xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 348f968b89bfeec0bb53dd82dba58b94d97fbd34)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 		return -ENOMEM;
1097 	}
1098 
1099 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 	buffer->skb = skb;
1101 	buffer->protocol = 0;
1102 	buffer->bytecount = skb->len;
1103 	buffer->gso_segs = 1;
1104 	buffer->time_stamp = jiffies;
1105 	dma_unmap_len_set(buffer, len, skb->len);
1106 	dma_unmap_addr_set(buffer, dma, dma);
1107 
1108 	return 0;
1109 }
1110 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1111 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 					struct sk_buff *skb,
1113 					struct igc_tx_buffer *first)
1114 {
1115 	union igc_adv_tx_desc *desc;
1116 	u32 cmd_type, olinfo_status;
1117 	int err;
1118 
1119 	if (!igc_desc_unused(ring))
1120 		return -EBUSY;
1121 
1122 	err = igc_init_empty_frame(ring, first, skb);
1123 	if (err)
1124 		return err;
1125 
1126 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 		   first->bytecount;
1129 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130 
1131 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135 
1136 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137 
1138 	first->next_to_watch = desc;
1139 
1140 	ring->next_to_use++;
1141 	if (ring->next_to_use == ring->count)
1142 		ring->next_to_use = 0;
1143 
1144 	return 0;
1145 }
1146 
1147 #define IGC_EMPTY_FRAME_SIZE 60
1148 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1149 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 			    __le32 launch_time, bool first_flag,
1151 			    u32 vlan_macip_lens, u32 type_tucmd,
1152 			    u32 mss_l4len_idx)
1153 {
1154 	struct igc_adv_tx_context_desc *context_desc;
1155 	u16 i = tx_ring->next_to_use;
1156 
1157 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158 
1159 	i++;
1160 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161 
1162 	/* set bits to identify this as an advanced context descriptor */
1163 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164 
1165 	/* For i225, context index must be unique per ring. */
1166 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1168 
1169 	if (first_flag)
1170 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171 
1172 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1173 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1174 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1175 	context_desc->launch_time	= launch_time;
1176 }
1177 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1178 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 			__le32 launch_time, bool first_flag)
1180 {
1181 	struct sk_buff *skb = first->skb;
1182 	u32 vlan_macip_lens = 0;
1183 	u32 type_tucmd = 0;
1184 
1185 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186 csum_failed:
1187 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 		    !tx_ring->launchtime_enable)
1189 			return;
1190 		goto no_csum;
1191 	}
1192 
1193 	switch (skb->csum_offset) {
1194 	case offsetof(struct tcphdr, check):
1195 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 		fallthrough;
1197 	case offsetof(struct udphdr, check):
1198 		break;
1199 	case offsetof(struct sctphdr, checksum):
1200 		/* validate that this is actually an SCTP request */
1201 		if (skb_csum_is_sctp(skb)) {
1202 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 			break;
1204 		}
1205 		fallthrough;
1206 	default:
1207 		skb_checksum_help(skb);
1208 		goto csum_failed;
1209 	}
1210 
1211 	/* update TX checksum flag */
1212 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 			  skb_network_offset(skb);
1215 no_csum:
1216 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218 
1219 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 			vlan_macip_lens, type_tucmd, 0);
1221 }
1222 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1223 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224 {
1225 	struct net_device *netdev = tx_ring->netdev;
1226 
1227 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1228 
1229 	/* memory barriier comment */
1230 	smp_mb();
1231 
1232 	/* We need to check again in a case another CPU has just
1233 	 * made room available.
1234 	 */
1235 	if (igc_desc_unused(tx_ring) < size)
1236 		return -EBUSY;
1237 
1238 	/* A reprieve! */
1239 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1240 
1241 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 	tx_ring->tx_stats.restart_queue2++;
1243 	u64_stats_update_end(&tx_ring->tx_syncp2);
1244 
1245 	return 0;
1246 }
1247 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1248 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249 {
1250 	if (igc_desc_unused(tx_ring) >= size)
1251 		return 0;
1252 	return __igc_maybe_stop_tx(tx_ring, size);
1253 }
1254 
1255 #define IGC_SET_FLAG(_input, _flag, _result) \
1256 	(((_flag) <= (_result)) ?				\
1257 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1258 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1260 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261 {
1262 	/* set type for advanced descriptor with frame checksum insertion */
1263 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 		       IGC_ADVTXD_DCMD_DEXT |
1265 		       IGC_ADVTXD_DCMD_IFCS;
1266 
1267 	/* set HW vlan bit if vlan is present */
1268 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 				 IGC_ADVTXD_DCMD_VLE);
1270 
1271 	/* set segmentation bits for TSO */
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 				 (IGC_ADVTXD_DCMD_TSE));
1274 
1275 	/* set timestamp bit if present, will select the register set
1276 	 * based on the _TSTAMP(_X) bit.
1277 	 */
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 				 (IGC_ADVTXD_MAC_TSTAMP));
1280 
1281 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 				 (IGC_ADVTXD_TSTAMP_REG_1));
1283 
1284 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 				 (IGC_ADVTXD_TSTAMP_REG_2));
1286 
1287 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 				 (IGC_ADVTXD_TSTAMP_REG_3));
1289 
1290 	/* insert frame checksum */
1291 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292 
1293 	return cmd_type;
1294 }
1295 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1296 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 				 union igc_adv_tx_desc *tx_desc,
1298 				 u32 tx_flags, unsigned int paylen)
1299 {
1300 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301 
1302 	/* insert L4 checksum */
1303 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 				      (IGC_TXD_POPTS_TXSM << 8));
1305 
1306 	/* insert IPv4 checksum */
1307 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 				      (IGC_TXD_POPTS_IXSM << 8));
1309 
1310 	/* Use the second timer (free running, in general) for the timestamp */
1311 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 				      IGC_TXD_PTP2_TIMER_1);
1313 
1314 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315 }
1316 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1317 static int igc_tx_map(struct igc_ring *tx_ring,
1318 		      struct igc_tx_buffer *first,
1319 		      const u8 hdr_len)
1320 {
1321 	struct sk_buff *skb = first->skb;
1322 	struct igc_tx_buffer *tx_buffer;
1323 	union igc_adv_tx_desc *tx_desc;
1324 	u32 tx_flags = first->tx_flags;
1325 	skb_frag_t *frag;
1326 	u16 i = tx_ring->next_to_use;
1327 	unsigned int data_len, size;
1328 	dma_addr_t dma;
1329 	u32 cmd_type;
1330 
1331 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 	tx_desc = IGC_TX_DESC(tx_ring, i);
1333 
1334 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335 
1336 	size = skb_headlen(skb);
1337 	data_len = skb->data_len;
1338 
1339 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340 
1341 	tx_buffer = first;
1342 
1343 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 		if (dma_mapping_error(tx_ring->dev, dma))
1345 			goto dma_error;
1346 
1347 		/* record length, and DMA address */
1348 		dma_unmap_len_set(tx_buffer, len, size);
1349 		dma_unmap_addr_set(tx_buffer, dma, dma);
1350 
1351 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352 
1353 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 			tx_desc->read.cmd_type_len =
1355 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356 
1357 			i++;
1358 			tx_desc++;
1359 			if (i == tx_ring->count) {
1360 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 				i = 0;
1362 			}
1363 			tx_desc->read.olinfo_status = 0;
1364 
1365 			dma += IGC_MAX_DATA_PER_TXD;
1366 			size -= IGC_MAX_DATA_PER_TXD;
1367 
1368 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 		}
1370 
1371 		if (likely(!data_len))
1372 			break;
1373 
1374 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375 
1376 		i++;
1377 		tx_desc++;
1378 		if (i == tx_ring->count) {
1379 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 			i = 0;
1381 		}
1382 		tx_desc->read.olinfo_status = 0;
1383 
1384 		size = skb_frag_size(frag);
1385 		data_len -= size;
1386 
1387 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 				       size, DMA_TO_DEVICE);
1389 
1390 		tx_buffer = &tx_ring->tx_buffer_info[i];
1391 	}
1392 
1393 	/* write last descriptor with RS and EOP bits */
1394 	cmd_type |= size | IGC_TXD_DCMD;
1395 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396 
1397 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398 
1399 	/* set the timestamp */
1400 	first->time_stamp = jiffies;
1401 
1402 	skb_tx_timestamp(skb);
1403 
1404 	/* Force memory writes to complete before letting h/w know there
1405 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1406 	 * memory model archs, such as IA-64).
1407 	 *
1408 	 * We also need this memory barrier to make certain all of the
1409 	 * status bits have been updated before next_to_watch is written.
1410 	 */
1411 	wmb();
1412 
1413 	/* set next_to_watch value indicating a packet is present */
1414 	first->next_to_watch = tx_desc;
1415 
1416 	i++;
1417 	if (i == tx_ring->count)
1418 		i = 0;
1419 
1420 	tx_ring->next_to_use = i;
1421 
1422 	/* Make sure there is space in the ring for the next send. */
1423 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424 
1425 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 		writel(i, tx_ring->tail);
1427 	}
1428 
1429 	return 0;
1430 dma_error:
1431 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 	tx_buffer = &tx_ring->tx_buffer_info[i];
1433 
1434 	/* clear dma mappings for failed tx_buffer_info map */
1435 	while (tx_buffer != first) {
1436 		if (dma_unmap_len(tx_buffer, len))
1437 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438 
1439 		if (i-- == 0)
1440 			i += tx_ring->count;
1441 		tx_buffer = &tx_ring->tx_buffer_info[i];
1442 	}
1443 
1444 	if (dma_unmap_len(tx_buffer, len))
1445 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446 
1447 	dev_kfree_skb_any(tx_buffer->skb);
1448 	tx_buffer->skb = NULL;
1449 
1450 	tx_ring->next_to_use = i;
1451 
1452 	return -1;
1453 }
1454 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1455 static int igc_tso(struct igc_ring *tx_ring,
1456 		   struct igc_tx_buffer *first,
1457 		   __le32 launch_time, bool first_flag,
1458 		   u8 *hdr_len)
1459 {
1460 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 	struct sk_buff *skb = first->skb;
1462 	union {
1463 		struct iphdr *v4;
1464 		struct ipv6hdr *v6;
1465 		unsigned char *hdr;
1466 	} ip;
1467 	union {
1468 		struct tcphdr *tcp;
1469 		struct udphdr *udp;
1470 		unsigned char *hdr;
1471 	} l4;
1472 	u32 paylen, l4_offset;
1473 	int err;
1474 
1475 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 		return 0;
1477 
1478 	if (!skb_is_gso(skb))
1479 		return 0;
1480 
1481 	err = skb_cow_head(skb, 0);
1482 	if (err < 0)
1483 		return err;
1484 
1485 	ip.hdr = skb_network_header(skb);
1486 	l4.hdr = skb_checksum_start(skb);
1487 
1488 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490 
1491 	/* initialize outer IP header fields */
1492 	if (ip.v4->version == 4) {
1493 		unsigned char *csum_start = skb_checksum_start(skb);
1494 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495 
1496 		/* IP header will have to cancel out any data that
1497 		 * is not a part of the outer IP header
1498 		 */
1499 		ip.v4->check = csum_fold(csum_partial(trans_start,
1500 						      csum_start - trans_start,
1501 						      0));
1502 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503 
1504 		ip.v4->tot_len = 0;
1505 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 				   IGC_TX_FLAGS_CSUM |
1507 				   IGC_TX_FLAGS_IPV4;
1508 	} else {
1509 		ip.v6->payload_len = 0;
1510 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 				   IGC_TX_FLAGS_CSUM;
1512 	}
1513 
1514 	/* determine offset of inner transport header */
1515 	l4_offset = l4.hdr - skb->data;
1516 
1517 	/* remove payload length from inner checksum */
1518 	paylen = skb->len - l4_offset;
1519 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 		/* compute length of segmentation header */
1521 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 		csum_replace_by_diff(&l4.tcp->check,
1523 				     (__force __wsum)htonl(paylen));
1524 	} else {
1525 		/* compute length of segmentation header */
1526 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1527 		csum_replace_by_diff(&l4.udp->check,
1528 				     (__force __wsum)htonl(paylen));
1529 	}
1530 
1531 	/* update gso size and bytecount with header size */
1532 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534 
1535 	/* MSS L4LEN IDX */
1536 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538 
1539 	/* VLAN MACLEN IPLEN */
1540 	vlan_macip_lens = l4.hdr - ip.hdr;
1541 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543 
1544 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546 
1547 	return 1;
1548 }
1549 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1550 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551 {
1552 	int i;
1553 
1554 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556 
1557 		if (tstamp->skb)
1558 			continue;
1559 
1560 		tstamp->skb = skb_get(skb);
1561 		tstamp->start = jiffies;
1562 		*flags = tstamp->flags;
1563 
1564 		return true;
1565 	}
1566 
1567 	return false;
1568 }
1569 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1570 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 				       struct igc_ring *tx_ring)
1572 {
1573 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 	bool first_flag = false, insert_empty = false;
1575 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 	__be16 protocol = vlan_get_protocol(skb);
1577 	struct igc_tx_buffer *first;
1578 	__le32 launch_time = 0;
1579 	u32 tx_flags = 0;
1580 	unsigned short f;
1581 	ktime_t txtime;
1582 	u8 hdr_len = 0;
1583 	int tso = 0;
1584 
1585 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 	 *	+ 2 desc gap to keep tail from touching head,
1588 	 *	+ 1 desc for context descriptor,
1589 	 * otherwise try next time
1590 	 */
1591 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 		count += TXD_USE_COUNT(skb_frag_size(
1593 						&skb_shinfo(skb)->frags[f]));
1594 
1595 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 		/* this is a hard error */
1597 		return NETDEV_TX_BUSY;
1598 	}
1599 
1600 	if (!tx_ring->launchtime_enable)
1601 		goto done;
1602 
1603 	txtime = skb->tstamp;
1604 	skb->tstamp = ktime_set(0, 0);
1605 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606 
1607 	if (insert_empty) {
1608 		struct igc_tx_buffer *empty_info;
1609 		struct sk_buff *empty;
1610 		void *data;
1611 
1612 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 		if (!empty)
1615 			goto done;
1616 
1617 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619 
1620 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621 
1622 		if (igc_init_tx_empty_descriptor(tx_ring,
1623 						 empty,
1624 						 empty_info) < 0)
1625 			dev_kfree_skb_any(empty);
1626 	}
1627 
1628 done:
1629 	/* record the location of the first descriptor for this packet */
1630 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 	first->skb = skb;
1633 	first->bytecount = skb->len;
1634 	first->gso_segs = 1;
1635 
1636 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 		goto out_drop;
1638 
1639 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 		adapter->stats.txdrop++;
1641 		goto out_drop;
1642 	}
1643 
1644 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 		unsigned long flags;
1647 		u32 tstamp_flags;
1648 
1649 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 			if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 		} else {
1656 			adapter->tx_hwtstamp_skipped++;
1657 		}
1658 
1659 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 	}
1661 
1662 	if (skb_vlan_tag_present(skb)) {
1663 		tx_flags |= IGC_TX_FLAGS_VLAN;
1664 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 	}
1666 
1667 	/* record initial flags and protocol */
1668 	first->tx_flags = tx_flags;
1669 	first->protocol = protocol;
1670 
1671 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 	if (tso < 0)
1673 		goto out_drop;
1674 	else if (!tso)
1675 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676 
1677 	igc_tx_map(tx_ring, first, hdr_len);
1678 
1679 	return NETDEV_TX_OK;
1680 
1681 out_drop:
1682 	dev_kfree_skb_any(first->skb);
1683 	first->skb = NULL;
1684 
1685 	return NETDEV_TX_OK;
1686 }
1687 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1688 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 						    struct sk_buff *skb)
1690 {
1691 	unsigned int r_idx = skb->queue_mapping;
1692 
1693 	if (r_idx >= adapter->num_tx_queues)
1694 		r_idx = r_idx % adapter->num_tx_queues;
1695 
1696 	return adapter->tx_ring[r_idx];
1697 }
1698 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1699 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 				  struct net_device *netdev)
1701 {
1702 	struct igc_adapter *adapter = netdev_priv(netdev);
1703 
1704 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 	 * in order to meet this minimum size requirement.
1706 	 */
1707 	if (skb->len < 17) {
1708 		if (skb_padto(skb, 17))
1709 			return NETDEV_TX_OK;
1710 		skb->len = 17;
1711 	}
1712 
1713 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714 }
1715 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1716 static void igc_rx_checksum(struct igc_ring *ring,
1717 			    union igc_adv_rx_desc *rx_desc,
1718 			    struct sk_buff *skb)
1719 {
1720 	skb_checksum_none_assert(skb);
1721 
1722 	/* Ignore Checksum bit is set */
1723 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 		return;
1725 
1726 	/* Rx checksum disabled via ethtool */
1727 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 		return;
1729 
1730 	/* TCP/UDP checksum error bit is set */
1731 	if (igc_test_staterr(rx_desc,
1732 			     IGC_RXDEXT_STATERR_L4E |
1733 			     IGC_RXDEXT_STATERR_IPE)) {
1734 		/* work around errata with sctp packets where the TCPE aka
1735 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 		 * packets (aka let the stack check the crc32c)
1737 		 */
1738 		if (!(skb->len == 60 &&
1739 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 			u64_stats_update_begin(&ring->rx_syncp);
1741 			ring->rx_stats.csum_err++;
1742 			u64_stats_update_end(&ring->rx_syncp);
1743 		}
1744 		/* let the stack verify checksum errors */
1745 		return;
1746 	}
1747 	/* It must be a TCP or UDP packet with a valid checksum */
1748 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 				      IGC_RXD_STAT_UDPCS))
1750 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1751 
1752 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1754 }
1755 
1756 /* Mapping HW RSS Type to enum pkt_hash_types */
1757 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1759 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1760 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1761 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1762 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1763 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1764 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1766 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1767 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1769 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1770 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1771 	[13] = PKT_HASH_TYPE_NONE,
1772 	[14] = PKT_HASH_TYPE_NONE,
1773 	[15] = PKT_HASH_TYPE_NONE,
1774 };
1775 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1776 static inline void igc_rx_hash(struct igc_ring *ring,
1777 			       union igc_adv_rx_desc *rx_desc,
1778 			       struct sk_buff *skb)
1779 {
1780 	if (ring->netdev->features & NETIF_F_RXHASH) {
1781 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 		u32 rss_type = igc_rss_type(rx_desc);
1783 
1784 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 	}
1786 }
1787 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1788 static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 			union igc_adv_rx_desc *rx_desc,
1790 			struct sk_buff *skb)
1791 {
1792 	struct net_device *dev = rx_ring->netdev;
1793 	u16 vid;
1794 
1795 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 		else
1801 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802 
1803 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 	}
1805 }
1806 
1807 /**
1808  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809  * @rx_ring: rx descriptor ring packet is being transacted on
1810  * @rx_desc: pointer to the EOP Rx descriptor
1811  * @skb: pointer to current skb being populated
1812  *
1813  * This function checks the ring, descriptor, and packet information in order
1814  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815  * skb.
1816  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1817 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 				   union igc_adv_rx_desc *rx_desc,
1819 				   struct sk_buff *skb)
1820 {
1821 	igc_rx_hash(rx_ring, rx_desc, skb);
1822 
1823 	igc_rx_checksum(rx_ring, rx_desc, skb);
1824 
1825 	igc_rx_vlan(rx_ring, rx_desc, skb);
1826 
1827 	skb_record_rx_queue(skb, rx_ring->queue_index);
1828 
1829 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830 }
1831 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1832 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833 {
1834 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 	struct igc_adapter *adapter = netdev_priv(netdev);
1836 	struct igc_hw *hw = &adapter->hw;
1837 	u32 ctrl;
1838 
1839 	ctrl = rd32(IGC_CTRL);
1840 
1841 	if (enable) {
1842 		/* enable VLAN tag insert/strip */
1843 		ctrl |= IGC_CTRL_VME;
1844 	} else {
1845 		/* disable VLAN tag insert/strip */
1846 		ctrl &= ~IGC_CTRL_VME;
1847 	}
1848 	wr32(IGC_CTRL, ctrl);
1849 }
1850 
igc_restore_vlan(struct igc_adapter * adapter)1851 static void igc_restore_vlan(struct igc_adapter *adapter)
1852 {
1853 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854 }
1855 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1856 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 					       const unsigned int size,
1858 					       int *rx_buffer_pgcnt)
1859 {
1860 	struct igc_rx_buffer *rx_buffer;
1861 
1862 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 	*rx_buffer_pgcnt =
1864 #if (PAGE_SIZE < 8192)
1865 		page_count(rx_buffer->page);
1866 #else
1867 		0;
1868 #endif
1869 	prefetchw(rx_buffer->page);
1870 
1871 	/* we are reusing so sync this buffer for CPU use */
1872 	dma_sync_single_range_for_cpu(rx_ring->dev,
1873 				      rx_buffer->dma,
1874 				      rx_buffer->page_offset,
1875 				      size,
1876 				      DMA_FROM_DEVICE);
1877 
1878 	rx_buffer->pagecnt_bias--;
1879 
1880 	return rx_buffer;
1881 }
1882 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1883 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 			       unsigned int truesize)
1885 {
1886 #if (PAGE_SIZE < 8192)
1887 	buffer->page_offset ^= truesize;
1888 #else
1889 	buffer->page_offset += truesize;
1890 #endif
1891 }
1892 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1893 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 					      unsigned int size)
1895 {
1896 	unsigned int truesize;
1897 
1898 #if (PAGE_SIZE < 8192)
1899 	truesize = igc_rx_pg_size(ring) / 2;
1900 #else
1901 	truesize = ring_uses_build_skb(ring) ?
1902 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 		   SKB_DATA_ALIGN(size);
1905 #endif
1906 	return truesize;
1907 }
1908 
1909 /**
1910  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911  * @rx_ring: rx descriptor ring to transact packets on
1912  * @rx_buffer: buffer containing page to add
1913  * @skb: sk_buff to place the data into
1914  * @size: size of buffer to be added
1915  *
1916  * This function will add the data contained in rx_buffer->page to the skb.
1917  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1918 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 			    struct igc_rx_buffer *rx_buffer,
1920 			    struct sk_buff *skb,
1921 			    unsigned int size)
1922 {
1923 	unsigned int truesize;
1924 
1925 #if (PAGE_SIZE < 8192)
1926 	truesize = igc_rx_pg_size(rx_ring) / 2;
1927 #else
1928 	truesize = ring_uses_build_skb(rx_ring) ?
1929 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 		   SKB_DATA_ALIGN(size);
1931 #endif
1932 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 			rx_buffer->page_offset, size, truesize);
1934 
1935 	igc_rx_buffer_flip(rx_buffer, truesize);
1936 }
1937 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1938 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 				     struct igc_rx_buffer *rx_buffer,
1940 				     struct xdp_buff *xdp)
1941 {
1942 	unsigned int size = xdp->data_end - xdp->data;
1943 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 	unsigned int metasize = xdp->data - xdp->data_meta;
1945 	struct sk_buff *skb;
1946 
1947 	/* prefetch first cache line of first page */
1948 	net_prefetch(xdp->data_meta);
1949 
1950 	/* build an skb around the page buffer */
1951 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 	if (unlikely(!skb))
1953 		return NULL;
1954 
1955 	/* update pointers within the skb to store the data */
1956 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 	__skb_put(skb, size);
1958 	if (metasize)
1959 		skb_metadata_set(skb, metasize);
1960 
1961 	igc_rx_buffer_flip(rx_buffer, truesize);
1962 	return skb;
1963 }
1964 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1965 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 					 struct igc_rx_buffer *rx_buffer,
1967 					 struct igc_xdp_buff *ctx)
1968 {
1969 	struct xdp_buff *xdp = &ctx->xdp;
1970 	unsigned int metasize = xdp->data - xdp->data_meta;
1971 	unsigned int size = xdp->data_end - xdp->data;
1972 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 	void *va = xdp->data;
1974 	unsigned int headlen;
1975 	struct sk_buff *skb;
1976 
1977 	/* prefetch first cache line of first page */
1978 	net_prefetch(xdp->data_meta);
1979 
1980 	/* allocate a skb to store the frags */
1981 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 			     IGC_RX_HDR_LEN + metasize);
1983 	if (unlikely(!skb))
1984 		return NULL;
1985 
1986 	if (ctx->rx_ts) {
1987 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 	}
1990 
1991 	/* Determine available headroom for copy */
1992 	headlen = size;
1993 	if (headlen > IGC_RX_HDR_LEN)
1994 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995 
1996 	/* align pull length to size of long to optimize memcpy performance */
1997 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 	       ALIGN(headlen + metasize, sizeof(long)));
1999 
2000 	if (metasize) {
2001 		skb_metadata_set(skb, metasize);
2002 		__skb_pull(skb, metasize);
2003 	}
2004 
2005 	/* update all of the pointers */
2006 	size -= headlen;
2007 	if (size) {
2008 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 				(va + headlen) - page_address(rx_buffer->page),
2010 				size, truesize);
2011 		igc_rx_buffer_flip(rx_buffer, truesize);
2012 	} else {
2013 		rx_buffer->pagecnt_bias++;
2014 	}
2015 
2016 	return skb;
2017 }
2018 
2019 /**
2020  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021  * @rx_ring: rx descriptor ring to store buffers on
2022  * @old_buff: donor buffer to have page reused
2023  *
2024  * Synchronizes page for reuse by the adapter
2025  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2026 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 			      struct igc_rx_buffer *old_buff)
2028 {
2029 	u16 nta = rx_ring->next_to_alloc;
2030 	struct igc_rx_buffer *new_buff;
2031 
2032 	new_buff = &rx_ring->rx_buffer_info[nta];
2033 
2034 	/* update, and store next to alloc */
2035 	nta++;
2036 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037 
2038 	/* Transfer page from old buffer to new buffer.
2039 	 * Move each member individually to avoid possible store
2040 	 * forwarding stalls.
2041 	 */
2042 	new_buff->dma		= old_buff->dma;
2043 	new_buff->page		= old_buff->page;
2044 	new_buff->page_offset	= old_buff->page_offset;
2045 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2046 }
2047 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2048 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 				  int rx_buffer_pgcnt)
2050 {
2051 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 	struct page *page = rx_buffer->page;
2053 
2054 	/* avoid re-using remote and pfmemalloc pages */
2055 	if (!dev_page_is_reusable(page))
2056 		return false;
2057 
2058 #if (PAGE_SIZE < 8192)
2059 	/* if we are only owner of page we can reuse it */
2060 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 		return false;
2062 #else
2063 #define IGC_LAST_OFFSET \
2064 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065 
2066 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 		return false;
2068 #endif
2069 
2070 	/* If we have drained the page fragment pool we need to update
2071 	 * the pagecnt_bias and page count so that we fully restock the
2072 	 * number of references the driver holds.
2073 	 */
2074 	if (unlikely(pagecnt_bias == 1)) {
2075 		page_ref_add(page, USHRT_MAX - 1);
2076 		rx_buffer->pagecnt_bias = USHRT_MAX;
2077 	}
2078 
2079 	return true;
2080 }
2081 
2082 /**
2083  * igc_is_non_eop - process handling of non-EOP buffers
2084  * @rx_ring: Rx ring being processed
2085  * @rx_desc: Rx descriptor for current buffer
2086  *
2087  * This function updates next to clean.  If the buffer is an EOP buffer
2088  * this function exits returning false, otherwise it will place the
2089  * sk_buff in the next buffer to be chained and return true indicating
2090  * that this is in fact a non-EOP buffer.
2091  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2092 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 			   union igc_adv_rx_desc *rx_desc)
2094 {
2095 	u32 ntc = rx_ring->next_to_clean + 1;
2096 
2097 	/* fetch, update, and store next to clean */
2098 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 	rx_ring->next_to_clean = ntc;
2100 
2101 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2102 
2103 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 		return false;
2105 
2106 	return true;
2107 }
2108 
2109 /**
2110  * igc_cleanup_headers - Correct corrupted or empty headers
2111  * @rx_ring: rx descriptor ring packet is being transacted on
2112  * @rx_desc: pointer to the EOP Rx descriptor
2113  * @skb: pointer to current skb being fixed
2114  *
2115  * Address the case where we are pulling data in on pages only
2116  * and as such no data is present in the skb header.
2117  *
2118  * In addition if skb is not at least 60 bytes we need to pad it so that
2119  * it is large enough to qualify as a valid Ethernet frame.
2120  *
2121  * Returns true if an error was encountered and skb was freed.
2122  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2123 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 				union igc_adv_rx_desc *rx_desc,
2125 				struct sk_buff *skb)
2126 {
2127 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2128 		struct net_device *netdev = rx_ring->netdev;
2129 
2130 		if (!(netdev->features & NETIF_F_RXALL)) {
2131 			dev_kfree_skb_any(skb);
2132 			return true;
2133 		}
2134 	}
2135 
2136 	/* if eth_skb_pad returns an error the skb was freed */
2137 	if (eth_skb_pad(skb))
2138 		return true;
2139 
2140 	return false;
2141 }
2142 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2143 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2144 			      struct igc_rx_buffer *rx_buffer,
2145 			      int rx_buffer_pgcnt)
2146 {
2147 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2148 		/* hand second half of page back to the ring */
2149 		igc_reuse_rx_page(rx_ring, rx_buffer);
2150 	} else {
2151 		/* We are not reusing the buffer so unmap it and free
2152 		 * any references we are holding to it
2153 		 */
2154 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2155 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2156 				     IGC_RX_DMA_ATTR);
2157 		__page_frag_cache_drain(rx_buffer->page,
2158 					rx_buffer->pagecnt_bias);
2159 	}
2160 
2161 	/* clear contents of rx_buffer */
2162 	rx_buffer->page = NULL;
2163 }
2164 
igc_rx_offset(struct igc_ring * rx_ring)2165 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2166 {
2167 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2168 
2169 	if (ring_uses_build_skb(rx_ring))
2170 		return IGC_SKB_PAD;
2171 	if (igc_xdp_is_enabled(adapter))
2172 		return XDP_PACKET_HEADROOM;
2173 
2174 	return 0;
2175 }
2176 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2177 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2178 				  struct igc_rx_buffer *bi)
2179 {
2180 	struct page *page = bi->page;
2181 	dma_addr_t dma;
2182 
2183 	/* since we are recycling buffers we should seldom need to alloc */
2184 	if (likely(page))
2185 		return true;
2186 
2187 	/* alloc new page for storage */
2188 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2189 	if (unlikely(!page)) {
2190 		rx_ring->rx_stats.alloc_failed++;
2191 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2192 		return false;
2193 	}
2194 
2195 	/* map page for use */
2196 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2197 				 igc_rx_pg_size(rx_ring),
2198 				 DMA_FROM_DEVICE,
2199 				 IGC_RX_DMA_ATTR);
2200 
2201 	/* if mapping failed free memory back to system since
2202 	 * there isn't much point in holding memory we can't use
2203 	 */
2204 	if (dma_mapping_error(rx_ring->dev, dma)) {
2205 		__free_page(page);
2206 
2207 		rx_ring->rx_stats.alloc_failed++;
2208 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2209 		return false;
2210 	}
2211 
2212 	bi->dma = dma;
2213 	bi->page = page;
2214 	bi->page_offset = igc_rx_offset(rx_ring);
2215 	page_ref_add(page, USHRT_MAX - 1);
2216 	bi->pagecnt_bias = USHRT_MAX;
2217 
2218 	return true;
2219 }
2220 
2221 /**
2222  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2223  * @rx_ring: rx descriptor ring
2224  * @cleaned_count: number of buffers to clean
2225  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2226 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2227 {
2228 	union igc_adv_rx_desc *rx_desc;
2229 	u16 i = rx_ring->next_to_use;
2230 	struct igc_rx_buffer *bi;
2231 	u16 bufsz;
2232 
2233 	/* nothing to do */
2234 	if (!cleaned_count)
2235 		return;
2236 
2237 	rx_desc = IGC_RX_DESC(rx_ring, i);
2238 	bi = &rx_ring->rx_buffer_info[i];
2239 	i -= rx_ring->count;
2240 
2241 	bufsz = igc_rx_bufsz(rx_ring);
2242 
2243 	do {
2244 		if (!igc_alloc_mapped_page(rx_ring, bi))
2245 			break;
2246 
2247 		/* sync the buffer for use by the device */
2248 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2249 						 bi->page_offset, bufsz,
2250 						 DMA_FROM_DEVICE);
2251 
2252 		/* Refresh the desc even if buffer_addrs didn't change
2253 		 * because each write-back erases this info.
2254 		 */
2255 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2256 
2257 		rx_desc++;
2258 		bi++;
2259 		i++;
2260 		if (unlikely(!i)) {
2261 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2262 			bi = rx_ring->rx_buffer_info;
2263 			i -= rx_ring->count;
2264 		}
2265 
2266 		/* clear the length for the next_to_use descriptor */
2267 		rx_desc->wb.upper.length = 0;
2268 
2269 		cleaned_count--;
2270 	} while (cleaned_count);
2271 
2272 	i += rx_ring->count;
2273 
2274 	if (rx_ring->next_to_use != i) {
2275 		/* record the next descriptor to use */
2276 		rx_ring->next_to_use = i;
2277 
2278 		/* update next to alloc since we have filled the ring */
2279 		rx_ring->next_to_alloc = i;
2280 
2281 		/* Force memory writes to complete before letting h/w
2282 		 * know there are new descriptors to fetch.  (Only
2283 		 * applicable for weak-ordered memory model archs,
2284 		 * such as IA-64).
2285 		 */
2286 		wmb();
2287 		writel(i, rx_ring->tail);
2288 	}
2289 }
2290 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2291 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2292 {
2293 	union igc_adv_rx_desc *desc;
2294 	u16 i = ring->next_to_use;
2295 	struct igc_rx_buffer *bi;
2296 	dma_addr_t dma;
2297 	bool ok = true;
2298 
2299 	if (!count)
2300 		return ok;
2301 
2302 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2303 
2304 	desc = IGC_RX_DESC(ring, i);
2305 	bi = &ring->rx_buffer_info[i];
2306 	i -= ring->count;
2307 
2308 	do {
2309 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2310 		if (!bi->xdp) {
2311 			ok = false;
2312 			break;
2313 		}
2314 
2315 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2316 		desc->read.pkt_addr = cpu_to_le64(dma);
2317 
2318 		desc++;
2319 		bi++;
2320 		i++;
2321 		if (unlikely(!i)) {
2322 			desc = IGC_RX_DESC(ring, 0);
2323 			bi = ring->rx_buffer_info;
2324 			i -= ring->count;
2325 		}
2326 
2327 		/* Clear the length for the next_to_use descriptor. */
2328 		desc->wb.upper.length = 0;
2329 
2330 		count--;
2331 	} while (count);
2332 
2333 	i += ring->count;
2334 
2335 	if (ring->next_to_use != i) {
2336 		ring->next_to_use = i;
2337 
2338 		/* Force memory writes to complete before letting h/w
2339 		 * know there are new descriptors to fetch.  (Only
2340 		 * applicable for weak-ordered memory model archs,
2341 		 * such as IA-64).
2342 		 */
2343 		wmb();
2344 		writel(i, ring->tail);
2345 	}
2346 
2347 	return ok;
2348 }
2349 
2350 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2351 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2352 				      struct xdp_frame *xdpf)
2353 {
2354 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2355 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2356 	u16 count, index = ring->next_to_use;
2357 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2358 	struct igc_tx_buffer *buffer = head;
2359 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2360 	u32 olinfo_status, len = xdpf->len, cmd_type;
2361 	void *data = xdpf->data;
2362 	u16 i;
2363 
2364 	count = TXD_USE_COUNT(len);
2365 	for (i = 0; i < nr_frags; i++)
2366 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2367 
2368 	if (igc_maybe_stop_tx(ring, count + 3)) {
2369 		/* this is a hard error */
2370 		return -EBUSY;
2371 	}
2372 
2373 	i = 0;
2374 	head->bytecount = xdp_get_frame_len(xdpf);
2375 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2376 	head->gso_segs = 1;
2377 	head->xdpf = xdpf;
2378 
2379 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2380 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2381 
2382 	for (;;) {
2383 		dma_addr_t dma;
2384 
2385 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2386 		if (dma_mapping_error(ring->dev, dma)) {
2387 			netdev_err_once(ring->netdev,
2388 					"Failed to map DMA for TX\n");
2389 			goto unmap;
2390 		}
2391 
2392 		dma_unmap_len_set(buffer, len, len);
2393 		dma_unmap_addr_set(buffer, dma, dma);
2394 
2395 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2396 			   IGC_ADVTXD_DCMD_IFCS | len;
2397 
2398 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2399 		desc->read.buffer_addr = cpu_to_le64(dma);
2400 
2401 		buffer->protocol = 0;
2402 
2403 		if (++index == ring->count)
2404 			index = 0;
2405 
2406 		if (i == nr_frags)
2407 			break;
2408 
2409 		buffer = &ring->tx_buffer_info[index];
2410 		desc = IGC_TX_DESC(ring, index);
2411 		desc->read.olinfo_status = 0;
2412 
2413 		data = skb_frag_address(&sinfo->frags[i]);
2414 		len = skb_frag_size(&sinfo->frags[i]);
2415 		i++;
2416 	}
2417 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2418 
2419 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2420 	/* set the timestamp */
2421 	head->time_stamp = jiffies;
2422 	/* set next_to_watch value indicating a packet is present */
2423 	head->next_to_watch = desc;
2424 	ring->next_to_use = index;
2425 
2426 	return 0;
2427 
2428 unmap:
2429 	for (;;) {
2430 		buffer = &ring->tx_buffer_info[index];
2431 		if (dma_unmap_len(buffer, len))
2432 			dma_unmap_page(ring->dev,
2433 				       dma_unmap_addr(buffer, dma),
2434 				       dma_unmap_len(buffer, len),
2435 				       DMA_TO_DEVICE);
2436 		dma_unmap_len_set(buffer, len, 0);
2437 		if (buffer == head)
2438 			break;
2439 
2440 		if (!index)
2441 			index += ring->count;
2442 		index--;
2443 	}
2444 
2445 	return -ENOMEM;
2446 }
2447 
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2448 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2449 					    int cpu)
2450 {
2451 	int index = cpu;
2452 
2453 	if (unlikely(index < 0))
2454 		index = 0;
2455 
2456 	while (index >= adapter->num_tx_queues)
2457 		index -= adapter->num_tx_queues;
2458 
2459 	return adapter->tx_ring[index];
2460 }
2461 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2462 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2463 {
2464 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2465 	int cpu = smp_processor_id();
2466 	struct netdev_queue *nq;
2467 	struct igc_ring *ring;
2468 	int res;
2469 
2470 	if (unlikely(!xdpf))
2471 		return -EFAULT;
2472 
2473 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2474 	nq = txring_txq(ring);
2475 
2476 	__netif_tx_lock(nq, cpu);
2477 	/* Avoid transmit queue timeout since we share it with the slow path */
2478 	txq_trans_cond_update(nq);
2479 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2480 	__netif_tx_unlock(nq);
2481 	return res;
2482 }
2483 
2484 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2485 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2486 			      struct bpf_prog *prog,
2487 			      struct xdp_buff *xdp)
2488 {
2489 	u32 act = bpf_prog_run_xdp(prog, xdp);
2490 
2491 	switch (act) {
2492 	case XDP_PASS:
2493 		return IGC_XDP_PASS;
2494 	case XDP_TX:
2495 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2496 			goto out_failure;
2497 		return IGC_XDP_TX;
2498 	case XDP_REDIRECT:
2499 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2500 			goto out_failure;
2501 		return IGC_XDP_REDIRECT;
2502 		break;
2503 	default:
2504 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2505 		fallthrough;
2506 	case XDP_ABORTED:
2507 out_failure:
2508 		trace_xdp_exception(adapter->netdev, prog, act);
2509 		fallthrough;
2510 	case XDP_DROP:
2511 		return IGC_XDP_CONSUMED;
2512 	}
2513 }
2514 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2515 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2516 {
2517 	struct bpf_prog *prog;
2518 	int res;
2519 
2520 	prog = READ_ONCE(adapter->xdp_prog);
2521 	if (!prog) {
2522 		res = IGC_XDP_PASS;
2523 		goto out;
2524 	}
2525 
2526 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2527 
2528 out:
2529 	return res;
2530 }
2531 
2532 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2533 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2534 {
2535 	/* Once tail pointer is updated, hardware can fetch the descriptors
2536 	 * any time so we issue a write membar here to ensure all memory
2537 	 * writes are complete before the tail pointer is updated.
2538 	 */
2539 	wmb();
2540 	writel(ring->next_to_use, ring->tail);
2541 }
2542 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2543 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2544 {
2545 	int cpu = smp_processor_id();
2546 	struct netdev_queue *nq;
2547 	struct igc_ring *ring;
2548 
2549 	if (status & IGC_XDP_TX) {
2550 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2551 		nq = txring_txq(ring);
2552 
2553 		__netif_tx_lock(nq, cpu);
2554 		igc_flush_tx_descriptors(ring);
2555 		__netif_tx_unlock(nq);
2556 	}
2557 
2558 	if (status & IGC_XDP_REDIRECT)
2559 		xdp_do_flush();
2560 }
2561 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2562 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2563 				unsigned int packets, unsigned int bytes)
2564 {
2565 	struct igc_ring *ring = q_vector->rx.ring;
2566 
2567 	u64_stats_update_begin(&ring->rx_syncp);
2568 	ring->rx_stats.packets += packets;
2569 	ring->rx_stats.bytes += bytes;
2570 	u64_stats_update_end(&ring->rx_syncp);
2571 
2572 	q_vector->rx.total_packets += packets;
2573 	q_vector->rx.total_bytes += bytes;
2574 }
2575 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2576 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2577 {
2578 	unsigned int total_bytes = 0, total_packets = 0;
2579 	struct igc_adapter *adapter = q_vector->adapter;
2580 	struct igc_ring *rx_ring = q_vector->rx.ring;
2581 	struct sk_buff *skb = rx_ring->skb;
2582 	u16 cleaned_count = igc_desc_unused(rx_ring);
2583 	int xdp_status = 0, rx_buffer_pgcnt;
2584 	int xdp_res = 0;
2585 
2586 	while (likely(total_packets < budget)) {
2587 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2588 		struct igc_rx_buffer *rx_buffer;
2589 		union igc_adv_rx_desc *rx_desc;
2590 		unsigned int size, truesize;
2591 		int pkt_offset = 0;
2592 		void *pktbuf;
2593 
2594 		/* return some buffers to hardware, one at a time is too slow */
2595 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2596 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2597 			cleaned_count = 0;
2598 		}
2599 
2600 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2601 		size = le16_to_cpu(rx_desc->wb.upper.length);
2602 		if (!size)
2603 			break;
2604 
2605 		/* This memory barrier is needed to keep us from reading
2606 		 * any other fields out of the rx_desc until we know the
2607 		 * descriptor has been written back
2608 		 */
2609 		dma_rmb();
2610 
2611 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2612 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2613 
2614 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2615 
2616 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2617 			ctx.rx_ts = pktbuf;
2618 			pkt_offset = IGC_TS_HDR_LEN;
2619 			size -= IGC_TS_HDR_LEN;
2620 		}
2621 
2622 		if (!skb) {
2623 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2624 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2625 					 igc_rx_offset(rx_ring) + pkt_offset,
2626 					 size, true);
2627 			xdp_buff_clear_frags_flag(&ctx.xdp);
2628 			ctx.rx_desc = rx_desc;
2629 
2630 			xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2631 		}
2632 
2633 		if (xdp_res) {
2634 			switch (xdp_res) {
2635 			case IGC_XDP_CONSUMED:
2636 				rx_buffer->pagecnt_bias++;
2637 				break;
2638 			case IGC_XDP_TX:
2639 			case IGC_XDP_REDIRECT:
2640 				igc_rx_buffer_flip(rx_buffer, truesize);
2641 				xdp_status |= xdp_res;
2642 				break;
2643 			}
2644 
2645 			total_packets++;
2646 			total_bytes += size;
2647 		} else if (skb)
2648 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2649 		else if (ring_uses_build_skb(rx_ring))
2650 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2651 		else
2652 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2653 
2654 		/* exit if we failed to retrieve a buffer */
2655 		if (!xdp_res && !skb) {
2656 			rx_ring->rx_stats.alloc_failed++;
2657 			rx_buffer->pagecnt_bias++;
2658 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2659 			break;
2660 		}
2661 
2662 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2663 		cleaned_count++;
2664 
2665 		/* fetch next buffer in frame if non-eop */
2666 		if (igc_is_non_eop(rx_ring, rx_desc))
2667 			continue;
2668 
2669 		/* verify the packet layout is correct */
2670 		if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2671 			skb = NULL;
2672 			continue;
2673 		}
2674 
2675 		/* probably a little skewed due to removing CRC */
2676 		total_bytes += skb->len;
2677 
2678 		/* populate checksum, VLAN, and protocol */
2679 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2680 
2681 		napi_gro_receive(&q_vector->napi, skb);
2682 
2683 		/* reset skb pointer */
2684 		skb = NULL;
2685 
2686 		/* update budget accounting */
2687 		total_packets++;
2688 	}
2689 
2690 	if (xdp_status)
2691 		igc_finalize_xdp(adapter, xdp_status);
2692 
2693 	/* place incomplete frames back on ring for completion */
2694 	rx_ring->skb = skb;
2695 
2696 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2697 
2698 	if (cleaned_count)
2699 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2700 
2701 	return total_packets;
2702 }
2703 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2704 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2705 					    struct igc_xdp_buff *ctx)
2706 {
2707 	struct xdp_buff *xdp = &ctx->xdp;
2708 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2709 	unsigned int metasize = xdp->data - xdp->data_meta;
2710 	struct sk_buff *skb;
2711 
2712 	net_prefetch(xdp->data_meta);
2713 
2714 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2715 	if (unlikely(!skb))
2716 		return NULL;
2717 
2718 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2719 	       ALIGN(totalsize, sizeof(long)));
2720 
2721 	if (metasize) {
2722 		skb_metadata_set(skb, metasize);
2723 		__skb_pull(skb, metasize);
2724 	}
2725 
2726 	if (ctx->rx_ts) {
2727 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2728 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2729 	}
2730 
2731 	return skb;
2732 }
2733 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2734 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2735 				union igc_adv_rx_desc *desc,
2736 				struct igc_xdp_buff *ctx)
2737 {
2738 	struct igc_ring *ring = q_vector->rx.ring;
2739 	struct sk_buff *skb;
2740 
2741 	skb = igc_construct_skb_zc(ring, ctx);
2742 	if (!skb) {
2743 		ring->rx_stats.alloc_failed++;
2744 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2745 		return;
2746 	}
2747 
2748 	if (igc_cleanup_headers(ring, desc, skb))
2749 		return;
2750 
2751 	igc_process_skb_fields(ring, desc, skb);
2752 	napi_gro_receive(&q_vector->napi, skb);
2753 }
2754 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2755 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2756 {
2757 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2758 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2759 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2760 	 */
2761        return (struct igc_xdp_buff *)xdp;
2762 }
2763 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2764 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2765 {
2766 	struct igc_adapter *adapter = q_vector->adapter;
2767 	struct igc_ring *ring = q_vector->rx.ring;
2768 	u16 cleaned_count = igc_desc_unused(ring);
2769 	int total_bytes = 0, total_packets = 0;
2770 	u16 ntc = ring->next_to_clean;
2771 	struct bpf_prog *prog;
2772 	bool failure = false;
2773 	int xdp_status = 0;
2774 
2775 	rcu_read_lock();
2776 
2777 	prog = READ_ONCE(adapter->xdp_prog);
2778 
2779 	while (likely(total_packets < budget)) {
2780 		union igc_adv_rx_desc *desc;
2781 		struct igc_rx_buffer *bi;
2782 		struct igc_xdp_buff *ctx;
2783 		unsigned int size;
2784 		int res;
2785 
2786 		desc = IGC_RX_DESC(ring, ntc);
2787 		size = le16_to_cpu(desc->wb.upper.length);
2788 		if (!size)
2789 			break;
2790 
2791 		/* This memory barrier is needed to keep us from reading
2792 		 * any other fields out of the rx_desc until we know the
2793 		 * descriptor has been written back
2794 		 */
2795 		dma_rmb();
2796 
2797 		bi = &ring->rx_buffer_info[ntc];
2798 
2799 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2800 		ctx->rx_desc = desc;
2801 
2802 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2803 			ctx->rx_ts = bi->xdp->data;
2804 
2805 			bi->xdp->data += IGC_TS_HDR_LEN;
2806 
2807 			/* HW timestamp has been copied into local variable. Metadata
2808 			 * length when XDP program is called should be 0.
2809 			 */
2810 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2811 			size -= IGC_TS_HDR_LEN;
2812 		} else {
2813 			ctx->rx_ts = NULL;
2814 		}
2815 
2816 		bi->xdp->data_end = bi->xdp->data + size;
2817 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2818 
2819 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2820 		switch (res) {
2821 		case IGC_XDP_PASS:
2822 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2823 			fallthrough;
2824 		case IGC_XDP_CONSUMED:
2825 			xsk_buff_free(bi->xdp);
2826 			break;
2827 		case IGC_XDP_TX:
2828 		case IGC_XDP_REDIRECT:
2829 			xdp_status |= res;
2830 			break;
2831 		}
2832 
2833 		bi->xdp = NULL;
2834 		total_bytes += size;
2835 		total_packets++;
2836 		cleaned_count++;
2837 		ntc++;
2838 		if (ntc == ring->count)
2839 			ntc = 0;
2840 	}
2841 
2842 	ring->next_to_clean = ntc;
2843 	rcu_read_unlock();
2844 
2845 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2846 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2847 
2848 	if (xdp_status)
2849 		igc_finalize_xdp(adapter, xdp_status);
2850 
2851 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2852 
2853 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2854 		if (failure || ring->next_to_clean == ring->next_to_use)
2855 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2856 		else
2857 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2858 		return total_packets;
2859 	}
2860 
2861 	return failure ? budget : total_packets;
2862 }
2863 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2864 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2865 				unsigned int packets, unsigned int bytes)
2866 {
2867 	struct igc_ring *ring = q_vector->tx.ring;
2868 
2869 	u64_stats_update_begin(&ring->tx_syncp);
2870 	ring->tx_stats.bytes += bytes;
2871 	ring->tx_stats.packets += packets;
2872 	u64_stats_update_end(&ring->tx_syncp);
2873 
2874 	q_vector->tx.total_bytes += bytes;
2875 	q_vector->tx.total_packets += packets;
2876 }
2877 
igc_xsk_request_timestamp(void * _priv)2878 static void igc_xsk_request_timestamp(void *_priv)
2879 {
2880 	struct igc_metadata_request *meta_req = _priv;
2881 	struct igc_ring *tx_ring = meta_req->tx_ring;
2882 	struct igc_tx_timestamp_request *tstamp;
2883 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2884 	struct igc_adapter *adapter;
2885 	unsigned long lock_flags;
2886 	bool found = false;
2887 	int i;
2888 
2889 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2890 		adapter = netdev_priv(tx_ring->netdev);
2891 
2892 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2893 
2894 		/* Search for available tstamp regs */
2895 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2896 			tstamp = &adapter->tx_tstamp[i];
2897 
2898 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2899 			 * When tstamp->skb is equal to NULL,
2900 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2901 			 * This condition means that the particular tstamp reg
2902 			 * is not occupied by other packet.
2903 			 */
2904 			if (!tstamp->skb) {
2905 				found = true;
2906 				break;
2907 			}
2908 		}
2909 
2910 		/* Return if no available tstamp regs */
2911 		if (!found) {
2912 			adapter->tx_hwtstamp_skipped++;
2913 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2914 					       lock_flags);
2915 			return;
2916 		}
2917 
2918 		tstamp->start = jiffies;
2919 		tstamp->xsk_queue_index = tx_ring->queue_index;
2920 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2921 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2922 
2923 		/* Hold the transmit completion until timestamp is ready */
2924 		meta_req->tx_buffer->xsk_pending_ts = true;
2925 
2926 		/* Keep the pointer to tx_timestamp, which is located in XDP
2927 		 * metadata area. It is the location to store the value of
2928 		 * tx hardware timestamp.
2929 		 */
2930 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2931 
2932 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2933 		tx_flags |= tstamp->flags;
2934 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2935 						   IGC_TX_FLAGS_TSTAMP,
2936 						   (IGC_ADVTXD_MAC_TSTAMP));
2937 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2938 						   IGC_TX_FLAGS_TSTAMP_1,
2939 						   (IGC_ADVTXD_TSTAMP_REG_1));
2940 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 						   IGC_TX_FLAGS_TSTAMP_2,
2942 						   (IGC_ADVTXD_TSTAMP_REG_2));
2943 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 						   IGC_TX_FLAGS_TSTAMP_3,
2945 						   (IGC_ADVTXD_TSTAMP_REG_3));
2946 
2947 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2948 	}
2949 }
2950 
igc_xsk_fill_timestamp(void * _priv)2951 static u64 igc_xsk_fill_timestamp(void *_priv)
2952 {
2953 	return *(u64 *)_priv;
2954 }
2955 
2956 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2957 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
2958 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
2959 };
2960 
igc_xdp_xmit_zc(struct igc_ring * ring)2961 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2962 {
2963 	struct xsk_buff_pool *pool = ring->xsk_pool;
2964 	struct netdev_queue *nq = txring_txq(ring);
2965 	union igc_adv_tx_desc *tx_desc = NULL;
2966 	int cpu = smp_processor_id();
2967 	struct xdp_desc xdp_desc;
2968 	u16 budget, ntu;
2969 
2970 	if (!netif_carrier_ok(ring->netdev))
2971 		return;
2972 
2973 	__netif_tx_lock(nq, cpu);
2974 
2975 	/* Avoid transmit queue timeout since we share it with the slow path */
2976 	txq_trans_cond_update(nq);
2977 
2978 	ntu = ring->next_to_use;
2979 	budget = igc_desc_unused(ring);
2980 
2981 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2982 		struct igc_metadata_request meta_req;
2983 		struct xsk_tx_metadata *meta = NULL;
2984 		struct igc_tx_buffer *bi;
2985 		u32 olinfo_status;
2986 		dma_addr_t dma;
2987 
2988 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2989 				    IGC_ADVTXD_DCMD_DEXT |
2990 				    IGC_ADVTXD_DCMD_IFCS |
2991 				    IGC_TXD_DCMD | xdp_desc.len;
2992 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2993 
2994 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2995 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2996 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2997 		bi = &ring->tx_buffer_info[ntu];
2998 
2999 		meta_req.tx_ring = ring;
3000 		meta_req.tx_buffer = bi;
3001 		meta_req.meta = meta;
3002 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3003 					&meta_req);
3004 
3005 		tx_desc = IGC_TX_DESC(ring, ntu);
3006 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3007 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3008 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3009 
3010 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3011 		bi->protocol = 0;
3012 		bi->bytecount = xdp_desc.len;
3013 		bi->gso_segs = 1;
3014 		bi->time_stamp = jiffies;
3015 		bi->next_to_watch = tx_desc;
3016 
3017 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3018 
3019 		ntu++;
3020 		if (ntu == ring->count)
3021 			ntu = 0;
3022 	}
3023 
3024 	ring->next_to_use = ntu;
3025 	if (tx_desc) {
3026 		igc_flush_tx_descriptors(ring);
3027 		xsk_tx_release(pool);
3028 	}
3029 
3030 	__netif_tx_unlock(nq);
3031 }
3032 
3033 /**
3034  * igc_clean_tx_irq - Reclaim resources after transmit completes
3035  * @q_vector: pointer to q_vector containing needed info
3036  * @napi_budget: Used to determine if we are in netpoll
3037  *
3038  * returns true if ring is completely cleaned
3039  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3040 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3041 {
3042 	struct igc_adapter *adapter = q_vector->adapter;
3043 	unsigned int total_bytes = 0, total_packets = 0;
3044 	unsigned int budget = q_vector->tx.work_limit;
3045 	struct igc_ring *tx_ring = q_vector->tx.ring;
3046 	unsigned int i = tx_ring->next_to_clean;
3047 	struct igc_tx_buffer *tx_buffer;
3048 	union igc_adv_tx_desc *tx_desc;
3049 	u32 xsk_frames = 0;
3050 
3051 	if (test_bit(__IGC_DOWN, &adapter->state))
3052 		return true;
3053 
3054 	tx_buffer = &tx_ring->tx_buffer_info[i];
3055 	tx_desc = IGC_TX_DESC(tx_ring, i);
3056 	i -= tx_ring->count;
3057 
3058 	do {
3059 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3060 
3061 		/* if next_to_watch is not set then there is no work pending */
3062 		if (!eop_desc)
3063 			break;
3064 
3065 		/* prevent any other reads prior to eop_desc */
3066 		smp_rmb();
3067 
3068 		/* if DD is not set pending work has not been completed */
3069 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3070 			break;
3071 
3072 		/* Hold the completions while there's a pending tx hardware
3073 		 * timestamp request from XDP Tx metadata.
3074 		 */
3075 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3076 		    tx_buffer->xsk_pending_ts)
3077 			break;
3078 
3079 		/* clear next_to_watch to prevent false hangs */
3080 		tx_buffer->next_to_watch = NULL;
3081 
3082 		/* update the statistics for this packet */
3083 		total_bytes += tx_buffer->bytecount;
3084 		total_packets += tx_buffer->gso_segs;
3085 
3086 		switch (tx_buffer->type) {
3087 		case IGC_TX_BUFFER_TYPE_XSK:
3088 			xsk_frames++;
3089 			break;
3090 		case IGC_TX_BUFFER_TYPE_XDP:
3091 			xdp_return_frame(tx_buffer->xdpf);
3092 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3093 			break;
3094 		case IGC_TX_BUFFER_TYPE_SKB:
3095 			napi_consume_skb(tx_buffer->skb, napi_budget);
3096 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3097 			break;
3098 		default:
3099 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3100 			break;
3101 		}
3102 
3103 		/* clear last DMA location and unmap remaining buffers */
3104 		while (tx_desc != eop_desc) {
3105 			tx_buffer++;
3106 			tx_desc++;
3107 			i++;
3108 			if (unlikely(!i)) {
3109 				i -= tx_ring->count;
3110 				tx_buffer = tx_ring->tx_buffer_info;
3111 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3112 			}
3113 
3114 			/* unmap any remaining paged data */
3115 			if (dma_unmap_len(tx_buffer, len))
3116 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3117 		}
3118 
3119 		/* move us one more past the eop_desc for start of next pkt */
3120 		tx_buffer++;
3121 		tx_desc++;
3122 		i++;
3123 		if (unlikely(!i)) {
3124 			i -= tx_ring->count;
3125 			tx_buffer = tx_ring->tx_buffer_info;
3126 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3127 		}
3128 
3129 		/* issue prefetch for next Tx descriptor */
3130 		prefetch(tx_desc);
3131 
3132 		/* update budget accounting */
3133 		budget--;
3134 	} while (likely(budget));
3135 
3136 	netdev_tx_completed_queue(txring_txq(tx_ring),
3137 				  total_packets, total_bytes);
3138 
3139 	i += tx_ring->count;
3140 	tx_ring->next_to_clean = i;
3141 
3142 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3143 
3144 	if (tx_ring->xsk_pool) {
3145 		if (xsk_frames)
3146 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3147 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3148 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3149 		igc_xdp_xmit_zc(tx_ring);
3150 	}
3151 
3152 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3153 		struct igc_hw *hw = &adapter->hw;
3154 
3155 		/* Detect a transmit hang in hardware, this serializes the
3156 		 * check with the clearing of time_stamp and movement of i
3157 		 */
3158 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3159 		if (tx_buffer->next_to_watch &&
3160 		    time_after(jiffies, tx_buffer->time_stamp +
3161 		    (adapter->tx_timeout_factor * HZ)) &&
3162 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3163 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3164 		    !tx_ring->oper_gate_closed) {
3165 			/* detected Tx unit hang */
3166 			netdev_err(tx_ring->netdev,
3167 				   "Detected Tx Unit Hang\n"
3168 				   "  Tx Queue             <%d>\n"
3169 				   "  TDH                  <%x>\n"
3170 				   "  TDT                  <%x>\n"
3171 				   "  next_to_use          <%x>\n"
3172 				   "  next_to_clean        <%x>\n"
3173 				   "buffer_info[next_to_clean]\n"
3174 				   "  time_stamp           <%lx>\n"
3175 				   "  next_to_watch        <%p>\n"
3176 				   "  jiffies              <%lx>\n"
3177 				   "  desc.status          <%x>\n",
3178 				   tx_ring->queue_index,
3179 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3180 				   readl(tx_ring->tail),
3181 				   tx_ring->next_to_use,
3182 				   tx_ring->next_to_clean,
3183 				   tx_buffer->time_stamp,
3184 				   tx_buffer->next_to_watch,
3185 				   jiffies,
3186 				   tx_buffer->next_to_watch->wb.status);
3187 			netif_stop_subqueue(tx_ring->netdev,
3188 					    tx_ring->queue_index);
3189 
3190 			/* we are about to reset, no point in enabling stuff */
3191 			return true;
3192 		}
3193 	}
3194 
3195 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3196 	if (unlikely(total_packets &&
3197 		     netif_carrier_ok(tx_ring->netdev) &&
3198 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3199 		/* Make sure that anybody stopping the queue after this
3200 		 * sees the new next_to_clean.
3201 		 */
3202 		smp_mb();
3203 		if (__netif_subqueue_stopped(tx_ring->netdev,
3204 					     tx_ring->queue_index) &&
3205 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3206 			netif_wake_subqueue(tx_ring->netdev,
3207 					    tx_ring->queue_index);
3208 
3209 			u64_stats_update_begin(&tx_ring->tx_syncp);
3210 			tx_ring->tx_stats.restart_queue++;
3211 			u64_stats_update_end(&tx_ring->tx_syncp);
3212 		}
3213 	}
3214 
3215 	return !!budget;
3216 }
3217 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3218 static int igc_find_mac_filter(struct igc_adapter *adapter,
3219 			       enum igc_mac_filter_type type, const u8 *addr)
3220 {
3221 	struct igc_hw *hw = &adapter->hw;
3222 	int max_entries = hw->mac.rar_entry_count;
3223 	u32 ral, rah;
3224 	int i;
3225 
3226 	for (i = 0; i < max_entries; i++) {
3227 		ral = rd32(IGC_RAL(i));
3228 		rah = rd32(IGC_RAH(i));
3229 
3230 		if (!(rah & IGC_RAH_AV))
3231 			continue;
3232 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3233 			continue;
3234 		if ((rah & IGC_RAH_RAH_MASK) !=
3235 		    le16_to_cpup((__le16 *)(addr + 4)))
3236 			continue;
3237 		if (ral != le32_to_cpup((__le32 *)(addr)))
3238 			continue;
3239 
3240 		return i;
3241 	}
3242 
3243 	return -1;
3244 }
3245 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3246 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3247 {
3248 	struct igc_hw *hw = &adapter->hw;
3249 	int max_entries = hw->mac.rar_entry_count;
3250 	u32 rah;
3251 	int i;
3252 
3253 	for (i = 0; i < max_entries; i++) {
3254 		rah = rd32(IGC_RAH(i));
3255 
3256 		if (!(rah & IGC_RAH_AV))
3257 			return i;
3258 	}
3259 
3260 	return -1;
3261 }
3262 
3263 /**
3264  * igc_add_mac_filter() - Add MAC address filter
3265  * @adapter: Pointer to adapter where the filter should be added
3266  * @type: MAC address filter type (source or destination)
3267  * @addr: MAC address
3268  * @queue: If non-negative, queue assignment feature is enabled and frames
3269  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3270  *         assignment is disabled.
3271  *
3272  * Return: 0 in case of success, negative errno code otherwise.
3273  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3274 static int igc_add_mac_filter(struct igc_adapter *adapter,
3275 			      enum igc_mac_filter_type type, const u8 *addr,
3276 			      int queue)
3277 {
3278 	struct net_device *dev = adapter->netdev;
3279 	int index;
3280 
3281 	index = igc_find_mac_filter(adapter, type, addr);
3282 	if (index >= 0)
3283 		goto update_filter;
3284 
3285 	index = igc_get_avail_mac_filter_slot(adapter);
3286 	if (index < 0)
3287 		return -ENOSPC;
3288 
3289 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3290 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3291 		   addr, queue);
3292 
3293 update_filter:
3294 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3295 	return 0;
3296 }
3297 
3298 /**
3299  * igc_del_mac_filter() - Delete MAC address filter
3300  * @adapter: Pointer to adapter where the filter should be deleted from
3301  * @type: MAC address filter type (source or destination)
3302  * @addr: MAC address
3303  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3304 static void igc_del_mac_filter(struct igc_adapter *adapter,
3305 			       enum igc_mac_filter_type type, const u8 *addr)
3306 {
3307 	struct net_device *dev = adapter->netdev;
3308 	int index;
3309 
3310 	index = igc_find_mac_filter(adapter, type, addr);
3311 	if (index < 0)
3312 		return;
3313 
3314 	if (index == 0) {
3315 		/* If this is the default filter, we don't actually delete it.
3316 		 * We just reset to its default value i.e. disable queue
3317 		 * assignment.
3318 		 */
3319 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3320 
3321 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3322 	} else {
3323 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3324 			   index,
3325 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3326 			   addr);
3327 
3328 		igc_clear_mac_filter_hw(adapter, index);
3329 	}
3330 }
3331 
3332 /**
3333  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3334  * @adapter: Pointer to adapter where the filter should be added
3335  * @prio: VLAN priority value
3336  * @queue: Queue number which matching frames are assigned to
3337  *
3338  * Return: 0 in case of success, negative errno code otherwise.
3339  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3340 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3341 				    int queue)
3342 {
3343 	struct net_device *dev = adapter->netdev;
3344 	struct igc_hw *hw = &adapter->hw;
3345 	u32 vlanpqf;
3346 
3347 	vlanpqf = rd32(IGC_VLANPQF);
3348 
3349 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3350 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3351 		return -EEXIST;
3352 	}
3353 
3354 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3355 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3356 
3357 	wr32(IGC_VLANPQF, vlanpqf);
3358 
3359 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3360 		   prio, queue);
3361 	return 0;
3362 }
3363 
3364 /**
3365  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3366  * @adapter: Pointer to adapter where the filter should be deleted from
3367  * @prio: VLAN priority value
3368  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3369 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3370 {
3371 	struct igc_hw *hw = &adapter->hw;
3372 	u32 vlanpqf;
3373 
3374 	vlanpqf = rd32(IGC_VLANPQF);
3375 
3376 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3377 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3378 
3379 	wr32(IGC_VLANPQF, vlanpqf);
3380 
3381 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3382 		   prio);
3383 }
3384 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3385 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3386 {
3387 	struct igc_hw *hw = &adapter->hw;
3388 	int i;
3389 
3390 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3391 		u32 etqf = rd32(IGC_ETQF(i));
3392 
3393 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3394 			return i;
3395 	}
3396 
3397 	return -1;
3398 }
3399 
3400 /**
3401  * igc_add_etype_filter() - Add ethertype filter
3402  * @adapter: Pointer to adapter where the filter should be added
3403  * @etype: Ethertype value
3404  * @queue: If non-negative, queue assignment feature is enabled and frames
3405  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3406  *         assignment is disabled.
3407  *
3408  * Return: 0 in case of success, negative errno code otherwise.
3409  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3410 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3411 				int queue)
3412 {
3413 	struct igc_hw *hw = &adapter->hw;
3414 	int index;
3415 	u32 etqf;
3416 
3417 	index = igc_get_avail_etype_filter_slot(adapter);
3418 	if (index < 0)
3419 		return -ENOSPC;
3420 
3421 	etqf = rd32(IGC_ETQF(index));
3422 
3423 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3424 	etqf |= etype;
3425 
3426 	if (queue >= 0) {
3427 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3428 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3429 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3430 	}
3431 
3432 	etqf |= IGC_ETQF_FILTER_ENABLE;
3433 
3434 	wr32(IGC_ETQF(index), etqf);
3435 
3436 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3437 		   etype, queue);
3438 	return 0;
3439 }
3440 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3441 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3442 {
3443 	struct igc_hw *hw = &adapter->hw;
3444 	int i;
3445 
3446 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3447 		u32 etqf = rd32(IGC_ETQF(i));
3448 
3449 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3450 			return i;
3451 	}
3452 
3453 	return -1;
3454 }
3455 
3456 /**
3457  * igc_del_etype_filter() - Delete ethertype filter
3458  * @adapter: Pointer to adapter where the filter should be deleted from
3459  * @etype: Ethertype value
3460  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3461 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3462 {
3463 	struct igc_hw *hw = &adapter->hw;
3464 	int index;
3465 
3466 	index = igc_find_etype_filter(adapter, etype);
3467 	if (index < 0)
3468 		return;
3469 
3470 	wr32(IGC_ETQF(index), 0);
3471 
3472 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3473 		   etype);
3474 }
3475 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3476 static int igc_flex_filter_select(struct igc_adapter *adapter,
3477 				  struct igc_flex_filter *input,
3478 				  u32 *fhft)
3479 {
3480 	struct igc_hw *hw = &adapter->hw;
3481 	u8 fhft_index;
3482 	u32 fhftsl;
3483 
3484 	if (input->index >= MAX_FLEX_FILTER) {
3485 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3486 		return -EINVAL;
3487 	}
3488 
3489 	/* Indirect table select register */
3490 	fhftsl = rd32(IGC_FHFTSL);
3491 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3492 	switch (input->index) {
3493 	case 0 ... 7:
3494 		fhftsl |= 0x00;
3495 		break;
3496 	case 8 ... 15:
3497 		fhftsl |= 0x01;
3498 		break;
3499 	case 16 ... 23:
3500 		fhftsl |= 0x02;
3501 		break;
3502 	case 24 ... 31:
3503 		fhftsl |= 0x03;
3504 		break;
3505 	}
3506 	wr32(IGC_FHFTSL, fhftsl);
3507 
3508 	/* Normalize index down to host table register */
3509 	fhft_index = input->index % 8;
3510 
3511 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3512 		IGC_FHFT_EXT(fhft_index - 4);
3513 
3514 	return 0;
3515 }
3516 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3517 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3518 				    struct igc_flex_filter *input)
3519 {
3520 	struct igc_hw *hw = &adapter->hw;
3521 	u8 *data = input->data;
3522 	u8 *mask = input->mask;
3523 	u32 queuing;
3524 	u32 fhft;
3525 	u32 wufc;
3526 	int ret;
3527 	int i;
3528 
3529 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3530 	 * out early to avoid surprises later.
3531 	 */
3532 	if (input->length % 8 != 0) {
3533 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3534 		return -EINVAL;
3535 	}
3536 
3537 	/* Select corresponding flex filter register and get base for host table. */
3538 	ret = igc_flex_filter_select(adapter, input, &fhft);
3539 	if (ret)
3540 		return ret;
3541 
3542 	/* When adding a filter globally disable flex filter feature. That is
3543 	 * recommended within the datasheet.
3544 	 */
3545 	wufc = rd32(IGC_WUFC);
3546 	wufc &= ~IGC_WUFC_FLEX_HQ;
3547 	wr32(IGC_WUFC, wufc);
3548 
3549 	/* Configure filter */
3550 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3551 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3552 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3553 
3554 	if (input->immediate_irq)
3555 		queuing |= IGC_FHFT_IMM_INT;
3556 
3557 	if (input->drop)
3558 		queuing |= IGC_FHFT_DROP;
3559 
3560 	wr32(fhft + 0xFC, queuing);
3561 
3562 	/* Write data (128 byte) and mask (128 bit) */
3563 	for (i = 0; i < 16; ++i) {
3564 		const size_t data_idx = i * 8;
3565 		const size_t row_idx = i * 16;
3566 		u32 dw0 =
3567 			(data[data_idx + 0] << 0) |
3568 			(data[data_idx + 1] << 8) |
3569 			(data[data_idx + 2] << 16) |
3570 			(data[data_idx + 3] << 24);
3571 		u32 dw1 =
3572 			(data[data_idx + 4] << 0) |
3573 			(data[data_idx + 5] << 8) |
3574 			(data[data_idx + 6] << 16) |
3575 			(data[data_idx + 7] << 24);
3576 		u32 tmp;
3577 
3578 		/* Write row: dw0, dw1 and mask */
3579 		wr32(fhft + row_idx, dw0);
3580 		wr32(fhft + row_idx + 4, dw1);
3581 
3582 		/* mask is only valid for MASK(7, 0) */
3583 		tmp = rd32(fhft + row_idx + 8);
3584 		tmp &= ~GENMASK(7, 0);
3585 		tmp |= mask[i];
3586 		wr32(fhft + row_idx + 8, tmp);
3587 	}
3588 
3589 	/* Enable filter. */
3590 	wufc |= IGC_WUFC_FLEX_HQ;
3591 	if (input->index > 8) {
3592 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3593 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3594 
3595 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3596 
3597 		wr32(IGC_WUFC_EXT, wufc_ext);
3598 	} else {
3599 		wufc |= (IGC_WUFC_FLX0 << input->index);
3600 	}
3601 	wr32(IGC_WUFC, wufc);
3602 
3603 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3604 		   input->index);
3605 
3606 	return 0;
3607 }
3608 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3609 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3610 				      const void *src, unsigned int offset,
3611 				      size_t len, const void *mask)
3612 {
3613 	int i;
3614 
3615 	/* data */
3616 	memcpy(&flex->data[offset], src, len);
3617 
3618 	/* mask */
3619 	for (i = 0; i < len; ++i) {
3620 		const unsigned int idx = i + offset;
3621 		const u8 *ptr = mask;
3622 
3623 		if (mask) {
3624 			if (ptr[i] & 0xff)
3625 				flex->mask[idx / 8] |= BIT(idx % 8);
3626 
3627 			continue;
3628 		}
3629 
3630 		flex->mask[idx / 8] |= BIT(idx % 8);
3631 	}
3632 }
3633 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3634 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3635 {
3636 	struct igc_hw *hw = &adapter->hw;
3637 	u32 wufc, wufc_ext;
3638 	int i;
3639 
3640 	wufc = rd32(IGC_WUFC);
3641 	wufc_ext = rd32(IGC_WUFC_EXT);
3642 
3643 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3644 		if (i < 8) {
3645 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3646 				return i;
3647 		} else {
3648 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3649 				return i;
3650 		}
3651 	}
3652 
3653 	return -ENOSPC;
3654 }
3655 
igc_flex_filter_in_use(struct igc_adapter * adapter)3656 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3657 {
3658 	struct igc_hw *hw = &adapter->hw;
3659 	u32 wufc, wufc_ext;
3660 
3661 	wufc = rd32(IGC_WUFC);
3662 	wufc_ext = rd32(IGC_WUFC_EXT);
3663 
3664 	if (wufc & IGC_WUFC_FILTER_MASK)
3665 		return true;
3666 
3667 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3668 		return true;
3669 
3670 	return false;
3671 }
3672 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3673 static int igc_add_flex_filter(struct igc_adapter *adapter,
3674 			       struct igc_nfc_rule *rule)
3675 {
3676 	struct igc_nfc_filter *filter = &rule->filter;
3677 	unsigned int eth_offset, user_offset;
3678 	struct igc_flex_filter flex = { };
3679 	int ret, index;
3680 	bool vlan;
3681 
3682 	index = igc_find_avail_flex_filter_slot(adapter);
3683 	if (index < 0)
3684 		return -ENOSPC;
3685 
3686 	/* Construct the flex filter:
3687 	 *  -> dest_mac [6]
3688 	 *  -> src_mac [6]
3689 	 *  -> tpid [2]
3690 	 *  -> vlan tci [2]
3691 	 *  -> ether type [2]
3692 	 *  -> user data [8]
3693 	 *  -> = 26 bytes => 32 length
3694 	 */
3695 	flex.index    = index;
3696 	flex.length   = 32;
3697 	flex.rx_queue = rule->action;
3698 
3699 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3700 	eth_offset = vlan ? 16 : 12;
3701 	user_offset = vlan ? 18 : 14;
3702 
3703 	/* Add destination MAC  */
3704 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3705 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3706 					  ETH_ALEN, NULL);
3707 
3708 	/* Add source MAC */
3709 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3710 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3711 					  ETH_ALEN, NULL);
3712 
3713 	/* Add VLAN etype */
3714 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3715 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3716 
3717 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3718 					  sizeof(vlan_etype), NULL);
3719 	}
3720 
3721 	/* Add VLAN TCI */
3722 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3723 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3724 					  sizeof(filter->vlan_tci), NULL);
3725 
3726 	/* Add Ether type */
3727 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3728 		__be16 etype = cpu_to_be16(filter->etype);
3729 
3730 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3731 					  sizeof(etype), NULL);
3732 	}
3733 
3734 	/* Add user data */
3735 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3736 		igc_flex_filter_add_field(&flex, &filter->user_data,
3737 					  user_offset,
3738 					  sizeof(filter->user_data),
3739 					  filter->user_mask);
3740 
3741 	/* Add it down to the hardware and enable it. */
3742 	ret = igc_write_flex_filter_ll(adapter, &flex);
3743 	if (ret)
3744 		return ret;
3745 
3746 	filter->flex_index = index;
3747 
3748 	return 0;
3749 }
3750 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3751 static void igc_del_flex_filter(struct igc_adapter *adapter,
3752 				u16 reg_index)
3753 {
3754 	struct igc_hw *hw = &adapter->hw;
3755 	u32 wufc;
3756 
3757 	/* Just disable the filter. The filter table itself is kept
3758 	 * intact. Another flex_filter_add() should override the "old" data
3759 	 * then.
3760 	 */
3761 	if (reg_index > 8) {
3762 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3763 
3764 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3765 		wr32(IGC_WUFC_EXT, wufc_ext);
3766 	} else {
3767 		wufc = rd32(IGC_WUFC);
3768 
3769 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3770 		wr32(IGC_WUFC, wufc);
3771 	}
3772 
3773 	if (igc_flex_filter_in_use(adapter))
3774 		return;
3775 
3776 	/* No filters are in use, we may disable flex filters */
3777 	wufc = rd32(IGC_WUFC);
3778 	wufc &= ~IGC_WUFC_FLEX_HQ;
3779 	wr32(IGC_WUFC, wufc);
3780 }
3781 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3782 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3783 			       struct igc_nfc_rule *rule)
3784 {
3785 	int err;
3786 
3787 	if (rule->flex) {
3788 		return igc_add_flex_filter(adapter, rule);
3789 	}
3790 
3791 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3792 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3793 					   rule->action);
3794 		if (err)
3795 			return err;
3796 	}
3797 
3798 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3799 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3800 					 rule->filter.src_addr, rule->action);
3801 		if (err)
3802 			return err;
3803 	}
3804 
3805 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3806 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3807 					 rule->filter.dst_addr, rule->action);
3808 		if (err)
3809 			return err;
3810 	}
3811 
3812 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3813 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3814 
3815 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3816 		if (err)
3817 			return err;
3818 	}
3819 
3820 	return 0;
3821 }
3822 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3823 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3824 				 const struct igc_nfc_rule *rule)
3825 {
3826 	if (rule->flex) {
3827 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3828 		return;
3829 	}
3830 
3831 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3832 		igc_del_etype_filter(adapter, rule->filter.etype);
3833 
3834 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3835 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3836 
3837 		igc_del_vlan_prio_filter(adapter, prio);
3838 	}
3839 
3840 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3841 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3842 				   rule->filter.src_addr);
3843 
3844 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3845 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3846 				   rule->filter.dst_addr);
3847 }
3848 
3849 /**
3850  * igc_get_nfc_rule() - Get NFC rule
3851  * @adapter: Pointer to adapter
3852  * @location: Rule location
3853  *
3854  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3855  *
3856  * Return: Pointer to NFC rule at @location. If not found, NULL.
3857  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3858 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3859 				      u32 location)
3860 {
3861 	struct igc_nfc_rule *rule;
3862 
3863 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3864 		if (rule->location == location)
3865 			return rule;
3866 		if (rule->location > location)
3867 			break;
3868 	}
3869 
3870 	return NULL;
3871 }
3872 
3873 /**
3874  * igc_del_nfc_rule() - Delete NFC rule
3875  * @adapter: Pointer to adapter
3876  * @rule: Pointer to rule to be deleted
3877  *
3878  * Disable NFC rule in hardware and delete it from adapter.
3879  *
3880  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3881  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3882 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3883 {
3884 	igc_disable_nfc_rule(adapter, rule);
3885 
3886 	list_del(&rule->list);
3887 	adapter->nfc_rule_count--;
3888 
3889 	kfree(rule);
3890 }
3891 
igc_flush_nfc_rules(struct igc_adapter * adapter)3892 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3893 {
3894 	struct igc_nfc_rule *rule, *tmp;
3895 
3896 	mutex_lock(&adapter->nfc_rule_lock);
3897 
3898 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3899 		igc_del_nfc_rule(adapter, rule);
3900 
3901 	mutex_unlock(&adapter->nfc_rule_lock);
3902 }
3903 
3904 /**
3905  * igc_add_nfc_rule() - Add NFC rule
3906  * @adapter: Pointer to adapter
3907  * @rule: Pointer to rule to be added
3908  *
3909  * Enable NFC rule in hardware and add it to adapter.
3910  *
3911  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3912  *
3913  * Return: 0 on success, negative errno on failure.
3914  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3915 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3916 {
3917 	struct igc_nfc_rule *pred, *cur;
3918 	int err;
3919 
3920 	err = igc_enable_nfc_rule(adapter, rule);
3921 	if (err)
3922 		return err;
3923 
3924 	pred = NULL;
3925 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3926 		if (cur->location >= rule->location)
3927 			break;
3928 		pred = cur;
3929 	}
3930 
3931 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3932 	adapter->nfc_rule_count++;
3933 	return 0;
3934 }
3935 
igc_restore_nfc_rules(struct igc_adapter * adapter)3936 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3937 {
3938 	struct igc_nfc_rule *rule;
3939 
3940 	mutex_lock(&adapter->nfc_rule_lock);
3941 
3942 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3943 		igc_enable_nfc_rule(adapter, rule);
3944 
3945 	mutex_unlock(&adapter->nfc_rule_lock);
3946 }
3947 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3948 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3949 {
3950 	struct igc_adapter *adapter = netdev_priv(netdev);
3951 
3952 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3953 }
3954 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3955 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3956 {
3957 	struct igc_adapter *adapter = netdev_priv(netdev);
3958 
3959 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3960 	return 0;
3961 }
3962 
3963 /**
3964  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3965  * @netdev: network interface device structure
3966  *
3967  * The set_rx_mode entry point is called whenever the unicast or multicast
3968  * address lists or the network interface flags are updated.  This routine is
3969  * responsible for configuring the hardware for proper unicast, multicast,
3970  * promiscuous mode, and all-multi behavior.
3971  */
igc_set_rx_mode(struct net_device * netdev)3972 static void igc_set_rx_mode(struct net_device *netdev)
3973 {
3974 	struct igc_adapter *adapter = netdev_priv(netdev);
3975 	struct igc_hw *hw = &adapter->hw;
3976 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3977 	int count;
3978 
3979 	/* Check for Promiscuous and All Multicast modes */
3980 	if (netdev->flags & IFF_PROMISC) {
3981 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3982 	} else {
3983 		if (netdev->flags & IFF_ALLMULTI) {
3984 			rctl |= IGC_RCTL_MPE;
3985 		} else {
3986 			/* Write addresses to the MTA, if the attempt fails
3987 			 * then we should just turn on promiscuous mode so
3988 			 * that we can at least receive multicast traffic
3989 			 */
3990 			count = igc_write_mc_addr_list(netdev);
3991 			if (count < 0)
3992 				rctl |= IGC_RCTL_MPE;
3993 		}
3994 	}
3995 
3996 	/* Write addresses to available RAR registers, if there is not
3997 	 * sufficient space to store all the addresses then enable
3998 	 * unicast promiscuous mode
3999 	 */
4000 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4001 		rctl |= IGC_RCTL_UPE;
4002 
4003 	/* update state of unicast and multicast */
4004 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4005 	wr32(IGC_RCTL, rctl);
4006 
4007 #if (PAGE_SIZE < 8192)
4008 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4009 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4010 #endif
4011 	wr32(IGC_RLPML, rlpml);
4012 }
4013 
4014 /**
4015  * igc_configure - configure the hardware for RX and TX
4016  * @adapter: private board structure
4017  */
igc_configure(struct igc_adapter * adapter)4018 static void igc_configure(struct igc_adapter *adapter)
4019 {
4020 	struct net_device *netdev = adapter->netdev;
4021 	int i = 0;
4022 
4023 	igc_get_hw_control(adapter);
4024 	igc_set_rx_mode(netdev);
4025 
4026 	igc_restore_vlan(adapter);
4027 
4028 	igc_setup_tctl(adapter);
4029 	igc_setup_mrqc(adapter);
4030 	igc_setup_rctl(adapter);
4031 
4032 	igc_set_default_mac_filter(adapter);
4033 	igc_restore_nfc_rules(adapter);
4034 
4035 	igc_configure_tx(adapter);
4036 	igc_configure_rx(adapter);
4037 
4038 	igc_rx_fifo_flush_base(&adapter->hw);
4039 
4040 	/* call igc_desc_unused which always leaves
4041 	 * at least 1 descriptor unused to make sure
4042 	 * next_to_use != next_to_clean
4043 	 */
4044 	for (i = 0; i < adapter->num_rx_queues; i++) {
4045 		struct igc_ring *ring = adapter->rx_ring[i];
4046 
4047 		if (ring->xsk_pool)
4048 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4049 		else
4050 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4051 	}
4052 }
4053 
4054 /**
4055  * igc_write_ivar - configure ivar for given MSI-X vector
4056  * @hw: pointer to the HW structure
4057  * @msix_vector: vector number we are allocating to a given ring
4058  * @index: row index of IVAR register to write within IVAR table
4059  * @offset: column offset of in IVAR, should be multiple of 8
4060  *
4061  * The IVAR table consists of 2 columns,
4062  * each containing an cause allocation for an Rx and Tx ring, and a
4063  * variable number of rows depending on the number of queues supported.
4064  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4065 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4066 			   int index, int offset)
4067 {
4068 	u32 ivar = array_rd32(IGC_IVAR0, index);
4069 
4070 	/* clear any bits that are currently set */
4071 	ivar &= ~((u32)0xFF << offset);
4072 
4073 	/* write vector and valid bit */
4074 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4075 
4076 	array_wr32(IGC_IVAR0, index, ivar);
4077 }
4078 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4079 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4080 {
4081 	struct igc_adapter *adapter = q_vector->adapter;
4082 	struct igc_hw *hw = &adapter->hw;
4083 	int rx_queue = IGC_N0_QUEUE;
4084 	int tx_queue = IGC_N0_QUEUE;
4085 
4086 	if (q_vector->rx.ring)
4087 		rx_queue = q_vector->rx.ring->reg_idx;
4088 	if (q_vector->tx.ring)
4089 		tx_queue = q_vector->tx.ring->reg_idx;
4090 
4091 	switch (hw->mac.type) {
4092 	case igc_i225:
4093 		if (rx_queue > IGC_N0_QUEUE)
4094 			igc_write_ivar(hw, msix_vector,
4095 				       rx_queue >> 1,
4096 				       (rx_queue & 0x1) << 4);
4097 		if (tx_queue > IGC_N0_QUEUE)
4098 			igc_write_ivar(hw, msix_vector,
4099 				       tx_queue >> 1,
4100 				       ((tx_queue & 0x1) << 4) + 8);
4101 		q_vector->eims_value = BIT(msix_vector);
4102 		break;
4103 	default:
4104 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4105 		break;
4106 	}
4107 
4108 	/* add q_vector eims value to global eims_enable_mask */
4109 	adapter->eims_enable_mask |= q_vector->eims_value;
4110 
4111 	/* configure q_vector to set itr on first interrupt */
4112 	q_vector->set_itr = 1;
4113 }
4114 
4115 /**
4116  * igc_configure_msix - Configure MSI-X hardware
4117  * @adapter: Pointer to adapter structure
4118  *
4119  * igc_configure_msix sets up the hardware to properly
4120  * generate MSI-X interrupts.
4121  */
igc_configure_msix(struct igc_adapter * adapter)4122 static void igc_configure_msix(struct igc_adapter *adapter)
4123 {
4124 	struct igc_hw *hw = &adapter->hw;
4125 	int i, vector = 0;
4126 	u32 tmp;
4127 
4128 	adapter->eims_enable_mask = 0;
4129 
4130 	/* set vector for other causes, i.e. link changes */
4131 	switch (hw->mac.type) {
4132 	case igc_i225:
4133 		/* Turn on MSI-X capability first, or our settings
4134 		 * won't stick.  And it will take days to debug.
4135 		 */
4136 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4137 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4138 		     IGC_GPIE_NSICR);
4139 
4140 		/* enable msix_other interrupt */
4141 		adapter->eims_other = BIT(vector);
4142 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4143 
4144 		wr32(IGC_IVAR_MISC, tmp);
4145 		break;
4146 	default:
4147 		/* do nothing, since nothing else supports MSI-X */
4148 		break;
4149 	} /* switch (hw->mac.type) */
4150 
4151 	adapter->eims_enable_mask |= adapter->eims_other;
4152 
4153 	for (i = 0; i < adapter->num_q_vectors; i++)
4154 		igc_assign_vector(adapter->q_vector[i], vector++);
4155 
4156 	wrfl();
4157 }
4158 
4159 /**
4160  * igc_irq_enable - Enable default interrupt generation settings
4161  * @adapter: board private structure
4162  */
igc_irq_enable(struct igc_adapter * adapter)4163 static void igc_irq_enable(struct igc_adapter *adapter)
4164 {
4165 	struct igc_hw *hw = &adapter->hw;
4166 
4167 	if (adapter->msix_entries) {
4168 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4169 		u32 regval = rd32(IGC_EIAC);
4170 
4171 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4172 		regval = rd32(IGC_EIAM);
4173 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4174 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4175 		wr32(IGC_IMS, ims);
4176 	} else {
4177 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4178 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4179 	}
4180 }
4181 
4182 /**
4183  * igc_irq_disable - Mask off interrupt generation on the NIC
4184  * @adapter: board private structure
4185  */
igc_irq_disable(struct igc_adapter * adapter)4186 static void igc_irq_disable(struct igc_adapter *adapter)
4187 {
4188 	struct igc_hw *hw = &adapter->hw;
4189 
4190 	if (adapter->msix_entries) {
4191 		u32 regval = rd32(IGC_EIAM);
4192 
4193 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4194 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4195 		regval = rd32(IGC_EIAC);
4196 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4197 	}
4198 
4199 	wr32(IGC_IAM, 0);
4200 	wr32(IGC_IMC, ~0);
4201 	wrfl();
4202 
4203 	if (adapter->msix_entries) {
4204 		int vector = 0, i;
4205 
4206 		synchronize_irq(adapter->msix_entries[vector++].vector);
4207 
4208 		for (i = 0; i < adapter->num_q_vectors; i++)
4209 			synchronize_irq(adapter->msix_entries[vector++].vector);
4210 	} else {
4211 		synchronize_irq(adapter->pdev->irq);
4212 	}
4213 }
4214 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4215 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4216 			      const u32 max_rss_queues)
4217 {
4218 	/* Determine if we need to pair queues. */
4219 	/* If rss_queues > half of max_rss_queues, pair the queues in
4220 	 * order to conserve interrupts due to limited supply.
4221 	 */
4222 	if (adapter->rss_queues > (max_rss_queues / 2))
4223 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4224 	else
4225 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4226 }
4227 
igc_get_max_rss_queues(struct igc_adapter * adapter)4228 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4229 {
4230 	return IGC_MAX_RX_QUEUES;
4231 }
4232 
igc_init_queue_configuration(struct igc_adapter * adapter)4233 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4234 {
4235 	u32 max_rss_queues;
4236 
4237 	max_rss_queues = igc_get_max_rss_queues(adapter);
4238 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4239 
4240 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4241 }
4242 
4243 /**
4244  * igc_reset_q_vector - Reset config for interrupt vector
4245  * @adapter: board private structure to initialize
4246  * @v_idx: Index of vector to be reset
4247  *
4248  * If NAPI is enabled it will delete any references to the
4249  * NAPI struct. This is preparation for igc_free_q_vector.
4250  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4251 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4252 {
4253 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4254 
4255 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4256 	 * not yet allocated
4257 	 */
4258 	if (!q_vector)
4259 		return;
4260 
4261 	if (q_vector->tx.ring)
4262 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4263 
4264 	if (q_vector->rx.ring)
4265 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4266 
4267 	netif_napi_del(&q_vector->napi);
4268 }
4269 
4270 /**
4271  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4272  * @adapter: board private structure to initialize
4273  * @v_idx: Index of vector to be freed
4274  *
4275  * This function frees the memory allocated to the q_vector.
4276  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4277 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4278 {
4279 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4280 
4281 	adapter->q_vector[v_idx] = NULL;
4282 
4283 	/* igc_get_stats64() might access the rings on this vector,
4284 	 * we must wait a grace period before freeing it.
4285 	 */
4286 	if (q_vector)
4287 		kfree_rcu(q_vector, rcu);
4288 }
4289 
4290 /**
4291  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4292  * @adapter: board private structure to initialize
4293  *
4294  * This function frees the memory allocated to the q_vectors.  In addition if
4295  * NAPI is enabled it will delete any references to the NAPI struct prior
4296  * to freeing the q_vector.
4297  */
igc_free_q_vectors(struct igc_adapter * adapter)4298 static void igc_free_q_vectors(struct igc_adapter *adapter)
4299 {
4300 	int v_idx = adapter->num_q_vectors;
4301 
4302 	adapter->num_tx_queues = 0;
4303 	adapter->num_rx_queues = 0;
4304 	adapter->num_q_vectors = 0;
4305 
4306 	while (v_idx--) {
4307 		igc_reset_q_vector(adapter, v_idx);
4308 		igc_free_q_vector(adapter, v_idx);
4309 	}
4310 }
4311 
4312 /**
4313  * igc_update_itr - update the dynamic ITR value based on statistics
4314  * @q_vector: pointer to q_vector
4315  * @ring_container: ring info to update the itr for
4316  *
4317  * Stores a new ITR value based on packets and byte
4318  * counts during the last interrupt.  The advantage of per interrupt
4319  * computation is faster updates and more accurate ITR for the current
4320  * traffic pattern.  Constants in this function were computed
4321  * based on theoretical maximum wire speed and thresholds were set based
4322  * on testing data as well as attempting to minimize response time
4323  * while increasing bulk throughput.
4324  * NOTE: These calculations are only valid when operating in a single-
4325  * queue environment.
4326  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4327 static void igc_update_itr(struct igc_q_vector *q_vector,
4328 			   struct igc_ring_container *ring_container)
4329 {
4330 	unsigned int packets = ring_container->total_packets;
4331 	unsigned int bytes = ring_container->total_bytes;
4332 	u8 itrval = ring_container->itr;
4333 
4334 	/* no packets, exit with status unchanged */
4335 	if (packets == 0)
4336 		return;
4337 
4338 	switch (itrval) {
4339 	case lowest_latency:
4340 		/* handle TSO and jumbo frames */
4341 		if (bytes / packets > 8000)
4342 			itrval = bulk_latency;
4343 		else if ((packets < 5) && (bytes > 512))
4344 			itrval = low_latency;
4345 		break;
4346 	case low_latency:  /* 50 usec aka 20000 ints/s */
4347 		if (bytes > 10000) {
4348 			/* this if handles the TSO accounting */
4349 			if (bytes / packets > 8000)
4350 				itrval = bulk_latency;
4351 			else if ((packets < 10) || ((bytes / packets) > 1200))
4352 				itrval = bulk_latency;
4353 			else if ((packets > 35))
4354 				itrval = lowest_latency;
4355 		} else if (bytes / packets > 2000) {
4356 			itrval = bulk_latency;
4357 		} else if (packets <= 2 && bytes < 512) {
4358 			itrval = lowest_latency;
4359 		}
4360 		break;
4361 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4362 		if (bytes > 25000) {
4363 			if (packets > 35)
4364 				itrval = low_latency;
4365 		} else if (bytes < 1500) {
4366 			itrval = low_latency;
4367 		}
4368 		break;
4369 	}
4370 
4371 	/* clear work counters since we have the values we need */
4372 	ring_container->total_bytes = 0;
4373 	ring_container->total_packets = 0;
4374 
4375 	/* write updated itr to ring container */
4376 	ring_container->itr = itrval;
4377 }
4378 
igc_set_itr(struct igc_q_vector * q_vector)4379 static void igc_set_itr(struct igc_q_vector *q_vector)
4380 {
4381 	struct igc_adapter *adapter = q_vector->adapter;
4382 	u32 new_itr = q_vector->itr_val;
4383 	u8 current_itr = 0;
4384 
4385 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4386 	switch (adapter->link_speed) {
4387 	case SPEED_10:
4388 	case SPEED_100:
4389 		current_itr = 0;
4390 		new_itr = IGC_4K_ITR;
4391 		goto set_itr_now;
4392 	default:
4393 		break;
4394 	}
4395 
4396 	igc_update_itr(q_vector, &q_vector->tx);
4397 	igc_update_itr(q_vector, &q_vector->rx);
4398 
4399 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4400 
4401 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4402 	if (current_itr == lowest_latency &&
4403 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4404 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4405 		current_itr = low_latency;
4406 
4407 	switch (current_itr) {
4408 	/* counts and packets in update_itr are dependent on these numbers */
4409 	case lowest_latency:
4410 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4411 		break;
4412 	case low_latency:
4413 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4414 		break;
4415 	case bulk_latency:
4416 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4417 		break;
4418 	default:
4419 		break;
4420 	}
4421 
4422 set_itr_now:
4423 	if (new_itr != q_vector->itr_val) {
4424 		/* this attempts to bias the interrupt rate towards Bulk
4425 		 * by adding intermediate steps when interrupt rate is
4426 		 * increasing
4427 		 */
4428 		new_itr = new_itr > q_vector->itr_val ?
4429 			  max((new_itr * q_vector->itr_val) /
4430 			  (new_itr + (q_vector->itr_val >> 2)),
4431 			  new_itr) : new_itr;
4432 		/* Don't write the value here; it resets the adapter's
4433 		 * internal timer, and causes us to delay far longer than
4434 		 * we should between interrupts.  Instead, we write the ITR
4435 		 * value at the beginning of the next interrupt so the timing
4436 		 * ends up being correct.
4437 		 */
4438 		q_vector->itr_val = new_itr;
4439 		q_vector->set_itr = 1;
4440 	}
4441 }
4442 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4443 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4444 {
4445 	int v_idx = adapter->num_q_vectors;
4446 
4447 	if (adapter->msix_entries) {
4448 		pci_disable_msix(adapter->pdev);
4449 		kfree(adapter->msix_entries);
4450 		adapter->msix_entries = NULL;
4451 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4452 		pci_disable_msi(adapter->pdev);
4453 	}
4454 
4455 	while (v_idx--)
4456 		igc_reset_q_vector(adapter, v_idx);
4457 }
4458 
4459 /**
4460  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4461  * @adapter: Pointer to adapter structure
4462  * @msix: boolean value for MSI-X capability
4463  *
4464  * Attempt to configure interrupts using the best available
4465  * capabilities of the hardware and kernel.
4466  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4467 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4468 					 bool msix)
4469 {
4470 	int numvecs, i;
4471 	int err;
4472 
4473 	if (!msix)
4474 		goto msi_only;
4475 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4476 
4477 	/* Number of supported queues. */
4478 	adapter->num_rx_queues = adapter->rss_queues;
4479 
4480 	adapter->num_tx_queues = adapter->rss_queues;
4481 
4482 	/* start with one vector for every Rx queue */
4483 	numvecs = adapter->num_rx_queues;
4484 
4485 	/* if Tx handler is separate add 1 for every Tx queue */
4486 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4487 		numvecs += adapter->num_tx_queues;
4488 
4489 	/* store the number of vectors reserved for queues */
4490 	adapter->num_q_vectors = numvecs;
4491 
4492 	/* add 1 vector for link status interrupts */
4493 	numvecs++;
4494 
4495 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4496 					GFP_KERNEL);
4497 
4498 	if (!adapter->msix_entries)
4499 		return;
4500 
4501 	/* populate entry values */
4502 	for (i = 0; i < numvecs; i++)
4503 		adapter->msix_entries[i].entry = i;
4504 
4505 	err = pci_enable_msix_range(adapter->pdev,
4506 				    adapter->msix_entries,
4507 				    numvecs,
4508 				    numvecs);
4509 	if (err > 0)
4510 		return;
4511 
4512 	kfree(adapter->msix_entries);
4513 	adapter->msix_entries = NULL;
4514 
4515 	igc_reset_interrupt_capability(adapter);
4516 
4517 msi_only:
4518 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4519 
4520 	adapter->rss_queues = 1;
4521 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4522 	adapter->num_rx_queues = 1;
4523 	adapter->num_tx_queues = 1;
4524 	adapter->num_q_vectors = 1;
4525 	if (!pci_enable_msi(adapter->pdev))
4526 		adapter->flags |= IGC_FLAG_HAS_MSI;
4527 }
4528 
4529 /**
4530  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4531  * @q_vector: pointer to q_vector
4532  *
4533  * Stores a new ITR value based on strictly on packet size.  This
4534  * algorithm is less sophisticated than that used in igc_update_itr,
4535  * due to the difficulty of synchronizing statistics across multiple
4536  * receive rings.  The divisors and thresholds used by this function
4537  * were determined based on theoretical maximum wire speed and testing
4538  * data, in order to minimize response time while increasing bulk
4539  * throughput.
4540  * NOTE: This function is called only when operating in a multiqueue
4541  * receive environment.
4542  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4543 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4544 {
4545 	struct igc_adapter *adapter = q_vector->adapter;
4546 	int new_val = q_vector->itr_val;
4547 	int avg_wire_size = 0;
4548 	unsigned int packets;
4549 
4550 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4551 	 * ints/sec - ITR timer value of 120 ticks.
4552 	 */
4553 	switch (adapter->link_speed) {
4554 	case SPEED_10:
4555 	case SPEED_100:
4556 		new_val = IGC_4K_ITR;
4557 		goto set_itr_val;
4558 	default:
4559 		break;
4560 	}
4561 
4562 	packets = q_vector->rx.total_packets;
4563 	if (packets)
4564 		avg_wire_size = q_vector->rx.total_bytes / packets;
4565 
4566 	packets = q_vector->tx.total_packets;
4567 	if (packets)
4568 		avg_wire_size = max_t(u32, avg_wire_size,
4569 				      q_vector->tx.total_bytes / packets);
4570 
4571 	/* if avg_wire_size isn't set no work was done */
4572 	if (!avg_wire_size)
4573 		goto clear_counts;
4574 
4575 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4576 	avg_wire_size += 24;
4577 
4578 	/* Don't starve jumbo frames */
4579 	avg_wire_size = min(avg_wire_size, 3000);
4580 
4581 	/* Give a little boost to mid-size frames */
4582 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4583 		new_val = avg_wire_size / 3;
4584 	else
4585 		new_val = avg_wire_size / 2;
4586 
4587 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4588 	if (new_val < IGC_20K_ITR &&
4589 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4590 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4591 		new_val = IGC_20K_ITR;
4592 
4593 set_itr_val:
4594 	if (new_val != q_vector->itr_val) {
4595 		q_vector->itr_val = new_val;
4596 		q_vector->set_itr = 1;
4597 	}
4598 clear_counts:
4599 	q_vector->rx.total_bytes = 0;
4600 	q_vector->rx.total_packets = 0;
4601 	q_vector->tx.total_bytes = 0;
4602 	q_vector->tx.total_packets = 0;
4603 }
4604 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4605 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4606 {
4607 	struct igc_adapter *adapter = q_vector->adapter;
4608 	struct igc_hw *hw = &adapter->hw;
4609 
4610 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4611 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4612 		if (adapter->num_q_vectors == 1)
4613 			igc_set_itr(q_vector);
4614 		else
4615 			igc_update_ring_itr(q_vector);
4616 	}
4617 
4618 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4619 		if (adapter->msix_entries)
4620 			wr32(IGC_EIMS, q_vector->eims_value);
4621 		else
4622 			igc_irq_enable(adapter);
4623 	}
4624 }
4625 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4626 static void igc_add_ring(struct igc_ring *ring,
4627 			 struct igc_ring_container *head)
4628 {
4629 	head->ring = ring;
4630 	head->count++;
4631 }
4632 
4633 /**
4634  * igc_cache_ring_register - Descriptor ring to register mapping
4635  * @adapter: board private structure to initialize
4636  *
4637  * Once we know the feature-set enabled for the device, we'll cache
4638  * the register offset the descriptor ring is assigned to.
4639  */
igc_cache_ring_register(struct igc_adapter * adapter)4640 static void igc_cache_ring_register(struct igc_adapter *adapter)
4641 {
4642 	int i = 0, j = 0;
4643 
4644 	switch (adapter->hw.mac.type) {
4645 	case igc_i225:
4646 	default:
4647 		for (; i < adapter->num_rx_queues; i++)
4648 			adapter->rx_ring[i]->reg_idx = i;
4649 		for (; j < adapter->num_tx_queues; j++)
4650 			adapter->tx_ring[j]->reg_idx = j;
4651 		break;
4652 	}
4653 }
4654 
4655 /**
4656  * igc_poll - NAPI Rx polling callback
4657  * @napi: napi polling structure
4658  * @budget: count of how many packets we should handle
4659  */
igc_poll(struct napi_struct * napi,int budget)4660 static int igc_poll(struct napi_struct *napi, int budget)
4661 {
4662 	struct igc_q_vector *q_vector = container_of(napi,
4663 						     struct igc_q_vector,
4664 						     napi);
4665 	struct igc_ring *rx_ring = q_vector->rx.ring;
4666 	bool clean_complete = true;
4667 	int work_done = 0;
4668 
4669 	if (q_vector->tx.ring)
4670 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4671 
4672 	if (rx_ring) {
4673 		int cleaned = rx_ring->xsk_pool ?
4674 			      igc_clean_rx_irq_zc(q_vector, budget) :
4675 			      igc_clean_rx_irq(q_vector, budget);
4676 
4677 		work_done += cleaned;
4678 		if (cleaned >= budget)
4679 			clean_complete = false;
4680 	}
4681 
4682 	/* If all work not completed, return budget and keep polling */
4683 	if (!clean_complete)
4684 		return budget;
4685 
4686 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4687 	 * poll us due to busy-polling
4688 	 */
4689 	if (likely(napi_complete_done(napi, work_done)))
4690 		igc_ring_irq_enable(q_vector);
4691 
4692 	return min(work_done, budget - 1);
4693 }
4694 
4695 /**
4696  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4697  * @adapter: board private structure to initialize
4698  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4699  * @v_idx: index of vector in adapter struct
4700  * @txr_count: total number of Tx rings to allocate
4701  * @txr_idx: index of first Tx ring to allocate
4702  * @rxr_count: total number of Rx rings to allocate
4703  * @rxr_idx: index of first Rx ring to allocate
4704  *
4705  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4706  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4707 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4708 			      unsigned int v_count, unsigned int v_idx,
4709 			      unsigned int txr_count, unsigned int txr_idx,
4710 			      unsigned int rxr_count, unsigned int rxr_idx)
4711 {
4712 	struct igc_q_vector *q_vector;
4713 	struct igc_ring *ring;
4714 	int ring_count;
4715 
4716 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4717 	if (txr_count > 1 || rxr_count > 1)
4718 		return -ENOMEM;
4719 
4720 	ring_count = txr_count + rxr_count;
4721 
4722 	/* allocate q_vector and rings */
4723 	q_vector = adapter->q_vector[v_idx];
4724 	if (!q_vector)
4725 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4726 				   GFP_KERNEL);
4727 	else
4728 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4729 	if (!q_vector)
4730 		return -ENOMEM;
4731 
4732 	/* initialize NAPI */
4733 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4734 
4735 	/* tie q_vector and adapter together */
4736 	adapter->q_vector[v_idx] = q_vector;
4737 	q_vector->adapter = adapter;
4738 
4739 	/* initialize work limits */
4740 	q_vector->tx.work_limit = adapter->tx_work_limit;
4741 
4742 	/* initialize ITR configuration */
4743 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4744 	q_vector->itr_val = IGC_START_ITR;
4745 
4746 	/* initialize pointer to rings */
4747 	ring = q_vector->ring;
4748 
4749 	/* initialize ITR */
4750 	if (rxr_count) {
4751 		/* rx or rx/tx vector */
4752 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4753 			q_vector->itr_val = adapter->rx_itr_setting;
4754 	} else {
4755 		/* tx only vector */
4756 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4757 			q_vector->itr_val = adapter->tx_itr_setting;
4758 	}
4759 
4760 	if (txr_count) {
4761 		/* assign generic ring traits */
4762 		ring->dev = &adapter->pdev->dev;
4763 		ring->netdev = adapter->netdev;
4764 
4765 		/* configure backlink on ring */
4766 		ring->q_vector = q_vector;
4767 
4768 		/* update q_vector Tx values */
4769 		igc_add_ring(ring, &q_vector->tx);
4770 
4771 		/* apply Tx specific ring traits */
4772 		ring->count = adapter->tx_ring_count;
4773 		ring->queue_index = txr_idx;
4774 
4775 		/* assign ring to adapter */
4776 		adapter->tx_ring[txr_idx] = ring;
4777 
4778 		/* push pointer to next ring */
4779 		ring++;
4780 	}
4781 
4782 	if (rxr_count) {
4783 		/* assign generic ring traits */
4784 		ring->dev = &adapter->pdev->dev;
4785 		ring->netdev = adapter->netdev;
4786 
4787 		/* configure backlink on ring */
4788 		ring->q_vector = q_vector;
4789 
4790 		/* update q_vector Rx values */
4791 		igc_add_ring(ring, &q_vector->rx);
4792 
4793 		/* apply Rx specific ring traits */
4794 		ring->count = adapter->rx_ring_count;
4795 		ring->queue_index = rxr_idx;
4796 
4797 		/* assign ring to adapter */
4798 		adapter->rx_ring[rxr_idx] = ring;
4799 	}
4800 
4801 	return 0;
4802 }
4803 
4804 /**
4805  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4806  * @adapter: board private structure to initialize
4807  *
4808  * We allocate one q_vector per queue interrupt.  If allocation fails we
4809  * return -ENOMEM.
4810  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4811 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4812 {
4813 	int rxr_remaining = adapter->num_rx_queues;
4814 	int txr_remaining = adapter->num_tx_queues;
4815 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4816 	int q_vectors = adapter->num_q_vectors;
4817 	int err;
4818 
4819 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4820 		for (; rxr_remaining; v_idx++) {
4821 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4822 						 0, 0, 1, rxr_idx);
4823 
4824 			if (err)
4825 				goto err_out;
4826 
4827 			/* update counts and index */
4828 			rxr_remaining--;
4829 			rxr_idx++;
4830 		}
4831 	}
4832 
4833 	for (; v_idx < q_vectors; v_idx++) {
4834 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4835 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4836 
4837 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4838 					 tqpv, txr_idx, rqpv, rxr_idx);
4839 
4840 		if (err)
4841 			goto err_out;
4842 
4843 		/* update counts and index */
4844 		rxr_remaining -= rqpv;
4845 		txr_remaining -= tqpv;
4846 		rxr_idx++;
4847 		txr_idx++;
4848 	}
4849 
4850 	return 0;
4851 
4852 err_out:
4853 	adapter->num_tx_queues = 0;
4854 	adapter->num_rx_queues = 0;
4855 	adapter->num_q_vectors = 0;
4856 
4857 	while (v_idx--)
4858 		igc_free_q_vector(adapter, v_idx);
4859 
4860 	return -ENOMEM;
4861 }
4862 
4863 /**
4864  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4865  * @adapter: Pointer to adapter structure
4866  * @msix: boolean for MSI-X capability
4867  *
4868  * This function initializes the interrupts and allocates all of the queues.
4869  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4870 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4871 {
4872 	struct net_device *dev = adapter->netdev;
4873 	int err = 0;
4874 
4875 	igc_set_interrupt_capability(adapter, msix);
4876 
4877 	err = igc_alloc_q_vectors(adapter);
4878 	if (err) {
4879 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4880 		goto err_alloc_q_vectors;
4881 	}
4882 
4883 	igc_cache_ring_register(adapter);
4884 
4885 	return 0;
4886 
4887 err_alloc_q_vectors:
4888 	igc_reset_interrupt_capability(adapter);
4889 	return err;
4890 }
4891 
4892 /**
4893  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4894  * @adapter: board private structure to initialize
4895  *
4896  * igc_sw_init initializes the Adapter private data structure.
4897  * Fields are initialized based on PCI device information and
4898  * OS network device settings (MTU size).
4899  */
igc_sw_init(struct igc_adapter * adapter)4900 static int igc_sw_init(struct igc_adapter *adapter)
4901 {
4902 	struct net_device *netdev = adapter->netdev;
4903 	struct pci_dev *pdev = adapter->pdev;
4904 	struct igc_hw *hw = &adapter->hw;
4905 
4906 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4907 
4908 	/* set default ring sizes */
4909 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4910 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4911 
4912 	/* set default ITR values */
4913 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4914 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4915 
4916 	/* set default work limits */
4917 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4918 
4919 	/* adjust max frame to be at least the size of a standard frame */
4920 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4921 				VLAN_HLEN;
4922 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4923 
4924 	mutex_init(&adapter->nfc_rule_lock);
4925 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4926 	adapter->nfc_rule_count = 0;
4927 
4928 	spin_lock_init(&adapter->stats64_lock);
4929 	spin_lock_init(&adapter->qbv_tx_lock);
4930 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4931 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4932 
4933 	igc_init_queue_configuration(adapter);
4934 
4935 	/* This call may decrease the number of queues */
4936 	if (igc_init_interrupt_scheme(adapter, true)) {
4937 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4938 		return -ENOMEM;
4939 	}
4940 
4941 	/* Explicitly disable IRQ since the NIC can be in any state. */
4942 	igc_irq_disable(adapter);
4943 
4944 	set_bit(__IGC_DOWN, &adapter->state);
4945 
4946 	return 0;
4947 }
4948 
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)4949 void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
4950 			struct napi_struct *napi)
4951 {
4952 	struct igc_q_vector *q_vector = adapter->q_vector[vector];
4953 
4954 	if (q_vector->rx.ring)
4955 		netif_queue_set_napi(adapter->netdev,
4956 				     q_vector->rx.ring->queue_index,
4957 				     NETDEV_QUEUE_TYPE_RX, napi);
4958 
4959 	if (q_vector->tx.ring)
4960 		netif_queue_set_napi(adapter->netdev,
4961 				     q_vector->tx.ring->queue_index,
4962 				     NETDEV_QUEUE_TYPE_TX, napi);
4963 }
4964 
4965 /**
4966  * igc_up - Open the interface and prepare it to handle traffic
4967  * @adapter: board private structure
4968  */
igc_up(struct igc_adapter * adapter)4969 void igc_up(struct igc_adapter *adapter)
4970 {
4971 	struct igc_hw *hw = &adapter->hw;
4972 	struct napi_struct *napi;
4973 	int i = 0;
4974 
4975 	/* hardware has been reset, we need to reload some things */
4976 	igc_configure(adapter);
4977 
4978 	clear_bit(__IGC_DOWN, &adapter->state);
4979 
4980 	for (i = 0; i < adapter->num_q_vectors; i++) {
4981 		napi = &adapter->q_vector[i]->napi;
4982 		napi_enable(napi);
4983 		igc_set_queue_napi(adapter, i, napi);
4984 	}
4985 
4986 	if (adapter->msix_entries)
4987 		igc_configure_msix(adapter);
4988 	else
4989 		igc_assign_vector(adapter->q_vector[0], 0);
4990 
4991 	/* Clear any pending interrupts. */
4992 	rd32(IGC_ICR);
4993 	igc_irq_enable(adapter);
4994 
4995 	netif_tx_start_all_queues(adapter->netdev);
4996 
4997 	/* start the watchdog. */
4998 	hw->mac.get_link_status = true;
4999 	schedule_work(&adapter->watchdog_task);
5000 }
5001 
5002 /**
5003  * igc_update_stats - Update the board statistics counters
5004  * @adapter: board private structure
5005  */
igc_update_stats(struct igc_adapter * adapter)5006 void igc_update_stats(struct igc_adapter *adapter)
5007 {
5008 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5009 	struct pci_dev *pdev = adapter->pdev;
5010 	struct igc_hw *hw = &adapter->hw;
5011 	u64 _bytes, _packets;
5012 	u64 bytes, packets;
5013 	unsigned int start;
5014 	u32 mpc;
5015 	int i;
5016 
5017 	/* Prevent stats update while adapter is being reset, or if the pci
5018 	 * connection is down.
5019 	 */
5020 	if (adapter->link_speed == 0)
5021 		return;
5022 	if (pci_channel_offline(pdev))
5023 		return;
5024 
5025 	packets = 0;
5026 	bytes = 0;
5027 
5028 	rcu_read_lock();
5029 	for (i = 0; i < adapter->num_rx_queues; i++) {
5030 		struct igc_ring *ring = adapter->rx_ring[i];
5031 		u32 rqdpc = rd32(IGC_RQDPC(i));
5032 
5033 		if (hw->mac.type >= igc_i225)
5034 			wr32(IGC_RQDPC(i), 0);
5035 
5036 		if (rqdpc) {
5037 			ring->rx_stats.drops += rqdpc;
5038 			net_stats->rx_fifo_errors += rqdpc;
5039 		}
5040 
5041 		do {
5042 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5043 			_bytes = ring->rx_stats.bytes;
5044 			_packets = ring->rx_stats.packets;
5045 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5046 		bytes += _bytes;
5047 		packets += _packets;
5048 	}
5049 
5050 	net_stats->rx_bytes = bytes;
5051 	net_stats->rx_packets = packets;
5052 
5053 	packets = 0;
5054 	bytes = 0;
5055 	for (i = 0; i < adapter->num_tx_queues; i++) {
5056 		struct igc_ring *ring = adapter->tx_ring[i];
5057 
5058 		do {
5059 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5060 			_bytes = ring->tx_stats.bytes;
5061 			_packets = ring->tx_stats.packets;
5062 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5063 		bytes += _bytes;
5064 		packets += _packets;
5065 	}
5066 	net_stats->tx_bytes = bytes;
5067 	net_stats->tx_packets = packets;
5068 	rcu_read_unlock();
5069 
5070 	/* read stats registers */
5071 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5072 	adapter->stats.gprc += rd32(IGC_GPRC);
5073 	adapter->stats.gorc += rd32(IGC_GORCL);
5074 	rd32(IGC_GORCH); /* clear GORCL */
5075 	adapter->stats.bprc += rd32(IGC_BPRC);
5076 	adapter->stats.mprc += rd32(IGC_MPRC);
5077 	adapter->stats.roc += rd32(IGC_ROC);
5078 
5079 	adapter->stats.prc64 += rd32(IGC_PRC64);
5080 	adapter->stats.prc127 += rd32(IGC_PRC127);
5081 	adapter->stats.prc255 += rd32(IGC_PRC255);
5082 	adapter->stats.prc511 += rd32(IGC_PRC511);
5083 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5084 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5085 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5086 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5087 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5088 
5089 	mpc = rd32(IGC_MPC);
5090 	adapter->stats.mpc += mpc;
5091 	net_stats->rx_fifo_errors += mpc;
5092 	adapter->stats.scc += rd32(IGC_SCC);
5093 	adapter->stats.ecol += rd32(IGC_ECOL);
5094 	adapter->stats.mcc += rd32(IGC_MCC);
5095 	adapter->stats.latecol += rd32(IGC_LATECOL);
5096 	adapter->stats.dc += rd32(IGC_DC);
5097 	adapter->stats.rlec += rd32(IGC_RLEC);
5098 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5099 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5100 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5101 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5102 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5103 	adapter->stats.gptc += rd32(IGC_GPTC);
5104 	adapter->stats.gotc += rd32(IGC_GOTCL);
5105 	rd32(IGC_GOTCH); /* clear GOTCL */
5106 	adapter->stats.rnbc += rd32(IGC_RNBC);
5107 	adapter->stats.ruc += rd32(IGC_RUC);
5108 	adapter->stats.rfc += rd32(IGC_RFC);
5109 	adapter->stats.rjc += rd32(IGC_RJC);
5110 	adapter->stats.tor += rd32(IGC_TORH);
5111 	adapter->stats.tot += rd32(IGC_TOTH);
5112 	adapter->stats.tpr += rd32(IGC_TPR);
5113 
5114 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5115 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5116 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5117 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5118 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5119 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5120 
5121 	adapter->stats.mptc += rd32(IGC_MPTC);
5122 	adapter->stats.bptc += rd32(IGC_BPTC);
5123 
5124 	adapter->stats.tpt += rd32(IGC_TPT);
5125 	adapter->stats.colc += rd32(IGC_COLC);
5126 	adapter->stats.colc += rd32(IGC_RERC);
5127 
5128 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5129 
5130 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5131 
5132 	adapter->stats.iac += rd32(IGC_IAC);
5133 
5134 	/* Fill out the OS statistics structure */
5135 	net_stats->multicast = adapter->stats.mprc;
5136 	net_stats->collisions = adapter->stats.colc;
5137 
5138 	/* Rx Errors */
5139 
5140 	/* RLEC on some newer hardware can be incorrect so build
5141 	 * our own version based on RUC and ROC
5142 	 */
5143 	net_stats->rx_errors = adapter->stats.rxerrc +
5144 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5145 		adapter->stats.ruc + adapter->stats.roc +
5146 		adapter->stats.cexterr;
5147 	net_stats->rx_length_errors = adapter->stats.ruc +
5148 				      adapter->stats.roc;
5149 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5150 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5151 	net_stats->rx_missed_errors = adapter->stats.mpc;
5152 
5153 	/* Tx Errors */
5154 	net_stats->tx_errors = adapter->stats.ecol +
5155 			       adapter->stats.latecol;
5156 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5157 	net_stats->tx_window_errors = adapter->stats.latecol;
5158 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5159 
5160 	/* Tx Dropped */
5161 	net_stats->tx_dropped = adapter->stats.txdrop;
5162 
5163 	/* Management Stats */
5164 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5165 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5166 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5167 }
5168 
5169 /**
5170  * igc_down - Close the interface
5171  * @adapter: board private structure
5172  */
igc_down(struct igc_adapter * adapter)5173 void igc_down(struct igc_adapter *adapter)
5174 {
5175 	struct net_device *netdev = adapter->netdev;
5176 	struct igc_hw *hw = &adapter->hw;
5177 	u32 tctl, rctl;
5178 	int i = 0;
5179 
5180 	set_bit(__IGC_DOWN, &adapter->state);
5181 
5182 	igc_ptp_suspend(adapter);
5183 
5184 	if (pci_device_is_present(adapter->pdev)) {
5185 		/* disable receives in the hardware */
5186 		rctl = rd32(IGC_RCTL);
5187 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5188 		/* flush and sleep below */
5189 	}
5190 	/* set trans_start so we don't get spurious watchdogs during reset */
5191 	netif_trans_update(netdev);
5192 
5193 	netif_carrier_off(netdev);
5194 	netif_tx_stop_all_queues(netdev);
5195 
5196 	if (pci_device_is_present(adapter->pdev)) {
5197 		/* disable transmits in the hardware */
5198 		tctl = rd32(IGC_TCTL);
5199 		tctl &= ~IGC_TCTL_EN;
5200 		wr32(IGC_TCTL, tctl);
5201 		/* flush both disables and wait for them to finish */
5202 		wrfl();
5203 		usleep_range(10000, 20000);
5204 
5205 		igc_irq_disable(adapter);
5206 	}
5207 
5208 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5209 
5210 	for (i = 0; i < adapter->num_q_vectors; i++) {
5211 		if (adapter->q_vector[i]) {
5212 			napi_synchronize(&adapter->q_vector[i]->napi);
5213 			igc_set_queue_napi(adapter, i, NULL);
5214 			napi_disable(&adapter->q_vector[i]->napi);
5215 		}
5216 	}
5217 
5218 	del_timer_sync(&adapter->watchdog_timer);
5219 	del_timer_sync(&adapter->phy_info_timer);
5220 
5221 	/* record the stats before reset*/
5222 	spin_lock(&adapter->stats64_lock);
5223 	igc_update_stats(adapter);
5224 	spin_unlock(&adapter->stats64_lock);
5225 
5226 	adapter->link_speed = 0;
5227 	adapter->link_duplex = 0;
5228 
5229 	if (!pci_channel_offline(adapter->pdev))
5230 		igc_reset(adapter);
5231 
5232 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5233 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5234 
5235 	igc_disable_all_tx_rings_hw(adapter);
5236 	igc_clean_all_tx_rings(adapter);
5237 	igc_clean_all_rx_rings(adapter);
5238 }
5239 
igc_reinit_locked(struct igc_adapter * adapter)5240 void igc_reinit_locked(struct igc_adapter *adapter)
5241 {
5242 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5243 		usleep_range(1000, 2000);
5244 	igc_down(adapter);
5245 	igc_up(adapter);
5246 	clear_bit(__IGC_RESETTING, &adapter->state);
5247 }
5248 
igc_reset_task(struct work_struct * work)5249 static void igc_reset_task(struct work_struct *work)
5250 {
5251 	struct igc_adapter *adapter;
5252 
5253 	adapter = container_of(work, struct igc_adapter, reset_task);
5254 
5255 	rtnl_lock();
5256 	/* If we're already down or resetting, just bail */
5257 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5258 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5259 		rtnl_unlock();
5260 		return;
5261 	}
5262 
5263 	igc_rings_dump(adapter);
5264 	igc_regs_dump(adapter);
5265 	netdev_err(adapter->netdev, "Reset adapter\n");
5266 	igc_reinit_locked(adapter);
5267 	rtnl_unlock();
5268 }
5269 
5270 /**
5271  * igc_change_mtu - Change the Maximum Transfer Unit
5272  * @netdev: network interface device structure
5273  * @new_mtu: new value for maximum frame size
5274  *
5275  * Returns 0 on success, negative on failure
5276  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5277 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5278 {
5279 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5280 	struct igc_adapter *adapter = netdev_priv(netdev);
5281 
5282 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5283 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5284 		return -EINVAL;
5285 	}
5286 
5287 	/* adjust max frame to be at least the size of a standard frame */
5288 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5289 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5290 
5291 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5292 		usleep_range(1000, 2000);
5293 
5294 	/* igc_down has a dependency on max_frame_size */
5295 	adapter->max_frame_size = max_frame;
5296 
5297 	if (netif_running(netdev))
5298 		igc_down(adapter);
5299 
5300 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5301 	WRITE_ONCE(netdev->mtu, new_mtu);
5302 
5303 	if (netif_running(netdev))
5304 		igc_up(adapter);
5305 	else
5306 		igc_reset(adapter);
5307 
5308 	clear_bit(__IGC_RESETTING, &adapter->state);
5309 
5310 	return 0;
5311 }
5312 
5313 /**
5314  * igc_tx_timeout - Respond to a Tx Hang
5315  * @netdev: network interface device structure
5316  * @txqueue: queue number that timed out
5317  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5318 static void igc_tx_timeout(struct net_device *netdev,
5319 			   unsigned int __always_unused txqueue)
5320 {
5321 	struct igc_adapter *adapter = netdev_priv(netdev);
5322 	struct igc_hw *hw = &adapter->hw;
5323 
5324 	/* Do the reset outside of interrupt context */
5325 	adapter->tx_timeout_count++;
5326 	schedule_work(&adapter->reset_task);
5327 	wr32(IGC_EICS,
5328 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5329 }
5330 
5331 /**
5332  * igc_get_stats64 - Get System Network Statistics
5333  * @netdev: network interface device structure
5334  * @stats: rtnl_link_stats64 pointer
5335  *
5336  * Returns the address of the device statistics structure.
5337  * The statistics are updated here and also from the timer callback.
5338  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5339 static void igc_get_stats64(struct net_device *netdev,
5340 			    struct rtnl_link_stats64 *stats)
5341 {
5342 	struct igc_adapter *adapter = netdev_priv(netdev);
5343 
5344 	spin_lock(&adapter->stats64_lock);
5345 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5346 		igc_update_stats(adapter);
5347 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5348 	spin_unlock(&adapter->stats64_lock);
5349 }
5350 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5351 static netdev_features_t igc_fix_features(struct net_device *netdev,
5352 					  netdev_features_t features)
5353 {
5354 	/* Since there is no support for separate Rx/Tx vlan accel
5355 	 * enable/disable make sure Tx flag is always in same state as Rx.
5356 	 */
5357 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5358 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5359 	else
5360 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5361 
5362 	return features;
5363 }
5364 
igc_set_features(struct net_device * netdev,netdev_features_t features)5365 static int igc_set_features(struct net_device *netdev,
5366 			    netdev_features_t features)
5367 {
5368 	netdev_features_t changed = netdev->features ^ features;
5369 	struct igc_adapter *adapter = netdev_priv(netdev);
5370 
5371 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5372 		igc_vlan_mode(netdev, features);
5373 
5374 	/* Add VLAN support */
5375 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5376 		return 0;
5377 
5378 	if (!(features & NETIF_F_NTUPLE))
5379 		igc_flush_nfc_rules(adapter);
5380 
5381 	netdev->features = features;
5382 
5383 	if (netif_running(netdev))
5384 		igc_reinit_locked(adapter);
5385 	else
5386 		igc_reset(adapter);
5387 
5388 	return 1;
5389 }
5390 
5391 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5392 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5393 		   netdev_features_t features)
5394 {
5395 	unsigned int network_hdr_len, mac_hdr_len;
5396 
5397 	/* Make certain the headers can be described by a context descriptor */
5398 	mac_hdr_len = skb_network_offset(skb);
5399 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5400 		return features & ~(NETIF_F_HW_CSUM |
5401 				    NETIF_F_SCTP_CRC |
5402 				    NETIF_F_HW_VLAN_CTAG_TX |
5403 				    NETIF_F_TSO |
5404 				    NETIF_F_TSO6);
5405 
5406 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5407 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5408 		return features & ~(NETIF_F_HW_CSUM |
5409 				    NETIF_F_SCTP_CRC |
5410 				    NETIF_F_TSO |
5411 				    NETIF_F_TSO6);
5412 
5413 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5414 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5415 	 */
5416 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5417 		features &= ~NETIF_F_TSO;
5418 
5419 	return features;
5420 }
5421 
igc_tsync_interrupt(struct igc_adapter * adapter)5422 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5423 {
5424 	struct igc_hw *hw = &adapter->hw;
5425 	u32 tsauxc, sec, nsec, tsicr;
5426 	struct ptp_clock_event event;
5427 	struct timespec64 ts;
5428 
5429 	tsicr = rd32(IGC_TSICR);
5430 
5431 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5432 		event.type = PTP_CLOCK_PPS;
5433 		if (adapter->ptp_caps.pps)
5434 			ptp_clock_event(adapter->ptp_clock, &event);
5435 	}
5436 
5437 	if (tsicr & IGC_TSICR_TXTS) {
5438 		/* retrieve hardware timestamp */
5439 		igc_ptp_tx_tstamp_event(adapter);
5440 	}
5441 
5442 	if (tsicr & IGC_TSICR_TT0) {
5443 		spin_lock(&adapter->tmreg_lock);
5444 		ts = timespec64_add(adapter->perout[0].start,
5445 				    adapter->perout[0].period);
5446 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5447 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5448 		tsauxc = rd32(IGC_TSAUXC);
5449 		tsauxc |= IGC_TSAUXC_EN_TT0;
5450 		wr32(IGC_TSAUXC, tsauxc);
5451 		adapter->perout[0].start = ts;
5452 		spin_unlock(&adapter->tmreg_lock);
5453 	}
5454 
5455 	if (tsicr & IGC_TSICR_TT1) {
5456 		spin_lock(&adapter->tmreg_lock);
5457 		ts = timespec64_add(adapter->perout[1].start,
5458 				    adapter->perout[1].period);
5459 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5460 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5461 		tsauxc = rd32(IGC_TSAUXC);
5462 		tsauxc |= IGC_TSAUXC_EN_TT1;
5463 		wr32(IGC_TSAUXC, tsauxc);
5464 		adapter->perout[1].start = ts;
5465 		spin_unlock(&adapter->tmreg_lock);
5466 	}
5467 
5468 	if (tsicr & IGC_TSICR_AUTT0) {
5469 		nsec = rd32(IGC_AUXSTMPL0);
5470 		sec  = rd32(IGC_AUXSTMPH0);
5471 		event.type = PTP_CLOCK_EXTTS;
5472 		event.index = 0;
5473 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5474 		ptp_clock_event(adapter->ptp_clock, &event);
5475 	}
5476 
5477 	if (tsicr & IGC_TSICR_AUTT1) {
5478 		nsec = rd32(IGC_AUXSTMPL1);
5479 		sec  = rd32(IGC_AUXSTMPH1);
5480 		event.type = PTP_CLOCK_EXTTS;
5481 		event.index = 1;
5482 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5483 		ptp_clock_event(adapter->ptp_clock, &event);
5484 	}
5485 }
5486 
5487 /**
5488  * igc_msix_other - msix other interrupt handler
5489  * @irq: interrupt number
5490  * @data: pointer to a q_vector
5491  */
igc_msix_other(int irq,void * data)5492 static irqreturn_t igc_msix_other(int irq, void *data)
5493 {
5494 	struct igc_adapter *adapter = data;
5495 	struct igc_hw *hw = &adapter->hw;
5496 	u32 icr = rd32(IGC_ICR);
5497 
5498 	/* reading ICR causes bit 31 of EICR to be cleared */
5499 	if (icr & IGC_ICR_DRSTA)
5500 		schedule_work(&adapter->reset_task);
5501 
5502 	if (icr & IGC_ICR_DOUTSYNC) {
5503 		/* HW is reporting DMA is out of sync */
5504 		adapter->stats.doosync++;
5505 	}
5506 
5507 	if (icr & IGC_ICR_LSC) {
5508 		hw->mac.get_link_status = true;
5509 		/* guard against interrupt when we're going down */
5510 		if (!test_bit(__IGC_DOWN, &adapter->state))
5511 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5512 	}
5513 
5514 	if (icr & IGC_ICR_TS)
5515 		igc_tsync_interrupt(adapter);
5516 
5517 	wr32(IGC_EIMS, adapter->eims_other);
5518 
5519 	return IRQ_HANDLED;
5520 }
5521 
igc_write_itr(struct igc_q_vector * q_vector)5522 static void igc_write_itr(struct igc_q_vector *q_vector)
5523 {
5524 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5525 
5526 	if (!q_vector->set_itr)
5527 		return;
5528 
5529 	if (!itr_val)
5530 		itr_val = IGC_ITR_VAL_MASK;
5531 
5532 	itr_val |= IGC_EITR_CNT_IGNR;
5533 
5534 	writel(itr_val, q_vector->itr_register);
5535 	q_vector->set_itr = 0;
5536 }
5537 
igc_msix_ring(int irq,void * data)5538 static irqreturn_t igc_msix_ring(int irq, void *data)
5539 {
5540 	struct igc_q_vector *q_vector = data;
5541 
5542 	/* Write the ITR value calculated from the previous interrupt. */
5543 	igc_write_itr(q_vector);
5544 
5545 	napi_schedule(&q_vector->napi);
5546 
5547 	return IRQ_HANDLED;
5548 }
5549 
5550 /**
5551  * igc_request_msix - Initialize MSI-X interrupts
5552  * @adapter: Pointer to adapter structure
5553  *
5554  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5555  * kernel.
5556  */
igc_request_msix(struct igc_adapter * adapter)5557 static int igc_request_msix(struct igc_adapter *adapter)
5558 {
5559 	unsigned int num_q_vectors = adapter->num_q_vectors;
5560 	int i = 0, err = 0, vector = 0, free_vector = 0;
5561 	struct net_device *netdev = adapter->netdev;
5562 
5563 	err = request_irq(adapter->msix_entries[vector].vector,
5564 			  &igc_msix_other, 0, netdev->name, adapter);
5565 	if (err)
5566 		goto err_out;
5567 
5568 	if (num_q_vectors > MAX_Q_VECTORS) {
5569 		num_q_vectors = MAX_Q_VECTORS;
5570 		dev_warn(&adapter->pdev->dev,
5571 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5572 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5573 	}
5574 	for (i = 0; i < num_q_vectors; i++) {
5575 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5576 
5577 		vector++;
5578 
5579 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5580 
5581 		if (q_vector->rx.ring && q_vector->tx.ring)
5582 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5583 				q_vector->rx.ring->queue_index);
5584 		else if (q_vector->tx.ring)
5585 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5586 				q_vector->tx.ring->queue_index);
5587 		else if (q_vector->rx.ring)
5588 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5589 				q_vector->rx.ring->queue_index);
5590 		else
5591 			sprintf(q_vector->name, "%s-unused", netdev->name);
5592 
5593 		err = request_irq(adapter->msix_entries[vector].vector,
5594 				  igc_msix_ring, 0, q_vector->name,
5595 				  q_vector);
5596 		if (err)
5597 			goto err_free;
5598 
5599 		netif_napi_set_irq(&q_vector->napi,
5600 				   adapter->msix_entries[vector].vector);
5601 	}
5602 
5603 	igc_configure_msix(adapter);
5604 	return 0;
5605 
5606 err_free:
5607 	/* free already assigned IRQs */
5608 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5609 
5610 	vector--;
5611 	for (i = 0; i < vector; i++) {
5612 		free_irq(adapter->msix_entries[free_vector++].vector,
5613 			 adapter->q_vector[i]);
5614 	}
5615 err_out:
5616 	return err;
5617 }
5618 
5619 /**
5620  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5621  * @adapter: Pointer to adapter structure
5622  *
5623  * This function resets the device so that it has 0 rx queues, tx queues, and
5624  * MSI-X interrupts allocated.
5625  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5626 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5627 {
5628 	igc_free_q_vectors(adapter);
5629 	igc_reset_interrupt_capability(adapter);
5630 }
5631 
5632 /* Need to wait a few seconds after link up to get diagnostic information from
5633  * the phy
5634  */
igc_update_phy_info(struct timer_list * t)5635 static void igc_update_phy_info(struct timer_list *t)
5636 {
5637 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5638 
5639 	igc_get_phy_info(&adapter->hw);
5640 }
5641 
5642 /**
5643  * igc_has_link - check shared code for link and determine up/down
5644  * @adapter: pointer to driver private info
5645  */
igc_has_link(struct igc_adapter * adapter)5646 bool igc_has_link(struct igc_adapter *adapter)
5647 {
5648 	struct igc_hw *hw = &adapter->hw;
5649 	bool link_active = false;
5650 
5651 	/* get_link_status is set on LSC (link status) interrupt or
5652 	 * rx sequence error interrupt.  get_link_status will stay
5653 	 * false until the igc_check_for_link establishes link
5654 	 * for copper adapters ONLY
5655 	 */
5656 	if (!hw->mac.get_link_status)
5657 		return true;
5658 	hw->mac.ops.check_for_link(hw);
5659 	link_active = !hw->mac.get_link_status;
5660 
5661 	if (hw->mac.type == igc_i225) {
5662 		if (!netif_carrier_ok(adapter->netdev)) {
5663 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5664 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5665 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5666 			adapter->link_check_timeout = jiffies;
5667 		}
5668 	}
5669 
5670 	return link_active;
5671 }
5672 
5673 /**
5674  * igc_watchdog - Timer Call-back
5675  * @t: timer for the watchdog
5676  */
igc_watchdog(struct timer_list * t)5677 static void igc_watchdog(struct timer_list *t)
5678 {
5679 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5680 	/* Do the rest outside of interrupt context */
5681 	schedule_work(&adapter->watchdog_task);
5682 }
5683 
igc_watchdog_task(struct work_struct * work)5684 static void igc_watchdog_task(struct work_struct *work)
5685 {
5686 	struct igc_adapter *adapter = container_of(work,
5687 						   struct igc_adapter,
5688 						   watchdog_task);
5689 	struct net_device *netdev = adapter->netdev;
5690 	struct igc_hw *hw = &adapter->hw;
5691 	struct igc_phy_info *phy = &hw->phy;
5692 	u16 phy_data, retry_count = 20;
5693 	u32 link;
5694 	int i;
5695 
5696 	link = igc_has_link(adapter);
5697 
5698 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5699 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5700 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5701 		else
5702 			link = false;
5703 	}
5704 
5705 	if (link) {
5706 		/* Cancel scheduled suspend requests. */
5707 		pm_runtime_resume(netdev->dev.parent);
5708 
5709 		if (!netif_carrier_ok(netdev)) {
5710 			u32 ctrl;
5711 
5712 			hw->mac.ops.get_speed_and_duplex(hw,
5713 							 &adapter->link_speed,
5714 							 &adapter->link_duplex);
5715 
5716 			ctrl = rd32(IGC_CTRL);
5717 			/* Link status message must follow this format */
5718 			netdev_info(netdev,
5719 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5720 				    adapter->link_speed,
5721 				    adapter->link_duplex == FULL_DUPLEX ?
5722 				    "Full" : "Half",
5723 				    (ctrl & IGC_CTRL_TFCE) &&
5724 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5725 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5726 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5727 
5728 			/* disable EEE if enabled */
5729 			if ((adapter->flags & IGC_FLAG_EEE) &&
5730 			    adapter->link_duplex == HALF_DUPLEX) {
5731 				netdev_info(netdev,
5732 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5733 				adapter->hw.dev_spec._base.eee_enable = false;
5734 				adapter->flags &= ~IGC_FLAG_EEE;
5735 			}
5736 
5737 			/* check if SmartSpeed worked */
5738 			igc_check_downshift(hw);
5739 			if (phy->speed_downgraded)
5740 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5741 
5742 			/* adjust timeout factor according to speed/duplex */
5743 			adapter->tx_timeout_factor = 1;
5744 			switch (adapter->link_speed) {
5745 			case SPEED_10:
5746 				adapter->tx_timeout_factor = 14;
5747 				break;
5748 			case SPEED_100:
5749 			case SPEED_1000:
5750 			case SPEED_2500:
5751 				adapter->tx_timeout_factor = 1;
5752 				break;
5753 			}
5754 
5755 			/* Once the launch time has been set on the wire, there
5756 			 * is a delay before the link speed can be determined
5757 			 * based on link-up activity. Write into the register
5758 			 * as soon as we know the correct link speed.
5759 			 */
5760 			igc_tsn_adjust_txtime_offset(adapter);
5761 
5762 			if (adapter->link_speed != SPEED_1000)
5763 				goto no_wait;
5764 
5765 			/* wait for Remote receiver status OK */
5766 retry_read_status:
5767 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5768 					      &phy_data)) {
5769 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5770 				    retry_count) {
5771 					msleep(100);
5772 					retry_count--;
5773 					goto retry_read_status;
5774 				} else if (!retry_count) {
5775 					netdev_err(netdev, "exceed max 2 second\n");
5776 				}
5777 			} else {
5778 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5779 			}
5780 no_wait:
5781 			netif_carrier_on(netdev);
5782 
5783 			/* link state has changed, schedule phy info update */
5784 			if (!test_bit(__IGC_DOWN, &adapter->state))
5785 				mod_timer(&adapter->phy_info_timer,
5786 					  round_jiffies(jiffies + 2 * HZ));
5787 		}
5788 	} else {
5789 		if (netif_carrier_ok(netdev)) {
5790 			adapter->link_speed = 0;
5791 			adapter->link_duplex = 0;
5792 
5793 			/* Links status message must follow this format */
5794 			netdev_info(netdev, "NIC Link is Down\n");
5795 			netif_carrier_off(netdev);
5796 
5797 			/* link state has changed, schedule phy info update */
5798 			if (!test_bit(__IGC_DOWN, &adapter->state))
5799 				mod_timer(&adapter->phy_info_timer,
5800 					  round_jiffies(jiffies + 2 * HZ));
5801 
5802 			pm_schedule_suspend(netdev->dev.parent,
5803 					    MSEC_PER_SEC * 5);
5804 		}
5805 	}
5806 
5807 	spin_lock(&adapter->stats64_lock);
5808 	igc_update_stats(adapter);
5809 	spin_unlock(&adapter->stats64_lock);
5810 
5811 	for (i = 0; i < adapter->num_tx_queues; i++) {
5812 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5813 
5814 		if (!netif_carrier_ok(netdev)) {
5815 			/* We've lost link, so the controller stops DMA,
5816 			 * but we've got queued Tx work that's never going
5817 			 * to get done, so reset controller to flush Tx.
5818 			 * (Do the reset outside of interrupt context).
5819 			 */
5820 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5821 				adapter->tx_timeout_count++;
5822 				schedule_work(&adapter->reset_task);
5823 				/* return immediately since reset is imminent */
5824 				return;
5825 			}
5826 		}
5827 
5828 		/* Force detection of hung controller every watchdog period */
5829 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5830 	}
5831 
5832 	/* Cause software interrupt to ensure Rx ring is cleaned */
5833 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5834 		u32 eics = 0;
5835 
5836 		for (i = 0; i < adapter->num_q_vectors; i++) {
5837 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5838 			struct igc_ring *rx_ring;
5839 
5840 			if (!q_vector->rx.ring)
5841 				continue;
5842 
5843 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5844 
5845 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5846 				eics |= q_vector->eims_value;
5847 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5848 			}
5849 		}
5850 		if (eics)
5851 			wr32(IGC_EICS, eics);
5852 	} else {
5853 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5854 
5855 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5856 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5857 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5858 		}
5859 	}
5860 
5861 	igc_ptp_tx_hang(adapter);
5862 
5863 	/* Reset the timer */
5864 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5865 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5866 			mod_timer(&adapter->watchdog_timer,
5867 				  round_jiffies(jiffies +  HZ));
5868 		else
5869 			mod_timer(&adapter->watchdog_timer,
5870 				  round_jiffies(jiffies + 2 * HZ));
5871 	}
5872 }
5873 
5874 /**
5875  * igc_intr_msi - Interrupt Handler
5876  * @irq: interrupt number
5877  * @data: pointer to a network interface device structure
5878  */
igc_intr_msi(int irq,void * data)5879 static irqreturn_t igc_intr_msi(int irq, void *data)
5880 {
5881 	struct igc_adapter *adapter = data;
5882 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5883 	struct igc_hw *hw = &adapter->hw;
5884 	/* read ICR disables interrupts using IAM */
5885 	u32 icr = rd32(IGC_ICR);
5886 
5887 	igc_write_itr(q_vector);
5888 
5889 	if (icr & IGC_ICR_DRSTA)
5890 		schedule_work(&adapter->reset_task);
5891 
5892 	if (icr & IGC_ICR_DOUTSYNC) {
5893 		/* HW is reporting DMA is out of sync */
5894 		adapter->stats.doosync++;
5895 	}
5896 
5897 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5898 		hw->mac.get_link_status = true;
5899 		if (!test_bit(__IGC_DOWN, &adapter->state))
5900 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5901 	}
5902 
5903 	if (icr & IGC_ICR_TS)
5904 		igc_tsync_interrupt(adapter);
5905 
5906 	napi_schedule(&q_vector->napi);
5907 
5908 	return IRQ_HANDLED;
5909 }
5910 
5911 /**
5912  * igc_intr - Legacy Interrupt Handler
5913  * @irq: interrupt number
5914  * @data: pointer to a network interface device structure
5915  */
igc_intr(int irq,void * data)5916 static irqreturn_t igc_intr(int irq, void *data)
5917 {
5918 	struct igc_adapter *adapter = data;
5919 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5920 	struct igc_hw *hw = &adapter->hw;
5921 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5922 	 * need for the IMC write
5923 	 */
5924 	u32 icr = rd32(IGC_ICR);
5925 
5926 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5927 	 * not set, then the adapter didn't send an interrupt
5928 	 */
5929 	if (!(icr & IGC_ICR_INT_ASSERTED))
5930 		return IRQ_NONE;
5931 
5932 	igc_write_itr(q_vector);
5933 
5934 	if (icr & IGC_ICR_DRSTA)
5935 		schedule_work(&adapter->reset_task);
5936 
5937 	if (icr & IGC_ICR_DOUTSYNC) {
5938 		/* HW is reporting DMA is out of sync */
5939 		adapter->stats.doosync++;
5940 	}
5941 
5942 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5943 		hw->mac.get_link_status = true;
5944 		/* guard against interrupt when we're going down */
5945 		if (!test_bit(__IGC_DOWN, &adapter->state))
5946 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5947 	}
5948 
5949 	if (icr & IGC_ICR_TS)
5950 		igc_tsync_interrupt(adapter);
5951 
5952 	napi_schedule(&q_vector->napi);
5953 
5954 	return IRQ_HANDLED;
5955 }
5956 
igc_free_irq(struct igc_adapter * adapter)5957 static void igc_free_irq(struct igc_adapter *adapter)
5958 {
5959 	if (adapter->msix_entries) {
5960 		int vector = 0, i;
5961 
5962 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5963 
5964 		for (i = 0; i < adapter->num_q_vectors; i++)
5965 			free_irq(adapter->msix_entries[vector++].vector,
5966 				 adapter->q_vector[i]);
5967 	} else {
5968 		free_irq(adapter->pdev->irq, adapter);
5969 	}
5970 }
5971 
5972 /**
5973  * igc_request_irq - initialize interrupts
5974  * @adapter: Pointer to adapter structure
5975  *
5976  * Attempts to configure interrupts using the best available
5977  * capabilities of the hardware and kernel.
5978  */
igc_request_irq(struct igc_adapter * adapter)5979 static int igc_request_irq(struct igc_adapter *adapter)
5980 {
5981 	struct net_device *netdev = adapter->netdev;
5982 	struct pci_dev *pdev = adapter->pdev;
5983 	int err = 0;
5984 
5985 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5986 		err = igc_request_msix(adapter);
5987 		if (!err)
5988 			goto request_done;
5989 		/* fall back to MSI */
5990 		igc_free_all_tx_resources(adapter);
5991 		igc_free_all_rx_resources(adapter);
5992 
5993 		igc_clear_interrupt_scheme(adapter);
5994 		err = igc_init_interrupt_scheme(adapter, false);
5995 		if (err)
5996 			goto request_done;
5997 		igc_setup_all_tx_resources(adapter);
5998 		igc_setup_all_rx_resources(adapter);
5999 		igc_configure(adapter);
6000 	}
6001 
6002 	igc_assign_vector(adapter->q_vector[0], 0);
6003 
6004 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
6005 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
6006 				  netdev->name, adapter);
6007 		if (!err)
6008 			goto request_done;
6009 
6010 		/* fall back to legacy interrupts */
6011 		igc_reset_interrupt_capability(adapter);
6012 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
6013 	}
6014 
6015 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6016 			  netdev->name, adapter);
6017 
6018 	if (err)
6019 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6020 
6021 request_done:
6022 	return err;
6023 }
6024 
6025 /**
6026  * __igc_open - Called when a network interface is made active
6027  * @netdev: network interface device structure
6028  * @resuming: boolean indicating if the device is resuming
6029  *
6030  * Returns 0 on success, negative value on failure
6031  *
6032  * The open entry point is called when a network interface is made
6033  * active by the system (IFF_UP).  At this point all resources needed
6034  * for transmit and receive operations are allocated, the interrupt
6035  * handler is registered with the OS, the watchdog timer is started,
6036  * and the stack is notified that the interface is ready.
6037  */
__igc_open(struct net_device * netdev,bool resuming)6038 static int __igc_open(struct net_device *netdev, bool resuming)
6039 {
6040 	struct igc_adapter *adapter = netdev_priv(netdev);
6041 	struct pci_dev *pdev = adapter->pdev;
6042 	struct igc_hw *hw = &adapter->hw;
6043 	struct napi_struct *napi;
6044 	int err = 0;
6045 	int i = 0;
6046 
6047 	/* disallow open during test */
6048 
6049 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6050 		WARN_ON(resuming);
6051 		return -EBUSY;
6052 	}
6053 
6054 	if (!resuming)
6055 		pm_runtime_get_sync(&pdev->dev);
6056 
6057 	netif_carrier_off(netdev);
6058 
6059 	/* allocate transmit descriptors */
6060 	err = igc_setup_all_tx_resources(adapter);
6061 	if (err)
6062 		goto err_setup_tx;
6063 
6064 	/* allocate receive descriptors */
6065 	err = igc_setup_all_rx_resources(adapter);
6066 	if (err)
6067 		goto err_setup_rx;
6068 
6069 	igc_power_up_link(adapter);
6070 
6071 	igc_configure(adapter);
6072 
6073 	err = igc_request_irq(adapter);
6074 	if (err)
6075 		goto err_req_irq;
6076 
6077 	clear_bit(__IGC_DOWN, &adapter->state);
6078 
6079 	for (i = 0; i < adapter->num_q_vectors; i++) {
6080 		napi = &adapter->q_vector[i]->napi;
6081 		napi_enable(napi);
6082 		igc_set_queue_napi(adapter, i, napi);
6083 	}
6084 
6085 	/* Clear any pending interrupts. */
6086 	rd32(IGC_ICR);
6087 	igc_irq_enable(adapter);
6088 
6089 	if (!resuming)
6090 		pm_runtime_put(&pdev->dev);
6091 
6092 	netif_tx_start_all_queues(netdev);
6093 
6094 	/* start the watchdog. */
6095 	hw->mac.get_link_status = true;
6096 	schedule_work(&adapter->watchdog_task);
6097 
6098 	return IGC_SUCCESS;
6099 
6100 err_req_irq:
6101 	igc_release_hw_control(adapter);
6102 	igc_power_down_phy_copper_base(&adapter->hw);
6103 	igc_free_all_rx_resources(adapter);
6104 err_setup_rx:
6105 	igc_free_all_tx_resources(adapter);
6106 err_setup_tx:
6107 	igc_reset(adapter);
6108 	if (!resuming)
6109 		pm_runtime_put(&pdev->dev);
6110 
6111 	return err;
6112 }
6113 
igc_open(struct net_device * netdev)6114 int igc_open(struct net_device *netdev)
6115 {
6116 	struct igc_adapter *adapter = netdev_priv(netdev);
6117 	int err;
6118 
6119 	/* Notify the stack of the actual queue counts. */
6120 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6121 					adapter->num_rx_queues);
6122 	if (err) {
6123 		netdev_err(netdev, "error setting real queue count\n");
6124 		return err;
6125 	}
6126 
6127 	return __igc_open(netdev, false);
6128 }
6129 
6130 /**
6131  * __igc_close - Disables a network interface
6132  * @netdev: network interface device structure
6133  * @suspending: boolean indicating the device is suspending
6134  *
6135  * Returns 0, this is not allowed to fail
6136  *
6137  * The close entry point is called when an interface is de-activated
6138  * by the OS.  The hardware is still under the driver's control, but
6139  * needs to be disabled.  A global MAC reset is issued to stop the
6140  * hardware, and all transmit and receive resources are freed.
6141  */
__igc_close(struct net_device * netdev,bool suspending)6142 static int __igc_close(struct net_device *netdev, bool suspending)
6143 {
6144 	struct igc_adapter *adapter = netdev_priv(netdev);
6145 	struct pci_dev *pdev = adapter->pdev;
6146 
6147 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6148 
6149 	if (!suspending)
6150 		pm_runtime_get_sync(&pdev->dev);
6151 
6152 	igc_down(adapter);
6153 
6154 	igc_release_hw_control(adapter);
6155 
6156 	igc_free_irq(adapter);
6157 
6158 	igc_free_all_tx_resources(adapter);
6159 	igc_free_all_rx_resources(adapter);
6160 
6161 	if (!suspending)
6162 		pm_runtime_put_sync(&pdev->dev);
6163 
6164 	return 0;
6165 }
6166 
igc_close(struct net_device * netdev)6167 int igc_close(struct net_device *netdev)
6168 {
6169 	if (netif_device_present(netdev) || netdev->dismantle)
6170 		return __igc_close(netdev, false);
6171 	return 0;
6172 }
6173 
6174 /**
6175  * igc_ioctl - Access the hwtstamp interface
6176  * @netdev: network interface device structure
6177  * @ifr: interface request data
6178  * @cmd: ioctl command
6179  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6180 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6181 {
6182 	switch (cmd) {
6183 	case SIOCGHWTSTAMP:
6184 		return igc_ptp_get_ts_config(netdev, ifr);
6185 	case SIOCSHWTSTAMP:
6186 		return igc_ptp_set_ts_config(netdev, ifr);
6187 	default:
6188 		return -EOPNOTSUPP;
6189 	}
6190 }
6191 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6192 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6193 				      bool enable)
6194 {
6195 	struct igc_ring *ring;
6196 
6197 	if (queue < 0 || queue >= adapter->num_tx_queues)
6198 		return -EINVAL;
6199 
6200 	ring = adapter->tx_ring[queue];
6201 	ring->launchtime_enable = enable;
6202 
6203 	return 0;
6204 }
6205 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6206 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6207 {
6208 	struct timespec64 b;
6209 
6210 	b = ktime_to_timespec64(base_time);
6211 
6212 	return timespec64_compare(now, &b) > 0;
6213 }
6214 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6215 static bool validate_schedule(struct igc_adapter *adapter,
6216 			      const struct tc_taprio_qopt_offload *qopt)
6217 {
6218 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6219 	struct igc_hw *hw = &adapter->hw;
6220 	struct timespec64 now;
6221 	size_t n;
6222 
6223 	if (qopt->cycle_time_extension)
6224 		return false;
6225 
6226 	igc_ptp_read(adapter, &now);
6227 
6228 	/* If we program the controller's BASET registers with a time
6229 	 * in the future, it will hold all the packets until that
6230 	 * time, causing a lot of TX Hangs, so to avoid that, we
6231 	 * reject schedules that would start in the future.
6232 	 * Note: Limitation above is no longer in i226.
6233 	 */
6234 	if (!is_base_time_past(qopt->base_time, &now) &&
6235 	    igc_is_device_id_i225(hw))
6236 		return false;
6237 
6238 	for (n = 0; n < qopt->num_entries; n++) {
6239 		const struct tc_taprio_sched_entry *e, *prev;
6240 		int i;
6241 
6242 		prev = n ? &qopt->entries[n - 1] : NULL;
6243 		e = &qopt->entries[n];
6244 
6245 		/* i225 only supports "global" frame preemption
6246 		 * settings.
6247 		 */
6248 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6249 			return false;
6250 
6251 		for (i = 0; i < adapter->num_tx_queues; i++)
6252 			if (e->gate_mask & BIT(i)) {
6253 				queue_uses[i]++;
6254 
6255 				/* There are limitations: A single queue cannot
6256 				 * be opened and closed multiple times per cycle
6257 				 * unless the gate stays open. Check for it.
6258 				 */
6259 				if (queue_uses[i] > 1 &&
6260 				    !(prev->gate_mask & BIT(i)))
6261 					return false;
6262 			}
6263 	}
6264 
6265 	return true;
6266 }
6267 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6268 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6269 				     struct tc_etf_qopt_offload *qopt)
6270 {
6271 	struct igc_hw *hw = &adapter->hw;
6272 	int err;
6273 
6274 	if (hw->mac.type != igc_i225)
6275 		return -EOPNOTSUPP;
6276 
6277 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6278 	if (err)
6279 		return err;
6280 
6281 	return igc_tsn_offload_apply(adapter);
6282 }
6283 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6284 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6285 {
6286 	unsigned long flags;
6287 	int i;
6288 
6289 	adapter->base_time = 0;
6290 	adapter->cycle_time = NSEC_PER_SEC;
6291 	adapter->taprio_offload_enable = false;
6292 	adapter->qbv_config_change_errors = 0;
6293 	adapter->qbv_count = 0;
6294 
6295 	for (i = 0; i < adapter->num_tx_queues; i++) {
6296 		struct igc_ring *ring = adapter->tx_ring[i];
6297 
6298 		ring->start_time = 0;
6299 		ring->end_time = NSEC_PER_SEC;
6300 		ring->max_sdu = 0;
6301 	}
6302 
6303 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6304 
6305 	adapter->qbv_transition = false;
6306 
6307 	for (i = 0; i < adapter->num_tx_queues; i++) {
6308 		struct igc_ring *ring = adapter->tx_ring[i];
6309 
6310 		ring->oper_gate_closed = false;
6311 		ring->admin_gate_closed = false;
6312 	}
6313 
6314 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6315 
6316 	return 0;
6317 }
6318 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6319 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6320 {
6321 	igc_qbv_clear_schedule(adapter);
6322 
6323 	return 0;
6324 }
6325 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6326 static void igc_taprio_stats(struct net_device *dev,
6327 			     struct tc_taprio_qopt_stats *stats)
6328 {
6329 	/* When Strict_End is enabled, the tx_overruns counter
6330 	 * will always be zero.
6331 	 */
6332 	stats->tx_overruns = 0;
6333 }
6334 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6335 static void igc_taprio_queue_stats(struct net_device *dev,
6336 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6337 {
6338 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6339 
6340 	/* When Strict_End is enabled, the tx_overruns counter
6341 	 * will always be zero.
6342 	 */
6343 	stats->tx_overruns = 0;
6344 }
6345 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6346 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6347 				 struct tc_taprio_qopt_offload *qopt)
6348 {
6349 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6350 	struct igc_hw *hw = &adapter->hw;
6351 	u32 start_time = 0, end_time = 0;
6352 	struct timespec64 now;
6353 	unsigned long flags;
6354 	size_t n;
6355 	int i;
6356 
6357 	if (qopt->base_time < 0)
6358 		return -ERANGE;
6359 
6360 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6361 		return -EALREADY;
6362 
6363 	if (!validate_schedule(adapter, qopt))
6364 		return -EINVAL;
6365 
6366 	igc_ptp_read(adapter, &now);
6367 
6368 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6369 	    is_base_time_past(qopt->base_time, &now))
6370 		adapter->qbv_config_change_errors++;
6371 
6372 	adapter->cycle_time = qopt->cycle_time;
6373 	adapter->base_time = qopt->base_time;
6374 	adapter->taprio_offload_enable = true;
6375 
6376 	for (n = 0; n < qopt->num_entries; n++) {
6377 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6378 
6379 		end_time += e->interval;
6380 
6381 		/* If any of the conditions below are true, we need to manually
6382 		 * control the end time of the cycle.
6383 		 * 1. Qbv users can specify a cycle time that is not equal
6384 		 * to the total GCL intervals. Hence, recalculation is
6385 		 * necessary here to exclude the time interval that
6386 		 * exceeds the cycle time.
6387 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6388 		 * once the end of the list is reached, it will switch
6389 		 * to the END_OF_CYCLE state and leave the gates in the
6390 		 * same state until the next cycle is started.
6391 		 */
6392 		if (end_time > adapter->cycle_time ||
6393 		    n + 1 == qopt->num_entries)
6394 			end_time = adapter->cycle_time;
6395 
6396 		for (i = 0; i < adapter->num_tx_queues; i++) {
6397 			struct igc_ring *ring = adapter->tx_ring[i];
6398 
6399 			if (!(e->gate_mask & BIT(i)))
6400 				continue;
6401 
6402 			/* Check whether a queue stays open for more than one
6403 			 * entry. If so, keep the start and advance the end
6404 			 * time.
6405 			 */
6406 			if (!queue_configured[i])
6407 				ring->start_time = start_time;
6408 			ring->end_time = end_time;
6409 
6410 			if (ring->start_time >= adapter->cycle_time)
6411 				queue_configured[i] = false;
6412 			else
6413 				queue_configured[i] = true;
6414 		}
6415 
6416 		start_time += e->interval;
6417 	}
6418 
6419 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6420 
6421 	/* Check whether a queue gets configured.
6422 	 * If not, set the start and end time to be end time.
6423 	 */
6424 	for (i = 0; i < adapter->num_tx_queues; i++) {
6425 		struct igc_ring *ring = adapter->tx_ring[i];
6426 
6427 		if (!is_base_time_past(qopt->base_time, &now)) {
6428 			ring->admin_gate_closed = false;
6429 		} else {
6430 			ring->oper_gate_closed = false;
6431 			ring->admin_gate_closed = false;
6432 		}
6433 
6434 		if (!queue_configured[i]) {
6435 			if (!is_base_time_past(qopt->base_time, &now))
6436 				ring->admin_gate_closed = true;
6437 			else
6438 				ring->oper_gate_closed = true;
6439 
6440 			ring->start_time = end_time;
6441 			ring->end_time = end_time;
6442 		}
6443 	}
6444 
6445 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6446 
6447 	for (i = 0; i < adapter->num_tx_queues; i++) {
6448 		struct igc_ring *ring = adapter->tx_ring[i];
6449 		struct net_device *dev = adapter->netdev;
6450 
6451 		if (qopt->max_sdu[i])
6452 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6453 		else
6454 			ring->max_sdu = 0;
6455 	}
6456 
6457 	return 0;
6458 }
6459 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6460 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6461 					 struct tc_taprio_qopt_offload *qopt)
6462 {
6463 	struct igc_hw *hw = &adapter->hw;
6464 	int err;
6465 
6466 	if (hw->mac.type != igc_i225)
6467 		return -EOPNOTSUPP;
6468 
6469 	switch (qopt->cmd) {
6470 	case TAPRIO_CMD_REPLACE:
6471 		err = igc_save_qbv_schedule(adapter, qopt);
6472 		break;
6473 	case TAPRIO_CMD_DESTROY:
6474 		err = igc_tsn_clear_schedule(adapter);
6475 		break;
6476 	case TAPRIO_CMD_STATS:
6477 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6478 		return 0;
6479 	case TAPRIO_CMD_QUEUE_STATS:
6480 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6481 		return 0;
6482 	default:
6483 		return -EOPNOTSUPP;
6484 	}
6485 
6486 	if (err)
6487 		return err;
6488 
6489 	return igc_tsn_offload_apply(adapter);
6490 }
6491 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6492 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6493 			       bool enable, int idleslope, int sendslope,
6494 			       int hicredit, int locredit)
6495 {
6496 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6497 	struct net_device *netdev = adapter->netdev;
6498 	struct igc_ring *ring;
6499 	int i;
6500 
6501 	/* i225 has two sets of credit-based shaper logic.
6502 	 * Supporting it only on the top two priority queues
6503 	 */
6504 	if (queue < 0 || queue > 1)
6505 		return -EINVAL;
6506 
6507 	ring = adapter->tx_ring[queue];
6508 
6509 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6510 		if (adapter->tx_ring[i])
6511 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6512 
6513 	/* CBS should be enabled on the highest priority queue first in order
6514 	 * for the CBS algorithm to operate as intended.
6515 	 */
6516 	if (enable) {
6517 		if (queue == 1 && !cbs_status[0]) {
6518 			netdev_err(netdev,
6519 				   "Enabling CBS on queue1 before queue0\n");
6520 			return -EINVAL;
6521 		}
6522 	} else {
6523 		if (queue == 0 && cbs_status[1]) {
6524 			netdev_err(netdev,
6525 				   "Disabling CBS on queue0 before queue1\n");
6526 			return -EINVAL;
6527 		}
6528 	}
6529 
6530 	ring->cbs_enable = enable;
6531 	ring->idleslope = idleslope;
6532 	ring->sendslope = sendslope;
6533 	ring->hicredit = hicredit;
6534 	ring->locredit = locredit;
6535 
6536 	return 0;
6537 }
6538 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6539 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6540 			      struct tc_cbs_qopt_offload *qopt)
6541 {
6542 	struct igc_hw *hw = &adapter->hw;
6543 	int err;
6544 
6545 	if (hw->mac.type != igc_i225)
6546 		return -EOPNOTSUPP;
6547 
6548 	if (qopt->queue < 0 || qopt->queue > 1)
6549 		return -EINVAL;
6550 
6551 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6552 				  qopt->idleslope, qopt->sendslope,
6553 				  qopt->hicredit, qopt->locredit);
6554 	if (err)
6555 		return err;
6556 
6557 	return igc_tsn_offload_apply(adapter);
6558 }
6559 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6560 static int igc_tc_query_caps(struct igc_adapter *adapter,
6561 			     struct tc_query_caps_base *base)
6562 {
6563 	struct igc_hw *hw = &adapter->hw;
6564 
6565 	switch (base->type) {
6566 	case TC_SETUP_QDISC_MQPRIO: {
6567 		struct tc_mqprio_caps *caps = base->caps;
6568 
6569 		caps->validate_queue_counts = true;
6570 
6571 		return 0;
6572 	}
6573 	case TC_SETUP_QDISC_TAPRIO: {
6574 		struct tc_taprio_caps *caps = base->caps;
6575 
6576 		caps->broken_mqprio = true;
6577 
6578 		if (hw->mac.type == igc_i225) {
6579 			caps->supports_queue_max_sdu = true;
6580 			caps->gate_mask_per_txq = true;
6581 		}
6582 
6583 		return 0;
6584 	}
6585 	default:
6586 		return -EOPNOTSUPP;
6587 	}
6588 }
6589 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6590 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6591 				   u16 *offset)
6592 {
6593 	int i;
6594 
6595 	adapter->strict_priority_enable = true;
6596 	adapter->num_tc = num_tc;
6597 
6598 	for (i = 0; i < num_tc; i++)
6599 		adapter->queue_per_tc[i] = offset[i];
6600 }
6601 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6602 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6603 				 struct tc_mqprio_qopt_offload *mqprio)
6604 {
6605 	struct igc_hw *hw = &adapter->hw;
6606 	int i;
6607 
6608 	if (hw->mac.type != igc_i225)
6609 		return -EOPNOTSUPP;
6610 
6611 	if (!mqprio->qopt.num_tc) {
6612 		adapter->strict_priority_enable = false;
6613 		goto apply;
6614 	}
6615 
6616 	/* There are as many TCs as Tx queues. */
6617 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6618 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6619 				       "Only %d traffic classes supported",
6620 				       adapter->num_tx_queues);
6621 		return -EOPNOTSUPP;
6622 	}
6623 
6624 	/* Only one queue per TC is supported. */
6625 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6626 		if (mqprio->qopt.count[i] != 1) {
6627 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6628 					   "Only one queue per TC supported");
6629 			return -EOPNOTSUPP;
6630 		}
6631 	}
6632 
6633 	/* Preemption is not supported yet. */
6634 	if (mqprio->preemptible_tcs) {
6635 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6636 				   "Preemption is not supported yet");
6637 		return -EOPNOTSUPP;
6638 	}
6639 
6640 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6641 			       mqprio->qopt.offset);
6642 
6643 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6644 
6645 apply:
6646 	return igc_tsn_offload_apply(adapter);
6647 }
6648 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6649 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6650 			void *type_data)
6651 {
6652 	struct igc_adapter *adapter = netdev_priv(dev);
6653 
6654 	adapter->tc_setup_type = type;
6655 
6656 	switch (type) {
6657 	case TC_QUERY_CAPS:
6658 		return igc_tc_query_caps(adapter, type_data);
6659 	case TC_SETUP_QDISC_TAPRIO:
6660 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6661 
6662 	case TC_SETUP_QDISC_ETF:
6663 		return igc_tsn_enable_launchtime(adapter, type_data);
6664 
6665 	case TC_SETUP_QDISC_CBS:
6666 		return igc_tsn_enable_cbs(adapter, type_data);
6667 
6668 	case TC_SETUP_QDISC_MQPRIO:
6669 		return igc_tsn_enable_mqprio(adapter, type_data);
6670 
6671 	default:
6672 		return -EOPNOTSUPP;
6673 	}
6674 }
6675 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6676 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6677 {
6678 	struct igc_adapter *adapter = netdev_priv(dev);
6679 
6680 	switch (bpf->command) {
6681 	case XDP_SETUP_PROG:
6682 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6683 	case XDP_SETUP_XSK_POOL:
6684 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6685 					  bpf->xsk.queue_id);
6686 	default:
6687 		return -EOPNOTSUPP;
6688 	}
6689 }
6690 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6691 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6692 			struct xdp_frame **frames, u32 flags)
6693 {
6694 	struct igc_adapter *adapter = netdev_priv(dev);
6695 	int cpu = smp_processor_id();
6696 	struct netdev_queue *nq;
6697 	struct igc_ring *ring;
6698 	int i, nxmit;
6699 
6700 	if (unlikely(!netif_carrier_ok(dev)))
6701 		return -ENETDOWN;
6702 
6703 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6704 		return -EINVAL;
6705 
6706 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6707 	nq = txring_txq(ring);
6708 
6709 	__netif_tx_lock(nq, cpu);
6710 
6711 	/* Avoid transmit queue timeout since we share it with the slow path */
6712 	txq_trans_cond_update(nq);
6713 
6714 	nxmit = 0;
6715 	for (i = 0; i < num_frames; i++) {
6716 		int err;
6717 		struct xdp_frame *xdpf = frames[i];
6718 
6719 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6720 		if (err)
6721 			break;
6722 		nxmit++;
6723 	}
6724 
6725 	if (flags & XDP_XMIT_FLUSH)
6726 		igc_flush_tx_descriptors(ring);
6727 
6728 	__netif_tx_unlock(nq);
6729 
6730 	return nxmit;
6731 }
6732 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6733 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6734 					struct igc_q_vector *q_vector)
6735 {
6736 	struct igc_hw *hw = &adapter->hw;
6737 	u32 eics = 0;
6738 
6739 	eics |= q_vector->eims_value;
6740 	wr32(IGC_EICS, eics);
6741 }
6742 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6743 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6744 {
6745 	struct igc_adapter *adapter = netdev_priv(dev);
6746 	struct igc_q_vector *q_vector;
6747 	struct igc_ring *ring;
6748 
6749 	if (test_bit(__IGC_DOWN, &adapter->state))
6750 		return -ENETDOWN;
6751 
6752 	if (!igc_xdp_is_enabled(adapter))
6753 		return -ENXIO;
6754 
6755 	if (queue_id >= adapter->num_rx_queues)
6756 		return -EINVAL;
6757 
6758 	ring = adapter->rx_ring[queue_id];
6759 
6760 	if (!ring->xsk_pool)
6761 		return -ENXIO;
6762 
6763 	q_vector = adapter->q_vector[queue_id];
6764 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6765 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6766 
6767 	return 0;
6768 }
6769 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6770 static ktime_t igc_get_tstamp(struct net_device *dev,
6771 			      const struct skb_shared_hwtstamps *hwtstamps,
6772 			      bool cycles)
6773 {
6774 	struct igc_adapter *adapter = netdev_priv(dev);
6775 	struct igc_inline_rx_tstamps *tstamp;
6776 	ktime_t timestamp;
6777 
6778 	tstamp = hwtstamps->netdev_data;
6779 
6780 	if (cycles)
6781 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6782 	else
6783 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6784 
6785 	return timestamp;
6786 }
6787 
6788 static const struct net_device_ops igc_netdev_ops = {
6789 	.ndo_open		= igc_open,
6790 	.ndo_stop		= igc_close,
6791 	.ndo_start_xmit		= igc_xmit_frame,
6792 	.ndo_set_rx_mode	= igc_set_rx_mode,
6793 	.ndo_set_mac_address	= igc_set_mac,
6794 	.ndo_change_mtu		= igc_change_mtu,
6795 	.ndo_tx_timeout		= igc_tx_timeout,
6796 	.ndo_get_stats64	= igc_get_stats64,
6797 	.ndo_fix_features	= igc_fix_features,
6798 	.ndo_set_features	= igc_set_features,
6799 	.ndo_features_check	= igc_features_check,
6800 	.ndo_eth_ioctl		= igc_ioctl,
6801 	.ndo_setup_tc		= igc_setup_tc,
6802 	.ndo_bpf		= igc_bpf,
6803 	.ndo_xdp_xmit		= igc_xdp_xmit,
6804 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6805 	.ndo_get_tstamp		= igc_get_tstamp,
6806 };
6807 
igc_rd32(struct igc_hw * hw,u32 reg)6808 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6809 {
6810 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6811 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6812 	u32 value = 0;
6813 
6814 	if (IGC_REMOVED(hw_addr))
6815 		return ~value;
6816 
6817 	value = readl(&hw_addr[reg]);
6818 
6819 	/* reads should not return all F's */
6820 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6821 		struct net_device *netdev = igc->netdev;
6822 
6823 		hw->hw_addr = NULL;
6824 		netif_device_detach(netdev);
6825 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6826 		WARN(pci_device_is_present(igc->pdev),
6827 		     "igc: Failed to read reg 0x%x!\n", reg);
6828 	}
6829 
6830 	return value;
6831 }
6832 
6833 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6834 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6835 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6836 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6837 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6838 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6839 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6840 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6841 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6842 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6843 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6844 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6845 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6846 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6847 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6848 	[13] = XDP_RSS_TYPE_NONE,
6849 	[14] = XDP_RSS_TYPE_NONE,
6850 	[15] = XDP_RSS_TYPE_NONE,
6851 };
6852 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6853 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6854 			   enum xdp_rss_hash_type *rss_type)
6855 {
6856 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6857 
6858 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6859 		return -ENODATA;
6860 
6861 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6862 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6863 
6864 	return 0;
6865 }
6866 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6867 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6868 {
6869 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6870 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6871 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6872 
6873 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6874 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6875 
6876 		return 0;
6877 	}
6878 
6879 	return -ENODATA;
6880 }
6881 
6882 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6883 	.xmo_rx_hash			= igc_xdp_rx_hash,
6884 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6885 };
6886 
igc_qbv_scheduling_timer(struct hrtimer * timer)6887 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6888 {
6889 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6890 						   hrtimer);
6891 	unsigned long flags;
6892 	unsigned int i;
6893 
6894 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6895 
6896 	adapter->qbv_transition = true;
6897 	for (i = 0; i < adapter->num_tx_queues; i++) {
6898 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6899 
6900 		if (tx_ring->admin_gate_closed) {
6901 			tx_ring->admin_gate_closed = false;
6902 			tx_ring->oper_gate_closed = true;
6903 		} else {
6904 			tx_ring->oper_gate_closed = false;
6905 		}
6906 	}
6907 	adapter->qbv_transition = false;
6908 
6909 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6910 
6911 	return HRTIMER_NORESTART;
6912 }
6913 
6914 /**
6915  * igc_probe - Device Initialization Routine
6916  * @pdev: PCI device information struct
6917  * @ent: entry in igc_pci_tbl
6918  *
6919  * Returns 0 on success, negative on failure
6920  *
6921  * igc_probe initializes an adapter identified by a pci_dev structure.
6922  * The OS initialization, configuring the adapter private structure,
6923  * and a hardware reset occur.
6924  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6925 static int igc_probe(struct pci_dev *pdev,
6926 		     const struct pci_device_id *ent)
6927 {
6928 	struct igc_adapter *adapter;
6929 	struct net_device *netdev;
6930 	struct igc_hw *hw;
6931 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6932 	int err;
6933 
6934 	err = pci_enable_device_mem(pdev);
6935 	if (err)
6936 		return err;
6937 
6938 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6939 	if (err) {
6940 		dev_err(&pdev->dev,
6941 			"No usable DMA configuration, aborting\n");
6942 		goto err_dma;
6943 	}
6944 
6945 	err = pci_request_mem_regions(pdev, igc_driver_name);
6946 	if (err)
6947 		goto err_pci_reg;
6948 
6949 	err = pci_enable_ptm(pdev, NULL);
6950 	if (err < 0)
6951 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6952 
6953 	pci_set_master(pdev);
6954 
6955 	err = -ENOMEM;
6956 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6957 				   IGC_MAX_TX_QUEUES);
6958 
6959 	if (!netdev)
6960 		goto err_alloc_etherdev;
6961 
6962 	SET_NETDEV_DEV(netdev, &pdev->dev);
6963 
6964 	pci_set_drvdata(pdev, netdev);
6965 	adapter = netdev_priv(netdev);
6966 	adapter->netdev = netdev;
6967 	adapter->pdev = pdev;
6968 	hw = &adapter->hw;
6969 	hw->back = adapter;
6970 	adapter->port_num = hw->bus.func;
6971 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6972 
6973 	err = pci_save_state(pdev);
6974 	if (err)
6975 		goto err_ioremap;
6976 
6977 	err = -EIO;
6978 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6979 				   pci_resource_len(pdev, 0));
6980 	if (!adapter->io_addr)
6981 		goto err_ioremap;
6982 
6983 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6984 	hw->hw_addr = adapter->io_addr;
6985 
6986 	netdev->netdev_ops = &igc_netdev_ops;
6987 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6988 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
6989 	igc_ethtool_set_ops(netdev);
6990 	netdev->watchdog_timeo = 5 * HZ;
6991 
6992 	netdev->mem_start = pci_resource_start(pdev, 0);
6993 	netdev->mem_end = pci_resource_end(pdev, 0);
6994 
6995 	/* PCI config space info */
6996 	hw->vendor_id = pdev->vendor;
6997 	hw->device_id = pdev->device;
6998 	hw->revision_id = pdev->revision;
6999 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7000 	hw->subsystem_device_id = pdev->subsystem_device;
7001 
7002 	/* Copy the default MAC and PHY function pointers */
7003 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7004 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7005 
7006 	/* Initialize skew-specific constants */
7007 	err = ei->get_invariants(hw);
7008 	if (err)
7009 		goto err_sw_init;
7010 
7011 	/* Add supported features to the features list*/
7012 	netdev->features |= NETIF_F_SG;
7013 	netdev->features |= NETIF_F_TSO;
7014 	netdev->features |= NETIF_F_TSO6;
7015 	netdev->features |= NETIF_F_TSO_ECN;
7016 	netdev->features |= NETIF_F_RXHASH;
7017 	netdev->features |= NETIF_F_RXCSUM;
7018 	netdev->features |= NETIF_F_HW_CSUM;
7019 	netdev->features |= NETIF_F_SCTP_CRC;
7020 	netdev->features |= NETIF_F_HW_TC;
7021 
7022 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7023 				  NETIF_F_GSO_GRE_CSUM | \
7024 				  NETIF_F_GSO_IPXIP4 | \
7025 				  NETIF_F_GSO_IPXIP6 | \
7026 				  NETIF_F_GSO_UDP_TUNNEL | \
7027 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7028 
7029 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7030 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7031 
7032 	/* setup the private structure */
7033 	err = igc_sw_init(adapter);
7034 	if (err)
7035 		goto err_sw_init;
7036 
7037 	/* copy netdev features into list of user selectable features */
7038 	netdev->hw_features |= NETIF_F_NTUPLE;
7039 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7040 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7041 	netdev->hw_features |= netdev->features;
7042 
7043 	netdev->features |= NETIF_F_HIGHDMA;
7044 
7045 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7046 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7047 	netdev->hw_enc_features |= netdev->vlan_features;
7048 
7049 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7050 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7051 
7052 	/* MTU range: 68 - 9216 */
7053 	netdev->min_mtu = ETH_MIN_MTU;
7054 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7055 
7056 	/* before reading the NVM, reset the controller to put the device in a
7057 	 * known good starting state
7058 	 */
7059 	hw->mac.ops.reset_hw(hw);
7060 
7061 	if (igc_get_flash_presence_i225(hw)) {
7062 		if (hw->nvm.ops.validate(hw) < 0) {
7063 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7064 			err = -EIO;
7065 			goto err_eeprom;
7066 		}
7067 	}
7068 
7069 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7070 		/* copy the MAC address out of the NVM */
7071 		if (hw->mac.ops.read_mac_addr(hw))
7072 			dev_err(&pdev->dev, "NVM Read Error\n");
7073 	}
7074 
7075 	eth_hw_addr_set(netdev, hw->mac.addr);
7076 
7077 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7078 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7079 		err = -EIO;
7080 		goto err_eeprom;
7081 	}
7082 
7083 	/* configure RXPBSIZE and TXPBSIZE */
7084 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7085 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7086 
7087 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7088 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7089 
7090 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7091 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7092 
7093 	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7094 	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7095 
7096 	/* Initialize link properties that are user-changeable */
7097 	adapter->fc_autoneg = true;
7098 	hw->phy.autoneg_advertised = 0xaf;
7099 
7100 	hw->fc.requested_mode = igc_fc_default;
7101 	hw->fc.current_mode = igc_fc_default;
7102 
7103 	/* By default, support wake on port A */
7104 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7105 
7106 	/* initialize the wol settings based on the eeprom settings */
7107 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7108 		adapter->wol |= IGC_WUFC_MAG;
7109 
7110 	device_set_wakeup_enable(&adapter->pdev->dev,
7111 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7112 
7113 	igc_ptp_init(adapter);
7114 
7115 	igc_tsn_clear_schedule(adapter);
7116 
7117 	/* reset the hardware with the new settings */
7118 	igc_reset(adapter);
7119 
7120 	/* let the f/w know that the h/w is now under the control of the
7121 	 * driver.
7122 	 */
7123 	igc_get_hw_control(adapter);
7124 
7125 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7126 	err = register_netdev(netdev);
7127 	if (err)
7128 		goto err_register;
7129 
7130 	 /* carrier off reporting is important to ethtool even BEFORE open */
7131 	netif_carrier_off(netdev);
7132 
7133 	/* Check if Media Autosense is enabled */
7134 	adapter->ei = *ei;
7135 
7136 	/* print pcie link status and MAC address */
7137 	pcie_print_link_status(pdev);
7138 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7139 
7140 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7141 	/* Disable EEE for internal PHY devices */
7142 	hw->dev_spec._base.eee_enable = false;
7143 	adapter->flags &= ~IGC_FLAG_EEE;
7144 	igc_set_eee_i225(hw, false, false, false);
7145 
7146 	pm_runtime_put_noidle(&pdev->dev);
7147 
7148 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7149 		err = igc_led_setup(adapter);
7150 		if (err)
7151 			goto err_register;
7152 	}
7153 
7154 	return 0;
7155 
7156 err_register:
7157 	igc_release_hw_control(adapter);
7158 err_eeprom:
7159 	if (!igc_check_reset_block(hw))
7160 		igc_reset_phy(hw);
7161 err_sw_init:
7162 	igc_clear_interrupt_scheme(adapter);
7163 	iounmap(adapter->io_addr);
7164 err_ioremap:
7165 	free_netdev(netdev);
7166 err_alloc_etherdev:
7167 	pci_release_mem_regions(pdev);
7168 err_pci_reg:
7169 err_dma:
7170 	pci_disable_device(pdev);
7171 	return err;
7172 }
7173 
7174 /**
7175  * igc_remove - Device Removal Routine
7176  * @pdev: PCI device information struct
7177  *
7178  * igc_remove is called by the PCI subsystem to alert the driver
7179  * that it should release a PCI device.  This could be caused by a
7180  * Hot-Plug event, or because the driver is going to be removed from
7181  * memory.
7182  */
igc_remove(struct pci_dev * pdev)7183 static void igc_remove(struct pci_dev *pdev)
7184 {
7185 	struct net_device *netdev = pci_get_drvdata(pdev);
7186 	struct igc_adapter *adapter = netdev_priv(netdev);
7187 
7188 	pm_runtime_get_noresume(&pdev->dev);
7189 
7190 	igc_flush_nfc_rules(adapter);
7191 
7192 	igc_ptp_stop(adapter);
7193 
7194 	pci_disable_ptm(pdev);
7195 	pci_clear_master(pdev);
7196 
7197 	set_bit(__IGC_DOWN, &adapter->state);
7198 
7199 	del_timer_sync(&adapter->watchdog_timer);
7200 	del_timer_sync(&adapter->phy_info_timer);
7201 
7202 	cancel_work_sync(&adapter->reset_task);
7203 	cancel_work_sync(&adapter->watchdog_task);
7204 	hrtimer_cancel(&adapter->hrtimer);
7205 
7206 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7207 		igc_led_free(adapter);
7208 
7209 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7210 	 * would have already happened in close and is redundant.
7211 	 */
7212 	igc_release_hw_control(adapter);
7213 	unregister_netdev(netdev);
7214 
7215 	igc_clear_interrupt_scheme(adapter);
7216 	pci_iounmap(pdev, adapter->io_addr);
7217 	pci_release_mem_regions(pdev);
7218 
7219 	free_netdev(netdev);
7220 
7221 	pci_disable_device(pdev);
7222 }
7223 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7224 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7225 			  bool runtime)
7226 {
7227 	struct net_device *netdev = pci_get_drvdata(pdev);
7228 	struct igc_adapter *adapter = netdev_priv(netdev);
7229 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7230 	struct igc_hw *hw = &adapter->hw;
7231 	u32 ctrl, rctl, status;
7232 	bool wake;
7233 
7234 	rtnl_lock();
7235 	netif_device_detach(netdev);
7236 
7237 	if (netif_running(netdev))
7238 		__igc_close(netdev, true);
7239 
7240 	igc_ptp_suspend(adapter);
7241 
7242 	igc_clear_interrupt_scheme(adapter);
7243 	rtnl_unlock();
7244 
7245 	status = rd32(IGC_STATUS);
7246 	if (status & IGC_STATUS_LU)
7247 		wufc &= ~IGC_WUFC_LNKC;
7248 
7249 	if (wufc) {
7250 		igc_setup_rctl(adapter);
7251 		igc_set_rx_mode(netdev);
7252 
7253 		/* turn on all-multi mode if wake on multicast is enabled */
7254 		if (wufc & IGC_WUFC_MC) {
7255 			rctl = rd32(IGC_RCTL);
7256 			rctl |= IGC_RCTL_MPE;
7257 			wr32(IGC_RCTL, rctl);
7258 		}
7259 
7260 		ctrl = rd32(IGC_CTRL);
7261 		ctrl |= IGC_CTRL_ADVD3WUC;
7262 		wr32(IGC_CTRL, ctrl);
7263 
7264 		/* Allow time for pending master requests to run */
7265 		igc_disable_pcie_master(hw);
7266 
7267 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7268 		wr32(IGC_WUFC, wufc);
7269 	} else {
7270 		wr32(IGC_WUC, 0);
7271 		wr32(IGC_WUFC, 0);
7272 	}
7273 
7274 	wake = wufc || adapter->en_mng_pt;
7275 	if (!wake)
7276 		igc_power_down_phy_copper_base(&adapter->hw);
7277 	else
7278 		igc_power_up_link(adapter);
7279 
7280 	if (enable_wake)
7281 		*enable_wake = wake;
7282 
7283 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7284 	 * would have already happened in close and is redundant.
7285 	 */
7286 	igc_release_hw_control(adapter);
7287 
7288 	pci_disable_device(pdev);
7289 
7290 	return 0;
7291 }
7292 
igc_runtime_suspend(struct device * dev)7293 static int igc_runtime_suspend(struct device *dev)
7294 {
7295 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7296 }
7297 
igc_deliver_wake_packet(struct net_device * netdev)7298 static void igc_deliver_wake_packet(struct net_device *netdev)
7299 {
7300 	struct igc_adapter *adapter = netdev_priv(netdev);
7301 	struct igc_hw *hw = &adapter->hw;
7302 	struct sk_buff *skb;
7303 	u32 wupl;
7304 
7305 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7306 
7307 	/* WUPM stores only the first 128 bytes of the wake packet.
7308 	 * Read the packet only if we have the whole thing.
7309 	 */
7310 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7311 		return;
7312 
7313 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7314 	if (!skb)
7315 		return;
7316 
7317 	skb_put(skb, wupl);
7318 
7319 	/* Ensure reads are 32-bit aligned */
7320 	wupl = roundup(wupl, 4);
7321 
7322 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7323 
7324 	skb->protocol = eth_type_trans(skb, netdev);
7325 	netif_rx(skb);
7326 }
7327 
__igc_resume(struct device * dev,bool rpm)7328 static int __igc_resume(struct device *dev, bool rpm)
7329 {
7330 	struct pci_dev *pdev = to_pci_dev(dev);
7331 	struct net_device *netdev = pci_get_drvdata(pdev);
7332 	struct igc_adapter *adapter = netdev_priv(netdev);
7333 	struct igc_hw *hw = &adapter->hw;
7334 	u32 err, val;
7335 
7336 	pci_set_power_state(pdev, PCI_D0);
7337 	pci_restore_state(pdev);
7338 	pci_save_state(pdev);
7339 
7340 	if (!pci_device_is_present(pdev))
7341 		return -ENODEV;
7342 	err = pci_enable_device_mem(pdev);
7343 	if (err) {
7344 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7345 		return err;
7346 	}
7347 	pci_set_master(pdev);
7348 
7349 	pci_enable_wake(pdev, PCI_D3hot, 0);
7350 	pci_enable_wake(pdev, PCI_D3cold, 0);
7351 
7352 	if (igc_init_interrupt_scheme(adapter, true)) {
7353 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7354 		return -ENOMEM;
7355 	}
7356 
7357 	igc_reset(adapter);
7358 
7359 	/* let the f/w know that the h/w is now under the control of the
7360 	 * driver.
7361 	 */
7362 	igc_get_hw_control(adapter);
7363 
7364 	val = rd32(IGC_WUS);
7365 	if (val & WAKE_PKT_WUS)
7366 		igc_deliver_wake_packet(netdev);
7367 
7368 	wr32(IGC_WUS, ~0);
7369 
7370 	if (netif_running(netdev)) {
7371 		if (!rpm)
7372 			rtnl_lock();
7373 		err = __igc_open(netdev, true);
7374 		if (!rpm)
7375 			rtnl_unlock();
7376 		if (!err)
7377 			netif_device_attach(netdev);
7378 	}
7379 
7380 	return err;
7381 }
7382 
igc_resume(struct device * dev)7383 static int igc_resume(struct device *dev)
7384 {
7385 	return __igc_resume(dev, false);
7386 }
7387 
igc_runtime_resume(struct device * dev)7388 static int igc_runtime_resume(struct device *dev)
7389 {
7390 	return __igc_resume(dev, true);
7391 }
7392 
igc_suspend(struct device * dev)7393 static int igc_suspend(struct device *dev)
7394 {
7395 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7396 }
7397 
igc_runtime_idle(struct device * dev)7398 static int __maybe_unused igc_runtime_idle(struct device *dev)
7399 {
7400 	struct net_device *netdev = dev_get_drvdata(dev);
7401 	struct igc_adapter *adapter = netdev_priv(netdev);
7402 
7403 	if (!igc_has_link(adapter))
7404 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7405 
7406 	return -EBUSY;
7407 }
7408 
igc_shutdown(struct pci_dev * pdev)7409 static void igc_shutdown(struct pci_dev *pdev)
7410 {
7411 	bool wake;
7412 
7413 	__igc_shutdown(pdev, &wake, 0);
7414 
7415 	if (system_state == SYSTEM_POWER_OFF) {
7416 		pci_wake_from_d3(pdev, wake);
7417 		pci_set_power_state(pdev, PCI_D3hot);
7418 	}
7419 }
7420 
7421 /**
7422  *  igc_io_error_detected - called when PCI error is detected
7423  *  @pdev: Pointer to PCI device
7424  *  @state: The current PCI connection state
7425  *
7426  *  This function is called after a PCI bus error affecting
7427  *  this device has been detected.
7428  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7429 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7430 					      pci_channel_state_t state)
7431 {
7432 	struct net_device *netdev = pci_get_drvdata(pdev);
7433 	struct igc_adapter *adapter = netdev_priv(netdev);
7434 
7435 	rtnl_lock();
7436 	netif_device_detach(netdev);
7437 
7438 	if (state == pci_channel_io_perm_failure) {
7439 		rtnl_unlock();
7440 		return PCI_ERS_RESULT_DISCONNECT;
7441 	}
7442 
7443 	if (netif_running(netdev))
7444 		igc_down(adapter);
7445 	pci_disable_device(pdev);
7446 	rtnl_unlock();
7447 
7448 	/* Request a slot reset. */
7449 	return PCI_ERS_RESULT_NEED_RESET;
7450 }
7451 
7452 /**
7453  *  igc_io_slot_reset - called after the PCI bus has been reset.
7454  *  @pdev: Pointer to PCI device
7455  *
7456  *  Restart the card from scratch, as if from a cold-boot. Implementation
7457  *  resembles the first-half of the __igc_resume routine.
7458  **/
igc_io_slot_reset(struct pci_dev * pdev)7459 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7460 {
7461 	struct net_device *netdev = pci_get_drvdata(pdev);
7462 	struct igc_adapter *adapter = netdev_priv(netdev);
7463 	struct igc_hw *hw = &adapter->hw;
7464 	pci_ers_result_t result;
7465 
7466 	if (pci_enable_device_mem(pdev)) {
7467 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7468 		result = PCI_ERS_RESULT_DISCONNECT;
7469 	} else {
7470 		pci_set_master(pdev);
7471 		pci_restore_state(pdev);
7472 		pci_save_state(pdev);
7473 
7474 		pci_enable_wake(pdev, PCI_D3hot, 0);
7475 		pci_enable_wake(pdev, PCI_D3cold, 0);
7476 
7477 		/* In case of PCI error, adapter loses its HW address
7478 		 * so we should re-assign it here.
7479 		 */
7480 		hw->hw_addr = adapter->io_addr;
7481 
7482 		igc_reset(adapter);
7483 		wr32(IGC_WUS, ~0);
7484 		result = PCI_ERS_RESULT_RECOVERED;
7485 	}
7486 
7487 	return result;
7488 }
7489 
7490 /**
7491  *  igc_io_resume - called when traffic can start to flow again.
7492  *  @pdev: Pointer to PCI device
7493  *
7494  *  This callback is called when the error recovery driver tells us that
7495  *  its OK to resume normal operation. Implementation resembles the
7496  *  second-half of the __igc_resume routine.
7497  */
igc_io_resume(struct pci_dev * pdev)7498 static void igc_io_resume(struct pci_dev *pdev)
7499 {
7500 	struct net_device *netdev = pci_get_drvdata(pdev);
7501 	struct igc_adapter *adapter = netdev_priv(netdev);
7502 
7503 	rtnl_lock();
7504 	if (netif_running(netdev)) {
7505 		if (igc_open(netdev)) {
7506 			rtnl_unlock();
7507 			netdev_err(netdev, "igc_open failed after reset\n");
7508 			return;
7509 		}
7510 	}
7511 
7512 	netif_device_attach(netdev);
7513 
7514 	/* let the f/w know that the h/w is now under the control of the
7515 	 * driver.
7516 	 */
7517 	igc_get_hw_control(adapter);
7518 	rtnl_unlock();
7519 }
7520 
7521 static const struct pci_error_handlers igc_err_handler = {
7522 	.error_detected = igc_io_error_detected,
7523 	.slot_reset = igc_io_slot_reset,
7524 	.resume = igc_io_resume,
7525 };
7526 
7527 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7528 			  igc_runtime_suspend, igc_runtime_resume,
7529 			  igc_runtime_idle);
7530 
7531 static struct pci_driver igc_driver = {
7532 	.name     = igc_driver_name,
7533 	.id_table = igc_pci_tbl,
7534 	.probe    = igc_probe,
7535 	.remove   = igc_remove,
7536 	.driver.pm = pm_ptr(&igc_pm_ops),
7537 	.shutdown = igc_shutdown,
7538 	.err_handler = &igc_err_handler,
7539 };
7540 
7541 /**
7542  * igc_reinit_queues - return error
7543  * @adapter: pointer to adapter structure
7544  */
igc_reinit_queues(struct igc_adapter * adapter)7545 int igc_reinit_queues(struct igc_adapter *adapter)
7546 {
7547 	struct net_device *netdev = adapter->netdev;
7548 	int err = 0;
7549 
7550 	if (netif_running(netdev))
7551 		igc_close(netdev);
7552 
7553 	igc_reset_interrupt_capability(adapter);
7554 
7555 	if (igc_init_interrupt_scheme(adapter, true)) {
7556 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7557 		return -ENOMEM;
7558 	}
7559 
7560 	if (netif_running(netdev))
7561 		err = igc_open(netdev);
7562 
7563 	return err;
7564 }
7565 
7566 /**
7567  * igc_get_hw_dev - return device
7568  * @hw: pointer to hardware structure
7569  *
7570  * used by hardware layer to print debugging information
7571  */
igc_get_hw_dev(struct igc_hw * hw)7572 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7573 {
7574 	struct igc_adapter *adapter = hw->back;
7575 
7576 	return adapter->netdev;
7577 }
7578 
igc_disable_rx_ring_hw(struct igc_ring * ring)7579 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7580 {
7581 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7582 	u8 idx = ring->reg_idx;
7583 	u32 rxdctl;
7584 
7585 	rxdctl = rd32(IGC_RXDCTL(idx));
7586 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7587 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7588 	wr32(IGC_RXDCTL(idx), rxdctl);
7589 }
7590 
igc_disable_rx_ring(struct igc_ring * ring)7591 void igc_disable_rx_ring(struct igc_ring *ring)
7592 {
7593 	igc_disable_rx_ring_hw(ring);
7594 	igc_clean_rx_ring(ring);
7595 }
7596 
igc_enable_rx_ring(struct igc_ring * ring)7597 void igc_enable_rx_ring(struct igc_ring *ring)
7598 {
7599 	struct igc_adapter *adapter = ring->q_vector->adapter;
7600 
7601 	igc_configure_rx_ring(adapter, ring);
7602 
7603 	if (ring->xsk_pool)
7604 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7605 	else
7606 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7607 }
7608 
igc_disable_tx_ring(struct igc_ring * ring)7609 void igc_disable_tx_ring(struct igc_ring *ring)
7610 {
7611 	igc_disable_tx_ring_hw(ring);
7612 	igc_clean_tx_ring(ring);
7613 }
7614 
igc_enable_tx_ring(struct igc_ring * ring)7615 void igc_enable_tx_ring(struct igc_ring *ring)
7616 {
7617 	struct igc_adapter *adapter = ring->q_vector->adapter;
7618 
7619 	igc_configure_tx_ring(adapter, ring);
7620 }
7621 
7622 /**
7623  * igc_init_module - Driver Registration Routine
7624  *
7625  * igc_init_module is the first routine called when the driver is
7626  * loaded. All it does is register with the PCI subsystem.
7627  */
igc_init_module(void)7628 static int __init igc_init_module(void)
7629 {
7630 	int ret;
7631 
7632 	pr_info("%s\n", igc_driver_string);
7633 	pr_info("%s\n", igc_copyright);
7634 
7635 	ret = pci_register_driver(&igc_driver);
7636 	return ret;
7637 }
7638 
7639 module_init(igc_init_module);
7640 
7641 /**
7642  * igc_exit_module - Driver Exit Cleanup Routine
7643  *
7644  * igc_exit_module is called just before the driver is removed
7645  * from memory.
7646  */
igc_exit_module(void)7647 static void __exit igc_exit_module(void)
7648 {
7649 	pci_unregister_driver(&igc_driver);
7650 }
7651 
7652 module_exit(igc_exit_module);
7653 /* igc_main.c */
7654