xref: /linux/fs/inode.c (revision 997f9640c9238b991b6c8abf5420b37bbba5d867)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/fsverity.h>
18 #include <linux/mount.h>
19 #include <linux/posix_acl.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <linux/rw_hint.h>
25 #include <linux/seq_file.h>
26 #include <linux/debugfs.h>
27 #include <trace/events/writeback.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/timestamp.h>
30 
31 #include "internal.h"
32 
33 /*
34  * Inode locking rules:
35  *
36  * inode->i_lock protects:
37  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
38  * Inode LRU list locks protect:
39  *   inode->i_sb->s_inode_lru, inode->i_lru
40  * inode->i_sb->s_inode_list_lock protects:
41  *   inode->i_sb->s_inodes, inode->i_sb_list
42  * bdi->wb.list_lock protects:
43  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
44  * inode_hash_lock protects:
45  *   inode_hashtable, inode->i_hash
46  *
47  * Lock ordering:
48  *
49  * inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *     Inode LRU list locks
52  *
53  * bdi->wb.list_lock
54  *   inode->i_lock
55  *
56  * inode_hash_lock
57  *   inode->i_sb->s_inode_list_lock
58  *   inode->i_lock
59  *
60  * iunique_lock
61  *   inode_hash_lock
62  */
63 
64 static unsigned int i_hash_mask __ro_after_init;
65 static unsigned int i_hash_shift __ro_after_init;
66 static struct hlist_head *inode_hashtable __ro_after_init;
67 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
68 
69 /*
70  * Empty aops. Can be used for the cases where the user does not
71  * define any of the address_space operations.
72  */
73 const struct address_space_operations empty_aops = {
74 };
75 EXPORT_SYMBOL(empty_aops);
76 
77 static DEFINE_PER_CPU(unsigned long, nr_inodes);
78 static DEFINE_PER_CPU(unsigned long, nr_unused);
79 
80 static struct kmem_cache *inode_cachep __ro_after_init;
81 
82 static long get_nr_inodes(void)
83 {
84 	int i;
85 	long sum = 0;
86 	for_each_possible_cpu(i)
87 		sum += per_cpu(nr_inodes, i);
88 	return sum < 0 ? 0 : sum;
89 }
90 
91 static inline long get_nr_inodes_unused(void)
92 {
93 	int i;
94 	long sum = 0;
95 	for_each_possible_cpu(i)
96 		sum += per_cpu(nr_unused, i);
97 	return sum < 0 ? 0 : sum;
98 }
99 
100 long get_nr_dirty_inodes(void)
101 {
102 	/* not actually dirty inodes, but a wild approximation */
103 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
104 	return nr_dirty > 0 ? nr_dirty : 0;
105 }
106 
107 #ifdef CONFIG_DEBUG_FS
108 static DEFINE_PER_CPU(long, mg_ctime_updates);
109 static DEFINE_PER_CPU(long, mg_fine_stamps);
110 static DEFINE_PER_CPU(long, mg_ctime_swaps);
111 
112 static unsigned long get_mg_ctime_updates(void)
113 {
114 	unsigned long sum = 0;
115 	int i;
116 
117 	for_each_possible_cpu(i)
118 		sum += data_race(per_cpu(mg_ctime_updates, i));
119 	return sum;
120 }
121 
122 static unsigned long get_mg_fine_stamps(void)
123 {
124 	unsigned long sum = 0;
125 	int i;
126 
127 	for_each_possible_cpu(i)
128 		sum += data_race(per_cpu(mg_fine_stamps, i));
129 	return sum;
130 }
131 
132 static unsigned long get_mg_ctime_swaps(void)
133 {
134 	unsigned long sum = 0;
135 	int i;
136 
137 	for_each_possible_cpu(i)
138 		sum += data_race(per_cpu(mg_ctime_swaps, i));
139 	return sum;
140 }
141 
142 #define mgtime_counter_inc(__var)	this_cpu_inc(__var)
143 
144 static int mgts_show(struct seq_file *s, void *p)
145 {
146 	unsigned long ctime_updates = get_mg_ctime_updates();
147 	unsigned long ctime_swaps = get_mg_ctime_swaps();
148 	unsigned long fine_stamps = get_mg_fine_stamps();
149 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
150 
151 	seq_printf(s, "%lu %lu %lu %lu\n",
152 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
153 	return 0;
154 }
155 
156 DEFINE_SHOW_ATTRIBUTE(mgts);
157 
158 static int __init mg_debugfs_init(void)
159 {
160 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
161 	return 0;
162 }
163 late_initcall(mg_debugfs_init);
164 
165 #else /* ! CONFIG_DEBUG_FS */
166 
167 #define mgtime_counter_inc(__var)	do { } while (0)
168 
169 #endif /* CONFIG_DEBUG_FS */
170 
171 /*
172  * Handle nr_inode sysctl
173  */
174 #ifdef CONFIG_SYSCTL
175 /*
176  * Statistics gathering..
177  */
178 static struct inodes_stat_t inodes_stat;
179 
180 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
181 			  size_t *lenp, loff_t *ppos)
182 {
183 	inodes_stat.nr_inodes = get_nr_inodes();
184 	inodes_stat.nr_unused = get_nr_inodes_unused();
185 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
186 }
187 
188 static const struct ctl_table inodes_sysctls[] = {
189 	{
190 		.procname	= "inode-nr",
191 		.data		= &inodes_stat,
192 		.maxlen		= 2*sizeof(long),
193 		.mode		= 0444,
194 		.proc_handler	= proc_nr_inodes,
195 	},
196 	{
197 		.procname	= "inode-state",
198 		.data		= &inodes_stat,
199 		.maxlen		= 7*sizeof(long),
200 		.mode		= 0444,
201 		.proc_handler	= proc_nr_inodes,
202 	},
203 };
204 
205 static int __init init_fs_inode_sysctls(void)
206 {
207 	register_sysctl_init("fs", inodes_sysctls);
208 	return 0;
209 }
210 early_initcall(init_fs_inode_sysctls);
211 #endif
212 
213 static int no_open(struct inode *inode, struct file *file)
214 {
215 	return -ENXIO;
216 }
217 
218 /**
219  * inode_init_always_gfp - perform inode structure initialisation
220  * @sb: superblock inode belongs to
221  * @inode: inode to initialise
222  * @gfp: allocation flags
223  *
224  * These are initializations that need to be done on every inode
225  * allocation as the fields are not initialised by slab allocation.
226  * If there are additional allocations required @gfp is used.
227  */
228 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
229 {
230 	static const struct inode_operations empty_iops;
231 	static const struct file_operations no_open_fops = {.open = no_open};
232 	struct address_space *const mapping = &inode->i_data;
233 
234 	inode->i_sb = sb;
235 	inode->i_blkbits = sb->s_blocksize_bits;
236 	inode->i_flags = 0;
237 	inode_state_assign_raw(inode, 0);
238 	atomic64_set(&inode->i_sequence, 0);
239 	atomic_set(&inode->i_count, 1);
240 	inode->i_op = &empty_iops;
241 	inode->i_fop = &no_open_fops;
242 	inode->i_ino = 0;
243 	inode->__i_nlink = 1;
244 	inode->i_opflags = 0;
245 	if (sb->s_xattr)
246 		inode->i_opflags |= IOP_XATTR;
247 	if (sb->s_type->fs_flags & FS_MGTIME)
248 		inode->i_opflags |= IOP_MGTIME;
249 	i_uid_write(inode, 0);
250 	i_gid_write(inode, 0);
251 	atomic_set(&inode->i_writecount, 0);
252 	inode->i_size = 0;
253 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
254 	inode->i_blocks = 0;
255 	inode->i_bytes = 0;
256 	inode->i_generation = 0;
257 	inode->i_pipe = NULL;
258 	inode->i_cdev = NULL;
259 	inode->i_link = NULL;
260 	inode->i_dir_seq = 0;
261 	inode->i_rdev = 0;
262 	inode->dirtied_when = 0;
263 
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 	inode->i_wb_frn_winner = 0;
266 	inode->i_wb_frn_avg_time = 0;
267 	inode->i_wb_frn_history = 0;
268 #endif
269 
270 	spin_lock_init(&inode->i_lock);
271 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
272 
273 	init_rwsem(&inode->i_rwsem);
274 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
275 
276 	atomic_set(&inode->i_dio_count, 0);
277 
278 	mapping->a_ops = &empty_aops;
279 	mapping->host = inode;
280 	mapping->flags = 0;
281 	mapping->wb_err = 0;
282 	atomic_set(&mapping->i_mmap_writable, 0);
283 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
284 	atomic_set(&mapping->nr_thps, 0);
285 #endif
286 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
287 	mapping->i_private_data = NULL;
288 	mapping->writeback_index = 0;
289 	init_rwsem(&mapping->invalidate_lock);
290 	lockdep_set_class_and_name(&mapping->invalidate_lock,
291 				   &sb->s_type->invalidate_lock_key,
292 				   "mapping.invalidate_lock");
293 	if (sb->s_iflags & SB_I_STABLE_WRITES)
294 		mapping_set_stable_writes(mapping);
295 	inode->i_private = NULL;
296 	inode->i_mapping = mapping;
297 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
298 #ifdef CONFIG_FS_POSIX_ACL
299 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
300 #endif
301 
302 #ifdef CONFIG_FSNOTIFY
303 	inode->i_fsnotify_mask = 0;
304 #endif
305 	inode->i_flctx = NULL;
306 
307 	if (unlikely(security_inode_alloc(inode, gfp)))
308 		return -ENOMEM;
309 
310 	this_cpu_inc(nr_inodes);
311 
312 	return 0;
313 }
314 EXPORT_SYMBOL(inode_init_always_gfp);
315 
316 void free_inode_nonrcu(struct inode *inode)
317 {
318 	kmem_cache_free(inode_cachep, inode);
319 }
320 EXPORT_SYMBOL(free_inode_nonrcu);
321 
322 static void i_callback(struct rcu_head *head)
323 {
324 	struct inode *inode = container_of(head, struct inode, i_rcu);
325 	if (inode->free_inode)
326 		inode->free_inode(inode);
327 	else
328 		free_inode_nonrcu(inode);
329 }
330 
331 /**
332  *	alloc_inode 	- obtain an inode
333  *	@sb: superblock
334  *
335  *	Allocates a new inode for given superblock.
336  *	Inode wont be chained in superblock s_inodes list
337  *	This means :
338  *	- fs can't be unmount
339  *	- quotas, fsnotify, writeback can't work
340  */
341 struct inode *alloc_inode(struct super_block *sb)
342 {
343 	const struct super_operations *ops = sb->s_op;
344 	struct inode *inode;
345 
346 	if (ops->alloc_inode)
347 		inode = ops->alloc_inode(sb);
348 	else
349 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
350 
351 	if (!inode)
352 		return NULL;
353 
354 	if (unlikely(inode_init_always(sb, inode))) {
355 		if (ops->destroy_inode) {
356 			ops->destroy_inode(inode);
357 			if (!ops->free_inode)
358 				return NULL;
359 		}
360 		inode->free_inode = ops->free_inode;
361 		i_callback(&inode->i_rcu);
362 		return NULL;
363 	}
364 
365 	return inode;
366 }
367 
368 void __destroy_inode(struct inode *inode)
369 {
370 	BUG_ON(inode_has_buffers(inode));
371 	inode_detach_wb(inode);
372 	security_inode_free(inode);
373 	fsnotify_inode_delete(inode);
374 	locks_free_lock_context(inode);
375 	if (!inode->i_nlink) {
376 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
377 		atomic_long_dec(&inode->i_sb->s_remove_count);
378 	}
379 
380 #ifdef CONFIG_FS_POSIX_ACL
381 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
382 		posix_acl_release(inode->i_acl);
383 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
384 		posix_acl_release(inode->i_default_acl);
385 #endif
386 	this_cpu_dec(nr_inodes);
387 }
388 EXPORT_SYMBOL(__destroy_inode);
389 
390 static void destroy_inode(struct inode *inode)
391 {
392 	const struct super_operations *ops = inode->i_sb->s_op;
393 
394 	BUG_ON(!list_empty(&inode->i_lru));
395 	__destroy_inode(inode);
396 	if (ops->destroy_inode) {
397 		ops->destroy_inode(inode);
398 		if (!ops->free_inode)
399 			return;
400 	}
401 	inode->free_inode = ops->free_inode;
402 	call_rcu(&inode->i_rcu, i_callback);
403 }
404 
405 /**
406  * drop_nlink - directly drop an inode's link count
407  * @inode: inode
408  *
409  * This is a low-level filesystem helper to replace any
410  * direct filesystem manipulation of i_nlink.  In cases
411  * where we are attempting to track writes to the
412  * filesystem, a decrement to zero means an imminent
413  * write when the file is truncated and actually unlinked
414  * on the filesystem.
415  */
416 void drop_nlink(struct inode *inode)
417 {
418 	WARN_ON(inode->i_nlink == 0);
419 	inode->__i_nlink--;
420 	if (!inode->i_nlink)
421 		atomic_long_inc(&inode->i_sb->s_remove_count);
422 }
423 EXPORT_SYMBOL(drop_nlink);
424 
425 /**
426  * clear_nlink - directly zero an inode's link count
427  * @inode: inode
428  *
429  * This is a low-level filesystem helper to replace any
430  * direct filesystem manipulation of i_nlink.  See
431  * drop_nlink() for why we care about i_nlink hitting zero.
432  */
433 void clear_nlink(struct inode *inode)
434 {
435 	if (inode->i_nlink) {
436 		inode->__i_nlink = 0;
437 		atomic_long_inc(&inode->i_sb->s_remove_count);
438 	}
439 }
440 EXPORT_SYMBOL(clear_nlink);
441 
442 /**
443  * set_nlink - directly set an inode's link count
444  * @inode: inode
445  * @nlink: new nlink (should be non-zero)
446  *
447  * This is a low-level filesystem helper to replace any
448  * direct filesystem manipulation of i_nlink.
449  */
450 void set_nlink(struct inode *inode, unsigned int nlink)
451 {
452 	if (!nlink) {
453 		clear_nlink(inode);
454 	} else {
455 		/* Yes, some filesystems do change nlink from zero to one */
456 		if (inode->i_nlink == 0)
457 			atomic_long_dec(&inode->i_sb->s_remove_count);
458 
459 		inode->__i_nlink = nlink;
460 	}
461 }
462 EXPORT_SYMBOL(set_nlink);
463 
464 /**
465  * inc_nlink - directly increment an inode's link count
466  * @inode: inode
467  *
468  * This is a low-level filesystem helper to replace any
469  * direct filesystem manipulation of i_nlink.  Currently,
470  * it is only here for parity with dec_nlink().
471  */
472 void inc_nlink(struct inode *inode)
473 {
474 	if (unlikely(inode->i_nlink == 0)) {
475 		WARN_ON(!(inode_state_read_once(inode) & I_LINKABLE));
476 		atomic_long_dec(&inode->i_sb->s_remove_count);
477 	}
478 
479 	inode->__i_nlink++;
480 }
481 EXPORT_SYMBOL(inc_nlink);
482 
483 static void __address_space_init_once(struct address_space *mapping)
484 {
485 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
486 	init_rwsem(&mapping->i_mmap_rwsem);
487 	INIT_LIST_HEAD(&mapping->i_private_list);
488 	spin_lock_init(&mapping->i_private_lock);
489 	mapping->i_mmap = RB_ROOT_CACHED;
490 }
491 
492 void address_space_init_once(struct address_space *mapping)
493 {
494 	memset(mapping, 0, sizeof(*mapping));
495 	__address_space_init_once(mapping);
496 }
497 EXPORT_SYMBOL(address_space_init_once);
498 
499 /*
500  * These are initializations that only need to be done
501  * once, because the fields are idempotent across use
502  * of the inode, so let the slab aware of that.
503  */
504 void inode_init_once(struct inode *inode)
505 {
506 	memset(inode, 0, sizeof(*inode));
507 	INIT_HLIST_NODE(&inode->i_hash);
508 	INIT_LIST_HEAD(&inode->i_devices);
509 	INIT_LIST_HEAD(&inode->i_io_list);
510 	INIT_LIST_HEAD(&inode->i_wb_list);
511 	INIT_LIST_HEAD(&inode->i_lru);
512 	INIT_LIST_HEAD(&inode->i_sb_list);
513 	__address_space_init_once(&inode->i_data);
514 	i_size_ordered_init(inode);
515 }
516 EXPORT_SYMBOL(inode_init_once);
517 
518 static void init_once(void *foo)
519 {
520 	struct inode *inode = (struct inode *) foo;
521 
522 	inode_init_once(inode);
523 }
524 
525 /*
526  * get additional reference to inode; caller must already hold one.
527  */
528 void ihold(struct inode *inode)
529 {
530 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
531 }
532 EXPORT_SYMBOL(ihold);
533 
534 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
535 					    struct inode *inode, u32 bit)
536 {
537 	void *bit_address;
538 
539 	bit_address = inode_state_wait_address(inode, bit);
540 	init_wait_var_entry(wqe, bit_address, 0);
541 	return __var_waitqueue(bit_address);
542 }
543 EXPORT_SYMBOL(inode_bit_waitqueue);
544 
545 void wait_on_new_inode(struct inode *inode)
546 {
547 	struct wait_bit_queue_entry wqe;
548 	struct wait_queue_head *wq_head;
549 
550 	spin_lock(&inode->i_lock);
551 	if (!(inode_state_read(inode) & I_NEW)) {
552 		spin_unlock(&inode->i_lock);
553 		return;
554 	}
555 
556 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
557 	for (;;) {
558 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
559 		if (!(inode_state_read(inode) & I_NEW))
560 			break;
561 		spin_unlock(&inode->i_lock);
562 		schedule();
563 		spin_lock(&inode->i_lock);
564 	}
565 	finish_wait(wq_head, &wqe.wq_entry);
566 	WARN_ON(inode_state_read(inode) & I_NEW);
567 	spin_unlock(&inode->i_lock);
568 }
569 EXPORT_SYMBOL(wait_on_new_inode);
570 
571 static void __inode_lru_list_add(struct inode *inode, bool rotate)
572 {
573 	lockdep_assert_held(&inode->i_lock);
574 
575 	if (inode_state_read(inode) & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
576 		return;
577 	if (icount_read(inode))
578 		return;
579 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
580 		return;
581 	if (!mapping_shrinkable(&inode->i_data))
582 		return;
583 
584 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
585 		this_cpu_inc(nr_unused);
586 	else if (rotate)
587 		inode_state_set(inode, I_REFERENCED);
588 }
589 
590 /*
591  * Add inode to LRU if needed (inode is unused and clean).
592  */
593 void inode_lru_list_add(struct inode *inode)
594 {
595 	__inode_lru_list_add(inode, false);
596 }
597 
598 static void inode_lru_list_del(struct inode *inode)
599 {
600 	if (list_empty(&inode->i_lru))
601 		return;
602 
603 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
604 		this_cpu_dec(nr_unused);
605 }
606 
607 static void inode_pin_lru_isolating(struct inode *inode)
608 {
609 	lockdep_assert_held(&inode->i_lock);
610 	WARN_ON(inode_state_read(inode) & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
611 	inode_state_set(inode, I_LRU_ISOLATING);
612 }
613 
614 static void inode_unpin_lru_isolating(struct inode *inode)
615 {
616 	spin_lock(&inode->i_lock);
617 	WARN_ON(!(inode_state_read(inode) & I_LRU_ISOLATING));
618 	inode_state_clear(inode, I_LRU_ISOLATING);
619 	/* Called with inode->i_lock which ensures memory ordering. */
620 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
621 	spin_unlock(&inode->i_lock);
622 }
623 
624 static void inode_wait_for_lru_isolating(struct inode *inode)
625 {
626 	struct wait_bit_queue_entry wqe;
627 	struct wait_queue_head *wq_head;
628 
629 	lockdep_assert_held(&inode->i_lock);
630 	if (!(inode_state_read(inode) & I_LRU_ISOLATING))
631 		return;
632 
633 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
634 	for (;;) {
635 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
636 		/*
637 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
638 		 * memory ordering.
639 		 */
640 		if (!(inode_state_read(inode) & I_LRU_ISOLATING))
641 			break;
642 		spin_unlock(&inode->i_lock);
643 		schedule();
644 		spin_lock(&inode->i_lock);
645 	}
646 	finish_wait(wq_head, &wqe.wq_entry);
647 	WARN_ON(inode_state_read(inode) & I_LRU_ISOLATING);
648 }
649 
650 /**
651  * inode_sb_list_add - add inode to the superblock list of inodes
652  * @inode: inode to add
653  */
654 void inode_sb_list_add(struct inode *inode)
655 {
656 	struct super_block *sb = inode->i_sb;
657 
658 	spin_lock(&sb->s_inode_list_lock);
659 	list_add(&inode->i_sb_list, &sb->s_inodes);
660 	spin_unlock(&sb->s_inode_list_lock);
661 }
662 EXPORT_SYMBOL_GPL(inode_sb_list_add);
663 
664 static inline void inode_sb_list_del(struct inode *inode)
665 {
666 	struct super_block *sb = inode->i_sb;
667 
668 	if (!list_empty(&inode->i_sb_list)) {
669 		spin_lock(&sb->s_inode_list_lock);
670 		list_del_init(&inode->i_sb_list);
671 		spin_unlock(&sb->s_inode_list_lock);
672 	}
673 }
674 
675 static unsigned long hash(struct super_block *sb, unsigned long hashval)
676 {
677 	unsigned long tmp;
678 
679 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
680 			L1_CACHE_BYTES;
681 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
682 	return tmp & i_hash_mask;
683 }
684 
685 /**
686  *	__insert_inode_hash - hash an inode
687  *	@inode: unhashed inode
688  *	@hashval: unsigned long value used to locate this object in the
689  *		inode_hashtable.
690  *
691  *	Add an inode to the inode hash for this superblock.
692  */
693 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
694 {
695 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
696 
697 	spin_lock(&inode_hash_lock);
698 	spin_lock(&inode->i_lock);
699 	hlist_add_head_rcu(&inode->i_hash, b);
700 	spin_unlock(&inode->i_lock);
701 	spin_unlock(&inode_hash_lock);
702 }
703 EXPORT_SYMBOL(__insert_inode_hash);
704 
705 /**
706  *	__remove_inode_hash - remove an inode from the hash
707  *	@inode: inode to unhash
708  *
709  *	Remove an inode from the superblock.
710  */
711 void __remove_inode_hash(struct inode *inode)
712 {
713 	spin_lock(&inode_hash_lock);
714 	spin_lock(&inode->i_lock);
715 	hlist_del_init_rcu(&inode->i_hash);
716 	spin_unlock(&inode->i_lock);
717 	spin_unlock(&inode_hash_lock);
718 }
719 EXPORT_SYMBOL(__remove_inode_hash);
720 
721 void dump_mapping(const struct address_space *mapping)
722 {
723 	struct inode *host;
724 	const struct address_space_operations *a_ops;
725 	struct hlist_node *dentry_first;
726 	struct dentry *dentry_ptr;
727 	struct dentry dentry;
728 	char fname[64] = {};
729 	unsigned long ino;
730 
731 	/*
732 	 * If mapping is an invalid pointer, we don't want to crash
733 	 * accessing it, so probe everything depending on it carefully.
734 	 */
735 	if (get_kernel_nofault(host, &mapping->host) ||
736 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
737 		pr_warn("invalid mapping:%px\n", mapping);
738 		return;
739 	}
740 
741 	if (!host) {
742 		pr_warn("aops:%ps\n", a_ops);
743 		return;
744 	}
745 
746 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
747 	    get_kernel_nofault(ino, &host->i_ino)) {
748 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
749 		return;
750 	}
751 
752 	if (!dentry_first) {
753 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
754 		return;
755 	}
756 
757 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
758 	if (get_kernel_nofault(dentry, dentry_ptr) ||
759 	    !dentry.d_parent || !dentry.d_name.name) {
760 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
761 				a_ops, ino, dentry_ptr);
762 		return;
763 	}
764 
765 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
766 		strscpy(fname, "<invalid>");
767 	/*
768 	 * Even if strncpy_from_kernel_nofault() succeeded,
769 	 * the fname could be unreliable
770 	 */
771 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
772 		a_ops, ino, fname);
773 }
774 
775 void clear_inode(struct inode *inode)
776 {
777 	/*
778 	 * Only IS_VERITY() inodes can have verity info, so start by checking
779 	 * for IS_VERITY() (which is faster than retrieving the pointer to the
780 	 * verity info).  This minimizes overhead for non-verity inodes.
781 	 */
782 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
783 		fsverity_cleanup_inode(inode);
784 
785 	/*
786 	 * We have to cycle the i_pages lock here because reclaim can be in the
787 	 * process of removing the last page (in __filemap_remove_folio())
788 	 * and we must not free the mapping under it.
789 	 */
790 	xa_lock_irq(&inode->i_data.i_pages);
791 	BUG_ON(inode->i_data.nrpages);
792 	/*
793 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
794 	 * two known and long-standing ways in which nodes may get left behind
795 	 * (when deep radix-tree node allocation failed partway; or when THP
796 	 * collapse_file() failed). Until those two known cases are cleaned up,
797 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
798 	 * nor even WARN_ON(!mapping_empty).
799 	 */
800 	xa_unlock_irq(&inode->i_data.i_pages);
801 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
802 	BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
803 	BUG_ON(inode_state_read_once(inode) & I_CLEAR);
804 	BUG_ON(!list_empty(&inode->i_wb_list));
805 	/* don't need i_lock here, no concurrent mods to i_state */
806 	inode_state_assign_raw(inode, I_FREEING | I_CLEAR);
807 }
808 EXPORT_SYMBOL(clear_inode);
809 
810 /*
811  * Free the inode passed in, removing it from the lists it is still connected
812  * to. We remove any pages still attached to the inode and wait for any IO that
813  * is still in progress before finally destroying the inode.
814  *
815  * An inode must already be marked I_FREEING so that we avoid the inode being
816  * moved back onto lists if we race with other code that manipulates the lists
817  * (e.g. writeback_single_inode). The caller is responsible for setting this.
818  *
819  * An inode must already be removed from the LRU list before being evicted from
820  * the cache. This should occur atomically with setting the I_FREEING state
821  * flag, so no inodes here should ever be on the LRU when being evicted.
822  */
823 static void evict(struct inode *inode)
824 {
825 	const struct super_operations *op = inode->i_sb->s_op;
826 
827 	BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
828 	BUG_ON(!list_empty(&inode->i_lru));
829 
830 	inode_io_list_del(inode);
831 	inode_sb_list_del(inode);
832 
833 	spin_lock(&inode->i_lock);
834 	inode_wait_for_lru_isolating(inode);
835 
836 	/*
837 	 * Wait for flusher thread to be done with the inode so that filesystem
838 	 * does not start destroying it while writeback is still running. Since
839 	 * the inode has I_FREEING set, flusher thread won't start new work on
840 	 * the inode.  We just have to wait for running writeback to finish.
841 	 */
842 	inode_wait_for_writeback(inode);
843 	spin_unlock(&inode->i_lock);
844 
845 	if (op->evict_inode) {
846 		op->evict_inode(inode);
847 	} else {
848 		truncate_inode_pages_final(&inode->i_data);
849 		clear_inode(inode);
850 	}
851 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
852 		cd_forget(inode);
853 
854 	remove_inode_hash(inode);
855 
856 	/*
857 	 * Wake up waiters in __wait_on_freeing_inode().
858 	 *
859 	 * It is an invariant that any thread we need to wake up is already
860 	 * accounted for before remove_inode_hash() acquires ->i_lock -- both
861 	 * sides take the lock and sleep is aborted if the inode is found
862 	 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
863 	 * wins and the sleeper aborts after testing with the lock.
864 	 *
865 	 * This also means we don't need any fences for the call below.
866 	 */
867 	inode_wake_up_bit(inode, __I_NEW);
868 	BUG_ON(inode_state_read_once(inode) != (I_FREEING | I_CLEAR));
869 
870 	destroy_inode(inode);
871 }
872 
873 /*
874  * dispose_list - dispose of the contents of a local list
875  * @head: the head of the list to free
876  *
877  * Dispose-list gets a local list with local inodes in it, so it doesn't
878  * need to worry about list corruption and SMP locks.
879  */
880 static void dispose_list(struct list_head *head)
881 {
882 	while (!list_empty(head)) {
883 		struct inode *inode;
884 
885 		inode = list_first_entry(head, struct inode, i_lru);
886 		list_del_init(&inode->i_lru);
887 
888 		evict(inode);
889 		cond_resched();
890 	}
891 }
892 
893 /**
894  * evict_inodes	- evict all evictable inodes for a superblock
895  * @sb:		superblock to operate on
896  *
897  * Make sure that no inodes with zero refcount are retained.  This is
898  * called by superblock shutdown after having SB_ACTIVE flag removed,
899  * so any inode reaching zero refcount during or after that call will
900  * be immediately evicted.
901  */
902 void evict_inodes(struct super_block *sb)
903 {
904 	struct inode *inode;
905 	LIST_HEAD(dispose);
906 
907 again:
908 	spin_lock(&sb->s_inode_list_lock);
909 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
910 		if (icount_read(inode))
911 			continue;
912 
913 		spin_lock(&inode->i_lock);
914 		if (icount_read(inode)) {
915 			spin_unlock(&inode->i_lock);
916 			continue;
917 		}
918 		if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) {
919 			spin_unlock(&inode->i_lock);
920 			continue;
921 		}
922 
923 		inode_state_set(inode, I_FREEING);
924 		inode_lru_list_del(inode);
925 		spin_unlock(&inode->i_lock);
926 		list_add(&inode->i_lru, &dispose);
927 
928 		/*
929 		 * We can have a ton of inodes to evict at unmount time given
930 		 * enough memory, check to see if we need to go to sleep for a
931 		 * bit so we don't livelock.
932 		 */
933 		if (need_resched()) {
934 			spin_unlock(&sb->s_inode_list_lock);
935 			cond_resched();
936 			dispose_list(&dispose);
937 			goto again;
938 		}
939 	}
940 	spin_unlock(&sb->s_inode_list_lock);
941 
942 	dispose_list(&dispose);
943 }
944 EXPORT_SYMBOL_GPL(evict_inodes);
945 
946 /*
947  * Isolate the inode from the LRU in preparation for freeing it.
948  *
949  * If the inode has the I_REFERENCED flag set, then it means that it has been
950  * used recently - the flag is set in iput_final(). When we encounter such an
951  * inode, clear the flag and move it to the back of the LRU so it gets another
952  * pass through the LRU before it gets reclaimed. This is necessary because of
953  * the fact we are doing lazy LRU updates to minimise lock contention so the
954  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
955  * with this flag set because they are the inodes that are out of order.
956  */
957 static enum lru_status inode_lru_isolate(struct list_head *item,
958 		struct list_lru_one *lru, void *arg)
959 {
960 	struct list_head *freeable = arg;
961 	struct inode	*inode = container_of(item, struct inode, i_lru);
962 
963 	/*
964 	 * We are inverting the lru lock/inode->i_lock here, so use a
965 	 * trylock. If we fail to get the lock, just skip it.
966 	 */
967 	if (!spin_trylock(&inode->i_lock))
968 		return LRU_SKIP;
969 
970 	/*
971 	 * Inodes can get referenced, redirtied, or repopulated while
972 	 * they're already on the LRU, and this can make them
973 	 * unreclaimable for a while. Remove them lazily here; iput,
974 	 * sync, or the last page cache deletion will requeue them.
975 	 */
976 	if (icount_read(inode) ||
977 	    (inode_state_read(inode) & ~I_REFERENCED) ||
978 	    !mapping_shrinkable(&inode->i_data)) {
979 		list_lru_isolate(lru, &inode->i_lru);
980 		spin_unlock(&inode->i_lock);
981 		this_cpu_dec(nr_unused);
982 		return LRU_REMOVED;
983 	}
984 
985 	/* Recently referenced inodes get one more pass */
986 	if (inode_state_read(inode) & I_REFERENCED) {
987 		inode_state_clear(inode, I_REFERENCED);
988 		spin_unlock(&inode->i_lock);
989 		return LRU_ROTATE;
990 	}
991 
992 	/*
993 	 * On highmem systems, mapping_shrinkable() permits dropping
994 	 * page cache in order to free up struct inodes: lowmem might
995 	 * be under pressure before the cache inside the highmem zone.
996 	 */
997 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
998 		inode_pin_lru_isolating(inode);
999 		spin_unlock(&inode->i_lock);
1000 		spin_unlock(&lru->lock);
1001 		if (remove_inode_buffers(inode)) {
1002 			unsigned long reap;
1003 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
1004 			if (current_is_kswapd())
1005 				__count_vm_events(KSWAPD_INODESTEAL, reap);
1006 			else
1007 				__count_vm_events(PGINODESTEAL, reap);
1008 			mm_account_reclaimed_pages(reap);
1009 		}
1010 		inode_unpin_lru_isolating(inode);
1011 		return LRU_RETRY;
1012 	}
1013 
1014 	WARN_ON(inode_state_read(inode) & I_NEW);
1015 	inode_state_set(inode, I_FREEING);
1016 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
1017 	spin_unlock(&inode->i_lock);
1018 
1019 	this_cpu_dec(nr_unused);
1020 	return LRU_REMOVED;
1021 }
1022 
1023 /*
1024  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1025  * This is called from the superblock shrinker function with a number of inodes
1026  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1027  * then are freed outside inode_lock by dispose_list().
1028  */
1029 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
1030 {
1031 	LIST_HEAD(freeable);
1032 	long freed;
1033 
1034 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
1035 				     inode_lru_isolate, &freeable);
1036 	dispose_list(&freeable);
1037 	return freed;
1038 }
1039 
1040 static void __wait_on_freeing_inode(struct inode *inode, bool hash_locked, bool rcu_locked);
1041 
1042 /*
1043  * Called with the inode lock held.
1044  */
1045 static struct inode *find_inode(struct super_block *sb,
1046 				struct hlist_head *head,
1047 				int (*test)(struct inode *, void *),
1048 				void *data, bool hash_locked,
1049 				bool *isnew)
1050 {
1051 	struct inode *inode = NULL;
1052 
1053 	if (hash_locked)
1054 		lockdep_assert_held(&inode_hash_lock);
1055 	else
1056 		lockdep_assert_not_held(&inode_hash_lock);
1057 
1058 	rcu_read_lock();
1059 repeat:
1060 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1061 		if (inode->i_sb != sb)
1062 			continue;
1063 		if (!test(inode, data))
1064 			continue;
1065 		spin_lock(&inode->i_lock);
1066 		if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1067 			__wait_on_freeing_inode(inode, hash_locked, true);
1068 			goto repeat;
1069 		}
1070 		if (unlikely(inode_state_read(inode) & I_CREATING)) {
1071 			spin_unlock(&inode->i_lock);
1072 			rcu_read_unlock();
1073 			return ERR_PTR(-ESTALE);
1074 		}
1075 		__iget(inode);
1076 		*isnew = !!(inode_state_read(inode) & I_NEW);
1077 		spin_unlock(&inode->i_lock);
1078 		rcu_read_unlock();
1079 		return inode;
1080 	}
1081 	rcu_read_unlock();
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * find_inode_fast is the fast path version of find_inode, see the comment at
1087  * iget_locked for details.
1088  */
1089 static struct inode *find_inode_fast(struct super_block *sb,
1090 				struct hlist_head *head, unsigned long ino,
1091 				bool hash_locked, bool *isnew)
1092 {
1093 	struct inode *inode = NULL;
1094 
1095 	if (hash_locked)
1096 		lockdep_assert_held(&inode_hash_lock);
1097 	else
1098 		lockdep_assert_not_held(&inode_hash_lock);
1099 
1100 	rcu_read_lock();
1101 repeat:
1102 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1103 		if (inode->i_ino != ino)
1104 			continue;
1105 		if (inode->i_sb != sb)
1106 			continue;
1107 		spin_lock(&inode->i_lock);
1108 		if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1109 			__wait_on_freeing_inode(inode, hash_locked, true);
1110 			goto repeat;
1111 		}
1112 		if (unlikely(inode_state_read(inode) & I_CREATING)) {
1113 			spin_unlock(&inode->i_lock);
1114 			rcu_read_unlock();
1115 			return ERR_PTR(-ESTALE);
1116 		}
1117 		__iget(inode);
1118 		*isnew = !!(inode_state_read(inode) & I_NEW);
1119 		spin_unlock(&inode->i_lock);
1120 		rcu_read_unlock();
1121 		return inode;
1122 	}
1123 	rcu_read_unlock();
1124 	return NULL;
1125 }
1126 
1127 /*
1128  * Each cpu owns a range of LAST_INO_BATCH numbers.
1129  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1130  * to renew the exhausted range.
1131  *
1132  * This does not significantly increase overflow rate because every CPU can
1133  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1134  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1135  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1136  * overflow rate by 2x, which does not seem too significant.
1137  *
1138  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1139  * error if st_ino won't fit in target struct field. Use 32bit counter
1140  * here to attempt to avoid that.
1141  */
1142 #define LAST_INO_BATCH 1024
1143 static DEFINE_PER_CPU(unsigned int, last_ino);
1144 
1145 unsigned int get_next_ino(void)
1146 {
1147 	unsigned int *p = &get_cpu_var(last_ino);
1148 	unsigned int res = *p;
1149 
1150 #ifdef CONFIG_SMP
1151 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1152 		static atomic_t shared_last_ino;
1153 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1154 
1155 		res = next - LAST_INO_BATCH;
1156 	}
1157 #endif
1158 
1159 	res++;
1160 	/* get_next_ino should not provide a 0 inode number */
1161 	if (unlikely(!res))
1162 		res++;
1163 	*p = res;
1164 	put_cpu_var(last_ino);
1165 	return res;
1166 }
1167 EXPORT_SYMBOL(get_next_ino);
1168 
1169 /**
1170  *	new_inode 	- obtain an inode
1171  *	@sb: superblock
1172  *
1173  *	Allocates a new inode for given superblock. The default gfp_mask
1174  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1175  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1176  *	for the page cache are not reclaimable or migratable,
1177  *	mapping_set_gfp_mask() must be called with suitable flags on the
1178  *	newly created inode's mapping
1179  *
1180  */
1181 struct inode *new_inode(struct super_block *sb)
1182 {
1183 	struct inode *inode;
1184 
1185 	inode = alloc_inode(sb);
1186 	if (inode)
1187 		inode_sb_list_add(inode);
1188 	return inode;
1189 }
1190 EXPORT_SYMBOL(new_inode);
1191 
1192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1193 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1194 {
1195 	if (S_ISDIR(inode->i_mode)) {
1196 		struct file_system_type *type = inode->i_sb->s_type;
1197 
1198 		/* Set new key only if filesystem hasn't already changed it */
1199 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1200 			/*
1201 			 * ensure nobody is actually holding i_rwsem
1202 			 */
1203 			init_rwsem(&inode->i_rwsem);
1204 			lockdep_set_class(&inode->i_rwsem,
1205 					  &type->i_mutex_dir_key);
1206 		}
1207 	}
1208 }
1209 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1210 #endif
1211 
1212 /**
1213  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1214  * @inode:	new inode to unlock
1215  *
1216  * Called when the inode is fully initialised to clear the new state of the
1217  * inode and wake up anyone waiting for the inode to finish initialisation.
1218  */
1219 void unlock_new_inode(struct inode *inode)
1220 {
1221 	lockdep_annotate_inode_mutex_key(inode);
1222 	spin_lock(&inode->i_lock);
1223 	WARN_ON(!(inode_state_read(inode) & I_NEW));
1224 	inode_state_clear(inode, I_NEW | I_CREATING);
1225 	inode_wake_up_bit(inode, __I_NEW);
1226 	spin_unlock(&inode->i_lock);
1227 }
1228 EXPORT_SYMBOL(unlock_new_inode);
1229 
1230 void discard_new_inode(struct inode *inode)
1231 {
1232 	lockdep_annotate_inode_mutex_key(inode);
1233 	spin_lock(&inode->i_lock);
1234 	WARN_ON(!(inode_state_read(inode) & I_NEW));
1235 	inode_state_clear(inode, I_NEW);
1236 	inode_wake_up_bit(inode, __I_NEW);
1237 	spin_unlock(&inode->i_lock);
1238 	iput(inode);
1239 }
1240 EXPORT_SYMBOL(discard_new_inode);
1241 
1242 /**
1243  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1244  *
1245  * Lock any non-NULL argument. Passed objects must not be directories.
1246  * Zero, one or two objects may be locked by this function.
1247  *
1248  * @inode1: first inode to lock
1249  * @inode2: second inode to lock
1250  */
1251 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1252 {
1253 	if (inode1)
1254 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1255 	if (inode2)
1256 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1257 	if (inode1 > inode2)
1258 		swap(inode1, inode2);
1259 	if (inode1)
1260 		inode_lock(inode1);
1261 	if (inode2 && inode2 != inode1)
1262 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1263 }
1264 EXPORT_SYMBOL(lock_two_nondirectories);
1265 
1266 /**
1267  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1268  * @inode1: first inode to unlock
1269  * @inode2: second inode to unlock
1270  */
1271 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1272 {
1273 	if (inode1) {
1274 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1275 		inode_unlock(inode1);
1276 	}
1277 	if (inode2 && inode2 != inode1) {
1278 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1279 		inode_unlock(inode2);
1280 	}
1281 }
1282 EXPORT_SYMBOL(unlock_two_nondirectories);
1283 
1284 /**
1285  * inode_insert5 - obtain an inode from a mounted file system
1286  * @inode:	pre-allocated inode to use for insert to cache
1287  * @hashval:	hash value (usually inode number) to get
1288  * @test:	callback used for comparisons between inodes
1289  * @set:	callback used to initialize a new struct inode
1290  * @data:	opaque data pointer to pass to @test and @set
1291  * @isnew:	pointer to a bool which will indicate whether I_NEW is set
1292  *
1293  * Search for the inode specified by @hashval and @data in the inode cache,
1294  * and if present return it with an increased reference count. This is a
1295  * variant of iget5_locked() that doesn't allocate an inode.
1296  *
1297  * If the inode is not present in the cache, insert the pre-allocated inode and
1298  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1299  * to fill it in before unlocking it via unlock_new_inode().
1300  *
1301  * Note that both @test and @set are called with the inode_hash_lock held, so
1302  * they can't sleep.
1303  */
1304 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1305 			    int (*test)(struct inode *, void *),
1306 			    int (*set)(struct inode *, void *), void *data)
1307 {
1308 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1309 	struct inode *old;
1310 	bool isnew;
1311 
1312 	might_sleep();
1313 
1314 again:
1315 	spin_lock(&inode_hash_lock);
1316 	old = find_inode(inode->i_sb, head, test, data, true, &isnew);
1317 	if (unlikely(old)) {
1318 		/*
1319 		 * Uhhuh, somebody else created the same inode under us.
1320 		 * Use the old inode instead of the preallocated one.
1321 		 */
1322 		spin_unlock(&inode_hash_lock);
1323 		if (IS_ERR(old))
1324 			return NULL;
1325 		if (unlikely(isnew))
1326 			wait_on_new_inode(old);
1327 		if (unlikely(inode_unhashed(old))) {
1328 			iput(old);
1329 			goto again;
1330 		}
1331 		return old;
1332 	}
1333 
1334 	if (set && unlikely(set(inode, data))) {
1335 		spin_unlock(&inode_hash_lock);
1336 		return NULL;
1337 	}
1338 
1339 	/*
1340 	 * Return the locked inode with I_NEW set, the
1341 	 * caller is responsible for filling in the contents
1342 	 */
1343 	spin_lock(&inode->i_lock);
1344 	inode_state_set(inode, I_NEW);
1345 	hlist_add_head_rcu(&inode->i_hash, head);
1346 	spin_unlock(&inode->i_lock);
1347 
1348 	spin_unlock(&inode_hash_lock);
1349 
1350 	/*
1351 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1352 	 * point, so it should be safe to test i_sb_list locklessly.
1353 	 */
1354 	if (list_empty(&inode->i_sb_list))
1355 		inode_sb_list_add(inode);
1356 
1357 	return inode;
1358 }
1359 EXPORT_SYMBOL(inode_insert5);
1360 
1361 /**
1362  * iget5_locked - obtain an inode from a mounted file system
1363  * @sb:		super block of file system
1364  * @hashval:	hash value (usually inode number) to get
1365  * @test:	callback used for comparisons between inodes
1366  * @set:	callback used to initialize a new struct inode
1367  * @data:	opaque data pointer to pass to @test and @set
1368  *
1369  * Search for the inode specified by @hashval and @data in the inode cache,
1370  * and if present return it with an increased reference count. This is a
1371  * generalized version of iget_locked() for file systems where the inode
1372  * number is not sufficient for unique identification of an inode.
1373  *
1374  * If the inode is not present in the cache, allocate and insert a new inode
1375  * and return it locked, hashed, and with the I_NEW flag set. The file system
1376  * gets to fill it in before unlocking it via unlock_new_inode().
1377  *
1378  * Note that both @test and @set are called with the inode_hash_lock held, so
1379  * they can't sleep.
1380  */
1381 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1382 		int (*test)(struct inode *, void *),
1383 		int (*set)(struct inode *, void *), void *data)
1384 {
1385 	struct inode *inode = ilookup5(sb, hashval, test, data);
1386 
1387 	if (!inode) {
1388 		struct inode *new = alloc_inode(sb);
1389 
1390 		if (new) {
1391 			inode = inode_insert5(new, hashval, test, set, data);
1392 			if (unlikely(inode != new))
1393 				destroy_inode(new);
1394 		}
1395 	}
1396 	return inode;
1397 }
1398 EXPORT_SYMBOL(iget5_locked);
1399 
1400 /**
1401  * iget5_locked_rcu - obtain an inode from a mounted file system
1402  * @sb:		super block of file system
1403  * @hashval:	hash value (usually inode number) to get
1404  * @test:	callback used for comparisons between inodes
1405  * @set:	callback used to initialize a new struct inode
1406  * @data:	opaque data pointer to pass to @test and @set
1407  *
1408  * This is equivalent to iget5_locked, except the @test callback must
1409  * tolerate the inode not being stable, including being mid-teardown.
1410  */
1411 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1412 		int (*test)(struct inode *, void *),
1413 		int (*set)(struct inode *, void *), void *data)
1414 {
1415 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1416 	struct inode *inode, *new;
1417 	bool isnew;
1418 
1419 	might_sleep();
1420 
1421 again:
1422 	inode = find_inode(sb, head, test, data, false, &isnew);
1423 	if (inode) {
1424 		if (IS_ERR(inode))
1425 			return NULL;
1426 		if (unlikely(isnew))
1427 			wait_on_new_inode(inode);
1428 		if (unlikely(inode_unhashed(inode))) {
1429 			iput(inode);
1430 			goto again;
1431 		}
1432 		return inode;
1433 	}
1434 
1435 	new = alloc_inode(sb);
1436 	if (new) {
1437 		inode = inode_insert5(new, hashval, test, set, data);
1438 		if (unlikely(inode != new))
1439 			destroy_inode(new);
1440 	}
1441 	return inode;
1442 }
1443 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1444 
1445 /**
1446  * iget_locked - obtain an inode from a mounted file system
1447  * @sb:		super block of file system
1448  * @ino:	inode number to get
1449  *
1450  * Search for the inode specified by @ino in the inode cache and if present
1451  * return it with an increased reference count. This is for file systems
1452  * where the inode number is sufficient for unique identification of an inode.
1453  *
1454  * If the inode is not in cache, allocate a new inode and return it locked,
1455  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1456  * before unlocking it via unlock_new_inode().
1457  */
1458 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1459 {
1460 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1461 	struct inode *inode;
1462 	bool isnew;
1463 
1464 	might_sleep();
1465 
1466 again:
1467 	inode = find_inode_fast(sb, head, ino, false, &isnew);
1468 	if (inode) {
1469 		if (IS_ERR(inode))
1470 			return NULL;
1471 		if (unlikely(isnew))
1472 			wait_on_new_inode(inode);
1473 		if (unlikely(inode_unhashed(inode))) {
1474 			iput(inode);
1475 			goto again;
1476 		}
1477 		return inode;
1478 	}
1479 
1480 	inode = alloc_inode(sb);
1481 	if (inode) {
1482 		struct inode *old;
1483 
1484 		spin_lock(&inode_hash_lock);
1485 		/* We released the lock, so.. */
1486 		old = find_inode_fast(sb, head, ino, true, &isnew);
1487 		if (!old) {
1488 			inode->i_ino = ino;
1489 			spin_lock(&inode->i_lock);
1490 			inode_state_assign(inode, I_NEW);
1491 			hlist_add_head_rcu(&inode->i_hash, head);
1492 			spin_unlock(&inode->i_lock);
1493 			spin_unlock(&inode_hash_lock);
1494 			inode_sb_list_add(inode);
1495 
1496 			/* Return the locked inode with I_NEW set, the
1497 			 * caller is responsible for filling in the contents
1498 			 */
1499 			return inode;
1500 		}
1501 
1502 		/*
1503 		 * Uhhuh, somebody else created the same inode under
1504 		 * us. Use the old inode instead of the one we just
1505 		 * allocated.
1506 		 */
1507 		spin_unlock(&inode_hash_lock);
1508 		destroy_inode(inode);
1509 		if (IS_ERR(old))
1510 			return NULL;
1511 		inode = old;
1512 		if (unlikely(isnew))
1513 			wait_on_new_inode(inode);
1514 		if (unlikely(inode_unhashed(inode))) {
1515 			iput(inode);
1516 			goto again;
1517 		}
1518 	}
1519 	return inode;
1520 }
1521 EXPORT_SYMBOL(iget_locked);
1522 
1523 /*
1524  * search the inode cache for a matching inode number.
1525  * If we find one, then the inode number we are trying to
1526  * allocate is not unique and so we should not use it.
1527  *
1528  * Returns 1 if the inode number is unique, 0 if it is not.
1529  */
1530 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1531 {
1532 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1533 	struct inode *inode;
1534 
1535 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1536 		if (inode->i_ino == ino && inode->i_sb == sb)
1537 			return 0;
1538 	}
1539 	return 1;
1540 }
1541 
1542 /**
1543  *	iunique - get a unique inode number
1544  *	@sb: superblock
1545  *	@max_reserved: highest reserved inode number
1546  *
1547  *	Obtain an inode number that is unique on the system for a given
1548  *	superblock. This is used by file systems that have no natural
1549  *	permanent inode numbering system. An inode number is returned that
1550  *	is higher than the reserved limit but unique.
1551  *
1552  *	BUGS:
1553  *	With a large number of inodes live on the file system this function
1554  *	currently becomes quite slow.
1555  */
1556 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1557 {
1558 	/*
1559 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1560 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1561 	 * here to attempt to avoid that.
1562 	 */
1563 	static DEFINE_SPINLOCK(iunique_lock);
1564 	static unsigned int counter;
1565 	ino_t res;
1566 
1567 	rcu_read_lock();
1568 	spin_lock(&iunique_lock);
1569 	do {
1570 		if (counter <= max_reserved)
1571 			counter = max_reserved + 1;
1572 		res = counter++;
1573 	} while (!test_inode_iunique(sb, res));
1574 	spin_unlock(&iunique_lock);
1575 	rcu_read_unlock();
1576 
1577 	return res;
1578 }
1579 EXPORT_SYMBOL(iunique);
1580 
1581 struct inode *igrab(struct inode *inode)
1582 {
1583 	spin_lock(&inode->i_lock);
1584 	if (!(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) {
1585 		__iget(inode);
1586 		spin_unlock(&inode->i_lock);
1587 	} else {
1588 		spin_unlock(&inode->i_lock);
1589 		/*
1590 		 * Handle the case where s_op->clear_inode is not been
1591 		 * called yet, and somebody is calling igrab
1592 		 * while the inode is getting freed.
1593 		 */
1594 		inode = NULL;
1595 	}
1596 	return inode;
1597 }
1598 EXPORT_SYMBOL(igrab);
1599 
1600 /**
1601  * ilookup5_nowait - search for an inode in the inode cache
1602  * @sb:		super block of file system to search
1603  * @hashval:	hash value (usually inode number) to search for
1604  * @test:	callback used for comparisons between inodes
1605  * @data:	opaque data pointer to pass to @test
1606  * @isnew:	return argument telling whether I_NEW was set when
1607  *		the inode was found in hash (the caller needs to
1608  *		wait for I_NEW to clear)
1609  *
1610  * Search for the inode specified by @hashval and @data in the inode cache.
1611  * If the inode is in the cache, the inode is returned with an incremented
1612  * reference count.
1613  *
1614  * Note: I_NEW is not waited upon so you have to be very careful what you do
1615  * with the returned inode.  You probably should be using ilookup5() instead.
1616  *
1617  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1618  */
1619 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1620 		int (*test)(struct inode *, void *), void *data, bool *isnew)
1621 {
1622 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1623 	struct inode *inode;
1624 
1625 	spin_lock(&inode_hash_lock);
1626 	inode = find_inode(sb, head, test, data, true, isnew);
1627 	spin_unlock(&inode_hash_lock);
1628 
1629 	return IS_ERR(inode) ? NULL : inode;
1630 }
1631 EXPORT_SYMBOL(ilookup5_nowait);
1632 
1633 /**
1634  * ilookup5 - search for an inode in the inode cache
1635  * @sb:		super block of file system to search
1636  * @hashval:	hash value (usually inode number) to search for
1637  * @test:	callback used for comparisons between inodes
1638  * @data:	opaque data pointer to pass to @test
1639  *
1640  * Search for the inode specified by @hashval and @data in the inode cache,
1641  * and if the inode is in the cache, return the inode with an incremented
1642  * reference count.  Waits on I_NEW before returning the inode.
1643  * returned with an incremented reference count.
1644  *
1645  * This is a generalized version of ilookup() for file systems where the
1646  * inode number is not sufficient for unique identification of an inode.
1647  *
1648  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1649  */
1650 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1651 		int (*test)(struct inode *, void *), void *data)
1652 {
1653 	struct inode *inode;
1654 	bool isnew;
1655 
1656 	might_sleep();
1657 
1658 again:
1659 	inode = ilookup5_nowait(sb, hashval, test, data, &isnew);
1660 	if (inode) {
1661 		if (unlikely(isnew))
1662 			wait_on_new_inode(inode);
1663 		if (unlikely(inode_unhashed(inode))) {
1664 			iput(inode);
1665 			goto again;
1666 		}
1667 	}
1668 	return inode;
1669 }
1670 EXPORT_SYMBOL(ilookup5);
1671 
1672 /**
1673  * ilookup - search for an inode in the inode cache
1674  * @sb:		super block of file system to search
1675  * @ino:	inode number to search for
1676  *
1677  * Search for the inode @ino in the inode cache, and if the inode is in the
1678  * cache, the inode is returned with an incremented reference count.
1679  */
1680 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1681 {
1682 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1683 	struct inode *inode;
1684 	bool isnew;
1685 
1686 	might_sleep();
1687 
1688 again:
1689 	inode = find_inode_fast(sb, head, ino, false, &isnew);
1690 
1691 	if (inode) {
1692 		if (IS_ERR(inode))
1693 			return NULL;
1694 		if (unlikely(isnew))
1695 			wait_on_new_inode(inode);
1696 		if (unlikely(inode_unhashed(inode))) {
1697 			iput(inode);
1698 			goto again;
1699 		}
1700 	}
1701 	return inode;
1702 }
1703 EXPORT_SYMBOL(ilookup);
1704 
1705 /**
1706  * find_inode_nowait - find an inode in the inode cache
1707  * @sb:		super block of file system to search
1708  * @hashval:	hash value (usually inode number) to search for
1709  * @match:	callback used for comparisons between inodes
1710  * @data:	opaque data pointer to pass to @match
1711  *
1712  * Search for the inode specified by @hashval and @data in the inode
1713  * cache, where the helper function @match will return 0 if the inode
1714  * does not match, 1 if the inode does match, and -1 if the search
1715  * should be stopped.  The @match function must be responsible for
1716  * taking the i_lock spin_lock and checking i_state for an inode being
1717  * freed or being initialized, and incrementing the reference count
1718  * before returning 1.  It also must not sleep, since it is called with
1719  * the inode_hash_lock spinlock held.
1720  *
1721  * This is a even more generalized version of ilookup5() when the
1722  * function must never block --- find_inode() can block in
1723  * __wait_on_freeing_inode() --- or when the caller can not increment
1724  * the reference count because the resulting iput() might cause an
1725  * inode eviction.  The tradeoff is that the @match funtion must be
1726  * very carefully implemented.
1727  */
1728 struct inode *find_inode_nowait(struct super_block *sb,
1729 				unsigned long hashval,
1730 				int (*match)(struct inode *, unsigned long,
1731 					     void *),
1732 				void *data)
1733 {
1734 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1735 	struct inode *inode, *ret_inode = NULL;
1736 	int mval;
1737 
1738 	spin_lock(&inode_hash_lock);
1739 	hlist_for_each_entry(inode, head, i_hash) {
1740 		if (inode->i_sb != sb)
1741 			continue;
1742 		mval = match(inode, hashval, data);
1743 		if (mval == 0)
1744 			continue;
1745 		if (mval == 1)
1746 			ret_inode = inode;
1747 		goto out;
1748 	}
1749 out:
1750 	spin_unlock(&inode_hash_lock);
1751 	return ret_inode;
1752 }
1753 EXPORT_SYMBOL(find_inode_nowait);
1754 
1755 /**
1756  * find_inode_rcu - find an inode in the inode cache
1757  * @sb:		Super block of file system to search
1758  * @hashval:	Key to hash
1759  * @test:	Function to test match on an inode
1760  * @data:	Data for test function
1761  *
1762  * Search for the inode specified by @hashval and @data in the inode cache,
1763  * where the helper function @test will return 0 if the inode does not match
1764  * and 1 if it does.  The @test function must be responsible for taking the
1765  * i_lock spin_lock and checking i_state for an inode being freed or being
1766  * initialized.
1767  *
1768  * If successful, this will return the inode for which the @test function
1769  * returned 1 and NULL otherwise.
1770  *
1771  * The @test function is not permitted to take a ref on any inode presented.
1772  * It is also not permitted to sleep.
1773  *
1774  * The caller must hold the RCU read lock.
1775  */
1776 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1777 			     int (*test)(struct inode *, void *), void *data)
1778 {
1779 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1780 	struct inode *inode;
1781 
1782 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1783 			 "suspicious find_inode_rcu() usage");
1784 
1785 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1786 		if (inode->i_sb == sb &&
1787 		    !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)) &&
1788 		    test(inode, data))
1789 			return inode;
1790 	}
1791 	return NULL;
1792 }
1793 EXPORT_SYMBOL(find_inode_rcu);
1794 
1795 /**
1796  * find_inode_by_ino_rcu - Find an inode in the inode cache
1797  * @sb:		Super block of file system to search
1798  * @ino:	The inode number to match
1799  *
1800  * Search for the inode specified by @hashval and @data in the inode cache,
1801  * where the helper function @test will return 0 if the inode does not match
1802  * and 1 if it does.  The @test function must be responsible for taking the
1803  * i_lock spin_lock and checking i_state for an inode being freed or being
1804  * initialized.
1805  *
1806  * If successful, this will return the inode for which the @test function
1807  * returned 1 and NULL otherwise.
1808  *
1809  * The @test function is not permitted to take a ref on any inode presented.
1810  * It is also not permitted to sleep.
1811  *
1812  * The caller must hold the RCU read lock.
1813  */
1814 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1815 				    unsigned long ino)
1816 {
1817 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1818 	struct inode *inode;
1819 
1820 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1821 			 "suspicious find_inode_by_ino_rcu() usage");
1822 
1823 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1824 		if (inode->i_ino == ino &&
1825 		    inode->i_sb == sb &&
1826 		    !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)))
1827 		    return inode;
1828 	}
1829 	return NULL;
1830 }
1831 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1832 
1833 int insert_inode_locked(struct inode *inode)
1834 {
1835 	struct super_block *sb = inode->i_sb;
1836 	ino_t ino = inode->i_ino;
1837 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1838 	bool isnew;
1839 
1840 	might_sleep();
1841 
1842 	while (1) {
1843 		struct inode *old = NULL;
1844 		spin_lock(&inode_hash_lock);
1845 repeat:
1846 		hlist_for_each_entry(old, head, i_hash) {
1847 			if (old->i_ino != ino)
1848 				continue;
1849 			if (old->i_sb != sb)
1850 				continue;
1851 			spin_lock(&old->i_lock);
1852 			break;
1853 		}
1854 		if (likely(!old)) {
1855 			spin_lock(&inode->i_lock);
1856 			inode_state_set(inode, I_NEW | I_CREATING);
1857 			hlist_add_head_rcu(&inode->i_hash, head);
1858 			spin_unlock(&inode->i_lock);
1859 			spin_unlock(&inode_hash_lock);
1860 			return 0;
1861 		}
1862 		if (inode_state_read(old) & (I_FREEING | I_WILL_FREE)) {
1863 			__wait_on_freeing_inode(old, true, false);
1864 			old = NULL;
1865 			goto repeat;
1866 		}
1867 		if (unlikely(inode_state_read(old) & I_CREATING)) {
1868 			spin_unlock(&old->i_lock);
1869 			spin_unlock(&inode_hash_lock);
1870 			return -EBUSY;
1871 		}
1872 		__iget(old);
1873 		isnew = !!(inode_state_read(old) & I_NEW);
1874 		spin_unlock(&old->i_lock);
1875 		spin_unlock(&inode_hash_lock);
1876 		if (isnew)
1877 			wait_on_new_inode(old);
1878 		if (unlikely(!inode_unhashed(old))) {
1879 			iput(old);
1880 			return -EBUSY;
1881 		}
1882 		iput(old);
1883 	}
1884 }
1885 EXPORT_SYMBOL(insert_inode_locked);
1886 
1887 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1888 		int (*test)(struct inode *, void *), void *data)
1889 {
1890 	struct inode *old;
1891 
1892 	might_sleep();
1893 
1894 	inode_state_set_raw(inode, I_CREATING);
1895 	old = inode_insert5(inode, hashval, test, NULL, data);
1896 
1897 	if (old != inode) {
1898 		iput(old);
1899 		return -EBUSY;
1900 	}
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(insert_inode_locked4);
1904 
1905 
1906 int inode_just_drop(struct inode *inode)
1907 {
1908 	return 1;
1909 }
1910 EXPORT_SYMBOL(inode_just_drop);
1911 
1912 /*
1913  * Called when we're dropping the last reference
1914  * to an inode.
1915  *
1916  * Call the FS "drop_inode()" function, defaulting to
1917  * the legacy UNIX filesystem behaviour.  If it tells
1918  * us to evict inode, do so.  Otherwise, retain inode
1919  * in cache if fs is alive, sync and evict if fs is
1920  * shutting down.
1921  */
1922 static void iput_final(struct inode *inode)
1923 {
1924 	struct super_block *sb = inode->i_sb;
1925 	const struct super_operations *op = inode->i_sb->s_op;
1926 	int drop;
1927 
1928 	WARN_ON(inode_state_read(inode) & I_NEW);
1929 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1930 
1931 	if (op->drop_inode)
1932 		drop = op->drop_inode(inode);
1933 	else
1934 		drop = inode_generic_drop(inode);
1935 
1936 	if (!drop &&
1937 	    !(inode_state_read(inode) & I_DONTCACHE) &&
1938 	    (sb->s_flags & SB_ACTIVE)) {
1939 		__inode_lru_list_add(inode, true);
1940 		spin_unlock(&inode->i_lock);
1941 		return;
1942 	}
1943 
1944 	/*
1945 	 * Re-check ->i_count in case the ->drop_inode() hooks played games.
1946 	 * Note we only execute this if the verdict was to drop the inode.
1947 	 */
1948 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1949 
1950 	if (drop) {
1951 		inode_state_set(inode, I_FREEING);
1952 	} else {
1953 		inode_state_set(inode, I_WILL_FREE);
1954 		spin_unlock(&inode->i_lock);
1955 
1956 		write_inode_now(inode, 1);
1957 
1958 		spin_lock(&inode->i_lock);
1959 		WARN_ON(inode_state_read(inode) & I_NEW);
1960 		inode_state_replace(inode, I_WILL_FREE, I_FREEING);
1961 	}
1962 
1963 	inode_lru_list_del(inode);
1964 	spin_unlock(&inode->i_lock);
1965 
1966 	evict(inode);
1967 }
1968 
1969 /**
1970  *	iput	- put an inode
1971  *	@inode: inode to put
1972  *
1973  *	Puts an inode, dropping its usage count. If the inode use count hits
1974  *	zero, the inode is then freed and may also be destroyed.
1975  *
1976  *	Consequently, iput() can sleep.
1977  */
1978 void iput(struct inode *inode)
1979 {
1980 	might_sleep();
1981 	if (unlikely(!inode))
1982 		return;
1983 
1984 retry:
1985 	lockdep_assert_not_held(&inode->i_lock);
1986 	VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode);
1987 	/*
1988 	 * Note this assert is technically racy as if the count is bogusly
1989 	 * equal to one, then two CPUs racing to further drop it can both
1990 	 * conclude it's fine.
1991 	 */
1992 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode);
1993 
1994 	if (atomic_add_unless(&inode->i_count, -1, 1))
1995 		return;
1996 
1997 	if (inode->i_nlink && sync_lazytime(inode))
1998 		goto retry;
1999 
2000 	spin_lock(&inode->i_lock);
2001 	if (unlikely((inode_state_read(inode) & I_DIRTY_TIME) && inode->i_nlink)) {
2002 		spin_unlock(&inode->i_lock);
2003 		goto retry;
2004 	}
2005 
2006 	if (!atomic_dec_and_test(&inode->i_count)) {
2007 		spin_unlock(&inode->i_lock);
2008 		return;
2009 	}
2010 
2011 	/*
2012 	 * iput_final() drops ->i_lock, we can't assert on it as the inode may
2013 	 * be deallocated by the time the call returns.
2014 	 */
2015 	iput_final(inode);
2016 }
2017 EXPORT_SYMBOL(iput);
2018 
2019 /**
2020  *	iput_not_last	- put an inode assuming this is not the last reference
2021  *	@inode: inode to put
2022  */
2023 void iput_not_last(struct inode *inode)
2024 {
2025 	VFS_BUG_ON_INODE(inode_state_read_once(inode) & (I_FREEING | I_CLEAR), inode);
2026 	VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 2, inode);
2027 
2028 	WARN_ON(atomic_sub_return(1, &inode->i_count) == 0);
2029 }
2030 EXPORT_SYMBOL(iput_not_last);
2031 
2032 #ifdef CONFIG_BLOCK
2033 /**
2034  *	bmap	- find a block number in a file
2035  *	@inode:  inode owning the block number being requested
2036  *	@block: pointer containing the block to find
2037  *
2038  *	Replaces the value in ``*block`` with the block number on the device holding
2039  *	corresponding to the requested block number in the file.
2040  *	That is, asked for block 4 of inode 1 the function will replace the
2041  *	4 in ``*block``, with disk block relative to the disk start that holds that
2042  *	block of the file.
2043  *
2044  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
2045  *	hole, returns 0 and ``*block`` is also set to 0.
2046  */
2047 int bmap(struct inode *inode, sector_t *block)
2048 {
2049 	if (!inode->i_mapping->a_ops->bmap)
2050 		return -EINVAL;
2051 
2052 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(bmap);
2056 #endif
2057 
2058 /*
2059  * With relative atime, only update atime if the previous atime is
2060  * earlier than or equal to either the ctime or mtime,
2061  * or if at least a day has passed since the last atime update.
2062  */
2063 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2064 			     struct timespec64 now)
2065 {
2066 	struct timespec64 atime, mtime, ctime;
2067 
2068 	if (!(mnt->mnt_flags & MNT_RELATIME))
2069 		return true;
2070 	/*
2071 	 * Is mtime younger than or equal to atime? If yes, update atime:
2072 	 */
2073 	atime = inode_get_atime(inode);
2074 	mtime = inode_get_mtime(inode);
2075 	if (timespec64_compare(&mtime, &atime) >= 0)
2076 		return true;
2077 	/*
2078 	 * Is ctime younger than or equal to atime? If yes, update atime:
2079 	 */
2080 	ctime = inode_get_ctime(inode);
2081 	if (timespec64_compare(&ctime, &atime) >= 0)
2082 		return true;
2083 
2084 	/*
2085 	 * Is the previous atime value older than a day? If yes,
2086 	 * update atime:
2087 	 */
2088 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2089 		return true;
2090 	/*
2091 	 * Good, we can skip the atime update:
2092 	 */
2093 	return false;
2094 }
2095 
2096 static int inode_update_atime(struct inode *inode)
2097 {
2098 	struct timespec64 atime = inode_get_atime(inode);
2099 	struct timespec64 now = current_time(inode);
2100 
2101 	if (timespec64_equal(&now, &atime))
2102 		return 0;
2103 
2104 	inode_set_atime_to_ts(inode, now);
2105 	return inode_time_dirty_flag(inode);
2106 }
2107 
2108 static int inode_update_cmtime(struct inode *inode, unsigned int flags)
2109 {
2110 	struct timespec64 ctime = inode_get_ctime(inode);
2111 	struct timespec64 mtime = inode_get_mtime(inode);
2112 	struct timespec64 now = inode_set_ctime_current(inode);
2113 	unsigned int dirty = 0;
2114 	bool mtime_changed;
2115 
2116 	mtime_changed = !timespec64_equal(&now, &mtime);
2117 	if (mtime_changed || !timespec64_equal(&now, &ctime))
2118 		dirty = inode_time_dirty_flag(inode);
2119 
2120 	/*
2121 	 * Pure timestamp updates can be recorded in the inode without blocking
2122 	 * by not dirtying the inode.  But when the file system requires
2123 	 * i_version updates, the update of i_version can still block.
2124 	 * Error out if we'd actually have to update i_version or don't support
2125 	 * lazytime.
2126 	 */
2127 	if (IS_I_VERSION(inode)) {
2128 		if (flags & IOCB_NOWAIT) {
2129 			if (!(inode->i_sb->s_flags & SB_LAZYTIME) ||
2130 			    inode_iversion_need_inc(inode))
2131 				return -EAGAIN;
2132 		} else {
2133 			if (inode_maybe_inc_iversion(inode, !!dirty))
2134 				dirty |= I_DIRTY_SYNC;
2135 		}
2136 	}
2137 
2138 	if (mtime_changed)
2139 		inode_set_mtime_to_ts(inode, now);
2140 	return dirty;
2141 }
2142 
2143 /**
2144  * inode_update_time - update either atime or c/mtime and i_version on the inode
2145  * @inode: inode to be updated
2146  * @type: timestamp to be updated
2147  * @flags: flags for the update
2148  *
2149  * Update either atime or c/mtime and version in a inode if needed for a file
2150  * access or modification.  It is up to the caller to mark the inode dirty
2151  * appropriately.
2152  *
2153  * Returns the positive I_DIRTY_* flags for __mark_inode_dirty() if the inode
2154  * needs to be marked dirty, 0 if it did not, or a negative errno if an error
2155  * happened.
2156  */
2157 int inode_update_time(struct inode *inode, enum fs_update_time type,
2158 		unsigned int flags)
2159 {
2160 	switch (type) {
2161 	case FS_UPD_ATIME:
2162 		return inode_update_atime(inode);
2163 	case FS_UPD_CMTIME:
2164 		return inode_update_cmtime(inode, flags);
2165 	default:
2166 		WARN_ON_ONCE(1);
2167 		return -EIO;
2168 	}
2169 }
2170 EXPORT_SYMBOL(inode_update_time);
2171 
2172 /**
2173  * generic_update_time - update the timestamps on the inode
2174  * @inode: inode to be updated
2175  * @type: timestamp to be updated
2176  * @flags: flags for the update
2177  *
2178  * Returns a negative error value on error, else 0.
2179  */
2180 int generic_update_time(struct inode *inode, enum fs_update_time type,
2181 		unsigned int flags)
2182 {
2183 	int dirty;
2184 
2185 	/*
2186 	 * ->dirty_inode is what could make generic timestamp updates block.
2187 	 * Don't support non-blocking timestamp updates here if it is set.
2188 	 * File systems that implement ->dirty_inode but want to support
2189 	 * non-blocking timestamp updates should call inode_update_time
2190 	 * directly.
2191 	 */
2192 	if ((flags & IOCB_NOWAIT) && inode->i_sb->s_op->dirty_inode)
2193 		return -EAGAIN;
2194 
2195 	dirty = inode_update_time(inode, type, flags);
2196 	if (dirty <= 0)
2197 		return dirty;
2198 	__mark_inode_dirty(inode, dirty);
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL(generic_update_time);
2202 
2203 /**
2204  *	atime_needs_update	-	update the access time
2205  *	@path: the &struct path to update
2206  *	@inode: inode to update
2207  *
2208  *	Update the accessed time on an inode and mark it for writeback.
2209  *	This function automatically handles read only file systems and media,
2210  *	as well as the "noatime" flag and inode specific "noatime" markers.
2211  */
2212 bool atime_needs_update(const struct path *path, struct inode *inode)
2213 {
2214 	struct vfsmount *mnt = path->mnt;
2215 	struct timespec64 now, atime;
2216 
2217 	if (inode->i_flags & S_NOATIME)
2218 		return false;
2219 
2220 	/* Atime updates will likely cause i_uid and i_gid to be written
2221 	 * back improprely if their true value is unknown to the vfs.
2222 	 */
2223 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2224 		return false;
2225 
2226 	if (IS_NOATIME(inode))
2227 		return false;
2228 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2229 		return false;
2230 
2231 	if (mnt->mnt_flags & MNT_NOATIME)
2232 		return false;
2233 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2234 		return false;
2235 
2236 	now = current_time(inode);
2237 
2238 	if (!relatime_need_update(mnt, inode, now))
2239 		return false;
2240 
2241 	atime = inode_get_atime(inode);
2242 	if (timespec64_equal(&atime, &now))
2243 		return false;
2244 
2245 	return true;
2246 }
2247 
2248 void touch_atime(const struct path *path)
2249 {
2250 	struct vfsmount *mnt = path->mnt;
2251 	struct inode *inode = d_inode(path->dentry);
2252 
2253 	if (!atime_needs_update(path, inode))
2254 		return;
2255 
2256 	if (!sb_start_write_trylock(inode->i_sb))
2257 		return;
2258 
2259 	if (mnt_get_write_access(mnt) != 0)
2260 		goto skip_update;
2261 	/*
2262 	 * File systems can error out when updating inodes if they need to
2263 	 * allocate new space to modify an inode (such is the case for
2264 	 * Btrfs), but since we touch atime while walking down the path we
2265 	 * really don't care if we failed to update the atime of the file,
2266 	 * so just ignore the return value.
2267 	 * We may also fail on filesystems that have the ability to make parts
2268 	 * of the fs read only, e.g. subvolumes in Btrfs.
2269 	 */
2270 	if (inode->i_op->update_time)
2271 		inode->i_op->update_time(inode, FS_UPD_ATIME, 0);
2272 	else
2273 		generic_update_time(inode, FS_UPD_ATIME, 0);
2274 	mnt_put_write_access(mnt);
2275 skip_update:
2276 	sb_end_write(inode->i_sb);
2277 }
2278 EXPORT_SYMBOL(touch_atime);
2279 
2280 /*
2281  * Return mask of changes for notify_change() that need to be done as a
2282  * response to write or truncate. Return 0 if nothing has to be changed.
2283  * Negative value on error (change should be denied).
2284  */
2285 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2286 			      struct dentry *dentry)
2287 {
2288 	struct inode *inode = d_inode(dentry);
2289 	int mask = 0;
2290 	int ret;
2291 
2292 	if (IS_NOSEC(inode))
2293 		return 0;
2294 
2295 	mask = setattr_should_drop_suidgid(idmap, inode);
2296 	ret = security_inode_need_killpriv(dentry);
2297 	if (ret < 0)
2298 		return ret;
2299 	if (ret)
2300 		mask |= ATTR_KILL_PRIV;
2301 	return mask;
2302 }
2303 
2304 static int __remove_privs(struct mnt_idmap *idmap,
2305 			  struct dentry *dentry, int kill)
2306 {
2307 	struct iattr newattrs;
2308 
2309 	newattrs.ia_valid = ATTR_FORCE | kill;
2310 	/*
2311 	 * Note we call this on write, so notify_change will not
2312 	 * encounter any conflicting delegations:
2313 	 */
2314 	return notify_change(idmap, dentry, &newattrs, NULL);
2315 }
2316 
2317 static int file_remove_privs_flags(struct file *file, unsigned int flags)
2318 {
2319 	struct dentry *dentry = file_dentry(file);
2320 	struct inode *inode = file_inode(file);
2321 	int error = 0;
2322 	int kill;
2323 
2324 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2325 		return 0;
2326 
2327 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2328 	if (kill < 0)
2329 		return kill;
2330 
2331 	if (kill) {
2332 		if (flags & IOCB_NOWAIT)
2333 			return -EAGAIN;
2334 
2335 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2336 	}
2337 
2338 	if (!error)
2339 		inode_has_no_xattr(inode);
2340 	return error;
2341 }
2342 
2343 /**
2344  * file_remove_privs - remove special file privileges (suid, capabilities)
2345  * @file: file to remove privileges from
2346  *
2347  * When file is modified by a write or truncation ensure that special
2348  * file privileges are removed.
2349  *
2350  * Return: 0 on success, negative errno on failure.
2351  */
2352 int file_remove_privs(struct file *file)
2353 {
2354 	return file_remove_privs_flags(file, 0);
2355 }
2356 EXPORT_SYMBOL(file_remove_privs);
2357 
2358 /**
2359  * current_time - Return FS time (possibly fine-grained)
2360  * @inode: inode.
2361  *
2362  * Return the current time truncated to the time granularity supported by
2363  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2364  * as having been QUERIED, get a fine-grained timestamp, but don't update
2365  * the floor.
2366  *
2367  * For a multigrain inode, this is effectively an estimate of the timestamp
2368  * that a file would receive. An actual update must go through
2369  * inode_set_ctime_current().
2370  */
2371 struct timespec64 current_time(struct inode *inode)
2372 {
2373 	struct timespec64 now;
2374 	u32 cns;
2375 
2376 	ktime_get_coarse_real_ts64_mg(&now);
2377 
2378 	if (!is_mgtime(inode))
2379 		goto out;
2380 
2381 	/* If nothing has queried it, then coarse time is fine */
2382 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2383 	if (cns & I_CTIME_QUERIED) {
2384 		/*
2385 		 * If there is no apparent change, then get a fine-grained
2386 		 * timestamp.
2387 		 */
2388 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2389 			ktime_get_real_ts64(&now);
2390 	}
2391 out:
2392 	return timestamp_truncate(now, inode);
2393 }
2394 EXPORT_SYMBOL(current_time);
2395 
2396 static inline bool need_cmtime_update(struct inode *inode)
2397 {
2398 	struct timespec64 now = current_time(inode), ts;
2399 
2400 	ts = inode_get_mtime(inode);
2401 	if (!timespec64_equal(&ts, &now))
2402 		return true;
2403 	ts = inode_get_ctime(inode);
2404 	if (!timespec64_equal(&ts, &now))
2405 		return true;
2406 	return IS_I_VERSION(inode) && inode_iversion_need_inc(inode);
2407 }
2408 
2409 static int file_update_time_flags(struct file *file, unsigned int flags)
2410 {
2411 	struct inode *inode = file_inode(file);
2412 	int ret;
2413 
2414 	/* First try to exhaust all avenues to not sync */
2415 	if (IS_NOCMTIME(inode))
2416 		return 0;
2417 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2418 		return 0;
2419 	if (!need_cmtime_update(inode))
2420 		return 0;
2421 
2422 	flags &= IOCB_NOWAIT;
2423 	if (mnt_get_write_access_file(file))
2424 		return 0;
2425 	if (inode->i_op->update_time)
2426 		ret = inode->i_op->update_time(inode, FS_UPD_CMTIME, flags);
2427 	else
2428 		ret = generic_update_time(inode, FS_UPD_CMTIME, flags);
2429 	mnt_put_write_access_file(file);
2430 	return ret;
2431 }
2432 
2433 /**
2434  * file_update_time - update mtime and ctime time
2435  * @file: file accessed
2436  *
2437  * Update the mtime and ctime members of an inode and mark the inode for
2438  * writeback. Note that this function is meant exclusively for usage in
2439  * the file write path of filesystems, and filesystems may choose to
2440  * explicitly ignore updates via this function with the _NOCMTIME inode
2441  * flag, e.g. for network filesystem where these imestamps are handled
2442  * by the server. This can return an error for file systems who need to
2443  * allocate space in order to update an inode.
2444  *
2445  * Return: 0 on success, negative errno on failure.
2446  */
2447 int file_update_time(struct file *file)
2448 {
2449 	return file_update_time_flags(file, 0);
2450 }
2451 EXPORT_SYMBOL(file_update_time);
2452 
2453 /**
2454  * file_modified_flags - handle mandated vfs changes when modifying a file
2455  * @file: file that was modified
2456  * @flags: kiocb flags
2457  *
2458  * When file has been modified ensure that special
2459  * file privileges are removed and time settings are updated.
2460  *
2461  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2462  * time settings will not be updated. It will return -EAGAIN.
2463  *
2464  * Context: Caller must hold the file's inode lock.
2465  *
2466  * Return: 0 on success, negative errno on failure.
2467  */
2468 static int file_modified_flags(struct file *file, int flags)
2469 {
2470 	int ret;
2471 
2472 	/*
2473 	 * Clear the security bits if the process is not being run by root.
2474 	 * This keeps people from modifying setuid and setgid binaries.
2475 	 */
2476 	ret = file_remove_privs_flags(file, flags);
2477 	if (ret)
2478 		return ret;
2479 	return file_update_time_flags(file, flags);
2480 }
2481 
2482 /**
2483  * file_modified - handle mandated vfs changes when modifying a file
2484  * @file: file that was modified
2485  *
2486  * When file has been modified ensure that special
2487  * file privileges are removed and time settings are updated.
2488  *
2489  * Context: Caller must hold the file's inode lock.
2490  *
2491  * Return: 0 on success, negative errno on failure.
2492  */
2493 int file_modified(struct file *file)
2494 {
2495 	return file_modified_flags(file, 0);
2496 }
2497 EXPORT_SYMBOL(file_modified);
2498 
2499 /**
2500  * kiocb_modified - handle mandated vfs changes when modifying a file
2501  * @iocb: iocb that was modified
2502  *
2503  * When file has been modified ensure that special
2504  * file privileges are removed and time settings are updated.
2505  *
2506  * Context: Caller must hold the file's inode lock.
2507  *
2508  * Return: 0 on success, negative errno on failure.
2509  */
2510 int kiocb_modified(struct kiocb *iocb)
2511 {
2512 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2513 }
2514 EXPORT_SYMBOL_GPL(kiocb_modified);
2515 
2516 int inode_needs_sync(struct inode *inode)
2517 {
2518 	if (IS_SYNC(inode))
2519 		return 1;
2520 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2521 		return 1;
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL(inode_needs_sync);
2525 
2526 /*
2527  * If we try to find an inode in the inode hash while it is being
2528  * deleted, we have to wait until the filesystem completes its
2529  * deletion before reporting that it isn't found.  This function waits
2530  * until the deletion _might_ have completed.  Callers are responsible
2531  * to recheck inode state.
2532  *
2533  * It doesn't matter if I_NEW is not set initially, a call to
2534  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2535  * will DTRT.
2536  */
2537 static void __wait_on_freeing_inode(struct inode *inode, bool hash_locked, bool rcu_locked)
2538 {
2539 	struct wait_bit_queue_entry wqe;
2540 	struct wait_queue_head *wq_head;
2541 
2542 	VFS_BUG_ON(!hash_locked && !rcu_locked);
2543 
2544 	/*
2545 	 * Handle racing against evict(), see that routine for more details.
2546 	 */
2547 	if (unlikely(inode_unhashed(inode))) {
2548 		WARN_ON(hash_locked);
2549 		spin_unlock(&inode->i_lock);
2550 		return;
2551 	}
2552 
2553 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2554 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2555 	spin_unlock(&inode->i_lock);
2556 	if (rcu_locked)
2557 		rcu_read_unlock();
2558 	if (hash_locked)
2559 		spin_unlock(&inode_hash_lock);
2560 	schedule();
2561 	finish_wait(wq_head, &wqe.wq_entry);
2562 	if (hash_locked)
2563 		spin_lock(&inode_hash_lock);
2564 	if (rcu_locked)
2565 		rcu_read_lock();
2566 }
2567 
2568 static __initdata unsigned long ihash_entries;
2569 static int __init set_ihash_entries(char *str)
2570 {
2571 	return kstrtoul(str, 0, &ihash_entries) == 0;
2572 }
2573 __setup("ihash_entries=", set_ihash_entries);
2574 
2575 /*
2576  * Initialize the waitqueues and inode hash table.
2577  */
2578 void __init inode_init_early(void)
2579 {
2580 	/* If hashes are distributed across NUMA nodes, defer
2581 	 * hash allocation until vmalloc space is available.
2582 	 */
2583 	if (hashdist)
2584 		return;
2585 
2586 	inode_hashtable =
2587 		alloc_large_system_hash("Inode-cache",
2588 					sizeof(struct hlist_head),
2589 					ihash_entries,
2590 					14,
2591 					HASH_EARLY | HASH_ZERO,
2592 					&i_hash_shift,
2593 					&i_hash_mask,
2594 					0,
2595 					0);
2596 }
2597 
2598 void __init inode_init(void)
2599 {
2600 	/* inode slab cache */
2601 	inode_cachep = kmem_cache_create("inode_cache",
2602 					 sizeof(struct inode),
2603 					 0,
2604 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2605 					 SLAB_ACCOUNT),
2606 					 init_once);
2607 
2608 	/* Hash may have been set up in inode_init_early */
2609 	if (!hashdist)
2610 		return;
2611 
2612 	inode_hashtable =
2613 		alloc_large_system_hash("Inode-cache",
2614 					sizeof(struct hlist_head),
2615 					ihash_entries,
2616 					14,
2617 					HASH_ZERO,
2618 					&i_hash_shift,
2619 					&i_hash_mask,
2620 					0,
2621 					0);
2622 }
2623 
2624 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2625 {
2626 	inode->i_mode = mode;
2627 	switch (inode->i_mode & S_IFMT) {
2628 	case S_IFCHR:
2629 		inode->i_fop = &def_chr_fops;
2630 		inode->i_rdev = rdev;
2631 		break;
2632 	case S_IFBLK:
2633 		if (IS_ENABLED(CONFIG_BLOCK))
2634 			inode->i_fop = &def_blk_fops;
2635 		inode->i_rdev = rdev;
2636 		break;
2637 	case S_IFIFO:
2638 		inode->i_fop = &pipefifo_fops;
2639 		break;
2640 	case S_IFSOCK:
2641 		/* leave it no_open_fops */
2642 		break;
2643 	default:
2644 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2645 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2646 				  inode->i_ino);
2647 		break;
2648 	}
2649 }
2650 EXPORT_SYMBOL(init_special_inode);
2651 
2652 /**
2653  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2654  * @idmap: idmap of the mount the inode was created from
2655  * @inode: New inode
2656  * @dir: Directory inode
2657  * @mode: mode of the new inode
2658  *
2659  * If the inode has been created through an idmapped mount the idmap of
2660  * the vfsmount must be passed through @idmap. This function will then take
2661  * care to map the inode according to @idmap before checking permissions
2662  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2663  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2664  */
2665 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2666 		      const struct inode *dir, umode_t mode)
2667 {
2668 	inode_fsuid_set(inode, idmap);
2669 	if (dir && dir->i_mode & S_ISGID) {
2670 		inode->i_gid = dir->i_gid;
2671 
2672 		/* Directories are special, and always inherit S_ISGID */
2673 		if (S_ISDIR(mode))
2674 			mode |= S_ISGID;
2675 	} else
2676 		inode_fsgid_set(inode, idmap);
2677 	inode->i_mode = mode;
2678 }
2679 EXPORT_SYMBOL(inode_init_owner);
2680 
2681 /**
2682  * inode_owner_or_capable - check current task permissions to inode
2683  * @idmap: idmap of the mount the inode was found from
2684  * @inode: inode being checked
2685  *
2686  * Return true if current either has CAP_FOWNER in a namespace with the
2687  * inode owner uid mapped, or owns the file.
2688  *
2689  * If the inode has been found through an idmapped mount the idmap of
2690  * the vfsmount must be passed through @idmap. This function will then take
2691  * care to map the inode according to @idmap before checking permissions.
2692  * On non-idmapped mounts or if permission checking is to be performed on the
2693  * raw inode simply pass @nop_mnt_idmap.
2694  */
2695 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2696 			    const struct inode *inode)
2697 {
2698 	vfsuid_t vfsuid;
2699 	struct user_namespace *ns;
2700 
2701 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2702 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2703 		return true;
2704 
2705 	ns = current_user_ns();
2706 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2707 		return true;
2708 	return false;
2709 }
2710 EXPORT_SYMBOL(inode_owner_or_capable);
2711 
2712 /*
2713  * Direct i/o helper functions
2714  */
2715 bool inode_dio_finished(const struct inode *inode)
2716 {
2717 	return atomic_read(&inode->i_dio_count) == 0;
2718 }
2719 EXPORT_SYMBOL(inode_dio_finished);
2720 
2721 /**
2722  * inode_dio_wait - wait for outstanding DIO requests to finish
2723  * @inode: inode to wait for
2724  *
2725  * Waits for all pending direct I/O requests to finish so that we can
2726  * proceed with a truncate or equivalent operation.
2727  *
2728  * Must be called under a lock that serializes taking new references
2729  * to i_dio_count, usually by inode->i_rwsem.
2730  */
2731 void inode_dio_wait(struct inode *inode)
2732 {
2733 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2734 }
2735 EXPORT_SYMBOL(inode_dio_wait);
2736 
2737 void inode_dio_wait_interruptible(struct inode *inode)
2738 {
2739 	wait_var_event_interruptible(&inode->i_dio_count,
2740 				     inode_dio_finished(inode));
2741 }
2742 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2743 
2744 /*
2745  * inode_set_flags - atomically set some inode flags
2746  *
2747  * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2748  * they have exclusive access to the inode structure (i.e., while the
2749  * inode is being instantiated).  The reason for the cmpxchg() loop
2750  * --- which wouldn't be necessary if all code paths which modify
2751  * i_flags actually followed this rule, is that there is at least one
2752  * code path which doesn't today so we use cmpxchg() out of an abundance
2753  * of caution.
2754  *
2755  * In the long run, i_rwsem is overkill, and we should probably look
2756  * at using the i_lock spinlock to protect i_flags, and then make sure
2757  * it is so documented in include/linux/fs.h and that all code follows
2758  * the locking convention!!
2759  */
2760 void inode_set_flags(struct inode *inode, unsigned int flags,
2761 		     unsigned int mask)
2762 {
2763 	WARN_ON_ONCE(flags & ~mask);
2764 	set_mask_bits(&inode->i_flags, mask, flags);
2765 }
2766 EXPORT_SYMBOL(inode_set_flags);
2767 
2768 void inode_nohighmem(struct inode *inode)
2769 {
2770 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2771 }
2772 EXPORT_SYMBOL(inode_nohighmem);
2773 
2774 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2775 {
2776 	trace_inode_set_ctime_to_ts(inode, &ts);
2777 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2778 	inode->i_ctime_sec = ts.tv_sec;
2779 	inode->i_ctime_nsec = ts.tv_nsec;
2780 	return ts;
2781 }
2782 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2783 
2784 /**
2785  * timestamp_truncate - Truncate timespec to a granularity
2786  * @t: Timespec
2787  * @inode: inode being updated
2788  *
2789  * Truncate a timespec to the granularity supported by the fs
2790  * containing the inode. Always rounds down. gran must
2791  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2792  */
2793 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2794 {
2795 	struct super_block *sb = inode->i_sb;
2796 	unsigned int gran = sb->s_time_gran;
2797 
2798 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2799 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2800 		t.tv_nsec = 0;
2801 
2802 	/* Avoid division in the common cases 1 ns and 1 s. */
2803 	if (gran == 1)
2804 		; /* nothing */
2805 	else if (gran == NSEC_PER_SEC)
2806 		t.tv_nsec = 0;
2807 	else if (gran > 1 && gran < NSEC_PER_SEC)
2808 		t.tv_nsec -= t.tv_nsec % gran;
2809 	else
2810 		WARN(1, "invalid file time granularity: %u", gran);
2811 	return t;
2812 }
2813 EXPORT_SYMBOL(timestamp_truncate);
2814 
2815 /**
2816  * inode_set_ctime_current - set the ctime to current_time
2817  * @inode: inode
2818  *
2819  * Set the inode's ctime to the current value for the inode. Returns the
2820  * current value that was assigned. If this is not a multigrain inode, then we
2821  * set it to the later of the coarse time and floor value.
2822  *
2823  * If it is multigrain, then we first see if the coarse-grained timestamp is
2824  * distinct from what is already there. If so, then use that. Otherwise, get a
2825  * fine-grained timestamp.
2826  *
2827  * After that, try to swap the new value into i_ctime_nsec. Accept the
2828  * resulting ctime, regardless of the outcome of the swap. If it has
2829  * already been replaced, then that timestamp is later than the earlier
2830  * unacceptable one, and is thus acceptable.
2831  */
2832 struct timespec64 inode_set_ctime_current(struct inode *inode)
2833 {
2834 	struct timespec64 now;
2835 	u32 cns, cur;
2836 
2837 	ktime_get_coarse_real_ts64_mg(&now);
2838 	now = timestamp_truncate(now, inode);
2839 
2840 	/* Just return that if this is not a multigrain fs */
2841 	if (!is_mgtime(inode)) {
2842 		inode_set_ctime_to_ts(inode, now);
2843 		goto out;
2844 	}
2845 
2846 	/*
2847 	 * A fine-grained time is only needed if someone has queried
2848 	 * for timestamps, and the current coarse grained time isn't
2849 	 * later than what's already there.
2850 	 */
2851 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2852 	if (cns & I_CTIME_QUERIED) {
2853 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2854 					    .tv_nsec = cns & ~I_CTIME_QUERIED };
2855 
2856 		if (timespec64_compare(&now, &ctime) <= 0) {
2857 			ktime_get_real_ts64_mg(&now);
2858 			now = timestamp_truncate(now, inode);
2859 			mgtime_counter_inc(mg_fine_stamps);
2860 		}
2861 	}
2862 	mgtime_counter_inc(mg_ctime_updates);
2863 
2864 	/* No need to cmpxchg if it's exactly the same */
2865 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2866 		trace_ctime_xchg_skip(inode, &now);
2867 		goto out;
2868 	}
2869 	cur = cns;
2870 retry:
2871 	/* Try to swap the nsec value into place. */
2872 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2873 		/* If swap occurred, then we're (mostly) done */
2874 		inode->i_ctime_sec = now.tv_sec;
2875 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2876 		mgtime_counter_inc(mg_ctime_swaps);
2877 	} else {
2878 		/*
2879 		 * Was the change due to someone marking the old ctime QUERIED?
2880 		 * If so then retry the swap. This can only happen once since
2881 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2882 		 * with a new ctime.
2883 		 */
2884 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2885 			cns = cur;
2886 			goto retry;
2887 		}
2888 		/* Otherwise, keep the existing ctime */
2889 		now.tv_sec = inode->i_ctime_sec;
2890 		now.tv_nsec = cur & ~I_CTIME_QUERIED;
2891 	}
2892 out:
2893 	return now;
2894 }
2895 EXPORT_SYMBOL(inode_set_ctime_current);
2896 
2897 /**
2898  * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2899  * @inode: inode to update
2900  * @update: timespec64 to set the ctime
2901  *
2902  * Attempt to atomically update the ctime on behalf of a delegation holder.
2903  *
2904  * The nfs server can call back the holder of a delegation to get updated
2905  * inode attributes, including the mtime. When updating the mtime, update
2906  * the ctime to a value at least equal to that.
2907  *
2908  * This can race with concurrent updates to the inode, in which
2909  * case the update is skipped.
2910  *
2911  * Note that this works even when multigrain timestamps are not enabled,
2912  * so it is used in either case.
2913  */
2914 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2915 {
2916 	struct timespec64 now, cur_ts;
2917 	u32 cur, old;
2918 
2919 	/* pairs with try_cmpxchg below */
2920 	cur = smp_load_acquire(&inode->i_ctime_nsec);
2921 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2922 	cur_ts.tv_sec = inode->i_ctime_sec;
2923 
2924 	/* If the update is older than the existing value, skip it. */
2925 	if (timespec64_compare(&update, &cur_ts) <= 0)
2926 		return cur_ts;
2927 
2928 	ktime_get_coarse_real_ts64_mg(&now);
2929 
2930 	/* Clamp the update to "now" if it's in the future */
2931 	if (timespec64_compare(&update, &now) > 0)
2932 		update = now;
2933 
2934 	update = timestamp_truncate(update, inode);
2935 
2936 	/* No need to update if the values are already the same */
2937 	if (timespec64_equal(&update, &cur_ts))
2938 		return cur_ts;
2939 
2940 	/*
2941 	 * Try to swap the nsec value into place. If it fails, that means
2942 	 * it raced with an update due to a write or similar activity. That
2943 	 * stamp takes precedence, so just skip the update.
2944 	 */
2945 retry:
2946 	old = cur;
2947 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2948 		inode->i_ctime_sec = update.tv_sec;
2949 		mgtime_counter_inc(mg_ctime_swaps);
2950 		return update;
2951 	}
2952 
2953 	/*
2954 	 * Was the change due to another task marking the old ctime QUERIED?
2955 	 *
2956 	 * If so, then retry the swap. This can only happen once since
2957 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2958 	 * with a new ctime.
2959 	 */
2960 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2961 		goto retry;
2962 
2963 	/* Otherwise, it was a new timestamp. */
2964 	cur_ts.tv_sec = inode->i_ctime_sec;
2965 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2966 	return cur_ts;
2967 }
2968 EXPORT_SYMBOL(inode_set_ctime_deleg);
2969 
2970 /**
2971  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2972  * @idmap:	idmap of the mount @inode was found from
2973  * @inode:	inode to check
2974  * @vfsgid:	the new/current vfsgid of @inode
2975  *
2976  * Check whether @vfsgid is in the caller's group list or if the caller is
2977  * privileged with CAP_FSETID over @inode. This can be used to determine
2978  * whether the setgid bit can be kept or must be dropped.
2979  *
2980  * Return: true if the caller is sufficiently privileged, false if not.
2981  */
2982 bool in_group_or_capable(struct mnt_idmap *idmap,
2983 			 const struct inode *inode, vfsgid_t vfsgid)
2984 {
2985 	if (vfsgid_in_group_p(vfsgid))
2986 		return true;
2987 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2988 		return true;
2989 	return false;
2990 }
2991 EXPORT_SYMBOL(in_group_or_capable);
2992 
2993 /**
2994  * mode_strip_sgid - handle the sgid bit for non-directories
2995  * @idmap: idmap of the mount the inode was created from
2996  * @dir: parent directory inode
2997  * @mode: mode of the file to be created in @dir
2998  *
2999  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
3000  * raised and @dir has the S_ISGID bit raised ensure that the caller is
3001  * either in the group of the parent directory or they have CAP_FSETID
3002  * in their user namespace and are privileged over the parent directory.
3003  * In all other cases, strip the S_ISGID bit from @mode.
3004  *
3005  * Return: the new mode to use for the file
3006  */
3007 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
3008 			const struct inode *dir, umode_t mode)
3009 {
3010 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
3011 		return mode;
3012 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
3013 		return mode;
3014 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
3015 		return mode;
3016 	return mode & ~S_ISGID;
3017 }
3018 EXPORT_SYMBOL(mode_strip_sgid);
3019 
3020 #ifdef CONFIG_DEBUG_VFS
3021 /**
3022  * dump_inode - dump an inode.
3023  * @inode: inode to dump
3024  * @reason: reason for dumping
3025  *
3026  * If inode is an invalid pointer, we don't want to crash accessing it,
3027  * so probe everything depending on it carefully with get_kernel_nofault().
3028  */
3029 void dump_inode(struct inode *inode, const char *reason)
3030 {
3031 	struct super_block *sb;
3032 	struct file_system_type *s_type;
3033 	const char *fs_name_ptr;
3034 	char fs_name[32] = {};
3035 	umode_t mode;
3036 	unsigned short opflags;
3037 	unsigned int flags;
3038 	unsigned int state;
3039 	int count;
3040 
3041 	if (get_kernel_nofault(sb, &inode->i_sb) ||
3042 	    get_kernel_nofault(mode, &inode->i_mode) ||
3043 	    get_kernel_nofault(opflags, &inode->i_opflags) ||
3044 	    get_kernel_nofault(flags, &inode->i_flags)) {
3045 		pr_warn("%s: unreadable inode:%px\n", reason, inode);
3046 		return;
3047 	}
3048 
3049 	state = inode_state_read_once(inode);
3050 	count = atomic_read(&inode->i_count);
3051 
3052 	if (!sb ||
3053 	    get_kernel_nofault(s_type, &sb->s_type) || !s_type ||
3054 	    get_kernel_nofault(fs_name_ptr, &s_type->name) || !fs_name_ptr ||
3055 	    strncpy_from_kernel_nofault(fs_name, fs_name_ptr, sizeof(fs_name) - 1) < 0)
3056 		strscpy(fs_name, "<unknown, sb unreadable>");
3057 
3058 	pr_warn("%s: inode:%px fs:%s mode:%ho opflags:%#x flags:%#x state:%#x count:%d\n",
3059 		reason, inode, fs_name, mode, opflags, flags, state, count);
3060 }
3061 EXPORT_SYMBOL(dump_inode);
3062 #endif
3063