } 1579 EXPORT_SYMBOL(iunique); 1580 1581 struct inode *igrab(struct inode *inode) 1582 { 1583 spin_lock(&inode->i_lock); 1584 if (!(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) { 1585 __iget(inode); 1586 spin_unlock(&inode->i_lock); 1587 } else { 1588 spin_unlock(&inode->i_lock); 1589 /* 1590 * Handle the case where s_op->clear_inode is not been 1591 * called yet, and somebody is calling igrab 1592 * while the inode is getting freed. 1593 */ 1594 inode = NULL; 1595 } 1596 return inode; 1597 } 1598 EXPORT_SYMBOL(igrab); 1599 1600 /** 1601 * ilookup5_nowait - search for an inode in the inode cache 1602 * @sb: super block of file system to search 1603 * @hashval: hash value (usually inode number) to search for 1604 * @test: callback used for comparisons between inodes 1605 * @data: opaque data pointer to pass to @test 1606 * @isnew: return argument telling whether I_NEW was set when 1607 * the inode was found in hash (the caller needs to 1608 * wait for I_NEW to clear) 1609 * 1610 * Search for the inode specified by @hashval and @data in the inode cache. 1611 * If the inode is in the cache, the inode is returned with an incremented 1612 * reference count. 1613 * 1614 * Note: I_NEW is not waited upon so you have to be very careful what you do 1615 * with the returned inode. You probably should be using ilookup5() instead. 1616 * 1617 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1618 */ 1619 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1620 int (*test)(struct inode *, void *), void *data, bool *isnew) 1621 { 1622 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1623 struct inode *inode; 1624 1625 spin_lock(&inode_hash_lock); 1626 inode = find_inode(sb, head, test, data, true, isnew); 1627 spin_unlock(&inode_hash_lock); 1628 1629 return IS_ERR(inode) ? NULL : inode; 1630 } 1631 EXPORT_SYMBOL(ilookup5_nowait); 1632 1633 /** 1634 * ilookup5 - search for an inode in the inode cache 1635 * @sb: super block of file system to search 1636 * @hashval: hash value (usually inode number) to search for 1637 * @test: callback used for comparisons between inodes 1638 * @data: opaque data pointer to pass to @test 1639 * 1640 * Search for the inode specified by @hashval and @data in the inode cache, 1641 * and if the inode is in the cache, return the inode with an incremented 1642 * reference count. Waits on I_NEW before returning the inode. 1643 * returned with an incremented reference count. 1644 * 1645 * This is a generalized version of ilookup() for file systems where the 1646 * inode number is not sufficient for unique identification of an inode. 1647 * 1648 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1649 */ 1650 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1651 int (*test)(struct inode *, void *), void *data) 1652 { 1653 struct inode *inode; 1654 bool isnew; 1655 1656 might_sleep(); 1657 1658 again: 1659 inode = ilookup5_nowait(sb, hashval, test, data, &isnew); 1660 if (inode) { 1661 if (unlikely(isnew)) 1662 wait_on_new_inode(inode); 1663 if (unlikely(inode_unhashed(inode))) { 1664 iput(inode); 1665 goto again; 1666 } 1667 } 1668 return inode; 1669 } 1670 EXPORT_SYMBOL(ilookup5); 1671 1672 /** 1673 * ilookup - search for an inode in the inode cache 1674 * @sb: super block of file system to search 1675 * @ino: inode number to search for 1676 * 1677 * Search for the inode @ino in the inode cache, and if the inode is in the 1678 * cache, the inode is returned with an incremented reference count. 1679 */ 1680 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1681 { 1682 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1683 struct inode *inode; 1684 bool isnew; 1685 1686 might_sleep(); 1687 1688 again: 1689 inode = find_inode_fast(sb, head, ino, false, &isnew); 1690 1691 if (inode) { 1692 if (IS_ERR(inode)) 1693 return NULL; 1694 if (unlikely(isnew)) 1695 wait_on_new_inode(inode); 1696 if (unlikely(inode_unhashed(inode))) { 1697 iput(inode); 1698 goto again; 1699 } 1700 } 1701 return inode; 1702 } 1703 EXPORT_SYMBOL(ilookup); 1704 1705 /** 1706 * find_inode_nowait - find an inode in the inode cache 1707 * @sb: super block of file system to search 1708 * @hashval: hash value (usually inode number) to search for 1709 * @match: callback used for comparisons between inodes 1710 * @data: opaque data pointer to pass to @match 1711 * 1712 * Search for the inode specified by @hashval and @data in the inode 1713 * cache, where the helper function @match will return 0 if the inode 1714 * does not match, 1 if the inode does match, and -1 if the search 1715 * should be stopped. The @match function must be responsible for 1716 * taking the i_lock spin_lock and checking i_state for an inode being 1717 * freed or being initialized, and incrementing the reference count 1718 * before returning 1. It also must not sleep, since it is called with 1719 * the inode_hash_lock spinlock held. 1720 * 1721 * This is a even more generalized version of ilookup5() when the 1722 * function must never block --- find_inode() can block in 1723 * __wait_on_freeing_inode() --- or when the caller can not increment 1724 * the reference count because the resulting iput() might cause an 1725 * inode eviction. The tradeoff is that the @match funtion must be 1726 * very carefully implemented. 1727 */ 1728 struct inode *find_inode_nowait(struct super_block *sb, 1729 unsigned long hashval, 1730 int (*match)(struct inode *, unsigned long, 1731 void *), 1732 void *data) 1733 { 1734 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1735 struct inode *inode, *ret_inode = NULL; 1736 int mval; 1737 1738 spin_lock(&inode_hash_lock); 1739 hlist_for_each_entry(inode, head, i_hash) { 1740 if (inode->i_sb != sb) 1741 continue; 1742 mval = match(inode, hashval, data); 1743 if (mval == 0) 1744 continue; 1745 if (mval == 1) 1746 ret_inode = inode; 1747 goto out; 1748 } 1749 out: 1750 spin_unlock(&inode_hash_lock); 1751 return ret_inode; 1752 } 1753 EXPORT_SYMBOL(find_inode_nowait); 1754 1755 /** 1756 * find_inode_rcu - find an inode in the inode cache 1757 * @sb: Super block of file system to search 1758 * @hashval: Key to hash 1759 * @test: Function to test match on an inode 1760 * @data: Data for test function 1761 * 1762 * Search for the inode specified by @hashval and @data in the inode cache, 1763 * where the helper function @test will return 0 if the inode does not match 1764 * and 1 if it does. The @test function must be responsible for taking the 1765 * i_lock spin_lock and checking i_state for an inode being freed or being 1766 * initialized. 1767 * 1768 * If successful, this will return the inode for which the @test function 1769 * returned 1 and NULL otherwise. 1770 * 1771 * The @test function is not permitted to take a ref on any inode presented. 1772 * It is also not permitted to sleep. 1773 * 1774 * The caller must hold the RCU read lock. 1775 */ 1776 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1777 int (*test)(struct inode *, void *), void *data) 1778 { 1779 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1780 struct inode *inode; 1781 1782 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1783 "suspicious find_inode_rcu() usage"); 1784 1785 hlist_for_each_entry_rcu(inode, head, i_hash) { 1786 if (inode->i_sb == sb && 1787 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)) && 1788 test(inode, data)) 1789 return inode; 1790 } 1791 return NULL; 1792 } 1793 EXPORT_SYMBOL(find_inode_rcu); 1794 1795 /** 1796 * find_inode_by_ino_rcu - Find an inode in the inode cache 1797 * @sb: Super block of file system to search 1798 * @ino: The inode number to match 1799 * 1800 * Search for the inode specified by @hashval and @data in the inode cache, 1801 * where the helper function @test will return 0 if the inode does not match 1802 * and 1 if it does. The @test function must be responsible for taking the 1803 * i_lock spin_lock and checking i_state for an inode being freed or being 1804 * initialized. 1805 * 1806 * If successful, this will return the inode for which the @test function 1807 * returned 1 and NULL otherwise. 1808 * 1809 * The @test function is not permitted to take a ref on any inode presented. 1810 * It is also not permitted to sleep. 1811 * 1812 * The caller must hold the RCU read lock. 1813 */ 1814 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1815 unsigned long ino) 1816 { 1817 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1818 struct inode *inode; 1819 1820 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1821 "suspicious find_inode_by_ino_rcu() usage"); 1822 1823 hlist_for_each_entry_rcu(inode, head, i_hash) { 1824 if (inode->i_ino == ino && 1825 inode->i_sb == sb && 1826 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE))) 1827 return inode; 1828 } 1829 return NULL; 1830 } 1831 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1832 1833 int insert_inode_locked(struct inode *inode) 1834 { 1835 struct super_block *sb = inode->i_sb; 1836 ino_t ino = inode->i_ino; 1837 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1838 bool isnew; 1839 1840 might_sleep(); 1841 1842 while (1) { 1843 struct inode *old = NULL; 1844 spin_lock(&inode_hash_lock); 1845 repeat: 1846 hlist_for_each_entry(old, head, i_hash) { 1847 if (old->i_ino != ino) 1848 continue; 1849 if (old->i_sb != sb) 1850 continue; 1851 spin_lock(&old->i_lock); 1852 break; 1853 } 1854 if (likely(!old)) { 1855 spin_lock(&inode->i_lock); 1856 inode_state_set(inode, I_NEW | I_CREATING); 1857 hlist_add_head_rcu(&inode->i_hash, head); 1858 spin_unlock(&inode->i_lock); 1859 spin_unlock(&inode_hash_lock); 1860 return 0; 1861 } 1862 if (inode_state_read(old) & (I_FREEING | I_WILL_FREE)) { 1863 __wait_on_freeing_inode(old, true, false); 1864 old = NULL; 1865 goto repeat; 1866 } 1867 if (unlikely(inode_state_read(old) & I_CREATING)) { 1868 spin_unlock(&old->i_lock); 1869 spin_unlock(&inode_hash_lock); 1870 return -EBUSY; 1871 } 1872 __iget(old); 1873 isnew = !!(inode_state_read(old) & I_NEW); 1874 spin_unlock(&old->i_lock); 1875 spin_unlock(&inode_hash_lock); 1876 if (isnew) 1877 wait_on_new_inode(old); 1878 if (unlikely(!inode_unhashed(old))) { 1879 iput(old); 1880 return -EBUSY; 1881 } 1882 iput(old); 1883 } 1884 } 1885 EXPORT_SYMBOL(insert_inode_locked); 1886 1887 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1888 int (*test)(struct inode *, void *), void *data) 1889 { 1890 struct inode *old; 1891 1892 might_sleep(); 1893 1894 inode_state_set_raw(inode, I_CREATING); 1895 old = inode_insert5(inode, hashval, test, NULL, data); 1896 1897 if (old != inode) { 1898 iput(old); 1899 return -EBUSY; 1900 } 1901 return 0; 1902 } 1903 EXPORT_SYMBOL(insert_inode_locked4); 1904 1905 1906 int inode_just_drop(struct inode *inode) 1907 { 1908 return 1; 1909 } 1910 EXPORT_SYMBOL(inode_just_drop); 1911 1912 /* 1913 * Called when we're dropping the last reference 1914 * to an inode. 1915 * 1916 * Call the FS "drop_inode()" function, defaulting to 1917 * the legacy UNIX filesystem behaviour. If it tells 1918 * us to evict inode, do so. Otherwise, retain inode 1919 * in cache if fs is alive, sync and evict if fs is 1920 * shutting down. 1921 */ 1922 static void iput_final(struct inode *inode) 1923 { 1924 struct super_block *sb = inode->i_sb; 1925 const struct super_operations *op = inode->i_sb->s_op; 1926 int drop; 1927 1928 WARN_ON(inode_state_read(inode) & I_NEW); 1929 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode); 1930 1931 if (op->drop_inode) 1932 drop = op->drop_inode(inode); 1933 else 1934 drop = inode_generic_drop(inode); 1935 1936 if (!drop && 1937 !(inode_state_read(inode) & I_DONTCACHE) && 1938 (sb->s_flags & SB_ACTIVE)) { 1939 __inode_lru_list_add(inode, true); 1940 spin_unlock(&inode->i_lock); 1941 return; 1942 } 1943 1944 /* 1945 * Re-check ->i_count in case the ->drop_inode() hooks played games. 1946 * Note we only execute this if the verdict was to drop the inode. 1947 */ 1948 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode); 1949 1950 if (drop) { 1951 inode_state_set(inode, I_FREEING); 1952 } else { 1953 inode_state_set(inode, I_WILL_FREE); 1954 spin_unlock(&inode->i_lock); 1955 1956 write_inode_now(inode, 1); 1957 1958 spin_lock(&inode->i_lock); 1959 WARN_ON(inode_state_read(inode) & I_NEW); 1960 inode_state_replace(inode, I_WILL_FREE, I_FREEING); 1961 } 1962 1963 inode_lru_list_del(inode); 1964 spin_unlock(&inode->i_lock); 1965 1966 evict(inode); 1967 } 1968 1969 /** 1970 * iput - put an inode 1971 * @inode: inode to put 1972 * 1973 * Puts an inode, dropping its usage count. If the inode use count hits 1974 * zero, the inode is then freed and may also be destroyed. 1975 * 1976 * Consequently, iput() can sleep. 1977 */ 1978 void iput(struct inode *inode) 1979 { 1980 might_sleep(); 1981 if (unlikely(!inode)) 1982 return; 1983 1984 retry: 1985 lockdep_assert_not_held(&inode->i_lock); 1986 VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode); 1987 /* 1988 * Note this assert is technically racy as if the count is bogusly 1989 * equal to one, then two CPUs racing to further drop it can both 1990 * conclude it's fine. 1991 */ 1992 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode); 1993 1994 if (atomic_add_unless(&inode->i_count, -1, 1)) 1995 return; 1996 1997 if (inode->i_nlink && sync_lazytime(inode)) 1998 goto retry; 1999 2000 spin_lock(&inode->i_lock); 2001 if (unlikely((inode_state_read(inode) & I_DIRTY_TIME) && inode->i_nlink)) { 2002 spin_unlock(&inode->i_lock); 2003 goto retry; 2004 } 2005 2006 if (!atomic_dec_and_test(&inode->i_count)) { 2007 spin_unlock(&inode->i_lock); 2008 return; 2009 } 2010 2011 /* 2012 * iput_final() drops ->i_lock, we can't assert on it as the inode may 2013 * be deallocated by the time the call returns. 2014 */ 2015 iput_final(inode); 2016 } 2017 EXPORT_SYMBOL(iput); 2018 2019 /** 2020 * iput_not_last - put an inode assuming this is not the last reference 2021 * @inode: inode to put 2022 */ 2023 void iput_not_last(struct inode *inode) 2024 { 2025 VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode); 2026 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 2, inode); 2027 2028 WARN_ON(atomic_sub_return(1, &inode->i_count) == 0); 2029 } 2030 EXPORT_SYMBOL(iput_not_last); 2031 2032 #ifdef CONFIG_BLOCK 2033 /** 2034 * bmap - find a block number in a file 2035 * @inode: inode owning the block number being requested 2036 * @block: pointer containing the block to find 2037 * 2038 * Replaces the value in ``*block`` with the block number on the device holding 2039 * corresponding to the requested block number in the file. 2040 * That is, asked for block 4 of inode 1 the function will replace the 2041 * 4 in ``*block``, with disk block relative to the disk start that holds that 2042 * block of the file. 2043 * 2044 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 2045 * hole, returns 0 and ``*block`` is also set to 0. 2046 */ 2047 int bmap(struct inode *inode, sector_t *block) 2048 { 2049 if (!inode->i_mapping->a_ops->bmap) 2050 return -EINVAL; 2051 2052 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 2053 return 0; 2054 } 2055 EXPORT_SYMBOL(bmap); 2056 #endif 2057 2058 /* 2059 * With relative atime, only update atime if the previous atime is 2060 * earlier than or equal to either the ctime or mtime, 2061 * or if at least a day has passed since the last atime update. 2062 */ 2063 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 2064 struct timespec64 now) 2065 { 2066 struct timespec64 atime, mtime, ctime; 2067 2068 if (!(mnt->mnt_flags & MNT_RELATIME)) 2069 return true; 2070 /* 2071 * Is mtime younger than or equal to atime? If yes, update atime: 2072 */ 2073 atime = inode_get_atime(inode); 2074 mtime = inode_get_mtime(inode); 2075 if (timespec64_compare(&mtime, &atime) >= 0) 2076 return true; 2077 /* 2078 * Is ctime younger than or equal to atime? If yes, update atime: 2079 */ 2080 ctime = inode_get_ctime(inode); 2081 if (timespec64_compare(&ctime, &atime) >= 0) 2082 return true; 2083 2084 /* 2085 * Is the previous atime value older than a day? If yes, 2086 * update atime: 2087 */ 2088 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 2089 return true; 2090 /* 2091 * Good, we can skip the atime update: 2092 */ 2093 return false; 2094 } 2095 2096 static int inode_update_atime(struct inode *inode) 2097 { 2098 struct timespec64 atime = inode_get_atime(inode); 2099 struct timespec64 now = current_time(inode); 2100 2101 if (timespec64_equal(&now, &atime)) 2102 return 0; 2103 2104 inode_set_atime_to_ts(inode, now); 2105 return inode_time_dirty_flag(inode); 2106 } 2107 2108 static int inode_update_cmtime(struct inode *inode, unsigned int flags) 2109 { 2110 struct timespec64 ctime = inode_get_ctime(inode); 2111 struct timespec64 mtime = inode_get_mtime(inode); 2112 struct timespec64 now = inode_set_ctime_current(inode); 2113 unsigned int dirty = 0; 2114 bool mtime_changed; 2115 2116 mtime_changed = !timespec64_equal(&now, &mtime); 2117 if (mtime_changed || !timespec64_equal(&now, &ctime)) 2118 dirty = inode_time_dirty_flag(inode); 2119 2120 /* 2121 * Pure timestamp updates can be recorded in the inode without blocking 2122 * by not dirtying the inode. But when the file system requires 2123 * i_version updates, the update of i_version can still block. 2124 * Error out if we'd actually have to update i_version or don't support 2125 * lazytime. 2126 */ 2127 if (IS_I_VERSION(inode)) { 2128 if (flags & IOCB_NOWAIT) { 2129 if (!(inode->i_sb->s_flags & SB_LAZYTIME) || 2130 inode_iversion_need_inc(inode)) 2131 return -EAGAIN; 2132 } else { 2133 if (inode_maybe_inc_iversion(inode, !!dirty)) 2134 dirty |= I_DIRTY_SYNC; 2135 } 2136 } 2137 2138 if (mtime_changed) 2139 inode_set_mtime_to_ts(inode, now); 2140 return dirty; 2141 } 2142 2143 /** 2144 * inode_update_time - update either atime or c/mtime and i_version on the inode 2145 * @inode: inode to be updated 2146 * @type: timestamp to be updated 2147 * @flags: flags for the update 2148 * 2149 * Update either atime or c/mtime and version in a inode if needed for a file 2150 * access or modification. It is up to the caller to mark the inode dirty 2151 * appropriately. 2152 * 2153 * Returns the positive I_DIRTY_* flags for __mark_inode_dirty() if the inode 2154 * needs to be marked dirty, 0 if it did not, or a negative errno if an error 2155 * happened. 2156 */ 2157 int inode_update_time(struct inode *inode, enum fs_update_time type, 2158 unsigned int flags) 2159 { 2160 switch (type) { 2161 case FS_UPD_ATIME: 2162 return inode_update_atime(inode); 2163 case FS_UPD_CMTIME: 2164 return inode_update_cmtime(inode, flags); 2165 default: 2166 WARN_ON_ONCE(1); 2167 return -EIO; 2168 } 2169 } 2170 EXPORT_SYMBOL(inode_update_time); 2171 2172 /** 2173 * generic_update_time - update the timestamps on the inode 2174 * @inode: inode to be updated 2175 * @type: timestamp to be updated 2176 * @flags: flags for the update 2177 * 2178 * Returns a negative error value on error, else 0. 2179 */ 2180 int generic_update_time(struct inode *inode, enum fs_update_time type, 2181 unsigned int flags) 2182 { 2183 int dirty; 2184 2185 /* 2186 * ->dirty_inode is what could make generic timestamp updates block. 2187 * Don't support non-blocking timestamp updates here if it is set. 2188 * File systems that implement ->dirty_inode but want to support 2189 * non-blocking timestamp updates should call inode_update_time 2190 * directly. 2191 */ 2192 if ((flags & IOCB_NOWAIT) && inode->i_sb->s_op->dirty_inode) 2193 return -EAGAIN; 2194 2195 dirty = inode_update_time(inode, type, flags); 2196 if (dirty <= 0) 2197 return dirty; 2198 __mark_inode_dirty(inode, dirty); 2199 return 0; 2200 } 2201 EXPORT_SYMBOL(generic_update_time); 2202 2203 /** 2204 * atime_needs_update - update the access time 2205 * @path: the &struct path to update 2206 * @inode: inode to update 2207 * 2208 * Update the accessed time on an inode and mark it for writeback. 2209 * This function automatically handles read only file systems and media, 2210 * as well as the "noatime" flag and inode specific "noatime" markers. 2211 */ 2212 bool atime_needs_update(const struct path *path, struct inode *inode) 2213 { 2214 struct vfsmount *mnt = path->mnt; 2215 struct timespec64 now, atime; 2216 2217 if (inode->i_flags & S_NOATIME) 2218 return false; 2219 2220 /* Atime updates will likely cause i_uid and i_gid to be written 2221 * back improprely if their true value is unknown to the vfs. 2222 */ 2223 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2224 return false; 2225 2226 if (IS_NOATIME(inode)) 2227 return false; 2228 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2229 return false; 2230 2231 if (mnt->mnt_flags & MNT_NOATIME) 2232 return false; 2233 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2234 return false; 2235 2236 now = current_time(inode); 2237 2238 if (!relatime_need_update(mnt, inode, now)) 2239 return false; 2240 2241 atime = inode_get_atime(inode); 2242 if (timespec64_equal(&atime, &now)) 2243 return false; 2244 2245 return true; 2246 } 2247 2248 void touch_atime(const struct path *path) 2249 { 2250 struct vfsmount *mnt = path->mnt; 2251 struct inode *inode = d_inode(path->dentry); 2252 2253 if (!atime_needs_update(path, inode)) 2254 return; 2255 2256 if (!sb_start_write_trylock(inode->i_sb)) 2257 return; 2258 2259 if (mnt_get_write_access(mnt) != 0) 2260 goto skip_update; 2261 /* 2262 * File systems can error out when updating inodes if they need to 2263 * allocate new space to modify an inode (such is the case for 2264 * Btrfs), but since we touch atime while walking down the path we 2265 * really don't care if we failed to update the atime of the file, 2266 * so just ignore the return value. 2267 * We may also fail on filesystems that have the ability to make parts 2268 * of the fs read only, e.g. subvolumes in Btrfs. 2269 */ 2270 if (inode->i_op->update_time) 2271 inode->i_op->update_time(inode, FS_UPD_ATIME, 0); 2272 else 2273 generic_update_time(inode, FS_UPD_ATIME, 0); 2274 mnt_put_write_access(mnt); 2275 skip_update: 2276 sb_end_write(inode->i_sb); 2277 } 2278 EXPORT_SYMBOL(touch_atime); 2279 2280 /* 2281 * Return mask of changes for notify_change() that need to be done as a 2282 * response to write or truncate. Return 0 if nothing has to be changed. 2283 * Negative value on error (change should be denied). 2284 */ 2285 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2286 struct dentry *dentry) 2287 { 2288 struct inode *inode = d_inode(dentry); 2289 int mask = 0; 2290 int ret; 2291 2292 if (IS_NOSEC(inode)) 2293 return 0; 2294 2295 mask = setattr_should_drop_suidgid(idmap, inode); 2296 ret = security_inode_need_killpriv(dentry); 2297 if (ret < 0) 2298 return ret; 2299 if (ret) 2300 mask |= ATTR_KILL_PRIV; 2301 return mask; 2302 } 2303 2304 static int __remove_privs(struct mnt_idmap *idmap, 2305 struct dentry *dentry, int kill) 2306 { 2307 struct iattr newattrs; 2308 2309 newattrs.ia_valid = ATTR_FORCE | kill; 2310 /* 2311 * Note we call this on write, so notify_change will not 2312 * encounter any conflicting delegations: 2313 */ 2314 return notify_change(idmap, dentry, &newattrs, NULL); 2315 } 2316 2317 static int file_remove_privs_flags(struct file *file, unsigned int flags) 2318 { 2319 struct dentry *dentry = file_dentry(file); 2320 struct inode *inode = file_inode(file); 2321 int error = 0; 2322 int kill; 2323 2324 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2325 return 0; 2326 2327 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2328 if (kill < 0) 2329 return kill; 2330 2331 if (kill) { 2332 if (flags & IOCB_NOWAIT) 2333 return -EAGAIN; 2334 2335 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2336 } 2337 2338 if (!error) 2339 inode_has_no_xattr(inode); 2340 return error; 2341 } 2342 2343 /** 2344 * file_remove_privs - remove special file privileges (suid, capabilities) 2345 * @file: file to remove privileges from 2346 * 2347 * When file is modified by a write or truncation ensure that special 2348 * file privileges are removed. 2349 * 2350 * Return: 0 on success, negative errno on failure. 2351 */ 2352 int file_remove_privs(struct file *file) 2353 { 2354 return file_remove_privs_flags(file, 0); 2355 } 2356 EXPORT_SYMBOL(file_remove_privs); 2357 2358 /** 2359 * current_time - Return FS time (possibly fine-grained) 2360 * @inode: inode. 2361 * 2362 * Return the current time truncated to the time granularity supported by 2363 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2364 * as having been QUERIED, get a fine-grained timestamp, but don't update 2365 * the floor. 2366 * 2367 * For a multigrain inode, this is effectively an estimate of the timestamp 2368 * that a file would receive. An actual update must go through 2369 * inode_set_ctime_current(). 2370 */ 2371 struct timespec64 current_time(struct inode *inode) 2372 { 2373 struct timespec64 now; 2374 u32 cns; 2375 2376 ktime_get_coarse_real_ts64_mg(&now); 2377 2378 if (!is_mgtime(inode)) 2379 goto out; 2380 2381 /* If nothing has queried it, then coarse time is fine */ 2382 cns = smp_load_acquire(&inode->i_ctime_nsec); 2383 if (cns & I_CTIME_QUERIED) { 2384 /* 2385 * If there is no apparent change, then get a fine-grained 2386 * timestamp. 2387 */ 2388 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2389 ktime_get_real_ts64(&now); 2390 } 2391 out: 2392 return timestamp_truncate(now, inode); 2393 } 2394 EXPORT_SYMBOL(current_time); 2395 2396 static inline bool need_cmtime_update(struct inode *inode) 2397 { 2398 struct timespec64 now = current_time(inode), ts; 2399 2400 ts = inode_get_mtime(inode); 2401 if (!timespec64_equal(&ts, &now)) 2402 return true; 2403 ts = inode_get_ctime(inode); 2404 if (!timespec64_equal(&ts, &now)) 2405 return true; 2406 return IS_I_VERSION(inode) && inode_iversion_need_inc(inode); 2407 } 2408 2409 static int file_update_time_flags(struct file *file, unsigned int flags) 2410 { 2411 struct inode *inode = file_inode(file); 2412 int ret; 2413 2414 /* First try to exhaust all avenues to not sync */ 2415 if (IS_NOCMTIME(inode)) 2416 return 0; 2417 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2418 return 0; 2419 if (!need_cmtime_update(inode)) 2420 return 0; 2421 2422 flags &= IOCB_NOWAIT; 2423 if (mnt_get_write_access_file(file)) 2424 return 0; 2425 if (inode->i_op->update_time) 2426 ret = inode->i_op->update_time(inode, FS_UPD_CMTIME, flags); 2427 else 2428 ret = generic_update_time(inode, FS_UPD_CMTIME, flags); 2429 mnt_put_write_access_file(file); 2430 return ret; 2431 } 2432 2433 /** 2434 * file_update_time - update mtime and ctime time 2435 * @file: file accessed 2436 * 2437 * Update the mtime and ctime members of an inode and mark the inode for 2438 * writeback. Note that this function is meant exclusively for usage in 2439 * the file write path of filesystems, and filesystems may choose to 2440 * explicitly ignore updates via this function with the _NOCMTIME inode 2441 * flag, e.g. for network filesystem where these imestamps are handled 2442 * by the server. This can return an error for file systems who need to 2443 * allocate space in order to update an inode. 2444 * 2445 * Return: 0 on success, negative errno on failure. 2446 */ 2447 int file_update_time(struct file *file) 2448 { 2449 return file_update_time_flags(file, 0); 2450 } 2451 EXPORT_SYMBOL(file_update_time); 2452 2453 /** 2454 * file_modified_flags - handle mandated vfs changes when modifying a file 2455 * @file: file that was modified 2456 * @flags: kiocb flags 2457 * 2458 * When file has been modified ensure that special 2459 * file privileges are removed and time settings are updated. 2460 * 2461 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2462 * time settings will not be updated. It will return -EAGAIN. 2463 * 2464 * Context: Caller must hold the file's inode lock. 2465 * 2466 * Return: 0 on success, negative errno on failure. 2467 */ 2468 static int file_modified_flags(struct file *file, int flags) 2469 { 2470 int ret; 2471 2472 /* 2473 * Clear the security bits if the process is not being run by root. 2474 * This keeps people from modifying setuid and setgid binaries. 2475 */ 2476 ret = file_remove_privs_flags(file, flags); 2477 if (ret) 2478 return ret; 2479 return file_update_time_flags(file, flags); 2480 } 2481 2482 /** 2483 * file_modified - handle mandated vfs changes when modifying a file 2484 * @file: file that was modified 2485 * 2486 * When file has been modified ensure that special 2487 * file privileges are removed and time settings are updated. 2488 * 2489 * Context: Caller must hold the file's inode lock. 2490 * 2491 * Return: 0 on success, negative errno on failure. 2492 */ 2493 int file_modified(struct file *file) 2494 { 2495 return file_modified_flags(file, 0); 2496 } 2497 EXPORT_SYMBOL(file_modified); 2498 2499 /** 2500 * kiocb_modified - handle mandated vfs changes when modifying a file 2501 * @iocb: iocb that was modified 2502 * 2503 * When file has been modified ensure that special 2504 * file privileges are removed and time settings are updated. 2505 * 2506 * Context: Caller must hold the file's inode lock. 2507 * 2508 * Return: 0 on success, negative errno on failure. 2509 */ 2510 int kiocb_modified(struct kiocb *iocb) 2511 { 2512 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2513 } 2514 EXPORT_SYMBOL_GPL(kiocb_modified); 2515 2516 int inode_needs_sync(struct inode *inode) 2517 { 2518 if (IS_SYNC(inode)) 2519 return 1; 2520 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2521 return 1; 2522 return 0; 2523 } 2524 EXPORT_SYMBOL(inode_needs_sync); 2525 2526 /* 2527 * If we try to find an inode in the inode hash while it is being 2528 * deleted, we have to wait until the filesystem completes its 2529 * deletion before reporting that it isn't found. This function waits 2530 * until the deletion _might_ have completed. Callers are responsible 2531 * to recheck inode state. 2532 * 2533 * It doesn't matter if I_NEW is not set initially, a call to 2534 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2535 * will DTRT. 2536 */ 2537 static void __wait_on_freeing_inode(struct inode *inode, bool hash_locked, bool rcu_locked) 2538 { 2539 struct wait_bit_queue_entry wqe; 2540 struct wait_queue_head *wq_head; 2541 2542 VFS_BUG_ON(!hash_locked && !rcu_locked); 2543 2544 /* 2545 * Handle racing against evict(), see that routine for more details. 2546 */ 2547 if (unlikely(inode_unhashed(inode))) { 2548 WARN_ON(hash_locked); 2549 spin_unlock(&inode->i_lock); 2550 return; 2551 } 2552 2553 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2554 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2555 spin_unlock(&inode->i_lock); 2556 if (rcu_locked) 2557 rcu_read_unlock(); 2558 if (hash_locked) 2559 spin_unlock(&inode_hash_lock); 2560 schedule(); 2561 finish_wait(wq_head, &wqe.wq_entry); 2562 if (hash_locked) 2563 spin_lock(&inode_hash_lock); 2564 if (rcu_locked) 2565 rcu_read_lock(); 2566 } 2567 2568 static __initdata unsigned long ihash_entries; 2569 static int __init set_ihash_entries(char *str) 2570 { 2571 return kstrtoul(str, 0, &ihash_entries) == 0; 2572 } 2573 __setup("ihash_entries=", set_ihash_entries); 2574 2575 /* 2576 * Initialize the waitqueues and inode hash table. 2577 */ 2578 void __init inode_init_early(void) 2579 { 2580 /* If hashes are distributed across NUMA nodes, defer 2581 * hash allocation until vmalloc space is available. 2582 */ 2583 if (hashdist) 2584 return; 2585 2586 inode_hashtable = 2587 alloc_large_system_hash("Inode-cache", 2588 sizeof(struct hlist_head), 2589 ihash_entries, 2590 14, 2591 HASH_EARLY | HASH_ZERO, 2592 &i_hash_shift, 2593 &i_hash_mask, 2594 0, 2595 0); 2596 } 2597 2598 void __init inode_init(void) 2599 { 2600 /* inode slab cache */ 2601 inode_cachep = kmem_cache_create("inode_cache", 2602 sizeof(struct inode), 2603 0, 2604 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2605 SLAB_ACCOUNT), 2606 init_once); 2607 2608 /* Hash may have been set up in inode_init_early */ 2609 if (!hashdist) 2610 return; 2611 2612 inode_hashtable = 2613 alloc_large_system_hash("Inode-cache", 2614 sizeof(struct hlist_head), 2615 ihash_entries, 2616 14, 2617 HASH_ZERO, 2618 &i_hash_shift, 2619 &i_hash_mask, 2620 0, 2621 0); 2622 } 2623 2624 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2625 { 2626 inode->i_mode = mode; 2627 switch (inode->i_mode & S_IFMT) { 2628 case S_IFCHR: 2629 inode->i_fop = &def_chr_fops; 2630 inode->i_rdev = rdev; 2631 break; 2632 case S_IFBLK: 2633 if (IS_ENABLED(CONFIG_BLOCK)) 2634 inode->i_fop = &def_blk_fops; 2635 inode->i_rdev = rdev; 2636 break; 2637 case S_IFIFO: 2638 inode->i_fop = &pipefifo_fops; 2639 break; 2640 case S_IFSOCK: 2641 /* leave it no_open_fops */ 2642 break; 2643 default: 2644 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2645 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2646 inode->i_ino); 2647 break; 2648 } 2649 } 2650 EXPORT_SYMBOL(init_special_inode); 2651 2652 /** 2653 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2654 * @idmap: idmap of the mount the inode was created from 2655 * @inode: New inode 2656 * @dir: Directory inode 2657 * @mode: mode of the new inode 2658 * 2659 * If the inode has been created through an idmapped mount the idmap of 2660 * the vfsmount must be passed through @idmap. This function will then take 2661 * care to map the inode according to @idmap before checking permissions 2662 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2663 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2664 */ 2665 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2666 const struct inode *dir, umode_t mode) 2667 { 2668 inode_fsuid_set(inode, idmap); 2669 if (dir && dir->i_mode & S_ISGID) { 2670 inode->i_gid = dir->i_gid; 2671 2672 /* Directories are special, and always inherit S_ISGID */ 2673 if (S_ISDIR(mode)) 2674 mode |= S_ISGID; 2675 } else 2676 inode_fsgid_set(inode, idmap); 2677 inode->i_mode = mode; 2678 } 2679 EXPORT_SYMBOL(inode_init_owner); 2680 2681 /** 2682 * inode_owner_or_capable - check current task permissions to inode 2683 * @idmap: idmap of the mount the inode was found from 2684 * @inode: inode being checked 2685 * 2686 * Return true if current either has CAP_FOWNER in a namespace with the 2687 * inode owner uid mapped, or owns the file. 2688 * 2689 * If the inode has been found through an idmapped mount the idmap of 2690 * the vfsmount must be passed through @idmap. This function will then take 2691 * care to map the inode according to @idmap before checking permissions. 2692 * On non-idmapped mounts or if permission checking is to be performed on the 2693 * raw inode simply pass @nop_mnt_idmap. 2694 */ 2695 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2696 const struct inode *inode) 2697 { 2698 vfsuid_t vfsuid; 2699 struct user_namespace *ns; 2700 2701 vfsuid = i_uid_into_vfsuid(idmap, inode); 2702 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2703 return true; 2704 2705 ns = current_user_ns(); 2706 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2707 return true; 2708 return false; 2709 } 2710 EXPORT_SYMBOL(inode_owner_or_capable); 2711 2712 /* 2713 * Direct i/o helper functions 2714 */ 2715 bool inode_dio_finished(const struct inode *inode) 2716 { 2717 return atomic_read(&inode->i_dio_count) == 0; 2718 } 2719 EXPORT_SYMBOL(inode_dio_finished); 2720 2721 /** 2722 * inode_dio_wait - wait for outstanding DIO requests to finish 2723 * @inode: inode to wait for 2724 * 2725 * Waits for all pending direct I/O requests to finish so that we can 2726 * proceed with a truncate or equivalent operation. 2727 * 2728 * Must be called under a lock that serializes taking new references 2729 * to i_dio_count, usually by inode->i_rwsem. 2730 */ 2731 void inode_dio_wait(struct inode *inode) 2732 { 2733 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2734 } 2735 EXPORT_SYMBOL(inode_dio_wait); 2736 2737 void inode_dio_wait_interruptible(struct inode *inode) 2738 { 2739 wait_var_event_interruptible(&inode->i_dio_count, 2740 inode_dio_finished(inode)); 2741 } 2742 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2743 2744 /* 2745 * inode_set_flags - atomically set some inode flags 2746 * 2747 * Note: the caller should be holding i_rwsem exclusively, or else be sure that 2748 * they have exclusive access to the inode structure (i.e., while the 2749 * inode is being instantiated). The reason for the cmpxchg() loop 2750 * --- which wouldn't be necessary if all code paths which modify 2751 * i_flags actually followed this rule, is that there is at least one 2752 * code path which doesn't today so we use cmpxchg() out of an abundance 2753 * of caution. 2754 * 2755 * In the long run, i_rwsem is overkill, and we should probably look 2756 * at using the i_lock spinlock to protect i_flags, and then make sure 2757 * it is so documented in include/linux/fs.h and that all code follows 2758 * the locking convention!! 2759 */ 2760 void inode_set_flags(struct inode *inode, unsigned int flags, 2761 unsigned int mask) 2762 { 2763 WARN_ON_ONCE(flags & ~mask); 2764 set_mask_bits(&inode->i_flags, mask, flags); 2765 } 2766 EXPORT_SYMBOL(inode_set_flags); 2767 2768 void inode_nohighmem(struct inode *inode) 2769 { 2770 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2771 } 2772 EXPORT_SYMBOL(inode_nohighmem); 2773 2774 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2775 { 2776 trace_inode_set_ctime_to_ts(inode, &ts); 2777 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2778 inode->i_ctime_sec = ts.tv_sec; 2779 inode->i_ctime_nsec = ts.tv_nsec; 2780 return ts; 2781 } 2782 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2783 2784 /** 2785 * timestamp_truncate - Truncate timespec to a granularity 2786 * @t: Timespec 2787 * @inode: inode being updated 2788 * 2789 * Truncate a timespec to the granularity supported by the fs 2790 * containing the inode. Always rounds down. gran must 2791 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2792 */ 2793 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2794 { 2795 struct super_block *sb = inode->i_sb; 2796 unsigned int gran = sb->s_time_gran; 2797 2798 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2799 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2800 t.tv_nsec = 0; 2801 2802 /* Avoid division in the common cases 1 ns and 1 s. */ 2803 if (gran == 1) 2804 ; /* nothing */ 2805 else if (gran == NSEC_PER_SEC) 2806 t.tv_nsec = 0; 2807 else if (gran > 1 && gran < NSEC_PER_SEC) 2808 t.tv_nsec -= t.tv_nsec % gran; 2809 else 2810 WARN(1, "invalid file time granularity: %u", gran); 2811 return t; 2812 } 2813 EXPORT_SYMBOL(timestamp_truncate); 2814 2815 /** 2816 * inode_set_ctime_current - set the ctime to current_time 2817 * @inode: inode 2818 * 2819 * Set the inode's ctime to the current value for the inode. Returns the 2820 * current value that was assigned. If this is not a multigrain inode, then we 2821 * set it to the later of the coarse time and floor value. 2822 * 2823 * If it is multigrain, then we first see if the coarse-grained timestamp is 2824 * distinct from what is already there. If so, then use that. Otherwise, get a 2825 * fine-grained timestamp. 2826 * 2827 * After that, try to swap the new value into i_ctime_nsec. Accept the 2828 * resulting ctime, regardless of the outcome of the swap. If it has 2829 * already been replaced, then that timestamp is later than the earlier 2830 * unacceptable one, and is thus acceptable. 2831 */ 2832 struct timespec64 inode_set_ctime_current(struct inode *inode) 2833 { 2834 struct timespec64 now; 2835 u32 cns, cur; 2836 2837 ktime_get_coarse_real_ts64_mg(&now); 2838 now = timestamp_truncate(now, inode); 2839 2840 /* Just return that if this is not a multigrain fs */ 2841 if (!is_mgtime(inode)) { 2842 inode_set_ctime_to_ts(inode, now); 2843 goto out; 2844 } 2845 2846 /* 2847 * A fine-grained time is only needed if someone has queried 2848 * for timestamps, and the current coarse grained time isn't 2849 * later than what's already there. 2850 */ 2851 cns = smp_load_acquire(&inode->i_ctime_nsec); 2852 if (cns & I_CTIME_QUERIED) { 2853 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2854 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2855 2856 if (timespec64_compare(&now, &ctime) <= 0) { 2857 ktime_get_real_ts64_mg(&now); 2858 now = timestamp_truncate(now, inode); 2859 mgtime_counter_inc(mg_fine_stamps); 2860 } 2861 } 2862 mgtime_counter_inc(mg_ctime_updates); 2863 2864 /* No need to cmpxchg if it's exactly the same */ 2865 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2866 trace_ctime_xchg_skip(inode, &now); 2867 goto out; 2868 } 2869 cur = cns; 2870 retry: 2871 /* Try to swap the nsec value into place. */ 2872 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2873 /* If swap occurred, then we're (mostly) done */ 2874 inode->i_ctime_sec = now.tv_sec; 2875 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2876 mgtime_counter_inc(mg_ctime_swaps); 2877 } else { 2878 /* 2879 * Was the change due to someone marking the old ctime QUERIED? 2880 * If so then retry the swap. This can only happen once since 2881 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2882 * with a new ctime. 2883 */ 2884 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2885 cns = cur; 2886 goto retry; 2887 } 2888 /* Otherwise, keep the existing ctime */ 2889 now.tv_sec = inode->i_ctime_sec; 2890 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2891 } 2892 out: 2893 return now; 2894 } 2895 EXPORT_SYMBOL(inode_set_ctime_current); 2896 2897 /** 2898 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2899 * @inode: inode to update 2900 * @update: timespec64 to set the ctime 2901 * 2902 * Attempt to atomically update the ctime on behalf of a delegation holder. 2903 * 2904 * The nfs server can call back the holder of a delegation to get updated 2905 * inode attributes, including the mtime. When updating the mtime, update 2906 * the ctime to a value at least equal to that. 2907 * 2908 * This can race with concurrent updates to the inode, in which 2909 * case the update is skipped. 2910 * 2911 * Note that this works even when multigrain timestamps are not enabled, 2912 * so it is used in either case. 2913 */ 2914 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2915 { 2916 struct timespec64 now, cur_ts; 2917 u32 cur, old; 2918 2919 /* pairs with try_cmpxchg below */ 2920 cur = smp_load_acquire(&inode->i_ctime_nsec); 2921 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2922 cur_ts.tv_sec = inode->i_ctime_sec; 2923 2924 /* If the update is older than the existing value, skip it. */ 2925 if (timespec64_compare(&update, &cur_ts) <= 0) 2926 return cur_ts; 2927 2928 ktime_get_coarse_real_ts64_mg(&now); 2929 2930 /* Clamp the update to "now" if it's in the future */ 2931 if (timespec64_compare(&update, &now) > 0) 2932 update = now; 2933 2934 update = timestamp_truncate(update, inode); 2935 2936 /* No need to update if the values are already the same */ 2937 if (timespec64_equal(&update, &cur_ts)) 2938 return cur_ts; 2939 2940 /* 2941 * Try to swap the nsec value into place. If it fails, that means 2942 * it raced with an update due to a write or similar activity. That 2943 * stamp takes precedence, so just skip the update. 2944 */ 2945 retry: 2946 old = cur; 2947 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2948 inode->i_ctime_sec = update.tv_sec; 2949 mgtime_counter_inc(mg_ctime_swaps); 2950 return update; 2951 } 2952 2953 /* 2954 * Was the change due to another task marking the old ctime QUERIED? 2955 * 2956 * If so, then retry the swap. This can only happen once since 2957 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2958 * with a new ctime. 2959 */ 2960 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2961 goto retry; 2962 2963 /* Otherwise, it was a new timestamp. */ 2964 cur_ts.tv_sec = inode->i_ctime_sec; 2965 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2966 return cur_ts; 2967 } 2968 EXPORT_SYMBOL(inode_set_ctime_deleg); 2969 2970 /** 2971 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2972 * @idmap: idmap of the mount @inode was found from 2973 * @inode: inode to check 2974 * @vfsgid: the new/current vfsgid of @inode 2975 * 2976 * Check whether @vfsgid is in the caller's group list or if the caller is 2977 * privileged with CAP_FSETID over @inode. This can be used to determine 2978 * whether the setgid bit can be kept or must be dropped. 2979 * 2980 * Return: true if the caller is sufficiently privileged, false if not. 2981 */ 2982 bool in_group_or_capable(struct mnt_idmap *idmap, 2983 const struct inode *inode, vfsgid_t vfsgid) 2984 { 2985 if (vfsgid_in_group_p(vfsgid)) 2986 return true; 2987 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2988 return true; 2989 return false; 2990 } 2991 EXPORT_SYMBOL(in_group_or_capable); 2992 2993 /** 2994 * mode_strip_sgid - handle the sgid bit for non-directories 2995 * @idmap: idmap of the mount the inode was created from 2996 * @dir: parent directory inode 2997 * @mode: mode of the file to be created in @dir 2998 * 2999 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 3000 * raised and @dir has the S_ISGID bit raised ensure that the caller is 3001 * either in the group of the parent directory or they have CAP_FSETID 3002 * in their user namespace and are privileged over the parent directory. 3003 * In all other cases, strip the S_ISGID bit from @mode. 3004 * 3005 * Return: the new mode to use for the file 3006 */ 3007 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 3008 const struct inode *dir, umode_t mode) 3009 { 3010 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 3011 return mode; 3012 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 3013 return mode; 3014 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 3015 return mode; 3016 return mode & ~S_ISGID; 3017 } 3018 EXPORT_SYMBOL(mode_strip_sgid); 3019 3020 #ifdef CONFIG_DEBUG_VFS 3021 /** 3022 * dump_inode - dump an inode. 3023 * @inode: inode to dump 3024 * @reason: reason for dumping 3025 * 3026 * If inode is an invalid pointer, we don't want to crash accessing it, 3027 * so probe everything depending on it carefully with get_kernel_nofault(). 3028 */ 3029 void dump_inode(struct inode *inode, const char *reason) 3030 { 3031 struct super_block *sb; 3032 struct file_system_type *s_type; 3033 const char *fs_name_ptr; 3034 char fs_name[32] = {}; 3035 umode_t mode; 3036 unsigned short opflags; 3037 unsigned int flags; 3038 unsigned int state; 3039 int count; 3040 3041 if (get_kernel_nofault(sb, &inode->i_sb) || 3042 get_kernel_nofault(mode, &inode->i_mode) || 3043 get_kernel_nofault(opflags, &inode->i_opflags) || 3044 get_kernel_nofault(flags, &inode->i_flags)) { 3045 pr_warn("%s: unreadable inode:%px\n", reason, inode); 3046 return; 3047 } 3048 3049 state = inode_state_read_once(inode); 3050 count = atomic_read(&inode->i_count); 3051 3052 if (!sb || 3053 get_kernel_nofault(s_type, &sb->s_type) || !s_type || 3054 get_kernel_nofault(fs_name_ptr, &s_type->name) || !fs_name_ptr || 3055 strncpy_from_kernel_nofault(fs_name, fs_name_ptr, sizeof(fs_name) - 1) < 0) 3056 strscpy(fs_name, "<unknown, sb unreadable>"); 3057 3058 pr_warn("%s: inode:%px fs:%s mode:%ho opflags:%#x flags:%#x state:%#x count:%d\n", 3059 reason, inode, fs_name, mode, opflags, flags, state, count); 3060 } 3061 EXPORT_SYMBOL(dump_inode); 3062 #endif 3063