1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1100 buffer->skb = skb;
1101 buffer->protocol = 0;
1102 buffer->bytecount = skb->len;
1103 buffer->gso_segs = 1;
1104 buffer->time_stamp = jiffies;
1105 dma_unmap_len_set(buffer, len, skb->len);
1106 dma_unmap_addr_set(buffer, dma, dma);
1107
1108 return 0;
1109 }
1110
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1111 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 struct sk_buff *skb,
1113 struct igc_tx_buffer *first)
1114 {
1115 union igc_adv_tx_desc *desc;
1116 u32 cmd_type, olinfo_status;
1117 int err;
1118
1119 if (!igc_desc_unused(ring))
1120 return -EBUSY;
1121
1122 err = igc_init_empty_frame(ring, first, skb);
1123 if (err)
1124 return err;
1125
1126 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 first->bytecount;
1129 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130
1131 desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135
1136 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137
1138 first->next_to_watch = desc;
1139
1140 ring->next_to_use++;
1141 if (ring->next_to_use == ring->count)
1142 ring->next_to_use = 0;
1143
1144 return 0;
1145 }
1146
1147 #define IGC_EMPTY_FRAME_SIZE 60
1148
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1149 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 __le32 launch_time, bool first_flag,
1151 u32 vlan_macip_lens, u32 type_tucmd,
1152 u32 mss_l4len_idx)
1153 {
1154 struct igc_adv_tx_context_desc *context_desc;
1155 u16 i = tx_ring->next_to_use;
1156
1157 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158
1159 i++;
1160 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161
1162 /* set bits to identify this as an advanced context descriptor */
1163 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164
1165 /* For i225, context index must be unique per ring. */
1166 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 mss_l4len_idx |= tx_ring->reg_idx << 4;
1168
1169 if (first_flag)
1170 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171
1172 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1173 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1174 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1175 context_desc->launch_time = launch_time;
1176 }
1177
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1178 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 __le32 launch_time, bool first_flag)
1180 {
1181 struct sk_buff *skb = first->skb;
1182 u32 vlan_macip_lens = 0;
1183 u32 type_tucmd = 0;
1184
1185 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186 csum_failed:
1187 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 !tx_ring->launchtime_enable)
1189 return;
1190 goto no_csum;
1191 }
1192
1193 switch (skb->csum_offset) {
1194 case offsetof(struct tcphdr, check):
1195 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 fallthrough;
1197 case offsetof(struct udphdr, check):
1198 break;
1199 case offsetof(struct sctphdr, checksum):
1200 /* validate that this is actually an SCTP request */
1201 if (skb_csum_is_sctp(skb)) {
1202 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 break;
1204 }
1205 fallthrough;
1206 default:
1207 skb_checksum_help(skb);
1208 goto csum_failed;
1209 }
1210
1211 /* update TX checksum flag */
1212 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 skb_network_offset(skb);
1215 no_csum:
1216 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218
1219 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 vlan_macip_lens, type_tucmd, 0);
1221 }
1222
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1223 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224 {
1225 struct net_device *netdev = tx_ring->netdev;
1226
1227 netif_stop_subqueue(netdev, tx_ring->queue_index);
1228
1229 /* memory barriier comment */
1230 smp_mb();
1231
1232 /* We need to check again in a case another CPU has just
1233 * made room available.
1234 */
1235 if (igc_desc_unused(tx_ring) < size)
1236 return -EBUSY;
1237
1238 /* A reprieve! */
1239 netif_wake_subqueue(netdev, tx_ring->queue_index);
1240
1241 u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 tx_ring->tx_stats.restart_queue2++;
1243 u64_stats_update_end(&tx_ring->tx_syncp2);
1244
1245 return 0;
1246 }
1247
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1248 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249 {
1250 if (igc_desc_unused(tx_ring) >= size)
1251 return 0;
1252 return __igc_maybe_stop_tx(tx_ring, size);
1253 }
1254
1255 #define IGC_SET_FLAG(_input, _flag, _result) \
1256 (((_flag) <= (_result)) ? \
1257 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1258 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1260 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261 {
1262 /* set type for advanced descriptor with frame checksum insertion */
1263 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 IGC_ADVTXD_DCMD_DEXT |
1265 IGC_ADVTXD_DCMD_IFCS;
1266
1267 /* set HW vlan bit if vlan is present */
1268 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 IGC_ADVTXD_DCMD_VLE);
1270
1271 /* set segmentation bits for TSO */
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 (IGC_ADVTXD_DCMD_TSE));
1274
1275 /* set timestamp bit if present, will select the register set
1276 * based on the _TSTAMP(_X) bit.
1277 */
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1279 (IGC_ADVTXD_MAC_TSTAMP));
1280
1281 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1282 (IGC_ADVTXD_TSTAMP_REG_1));
1283
1284 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1285 (IGC_ADVTXD_TSTAMP_REG_2));
1286
1287 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1288 (IGC_ADVTXD_TSTAMP_REG_3));
1289
1290 /* insert frame checksum */
1291 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1292
1293 return cmd_type;
1294 }
1295
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1296 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1297 union igc_adv_tx_desc *tx_desc,
1298 u32 tx_flags, unsigned int paylen)
1299 {
1300 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1301
1302 /* insert L4 checksum */
1303 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1304 (IGC_TXD_POPTS_TXSM << 8));
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1308 (IGC_TXD_POPTS_IXSM << 8));
1309
1310 /* Use the second timer (free running, in general) for the timestamp */
1311 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1312 IGC_TXD_PTP2_TIMER_1);
1313
1314 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1315 }
1316
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1317 static int igc_tx_map(struct igc_ring *tx_ring,
1318 struct igc_tx_buffer *first,
1319 const u8 hdr_len)
1320 {
1321 struct sk_buff *skb = first->skb;
1322 struct igc_tx_buffer *tx_buffer;
1323 union igc_adv_tx_desc *tx_desc;
1324 u32 tx_flags = first->tx_flags;
1325 skb_frag_t *frag;
1326 u16 i = tx_ring->next_to_use;
1327 unsigned int data_len, size;
1328 dma_addr_t dma;
1329 u32 cmd_type;
1330
1331 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1332 tx_desc = IGC_TX_DESC(tx_ring, i);
1333
1334 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1335
1336 size = skb_headlen(skb);
1337 data_len = skb->data_len;
1338
1339 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1340
1341 tx_buffer = first;
1342
1343 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1344 if (dma_mapping_error(tx_ring->dev, dma))
1345 goto dma_error;
1346
1347 /* record length, and DMA address */
1348 dma_unmap_len_set(tx_buffer, len, size);
1349 dma_unmap_addr_set(tx_buffer, dma, dma);
1350
1351 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1352
1353 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1354 tx_desc->read.cmd_type_len =
1355 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1356
1357 i++;
1358 tx_desc++;
1359 if (i == tx_ring->count) {
1360 tx_desc = IGC_TX_DESC(tx_ring, 0);
1361 i = 0;
1362 }
1363 tx_desc->read.olinfo_status = 0;
1364
1365 dma += IGC_MAX_DATA_PER_TXD;
1366 size -= IGC_MAX_DATA_PER_TXD;
1367
1368 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1369 }
1370
1371 if (likely(!data_len))
1372 break;
1373
1374 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1375
1376 i++;
1377 tx_desc++;
1378 if (i == tx_ring->count) {
1379 tx_desc = IGC_TX_DESC(tx_ring, 0);
1380 i = 0;
1381 }
1382 tx_desc->read.olinfo_status = 0;
1383
1384 size = skb_frag_size(frag);
1385 data_len -= size;
1386
1387 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1388 size, DMA_TO_DEVICE);
1389
1390 tx_buffer = &tx_ring->tx_buffer_info[i];
1391 }
1392
1393 /* write last descriptor with RS and EOP bits */
1394 cmd_type |= size | IGC_TXD_DCMD;
1395 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1396
1397 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1398
1399 /* set the timestamp */
1400 first->time_stamp = jiffies;
1401
1402 skb_tx_timestamp(skb);
1403
1404 /* Force memory writes to complete before letting h/w know there
1405 * are new descriptors to fetch. (Only applicable for weak-ordered
1406 * memory model archs, such as IA-64).
1407 *
1408 * We also need this memory barrier to make certain all of the
1409 * status bits have been updated before next_to_watch is written.
1410 */
1411 wmb();
1412
1413 /* set next_to_watch value indicating a packet is present */
1414 first->next_to_watch = tx_desc;
1415
1416 i++;
1417 if (i == tx_ring->count)
1418 i = 0;
1419
1420 tx_ring->next_to_use = i;
1421
1422 /* Make sure there is space in the ring for the next send. */
1423 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1424
1425 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1426 writel(i, tx_ring->tail);
1427 }
1428
1429 return 0;
1430 dma_error:
1431 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433
1434 /* clear dma mappings for failed tx_buffer_info map */
1435 while (tx_buffer != first) {
1436 if (dma_unmap_len(tx_buffer, len))
1437 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1438
1439 if (i-- == 0)
1440 i += tx_ring->count;
1441 tx_buffer = &tx_ring->tx_buffer_info[i];
1442 }
1443
1444 if (dma_unmap_len(tx_buffer, len))
1445 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1446
1447 dev_kfree_skb_any(tx_buffer->skb);
1448 tx_buffer->skb = NULL;
1449
1450 tx_ring->next_to_use = i;
1451
1452 return -1;
1453 }
1454
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1455 static int igc_tso(struct igc_ring *tx_ring,
1456 struct igc_tx_buffer *first,
1457 __le32 launch_time, bool first_flag,
1458 u8 *hdr_len)
1459 {
1460 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1461 struct sk_buff *skb = first->skb;
1462 union {
1463 struct iphdr *v4;
1464 struct ipv6hdr *v6;
1465 unsigned char *hdr;
1466 } ip;
1467 union {
1468 struct tcphdr *tcp;
1469 struct udphdr *udp;
1470 unsigned char *hdr;
1471 } l4;
1472 u32 paylen, l4_offset;
1473 int err;
1474
1475 if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 return 0;
1477
1478 if (!skb_is_gso(skb))
1479 return 0;
1480
1481 err = skb_cow_head(skb, 0);
1482 if (err < 0)
1483 return err;
1484
1485 ip.hdr = skb_network_header(skb);
1486 l4.hdr = skb_checksum_start(skb);
1487
1488 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1489 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1490
1491 /* initialize outer IP header fields */
1492 if (ip.v4->version == 4) {
1493 unsigned char *csum_start = skb_checksum_start(skb);
1494 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1495
1496 /* IP header will have to cancel out any data that
1497 * is not a part of the outer IP header
1498 */
1499 ip.v4->check = csum_fold(csum_partial(trans_start,
1500 csum_start - trans_start,
1501 0));
1502 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1503
1504 ip.v4->tot_len = 0;
1505 first->tx_flags |= IGC_TX_FLAGS_TSO |
1506 IGC_TX_FLAGS_CSUM |
1507 IGC_TX_FLAGS_IPV4;
1508 } else {
1509 ip.v6->payload_len = 0;
1510 first->tx_flags |= IGC_TX_FLAGS_TSO |
1511 IGC_TX_FLAGS_CSUM;
1512 }
1513
1514 /* determine offset of inner transport header */
1515 l4_offset = l4.hdr - skb->data;
1516
1517 /* remove payload length from inner checksum */
1518 paylen = skb->len - l4_offset;
1519 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1520 /* compute length of segmentation header */
1521 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1522 csum_replace_by_diff(&l4.tcp->check,
1523 (__force __wsum)htonl(paylen));
1524 } else {
1525 /* compute length of segmentation header */
1526 *hdr_len = sizeof(*l4.udp) + l4_offset;
1527 csum_replace_by_diff(&l4.udp->check,
1528 (__force __wsum)htonl(paylen));
1529 }
1530
1531 /* update gso size and bytecount with header size */
1532 first->gso_segs = skb_shinfo(skb)->gso_segs;
1533 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1534
1535 /* MSS L4LEN IDX */
1536 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1537 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1538
1539 /* VLAN MACLEN IPLEN */
1540 vlan_macip_lens = l4.hdr - ip.hdr;
1541 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1542 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1543
1544 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1545 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1546
1547 return 1;
1548 }
1549
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1550 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1551 {
1552 int i;
1553
1554 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1555 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1556
1557 if (tstamp->skb)
1558 continue;
1559
1560 tstamp->skb = skb_get(skb);
1561 tstamp->start = jiffies;
1562 *flags = tstamp->flags;
1563
1564 return true;
1565 }
1566
1567 return false;
1568 }
1569
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1570 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1571 struct igc_ring *tx_ring)
1572 {
1573 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1574 bool first_flag = false, insert_empty = false;
1575 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1576 __be16 protocol = vlan_get_protocol(skb);
1577 struct igc_tx_buffer *first;
1578 __le32 launch_time = 0;
1579 u32 tx_flags = 0;
1580 unsigned short f;
1581 ktime_t txtime;
1582 u8 hdr_len = 0;
1583 int tso = 0;
1584
1585 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1586 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1587 * + 2 desc gap to keep tail from touching head,
1588 * + 1 desc for context descriptor,
1589 * otherwise try next time
1590 */
1591 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1592 count += TXD_USE_COUNT(skb_frag_size(
1593 &skb_shinfo(skb)->frags[f]));
1594
1595 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1596 /* this is a hard error */
1597 return NETDEV_TX_BUSY;
1598 }
1599
1600 if (!tx_ring->launchtime_enable)
1601 goto done;
1602
1603 txtime = skb->tstamp;
1604 skb->tstamp = ktime_set(0, 0);
1605 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1606
1607 if (insert_empty) {
1608 struct igc_tx_buffer *empty_info;
1609 struct sk_buff *empty;
1610 void *data;
1611
1612 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1613 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1614 if (!empty)
1615 goto done;
1616
1617 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1618 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1619
1620 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1621
1622 if (igc_init_tx_empty_descriptor(tx_ring,
1623 empty,
1624 empty_info) < 0)
1625 dev_kfree_skb_any(empty);
1626 }
1627
1628 done:
1629 /* record the location of the first descriptor for this packet */
1630 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1631 first->type = IGC_TX_BUFFER_TYPE_SKB;
1632 first->skb = skb;
1633 first->bytecount = skb->len;
1634 first->gso_segs = 1;
1635
1636 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1637 goto out_drop;
1638
1639 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1640 adapter->stats.txdrop++;
1641 goto out_drop;
1642 }
1643
1644 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1645 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1646 unsigned long flags;
1647 u32 tstamp_flags;
1648
1649 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1650 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1651 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1652 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1653 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1654 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1655 } else {
1656 adapter->tx_hwtstamp_skipped++;
1657 }
1658
1659 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1660 }
1661
1662 if (skb_vlan_tag_present(skb)) {
1663 tx_flags |= IGC_TX_FLAGS_VLAN;
1664 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1665 }
1666
1667 /* record initial flags and protocol */
1668 first->tx_flags = tx_flags;
1669 first->protocol = protocol;
1670
1671 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1672 if (tso < 0)
1673 goto out_drop;
1674 else if (!tso)
1675 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1676
1677 igc_tx_map(tx_ring, first, hdr_len);
1678
1679 return NETDEV_TX_OK;
1680
1681 out_drop:
1682 dev_kfree_skb_any(first->skb);
1683 first->skb = NULL;
1684
1685 return NETDEV_TX_OK;
1686 }
1687
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1688 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1689 struct sk_buff *skb)
1690 {
1691 unsigned int r_idx = skb->queue_mapping;
1692
1693 if (r_idx >= adapter->num_tx_queues)
1694 r_idx = r_idx % adapter->num_tx_queues;
1695
1696 return adapter->tx_ring[r_idx];
1697 }
1698
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1699 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1700 struct net_device *netdev)
1701 {
1702 struct igc_adapter *adapter = netdev_priv(netdev);
1703
1704 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1705 * in order to meet this minimum size requirement.
1706 */
1707 if (skb->len < 17) {
1708 if (skb_padto(skb, 17))
1709 return NETDEV_TX_OK;
1710 skb->len = 17;
1711 }
1712
1713 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1714 }
1715
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1716 static void igc_rx_checksum(struct igc_ring *ring,
1717 union igc_adv_rx_desc *rx_desc,
1718 struct sk_buff *skb)
1719 {
1720 skb_checksum_none_assert(skb);
1721
1722 /* Ignore Checksum bit is set */
1723 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1724 return;
1725
1726 /* Rx checksum disabled via ethtool */
1727 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1728 return;
1729
1730 /* TCP/UDP checksum error bit is set */
1731 if (igc_test_staterr(rx_desc,
1732 IGC_RXDEXT_STATERR_L4E |
1733 IGC_RXDEXT_STATERR_IPE)) {
1734 /* work around errata with sctp packets where the TCPE aka
1735 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1736 * packets (aka let the stack check the crc32c)
1737 */
1738 if (!(skb->len == 60 &&
1739 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1740 u64_stats_update_begin(&ring->rx_syncp);
1741 ring->rx_stats.csum_err++;
1742 u64_stats_update_end(&ring->rx_syncp);
1743 }
1744 /* let the stack verify checksum errors */
1745 return;
1746 }
1747 /* It must be a TCP or UDP packet with a valid checksum */
1748 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1749 IGC_RXD_STAT_UDPCS))
1750 skb->ip_summed = CHECKSUM_UNNECESSARY;
1751
1752 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1753 le32_to_cpu(rx_desc->wb.upper.status_error));
1754 }
1755
1756 /* Mapping HW RSS Type to enum pkt_hash_types */
1757 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1758 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1759 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1760 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1761 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1762 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1764 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1767 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1769 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1770 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1771 [13] = PKT_HASH_TYPE_NONE,
1772 [14] = PKT_HASH_TYPE_NONE,
1773 [15] = PKT_HASH_TYPE_NONE,
1774 };
1775
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1776 static inline void igc_rx_hash(struct igc_ring *ring,
1777 union igc_adv_rx_desc *rx_desc,
1778 struct sk_buff *skb)
1779 {
1780 if (ring->netdev->features & NETIF_F_RXHASH) {
1781 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1782 u32 rss_type = igc_rss_type(rx_desc);
1783
1784 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1785 }
1786 }
1787
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1788 static void igc_rx_vlan(struct igc_ring *rx_ring,
1789 union igc_adv_rx_desc *rx_desc,
1790 struct sk_buff *skb)
1791 {
1792 struct net_device *dev = rx_ring->netdev;
1793 u16 vid;
1794
1795 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1796 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1797 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1798 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1799 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1800 else
1801 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1802
1803 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1804 }
1805 }
1806
1807 /**
1808 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1809 * @rx_ring: rx descriptor ring packet is being transacted on
1810 * @rx_desc: pointer to the EOP Rx descriptor
1811 * @skb: pointer to current skb being populated
1812 *
1813 * This function checks the ring, descriptor, and packet information in order
1814 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1815 * skb.
1816 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1817 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1818 union igc_adv_rx_desc *rx_desc,
1819 struct sk_buff *skb)
1820 {
1821 igc_rx_hash(rx_ring, rx_desc, skb);
1822
1823 igc_rx_checksum(rx_ring, rx_desc, skb);
1824
1825 igc_rx_vlan(rx_ring, rx_desc, skb);
1826
1827 skb_record_rx_queue(skb, rx_ring->queue_index);
1828
1829 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830 }
1831
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1832 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1833 {
1834 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1835 struct igc_adapter *adapter = netdev_priv(netdev);
1836 struct igc_hw *hw = &adapter->hw;
1837 u32 ctrl;
1838
1839 ctrl = rd32(IGC_CTRL);
1840
1841 if (enable) {
1842 /* enable VLAN tag insert/strip */
1843 ctrl |= IGC_CTRL_VME;
1844 } else {
1845 /* disable VLAN tag insert/strip */
1846 ctrl &= ~IGC_CTRL_VME;
1847 }
1848 wr32(IGC_CTRL, ctrl);
1849 }
1850
igc_restore_vlan(struct igc_adapter * adapter)1851 static void igc_restore_vlan(struct igc_adapter *adapter)
1852 {
1853 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1854 }
1855
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1856 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1857 const unsigned int size,
1858 int *rx_buffer_pgcnt)
1859 {
1860 struct igc_rx_buffer *rx_buffer;
1861
1862 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1863 *rx_buffer_pgcnt =
1864 #if (PAGE_SIZE < 8192)
1865 page_count(rx_buffer->page);
1866 #else
1867 0;
1868 #endif
1869 prefetchw(rx_buffer->page);
1870
1871 /* we are reusing so sync this buffer for CPU use */
1872 dma_sync_single_range_for_cpu(rx_ring->dev,
1873 rx_buffer->dma,
1874 rx_buffer->page_offset,
1875 size,
1876 DMA_FROM_DEVICE);
1877
1878 rx_buffer->pagecnt_bias--;
1879
1880 return rx_buffer;
1881 }
1882
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1883 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1884 unsigned int truesize)
1885 {
1886 #if (PAGE_SIZE < 8192)
1887 buffer->page_offset ^= truesize;
1888 #else
1889 buffer->page_offset += truesize;
1890 #endif
1891 }
1892
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1893 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1894 unsigned int size)
1895 {
1896 unsigned int truesize;
1897
1898 #if (PAGE_SIZE < 8192)
1899 truesize = igc_rx_pg_size(ring) / 2;
1900 #else
1901 truesize = ring_uses_build_skb(ring) ?
1902 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1903 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1904 SKB_DATA_ALIGN(size);
1905 #endif
1906 return truesize;
1907 }
1908
1909 /**
1910 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1911 * @rx_ring: rx descriptor ring to transact packets on
1912 * @rx_buffer: buffer containing page to add
1913 * @skb: sk_buff to place the data into
1914 * @size: size of buffer to be added
1915 *
1916 * This function will add the data contained in rx_buffer->page to the skb.
1917 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1918 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1919 struct igc_rx_buffer *rx_buffer,
1920 struct sk_buff *skb,
1921 unsigned int size)
1922 {
1923 unsigned int truesize;
1924
1925 #if (PAGE_SIZE < 8192)
1926 truesize = igc_rx_pg_size(rx_ring) / 2;
1927 #else
1928 truesize = ring_uses_build_skb(rx_ring) ?
1929 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1930 SKB_DATA_ALIGN(size);
1931 #endif
1932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 rx_buffer->page_offset, size, truesize);
1934
1935 igc_rx_buffer_flip(rx_buffer, truesize);
1936 }
1937
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1938 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1939 struct igc_rx_buffer *rx_buffer,
1940 struct xdp_buff *xdp)
1941 {
1942 unsigned int size = xdp->data_end - xdp->data;
1943 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1944 unsigned int metasize = xdp->data - xdp->data_meta;
1945 struct sk_buff *skb;
1946
1947 /* prefetch first cache line of first page */
1948 net_prefetch(xdp->data_meta);
1949
1950 /* build an skb around the page buffer */
1951 skb = napi_build_skb(xdp->data_hard_start, truesize);
1952 if (unlikely(!skb))
1953 return NULL;
1954
1955 /* update pointers within the skb to store the data */
1956 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1957 __skb_put(skb, size);
1958 if (metasize)
1959 skb_metadata_set(skb, metasize);
1960
1961 igc_rx_buffer_flip(rx_buffer, truesize);
1962 return skb;
1963 }
1964
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1965 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1966 struct igc_rx_buffer *rx_buffer,
1967 struct igc_xdp_buff *ctx)
1968 {
1969 struct xdp_buff *xdp = &ctx->xdp;
1970 unsigned int metasize = xdp->data - xdp->data_meta;
1971 unsigned int size = xdp->data_end - xdp->data;
1972 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1973 void *va = xdp->data;
1974 unsigned int headlen;
1975 struct sk_buff *skb;
1976
1977 /* prefetch first cache line of first page */
1978 net_prefetch(xdp->data_meta);
1979
1980 /* allocate a skb to store the frags */
1981 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1982 IGC_RX_HDR_LEN + metasize);
1983 if (unlikely(!skb))
1984 return NULL;
1985
1986 if (ctx->rx_ts) {
1987 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1988 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1989 }
1990
1991 /* Determine available headroom for copy */
1992 headlen = size;
1993 if (headlen > IGC_RX_HDR_LEN)
1994 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1995
1996 /* align pull length to size of long to optimize memcpy performance */
1997 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1998 ALIGN(headlen + metasize, sizeof(long)));
1999
2000 if (metasize) {
2001 skb_metadata_set(skb, metasize);
2002 __skb_pull(skb, metasize);
2003 }
2004
2005 /* update all of the pointers */
2006 size -= headlen;
2007 if (size) {
2008 skb_add_rx_frag(skb, 0, rx_buffer->page,
2009 (va + headlen) - page_address(rx_buffer->page),
2010 size, truesize);
2011 igc_rx_buffer_flip(rx_buffer, truesize);
2012 } else {
2013 rx_buffer->pagecnt_bias++;
2014 }
2015
2016 return skb;
2017 }
2018
2019 /**
2020 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2021 * @rx_ring: rx descriptor ring to store buffers on
2022 * @old_buff: donor buffer to have page reused
2023 *
2024 * Synchronizes page for reuse by the adapter
2025 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2026 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2027 struct igc_rx_buffer *old_buff)
2028 {
2029 u16 nta = rx_ring->next_to_alloc;
2030 struct igc_rx_buffer *new_buff;
2031
2032 new_buff = &rx_ring->rx_buffer_info[nta];
2033
2034 /* update, and store next to alloc */
2035 nta++;
2036 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2037
2038 /* Transfer page from old buffer to new buffer.
2039 * Move each member individually to avoid possible store
2040 * forwarding stalls.
2041 */
2042 new_buff->dma = old_buff->dma;
2043 new_buff->page = old_buff->page;
2044 new_buff->page_offset = old_buff->page_offset;
2045 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2046 }
2047
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2048 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2049 int rx_buffer_pgcnt)
2050 {
2051 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2052 struct page *page = rx_buffer->page;
2053
2054 /* avoid re-using remote and pfmemalloc pages */
2055 if (!dev_page_is_reusable(page))
2056 return false;
2057
2058 #if (PAGE_SIZE < 8192)
2059 /* if we are only owner of page we can reuse it */
2060 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2061 return false;
2062 #else
2063 #define IGC_LAST_OFFSET \
2064 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2065
2066 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2067 return false;
2068 #endif
2069
2070 /* If we have drained the page fragment pool we need to update
2071 * the pagecnt_bias and page count so that we fully restock the
2072 * number of references the driver holds.
2073 */
2074 if (unlikely(pagecnt_bias == 1)) {
2075 page_ref_add(page, USHRT_MAX - 1);
2076 rx_buffer->pagecnt_bias = USHRT_MAX;
2077 }
2078
2079 return true;
2080 }
2081
2082 /**
2083 * igc_is_non_eop - process handling of non-EOP buffers
2084 * @rx_ring: Rx ring being processed
2085 * @rx_desc: Rx descriptor for current buffer
2086 *
2087 * This function updates next to clean. If the buffer is an EOP buffer
2088 * this function exits returning false, otherwise it will place the
2089 * sk_buff in the next buffer to be chained and return true indicating
2090 * that this is in fact a non-EOP buffer.
2091 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2092 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2093 union igc_adv_rx_desc *rx_desc)
2094 {
2095 u32 ntc = rx_ring->next_to_clean + 1;
2096
2097 /* fetch, update, and store next to clean */
2098 ntc = (ntc < rx_ring->count) ? ntc : 0;
2099 rx_ring->next_to_clean = ntc;
2100
2101 prefetch(IGC_RX_DESC(rx_ring, ntc));
2102
2103 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2104 return false;
2105
2106 return true;
2107 }
2108
2109 /**
2110 * igc_cleanup_headers - Correct corrupted or empty headers
2111 * @rx_ring: rx descriptor ring packet is being transacted on
2112 * @rx_desc: pointer to the EOP Rx descriptor
2113 * @skb: pointer to current skb being fixed
2114 *
2115 * Address the case where we are pulling data in on pages only
2116 * and as such no data is present in the skb header.
2117 *
2118 * In addition if skb is not at least 60 bytes we need to pad it so that
2119 * it is large enough to qualify as a valid Ethernet frame.
2120 *
2121 * Returns true if an error was encountered and skb was freed.
2122 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2123 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2124 union igc_adv_rx_desc *rx_desc,
2125 struct sk_buff *skb)
2126 {
2127 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2128 struct net_device *netdev = rx_ring->netdev;
2129
2130 if (!(netdev->features & NETIF_F_RXALL)) {
2131 dev_kfree_skb_any(skb);
2132 return true;
2133 }
2134 }
2135
2136 /* if eth_skb_pad returns an error the skb was freed */
2137 if (eth_skb_pad(skb))
2138 return true;
2139
2140 return false;
2141 }
2142
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2143 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2144 struct igc_rx_buffer *rx_buffer,
2145 int rx_buffer_pgcnt)
2146 {
2147 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2148 /* hand second half of page back to the ring */
2149 igc_reuse_rx_page(rx_ring, rx_buffer);
2150 } else {
2151 /* We are not reusing the buffer so unmap it and free
2152 * any references we are holding to it
2153 */
2154 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2155 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2156 IGC_RX_DMA_ATTR);
2157 __page_frag_cache_drain(rx_buffer->page,
2158 rx_buffer->pagecnt_bias);
2159 }
2160
2161 /* clear contents of rx_buffer */
2162 rx_buffer->page = NULL;
2163 }
2164
igc_rx_offset(struct igc_ring * rx_ring)2165 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2166 {
2167 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2168
2169 if (ring_uses_build_skb(rx_ring))
2170 return IGC_SKB_PAD;
2171 if (igc_xdp_is_enabled(adapter))
2172 return XDP_PACKET_HEADROOM;
2173
2174 return 0;
2175 }
2176
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2177 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2178 struct igc_rx_buffer *bi)
2179 {
2180 struct page *page = bi->page;
2181 dma_addr_t dma;
2182
2183 /* since we are recycling buffers we should seldom need to alloc */
2184 if (likely(page))
2185 return true;
2186
2187 /* alloc new page for storage */
2188 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2189 if (unlikely(!page)) {
2190 rx_ring->rx_stats.alloc_failed++;
2191 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2192 return false;
2193 }
2194
2195 /* map page for use */
2196 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2197 igc_rx_pg_size(rx_ring),
2198 DMA_FROM_DEVICE,
2199 IGC_RX_DMA_ATTR);
2200
2201 /* if mapping failed free memory back to system since
2202 * there isn't much point in holding memory we can't use
2203 */
2204 if (dma_mapping_error(rx_ring->dev, dma)) {
2205 __free_page(page);
2206
2207 rx_ring->rx_stats.alloc_failed++;
2208 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2209 return false;
2210 }
2211
2212 bi->dma = dma;
2213 bi->page = page;
2214 bi->page_offset = igc_rx_offset(rx_ring);
2215 page_ref_add(page, USHRT_MAX - 1);
2216 bi->pagecnt_bias = USHRT_MAX;
2217
2218 return true;
2219 }
2220
2221 /**
2222 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2223 * @rx_ring: rx descriptor ring
2224 * @cleaned_count: number of buffers to clean
2225 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2226 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2227 {
2228 union igc_adv_rx_desc *rx_desc;
2229 u16 i = rx_ring->next_to_use;
2230 struct igc_rx_buffer *bi;
2231 u16 bufsz;
2232
2233 /* nothing to do */
2234 if (!cleaned_count)
2235 return;
2236
2237 rx_desc = IGC_RX_DESC(rx_ring, i);
2238 bi = &rx_ring->rx_buffer_info[i];
2239 i -= rx_ring->count;
2240
2241 bufsz = igc_rx_bufsz(rx_ring);
2242
2243 do {
2244 if (!igc_alloc_mapped_page(rx_ring, bi))
2245 break;
2246
2247 /* sync the buffer for use by the device */
2248 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2249 bi->page_offset, bufsz,
2250 DMA_FROM_DEVICE);
2251
2252 /* Refresh the desc even if buffer_addrs didn't change
2253 * because each write-back erases this info.
2254 */
2255 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2256
2257 rx_desc++;
2258 bi++;
2259 i++;
2260 if (unlikely(!i)) {
2261 rx_desc = IGC_RX_DESC(rx_ring, 0);
2262 bi = rx_ring->rx_buffer_info;
2263 i -= rx_ring->count;
2264 }
2265
2266 /* clear the length for the next_to_use descriptor */
2267 rx_desc->wb.upper.length = 0;
2268
2269 cleaned_count--;
2270 } while (cleaned_count);
2271
2272 i += rx_ring->count;
2273
2274 if (rx_ring->next_to_use != i) {
2275 /* record the next descriptor to use */
2276 rx_ring->next_to_use = i;
2277
2278 /* update next to alloc since we have filled the ring */
2279 rx_ring->next_to_alloc = i;
2280
2281 /* Force memory writes to complete before letting h/w
2282 * know there are new descriptors to fetch. (Only
2283 * applicable for weak-ordered memory model archs,
2284 * such as IA-64).
2285 */
2286 wmb();
2287 writel(i, rx_ring->tail);
2288 }
2289 }
2290
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2291 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2292 {
2293 union igc_adv_rx_desc *desc;
2294 u16 i = ring->next_to_use;
2295 struct igc_rx_buffer *bi;
2296 dma_addr_t dma;
2297 bool ok = true;
2298
2299 if (!count)
2300 return ok;
2301
2302 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2303
2304 desc = IGC_RX_DESC(ring, i);
2305 bi = &ring->rx_buffer_info[i];
2306 i -= ring->count;
2307
2308 do {
2309 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2310 if (!bi->xdp) {
2311 ok = false;
2312 break;
2313 }
2314
2315 dma = xsk_buff_xdp_get_dma(bi->xdp);
2316 desc->read.pkt_addr = cpu_to_le64(dma);
2317
2318 desc++;
2319 bi++;
2320 i++;
2321 if (unlikely(!i)) {
2322 desc = IGC_RX_DESC(ring, 0);
2323 bi = ring->rx_buffer_info;
2324 i -= ring->count;
2325 }
2326
2327 /* Clear the length for the next_to_use descriptor. */
2328 desc->wb.upper.length = 0;
2329
2330 count--;
2331 } while (count);
2332
2333 i += ring->count;
2334
2335 if (ring->next_to_use != i) {
2336 ring->next_to_use = i;
2337
2338 /* Force memory writes to complete before letting h/w
2339 * know there are new descriptors to fetch. (Only
2340 * applicable for weak-ordered memory model archs,
2341 * such as IA-64).
2342 */
2343 wmb();
2344 writel(i, ring->tail);
2345 }
2346
2347 return ok;
2348 }
2349
2350 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2351 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2352 struct xdp_frame *xdpf)
2353 {
2354 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2355 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2356 u16 count, index = ring->next_to_use;
2357 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2358 struct igc_tx_buffer *buffer = head;
2359 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2360 u32 olinfo_status, len = xdpf->len, cmd_type;
2361 void *data = xdpf->data;
2362 u16 i;
2363
2364 count = TXD_USE_COUNT(len);
2365 for (i = 0; i < nr_frags; i++)
2366 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2367
2368 if (igc_maybe_stop_tx(ring, count + 3)) {
2369 /* this is a hard error */
2370 return -EBUSY;
2371 }
2372
2373 i = 0;
2374 head->bytecount = xdp_get_frame_len(xdpf);
2375 head->type = IGC_TX_BUFFER_TYPE_XDP;
2376 head->gso_segs = 1;
2377 head->xdpf = xdpf;
2378
2379 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2380 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2381
2382 for (;;) {
2383 dma_addr_t dma;
2384
2385 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2386 if (dma_mapping_error(ring->dev, dma)) {
2387 netdev_err_once(ring->netdev,
2388 "Failed to map DMA for TX\n");
2389 goto unmap;
2390 }
2391
2392 dma_unmap_len_set(buffer, len, len);
2393 dma_unmap_addr_set(buffer, dma, dma);
2394
2395 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2396 IGC_ADVTXD_DCMD_IFCS | len;
2397
2398 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2399 desc->read.buffer_addr = cpu_to_le64(dma);
2400
2401 buffer->protocol = 0;
2402
2403 if (++index == ring->count)
2404 index = 0;
2405
2406 if (i == nr_frags)
2407 break;
2408
2409 buffer = &ring->tx_buffer_info[index];
2410 desc = IGC_TX_DESC(ring, index);
2411 desc->read.olinfo_status = 0;
2412
2413 data = skb_frag_address(&sinfo->frags[i]);
2414 len = skb_frag_size(&sinfo->frags[i]);
2415 i++;
2416 }
2417 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2418
2419 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2420 /* set the timestamp */
2421 head->time_stamp = jiffies;
2422 /* set next_to_watch value indicating a packet is present */
2423 head->next_to_watch = desc;
2424 ring->next_to_use = index;
2425
2426 return 0;
2427
2428 unmap:
2429 for (;;) {
2430 buffer = &ring->tx_buffer_info[index];
2431 if (dma_unmap_len(buffer, len))
2432 dma_unmap_page(ring->dev,
2433 dma_unmap_addr(buffer, dma),
2434 dma_unmap_len(buffer, len),
2435 DMA_TO_DEVICE);
2436 dma_unmap_len_set(buffer, len, 0);
2437 if (buffer == head)
2438 break;
2439
2440 if (!index)
2441 index += ring->count;
2442 index--;
2443 }
2444
2445 return -ENOMEM;
2446 }
2447
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2448 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2449 int cpu)
2450 {
2451 int index = cpu;
2452
2453 if (unlikely(index < 0))
2454 index = 0;
2455
2456 while (index >= adapter->num_tx_queues)
2457 index -= adapter->num_tx_queues;
2458
2459 return adapter->tx_ring[index];
2460 }
2461
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2462 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2463 {
2464 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2465 int cpu = smp_processor_id();
2466 struct netdev_queue *nq;
2467 struct igc_ring *ring;
2468 int res;
2469
2470 if (unlikely(!xdpf))
2471 return -EFAULT;
2472
2473 ring = igc_xdp_get_tx_ring(adapter, cpu);
2474 nq = txring_txq(ring);
2475
2476 __netif_tx_lock(nq, cpu);
2477 /* Avoid transmit queue timeout since we share it with the slow path */
2478 txq_trans_cond_update(nq);
2479 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2480 __netif_tx_unlock(nq);
2481 return res;
2482 }
2483
2484 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2485 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2486 struct bpf_prog *prog,
2487 struct xdp_buff *xdp)
2488 {
2489 u32 act = bpf_prog_run_xdp(prog, xdp);
2490
2491 switch (act) {
2492 case XDP_PASS:
2493 return IGC_XDP_PASS;
2494 case XDP_TX:
2495 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2496 goto out_failure;
2497 return IGC_XDP_TX;
2498 case XDP_REDIRECT:
2499 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2500 goto out_failure;
2501 return IGC_XDP_REDIRECT;
2502 break;
2503 default:
2504 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2505 fallthrough;
2506 case XDP_ABORTED:
2507 out_failure:
2508 trace_xdp_exception(adapter->netdev, prog, act);
2509 fallthrough;
2510 case XDP_DROP:
2511 return IGC_XDP_CONSUMED;
2512 }
2513 }
2514
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2515 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2516 {
2517 struct bpf_prog *prog;
2518 int res;
2519
2520 prog = READ_ONCE(adapter->xdp_prog);
2521 if (!prog) {
2522 res = IGC_XDP_PASS;
2523 goto out;
2524 }
2525
2526 res = __igc_xdp_run_prog(adapter, prog, xdp);
2527
2528 out:
2529 return res;
2530 }
2531
2532 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2533 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2534 {
2535 /* Once tail pointer is updated, hardware can fetch the descriptors
2536 * any time so we issue a write membar here to ensure all memory
2537 * writes are complete before the tail pointer is updated.
2538 */
2539 wmb();
2540 writel(ring->next_to_use, ring->tail);
2541 }
2542
igc_finalize_xdp(struct igc_adapter * adapter,int status)2543 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2544 {
2545 int cpu = smp_processor_id();
2546 struct netdev_queue *nq;
2547 struct igc_ring *ring;
2548
2549 if (status & IGC_XDP_TX) {
2550 ring = igc_xdp_get_tx_ring(adapter, cpu);
2551 nq = txring_txq(ring);
2552
2553 __netif_tx_lock(nq, cpu);
2554 igc_flush_tx_descriptors(ring);
2555 __netif_tx_unlock(nq);
2556 }
2557
2558 if (status & IGC_XDP_REDIRECT)
2559 xdp_do_flush();
2560 }
2561
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2562 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2563 unsigned int packets, unsigned int bytes)
2564 {
2565 struct igc_ring *ring = q_vector->rx.ring;
2566
2567 u64_stats_update_begin(&ring->rx_syncp);
2568 ring->rx_stats.packets += packets;
2569 ring->rx_stats.bytes += bytes;
2570 u64_stats_update_end(&ring->rx_syncp);
2571
2572 q_vector->rx.total_packets += packets;
2573 q_vector->rx.total_bytes += bytes;
2574 }
2575
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2576 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2577 {
2578 unsigned int total_bytes = 0, total_packets = 0;
2579 struct igc_adapter *adapter = q_vector->adapter;
2580 struct igc_ring *rx_ring = q_vector->rx.ring;
2581 struct sk_buff *skb = rx_ring->skb;
2582 u16 cleaned_count = igc_desc_unused(rx_ring);
2583 int xdp_status = 0, rx_buffer_pgcnt;
2584 int xdp_res = 0;
2585
2586 while (likely(total_packets < budget)) {
2587 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2588 struct igc_rx_buffer *rx_buffer;
2589 union igc_adv_rx_desc *rx_desc;
2590 unsigned int size, truesize;
2591 int pkt_offset = 0;
2592 void *pktbuf;
2593
2594 /* return some buffers to hardware, one at a time is too slow */
2595 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2596 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2597 cleaned_count = 0;
2598 }
2599
2600 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2601 size = le16_to_cpu(rx_desc->wb.upper.length);
2602 if (!size)
2603 break;
2604
2605 /* This memory barrier is needed to keep us from reading
2606 * any other fields out of the rx_desc until we know the
2607 * descriptor has been written back
2608 */
2609 dma_rmb();
2610
2611 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2612 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2613
2614 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2615
2616 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2617 ctx.rx_ts = pktbuf;
2618 pkt_offset = IGC_TS_HDR_LEN;
2619 size -= IGC_TS_HDR_LEN;
2620 }
2621
2622 if (!skb) {
2623 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2624 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2625 igc_rx_offset(rx_ring) + pkt_offset,
2626 size, true);
2627 xdp_buff_clear_frags_flag(&ctx.xdp);
2628 ctx.rx_desc = rx_desc;
2629
2630 xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2631 }
2632
2633 if (xdp_res) {
2634 switch (xdp_res) {
2635 case IGC_XDP_CONSUMED:
2636 rx_buffer->pagecnt_bias++;
2637 break;
2638 case IGC_XDP_TX:
2639 case IGC_XDP_REDIRECT:
2640 igc_rx_buffer_flip(rx_buffer, truesize);
2641 xdp_status |= xdp_res;
2642 break;
2643 }
2644
2645 total_packets++;
2646 total_bytes += size;
2647 } else if (skb)
2648 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2649 else if (ring_uses_build_skb(rx_ring))
2650 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2651 else
2652 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2653
2654 /* exit if we failed to retrieve a buffer */
2655 if (!xdp_res && !skb) {
2656 rx_ring->rx_stats.alloc_failed++;
2657 rx_buffer->pagecnt_bias++;
2658 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2659 break;
2660 }
2661
2662 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2663 cleaned_count++;
2664
2665 /* fetch next buffer in frame if non-eop */
2666 if (igc_is_non_eop(rx_ring, rx_desc))
2667 continue;
2668
2669 /* verify the packet layout is correct */
2670 if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2671 skb = NULL;
2672 continue;
2673 }
2674
2675 /* probably a little skewed due to removing CRC */
2676 total_bytes += skb->len;
2677
2678 /* populate checksum, VLAN, and protocol */
2679 igc_process_skb_fields(rx_ring, rx_desc, skb);
2680
2681 napi_gro_receive(&q_vector->napi, skb);
2682
2683 /* reset skb pointer */
2684 skb = NULL;
2685
2686 /* update budget accounting */
2687 total_packets++;
2688 }
2689
2690 if (xdp_status)
2691 igc_finalize_xdp(adapter, xdp_status);
2692
2693 /* place incomplete frames back on ring for completion */
2694 rx_ring->skb = skb;
2695
2696 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2697
2698 if (cleaned_count)
2699 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2700
2701 return total_packets;
2702 }
2703
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2704 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2705 struct igc_xdp_buff *ctx)
2706 {
2707 struct xdp_buff *xdp = &ctx->xdp;
2708 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2709 unsigned int metasize = xdp->data - xdp->data_meta;
2710 struct sk_buff *skb;
2711
2712 net_prefetch(xdp->data_meta);
2713
2714 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2715 if (unlikely(!skb))
2716 return NULL;
2717
2718 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2719 ALIGN(totalsize, sizeof(long)));
2720
2721 if (metasize) {
2722 skb_metadata_set(skb, metasize);
2723 __skb_pull(skb, metasize);
2724 }
2725
2726 if (ctx->rx_ts) {
2727 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2728 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2729 }
2730
2731 return skb;
2732 }
2733
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2734 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2735 union igc_adv_rx_desc *desc,
2736 struct igc_xdp_buff *ctx)
2737 {
2738 struct igc_ring *ring = q_vector->rx.ring;
2739 struct sk_buff *skb;
2740
2741 skb = igc_construct_skb_zc(ring, ctx);
2742 if (!skb) {
2743 ring->rx_stats.alloc_failed++;
2744 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2745 return;
2746 }
2747
2748 if (igc_cleanup_headers(ring, desc, skb))
2749 return;
2750
2751 igc_process_skb_fields(ring, desc, skb);
2752 napi_gro_receive(&q_vector->napi, skb);
2753 }
2754
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2755 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2756 {
2757 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2758 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2759 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2760 */
2761 return (struct igc_xdp_buff *)xdp;
2762 }
2763
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2764 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2765 {
2766 struct igc_adapter *adapter = q_vector->adapter;
2767 struct igc_ring *ring = q_vector->rx.ring;
2768 u16 cleaned_count = igc_desc_unused(ring);
2769 int total_bytes = 0, total_packets = 0;
2770 u16 ntc = ring->next_to_clean;
2771 struct bpf_prog *prog;
2772 bool failure = false;
2773 int xdp_status = 0;
2774
2775 rcu_read_lock();
2776
2777 prog = READ_ONCE(adapter->xdp_prog);
2778
2779 while (likely(total_packets < budget)) {
2780 union igc_adv_rx_desc *desc;
2781 struct igc_rx_buffer *bi;
2782 struct igc_xdp_buff *ctx;
2783 unsigned int size;
2784 int res;
2785
2786 desc = IGC_RX_DESC(ring, ntc);
2787 size = le16_to_cpu(desc->wb.upper.length);
2788 if (!size)
2789 break;
2790
2791 /* This memory barrier is needed to keep us from reading
2792 * any other fields out of the rx_desc until we know the
2793 * descriptor has been written back
2794 */
2795 dma_rmb();
2796
2797 bi = &ring->rx_buffer_info[ntc];
2798
2799 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2800 ctx->rx_desc = desc;
2801
2802 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2803 ctx->rx_ts = bi->xdp->data;
2804
2805 bi->xdp->data += IGC_TS_HDR_LEN;
2806
2807 /* HW timestamp has been copied into local variable. Metadata
2808 * length when XDP program is called should be 0.
2809 */
2810 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2811 size -= IGC_TS_HDR_LEN;
2812 } else {
2813 ctx->rx_ts = NULL;
2814 }
2815
2816 bi->xdp->data_end = bi->xdp->data + size;
2817 xsk_buff_dma_sync_for_cpu(bi->xdp);
2818
2819 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2820 switch (res) {
2821 case IGC_XDP_PASS:
2822 igc_dispatch_skb_zc(q_vector, desc, ctx);
2823 fallthrough;
2824 case IGC_XDP_CONSUMED:
2825 xsk_buff_free(bi->xdp);
2826 break;
2827 case IGC_XDP_TX:
2828 case IGC_XDP_REDIRECT:
2829 xdp_status |= res;
2830 break;
2831 }
2832
2833 bi->xdp = NULL;
2834 total_bytes += size;
2835 total_packets++;
2836 cleaned_count++;
2837 ntc++;
2838 if (ntc == ring->count)
2839 ntc = 0;
2840 }
2841
2842 ring->next_to_clean = ntc;
2843 rcu_read_unlock();
2844
2845 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2846 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2847
2848 if (xdp_status)
2849 igc_finalize_xdp(adapter, xdp_status);
2850
2851 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2852
2853 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2854 if (failure || ring->next_to_clean == ring->next_to_use)
2855 xsk_set_rx_need_wakeup(ring->xsk_pool);
2856 else
2857 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2858 return total_packets;
2859 }
2860
2861 return failure ? budget : total_packets;
2862 }
2863
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2864 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2865 unsigned int packets, unsigned int bytes)
2866 {
2867 struct igc_ring *ring = q_vector->tx.ring;
2868
2869 u64_stats_update_begin(&ring->tx_syncp);
2870 ring->tx_stats.bytes += bytes;
2871 ring->tx_stats.packets += packets;
2872 u64_stats_update_end(&ring->tx_syncp);
2873
2874 q_vector->tx.total_bytes += bytes;
2875 q_vector->tx.total_packets += packets;
2876 }
2877
igc_xsk_request_timestamp(void * _priv)2878 static void igc_xsk_request_timestamp(void *_priv)
2879 {
2880 struct igc_metadata_request *meta_req = _priv;
2881 struct igc_ring *tx_ring = meta_req->tx_ring;
2882 struct igc_tx_timestamp_request *tstamp;
2883 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2884 struct igc_adapter *adapter;
2885 unsigned long lock_flags;
2886 bool found = false;
2887 int i;
2888
2889 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2890 adapter = netdev_priv(tx_ring->netdev);
2891
2892 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2893
2894 /* Search for available tstamp regs */
2895 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2896 tstamp = &adapter->tx_tstamp[i];
2897
2898 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2899 * When tstamp->skb is equal to NULL,
2900 * tstamp->xsk_tx_buffer is equal to NULL as well.
2901 * This condition means that the particular tstamp reg
2902 * is not occupied by other packet.
2903 */
2904 if (!tstamp->skb) {
2905 found = true;
2906 break;
2907 }
2908 }
2909
2910 /* Return if no available tstamp regs */
2911 if (!found) {
2912 adapter->tx_hwtstamp_skipped++;
2913 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2914 lock_flags);
2915 return;
2916 }
2917
2918 tstamp->start = jiffies;
2919 tstamp->xsk_queue_index = tx_ring->queue_index;
2920 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2921 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2922
2923 /* Hold the transmit completion until timestamp is ready */
2924 meta_req->tx_buffer->xsk_pending_ts = true;
2925
2926 /* Keep the pointer to tx_timestamp, which is located in XDP
2927 * metadata area. It is the location to store the value of
2928 * tx hardware timestamp.
2929 */
2930 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2931
2932 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2933 tx_flags |= tstamp->flags;
2934 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2935 IGC_TX_FLAGS_TSTAMP,
2936 (IGC_ADVTXD_MAC_TSTAMP));
2937 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2938 IGC_TX_FLAGS_TSTAMP_1,
2939 (IGC_ADVTXD_TSTAMP_REG_1));
2940 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2941 IGC_TX_FLAGS_TSTAMP_2,
2942 (IGC_ADVTXD_TSTAMP_REG_2));
2943 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2944 IGC_TX_FLAGS_TSTAMP_3,
2945 (IGC_ADVTXD_TSTAMP_REG_3));
2946
2947 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2948 }
2949 }
2950
igc_xsk_fill_timestamp(void * _priv)2951 static u64 igc_xsk_fill_timestamp(void *_priv)
2952 {
2953 return *(u64 *)_priv;
2954 }
2955
2956 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2957 .tmo_request_timestamp = igc_xsk_request_timestamp,
2958 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
2959 };
2960
igc_xdp_xmit_zc(struct igc_ring * ring)2961 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2962 {
2963 struct xsk_buff_pool *pool = ring->xsk_pool;
2964 struct netdev_queue *nq = txring_txq(ring);
2965 union igc_adv_tx_desc *tx_desc = NULL;
2966 int cpu = smp_processor_id();
2967 struct xdp_desc xdp_desc;
2968 u16 budget, ntu;
2969
2970 if (!netif_carrier_ok(ring->netdev))
2971 return;
2972
2973 __netif_tx_lock(nq, cpu);
2974
2975 /* Avoid transmit queue timeout since we share it with the slow path */
2976 txq_trans_cond_update(nq);
2977
2978 ntu = ring->next_to_use;
2979 budget = igc_desc_unused(ring);
2980
2981 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2982 struct igc_metadata_request meta_req;
2983 struct xsk_tx_metadata *meta = NULL;
2984 struct igc_tx_buffer *bi;
2985 u32 olinfo_status;
2986 dma_addr_t dma;
2987
2988 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2989 IGC_ADVTXD_DCMD_DEXT |
2990 IGC_ADVTXD_DCMD_IFCS |
2991 IGC_TXD_DCMD | xdp_desc.len;
2992 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2993
2994 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2995 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2996 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2997 bi = &ring->tx_buffer_info[ntu];
2998
2999 meta_req.tx_ring = ring;
3000 meta_req.tx_buffer = bi;
3001 meta_req.meta = meta;
3002 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3003 &meta_req);
3004
3005 tx_desc = IGC_TX_DESC(ring, ntu);
3006 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3007 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3008 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3009
3010 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3011 bi->protocol = 0;
3012 bi->bytecount = xdp_desc.len;
3013 bi->gso_segs = 1;
3014 bi->time_stamp = jiffies;
3015 bi->next_to_watch = tx_desc;
3016
3017 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3018
3019 ntu++;
3020 if (ntu == ring->count)
3021 ntu = 0;
3022 }
3023
3024 ring->next_to_use = ntu;
3025 if (tx_desc) {
3026 igc_flush_tx_descriptors(ring);
3027 xsk_tx_release(pool);
3028 }
3029
3030 __netif_tx_unlock(nq);
3031 }
3032
3033 /**
3034 * igc_clean_tx_irq - Reclaim resources after transmit completes
3035 * @q_vector: pointer to q_vector containing needed info
3036 * @napi_budget: Used to determine if we are in netpoll
3037 *
3038 * returns true if ring is completely cleaned
3039 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3040 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3041 {
3042 struct igc_adapter *adapter = q_vector->adapter;
3043 unsigned int total_bytes = 0, total_packets = 0;
3044 unsigned int budget = q_vector->tx.work_limit;
3045 struct igc_ring *tx_ring = q_vector->tx.ring;
3046 unsigned int i = tx_ring->next_to_clean;
3047 struct igc_tx_buffer *tx_buffer;
3048 union igc_adv_tx_desc *tx_desc;
3049 u32 xsk_frames = 0;
3050
3051 if (test_bit(__IGC_DOWN, &adapter->state))
3052 return true;
3053
3054 tx_buffer = &tx_ring->tx_buffer_info[i];
3055 tx_desc = IGC_TX_DESC(tx_ring, i);
3056 i -= tx_ring->count;
3057
3058 do {
3059 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3060
3061 /* if next_to_watch is not set then there is no work pending */
3062 if (!eop_desc)
3063 break;
3064
3065 /* prevent any other reads prior to eop_desc */
3066 smp_rmb();
3067
3068 /* if DD is not set pending work has not been completed */
3069 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3070 break;
3071
3072 /* Hold the completions while there's a pending tx hardware
3073 * timestamp request from XDP Tx metadata.
3074 */
3075 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3076 tx_buffer->xsk_pending_ts)
3077 break;
3078
3079 /* clear next_to_watch to prevent false hangs */
3080 tx_buffer->next_to_watch = NULL;
3081
3082 /* update the statistics for this packet */
3083 total_bytes += tx_buffer->bytecount;
3084 total_packets += tx_buffer->gso_segs;
3085
3086 switch (tx_buffer->type) {
3087 case IGC_TX_BUFFER_TYPE_XSK:
3088 xsk_frames++;
3089 break;
3090 case IGC_TX_BUFFER_TYPE_XDP:
3091 xdp_return_frame(tx_buffer->xdpf);
3092 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3093 break;
3094 case IGC_TX_BUFFER_TYPE_SKB:
3095 napi_consume_skb(tx_buffer->skb, napi_budget);
3096 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3097 break;
3098 default:
3099 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3100 break;
3101 }
3102
3103 /* clear last DMA location and unmap remaining buffers */
3104 while (tx_desc != eop_desc) {
3105 tx_buffer++;
3106 tx_desc++;
3107 i++;
3108 if (unlikely(!i)) {
3109 i -= tx_ring->count;
3110 tx_buffer = tx_ring->tx_buffer_info;
3111 tx_desc = IGC_TX_DESC(tx_ring, 0);
3112 }
3113
3114 /* unmap any remaining paged data */
3115 if (dma_unmap_len(tx_buffer, len))
3116 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3117 }
3118
3119 /* move us one more past the eop_desc for start of next pkt */
3120 tx_buffer++;
3121 tx_desc++;
3122 i++;
3123 if (unlikely(!i)) {
3124 i -= tx_ring->count;
3125 tx_buffer = tx_ring->tx_buffer_info;
3126 tx_desc = IGC_TX_DESC(tx_ring, 0);
3127 }
3128
3129 /* issue prefetch for next Tx descriptor */
3130 prefetch(tx_desc);
3131
3132 /* update budget accounting */
3133 budget--;
3134 } while (likely(budget));
3135
3136 netdev_tx_completed_queue(txring_txq(tx_ring),
3137 total_packets, total_bytes);
3138
3139 i += tx_ring->count;
3140 tx_ring->next_to_clean = i;
3141
3142 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3143
3144 if (tx_ring->xsk_pool) {
3145 if (xsk_frames)
3146 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3147 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3148 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3149 igc_xdp_xmit_zc(tx_ring);
3150 }
3151
3152 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3153 struct igc_hw *hw = &adapter->hw;
3154
3155 /* Detect a transmit hang in hardware, this serializes the
3156 * check with the clearing of time_stamp and movement of i
3157 */
3158 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3159 if (tx_buffer->next_to_watch &&
3160 time_after(jiffies, tx_buffer->time_stamp +
3161 (adapter->tx_timeout_factor * HZ)) &&
3162 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3163 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3164 !tx_ring->oper_gate_closed) {
3165 /* detected Tx unit hang */
3166 netdev_err(tx_ring->netdev,
3167 "Detected Tx Unit Hang\n"
3168 " Tx Queue <%d>\n"
3169 " TDH <%x>\n"
3170 " TDT <%x>\n"
3171 " next_to_use <%x>\n"
3172 " next_to_clean <%x>\n"
3173 "buffer_info[next_to_clean]\n"
3174 " time_stamp <%lx>\n"
3175 " next_to_watch <%p>\n"
3176 " jiffies <%lx>\n"
3177 " desc.status <%x>\n",
3178 tx_ring->queue_index,
3179 rd32(IGC_TDH(tx_ring->reg_idx)),
3180 readl(tx_ring->tail),
3181 tx_ring->next_to_use,
3182 tx_ring->next_to_clean,
3183 tx_buffer->time_stamp,
3184 tx_buffer->next_to_watch,
3185 jiffies,
3186 tx_buffer->next_to_watch->wb.status);
3187 netif_stop_subqueue(tx_ring->netdev,
3188 tx_ring->queue_index);
3189
3190 /* we are about to reset, no point in enabling stuff */
3191 return true;
3192 }
3193 }
3194
3195 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3196 if (unlikely(total_packets &&
3197 netif_carrier_ok(tx_ring->netdev) &&
3198 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3199 /* Make sure that anybody stopping the queue after this
3200 * sees the new next_to_clean.
3201 */
3202 smp_mb();
3203 if (__netif_subqueue_stopped(tx_ring->netdev,
3204 tx_ring->queue_index) &&
3205 !(test_bit(__IGC_DOWN, &adapter->state))) {
3206 netif_wake_subqueue(tx_ring->netdev,
3207 tx_ring->queue_index);
3208
3209 u64_stats_update_begin(&tx_ring->tx_syncp);
3210 tx_ring->tx_stats.restart_queue++;
3211 u64_stats_update_end(&tx_ring->tx_syncp);
3212 }
3213 }
3214
3215 return !!budget;
3216 }
3217
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3218 static int igc_find_mac_filter(struct igc_adapter *adapter,
3219 enum igc_mac_filter_type type, const u8 *addr)
3220 {
3221 struct igc_hw *hw = &adapter->hw;
3222 int max_entries = hw->mac.rar_entry_count;
3223 u32 ral, rah;
3224 int i;
3225
3226 for (i = 0; i < max_entries; i++) {
3227 ral = rd32(IGC_RAL(i));
3228 rah = rd32(IGC_RAH(i));
3229
3230 if (!(rah & IGC_RAH_AV))
3231 continue;
3232 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3233 continue;
3234 if ((rah & IGC_RAH_RAH_MASK) !=
3235 le16_to_cpup((__le16 *)(addr + 4)))
3236 continue;
3237 if (ral != le32_to_cpup((__le32 *)(addr)))
3238 continue;
3239
3240 return i;
3241 }
3242
3243 return -1;
3244 }
3245
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3246 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3247 {
3248 struct igc_hw *hw = &adapter->hw;
3249 int max_entries = hw->mac.rar_entry_count;
3250 u32 rah;
3251 int i;
3252
3253 for (i = 0; i < max_entries; i++) {
3254 rah = rd32(IGC_RAH(i));
3255
3256 if (!(rah & IGC_RAH_AV))
3257 return i;
3258 }
3259
3260 return -1;
3261 }
3262
3263 /**
3264 * igc_add_mac_filter() - Add MAC address filter
3265 * @adapter: Pointer to adapter where the filter should be added
3266 * @type: MAC address filter type (source or destination)
3267 * @addr: MAC address
3268 * @queue: If non-negative, queue assignment feature is enabled and frames
3269 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3270 * assignment is disabled.
3271 *
3272 * Return: 0 in case of success, negative errno code otherwise.
3273 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3274 static int igc_add_mac_filter(struct igc_adapter *adapter,
3275 enum igc_mac_filter_type type, const u8 *addr,
3276 int queue)
3277 {
3278 struct net_device *dev = adapter->netdev;
3279 int index;
3280
3281 index = igc_find_mac_filter(adapter, type, addr);
3282 if (index >= 0)
3283 goto update_filter;
3284
3285 index = igc_get_avail_mac_filter_slot(adapter);
3286 if (index < 0)
3287 return -ENOSPC;
3288
3289 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3290 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3291 addr, queue);
3292
3293 update_filter:
3294 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3295 return 0;
3296 }
3297
3298 /**
3299 * igc_del_mac_filter() - Delete MAC address filter
3300 * @adapter: Pointer to adapter where the filter should be deleted from
3301 * @type: MAC address filter type (source or destination)
3302 * @addr: MAC address
3303 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3304 static void igc_del_mac_filter(struct igc_adapter *adapter,
3305 enum igc_mac_filter_type type, const u8 *addr)
3306 {
3307 struct net_device *dev = adapter->netdev;
3308 int index;
3309
3310 index = igc_find_mac_filter(adapter, type, addr);
3311 if (index < 0)
3312 return;
3313
3314 if (index == 0) {
3315 /* If this is the default filter, we don't actually delete it.
3316 * We just reset to its default value i.e. disable queue
3317 * assignment.
3318 */
3319 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3320
3321 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3322 } else {
3323 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3324 index,
3325 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3326 addr);
3327
3328 igc_clear_mac_filter_hw(adapter, index);
3329 }
3330 }
3331
3332 /**
3333 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3334 * @adapter: Pointer to adapter where the filter should be added
3335 * @prio: VLAN priority value
3336 * @queue: Queue number which matching frames are assigned to
3337 *
3338 * Return: 0 in case of success, negative errno code otherwise.
3339 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3340 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3341 int queue)
3342 {
3343 struct net_device *dev = adapter->netdev;
3344 struct igc_hw *hw = &adapter->hw;
3345 u32 vlanpqf;
3346
3347 vlanpqf = rd32(IGC_VLANPQF);
3348
3349 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3350 netdev_dbg(dev, "VLAN priority filter already in use\n");
3351 return -EEXIST;
3352 }
3353
3354 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3355 vlanpqf |= IGC_VLANPQF_VALID(prio);
3356
3357 wr32(IGC_VLANPQF, vlanpqf);
3358
3359 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3360 prio, queue);
3361 return 0;
3362 }
3363
3364 /**
3365 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3366 * @adapter: Pointer to adapter where the filter should be deleted from
3367 * @prio: VLAN priority value
3368 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3369 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3370 {
3371 struct igc_hw *hw = &adapter->hw;
3372 u32 vlanpqf;
3373
3374 vlanpqf = rd32(IGC_VLANPQF);
3375
3376 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3377 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3378
3379 wr32(IGC_VLANPQF, vlanpqf);
3380
3381 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3382 prio);
3383 }
3384
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3385 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3386 {
3387 struct igc_hw *hw = &adapter->hw;
3388 int i;
3389
3390 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3391 u32 etqf = rd32(IGC_ETQF(i));
3392
3393 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3394 return i;
3395 }
3396
3397 return -1;
3398 }
3399
3400 /**
3401 * igc_add_etype_filter() - Add ethertype filter
3402 * @adapter: Pointer to adapter where the filter should be added
3403 * @etype: Ethertype value
3404 * @queue: If non-negative, queue assignment feature is enabled and frames
3405 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3406 * assignment is disabled.
3407 *
3408 * Return: 0 in case of success, negative errno code otherwise.
3409 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3410 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3411 int queue)
3412 {
3413 struct igc_hw *hw = &adapter->hw;
3414 int index;
3415 u32 etqf;
3416
3417 index = igc_get_avail_etype_filter_slot(adapter);
3418 if (index < 0)
3419 return -ENOSPC;
3420
3421 etqf = rd32(IGC_ETQF(index));
3422
3423 etqf &= ~IGC_ETQF_ETYPE_MASK;
3424 etqf |= etype;
3425
3426 if (queue >= 0) {
3427 etqf &= ~IGC_ETQF_QUEUE_MASK;
3428 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3429 etqf |= IGC_ETQF_QUEUE_ENABLE;
3430 }
3431
3432 etqf |= IGC_ETQF_FILTER_ENABLE;
3433
3434 wr32(IGC_ETQF(index), etqf);
3435
3436 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3437 etype, queue);
3438 return 0;
3439 }
3440
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3441 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3442 {
3443 struct igc_hw *hw = &adapter->hw;
3444 int i;
3445
3446 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3447 u32 etqf = rd32(IGC_ETQF(i));
3448
3449 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3450 return i;
3451 }
3452
3453 return -1;
3454 }
3455
3456 /**
3457 * igc_del_etype_filter() - Delete ethertype filter
3458 * @adapter: Pointer to adapter where the filter should be deleted from
3459 * @etype: Ethertype value
3460 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3461 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3462 {
3463 struct igc_hw *hw = &adapter->hw;
3464 int index;
3465
3466 index = igc_find_etype_filter(adapter, etype);
3467 if (index < 0)
3468 return;
3469
3470 wr32(IGC_ETQF(index), 0);
3471
3472 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3473 etype);
3474 }
3475
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3476 static int igc_flex_filter_select(struct igc_adapter *adapter,
3477 struct igc_flex_filter *input,
3478 u32 *fhft)
3479 {
3480 struct igc_hw *hw = &adapter->hw;
3481 u8 fhft_index;
3482 u32 fhftsl;
3483
3484 if (input->index >= MAX_FLEX_FILTER) {
3485 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3486 return -EINVAL;
3487 }
3488
3489 /* Indirect table select register */
3490 fhftsl = rd32(IGC_FHFTSL);
3491 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3492 switch (input->index) {
3493 case 0 ... 7:
3494 fhftsl |= 0x00;
3495 break;
3496 case 8 ... 15:
3497 fhftsl |= 0x01;
3498 break;
3499 case 16 ... 23:
3500 fhftsl |= 0x02;
3501 break;
3502 case 24 ... 31:
3503 fhftsl |= 0x03;
3504 break;
3505 }
3506 wr32(IGC_FHFTSL, fhftsl);
3507
3508 /* Normalize index down to host table register */
3509 fhft_index = input->index % 8;
3510
3511 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3512 IGC_FHFT_EXT(fhft_index - 4);
3513
3514 return 0;
3515 }
3516
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3517 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3518 struct igc_flex_filter *input)
3519 {
3520 struct igc_hw *hw = &adapter->hw;
3521 u8 *data = input->data;
3522 u8 *mask = input->mask;
3523 u32 queuing;
3524 u32 fhft;
3525 u32 wufc;
3526 int ret;
3527 int i;
3528
3529 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3530 * out early to avoid surprises later.
3531 */
3532 if (input->length % 8 != 0) {
3533 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3534 return -EINVAL;
3535 }
3536
3537 /* Select corresponding flex filter register and get base for host table. */
3538 ret = igc_flex_filter_select(adapter, input, &fhft);
3539 if (ret)
3540 return ret;
3541
3542 /* When adding a filter globally disable flex filter feature. That is
3543 * recommended within the datasheet.
3544 */
3545 wufc = rd32(IGC_WUFC);
3546 wufc &= ~IGC_WUFC_FLEX_HQ;
3547 wr32(IGC_WUFC, wufc);
3548
3549 /* Configure filter */
3550 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3551 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3552 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3553
3554 if (input->immediate_irq)
3555 queuing |= IGC_FHFT_IMM_INT;
3556
3557 if (input->drop)
3558 queuing |= IGC_FHFT_DROP;
3559
3560 wr32(fhft + 0xFC, queuing);
3561
3562 /* Write data (128 byte) and mask (128 bit) */
3563 for (i = 0; i < 16; ++i) {
3564 const size_t data_idx = i * 8;
3565 const size_t row_idx = i * 16;
3566 u32 dw0 =
3567 (data[data_idx + 0] << 0) |
3568 (data[data_idx + 1] << 8) |
3569 (data[data_idx + 2] << 16) |
3570 (data[data_idx + 3] << 24);
3571 u32 dw1 =
3572 (data[data_idx + 4] << 0) |
3573 (data[data_idx + 5] << 8) |
3574 (data[data_idx + 6] << 16) |
3575 (data[data_idx + 7] << 24);
3576 u32 tmp;
3577
3578 /* Write row: dw0, dw1 and mask */
3579 wr32(fhft + row_idx, dw0);
3580 wr32(fhft + row_idx + 4, dw1);
3581
3582 /* mask is only valid for MASK(7, 0) */
3583 tmp = rd32(fhft + row_idx + 8);
3584 tmp &= ~GENMASK(7, 0);
3585 tmp |= mask[i];
3586 wr32(fhft + row_idx + 8, tmp);
3587 }
3588
3589 /* Enable filter. */
3590 wufc |= IGC_WUFC_FLEX_HQ;
3591 if (input->index > 8) {
3592 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3593 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3594
3595 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3596
3597 wr32(IGC_WUFC_EXT, wufc_ext);
3598 } else {
3599 wufc |= (IGC_WUFC_FLX0 << input->index);
3600 }
3601 wr32(IGC_WUFC, wufc);
3602
3603 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3604 input->index);
3605
3606 return 0;
3607 }
3608
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3609 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3610 const void *src, unsigned int offset,
3611 size_t len, const void *mask)
3612 {
3613 int i;
3614
3615 /* data */
3616 memcpy(&flex->data[offset], src, len);
3617
3618 /* mask */
3619 for (i = 0; i < len; ++i) {
3620 const unsigned int idx = i + offset;
3621 const u8 *ptr = mask;
3622
3623 if (mask) {
3624 if (ptr[i] & 0xff)
3625 flex->mask[idx / 8] |= BIT(idx % 8);
3626
3627 continue;
3628 }
3629
3630 flex->mask[idx / 8] |= BIT(idx % 8);
3631 }
3632 }
3633
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3634 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3635 {
3636 struct igc_hw *hw = &adapter->hw;
3637 u32 wufc, wufc_ext;
3638 int i;
3639
3640 wufc = rd32(IGC_WUFC);
3641 wufc_ext = rd32(IGC_WUFC_EXT);
3642
3643 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3644 if (i < 8) {
3645 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3646 return i;
3647 } else {
3648 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3649 return i;
3650 }
3651 }
3652
3653 return -ENOSPC;
3654 }
3655
igc_flex_filter_in_use(struct igc_adapter * adapter)3656 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3657 {
3658 struct igc_hw *hw = &adapter->hw;
3659 u32 wufc, wufc_ext;
3660
3661 wufc = rd32(IGC_WUFC);
3662 wufc_ext = rd32(IGC_WUFC_EXT);
3663
3664 if (wufc & IGC_WUFC_FILTER_MASK)
3665 return true;
3666
3667 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3668 return true;
3669
3670 return false;
3671 }
3672
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3673 static int igc_add_flex_filter(struct igc_adapter *adapter,
3674 struct igc_nfc_rule *rule)
3675 {
3676 struct igc_nfc_filter *filter = &rule->filter;
3677 unsigned int eth_offset, user_offset;
3678 struct igc_flex_filter flex = { };
3679 int ret, index;
3680 bool vlan;
3681
3682 index = igc_find_avail_flex_filter_slot(adapter);
3683 if (index < 0)
3684 return -ENOSPC;
3685
3686 /* Construct the flex filter:
3687 * -> dest_mac [6]
3688 * -> src_mac [6]
3689 * -> tpid [2]
3690 * -> vlan tci [2]
3691 * -> ether type [2]
3692 * -> user data [8]
3693 * -> = 26 bytes => 32 length
3694 */
3695 flex.index = index;
3696 flex.length = 32;
3697 flex.rx_queue = rule->action;
3698
3699 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3700 eth_offset = vlan ? 16 : 12;
3701 user_offset = vlan ? 18 : 14;
3702
3703 /* Add destination MAC */
3704 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3705 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3706 ETH_ALEN, NULL);
3707
3708 /* Add source MAC */
3709 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3710 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3711 ETH_ALEN, NULL);
3712
3713 /* Add VLAN etype */
3714 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3715 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3716
3717 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3718 sizeof(vlan_etype), NULL);
3719 }
3720
3721 /* Add VLAN TCI */
3722 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3723 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3724 sizeof(filter->vlan_tci), NULL);
3725
3726 /* Add Ether type */
3727 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3728 __be16 etype = cpu_to_be16(filter->etype);
3729
3730 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3731 sizeof(etype), NULL);
3732 }
3733
3734 /* Add user data */
3735 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3736 igc_flex_filter_add_field(&flex, &filter->user_data,
3737 user_offset,
3738 sizeof(filter->user_data),
3739 filter->user_mask);
3740
3741 /* Add it down to the hardware and enable it. */
3742 ret = igc_write_flex_filter_ll(adapter, &flex);
3743 if (ret)
3744 return ret;
3745
3746 filter->flex_index = index;
3747
3748 return 0;
3749 }
3750
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3751 static void igc_del_flex_filter(struct igc_adapter *adapter,
3752 u16 reg_index)
3753 {
3754 struct igc_hw *hw = &adapter->hw;
3755 u32 wufc;
3756
3757 /* Just disable the filter. The filter table itself is kept
3758 * intact. Another flex_filter_add() should override the "old" data
3759 * then.
3760 */
3761 if (reg_index > 8) {
3762 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3763
3764 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3765 wr32(IGC_WUFC_EXT, wufc_ext);
3766 } else {
3767 wufc = rd32(IGC_WUFC);
3768
3769 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3770 wr32(IGC_WUFC, wufc);
3771 }
3772
3773 if (igc_flex_filter_in_use(adapter))
3774 return;
3775
3776 /* No filters are in use, we may disable flex filters */
3777 wufc = rd32(IGC_WUFC);
3778 wufc &= ~IGC_WUFC_FLEX_HQ;
3779 wr32(IGC_WUFC, wufc);
3780 }
3781
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3782 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3783 struct igc_nfc_rule *rule)
3784 {
3785 int err;
3786
3787 if (rule->flex) {
3788 return igc_add_flex_filter(adapter, rule);
3789 }
3790
3791 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3792 err = igc_add_etype_filter(adapter, rule->filter.etype,
3793 rule->action);
3794 if (err)
3795 return err;
3796 }
3797
3798 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3799 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3800 rule->filter.src_addr, rule->action);
3801 if (err)
3802 return err;
3803 }
3804
3805 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3806 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3807 rule->filter.dst_addr, rule->action);
3808 if (err)
3809 return err;
3810 }
3811
3812 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3813 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3814
3815 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3816 if (err)
3817 return err;
3818 }
3819
3820 return 0;
3821 }
3822
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3823 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3824 const struct igc_nfc_rule *rule)
3825 {
3826 if (rule->flex) {
3827 igc_del_flex_filter(adapter, rule->filter.flex_index);
3828 return;
3829 }
3830
3831 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3832 igc_del_etype_filter(adapter, rule->filter.etype);
3833
3834 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3835 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3836
3837 igc_del_vlan_prio_filter(adapter, prio);
3838 }
3839
3840 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3841 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3842 rule->filter.src_addr);
3843
3844 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3845 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3846 rule->filter.dst_addr);
3847 }
3848
3849 /**
3850 * igc_get_nfc_rule() - Get NFC rule
3851 * @adapter: Pointer to adapter
3852 * @location: Rule location
3853 *
3854 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3855 *
3856 * Return: Pointer to NFC rule at @location. If not found, NULL.
3857 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3858 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3859 u32 location)
3860 {
3861 struct igc_nfc_rule *rule;
3862
3863 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3864 if (rule->location == location)
3865 return rule;
3866 if (rule->location > location)
3867 break;
3868 }
3869
3870 return NULL;
3871 }
3872
3873 /**
3874 * igc_del_nfc_rule() - Delete NFC rule
3875 * @adapter: Pointer to adapter
3876 * @rule: Pointer to rule to be deleted
3877 *
3878 * Disable NFC rule in hardware and delete it from adapter.
3879 *
3880 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3881 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3882 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3883 {
3884 igc_disable_nfc_rule(adapter, rule);
3885
3886 list_del(&rule->list);
3887 adapter->nfc_rule_count--;
3888
3889 kfree(rule);
3890 }
3891
igc_flush_nfc_rules(struct igc_adapter * adapter)3892 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3893 {
3894 struct igc_nfc_rule *rule, *tmp;
3895
3896 mutex_lock(&adapter->nfc_rule_lock);
3897
3898 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3899 igc_del_nfc_rule(adapter, rule);
3900
3901 mutex_unlock(&adapter->nfc_rule_lock);
3902 }
3903
3904 /**
3905 * igc_add_nfc_rule() - Add NFC rule
3906 * @adapter: Pointer to adapter
3907 * @rule: Pointer to rule to be added
3908 *
3909 * Enable NFC rule in hardware and add it to adapter.
3910 *
3911 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3912 *
3913 * Return: 0 on success, negative errno on failure.
3914 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3915 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3916 {
3917 struct igc_nfc_rule *pred, *cur;
3918 int err;
3919
3920 err = igc_enable_nfc_rule(adapter, rule);
3921 if (err)
3922 return err;
3923
3924 pred = NULL;
3925 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3926 if (cur->location >= rule->location)
3927 break;
3928 pred = cur;
3929 }
3930
3931 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3932 adapter->nfc_rule_count++;
3933 return 0;
3934 }
3935
igc_restore_nfc_rules(struct igc_adapter * adapter)3936 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3937 {
3938 struct igc_nfc_rule *rule;
3939
3940 mutex_lock(&adapter->nfc_rule_lock);
3941
3942 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3943 igc_enable_nfc_rule(adapter, rule);
3944
3945 mutex_unlock(&adapter->nfc_rule_lock);
3946 }
3947
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3948 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3949 {
3950 struct igc_adapter *adapter = netdev_priv(netdev);
3951
3952 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3953 }
3954
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3955 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3956 {
3957 struct igc_adapter *adapter = netdev_priv(netdev);
3958
3959 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3960 return 0;
3961 }
3962
3963 /**
3964 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3965 * @netdev: network interface device structure
3966 *
3967 * The set_rx_mode entry point is called whenever the unicast or multicast
3968 * address lists or the network interface flags are updated. This routine is
3969 * responsible for configuring the hardware for proper unicast, multicast,
3970 * promiscuous mode, and all-multi behavior.
3971 */
igc_set_rx_mode(struct net_device * netdev)3972 static void igc_set_rx_mode(struct net_device *netdev)
3973 {
3974 struct igc_adapter *adapter = netdev_priv(netdev);
3975 struct igc_hw *hw = &adapter->hw;
3976 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3977 int count;
3978
3979 /* Check for Promiscuous and All Multicast modes */
3980 if (netdev->flags & IFF_PROMISC) {
3981 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3982 } else {
3983 if (netdev->flags & IFF_ALLMULTI) {
3984 rctl |= IGC_RCTL_MPE;
3985 } else {
3986 /* Write addresses to the MTA, if the attempt fails
3987 * then we should just turn on promiscuous mode so
3988 * that we can at least receive multicast traffic
3989 */
3990 count = igc_write_mc_addr_list(netdev);
3991 if (count < 0)
3992 rctl |= IGC_RCTL_MPE;
3993 }
3994 }
3995
3996 /* Write addresses to available RAR registers, if there is not
3997 * sufficient space to store all the addresses then enable
3998 * unicast promiscuous mode
3999 */
4000 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4001 rctl |= IGC_RCTL_UPE;
4002
4003 /* update state of unicast and multicast */
4004 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4005 wr32(IGC_RCTL, rctl);
4006
4007 #if (PAGE_SIZE < 8192)
4008 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4009 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4010 #endif
4011 wr32(IGC_RLPML, rlpml);
4012 }
4013
4014 /**
4015 * igc_configure - configure the hardware for RX and TX
4016 * @adapter: private board structure
4017 */
igc_configure(struct igc_adapter * adapter)4018 static void igc_configure(struct igc_adapter *adapter)
4019 {
4020 struct net_device *netdev = adapter->netdev;
4021 int i = 0;
4022
4023 igc_get_hw_control(adapter);
4024 igc_set_rx_mode(netdev);
4025
4026 igc_restore_vlan(adapter);
4027
4028 igc_setup_tctl(adapter);
4029 igc_setup_mrqc(adapter);
4030 igc_setup_rctl(adapter);
4031
4032 igc_set_default_mac_filter(adapter);
4033 igc_restore_nfc_rules(adapter);
4034
4035 igc_configure_tx(adapter);
4036 igc_configure_rx(adapter);
4037
4038 igc_rx_fifo_flush_base(&adapter->hw);
4039
4040 /* call igc_desc_unused which always leaves
4041 * at least 1 descriptor unused to make sure
4042 * next_to_use != next_to_clean
4043 */
4044 for (i = 0; i < adapter->num_rx_queues; i++) {
4045 struct igc_ring *ring = adapter->rx_ring[i];
4046
4047 if (ring->xsk_pool)
4048 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4049 else
4050 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4051 }
4052 }
4053
4054 /**
4055 * igc_write_ivar - configure ivar for given MSI-X vector
4056 * @hw: pointer to the HW structure
4057 * @msix_vector: vector number we are allocating to a given ring
4058 * @index: row index of IVAR register to write within IVAR table
4059 * @offset: column offset of in IVAR, should be multiple of 8
4060 *
4061 * The IVAR table consists of 2 columns,
4062 * each containing an cause allocation for an Rx and Tx ring, and a
4063 * variable number of rows depending on the number of queues supported.
4064 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4065 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4066 int index, int offset)
4067 {
4068 u32 ivar = array_rd32(IGC_IVAR0, index);
4069
4070 /* clear any bits that are currently set */
4071 ivar &= ~((u32)0xFF << offset);
4072
4073 /* write vector and valid bit */
4074 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4075
4076 array_wr32(IGC_IVAR0, index, ivar);
4077 }
4078
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4079 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4080 {
4081 struct igc_adapter *adapter = q_vector->adapter;
4082 struct igc_hw *hw = &adapter->hw;
4083 int rx_queue = IGC_N0_QUEUE;
4084 int tx_queue = IGC_N0_QUEUE;
4085
4086 if (q_vector->rx.ring)
4087 rx_queue = q_vector->rx.ring->reg_idx;
4088 if (q_vector->tx.ring)
4089 tx_queue = q_vector->tx.ring->reg_idx;
4090
4091 switch (hw->mac.type) {
4092 case igc_i225:
4093 if (rx_queue > IGC_N0_QUEUE)
4094 igc_write_ivar(hw, msix_vector,
4095 rx_queue >> 1,
4096 (rx_queue & 0x1) << 4);
4097 if (tx_queue > IGC_N0_QUEUE)
4098 igc_write_ivar(hw, msix_vector,
4099 tx_queue >> 1,
4100 ((tx_queue & 0x1) << 4) + 8);
4101 q_vector->eims_value = BIT(msix_vector);
4102 break;
4103 default:
4104 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4105 break;
4106 }
4107
4108 /* add q_vector eims value to global eims_enable_mask */
4109 adapter->eims_enable_mask |= q_vector->eims_value;
4110
4111 /* configure q_vector to set itr on first interrupt */
4112 q_vector->set_itr = 1;
4113 }
4114
4115 /**
4116 * igc_configure_msix - Configure MSI-X hardware
4117 * @adapter: Pointer to adapter structure
4118 *
4119 * igc_configure_msix sets up the hardware to properly
4120 * generate MSI-X interrupts.
4121 */
igc_configure_msix(struct igc_adapter * adapter)4122 static void igc_configure_msix(struct igc_adapter *adapter)
4123 {
4124 struct igc_hw *hw = &adapter->hw;
4125 int i, vector = 0;
4126 u32 tmp;
4127
4128 adapter->eims_enable_mask = 0;
4129
4130 /* set vector for other causes, i.e. link changes */
4131 switch (hw->mac.type) {
4132 case igc_i225:
4133 /* Turn on MSI-X capability first, or our settings
4134 * won't stick. And it will take days to debug.
4135 */
4136 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4137 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4138 IGC_GPIE_NSICR);
4139
4140 /* enable msix_other interrupt */
4141 adapter->eims_other = BIT(vector);
4142 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4143
4144 wr32(IGC_IVAR_MISC, tmp);
4145 break;
4146 default:
4147 /* do nothing, since nothing else supports MSI-X */
4148 break;
4149 } /* switch (hw->mac.type) */
4150
4151 adapter->eims_enable_mask |= adapter->eims_other;
4152
4153 for (i = 0; i < adapter->num_q_vectors; i++)
4154 igc_assign_vector(adapter->q_vector[i], vector++);
4155
4156 wrfl();
4157 }
4158
4159 /**
4160 * igc_irq_enable - Enable default interrupt generation settings
4161 * @adapter: board private structure
4162 */
igc_irq_enable(struct igc_adapter * adapter)4163 static void igc_irq_enable(struct igc_adapter *adapter)
4164 {
4165 struct igc_hw *hw = &adapter->hw;
4166
4167 if (adapter->msix_entries) {
4168 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4169 u32 regval = rd32(IGC_EIAC);
4170
4171 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4172 regval = rd32(IGC_EIAM);
4173 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4174 wr32(IGC_EIMS, adapter->eims_enable_mask);
4175 wr32(IGC_IMS, ims);
4176 } else {
4177 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4178 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4179 }
4180 }
4181
4182 /**
4183 * igc_irq_disable - Mask off interrupt generation on the NIC
4184 * @adapter: board private structure
4185 */
igc_irq_disable(struct igc_adapter * adapter)4186 static void igc_irq_disable(struct igc_adapter *adapter)
4187 {
4188 struct igc_hw *hw = &adapter->hw;
4189
4190 if (adapter->msix_entries) {
4191 u32 regval = rd32(IGC_EIAM);
4192
4193 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4194 wr32(IGC_EIMC, adapter->eims_enable_mask);
4195 regval = rd32(IGC_EIAC);
4196 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4197 }
4198
4199 wr32(IGC_IAM, 0);
4200 wr32(IGC_IMC, ~0);
4201 wrfl();
4202
4203 if (adapter->msix_entries) {
4204 int vector = 0, i;
4205
4206 synchronize_irq(adapter->msix_entries[vector++].vector);
4207
4208 for (i = 0; i < adapter->num_q_vectors; i++)
4209 synchronize_irq(adapter->msix_entries[vector++].vector);
4210 } else {
4211 synchronize_irq(adapter->pdev->irq);
4212 }
4213 }
4214
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4215 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4216 const u32 max_rss_queues)
4217 {
4218 /* Determine if we need to pair queues. */
4219 /* If rss_queues > half of max_rss_queues, pair the queues in
4220 * order to conserve interrupts due to limited supply.
4221 */
4222 if (adapter->rss_queues > (max_rss_queues / 2))
4223 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4224 else
4225 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4226 }
4227
igc_get_max_rss_queues(struct igc_adapter * adapter)4228 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4229 {
4230 return IGC_MAX_RX_QUEUES;
4231 }
4232
igc_init_queue_configuration(struct igc_adapter * adapter)4233 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4234 {
4235 u32 max_rss_queues;
4236
4237 max_rss_queues = igc_get_max_rss_queues(adapter);
4238 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4239
4240 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4241 }
4242
4243 /**
4244 * igc_reset_q_vector - Reset config for interrupt vector
4245 * @adapter: board private structure to initialize
4246 * @v_idx: Index of vector to be reset
4247 *
4248 * If NAPI is enabled it will delete any references to the
4249 * NAPI struct. This is preparation for igc_free_q_vector.
4250 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4251 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4252 {
4253 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4254
4255 /* if we're coming from igc_set_interrupt_capability, the vectors are
4256 * not yet allocated
4257 */
4258 if (!q_vector)
4259 return;
4260
4261 if (q_vector->tx.ring)
4262 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4263
4264 if (q_vector->rx.ring)
4265 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4266
4267 netif_napi_del(&q_vector->napi);
4268 }
4269
4270 /**
4271 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4272 * @adapter: board private structure to initialize
4273 * @v_idx: Index of vector to be freed
4274 *
4275 * This function frees the memory allocated to the q_vector.
4276 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4277 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4278 {
4279 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4280
4281 adapter->q_vector[v_idx] = NULL;
4282
4283 /* igc_get_stats64() might access the rings on this vector,
4284 * we must wait a grace period before freeing it.
4285 */
4286 if (q_vector)
4287 kfree_rcu(q_vector, rcu);
4288 }
4289
4290 /**
4291 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4292 * @adapter: board private structure to initialize
4293 *
4294 * This function frees the memory allocated to the q_vectors. In addition if
4295 * NAPI is enabled it will delete any references to the NAPI struct prior
4296 * to freeing the q_vector.
4297 */
igc_free_q_vectors(struct igc_adapter * adapter)4298 static void igc_free_q_vectors(struct igc_adapter *adapter)
4299 {
4300 int v_idx = adapter->num_q_vectors;
4301
4302 adapter->num_tx_queues = 0;
4303 adapter->num_rx_queues = 0;
4304 adapter->num_q_vectors = 0;
4305
4306 while (v_idx--) {
4307 igc_reset_q_vector(adapter, v_idx);
4308 igc_free_q_vector(adapter, v_idx);
4309 }
4310 }
4311
4312 /**
4313 * igc_update_itr - update the dynamic ITR value based on statistics
4314 * @q_vector: pointer to q_vector
4315 * @ring_container: ring info to update the itr for
4316 *
4317 * Stores a new ITR value based on packets and byte
4318 * counts during the last interrupt. The advantage of per interrupt
4319 * computation is faster updates and more accurate ITR for the current
4320 * traffic pattern. Constants in this function were computed
4321 * based on theoretical maximum wire speed and thresholds were set based
4322 * on testing data as well as attempting to minimize response time
4323 * while increasing bulk throughput.
4324 * NOTE: These calculations are only valid when operating in a single-
4325 * queue environment.
4326 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4327 static void igc_update_itr(struct igc_q_vector *q_vector,
4328 struct igc_ring_container *ring_container)
4329 {
4330 unsigned int packets = ring_container->total_packets;
4331 unsigned int bytes = ring_container->total_bytes;
4332 u8 itrval = ring_container->itr;
4333
4334 /* no packets, exit with status unchanged */
4335 if (packets == 0)
4336 return;
4337
4338 switch (itrval) {
4339 case lowest_latency:
4340 /* handle TSO and jumbo frames */
4341 if (bytes / packets > 8000)
4342 itrval = bulk_latency;
4343 else if ((packets < 5) && (bytes > 512))
4344 itrval = low_latency;
4345 break;
4346 case low_latency: /* 50 usec aka 20000 ints/s */
4347 if (bytes > 10000) {
4348 /* this if handles the TSO accounting */
4349 if (bytes / packets > 8000)
4350 itrval = bulk_latency;
4351 else if ((packets < 10) || ((bytes / packets) > 1200))
4352 itrval = bulk_latency;
4353 else if ((packets > 35))
4354 itrval = lowest_latency;
4355 } else if (bytes / packets > 2000) {
4356 itrval = bulk_latency;
4357 } else if (packets <= 2 && bytes < 512) {
4358 itrval = lowest_latency;
4359 }
4360 break;
4361 case bulk_latency: /* 250 usec aka 4000 ints/s */
4362 if (bytes > 25000) {
4363 if (packets > 35)
4364 itrval = low_latency;
4365 } else if (bytes < 1500) {
4366 itrval = low_latency;
4367 }
4368 break;
4369 }
4370
4371 /* clear work counters since we have the values we need */
4372 ring_container->total_bytes = 0;
4373 ring_container->total_packets = 0;
4374
4375 /* write updated itr to ring container */
4376 ring_container->itr = itrval;
4377 }
4378
igc_set_itr(struct igc_q_vector * q_vector)4379 static void igc_set_itr(struct igc_q_vector *q_vector)
4380 {
4381 struct igc_adapter *adapter = q_vector->adapter;
4382 u32 new_itr = q_vector->itr_val;
4383 u8 current_itr = 0;
4384
4385 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4386 switch (adapter->link_speed) {
4387 case SPEED_10:
4388 case SPEED_100:
4389 current_itr = 0;
4390 new_itr = IGC_4K_ITR;
4391 goto set_itr_now;
4392 default:
4393 break;
4394 }
4395
4396 igc_update_itr(q_vector, &q_vector->tx);
4397 igc_update_itr(q_vector, &q_vector->rx);
4398
4399 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4400
4401 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4402 if (current_itr == lowest_latency &&
4403 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4404 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4405 current_itr = low_latency;
4406
4407 switch (current_itr) {
4408 /* counts and packets in update_itr are dependent on these numbers */
4409 case lowest_latency:
4410 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4411 break;
4412 case low_latency:
4413 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4414 break;
4415 case bulk_latency:
4416 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4417 break;
4418 default:
4419 break;
4420 }
4421
4422 set_itr_now:
4423 if (new_itr != q_vector->itr_val) {
4424 /* this attempts to bias the interrupt rate towards Bulk
4425 * by adding intermediate steps when interrupt rate is
4426 * increasing
4427 */
4428 new_itr = new_itr > q_vector->itr_val ?
4429 max((new_itr * q_vector->itr_val) /
4430 (new_itr + (q_vector->itr_val >> 2)),
4431 new_itr) : new_itr;
4432 /* Don't write the value here; it resets the adapter's
4433 * internal timer, and causes us to delay far longer than
4434 * we should between interrupts. Instead, we write the ITR
4435 * value at the beginning of the next interrupt so the timing
4436 * ends up being correct.
4437 */
4438 q_vector->itr_val = new_itr;
4439 q_vector->set_itr = 1;
4440 }
4441 }
4442
igc_reset_interrupt_capability(struct igc_adapter * adapter)4443 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4444 {
4445 int v_idx = adapter->num_q_vectors;
4446
4447 if (adapter->msix_entries) {
4448 pci_disable_msix(adapter->pdev);
4449 kfree(adapter->msix_entries);
4450 adapter->msix_entries = NULL;
4451 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4452 pci_disable_msi(adapter->pdev);
4453 }
4454
4455 while (v_idx--)
4456 igc_reset_q_vector(adapter, v_idx);
4457 }
4458
4459 /**
4460 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4461 * @adapter: Pointer to adapter structure
4462 * @msix: boolean value for MSI-X capability
4463 *
4464 * Attempt to configure interrupts using the best available
4465 * capabilities of the hardware and kernel.
4466 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4467 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4468 bool msix)
4469 {
4470 int numvecs, i;
4471 int err;
4472
4473 if (!msix)
4474 goto msi_only;
4475 adapter->flags |= IGC_FLAG_HAS_MSIX;
4476
4477 /* Number of supported queues. */
4478 adapter->num_rx_queues = adapter->rss_queues;
4479
4480 adapter->num_tx_queues = adapter->rss_queues;
4481
4482 /* start with one vector for every Rx queue */
4483 numvecs = adapter->num_rx_queues;
4484
4485 /* if Tx handler is separate add 1 for every Tx queue */
4486 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4487 numvecs += adapter->num_tx_queues;
4488
4489 /* store the number of vectors reserved for queues */
4490 adapter->num_q_vectors = numvecs;
4491
4492 /* add 1 vector for link status interrupts */
4493 numvecs++;
4494
4495 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4496 GFP_KERNEL);
4497
4498 if (!adapter->msix_entries)
4499 return;
4500
4501 /* populate entry values */
4502 for (i = 0; i < numvecs; i++)
4503 adapter->msix_entries[i].entry = i;
4504
4505 err = pci_enable_msix_range(adapter->pdev,
4506 adapter->msix_entries,
4507 numvecs,
4508 numvecs);
4509 if (err > 0)
4510 return;
4511
4512 kfree(adapter->msix_entries);
4513 adapter->msix_entries = NULL;
4514
4515 igc_reset_interrupt_capability(adapter);
4516
4517 msi_only:
4518 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4519
4520 adapter->rss_queues = 1;
4521 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4522 adapter->num_rx_queues = 1;
4523 adapter->num_tx_queues = 1;
4524 adapter->num_q_vectors = 1;
4525 if (!pci_enable_msi(adapter->pdev))
4526 adapter->flags |= IGC_FLAG_HAS_MSI;
4527 }
4528
4529 /**
4530 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4531 * @q_vector: pointer to q_vector
4532 *
4533 * Stores a new ITR value based on strictly on packet size. This
4534 * algorithm is less sophisticated than that used in igc_update_itr,
4535 * due to the difficulty of synchronizing statistics across multiple
4536 * receive rings. The divisors and thresholds used by this function
4537 * were determined based on theoretical maximum wire speed and testing
4538 * data, in order to minimize response time while increasing bulk
4539 * throughput.
4540 * NOTE: This function is called only when operating in a multiqueue
4541 * receive environment.
4542 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4543 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4544 {
4545 struct igc_adapter *adapter = q_vector->adapter;
4546 int new_val = q_vector->itr_val;
4547 int avg_wire_size = 0;
4548 unsigned int packets;
4549
4550 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4551 * ints/sec - ITR timer value of 120 ticks.
4552 */
4553 switch (adapter->link_speed) {
4554 case SPEED_10:
4555 case SPEED_100:
4556 new_val = IGC_4K_ITR;
4557 goto set_itr_val;
4558 default:
4559 break;
4560 }
4561
4562 packets = q_vector->rx.total_packets;
4563 if (packets)
4564 avg_wire_size = q_vector->rx.total_bytes / packets;
4565
4566 packets = q_vector->tx.total_packets;
4567 if (packets)
4568 avg_wire_size = max_t(u32, avg_wire_size,
4569 q_vector->tx.total_bytes / packets);
4570
4571 /* if avg_wire_size isn't set no work was done */
4572 if (!avg_wire_size)
4573 goto clear_counts;
4574
4575 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4576 avg_wire_size += 24;
4577
4578 /* Don't starve jumbo frames */
4579 avg_wire_size = min(avg_wire_size, 3000);
4580
4581 /* Give a little boost to mid-size frames */
4582 if (avg_wire_size > 300 && avg_wire_size < 1200)
4583 new_val = avg_wire_size / 3;
4584 else
4585 new_val = avg_wire_size / 2;
4586
4587 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4588 if (new_val < IGC_20K_ITR &&
4589 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4590 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4591 new_val = IGC_20K_ITR;
4592
4593 set_itr_val:
4594 if (new_val != q_vector->itr_val) {
4595 q_vector->itr_val = new_val;
4596 q_vector->set_itr = 1;
4597 }
4598 clear_counts:
4599 q_vector->rx.total_bytes = 0;
4600 q_vector->rx.total_packets = 0;
4601 q_vector->tx.total_bytes = 0;
4602 q_vector->tx.total_packets = 0;
4603 }
4604
igc_ring_irq_enable(struct igc_q_vector * q_vector)4605 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4606 {
4607 struct igc_adapter *adapter = q_vector->adapter;
4608 struct igc_hw *hw = &adapter->hw;
4609
4610 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4611 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4612 if (adapter->num_q_vectors == 1)
4613 igc_set_itr(q_vector);
4614 else
4615 igc_update_ring_itr(q_vector);
4616 }
4617
4618 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4619 if (adapter->msix_entries)
4620 wr32(IGC_EIMS, q_vector->eims_value);
4621 else
4622 igc_irq_enable(adapter);
4623 }
4624 }
4625
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4626 static void igc_add_ring(struct igc_ring *ring,
4627 struct igc_ring_container *head)
4628 {
4629 head->ring = ring;
4630 head->count++;
4631 }
4632
4633 /**
4634 * igc_cache_ring_register - Descriptor ring to register mapping
4635 * @adapter: board private structure to initialize
4636 *
4637 * Once we know the feature-set enabled for the device, we'll cache
4638 * the register offset the descriptor ring is assigned to.
4639 */
igc_cache_ring_register(struct igc_adapter * adapter)4640 static void igc_cache_ring_register(struct igc_adapter *adapter)
4641 {
4642 int i = 0, j = 0;
4643
4644 switch (adapter->hw.mac.type) {
4645 case igc_i225:
4646 default:
4647 for (; i < adapter->num_rx_queues; i++)
4648 adapter->rx_ring[i]->reg_idx = i;
4649 for (; j < adapter->num_tx_queues; j++)
4650 adapter->tx_ring[j]->reg_idx = j;
4651 break;
4652 }
4653 }
4654
4655 /**
4656 * igc_poll - NAPI Rx polling callback
4657 * @napi: napi polling structure
4658 * @budget: count of how many packets we should handle
4659 */
igc_poll(struct napi_struct * napi,int budget)4660 static int igc_poll(struct napi_struct *napi, int budget)
4661 {
4662 struct igc_q_vector *q_vector = container_of(napi,
4663 struct igc_q_vector,
4664 napi);
4665 struct igc_ring *rx_ring = q_vector->rx.ring;
4666 bool clean_complete = true;
4667 int work_done = 0;
4668
4669 if (q_vector->tx.ring)
4670 clean_complete = igc_clean_tx_irq(q_vector, budget);
4671
4672 if (rx_ring) {
4673 int cleaned = rx_ring->xsk_pool ?
4674 igc_clean_rx_irq_zc(q_vector, budget) :
4675 igc_clean_rx_irq(q_vector, budget);
4676
4677 work_done += cleaned;
4678 if (cleaned >= budget)
4679 clean_complete = false;
4680 }
4681
4682 /* If all work not completed, return budget and keep polling */
4683 if (!clean_complete)
4684 return budget;
4685
4686 /* Exit the polling mode, but don't re-enable interrupts if stack might
4687 * poll us due to busy-polling
4688 */
4689 if (likely(napi_complete_done(napi, work_done)))
4690 igc_ring_irq_enable(q_vector);
4691
4692 return min(work_done, budget - 1);
4693 }
4694
4695 /**
4696 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4697 * @adapter: board private structure to initialize
4698 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4699 * @v_idx: index of vector in adapter struct
4700 * @txr_count: total number of Tx rings to allocate
4701 * @txr_idx: index of first Tx ring to allocate
4702 * @rxr_count: total number of Rx rings to allocate
4703 * @rxr_idx: index of first Rx ring to allocate
4704 *
4705 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4706 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4707 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4708 unsigned int v_count, unsigned int v_idx,
4709 unsigned int txr_count, unsigned int txr_idx,
4710 unsigned int rxr_count, unsigned int rxr_idx)
4711 {
4712 struct igc_q_vector *q_vector;
4713 struct igc_ring *ring;
4714 int ring_count;
4715
4716 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4717 if (txr_count > 1 || rxr_count > 1)
4718 return -ENOMEM;
4719
4720 ring_count = txr_count + rxr_count;
4721
4722 /* allocate q_vector and rings */
4723 q_vector = adapter->q_vector[v_idx];
4724 if (!q_vector)
4725 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4726 GFP_KERNEL);
4727 else
4728 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4729 if (!q_vector)
4730 return -ENOMEM;
4731
4732 /* initialize NAPI */
4733 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4734
4735 /* tie q_vector and adapter together */
4736 adapter->q_vector[v_idx] = q_vector;
4737 q_vector->adapter = adapter;
4738
4739 /* initialize work limits */
4740 q_vector->tx.work_limit = adapter->tx_work_limit;
4741
4742 /* initialize ITR configuration */
4743 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4744 q_vector->itr_val = IGC_START_ITR;
4745
4746 /* initialize pointer to rings */
4747 ring = q_vector->ring;
4748
4749 /* initialize ITR */
4750 if (rxr_count) {
4751 /* rx or rx/tx vector */
4752 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4753 q_vector->itr_val = adapter->rx_itr_setting;
4754 } else {
4755 /* tx only vector */
4756 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4757 q_vector->itr_val = adapter->tx_itr_setting;
4758 }
4759
4760 if (txr_count) {
4761 /* assign generic ring traits */
4762 ring->dev = &adapter->pdev->dev;
4763 ring->netdev = adapter->netdev;
4764
4765 /* configure backlink on ring */
4766 ring->q_vector = q_vector;
4767
4768 /* update q_vector Tx values */
4769 igc_add_ring(ring, &q_vector->tx);
4770
4771 /* apply Tx specific ring traits */
4772 ring->count = adapter->tx_ring_count;
4773 ring->queue_index = txr_idx;
4774
4775 /* assign ring to adapter */
4776 adapter->tx_ring[txr_idx] = ring;
4777
4778 /* push pointer to next ring */
4779 ring++;
4780 }
4781
4782 if (rxr_count) {
4783 /* assign generic ring traits */
4784 ring->dev = &adapter->pdev->dev;
4785 ring->netdev = adapter->netdev;
4786
4787 /* configure backlink on ring */
4788 ring->q_vector = q_vector;
4789
4790 /* update q_vector Rx values */
4791 igc_add_ring(ring, &q_vector->rx);
4792
4793 /* apply Rx specific ring traits */
4794 ring->count = adapter->rx_ring_count;
4795 ring->queue_index = rxr_idx;
4796
4797 /* assign ring to adapter */
4798 adapter->rx_ring[rxr_idx] = ring;
4799 }
4800
4801 return 0;
4802 }
4803
4804 /**
4805 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4806 * @adapter: board private structure to initialize
4807 *
4808 * We allocate one q_vector per queue interrupt. If allocation fails we
4809 * return -ENOMEM.
4810 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4811 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4812 {
4813 int rxr_remaining = adapter->num_rx_queues;
4814 int txr_remaining = adapter->num_tx_queues;
4815 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4816 int q_vectors = adapter->num_q_vectors;
4817 int err;
4818
4819 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4820 for (; rxr_remaining; v_idx++) {
4821 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4822 0, 0, 1, rxr_idx);
4823
4824 if (err)
4825 goto err_out;
4826
4827 /* update counts and index */
4828 rxr_remaining--;
4829 rxr_idx++;
4830 }
4831 }
4832
4833 for (; v_idx < q_vectors; v_idx++) {
4834 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4835 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4836
4837 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4838 tqpv, txr_idx, rqpv, rxr_idx);
4839
4840 if (err)
4841 goto err_out;
4842
4843 /* update counts and index */
4844 rxr_remaining -= rqpv;
4845 txr_remaining -= tqpv;
4846 rxr_idx++;
4847 txr_idx++;
4848 }
4849
4850 return 0;
4851
4852 err_out:
4853 adapter->num_tx_queues = 0;
4854 adapter->num_rx_queues = 0;
4855 adapter->num_q_vectors = 0;
4856
4857 while (v_idx--)
4858 igc_free_q_vector(adapter, v_idx);
4859
4860 return -ENOMEM;
4861 }
4862
4863 /**
4864 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4865 * @adapter: Pointer to adapter structure
4866 * @msix: boolean for MSI-X capability
4867 *
4868 * This function initializes the interrupts and allocates all of the queues.
4869 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4870 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4871 {
4872 struct net_device *dev = adapter->netdev;
4873 int err = 0;
4874
4875 igc_set_interrupt_capability(adapter, msix);
4876
4877 err = igc_alloc_q_vectors(adapter);
4878 if (err) {
4879 netdev_err(dev, "Unable to allocate memory for vectors\n");
4880 goto err_alloc_q_vectors;
4881 }
4882
4883 igc_cache_ring_register(adapter);
4884
4885 return 0;
4886
4887 err_alloc_q_vectors:
4888 igc_reset_interrupt_capability(adapter);
4889 return err;
4890 }
4891
4892 /**
4893 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4894 * @adapter: board private structure to initialize
4895 *
4896 * igc_sw_init initializes the Adapter private data structure.
4897 * Fields are initialized based on PCI device information and
4898 * OS network device settings (MTU size).
4899 */
igc_sw_init(struct igc_adapter * adapter)4900 static int igc_sw_init(struct igc_adapter *adapter)
4901 {
4902 struct net_device *netdev = adapter->netdev;
4903 struct pci_dev *pdev = adapter->pdev;
4904 struct igc_hw *hw = &adapter->hw;
4905
4906 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4907
4908 /* set default ring sizes */
4909 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4910 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4911
4912 /* set default ITR values */
4913 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4914 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4915
4916 /* set default work limits */
4917 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4918
4919 /* adjust max frame to be at least the size of a standard frame */
4920 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4921 VLAN_HLEN;
4922 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4923
4924 mutex_init(&adapter->nfc_rule_lock);
4925 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4926 adapter->nfc_rule_count = 0;
4927
4928 spin_lock_init(&adapter->stats64_lock);
4929 spin_lock_init(&adapter->qbv_tx_lock);
4930 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4931 adapter->flags |= IGC_FLAG_HAS_MSIX;
4932
4933 igc_init_queue_configuration(adapter);
4934
4935 /* This call may decrease the number of queues */
4936 if (igc_init_interrupt_scheme(adapter, true)) {
4937 netdev_err(netdev, "Unable to allocate memory for queues\n");
4938 return -ENOMEM;
4939 }
4940
4941 /* Explicitly disable IRQ since the NIC can be in any state. */
4942 igc_irq_disable(adapter);
4943
4944 set_bit(__IGC_DOWN, &adapter->state);
4945
4946 return 0;
4947 }
4948
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)4949 void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
4950 struct napi_struct *napi)
4951 {
4952 struct igc_q_vector *q_vector = adapter->q_vector[vector];
4953
4954 if (q_vector->rx.ring)
4955 netif_queue_set_napi(adapter->netdev,
4956 q_vector->rx.ring->queue_index,
4957 NETDEV_QUEUE_TYPE_RX, napi);
4958
4959 if (q_vector->tx.ring)
4960 netif_queue_set_napi(adapter->netdev,
4961 q_vector->tx.ring->queue_index,
4962 NETDEV_QUEUE_TYPE_TX, napi);
4963 }
4964
4965 /**
4966 * igc_up - Open the interface and prepare it to handle traffic
4967 * @adapter: board private structure
4968 */
igc_up(struct igc_adapter * adapter)4969 void igc_up(struct igc_adapter *adapter)
4970 {
4971 struct igc_hw *hw = &adapter->hw;
4972 struct napi_struct *napi;
4973 int i = 0;
4974
4975 /* hardware has been reset, we need to reload some things */
4976 igc_configure(adapter);
4977
4978 clear_bit(__IGC_DOWN, &adapter->state);
4979
4980 for (i = 0; i < adapter->num_q_vectors; i++) {
4981 napi = &adapter->q_vector[i]->napi;
4982 napi_enable(napi);
4983 igc_set_queue_napi(adapter, i, napi);
4984 }
4985
4986 if (adapter->msix_entries)
4987 igc_configure_msix(adapter);
4988 else
4989 igc_assign_vector(adapter->q_vector[0], 0);
4990
4991 /* Clear any pending interrupts. */
4992 rd32(IGC_ICR);
4993 igc_irq_enable(adapter);
4994
4995 netif_tx_start_all_queues(adapter->netdev);
4996
4997 /* start the watchdog. */
4998 hw->mac.get_link_status = true;
4999 schedule_work(&adapter->watchdog_task);
5000 }
5001
5002 /**
5003 * igc_update_stats - Update the board statistics counters
5004 * @adapter: board private structure
5005 */
igc_update_stats(struct igc_adapter * adapter)5006 void igc_update_stats(struct igc_adapter *adapter)
5007 {
5008 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5009 struct pci_dev *pdev = adapter->pdev;
5010 struct igc_hw *hw = &adapter->hw;
5011 u64 _bytes, _packets;
5012 u64 bytes, packets;
5013 unsigned int start;
5014 u32 mpc;
5015 int i;
5016
5017 /* Prevent stats update while adapter is being reset, or if the pci
5018 * connection is down.
5019 */
5020 if (adapter->link_speed == 0)
5021 return;
5022 if (pci_channel_offline(pdev))
5023 return;
5024
5025 packets = 0;
5026 bytes = 0;
5027
5028 rcu_read_lock();
5029 for (i = 0; i < adapter->num_rx_queues; i++) {
5030 struct igc_ring *ring = adapter->rx_ring[i];
5031 u32 rqdpc = rd32(IGC_RQDPC(i));
5032
5033 if (hw->mac.type >= igc_i225)
5034 wr32(IGC_RQDPC(i), 0);
5035
5036 if (rqdpc) {
5037 ring->rx_stats.drops += rqdpc;
5038 net_stats->rx_fifo_errors += rqdpc;
5039 }
5040
5041 do {
5042 start = u64_stats_fetch_begin(&ring->rx_syncp);
5043 _bytes = ring->rx_stats.bytes;
5044 _packets = ring->rx_stats.packets;
5045 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5046 bytes += _bytes;
5047 packets += _packets;
5048 }
5049
5050 net_stats->rx_bytes = bytes;
5051 net_stats->rx_packets = packets;
5052
5053 packets = 0;
5054 bytes = 0;
5055 for (i = 0; i < adapter->num_tx_queues; i++) {
5056 struct igc_ring *ring = adapter->tx_ring[i];
5057
5058 do {
5059 start = u64_stats_fetch_begin(&ring->tx_syncp);
5060 _bytes = ring->tx_stats.bytes;
5061 _packets = ring->tx_stats.packets;
5062 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5063 bytes += _bytes;
5064 packets += _packets;
5065 }
5066 net_stats->tx_bytes = bytes;
5067 net_stats->tx_packets = packets;
5068 rcu_read_unlock();
5069
5070 /* read stats registers */
5071 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5072 adapter->stats.gprc += rd32(IGC_GPRC);
5073 adapter->stats.gorc += rd32(IGC_GORCL);
5074 rd32(IGC_GORCH); /* clear GORCL */
5075 adapter->stats.bprc += rd32(IGC_BPRC);
5076 adapter->stats.mprc += rd32(IGC_MPRC);
5077 adapter->stats.roc += rd32(IGC_ROC);
5078
5079 adapter->stats.prc64 += rd32(IGC_PRC64);
5080 adapter->stats.prc127 += rd32(IGC_PRC127);
5081 adapter->stats.prc255 += rd32(IGC_PRC255);
5082 adapter->stats.prc511 += rd32(IGC_PRC511);
5083 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5084 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5085 adapter->stats.tlpic += rd32(IGC_TLPIC);
5086 adapter->stats.rlpic += rd32(IGC_RLPIC);
5087 adapter->stats.hgptc += rd32(IGC_HGPTC);
5088
5089 mpc = rd32(IGC_MPC);
5090 adapter->stats.mpc += mpc;
5091 net_stats->rx_fifo_errors += mpc;
5092 adapter->stats.scc += rd32(IGC_SCC);
5093 adapter->stats.ecol += rd32(IGC_ECOL);
5094 adapter->stats.mcc += rd32(IGC_MCC);
5095 adapter->stats.latecol += rd32(IGC_LATECOL);
5096 adapter->stats.dc += rd32(IGC_DC);
5097 adapter->stats.rlec += rd32(IGC_RLEC);
5098 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5099 adapter->stats.xontxc += rd32(IGC_XONTXC);
5100 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5101 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5102 adapter->stats.fcruc += rd32(IGC_FCRUC);
5103 adapter->stats.gptc += rd32(IGC_GPTC);
5104 adapter->stats.gotc += rd32(IGC_GOTCL);
5105 rd32(IGC_GOTCH); /* clear GOTCL */
5106 adapter->stats.rnbc += rd32(IGC_RNBC);
5107 adapter->stats.ruc += rd32(IGC_RUC);
5108 adapter->stats.rfc += rd32(IGC_RFC);
5109 adapter->stats.rjc += rd32(IGC_RJC);
5110 adapter->stats.tor += rd32(IGC_TORH);
5111 adapter->stats.tot += rd32(IGC_TOTH);
5112 adapter->stats.tpr += rd32(IGC_TPR);
5113
5114 adapter->stats.ptc64 += rd32(IGC_PTC64);
5115 adapter->stats.ptc127 += rd32(IGC_PTC127);
5116 adapter->stats.ptc255 += rd32(IGC_PTC255);
5117 adapter->stats.ptc511 += rd32(IGC_PTC511);
5118 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5119 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5120
5121 adapter->stats.mptc += rd32(IGC_MPTC);
5122 adapter->stats.bptc += rd32(IGC_BPTC);
5123
5124 adapter->stats.tpt += rd32(IGC_TPT);
5125 adapter->stats.colc += rd32(IGC_COLC);
5126 adapter->stats.colc += rd32(IGC_RERC);
5127
5128 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5129
5130 adapter->stats.tsctc += rd32(IGC_TSCTC);
5131
5132 adapter->stats.iac += rd32(IGC_IAC);
5133
5134 /* Fill out the OS statistics structure */
5135 net_stats->multicast = adapter->stats.mprc;
5136 net_stats->collisions = adapter->stats.colc;
5137
5138 /* Rx Errors */
5139
5140 /* RLEC on some newer hardware can be incorrect so build
5141 * our own version based on RUC and ROC
5142 */
5143 net_stats->rx_errors = adapter->stats.rxerrc +
5144 adapter->stats.crcerrs + adapter->stats.algnerrc +
5145 adapter->stats.ruc + adapter->stats.roc +
5146 adapter->stats.cexterr;
5147 net_stats->rx_length_errors = adapter->stats.ruc +
5148 adapter->stats.roc;
5149 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5150 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5151 net_stats->rx_missed_errors = adapter->stats.mpc;
5152
5153 /* Tx Errors */
5154 net_stats->tx_errors = adapter->stats.ecol +
5155 adapter->stats.latecol;
5156 net_stats->tx_aborted_errors = adapter->stats.ecol;
5157 net_stats->tx_window_errors = adapter->stats.latecol;
5158 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5159
5160 /* Tx Dropped */
5161 net_stats->tx_dropped = adapter->stats.txdrop;
5162
5163 /* Management Stats */
5164 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5165 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5166 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5167 }
5168
5169 /**
5170 * igc_down - Close the interface
5171 * @adapter: board private structure
5172 */
igc_down(struct igc_adapter * adapter)5173 void igc_down(struct igc_adapter *adapter)
5174 {
5175 struct net_device *netdev = adapter->netdev;
5176 struct igc_hw *hw = &adapter->hw;
5177 u32 tctl, rctl;
5178 int i = 0;
5179
5180 set_bit(__IGC_DOWN, &adapter->state);
5181
5182 igc_ptp_suspend(adapter);
5183
5184 if (pci_device_is_present(adapter->pdev)) {
5185 /* disable receives in the hardware */
5186 rctl = rd32(IGC_RCTL);
5187 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5188 /* flush and sleep below */
5189 }
5190 /* set trans_start so we don't get spurious watchdogs during reset */
5191 netif_trans_update(netdev);
5192
5193 netif_carrier_off(netdev);
5194 netif_tx_stop_all_queues(netdev);
5195
5196 if (pci_device_is_present(adapter->pdev)) {
5197 /* disable transmits in the hardware */
5198 tctl = rd32(IGC_TCTL);
5199 tctl &= ~IGC_TCTL_EN;
5200 wr32(IGC_TCTL, tctl);
5201 /* flush both disables and wait for them to finish */
5202 wrfl();
5203 usleep_range(10000, 20000);
5204
5205 igc_irq_disable(adapter);
5206 }
5207
5208 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5209
5210 for (i = 0; i < adapter->num_q_vectors; i++) {
5211 if (adapter->q_vector[i]) {
5212 napi_synchronize(&adapter->q_vector[i]->napi);
5213 igc_set_queue_napi(adapter, i, NULL);
5214 napi_disable(&adapter->q_vector[i]->napi);
5215 }
5216 }
5217
5218 del_timer_sync(&adapter->watchdog_timer);
5219 del_timer_sync(&adapter->phy_info_timer);
5220
5221 /* record the stats before reset*/
5222 spin_lock(&adapter->stats64_lock);
5223 igc_update_stats(adapter);
5224 spin_unlock(&adapter->stats64_lock);
5225
5226 adapter->link_speed = 0;
5227 adapter->link_duplex = 0;
5228
5229 if (!pci_channel_offline(adapter->pdev))
5230 igc_reset(adapter);
5231
5232 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5233 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5234
5235 igc_disable_all_tx_rings_hw(adapter);
5236 igc_clean_all_tx_rings(adapter);
5237 igc_clean_all_rx_rings(adapter);
5238 }
5239
igc_reinit_locked(struct igc_adapter * adapter)5240 void igc_reinit_locked(struct igc_adapter *adapter)
5241 {
5242 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5243 usleep_range(1000, 2000);
5244 igc_down(adapter);
5245 igc_up(adapter);
5246 clear_bit(__IGC_RESETTING, &adapter->state);
5247 }
5248
igc_reset_task(struct work_struct * work)5249 static void igc_reset_task(struct work_struct *work)
5250 {
5251 struct igc_adapter *adapter;
5252
5253 adapter = container_of(work, struct igc_adapter, reset_task);
5254
5255 rtnl_lock();
5256 /* If we're already down or resetting, just bail */
5257 if (test_bit(__IGC_DOWN, &adapter->state) ||
5258 test_bit(__IGC_RESETTING, &adapter->state)) {
5259 rtnl_unlock();
5260 return;
5261 }
5262
5263 igc_rings_dump(adapter);
5264 igc_regs_dump(adapter);
5265 netdev_err(adapter->netdev, "Reset adapter\n");
5266 igc_reinit_locked(adapter);
5267 rtnl_unlock();
5268 }
5269
5270 /**
5271 * igc_change_mtu - Change the Maximum Transfer Unit
5272 * @netdev: network interface device structure
5273 * @new_mtu: new value for maximum frame size
5274 *
5275 * Returns 0 on success, negative on failure
5276 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5277 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5278 {
5279 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5280 struct igc_adapter *adapter = netdev_priv(netdev);
5281
5282 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5283 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5284 return -EINVAL;
5285 }
5286
5287 /* adjust max frame to be at least the size of a standard frame */
5288 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5289 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5290
5291 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5292 usleep_range(1000, 2000);
5293
5294 /* igc_down has a dependency on max_frame_size */
5295 adapter->max_frame_size = max_frame;
5296
5297 if (netif_running(netdev))
5298 igc_down(adapter);
5299
5300 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5301 WRITE_ONCE(netdev->mtu, new_mtu);
5302
5303 if (netif_running(netdev))
5304 igc_up(adapter);
5305 else
5306 igc_reset(adapter);
5307
5308 clear_bit(__IGC_RESETTING, &adapter->state);
5309
5310 return 0;
5311 }
5312
5313 /**
5314 * igc_tx_timeout - Respond to a Tx Hang
5315 * @netdev: network interface device structure
5316 * @txqueue: queue number that timed out
5317 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5318 static void igc_tx_timeout(struct net_device *netdev,
5319 unsigned int __always_unused txqueue)
5320 {
5321 struct igc_adapter *adapter = netdev_priv(netdev);
5322 struct igc_hw *hw = &adapter->hw;
5323
5324 /* Do the reset outside of interrupt context */
5325 adapter->tx_timeout_count++;
5326 schedule_work(&adapter->reset_task);
5327 wr32(IGC_EICS,
5328 (adapter->eims_enable_mask & ~adapter->eims_other));
5329 }
5330
5331 /**
5332 * igc_get_stats64 - Get System Network Statistics
5333 * @netdev: network interface device structure
5334 * @stats: rtnl_link_stats64 pointer
5335 *
5336 * Returns the address of the device statistics structure.
5337 * The statistics are updated here and also from the timer callback.
5338 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5339 static void igc_get_stats64(struct net_device *netdev,
5340 struct rtnl_link_stats64 *stats)
5341 {
5342 struct igc_adapter *adapter = netdev_priv(netdev);
5343
5344 spin_lock(&adapter->stats64_lock);
5345 if (!test_bit(__IGC_RESETTING, &adapter->state))
5346 igc_update_stats(adapter);
5347 memcpy(stats, &adapter->stats64, sizeof(*stats));
5348 spin_unlock(&adapter->stats64_lock);
5349 }
5350
igc_fix_features(struct net_device * netdev,netdev_features_t features)5351 static netdev_features_t igc_fix_features(struct net_device *netdev,
5352 netdev_features_t features)
5353 {
5354 /* Since there is no support for separate Rx/Tx vlan accel
5355 * enable/disable make sure Tx flag is always in same state as Rx.
5356 */
5357 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5358 features |= NETIF_F_HW_VLAN_CTAG_TX;
5359 else
5360 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5361
5362 return features;
5363 }
5364
igc_set_features(struct net_device * netdev,netdev_features_t features)5365 static int igc_set_features(struct net_device *netdev,
5366 netdev_features_t features)
5367 {
5368 netdev_features_t changed = netdev->features ^ features;
5369 struct igc_adapter *adapter = netdev_priv(netdev);
5370
5371 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5372 igc_vlan_mode(netdev, features);
5373
5374 /* Add VLAN support */
5375 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5376 return 0;
5377
5378 if (!(features & NETIF_F_NTUPLE))
5379 igc_flush_nfc_rules(adapter);
5380
5381 netdev->features = features;
5382
5383 if (netif_running(netdev))
5384 igc_reinit_locked(adapter);
5385 else
5386 igc_reset(adapter);
5387
5388 return 1;
5389 }
5390
5391 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5392 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5393 netdev_features_t features)
5394 {
5395 unsigned int network_hdr_len, mac_hdr_len;
5396
5397 /* Make certain the headers can be described by a context descriptor */
5398 mac_hdr_len = skb_network_offset(skb);
5399 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5400 return features & ~(NETIF_F_HW_CSUM |
5401 NETIF_F_SCTP_CRC |
5402 NETIF_F_HW_VLAN_CTAG_TX |
5403 NETIF_F_TSO |
5404 NETIF_F_TSO6);
5405
5406 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5407 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5408 return features & ~(NETIF_F_HW_CSUM |
5409 NETIF_F_SCTP_CRC |
5410 NETIF_F_TSO |
5411 NETIF_F_TSO6);
5412
5413 /* We can only support IPv4 TSO in tunnels if we can mangle the
5414 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5415 */
5416 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5417 features &= ~NETIF_F_TSO;
5418
5419 return features;
5420 }
5421
igc_tsync_interrupt(struct igc_adapter * adapter)5422 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5423 {
5424 struct igc_hw *hw = &adapter->hw;
5425 u32 tsauxc, sec, nsec, tsicr;
5426 struct ptp_clock_event event;
5427 struct timespec64 ts;
5428
5429 tsicr = rd32(IGC_TSICR);
5430
5431 if (tsicr & IGC_TSICR_SYS_WRAP) {
5432 event.type = PTP_CLOCK_PPS;
5433 if (adapter->ptp_caps.pps)
5434 ptp_clock_event(adapter->ptp_clock, &event);
5435 }
5436
5437 if (tsicr & IGC_TSICR_TXTS) {
5438 /* retrieve hardware timestamp */
5439 igc_ptp_tx_tstamp_event(adapter);
5440 }
5441
5442 if (tsicr & IGC_TSICR_TT0) {
5443 spin_lock(&adapter->tmreg_lock);
5444 ts = timespec64_add(adapter->perout[0].start,
5445 adapter->perout[0].period);
5446 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5447 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5448 tsauxc = rd32(IGC_TSAUXC);
5449 tsauxc |= IGC_TSAUXC_EN_TT0;
5450 wr32(IGC_TSAUXC, tsauxc);
5451 adapter->perout[0].start = ts;
5452 spin_unlock(&adapter->tmreg_lock);
5453 }
5454
5455 if (tsicr & IGC_TSICR_TT1) {
5456 spin_lock(&adapter->tmreg_lock);
5457 ts = timespec64_add(adapter->perout[1].start,
5458 adapter->perout[1].period);
5459 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5460 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5461 tsauxc = rd32(IGC_TSAUXC);
5462 tsauxc |= IGC_TSAUXC_EN_TT1;
5463 wr32(IGC_TSAUXC, tsauxc);
5464 adapter->perout[1].start = ts;
5465 spin_unlock(&adapter->tmreg_lock);
5466 }
5467
5468 if (tsicr & IGC_TSICR_AUTT0) {
5469 nsec = rd32(IGC_AUXSTMPL0);
5470 sec = rd32(IGC_AUXSTMPH0);
5471 event.type = PTP_CLOCK_EXTTS;
5472 event.index = 0;
5473 event.timestamp = sec * NSEC_PER_SEC + nsec;
5474 ptp_clock_event(adapter->ptp_clock, &event);
5475 }
5476
5477 if (tsicr & IGC_TSICR_AUTT1) {
5478 nsec = rd32(IGC_AUXSTMPL1);
5479 sec = rd32(IGC_AUXSTMPH1);
5480 event.type = PTP_CLOCK_EXTTS;
5481 event.index = 1;
5482 event.timestamp = sec * NSEC_PER_SEC + nsec;
5483 ptp_clock_event(adapter->ptp_clock, &event);
5484 }
5485 }
5486
5487 /**
5488 * igc_msix_other - msix other interrupt handler
5489 * @irq: interrupt number
5490 * @data: pointer to a q_vector
5491 */
igc_msix_other(int irq,void * data)5492 static irqreturn_t igc_msix_other(int irq, void *data)
5493 {
5494 struct igc_adapter *adapter = data;
5495 struct igc_hw *hw = &adapter->hw;
5496 u32 icr = rd32(IGC_ICR);
5497
5498 /* reading ICR causes bit 31 of EICR to be cleared */
5499 if (icr & IGC_ICR_DRSTA)
5500 schedule_work(&adapter->reset_task);
5501
5502 if (icr & IGC_ICR_DOUTSYNC) {
5503 /* HW is reporting DMA is out of sync */
5504 adapter->stats.doosync++;
5505 }
5506
5507 if (icr & IGC_ICR_LSC) {
5508 hw->mac.get_link_status = true;
5509 /* guard against interrupt when we're going down */
5510 if (!test_bit(__IGC_DOWN, &adapter->state))
5511 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5512 }
5513
5514 if (icr & IGC_ICR_TS)
5515 igc_tsync_interrupt(adapter);
5516
5517 wr32(IGC_EIMS, adapter->eims_other);
5518
5519 return IRQ_HANDLED;
5520 }
5521
igc_write_itr(struct igc_q_vector * q_vector)5522 static void igc_write_itr(struct igc_q_vector *q_vector)
5523 {
5524 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5525
5526 if (!q_vector->set_itr)
5527 return;
5528
5529 if (!itr_val)
5530 itr_val = IGC_ITR_VAL_MASK;
5531
5532 itr_val |= IGC_EITR_CNT_IGNR;
5533
5534 writel(itr_val, q_vector->itr_register);
5535 q_vector->set_itr = 0;
5536 }
5537
igc_msix_ring(int irq,void * data)5538 static irqreturn_t igc_msix_ring(int irq, void *data)
5539 {
5540 struct igc_q_vector *q_vector = data;
5541
5542 /* Write the ITR value calculated from the previous interrupt. */
5543 igc_write_itr(q_vector);
5544
5545 napi_schedule(&q_vector->napi);
5546
5547 return IRQ_HANDLED;
5548 }
5549
5550 /**
5551 * igc_request_msix - Initialize MSI-X interrupts
5552 * @adapter: Pointer to adapter structure
5553 *
5554 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5555 * kernel.
5556 */
igc_request_msix(struct igc_adapter * adapter)5557 static int igc_request_msix(struct igc_adapter *adapter)
5558 {
5559 unsigned int num_q_vectors = adapter->num_q_vectors;
5560 int i = 0, err = 0, vector = 0, free_vector = 0;
5561 struct net_device *netdev = adapter->netdev;
5562
5563 err = request_irq(adapter->msix_entries[vector].vector,
5564 &igc_msix_other, 0, netdev->name, adapter);
5565 if (err)
5566 goto err_out;
5567
5568 if (num_q_vectors > MAX_Q_VECTORS) {
5569 num_q_vectors = MAX_Q_VECTORS;
5570 dev_warn(&adapter->pdev->dev,
5571 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5572 adapter->num_q_vectors, MAX_Q_VECTORS);
5573 }
5574 for (i = 0; i < num_q_vectors; i++) {
5575 struct igc_q_vector *q_vector = adapter->q_vector[i];
5576
5577 vector++;
5578
5579 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5580
5581 if (q_vector->rx.ring && q_vector->tx.ring)
5582 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5583 q_vector->rx.ring->queue_index);
5584 else if (q_vector->tx.ring)
5585 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5586 q_vector->tx.ring->queue_index);
5587 else if (q_vector->rx.ring)
5588 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5589 q_vector->rx.ring->queue_index);
5590 else
5591 sprintf(q_vector->name, "%s-unused", netdev->name);
5592
5593 err = request_irq(adapter->msix_entries[vector].vector,
5594 igc_msix_ring, 0, q_vector->name,
5595 q_vector);
5596 if (err)
5597 goto err_free;
5598
5599 netif_napi_set_irq(&q_vector->napi,
5600 adapter->msix_entries[vector].vector);
5601 }
5602
5603 igc_configure_msix(adapter);
5604 return 0;
5605
5606 err_free:
5607 /* free already assigned IRQs */
5608 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5609
5610 vector--;
5611 for (i = 0; i < vector; i++) {
5612 free_irq(adapter->msix_entries[free_vector++].vector,
5613 adapter->q_vector[i]);
5614 }
5615 err_out:
5616 return err;
5617 }
5618
5619 /**
5620 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5621 * @adapter: Pointer to adapter structure
5622 *
5623 * This function resets the device so that it has 0 rx queues, tx queues, and
5624 * MSI-X interrupts allocated.
5625 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5626 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5627 {
5628 igc_free_q_vectors(adapter);
5629 igc_reset_interrupt_capability(adapter);
5630 }
5631
5632 /* Need to wait a few seconds after link up to get diagnostic information from
5633 * the phy
5634 */
igc_update_phy_info(struct timer_list * t)5635 static void igc_update_phy_info(struct timer_list *t)
5636 {
5637 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5638
5639 igc_get_phy_info(&adapter->hw);
5640 }
5641
5642 /**
5643 * igc_has_link - check shared code for link and determine up/down
5644 * @adapter: pointer to driver private info
5645 */
igc_has_link(struct igc_adapter * adapter)5646 bool igc_has_link(struct igc_adapter *adapter)
5647 {
5648 struct igc_hw *hw = &adapter->hw;
5649 bool link_active = false;
5650
5651 /* get_link_status is set on LSC (link status) interrupt or
5652 * rx sequence error interrupt. get_link_status will stay
5653 * false until the igc_check_for_link establishes link
5654 * for copper adapters ONLY
5655 */
5656 if (!hw->mac.get_link_status)
5657 return true;
5658 hw->mac.ops.check_for_link(hw);
5659 link_active = !hw->mac.get_link_status;
5660
5661 if (hw->mac.type == igc_i225) {
5662 if (!netif_carrier_ok(adapter->netdev)) {
5663 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5664 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5665 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5666 adapter->link_check_timeout = jiffies;
5667 }
5668 }
5669
5670 return link_active;
5671 }
5672
5673 /**
5674 * igc_watchdog - Timer Call-back
5675 * @t: timer for the watchdog
5676 */
igc_watchdog(struct timer_list * t)5677 static void igc_watchdog(struct timer_list *t)
5678 {
5679 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5680 /* Do the rest outside of interrupt context */
5681 schedule_work(&adapter->watchdog_task);
5682 }
5683
igc_watchdog_task(struct work_struct * work)5684 static void igc_watchdog_task(struct work_struct *work)
5685 {
5686 struct igc_adapter *adapter = container_of(work,
5687 struct igc_adapter,
5688 watchdog_task);
5689 struct net_device *netdev = adapter->netdev;
5690 struct igc_hw *hw = &adapter->hw;
5691 struct igc_phy_info *phy = &hw->phy;
5692 u16 phy_data, retry_count = 20;
5693 u32 link;
5694 int i;
5695
5696 link = igc_has_link(adapter);
5697
5698 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5699 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5700 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5701 else
5702 link = false;
5703 }
5704
5705 if (link) {
5706 /* Cancel scheduled suspend requests. */
5707 pm_runtime_resume(netdev->dev.parent);
5708
5709 if (!netif_carrier_ok(netdev)) {
5710 u32 ctrl;
5711
5712 hw->mac.ops.get_speed_and_duplex(hw,
5713 &adapter->link_speed,
5714 &adapter->link_duplex);
5715
5716 ctrl = rd32(IGC_CTRL);
5717 /* Link status message must follow this format */
5718 netdev_info(netdev,
5719 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5720 adapter->link_speed,
5721 adapter->link_duplex == FULL_DUPLEX ?
5722 "Full" : "Half",
5723 (ctrl & IGC_CTRL_TFCE) &&
5724 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5725 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5726 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5727
5728 /* disable EEE if enabled */
5729 if ((adapter->flags & IGC_FLAG_EEE) &&
5730 adapter->link_duplex == HALF_DUPLEX) {
5731 netdev_info(netdev,
5732 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5733 adapter->hw.dev_spec._base.eee_enable = false;
5734 adapter->flags &= ~IGC_FLAG_EEE;
5735 }
5736
5737 /* check if SmartSpeed worked */
5738 igc_check_downshift(hw);
5739 if (phy->speed_downgraded)
5740 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5741
5742 /* adjust timeout factor according to speed/duplex */
5743 adapter->tx_timeout_factor = 1;
5744 switch (adapter->link_speed) {
5745 case SPEED_10:
5746 adapter->tx_timeout_factor = 14;
5747 break;
5748 case SPEED_100:
5749 case SPEED_1000:
5750 case SPEED_2500:
5751 adapter->tx_timeout_factor = 1;
5752 break;
5753 }
5754
5755 /* Once the launch time has been set on the wire, there
5756 * is a delay before the link speed can be determined
5757 * based on link-up activity. Write into the register
5758 * as soon as we know the correct link speed.
5759 */
5760 igc_tsn_adjust_txtime_offset(adapter);
5761
5762 if (adapter->link_speed != SPEED_1000)
5763 goto no_wait;
5764
5765 /* wait for Remote receiver status OK */
5766 retry_read_status:
5767 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5768 &phy_data)) {
5769 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5770 retry_count) {
5771 msleep(100);
5772 retry_count--;
5773 goto retry_read_status;
5774 } else if (!retry_count) {
5775 netdev_err(netdev, "exceed max 2 second\n");
5776 }
5777 } else {
5778 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5779 }
5780 no_wait:
5781 netif_carrier_on(netdev);
5782
5783 /* link state has changed, schedule phy info update */
5784 if (!test_bit(__IGC_DOWN, &adapter->state))
5785 mod_timer(&adapter->phy_info_timer,
5786 round_jiffies(jiffies + 2 * HZ));
5787 }
5788 } else {
5789 if (netif_carrier_ok(netdev)) {
5790 adapter->link_speed = 0;
5791 adapter->link_duplex = 0;
5792
5793 /* Links status message must follow this format */
5794 netdev_info(netdev, "NIC Link is Down\n");
5795 netif_carrier_off(netdev);
5796
5797 /* link state has changed, schedule phy info update */
5798 if (!test_bit(__IGC_DOWN, &adapter->state))
5799 mod_timer(&adapter->phy_info_timer,
5800 round_jiffies(jiffies + 2 * HZ));
5801
5802 pm_schedule_suspend(netdev->dev.parent,
5803 MSEC_PER_SEC * 5);
5804 }
5805 }
5806
5807 spin_lock(&adapter->stats64_lock);
5808 igc_update_stats(adapter);
5809 spin_unlock(&adapter->stats64_lock);
5810
5811 for (i = 0; i < adapter->num_tx_queues; i++) {
5812 struct igc_ring *tx_ring = adapter->tx_ring[i];
5813
5814 if (!netif_carrier_ok(netdev)) {
5815 /* We've lost link, so the controller stops DMA,
5816 * but we've got queued Tx work that's never going
5817 * to get done, so reset controller to flush Tx.
5818 * (Do the reset outside of interrupt context).
5819 */
5820 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5821 adapter->tx_timeout_count++;
5822 schedule_work(&adapter->reset_task);
5823 /* return immediately since reset is imminent */
5824 return;
5825 }
5826 }
5827
5828 /* Force detection of hung controller every watchdog period */
5829 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5830 }
5831
5832 /* Cause software interrupt to ensure Rx ring is cleaned */
5833 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5834 u32 eics = 0;
5835
5836 for (i = 0; i < adapter->num_q_vectors; i++) {
5837 struct igc_q_vector *q_vector = adapter->q_vector[i];
5838 struct igc_ring *rx_ring;
5839
5840 if (!q_vector->rx.ring)
5841 continue;
5842
5843 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5844
5845 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5846 eics |= q_vector->eims_value;
5847 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5848 }
5849 }
5850 if (eics)
5851 wr32(IGC_EICS, eics);
5852 } else {
5853 struct igc_ring *rx_ring = adapter->rx_ring[0];
5854
5855 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5856 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5857 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5858 }
5859 }
5860
5861 igc_ptp_tx_hang(adapter);
5862
5863 /* Reset the timer */
5864 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5865 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5866 mod_timer(&adapter->watchdog_timer,
5867 round_jiffies(jiffies + HZ));
5868 else
5869 mod_timer(&adapter->watchdog_timer,
5870 round_jiffies(jiffies + 2 * HZ));
5871 }
5872 }
5873
5874 /**
5875 * igc_intr_msi - Interrupt Handler
5876 * @irq: interrupt number
5877 * @data: pointer to a network interface device structure
5878 */
igc_intr_msi(int irq,void * data)5879 static irqreturn_t igc_intr_msi(int irq, void *data)
5880 {
5881 struct igc_adapter *adapter = data;
5882 struct igc_q_vector *q_vector = adapter->q_vector[0];
5883 struct igc_hw *hw = &adapter->hw;
5884 /* read ICR disables interrupts using IAM */
5885 u32 icr = rd32(IGC_ICR);
5886
5887 igc_write_itr(q_vector);
5888
5889 if (icr & IGC_ICR_DRSTA)
5890 schedule_work(&adapter->reset_task);
5891
5892 if (icr & IGC_ICR_DOUTSYNC) {
5893 /* HW is reporting DMA is out of sync */
5894 adapter->stats.doosync++;
5895 }
5896
5897 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5898 hw->mac.get_link_status = true;
5899 if (!test_bit(__IGC_DOWN, &adapter->state))
5900 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5901 }
5902
5903 if (icr & IGC_ICR_TS)
5904 igc_tsync_interrupt(adapter);
5905
5906 napi_schedule(&q_vector->napi);
5907
5908 return IRQ_HANDLED;
5909 }
5910
5911 /**
5912 * igc_intr - Legacy Interrupt Handler
5913 * @irq: interrupt number
5914 * @data: pointer to a network interface device structure
5915 */
igc_intr(int irq,void * data)5916 static irqreturn_t igc_intr(int irq, void *data)
5917 {
5918 struct igc_adapter *adapter = data;
5919 struct igc_q_vector *q_vector = adapter->q_vector[0];
5920 struct igc_hw *hw = &adapter->hw;
5921 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5922 * need for the IMC write
5923 */
5924 u32 icr = rd32(IGC_ICR);
5925
5926 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5927 * not set, then the adapter didn't send an interrupt
5928 */
5929 if (!(icr & IGC_ICR_INT_ASSERTED))
5930 return IRQ_NONE;
5931
5932 igc_write_itr(q_vector);
5933
5934 if (icr & IGC_ICR_DRSTA)
5935 schedule_work(&adapter->reset_task);
5936
5937 if (icr & IGC_ICR_DOUTSYNC) {
5938 /* HW is reporting DMA is out of sync */
5939 adapter->stats.doosync++;
5940 }
5941
5942 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5943 hw->mac.get_link_status = true;
5944 /* guard against interrupt when we're going down */
5945 if (!test_bit(__IGC_DOWN, &adapter->state))
5946 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5947 }
5948
5949 if (icr & IGC_ICR_TS)
5950 igc_tsync_interrupt(adapter);
5951
5952 napi_schedule(&q_vector->napi);
5953
5954 return IRQ_HANDLED;
5955 }
5956
igc_free_irq(struct igc_adapter * adapter)5957 static void igc_free_irq(struct igc_adapter *adapter)
5958 {
5959 if (adapter->msix_entries) {
5960 int vector = 0, i;
5961
5962 free_irq(adapter->msix_entries[vector++].vector, adapter);
5963
5964 for (i = 0; i < adapter->num_q_vectors; i++)
5965 free_irq(adapter->msix_entries[vector++].vector,
5966 adapter->q_vector[i]);
5967 } else {
5968 free_irq(adapter->pdev->irq, adapter);
5969 }
5970 }
5971
5972 /**
5973 * igc_request_irq - initialize interrupts
5974 * @adapter: Pointer to adapter structure
5975 *
5976 * Attempts to configure interrupts using the best available
5977 * capabilities of the hardware and kernel.
5978 */
igc_request_irq(struct igc_adapter * adapter)5979 static int igc_request_irq(struct igc_adapter *adapter)
5980 {
5981 struct net_device *netdev = adapter->netdev;
5982 struct pci_dev *pdev = adapter->pdev;
5983 int err = 0;
5984
5985 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5986 err = igc_request_msix(adapter);
5987 if (!err)
5988 goto request_done;
5989 /* fall back to MSI */
5990 igc_free_all_tx_resources(adapter);
5991 igc_free_all_rx_resources(adapter);
5992
5993 igc_clear_interrupt_scheme(adapter);
5994 err = igc_init_interrupt_scheme(adapter, false);
5995 if (err)
5996 goto request_done;
5997 igc_setup_all_tx_resources(adapter);
5998 igc_setup_all_rx_resources(adapter);
5999 igc_configure(adapter);
6000 }
6001
6002 igc_assign_vector(adapter->q_vector[0], 0);
6003
6004 if (adapter->flags & IGC_FLAG_HAS_MSI) {
6005 err = request_irq(pdev->irq, &igc_intr_msi, 0,
6006 netdev->name, adapter);
6007 if (!err)
6008 goto request_done;
6009
6010 /* fall back to legacy interrupts */
6011 igc_reset_interrupt_capability(adapter);
6012 adapter->flags &= ~IGC_FLAG_HAS_MSI;
6013 }
6014
6015 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6016 netdev->name, adapter);
6017
6018 if (err)
6019 netdev_err(netdev, "Error %d getting interrupt\n", err);
6020
6021 request_done:
6022 return err;
6023 }
6024
6025 /**
6026 * __igc_open - Called when a network interface is made active
6027 * @netdev: network interface device structure
6028 * @resuming: boolean indicating if the device is resuming
6029 *
6030 * Returns 0 on success, negative value on failure
6031 *
6032 * The open entry point is called when a network interface is made
6033 * active by the system (IFF_UP). At this point all resources needed
6034 * for transmit and receive operations are allocated, the interrupt
6035 * handler is registered with the OS, the watchdog timer is started,
6036 * and the stack is notified that the interface is ready.
6037 */
__igc_open(struct net_device * netdev,bool resuming)6038 static int __igc_open(struct net_device *netdev, bool resuming)
6039 {
6040 struct igc_adapter *adapter = netdev_priv(netdev);
6041 struct pci_dev *pdev = adapter->pdev;
6042 struct igc_hw *hw = &adapter->hw;
6043 struct napi_struct *napi;
6044 int err = 0;
6045 int i = 0;
6046
6047 /* disallow open during test */
6048
6049 if (test_bit(__IGC_TESTING, &adapter->state)) {
6050 WARN_ON(resuming);
6051 return -EBUSY;
6052 }
6053
6054 if (!resuming)
6055 pm_runtime_get_sync(&pdev->dev);
6056
6057 netif_carrier_off(netdev);
6058
6059 /* allocate transmit descriptors */
6060 err = igc_setup_all_tx_resources(adapter);
6061 if (err)
6062 goto err_setup_tx;
6063
6064 /* allocate receive descriptors */
6065 err = igc_setup_all_rx_resources(adapter);
6066 if (err)
6067 goto err_setup_rx;
6068
6069 igc_power_up_link(adapter);
6070
6071 igc_configure(adapter);
6072
6073 err = igc_request_irq(adapter);
6074 if (err)
6075 goto err_req_irq;
6076
6077 clear_bit(__IGC_DOWN, &adapter->state);
6078
6079 for (i = 0; i < adapter->num_q_vectors; i++) {
6080 napi = &adapter->q_vector[i]->napi;
6081 napi_enable(napi);
6082 igc_set_queue_napi(adapter, i, napi);
6083 }
6084
6085 /* Clear any pending interrupts. */
6086 rd32(IGC_ICR);
6087 igc_irq_enable(adapter);
6088
6089 if (!resuming)
6090 pm_runtime_put(&pdev->dev);
6091
6092 netif_tx_start_all_queues(netdev);
6093
6094 /* start the watchdog. */
6095 hw->mac.get_link_status = true;
6096 schedule_work(&adapter->watchdog_task);
6097
6098 return IGC_SUCCESS;
6099
6100 err_req_irq:
6101 igc_release_hw_control(adapter);
6102 igc_power_down_phy_copper_base(&adapter->hw);
6103 igc_free_all_rx_resources(adapter);
6104 err_setup_rx:
6105 igc_free_all_tx_resources(adapter);
6106 err_setup_tx:
6107 igc_reset(adapter);
6108 if (!resuming)
6109 pm_runtime_put(&pdev->dev);
6110
6111 return err;
6112 }
6113
igc_open(struct net_device * netdev)6114 int igc_open(struct net_device *netdev)
6115 {
6116 struct igc_adapter *adapter = netdev_priv(netdev);
6117 int err;
6118
6119 /* Notify the stack of the actual queue counts. */
6120 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6121 adapter->num_rx_queues);
6122 if (err) {
6123 netdev_err(netdev, "error setting real queue count\n");
6124 return err;
6125 }
6126
6127 return __igc_open(netdev, false);
6128 }
6129
6130 /**
6131 * __igc_close - Disables a network interface
6132 * @netdev: network interface device structure
6133 * @suspending: boolean indicating the device is suspending
6134 *
6135 * Returns 0, this is not allowed to fail
6136 *
6137 * The close entry point is called when an interface is de-activated
6138 * by the OS. The hardware is still under the driver's control, but
6139 * needs to be disabled. A global MAC reset is issued to stop the
6140 * hardware, and all transmit and receive resources are freed.
6141 */
__igc_close(struct net_device * netdev,bool suspending)6142 static int __igc_close(struct net_device *netdev, bool suspending)
6143 {
6144 struct igc_adapter *adapter = netdev_priv(netdev);
6145 struct pci_dev *pdev = adapter->pdev;
6146
6147 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6148
6149 if (!suspending)
6150 pm_runtime_get_sync(&pdev->dev);
6151
6152 igc_down(adapter);
6153
6154 igc_release_hw_control(adapter);
6155
6156 igc_free_irq(adapter);
6157
6158 igc_free_all_tx_resources(adapter);
6159 igc_free_all_rx_resources(adapter);
6160
6161 if (!suspending)
6162 pm_runtime_put_sync(&pdev->dev);
6163
6164 return 0;
6165 }
6166
igc_close(struct net_device * netdev)6167 int igc_close(struct net_device *netdev)
6168 {
6169 if (netif_device_present(netdev) || netdev->dismantle)
6170 return __igc_close(netdev, false);
6171 return 0;
6172 }
6173
6174 /**
6175 * igc_ioctl - Access the hwtstamp interface
6176 * @netdev: network interface device structure
6177 * @ifr: interface request data
6178 * @cmd: ioctl command
6179 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6180 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6181 {
6182 switch (cmd) {
6183 case SIOCGHWTSTAMP:
6184 return igc_ptp_get_ts_config(netdev, ifr);
6185 case SIOCSHWTSTAMP:
6186 return igc_ptp_set_ts_config(netdev, ifr);
6187 default:
6188 return -EOPNOTSUPP;
6189 }
6190 }
6191
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6192 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6193 bool enable)
6194 {
6195 struct igc_ring *ring;
6196
6197 if (queue < 0 || queue >= adapter->num_tx_queues)
6198 return -EINVAL;
6199
6200 ring = adapter->tx_ring[queue];
6201 ring->launchtime_enable = enable;
6202
6203 return 0;
6204 }
6205
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6206 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6207 {
6208 struct timespec64 b;
6209
6210 b = ktime_to_timespec64(base_time);
6211
6212 return timespec64_compare(now, &b) > 0;
6213 }
6214
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6215 static bool validate_schedule(struct igc_adapter *adapter,
6216 const struct tc_taprio_qopt_offload *qopt)
6217 {
6218 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6219 struct igc_hw *hw = &adapter->hw;
6220 struct timespec64 now;
6221 size_t n;
6222
6223 if (qopt->cycle_time_extension)
6224 return false;
6225
6226 igc_ptp_read(adapter, &now);
6227
6228 /* If we program the controller's BASET registers with a time
6229 * in the future, it will hold all the packets until that
6230 * time, causing a lot of TX Hangs, so to avoid that, we
6231 * reject schedules that would start in the future.
6232 * Note: Limitation above is no longer in i226.
6233 */
6234 if (!is_base_time_past(qopt->base_time, &now) &&
6235 igc_is_device_id_i225(hw))
6236 return false;
6237
6238 for (n = 0; n < qopt->num_entries; n++) {
6239 const struct tc_taprio_sched_entry *e, *prev;
6240 int i;
6241
6242 prev = n ? &qopt->entries[n - 1] : NULL;
6243 e = &qopt->entries[n];
6244
6245 /* i225 only supports "global" frame preemption
6246 * settings.
6247 */
6248 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6249 return false;
6250
6251 for (i = 0; i < adapter->num_tx_queues; i++)
6252 if (e->gate_mask & BIT(i)) {
6253 queue_uses[i]++;
6254
6255 /* There are limitations: A single queue cannot
6256 * be opened and closed multiple times per cycle
6257 * unless the gate stays open. Check for it.
6258 */
6259 if (queue_uses[i] > 1 &&
6260 !(prev->gate_mask & BIT(i)))
6261 return false;
6262 }
6263 }
6264
6265 return true;
6266 }
6267
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6268 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6269 struct tc_etf_qopt_offload *qopt)
6270 {
6271 struct igc_hw *hw = &adapter->hw;
6272 int err;
6273
6274 if (hw->mac.type != igc_i225)
6275 return -EOPNOTSUPP;
6276
6277 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6278 if (err)
6279 return err;
6280
6281 return igc_tsn_offload_apply(adapter);
6282 }
6283
igc_qbv_clear_schedule(struct igc_adapter * adapter)6284 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6285 {
6286 unsigned long flags;
6287 int i;
6288
6289 adapter->base_time = 0;
6290 adapter->cycle_time = NSEC_PER_SEC;
6291 adapter->taprio_offload_enable = false;
6292 adapter->qbv_config_change_errors = 0;
6293 adapter->qbv_count = 0;
6294
6295 for (i = 0; i < adapter->num_tx_queues; i++) {
6296 struct igc_ring *ring = adapter->tx_ring[i];
6297
6298 ring->start_time = 0;
6299 ring->end_time = NSEC_PER_SEC;
6300 ring->max_sdu = 0;
6301 }
6302
6303 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6304
6305 adapter->qbv_transition = false;
6306
6307 for (i = 0; i < adapter->num_tx_queues; i++) {
6308 struct igc_ring *ring = adapter->tx_ring[i];
6309
6310 ring->oper_gate_closed = false;
6311 ring->admin_gate_closed = false;
6312 }
6313
6314 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6315
6316 return 0;
6317 }
6318
igc_tsn_clear_schedule(struct igc_adapter * adapter)6319 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6320 {
6321 igc_qbv_clear_schedule(adapter);
6322
6323 return 0;
6324 }
6325
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6326 static void igc_taprio_stats(struct net_device *dev,
6327 struct tc_taprio_qopt_stats *stats)
6328 {
6329 /* When Strict_End is enabled, the tx_overruns counter
6330 * will always be zero.
6331 */
6332 stats->tx_overruns = 0;
6333 }
6334
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6335 static void igc_taprio_queue_stats(struct net_device *dev,
6336 struct tc_taprio_qopt_queue_stats *queue_stats)
6337 {
6338 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6339
6340 /* When Strict_End is enabled, the tx_overruns counter
6341 * will always be zero.
6342 */
6343 stats->tx_overruns = 0;
6344 }
6345
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6346 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6347 struct tc_taprio_qopt_offload *qopt)
6348 {
6349 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6350 struct igc_hw *hw = &adapter->hw;
6351 u32 start_time = 0, end_time = 0;
6352 struct timespec64 now;
6353 unsigned long flags;
6354 size_t n;
6355 int i;
6356
6357 if (qopt->base_time < 0)
6358 return -ERANGE;
6359
6360 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6361 return -EALREADY;
6362
6363 if (!validate_schedule(adapter, qopt))
6364 return -EINVAL;
6365
6366 igc_ptp_read(adapter, &now);
6367
6368 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6369 is_base_time_past(qopt->base_time, &now))
6370 adapter->qbv_config_change_errors++;
6371
6372 adapter->cycle_time = qopt->cycle_time;
6373 adapter->base_time = qopt->base_time;
6374 adapter->taprio_offload_enable = true;
6375
6376 for (n = 0; n < qopt->num_entries; n++) {
6377 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6378
6379 end_time += e->interval;
6380
6381 /* If any of the conditions below are true, we need to manually
6382 * control the end time of the cycle.
6383 * 1. Qbv users can specify a cycle time that is not equal
6384 * to the total GCL intervals. Hence, recalculation is
6385 * necessary here to exclude the time interval that
6386 * exceeds the cycle time.
6387 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6388 * once the end of the list is reached, it will switch
6389 * to the END_OF_CYCLE state and leave the gates in the
6390 * same state until the next cycle is started.
6391 */
6392 if (end_time > adapter->cycle_time ||
6393 n + 1 == qopt->num_entries)
6394 end_time = adapter->cycle_time;
6395
6396 for (i = 0; i < adapter->num_tx_queues; i++) {
6397 struct igc_ring *ring = adapter->tx_ring[i];
6398
6399 if (!(e->gate_mask & BIT(i)))
6400 continue;
6401
6402 /* Check whether a queue stays open for more than one
6403 * entry. If so, keep the start and advance the end
6404 * time.
6405 */
6406 if (!queue_configured[i])
6407 ring->start_time = start_time;
6408 ring->end_time = end_time;
6409
6410 if (ring->start_time >= adapter->cycle_time)
6411 queue_configured[i] = false;
6412 else
6413 queue_configured[i] = true;
6414 }
6415
6416 start_time += e->interval;
6417 }
6418
6419 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6420
6421 /* Check whether a queue gets configured.
6422 * If not, set the start and end time to be end time.
6423 */
6424 for (i = 0; i < adapter->num_tx_queues; i++) {
6425 struct igc_ring *ring = adapter->tx_ring[i];
6426
6427 if (!is_base_time_past(qopt->base_time, &now)) {
6428 ring->admin_gate_closed = false;
6429 } else {
6430 ring->oper_gate_closed = false;
6431 ring->admin_gate_closed = false;
6432 }
6433
6434 if (!queue_configured[i]) {
6435 if (!is_base_time_past(qopt->base_time, &now))
6436 ring->admin_gate_closed = true;
6437 else
6438 ring->oper_gate_closed = true;
6439
6440 ring->start_time = end_time;
6441 ring->end_time = end_time;
6442 }
6443 }
6444
6445 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6446
6447 for (i = 0; i < adapter->num_tx_queues; i++) {
6448 struct igc_ring *ring = adapter->tx_ring[i];
6449 struct net_device *dev = adapter->netdev;
6450
6451 if (qopt->max_sdu[i])
6452 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6453 else
6454 ring->max_sdu = 0;
6455 }
6456
6457 return 0;
6458 }
6459
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6460 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6461 struct tc_taprio_qopt_offload *qopt)
6462 {
6463 struct igc_hw *hw = &adapter->hw;
6464 int err;
6465
6466 if (hw->mac.type != igc_i225)
6467 return -EOPNOTSUPP;
6468
6469 switch (qopt->cmd) {
6470 case TAPRIO_CMD_REPLACE:
6471 err = igc_save_qbv_schedule(adapter, qopt);
6472 break;
6473 case TAPRIO_CMD_DESTROY:
6474 err = igc_tsn_clear_schedule(adapter);
6475 break;
6476 case TAPRIO_CMD_STATS:
6477 igc_taprio_stats(adapter->netdev, &qopt->stats);
6478 return 0;
6479 case TAPRIO_CMD_QUEUE_STATS:
6480 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6481 return 0;
6482 default:
6483 return -EOPNOTSUPP;
6484 }
6485
6486 if (err)
6487 return err;
6488
6489 return igc_tsn_offload_apply(adapter);
6490 }
6491
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6492 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6493 bool enable, int idleslope, int sendslope,
6494 int hicredit, int locredit)
6495 {
6496 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6497 struct net_device *netdev = adapter->netdev;
6498 struct igc_ring *ring;
6499 int i;
6500
6501 /* i225 has two sets of credit-based shaper logic.
6502 * Supporting it only on the top two priority queues
6503 */
6504 if (queue < 0 || queue > 1)
6505 return -EINVAL;
6506
6507 ring = adapter->tx_ring[queue];
6508
6509 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6510 if (adapter->tx_ring[i])
6511 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6512
6513 /* CBS should be enabled on the highest priority queue first in order
6514 * for the CBS algorithm to operate as intended.
6515 */
6516 if (enable) {
6517 if (queue == 1 && !cbs_status[0]) {
6518 netdev_err(netdev,
6519 "Enabling CBS on queue1 before queue0\n");
6520 return -EINVAL;
6521 }
6522 } else {
6523 if (queue == 0 && cbs_status[1]) {
6524 netdev_err(netdev,
6525 "Disabling CBS on queue0 before queue1\n");
6526 return -EINVAL;
6527 }
6528 }
6529
6530 ring->cbs_enable = enable;
6531 ring->idleslope = idleslope;
6532 ring->sendslope = sendslope;
6533 ring->hicredit = hicredit;
6534 ring->locredit = locredit;
6535
6536 return 0;
6537 }
6538
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6539 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6540 struct tc_cbs_qopt_offload *qopt)
6541 {
6542 struct igc_hw *hw = &adapter->hw;
6543 int err;
6544
6545 if (hw->mac.type != igc_i225)
6546 return -EOPNOTSUPP;
6547
6548 if (qopt->queue < 0 || qopt->queue > 1)
6549 return -EINVAL;
6550
6551 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6552 qopt->idleslope, qopt->sendslope,
6553 qopt->hicredit, qopt->locredit);
6554 if (err)
6555 return err;
6556
6557 return igc_tsn_offload_apply(adapter);
6558 }
6559
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6560 static int igc_tc_query_caps(struct igc_adapter *adapter,
6561 struct tc_query_caps_base *base)
6562 {
6563 struct igc_hw *hw = &adapter->hw;
6564
6565 switch (base->type) {
6566 case TC_SETUP_QDISC_MQPRIO: {
6567 struct tc_mqprio_caps *caps = base->caps;
6568
6569 caps->validate_queue_counts = true;
6570
6571 return 0;
6572 }
6573 case TC_SETUP_QDISC_TAPRIO: {
6574 struct tc_taprio_caps *caps = base->caps;
6575
6576 caps->broken_mqprio = true;
6577
6578 if (hw->mac.type == igc_i225) {
6579 caps->supports_queue_max_sdu = true;
6580 caps->gate_mask_per_txq = true;
6581 }
6582
6583 return 0;
6584 }
6585 default:
6586 return -EOPNOTSUPP;
6587 }
6588 }
6589
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6590 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6591 u16 *offset)
6592 {
6593 int i;
6594
6595 adapter->strict_priority_enable = true;
6596 adapter->num_tc = num_tc;
6597
6598 for (i = 0; i < num_tc; i++)
6599 adapter->queue_per_tc[i] = offset[i];
6600 }
6601
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6602 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6603 struct tc_mqprio_qopt_offload *mqprio)
6604 {
6605 struct igc_hw *hw = &adapter->hw;
6606 int i;
6607
6608 if (hw->mac.type != igc_i225)
6609 return -EOPNOTSUPP;
6610
6611 if (!mqprio->qopt.num_tc) {
6612 adapter->strict_priority_enable = false;
6613 goto apply;
6614 }
6615
6616 /* There are as many TCs as Tx queues. */
6617 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6618 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6619 "Only %d traffic classes supported",
6620 adapter->num_tx_queues);
6621 return -EOPNOTSUPP;
6622 }
6623
6624 /* Only one queue per TC is supported. */
6625 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6626 if (mqprio->qopt.count[i] != 1) {
6627 NL_SET_ERR_MSG_MOD(mqprio->extack,
6628 "Only one queue per TC supported");
6629 return -EOPNOTSUPP;
6630 }
6631 }
6632
6633 /* Preemption is not supported yet. */
6634 if (mqprio->preemptible_tcs) {
6635 NL_SET_ERR_MSG_MOD(mqprio->extack,
6636 "Preemption is not supported yet");
6637 return -EOPNOTSUPP;
6638 }
6639
6640 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6641 mqprio->qopt.offset);
6642
6643 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6644
6645 apply:
6646 return igc_tsn_offload_apply(adapter);
6647 }
6648
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6649 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6650 void *type_data)
6651 {
6652 struct igc_adapter *adapter = netdev_priv(dev);
6653
6654 adapter->tc_setup_type = type;
6655
6656 switch (type) {
6657 case TC_QUERY_CAPS:
6658 return igc_tc_query_caps(adapter, type_data);
6659 case TC_SETUP_QDISC_TAPRIO:
6660 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6661
6662 case TC_SETUP_QDISC_ETF:
6663 return igc_tsn_enable_launchtime(adapter, type_data);
6664
6665 case TC_SETUP_QDISC_CBS:
6666 return igc_tsn_enable_cbs(adapter, type_data);
6667
6668 case TC_SETUP_QDISC_MQPRIO:
6669 return igc_tsn_enable_mqprio(adapter, type_data);
6670
6671 default:
6672 return -EOPNOTSUPP;
6673 }
6674 }
6675
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6676 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6677 {
6678 struct igc_adapter *adapter = netdev_priv(dev);
6679
6680 switch (bpf->command) {
6681 case XDP_SETUP_PROG:
6682 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6683 case XDP_SETUP_XSK_POOL:
6684 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6685 bpf->xsk.queue_id);
6686 default:
6687 return -EOPNOTSUPP;
6688 }
6689 }
6690
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6691 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6692 struct xdp_frame **frames, u32 flags)
6693 {
6694 struct igc_adapter *adapter = netdev_priv(dev);
6695 int cpu = smp_processor_id();
6696 struct netdev_queue *nq;
6697 struct igc_ring *ring;
6698 int i, nxmit;
6699
6700 if (unlikely(!netif_carrier_ok(dev)))
6701 return -ENETDOWN;
6702
6703 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6704 return -EINVAL;
6705
6706 ring = igc_xdp_get_tx_ring(adapter, cpu);
6707 nq = txring_txq(ring);
6708
6709 __netif_tx_lock(nq, cpu);
6710
6711 /* Avoid transmit queue timeout since we share it with the slow path */
6712 txq_trans_cond_update(nq);
6713
6714 nxmit = 0;
6715 for (i = 0; i < num_frames; i++) {
6716 int err;
6717 struct xdp_frame *xdpf = frames[i];
6718
6719 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6720 if (err)
6721 break;
6722 nxmit++;
6723 }
6724
6725 if (flags & XDP_XMIT_FLUSH)
6726 igc_flush_tx_descriptors(ring);
6727
6728 __netif_tx_unlock(nq);
6729
6730 return nxmit;
6731 }
6732
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6733 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6734 struct igc_q_vector *q_vector)
6735 {
6736 struct igc_hw *hw = &adapter->hw;
6737 u32 eics = 0;
6738
6739 eics |= q_vector->eims_value;
6740 wr32(IGC_EICS, eics);
6741 }
6742
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6743 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6744 {
6745 struct igc_adapter *adapter = netdev_priv(dev);
6746 struct igc_q_vector *q_vector;
6747 struct igc_ring *ring;
6748
6749 if (test_bit(__IGC_DOWN, &adapter->state))
6750 return -ENETDOWN;
6751
6752 if (!igc_xdp_is_enabled(adapter))
6753 return -ENXIO;
6754
6755 if (queue_id >= adapter->num_rx_queues)
6756 return -EINVAL;
6757
6758 ring = adapter->rx_ring[queue_id];
6759
6760 if (!ring->xsk_pool)
6761 return -ENXIO;
6762
6763 q_vector = adapter->q_vector[queue_id];
6764 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6765 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6766
6767 return 0;
6768 }
6769
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6770 static ktime_t igc_get_tstamp(struct net_device *dev,
6771 const struct skb_shared_hwtstamps *hwtstamps,
6772 bool cycles)
6773 {
6774 struct igc_adapter *adapter = netdev_priv(dev);
6775 struct igc_inline_rx_tstamps *tstamp;
6776 ktime_t timestamp;
6777
6778 tstamp = hwtstamps->netdev_data;
6779
6780 if (cycles)
6781 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6782 else
6783 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6784
6785 return timestamp;
6786 }
6787
6788 static const struct net_device_ops igc_netdev_ops = {
6789 .ndo_open = igc_open,
6790 .ndo_stop = igc_close,
6791 .ndo_start_xmit = igc_xmit_frame,
6792 .ndo_set_rx_mode = igc_set_rx_mode,
6793 .ndo_set_mac_address = igc_set_mac,
6794 .ndo_change_mtu = igc_change_mtu,
6795 .ndo_tx_timeout = igc_tx_timeout,
6796 .ndo_get_stats64 = igc_get_stats64,
6797 .ndo_fix_features = igc_fix_features,
6798 .ndo_set_features = igc_set_features,
6799 .ndo_features_check = igc_features_check,
6800 .ndo_eth_ioctl = igc_ioctl,
6801 .ndo_setup_tc = igc_setup_tc,
6802 .ndo_bpf = igc_bpf,
6803 .ndo_xdp_xmit = igc_xdp_xmit,
6804 .ndo_xsk_wakeup = igc_xsk_wakeup,
6805 .ndo_get_tstamp = igc_get_tstamp,
6806 };
6807
igc_rd32(struct igc_hw * hw,u32 reg)6808 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6809 {
6810 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6811 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6812 u32 value = 0;
6813
6814 if (IGC_REMOVED(hw_addr))
6815 return ~value;
6816
6817 value = readl(&hw_addr[reg]);
6818
6819 /* reads should not return all F's */
6820 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6821 struct net_device *netdev = igc->netdev;
6822
6823 hw->hw_addr = NULL;
6824 netif_device_detach(netdev);
6825 netdev_err(netdev, "PCIe link lost, device now detached\n");
6826 WARN(pci_device_is_present(igc->pdev),
6827 "igc: Failed to read reg 0x%x!\n", reg);
6828 }
6829
6830 return value;
6831 }
6832
6833 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6834 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6835 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6836 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6837 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6838 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6839 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6840 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6841 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6842 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6843 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6844 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6845 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6846 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6847 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6848 [13] = XDP_RSS_TYPE_NONE,
6849 [14] = XDP_RSS_TYPE_NONE,
6850 [15] = XDP_RSS_TYPE_NONE,
6851 };
6852
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6853 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6854 enum xdp_rss_hash_type *rss_type)
6855 {
6856 const struct igc_xdp_buff *ctx = (void *)_ctx;
6857
6858 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6859 return -ENODATA;
6860
6861 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6862 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6863
6864 return 0;
6865 }
6866
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6867 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6868 {
6869 const struct igc_xdp_buff *ctx = (void *)_ctx;
6870 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6871 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6872
6873 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6874 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6875
6876 return 0;
6877 }
6878
6879 return -ENODATA;
6880 }
6881
6882 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6883 .xmo_rx_hash = igc_xdp_rx_hash,
6884 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6885 };
6886
igc_qbv_scheduling_timer(struct hrtimer * timer)6887 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6888 {
6889 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6890 hrtimer);
6891 unsigned long flags;
6892 unsigned int i;
6893
6894 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6895
6896 adapter->qbv_transition = true;
6897 for (i = 0; i < adapter->num_tx_queues; i++) {
6898 struct igc_ring *tx_ring = adapter->tx_ring[i];
6899
6900 if (tx_ring->admin_gate_closed) {
6901 tx_ring->admin_gate_closed = false;
6902 tx_ring->oper_gate_closed = true;
6903 } else {
6904 tx_ring->oper_gate_closed = false;
6905 }
6906 }
6907 adapter->qbv_transition = false;
6908
6909 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6910
6911 return HRTIMER_NORESTART;
6912 }
6913
6914 /**
6915 * igc_probe - Device Initialization Routine
6916 * @pdev: PCI device information struct
6917 * @ent: entry in igc_pci_tbl
6918 *
6919 * Returns 0 on success, negative on failure
6920 *
6921 * igc_probe initializes an adapter identified by a pci_dev structure.
6922 * The OS initialization, configuring the adapter private structure,
6923 * and a hardware reset occur.
6924 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6925 static int igc_probe(struct pci_dev *pdev,
6926 const struct pci_device_id *ent)
6927 {
6928 struct igc_adapter *adapter;
6929 struct net_device *netdev;
6930 struct igc_hw *hw;
6931 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6932 int err;
6933
6934 err = pci_enable_device_mem(pdev);
6935 if (err)
6936 return err;
6937
6938 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6939 if (err) {
6940 dev_err(&pdev->dev,
6941 "No usable DMA configuration, aborting\n");
6942 goto err_dma;
6943 }
6944
6945 err = pci_request_mem_regions(pdev, igc_driver_name);
6946 if (err)
6947 goto err_pci_reg;
6948
6949 err = pci_enable_ptm(pdev, NULL);
6950 if (err < 0)
6951 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6952
6953 pci_set_master(pdev);
6954
6955 err = -ENOMEM;
6956 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6957 IGC_MAX_TX_QUEUES);
6958
6959 if (!netdev)
6960 goto err_alloc_etherdev;
6961
6962 SET_NETDEV_DEV(netdev, &pdev->dev);
6963
6964 pci_set_drvdata(pdev, netdev);
6965 adapter = netdev_priv(netdev);
6966 adapter->netdev = netdev;
6967 adapter->pdev = pdev;
6968 hw = &adapter->hw;
6969 hw->back = adapter;
6970 adapter->port_num = hw->bus.func;
6971 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6972
6973 err = pci_save_state(pdev);
6974 if (err)
6975 goto err_ioremap;
6976
6977 err = -EIO;
6978 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6979 pci_resource_len(pdev, 0));
6980 if (!adapter->io_addr)
6981 goto err_ioremap;
6982
6983 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6984 hw->hw_addr = adapter->io_addr;
6985
6986 netdev->netdev_ops = &igc_netdev_ops;
6987 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6988 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
6989 igc_ethtool_set_ops(netdev);
6990 netdev->watchdog_timeo = 5 * HZ;
6991
6992 netdev->mem_start = pci_resource_start(pdev, 0);
6993 netdev->mem_end = pci_resource_end(pdev, 0);
6994
6995 /* PCI config space info */
6996 hw->vendor_id = pdev->vendor;
6997 hw->device_id = pdev->device;
6998 hw->revision_id = pdev->revision;
6999 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7000 hw->subsystem_device_id = pdev->subsystem_device;
7001
7002 /* Copy the default MAC and PHY function pointers */
7003 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7004 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7005
7006 /* Initialize skew-specific constants */
7007 err = ei->get_invariants(hw);
7008 if (err)
7009 goto err_sw_init;
7010
7011 /* Add supported features to the features list*/
7012 netdev->features |= NETIF_F_SG;
7013 netdev->features |= NETIF_F_TSO;
7014 netdev->features |= NETIF_F_TSO6;
7015 netdev->features |= NETIF_F_TSO_ECN;
7016 netdev->features |= NETIF_F_RXHASH;
7017 netdev->features |= NETIF_F_RXCSUM;
7018 netdev->features |= NETIF_F_HW_CSUM;
7019 netdev->features |= NETIF_F_SCTP_CRC;
7020 netdev->features |= NETIF_F_HW_TC;
7021
7022 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7023 NETIF_F_GSO_GRE_CSUM | \
7024 NETIF_F_GSO_IPXIP4 | \
7025 NETIF_F_GSO_IPXIP6 | \
7026 NETIF_F_GSO_UDP_TUNNEL | \
7027 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7028
7029 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7030 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7031
7032 /* setup the private structure */
7033 err = igc_sw_init(adapter);
7034 if (err)
7035 goto err_sw_init;
7036
7037 /* copy netdev features into list of user selectable features */
7038 netdev->hw_features |= NETIF_F_NTUPLE;
7039 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7040 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7041 netdev->hw_features |= netdev->features;
7042
7043 netdev->features |= NETIF_F_HIGHDMA;
7044
7045 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7046 netdev->mpls_features |= NETIF_F_HW_CSUM;
7047 netdev->hw_enc_features |= netdev->vlan_features;
7048
7049 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7050 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7051
7052 /* MTU range: 68 - 9216 */
7053 netdev->min_mtu = ETH_MIN_MTU;
7054 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7055
7056 /* before reading the NVM, reset the controller to put the device in a
7057 * known good starting state
7058 */
7059 hw->mac.ops.reset_hw(hw);
7060
7061 if (igc_get_flash_presence_i225(hw)) {
7062 if (hw->nvm.ops.validate(hw) < 0) {
7063 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7064 err = -EIO;
7065 goto err_eeprom;
7066 }
7067 }
7068
7069 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7070 /* copy the MAC address out of the NVM */
7071 if (hw->mac.ops.read_mac_addr(hw))
7072 dev_err(&pdev->dev, "NVM Read Error\n");
7073 }
7074
7075 eth_hw_addr_set(netdev, hw->mac.addr);
7076
7077 if (!is_valid_ether_addr(netdev->dev_addr)) {
7078 dev_err(&pdev->dev, "Invalid MAC Address\n");
7079 err = -EIO;
7080 goto err_eeprom;
7081 }
7082
7083 /* configure RXPBSIZE and TXPBSIZE */
7084 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7085 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7086
7087 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7088 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7089
7090 INIT_WORK(&adapter->reset_task, igc_reset_task);
7091 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7092
7093 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7094 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7095
7096 /* Initialize link properties that are user-changeable */
7097 adapter->fc_autoneg = true;
7098 hw->phy.autoneg_advertised = 0xaf;
7099
7100 hw->fc.requested_mode = igc_fc_default;
7101 hw->fc.current_mode = igc_fc_default;
7102
7103 /* By default, support wake on port A */
7104 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7105
7106 /* initialize the wol settings based on the eeprom settings */
7107 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7108 adapter->wol |= IGC_WUFC_MAG;
7109
7110 device_set_wakeup_enable(&adapter->pdev->dev,
7111 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7112
7113 igc_ptp_init(adapter);
7114
7115 igc_tsn_clear_schedule(adapter);
7116
7117 /* reset the hardware with the new settings */
7118 igc_reset(adapter);
7119
7120 /* let the f/w know that the h/w is now under the control of the
7121 * driver.
7122 */
7123 igc_get_hw_control(adapter);
7124
7125 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7126 err = register_netdev(netdev);
7127 if (err)
7128 goto err_register;
7129
7130 /* carrier off reporting is important to ethtool even BEFORE open */
7131 netif_carrier_off(netdev);
7132
7133 /* Check if Media Autosense is enabled */
7134 adapter->ei = *ei;
7135
7136 /* print pcie link status and MAC address */
7137 pcie_print_link_status(pdev);
7138 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7139
7140 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7141 /* Disable EEE for internal PHY devices */
7142 hw->dev_spec._base.eee_enable = false;
7143 adapter->flags &= ~IGC_FLAG_EEE;
7144 igc_set_eee_i225(hw, false, false, false);
7145
7146 pm_runtime_put_noidle(&pdev->dev);
7147
7148 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7149 err = igc_led_setup(adapter);
7150 if (err)
7151 goto err_register;
7152 }
7153
7154 return 0;
7155
7156 err_register:
7157 igc_release_hw_control(adapter);
7158 err_eeprom:
7159 if (!igc_check_reset_block(hw))
7160 igc_reset_phy(hw);
7161 err_sw_init:
7162 igc_clear_interrupt_scheme(adapter);
7163 iounmap(adapter->io_addr);
7164 err_ioremap:
7165 free_netdev(netdev);
7166 err_alloc_etherdev:
7167 pci_release_mem_regions(pdev);
7168 err_pci_reg:
7169 err_dma:
7170 pci_disable_device(pdev);
7171 return err;
7172 }
7173
7174 /**
7175 * igc_remove - Device Removal Routine
7176 * @pdev: PCI device information struct
7177 *
7178 * igc_remove is called by the PCI subsystem to alert the driver
7179 * that it should release a PCI device. This could be caused by a
7180 * Hot-Plug event, or because the driver is going to be removed from
7181 * memory.
7182 */
igc_remove(struct pci_dev * pdev)7183 static void igc_remove(struct pci_dev *pdev)
7184 {
7185 struct net_device *netdev = pci_get_drvdata(pdev);
7186 struct igc_adapter *adapter = netdev_priv(netdev);
7187
7188 pm_runtime_get_noresume(&pdev->dev);
7189
7190 igc_flush_nfc_rules(adapter);
7191
7192 igc_ptp_stop(adapter);
7193
7194 pci_disable_ptm(pdev);
7195 pci_clear_master(pdev);
7196
7197 set_bit(__IGC_DOWN, &adapter->state);
7198
7199 del_timer_sync(&adapter->watchdog_timer);
7200 del_timer_sync(&adapter->phy_info_timer);
7201
7202 cancel_work_sync(&adapter->reset_task);
7203 cancel_work_sync(&adapter->watchdog_task);
7204 hrtimer_cancel(&adapter->hrtimer);
7205
7206 if (IS_ENABLED(CONFIG_IGC_LEDS))
7207 igc_led_free(adapter);
7208
7209 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7210 * would have already happened in close and is redundant.
7211 */
7212 igc_release_hw_control(adapter);
7213 unregister_netdev(netdev);
7214
7215 igc_clear_interrupt_scheme(adapter);
7216 pci_iounmap(pdev, adapter->io_addr);
7217 pci_release_mem_regions(pdev);
7218
7219 free_netdev(netdev);
7220
7221 pci_disable_device(pdev);
7222 }
7223
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7224 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7225 bool runtime)
7226 {
7227 struct net_device *netdev = pci_get_drvdata(pdev);
7228 struct igc_adapter *adapter = netdev_priv(netdev);
7229 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7230 struct igc_hw *hw = &adapter->hw;
7231 u32 ctrl, rctl, status;
7232 bool wake;
7233
7234 rtnl_lock();
7235 netif_device_detach(netdev);
7236
7237 if (netif_running(netdev))
7238 __igc_close(netdev, true);
7239
7240 igc_ptp_suspend(adapter);
7241
7242 igc_clear_interrupt_scheme(adapter);
7243 rtnl_unlock();
7244
7245 status = rd32(IGC_STATUS);
7246 if (status & IGC_STATUS_LU)
7247 wufc &= ~IGC_WUFC_LNKC;
7248
7249 if (wufc) {
7250 igc_setup_rctl(adapter);
7251 igc_set_rx_mode(netdev);
7252
7253 /* turn on all-multi mode if wake on multicast is enabled */
7254 if (wufc & IGC_WUFC_MC) {
7255 rctl = rd32(IGC_RCTL);
7256 rctl |= IGC_RCTL_MPE;
7257 wr32(IGC_RCTL, rctl);
7258 }
7259
7260 ctrl = rd32(IGC_CTRL);
7261 ctrl |= IGC_CTRL_ADVD3WUC;
7262 wr32(IGC_CTRL, ctrl);
7263
7264 /* Allow time for pending master requests to run */
7265 igc_disable_pcie_master(hw);
7266
7267 wr32(IGC_WUC, IGC_WUC_PME_EN);
7268 wr32(IGC_WUFC, wufc);
7269 } else {
7270 wr32(IGC_WUC, 0);
7271 wr32(IGC_WUFC, 0);
7272 }
7273
7274 wake = wufc || adapter->en_mng_pt;
7275 if (!wake)
7276 igc_power_down_phy_copper_base(&adapter->hw);
7277 else
7278 igc_power_up_link(adapter);
7279
7280 if (enable_wake)
7281 *enable_wake = wake;
7282
7283 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7284 * would have already happened in close and is redundant.
7285 */
7286 igc_release_hw_control(adapter);
7287
7288 pci_disable_device(pdev);
7289
7290 return 0;
7291 }
7292
igc_runtime_suspend(struct device * dev)7293 static int igc_runtime_suspend(struct device *dev)
7294 {
7295 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7296 }
7297
igc_deliver_wake_packet(struct net_device * netdev)7298 static void igc_deliver_wake_packet(struct net_device *netdev)
7299 {
7300 struct igc_adapter *adapter = netdev_priv(netdev);
7301 struct igc_hw *hw = &adapter->hw;
7302 struct sk_buff *skb;
7303 u32 wupl;
7304
7305 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7306
7307 /* WUPM stores only the first 128 bytes of the wake packet.
7308 * Read the packet only if we have the whole thing.
7309 */
7310 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7311 return;
7312
7313 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7314 if (!skb)
7315 return;
7316
7317 skb_put(skb, wupl);
7318
7319 /* Ensure reads are 32-bit aligned */
7320 wupl = roundup(wupl, 4);
7321
7322 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7323
7324 skb->protocol = eth_type_trans(skb, netdev);
7325 netif_rx(skb);
7326 }
7327
__igc_resume(struct device * dev,bool rpm)7328 static int __igc_resume(struct device *dev, bool rpm)
7329 {
7330 struct pci_dev *pdev = to_pci_dev(dev);
7331 struct net_device *netdev = pci_get_drvdata(pdev);
7332 struct igc_adapter *adapter = netdev_priv(netdev);
7333 struct igc_hw *hw = &adapter->hw;
7334 u32 err, val;
7335
7336 pci_set_power_state(pdev, PCI_D0);
7337 pci_restore_state(pdev);
7338 pci_save_state(pdev);
7339
7340 if (!pci_device_is_present(pdev))
7341 return -ENODEV;
7342 err = pci_enable_device_mem(pdev);
7343 if (err) {
7344 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7345 return err;
7346 }
7347 pci_set_master(pdev);
7348
7349 pci_enable_wake(pdev, PCI_D3hot, 0);
7350 pci_enable_wake(pdev, PCI_D3cold, 0);
7351
7352 if (igc_init_interrupt_scheme(adapter, true)) {
7353 netdev_err(netdev, "Unable to allocate memory for queues\n");
7354 return -ENOMEM;
7355 }
7356
7357 igc_reset(adapter);
7358
7359 /* let the f/w know that the h/w is now under the control of the
7360 * driver.
7361 */
7362 igc_get_hw_control(adapter);
7363
7364 val = rd32(IGC_WUS);
7365 if (val & WAKE_PKT_WUS)
7366 igc_deliver_wake_packet(netdev);
7367
7368 wr32(IGC_WUS, ~0);
7369
7370 if (netif_running(netdev)) {
7371 if (!rpm)
7372 rtnl_lock();
7373 err = __igc_open(netdev, true);
7374 if (!rpm)
7375 rtnl_unlock();
7376 if (!err)
7377 netif_device_attach(netdev);
7378 }
7379
7380 return err;
7381 }
7382
igc_resume(struct device * dev)7383 static int igc_resume(struct device *dev)
7384 {
7385 return __igc_resume(dev, false);
7386 }
7387
igc_runtime_resume(struct device * dev)7388 static int igc_runtime_resume(struct device *dev)
7389 {
7390 return __igc_resume(dev, true);
7391 }
7392
igc_suspend(struct device * dev)7393 static int igc_suspend(struct device *dev)
7394 {
7395 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7396 }
7397
igc_runtime_idle(struct device * dev)7398 static int __maybe_unused igc_runtime_idle(struct device *dev)
7399 {
7400 struct net_device *netdev = dev_get_drvdata(dev);
7401 struct igc_adapter *adapter = netdev_priv(netdev);
7402
7403 if (!igc_has_link(adapter))
7404 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7405
7406 return -EBUSY;
7407 }
7408
igc_shutdown(struct pci_dev * pdev)7409 static void igc_shutdown(struct pci_dev *pdev)
7410 {
7411 bool wake;
7412
7413 __igc_shutdown(pdev, &wake, 0);
7414
7415 if (system_state == SYSTEM_POWER_OFF) {
7416 pci_wake_from_d3(pdev, wake);
7417 pci_set_power_state(pdev, PCI_D3hot);
7418 }
7419 }
7420
7421 /**
7422 * igc_io_error_detected - called when PCI error is detected
7423 * @pdev: Pointer to PCI device
7424 * @state: The current PCI connection state
7425 *
7426 * This function is called after a PCI bus error affecting
7427 * this device has been detected.
7428 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7429 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7430 pci_channel_state_t state)
7431 {
7432 struct net_device *netdev = pci_get_drvdata(pdev);
7433 struct igc_adapter *adapter = netdev_priv(netdev);
7434
7435 rtnl_lock();
7436 netif_device_detach(netdev);
7437
7438 if (state == pci_channel_io_perm_failure) {
7439 rtnl_unlock();
7440 return PCI_ERS_RESULT_DISCONNECT;
7441 }
7442
7443 if (netif_running(netdev))
7444 igc_down(adapter);
7445 pci_disable_device(pdev);
7446 rtnl_unlock();
7447
7448 /* Request a slot reset. */
7449 return PCI_ERS_RESULT_NEED_RESET;
7450 }
7451
7452 /**
7453 * igc_io_slot_reset - called after the PCI bus has been reset.
7454 * @pdev: Pointer to PCI device
7455 *
7456 * Restart the card from scratch, as if from a cold-boot. Implementation
7457 * resembles the first-half of the __igc_resume routine.
7458 **/
igc_io_slot_reset(struct pci_dev * pdev)7459 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7460 {
7461 struct net_device *netdev = pci_get_drvdata(pdev);
7462 struct igc_adapter *adapter = netdev_priv(netdev);
7463 struct igc_hw *hw = &adapter->hw;
7464 pci_ers_result_t result;
7465
7466 if (pci_enable_device_mem(pdev)) {
7467 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7468 result = PCI_ERS_RESULT_DISCONNECT;
7469 } else {
7470 pci_set_master(pdev);
7471 pci_restore_state(pdev);
7472 pci_save_state(pdev);
7473
7474 pci_enable_wake(pdev, PCI_D3hot, 0);
7475 pci_enable_wake(pdev, PCI_D3cold, 0);
7476
7477 /* In case of PCI error, adapter loses its HW address
7478 * so we should re-assign it here.
7479 */
7480 hw->hw_addr = adapter->io_addr;
7481
7482 igc_reset(adapter);
7483 wr32(IGC_WUS, ~0);
7484 result = PCI_ERS_RESULT_RECOVERED;
7485 }
7486
7487 return result;
7488 }
7489
7490 /**
7491 * igc_io_resume - called when traffic can start to flow again.
7492 * @pdev: Pointer to PCI device
7493 *
7494 * This callback is called when the error recovery driver tells us that
7495 * its OK to resume normal operation. Implementation resembles the
7496 * second-half of the __igc_resume routine.
7497 */
igc_io_resume(struct pci_dev * pdev)7498 static void igc_io_resume(struct pci_dev *pdev)
7499 {
7500 struct net_device *netdev = pci_get_drvdata(pdev);
7501 struct igc_adapter *adapter = netdev_priv(netdev);
7502
7503 rtnl_lock();
7504 if (netif_running(netdev)) {
7505 if (igc_open(netdev)) {
7506 rtnl_unlock();
7507 netdev_err(netdev, "igc_open failed after reset\n");
7508 return;
7509 }
7510 }
7511
7512 netif_device_attach(netdev);
7513
7514 /* let the f/w know that the h/w is now under the control of the
7515 * driver.
7516 */
7517 igc_get_hw_control(adapter);
7518 rtnl_unlock();
7519 }
7520
7521 static const struct pci_error_handlers igc_err_handler = {
7522 .error_detected = igc_io_error_detected,
7523 .slot_reset = igc_io_slot_reset,
7524 .resume = igc_io_resume,
7525 };
7526
7527 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7528 igc_runtime_suspend, igc_runtime_resume,
7529 igc_runtime_idle);
7530
7531 static struct pci_driver igc_driver = {
7532 .name = igc_driver_name,
7533 .id_table = igc_pci_tbl,
7534 .probe = igc_probe,
7535 .remove = igc_remove,
7536 .driver.pm = pm_ptr(&igc_pm_ops),
7537 .shutdown = igc_shutdown,
7538 .err_handler = &igc_err_handler,
7539 };
7540
7541 /**
7542 * igc_reinit_queues - return error
7543 * @adapter: pointer to adapter structure
7544 */
igc_reinit_queues(struct igc_adapter * adapter)7545 int igc_reinit_queues(struct igc_adapter *adapter)
7546 {
7547 struct net_device *netdev = adapter->netdev;
7548 int err = 0;
7549
7550 if (netif_running(netdev))
7551 igc_close(netdev);
7552
7553 igc_reset_interrupt_capability(adapter);
7554
7555 if (igc_init_interrupt_scheme(adapter, true)) {
7556 netdev_err(netdev, "Unable to allocate memory for queues\n");
7557 return -ENOMEM;
7558 }
7559
7560 if (netif_running(netdev))
7561 err = igc_open(netdev);
7562
7563 return err;
7564 }
7565
7566 /**
7567 * igc_get_hw_dev - return device
7568 * @hw: pointer to hardware structure
7569 *
7570 * used by hardware layer to print debugging information
7571 */
igc_get_hw_dev(struct igc_hw * hw)7572 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7573 {
7574 struct igc_adapter *adapter = hw->back;
7575
7576 return adapter->netdev;
7577 }
7578
igc_disable_rx_ring_hw(struct igc_ring * ring)7579 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7580 {
7581 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7582 u8 idx = ring->reg_idx;
7583 u32 rxdctl;
7584
7585 rxdctl = rd32(IGC_RXDCTL(idx));
7586 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7587 rxdctl |= IGC_RXDCTL_SWFLUSH;
7588 wr32(IGC_RXDCTL(idx), rxdctl);
7589 }
7590
igc_disable_rx_ring(struct igc_ring * ring)7591 void igc_disable_rx_ring(struct igc_ring *ring)
7592 {
7593 igc_disable_rx_ring_hw(ring);
7594 igc_clean_rx_ring(ring);
7595 }
7596
igc_enable_rx_ring(struct igc_ring * ring)7597 void igc_enable_rx_ring(struct igc_ring *ring)
7598 {
7599 struct igc_adapter *adapter = ring->q_vector->adapter;
7600
7601 igc_configure_rx_ring(adapter, ring);
7602
7603 if (ring->xsk_pool)
7604 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7605 else
7606 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7607 }
7608
igc_disable_tx_ring(struct igc_ring * ring)7609 void igc_disable_tx_ring(struct igc_ring *ring)
7610 {
7611 igc_disable_tx_ring_hw(ring);
7612 igc_clean_tx_ring(ring);
7613 }
7614
igc_enable_tx_ring(struct igc_ring * ring)7615 void igc_enable_tx_ring(struct igc_ring *ring)
7616 {
7617 struct igc_adapter *adapter = ring->q_vector->adapter;
7618
7619 igc_configure_tx_ring(adapter, ring);
7620 }
7621
7622 /**
7623 * igc_init_module - Driver Registration Routine
7624 *
7625 * igc_init_module is the first routine called when the driver is
7626 * loaded. All it does is register with the PCI subsystem.
7627 */
igc_init_module(void)7628 static int __init igc_init_module(void)
7629 {
7630 int ret;
7631
7632 pr_info("%s\n", igc_driver_string);
7633 pr_info("%s\n", igc_copyright);
7634
7635 ret = pci_register_driver(&igc_driver);
7636 return ret;
7637 }
7638
7639 module_init(igc_init_module);
7640
7641 /**
7642 * igc_exit_module - Driver Exit Cleanup Routine
7643 *
7644 * igc_exit_module is called just before the driver is removed
7645 * from memory.
7646 */
igc_exit_module(void)7647 static void __exit igc_exit_module(void)
7648 {
7649 pci_unregister_driver(&igc_driver);
7650 }
7651
7652 module_exit(igc_exit_module);
7653 /* igc_main.c */
7654