xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1096 				    netdev_name(ring->netdev));
1097 		return -ENOMEM;
1098 	}
1099 
1100 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1101 	buffer->skb = skb;
1102 	buffer->protocol = 0;
1103 	buffer->bytecount = skb->len;
1104 	buffer->gso_segs = 1;
1105 	buffer->time_stamp = jiffies;
1106 	dma_unmap_len_set(buffer, len, skb->len);
1107 	dma_unmap_addr_set(buffer, dma, dma);
1108 
1109 	return 0;
1110 }
1111 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1112 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1113 					 struct sk_buff *skb,
1114 					 struct igc_tx_buffer *first)
1115 {
1116 	union igc_adv_tx_desc *desc;
1117 	u32 cmd_type, olinfo_status;
1118 
1119 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1120 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1121 		   first->bytecount;
1122 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1123 
1124 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1125 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1126 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1127 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1128 
1129 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1130 
1131 	first->next_to_watch = desc;
1132 
1133 	ring->next_to_use++;
1134 	if (ring->next_to_use == ring->count)
1135 		ring->next_to_use = 0;
1136 }
1137 
1138 #define IGC_EMPTY_FRAME_SIZE 60
1139 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1140 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1141 			    __le32 launch_time, bool first_flag,
1142 			    u32 vlan_macip_lens, u32 type_tucmd,
1143 			    u32 mss_l4len_idx)
1144 {
1145 	struct igc_adv_tx_context_desc *context_desc;
1146 	u16 i = tx_ring->next_to_use;
1147 
1148 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1149 
1150 	i++;
1151 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1152 
1153 	/* set bits to identify this as an advanced context descriptor */
1154 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1155 
1156 	/* For i225, context index must be unique per ring. */
1157 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1158 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1159 
1160 	if (first_flag)
1161 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1162 
1163 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1164 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1165 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1166 	context_desc->launch_time	= launch_time;
1167 }
1168 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1169 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1170 			__le32 launch_time, bool first_flag)
1171 {
1172 	struct sk_buff *skb = first->skb;
1173 	u32 vlan_macip_lens = 0;
1174 	u32 type_tucmd = 0;
1175 
1176 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1177 csum_failed:
1178 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1179 		    !tx_ring->launchtime_enable)
1180 			return;
1181 		goto no_csum;
1182 	}
1183 
1184 	switch (skb->csum_offset) {
1185 	case offsetof(struct tcphdr, check):
1186 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1187 		fallthrough;
1188 	case offsetof(struct udphdr, check):
1189 		break;
1190 	case offsetof(struct sctphdr, checksum):
1191 		/* validate that this is actually an SCTP request */
1192 		if (skb_csum_is_sctp(skb)) {
1193 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1194 			break;
1195 		}
1196 		fallthrough;
1197 	default:
1198 		skb_checksum_help(skb);
1199 		goto csum_failed;
1200 	}
1201 
1202 	/* update TX checksum flag */
1203 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1204 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1205 			  skb_network_offset(skb);
1206 no_csum:
1207 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1208 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1209 
1210 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1211 			vlan_macip_lens, type_tucmd, 0);
1212 }
1213 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1214 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 	struct net_device *netdev = tx_ring->netdev;
1217 
1218 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1219 
1220 	/* memory barriier comment */
1221 	smp_mb();
1222 
1223 	/* We need to check again in a case another CPU has just
1224 	 * made room available.
1225 	 */
1226 	if (igc_desc_unused(tx_ring) < size)
1227 		return -EBUSY;
1228 
1229 	/* A reprieve! */
1230 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1231 
1232 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1233 	tx_ring->tx_stats.restart_queue2++;
1234 	u64_stats_update_end(&tx_ring->tx_syncp2);
1235 
1236 	return 0;
1237 }
1238 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1239 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1240 {
1241 	if (igc_desc_unused(tx_ring) >= size)
1242 		return 0;
1243 	return __igc_maybe_stop_tx(tx_ring, size);
1244 }
1245 
1246 #define IGC_SET_FLAG(_input, _flag, _result) \
1247 	(((_flag) <= (_result)) ?				\
1248 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1249 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1250 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1251 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1252 {
1253 	/* set type for advanced descriptor with frame checksum insertion */
1254 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1255 		       IGC_ADVTXD_DCMD_DEXT |
1256 		       IGC_ADVTXD_DCMD_IFCS;
1257 
1258 	/* set HW vlan bit if vlan is present */
1259 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1260 				 IGC_ADVTXD_DCMD_VLE);
1261 
1262 	/* set segmentation bits for TSO */
1263 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1264 				 (IGC_ADVTXD_DCMD_TSE));
1265 
1266 	/* set timestamp bit if present, will select the register set
1267 	 * based on the _TSTAMP(_X) bit.
1268 	 */
1269 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1270 				 (IGC_ADVTXD_MAC_TSTAMP));
1271 
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1273 				 (IGC_ADVTXD_TSTAMP_REG_1));
1274 
1275 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1276 				 (IGC_ADVTXD_TSTAMP_REG_2));
1277 
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1279 				 (IGC_ADVTXD_TSTAMP_REG_3));
1280 
1281 	/* insert frame checksum */
1282 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1283 
1284 	return cmd_type;
1285 }
1286 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1287 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1288 				 union igc_adv_tx_desc *tx_desc,
1289 				 u32 tx_flags, unsigned int paylen)
1290 {
1291 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1292 
1293 	/* insert L4 checksum */
1294 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1295 				      (IGC_TXD_POPTS_TXSM << 8));
1296 
1297 	/* insert IPv4 checksum */
1298 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1299 				      (IGC_TXD_POPTS_IXSM << 8));
1300 
1301 	/* Use the second timer (free running, in general) for the timestamp */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1303 				      IGC_TXD_PTP2_TIMER_1);
1304 
1305 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1306 }
1307 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1308 static int igc_tx_map(struct igc_ring *tx_ring,
1309 		      struct igc_tx_buffer *first,
1310 		      const u8 hdr_len)
1311 {
1312 	struct sk_buff *skb = first->skb;
1313 	struct igc_tx_buffer *tx_buffer;
1314 	union igc_adv_tx_desc *tx_desc;
1315 	u32 tx_flags = first->tx_flags;
1316 	skb_frag_t *frag;
1317 	u16 i = tx_ring->next_to_use;
1318 	unsigned int data_len, size;
1319 	dma_addr_t dma;
1320 	u32 cmd_type;
1321 
1322 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1323 	tx_desc = IGC_TX_DESC(tx_ring, i);
1324 
1325 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1326 
1327 	size = skb_headlen(skb);
1328 	data_len = skb->data_len;
1329 
1330 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1331 
1332 	tx_buffer = first;
1333 
1334 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1335 		if (dma_mapping_error(tx_ring->dev, dma))
1336 			goto dma_error;
1337 
1338 		/* record length, and DMA address */
1339 		dma_unmap_len_set(tx_buffer, len, size);
1340 		dma_unmap_addr_set(tx_buffer, dma, dma);
1341 
1342 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1343 
1344 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1345 			tx_desc->read.cmd_type_len =
1346 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1347 
1348 			i++;
1349 			tx_desc++;
1350 			if (i == tx_ring->count) {
1351 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1352 				i = 0;
1353 			}
1354 			tx_desc->read.olinfo_status = 0;
1355 
1356 			dma += IGC_MAX_DATA_PER_TXD;
1357 			size -= IGC_MAX_DATA_PER_TXD;
1358 
1359 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1360 		}
1361 
1362 		if (likely(!data_len))
1363 			break;
1364 
1365 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1366 
1367 		i++;
1368 		tx_desc++;
1369 		if (i == tx_ring->count) {
1370 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1371 			i = 0;
1372 		}
1373 		tx_desc->read.olinfo_status = 0;
1374 
1375 		size = skb_frag_size(frag);
1376 		data_len -= size;
1377 
1378 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1379 				       size, DMA_TO_DEVICE);
1380 
1381 		tx_buffer = &tx_ring->tx_buffer_info[i];
1382 	}
1383 
1384 	/* write last descriptor with RS and EOP bits */
1385 	cmd_type |= size | IGC_TXD_DCMD;
1386 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1387 
1388 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1389 
1390 	/* set the timestamp */
1391 	first->time_stamp = jiffies;
1392 
1393 	skb_tx_timestamp(skb);
1394 
1395 	/* Force memory writes to complete before letting h/w know there
1396 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1397 	 * memory model archs, such as IA-64).
1398 	 *
1399 	 * We also need this memory barrier to make certain all of the
1400 	 * status bits have been updated before next_to_watch is written.
1401 	 */
1402 	wmb();
1403 
1404 	/* set next_to_watch value indicating a packet is present */
1405 	first->next_to_watch = tx_desc;
1406 
1407 	i++;
1408 	if (i == tx_ring->count)
1409 		i = 0;
1410 
1411 	tx_ring->next_to_use = i;
1412 
1413 	/* Make sure there is space in the ring for the next send. */
1414 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1415 
1416 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1417 		writel(i, tx_ring->tail);
1418 	}
1419 
1420 	return 0;
1421 dma_error:
1422 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1423 	tx_buffer = &tx_ring->tx_buffer_info[i];
1424 
1425 	/* clear dma mappings for failed tx_buffer_info map */
1426 	while (tx_buffer != first) {
1427 		if (dma_unmap_len(tx_buffer, len))
1428 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1429 
1430 		if (i-- == 0)
1431 			i += tx_ring->count;
1432 		tx_buffer = &tx_ring->tx_buffer_info[i];
1433 	}
1434 
1435 	if (dma_unmap_len(tx_buffer, len))
1436 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 	dev_kfree_skb_any(tx_buffer->skb);
1439 	tx_buffer->skb = NULL;
1440 
1441 	tx_ring->next_to_use = i;
1442 
1443 	return -1;
1444 }
1445 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1446 static int igc_tso(struct igc_ring *tx_ring,
1447 		   struct igc_tx_buffer *first,
1448 		   __le32 launch_time, bool first_flag,
1449 		   u8 *hdr_len)
1450 {
1451 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1452 	struct sk_buff *skb = first->skb;
1453 	union {
1454 		struct iphdr *v4;
1455 		struct ipv6hdr *v6;
1456 		unsigned char *hdr;
1457 	} ip;
1458 	union {
1459 		struct tcphdr *tcp;
1460 		struct udphdr *udp;
1461 		unsigned char *hdr;
1462 	} l4;
1463 	u32 paylen, l4_offset;
1464 	int err;
1465 
1466 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1467 		return 0;
1468 
1469 	if (!skb_is_gso(skb))
1470 		return 0;
1471 
1472 	err = skb_cow_head(skb, 0);
1473 	if (err < 0)
1474 		return err;
1475 
1476 	ip.hdr = skb_network_header(skb);
1477 	l4.hdr = skb_checksum_start(skb);
1478 
1479 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1480 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1481 
1482 	/* initialize outer IP header fields */
1483 	if (ip.v4->version == 4) {
1484 		unsigned char *csum_start = skb_checksum_start(skb);
1485 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1486 
1487 		/* IP header will have to cancel out any data that
1488 		 * is not a part of the outer IP header
1489 		 */
1490 		ip.v4->check = csum_fold(csum_partial(trans_start,
1491 						      csum_start - trans_start,
1492 						      0));
1493 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1494 
1495 		ip.v4->tot_len = 0;
1496 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 				   IGC_TX_FLAGS_CSUM |
1498 				   IGC_TX_FLAGS_IPV4;
1499 	} else {
1500 		ip.v6->payload_len = 0;
1501 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1502 				   IGC_TX_FLAGS_CSUM;
1503 	}
1504 
1505 	/* determine offset of inner transport header */
1506 	l4_offset = l4.hdr - skb->data;
1507 
1508 	/* remove payload length from inner checksum */
1509 	paylen = skb->len - l4_offset;
1510 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1511 		/* compute length of segmentation header */
1512 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1513 		csum_replace_by_diff(&l4.tcp->check,
1514 				     (__force __wsum)htonl(paylen));
1515 	} else {
1516 		/* compute length of segmentation header */
1517 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1518 		csum_replace_by_diff(&l4.udp->check,
1519 				     (__force __wsum)htonl(paylen));
1520 	}
1521 
1522 	/* update gso size and bytecount with header size */
1523 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1524 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1525 
1526 	/* MSS L4LEN IDX */
1527 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1528 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1529 
1530 	/* VLAN MACLEN IPLEN */
1531 	vlan_macip_lens = l4.hdr - ip.hdr;
1532 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1533 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1534 
1535 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1536 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1537 
1538 	return 1;
1539 }
1540 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1541 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1542 {
1543 	int i;
1544 
1545 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1546 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1547 
1548 		if (tstamp->skb)
1549 			continue;
1550 
1551 		tstamp->skb = skb_get(skb);
1552 		tstamp->start = jiffies;
1553 		*flags = tstamp->flags;
1554 
1555 		return true;
1556 	}
1557 
1558 	return false;
1559 }
1560 
igc_insert_empty_frame(struct igc_ring * tx_ring)1561 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1562 {
1563 	struct igc_tx_buffer *empty_info;
1564 	struct sk_buff *empty_skb;
1565 	void *data;
1566 	int ret;
1567 
1568 	empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1569 	empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1570 	if (unlikely(!empty_skb)) {
1571 		net_err_ratelimited("%s: skb alloc error for empty frame\n",
1572 				    netdev_name(tx_ring->netdev));
1573 		return -ENOMEM;
1574 	}
1575 
1576 	data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1577 	memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1578 
1579 	/* Prepare DMA mapping and Tx buffer information */
1580 	ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1581 	if (unlikely(ret)) {
1582 		dev_kfree_skb_any(empty_skb);
1583 		return ret;
1584 	}
1585 
1586 	/* Prepare advanced context descriptor for empty packet */
1587 	igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1588 
1589 	/* Prepare advanced data descriptor for empty packet */
1590 	igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1591 
1592 	return 0;
1593 }
1594 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1595 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1596 				       struct igc_ring *tx_ring)
1597 {
1598 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1599 	bool first_flag = false, insert_empty = false;
1600 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1601 	__be16 protocol = vlan_get_protocol(skb);
1602 	struct igc_tx_buffer *first;
1603 	__le32 launch_time = 0;
1604 	u32 tx_flags = 0;
1605 	unsigned short f;
1606 	ktime_t txtime;
1607 	u8 hdr_len = 0;
1608 	int tso = 0;
1609 
1610 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1611 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1612 	 *	+ 2 desc gap to keep tail from touching head,
1613 	 *	+ 1 desc for context descriptor,
1614 	 *	+ 2 desc for inserting an empty packet for launch time,
1615 	 * otherwise try next time
1616 	 */
1617 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1618 		count += TXD_USE_COUNT(skb_frag_size(
1619 						&skb_shinfo(skb)->frags[f]));
1620 
1621 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1622 		/* this is a hard error */
1623 		return NETDEV_TX_BUSY;
1624 	}
1625 
1626 	if (!tx_ring->launchtime_enable)
1627 		goto done;
1628 
1629 	txtime = skb->tstamp;
1630 	skb->tstamp = ktime_set(0, 0);
1631 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1632 
1633 	if (insert_empty) {
1634 		/* Reset the launch time if the required empty frame fails to
1635 		 * be inserted. However, this packet is not dropped, so it
1636 		 * "dirties" the current Qbv cycle. This ensures that the
1637 		 * upcoming packet, which is scheduled in the next Qbv cycle,
1638 		 * does not require an empty frame. This way, the launch time
1639 		 * continues to function correctly despite the current failure
1640 		 * to insert the empty frame.
1641 		 */
1642 		if (igc_insert_empty_frame(tx_ring))
1643 			launch_time = 0;
1644 	}
1645 
1646 done:
1647 	/* record the location of the first descriptor for this packet */
1648 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1649 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1650 	first->skb = skb;
1651 	first->bytecount = skb->len;
1652 	first->gso_segs = 1;
1653 
1654 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1655 		goto out_drop;
1656 
1657 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1658 		adapter->stats.txdrop++;
1659 		goto out_drop;
1660 	}
1661 
1662 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1663 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1664 		unsigned long flags;
1665 		u32 tstamp_flags;
1666 
1667 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1668 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1669 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1670 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1671 			if (skb->sk &&
1672 			    READ_ONCE(skb->sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC)
1673 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1674 		} else {
1675 			adapter->tx_hwtstamp_skipped++;
1676 		}
1677 
1678 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1679 	}
1680 
1681 	if (skb_vlan_tag_present(skb)) {
1682 		tx_flags |= IGC_TX_FLAGS_VLAN;
1683 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1684 	}
1685 
1686 	/* record initial flags and protocol */
1687 	first->tx_flags = tx_flags;
1688 	first->protocol = protocol;
1689 
1690 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1691 	if (tso < 0)
1692 		goto out_drop;
1693 	else if (!tso)
1694 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1695 
1696 	igc_tx_map(tx_ring, first, hdr_len);
1697 
1698 	return NETDEV_TX_OK;
1699 
1700 out_drop:
1701 	dev_kfree_skb_any(first->skb);
1702 	first->skb = NULL;
1703 
1704 	return NETDEV_TX_OK;
1705 }
1706 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1707 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1708 						    struct sk_buff *skb)
1709 {
1710 	unsigned int r_idx = skb->queue_mapping;
1711 
1712 	if (r_idx >= adapter->num_tx_queues)
1713 		r_idx = r_idx % adapter->num_tx_queues;
1714 
1715 	return adapter->tx_ring[r_idx];
1716 }
1717 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1718 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1719 				  struct net_device *netdev)
1720 {
1721 	struct igc_adapter *adapter = netdev_priv(netdev);
1722 
1723 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1724 	 * in order to meet this minimum size requirement.
1725 	 */
1726 	if (skb->len < 17) {
1727 		if (skb_padto(skb, 17))
1728 			return NETDEV_TX_OK;
1729 		skb->len = 17;
1730 	}
1731 
1732 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1733 }
1734 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1735 static void igc_rx_checksum(struct igc_ring *ring,
1736 			    union igc_adv_rx_desc *rx_desc,
1737 			    struct sk_buff *skb)
1738 {
1739 	skb_checksum_none_assert(skb);
1740 
1741 	/* Ignore Checksum bit is set */
1742 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1743 		return;
1744 
1745 	/* Rx checksum disabled via ethtool */
1746 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1747 		return;
1748 
1749 	/* TCP/UDP checksum error bit is set */
1750 	if (igc_test_staterr(rx_desc,
1751 			     IGC_RXDEXT_STATERR_L4E |
1752 			     IGC_RXDEXT_STATERR_IPE)) {
1753 		/* work around errata with sctp packets where the TCPE aka
1754 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1755 		 * packets (aka let the stack check the crc32c)
1756 		 */
1757 		if (!(skb->len == 60 &&
1758 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1759 			u64_stats_update_begin(&ring->rx_syncp);
1760 			ring->rx_stats.csum_err++;
1761 			u64_stats_update_end(&ring->rx_syncp);
1762 		}
1763 		/* let the stack verify checksum errors */
1764 		return;
1765 	}
1766 	/* It must be a TCP or UDP packet with a valid checksum */
1767 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1768 				      IGC_RXD_STAT_UDPCS))
1769 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1770 
1771 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1772 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1773 }
1774 
1775 /* Mapping HW RSS Type to enum pkt_hash_types */
1776 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1777 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1778 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1779 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1780 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1781 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1782 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1783 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1784 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1785 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1786 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1787 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1788 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1789 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1790 	[13] = PKT_HASH_TYPE_NONE,
1791 	[14] = PKT_HASH_TYPE_NONE,
1792 	[15] = PKT_HASH_TYPE_NONE,
1793 };
1794 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1795 static inline void igc_rx_hash(struct igc_ring *ring,
1796 			       union igc_adv_rx_desc *rx_desc,
1797 			       struct sk_buff *skb)
1798 {
1799 	if (ring->netdev->features & NETIF_F_RXHASH) {
1800 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1801 		u32 rss_type = igc_rss_type(rx_desc);
1802 
1803 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1804 	}
1805 }
1806 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1807 static void igc_rx_vlan(struct igc_ring *rx_ring,
1808 			union igc_adv_rx_desc *rx_desc,
1809 			struct sk_buff *skb)
1810 {
1811 	struct net_device *dev = rx_ring->netdev;
1812 	u16 vid;
1813 
1814 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1815 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1816 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1817 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1818 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1819 		else
1820 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1821 
1822 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1823 	}
1824 }
1825 
1826 /**
1827  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1828  * @rx_ring: rx descriptor ring packet is being transacted on
1829  * @rx_desc: pointer to the EOP Rx descriptor
1830  * @skb: pointer to current skb being populated
1831  *
1832  * This function checks the ring, descriptor, and packet information in order
1833  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1834  * skb.
1835  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1836 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1837 				   union igc_adv_rx_desc *rx_desc,
1838 				   struct sk_buff *skb)
1839 {
1840 	igc_rx_hash(rx_ring, rx_desc, skb);
1841 
1842 	igc_rx_checksum(rx_ring, rx_desc, skb);
1843 
1844 	igc_rx_vlan(rx_ring, rx_desc, skb);
1845 
1846 	skb_record_rx_queue(skb, rx_ring->queue_index);
1847 
1848 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1849 }
1850 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1851 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1852 {
1853 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1854 	struct igc_adapter *adapter = netdev_priv(netdev);
1855 	struct igc_hw *hw = &adapter->hw;
1856 	u32 ctrl;
1857 
1858 	ctrl = rd32(IGC_CTRL);
1859 
1860 	if (enable) {
1861 		/* enable VLAN tag insert/strip */
1862 		ctrl |= IGC_CTRL_VME;
1863 	} else {
1864 		/* disable VLAN tag insert/strip */
1865 		ctrl &= ~IGC_CTRL_VME;
1866 	}
1867 	wr32(IGC_CTRL, ctrl);
1868 }
1869 
igc_restore_vlan(struct igc_adapter * adapter)1870 static void igc_restore_vlan(struct igc_adapter *adapter)
1871 {
1872 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1873 }
1874 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1875 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1876 					       const unsigned int size,
1877 					       int *rx_buffer_pgcnt)
1878 {
1879 	struct igc_rx_buffer *rx_buffer;
1880 
1881 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1882 	*rx_buffer_pgcnt =
1883 #if (PAGE_SIZE < 8192)
1884 		page_count(rx_buffer->page);
1885 #else
1886 		0;
1887 #endif
1888 	prefetchw(rx_buffer->page);
1889 
1890 	/* we are reusing so sync this buffer for CPU use */
1891 	dma_sync_single_range_for_cpu(rx_ring->dev,
1892 				      rx_buffer->dma,
1893 				      rx_buffer->page_offset,
1894 				      size,
1895 				      DMA_FROM_DEVICE);
1896 
1897 	rx_buffer->pagecnt_bias--;
1898 
1899 	return rx_buffer;
1900 }
1901 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1902 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1903 			       unsigned int truesize)
1904 {
1905 #if (PAGE_SIZE < 8192)
1906 	buffer->page_offset ^= truesize;
1907 #else
1908 	buffer->page_offset += truesize;
1909 #endif
1910 }
1911 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1912 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1913 					      unsigned int size)
1914 {
1915 	unsigned int truesize;
1916 
1917 #if (PAGE_SIZE < 8192)
1918 	truesize = igc_rx_pg_size(ring) / 2;
1919 #else
1920 	truesize = ring_uses_build_skb(ring) ?
1921 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1922 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1923 		   SKB_DATA_ALIGN(size);
1924 #endif
1925 	return truesize;
1926 }
1927 
1928 /**
1929  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1930  * @rx_ring: rx descriptor ring to transact packets on
1931  * @rx_buffer: buffer containing page to add
1932  * @skb: sk_buff to place the data into
1933  * @size: size of buffer to be added
1934  *
1935  * This function will add the data contained in rx_buffer->page to the skb.
1936  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1937 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1938 			    struct igc_rx_buffer *rx_buffer,
1939 			    struct sk_buff *skb,
1940 			    unsigned int size)
1941 {
1942 	unsigned int truesize;
1943 
1944 #if (PAGE_SIZE < 8192)
1945 	truesize = igc_rx_pg_size(rx_ring) / 2;
1946 #else
1947 	truesize = ring_uses_build_skb(rx_ring) ?
1948 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1949 		   SKB_DATA_ALIGN(size);
1950 #endif
1951 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1952 			rx_buffer->page_offset, size, truesize);
1953 
1954 	igc_rx_buffer_flip(rx_buffer, truesize);
1955 }
1956 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1957 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1958 				     struct igc_rx_buffer *rx_buffer,
1959 				     struct xdp_buff *xdp)
1960 {
1961 	unsigned int size = xdp->data_end - xdp->data;
1962 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1963 	unsigned int metasize = xdp->data - xdp->data_meta;
1964 	struct sk_buff *skb;
1965 
1966 	/* prefetch first cache line of first page */
1967 	net_prefetch(xdp->data_meta);
1968 
1969 	/* build an skb around the page buffer */
1970 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1971 	if (unlikely(!skb))
1972 		return NULL;
1973 
1974 	/* update pointers within the skb to store the data */
1975 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1976 	__skb_put(skb, size);
1977 	if (metasize)
1978 		skb_metadata_set(skb, metasize);
1979 
1980 	igc_rx_buffer_flip(rx_buffer, truesize);
1981 	return skb;
1982 }
1983 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1984 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1985 					 struct igc_rx_buffer *rx_buffer,
1986 					 struct igc_xdp_buff *ctx)
1987 {
1988 	struct xdp_buff *xdp = &ctx->xdp;
1989 	unsigned int metasize = xdp->data - xdp->data_meta;
1990 	unsigned int size = xdp->data_end - xdp->data;
1991 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1992 	void *va = xdp->data;
1993 	unsigned int headlen;
1994 	struct sk_buff *skb;
1995 
1996 	/* prefetch first cache line of first page */
1997 	net_prefetch(xdp->data_meta);
1998 
1999 	/* allocate a skb to store the frags */
2000 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2001 			     IGC_RX_HDR_LEN + metasize);
2002 	if (unlikely(!skb))
2003 		return NULL;
2004 
2005 	if (ctx->rx_ts) {
2006 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2007 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2008 	}
2009 
2010 	/* Determine available headroom for copy */
2011 	headlen = size;
2012 	if (headlen > IGC_RX_HDR_LEN)
2013 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2014 
2015 	/* align pull length to size of long to optimize memcpy performance */
2016 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2017 	       ALIGN(headlen + metasize, sizeof(long)));
2018 
2019 	if (metasize) {
2020 		skb_metadata_set(skb, metasize);
2021 		__skb_pull(skb, metasize);
2022 	}
2023 
2024 	/* update all of the pointers */
2025 	size -= headlen;
2026 	if (size) {
2027 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2028 				(va + headlen) - page_address(rx_buffer->page),
2029 				size, truesize);
2030 		igc_rx_buffer_flip(rx_buffer, truesize);
2031 	} else {
2032 		rx_buffer->pagecnt_bias++;
2033 	}
2034 
2035 	return skb;
2036 }
2037 
2038 /**
2039  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2040  * @rx_ring: rx descriptor ring to store buffers on
2041  * @old_buff: donor buffer to have page reused
2042  *
2043  * Synchronizes page for reuse by the adapter
2044  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2045 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2046 			      struct igc_rx_buffer *old_buff)
2047 {
2048 	u16 nta = rx_ring->next_to_alloc;
2049 	struct igc_rx_buffer *new_buff;
2050 
2051 	new_buff = &rx_ring->rx_buffer_info[nta];
2052 
2053 	/* update, and store next to alloc */
2054 	nta++;
2055 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2056 
2057 	/* Transfer page from old buffer to new buffer.
2058 	 * Move each member individually to avoid possible store
2059 	 * forwarding stalls.
2060 	 */
2061 	new_buff->dma		= old_buff->dma;
2062 	new_buff->page		= old_buff->page;
2063 	new_buff->page_offset	= old_buff->page_offset;
2064 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2065 }
2066 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2067 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2068 				  int rx_buffer_pgcnt)
2069 {
2070 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2071 	struct page *page = rx_buffer->page;
2072 
2073 	/* avoid re-using remote and pfmemalloc pages */
2074 	if (!dev_page_is_reusable(page))
2075 		return false;
2076 
2077 #if (PAGE_SIZE < 8192)
2078 	/* if we are only owner of page we can reuse it */
2079 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2080 		return false;
2081 #else
2082 #define IGC_LAST_OFFSET \
2083 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2084 
2085 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2086 		return false;
2087 #endif
2088 
2089 	/* If we have drained the page fragment pool we need to update
2090 	 * the pagecnt_bias and page count so that we fully restock the
2091 	 * number of references the driver holds.
2092 	 */
2093 	if (unlikely(pagecnt_bias == 1)) {
2094 		page_ref_add(page, USHRT_MAX - 1);
2095 		rx_buffer->pagecnt_bias = USHRT_MAX;
2096 	}
2097 
2098 	return true;
2099 }
2100 
2101 /**
2102  * igc_is_non_eop - process handling of non-EOP buffers
2103  * @rx_ring: Rx ring being processed
2104  * @rx_desc: Rx descriptor for current buffer
2105  *
2106  * This function updates next to clean.  If the buffer is an EOP buffer
2107  * this function exits returning false, otherwise it will place the
2108  * sk_buff in the next buffer to be chained and return true indicating
2109  * that this is in fact a non-EOP buffer.
2110  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2111 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2112 			   union igc_adv_rx_desc *rx_desc)
2113 {
2114 	u32 ntc = rx_ring->next_to_clean + 1;
2115 
2116 	/* fetch, update, and store next to clean */
2117 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2118 	rx_ring->next_to_clean = ntc;
2119 
2120 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2121 
2122 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2123 		return false;
2124 
2125 	return true;
2126 }
2127 
2128 /**
2129  * igc_cleanup_headers - Correct corrupted or empty headers
2130  * @rx_ring: rx descriptor ring packet is being transacted on
2131  * @rx_desc: pointer to the EOP Rx descriptor
2132  * @skb: pointer to current skb being fixed
2133  *
2134  * Address the case where we are pulling data in on pages only
2135  * and as such no data is present in the skb header.
2136  *
2137  * In addition if skb is not at least 60 bytes we need to pad it so that
2138  * it is large enough to qualify as a valid Ethernet frame.
2139  *
2140  * Returns true if an error was encountered and skb was freed.
2141  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2142 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2143 				union igc_adv_rx_desc *rx_desc,
2144 				struct sk_buff *skb)
2145 {
2146 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2147 		struct net_device *netdev = rx_ring->netdev;
2148 
2149 		if (!(netdev->features & NETIF_F_RXALL)) {
2150 			dev_kfree_skb_any(skb);
2151 			return true;
2152 		}
2153 	}
2154 
2155 	/* if eth_skb_pad returns an error the skb was freed */
2156 	if (eth_skb_pad(skb))
2157 		return true;
2158 
2159 	return false;
2160 }
2161 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2162 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2163 			      struct igc_rx_buffer *rx_buffer,
2164 			      int rx_buffer_pgcnt)
2165 {
2166 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2167 		/* hand second half of page back to the ring */
2168 		igc_reuse_rx_page(rx_ring, rx_buffer);
2169 	} else {
2170 		/* We are not reusing the buffer so unmap it and free
2171 		 * any references we are holding to it
2172 		 */
2173 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2174 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2175 				     IGC_RX_DMA_ATTR);
2176 		__page_frag_cache_drain(rx_buffer->page,
2177 					rx_buffer->pagecnt_bias);
2178 	}
2179 
2180 	/* clear contents of rx_buffer */
2181 	rx_buffer->page = NULL;
2182 }
2183 
igc_rx_offset(struct igc_ring * rx_ring)2184 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2185 {
2186 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2187 
2188 	if (ring_uses_build_skb(rx_ring))
2189 		return IGC_SKB_PAD;
2190 	if (igc_xdp_is_enabled(adapter))
2191 		return XDP_PACKET_HEADROOM;
2192 
2193 	return 0;
2194 }
2195 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2196 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2197 				  struct igc_rx_buffer *bi)
2198 {
2199 	struct page *page = bi->page;
2200 	dma_addr_t dma;
2201 
2202 	/* since we are recycling buffers we should seldom need to alloc */
2203 	if (likely(page))
2204 		return true;
2205 
2206 	/* alloc new page for storage */
2207 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2208 	if (unlikely(!page)) {
2209 		rx_ring->rx_stats.alloc_failed++;
2210 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2211 		return false;
2212 	}
2213 
2214 	/* map page for use */
2215 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2216 				 igc_rx_pg_size(rx_ring),
2217 				 DMA_FROM_DEVICE,
2218 				 IGC_RX_DMA_ATTR);
2219 
2220 	/* if mapping failed free memory back to system since
2221 	 * there isn't much point in holding memory we can't use
2222 	 */
2223 	if (dma_mapping_error(rx_ring->dev, dma)) {
2224 		__free_page(page);
2225 
2226 		rx_ring->rx_stats.alloc_failed++;
2227 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2228 		return false;
2229 	}
2230 
2231 	bi->dma = dma;
2232 	bi->page = page;
2233 	bi->page_offset = igc_rx_offset(rx_ring);
2234 	page_ref_add(page, USHRT_MAX - 1);
2235 	bi->pagecnt_bias = USHRT_MAX;
2236 
2237 	return true;
2238 }
2239 
2240 /**
2241  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2242  * @rx_ring: rx descriptor ring
2243  * @cleaned_count: number of buffers to clean
2244  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2245 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2246 {
2247 	union igc_adv_rx_desc *rx_desc;
2248 	u16 i = rx_ring->next_to_use;
2249 	struct igc_rx_buffer *bi;
2250 	u16 bufsz;
2251 
2252 	/* nothing to do */
2253 	if (!cleaned_count)
2254 		return;
2255 
2256 	rx_desc = IGC_RX_DESC(rx_ring, i);
2257 	bi = &rx_ring->rx_buffer_info[i];
2258 	i -= rx_ring->count;
2259 
2260 	bufsz = igc_rx_bufsz(rx_ring);
2261 
2262 	do {
2263 		if (!igc_alloc_mapped_page(rx_ring, bi))
2264 			break;
2265 
2266 		/* sync the buffer for use by the device */
2267 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2268 						 bi->page_offset, bufsz,
2269 						 DMA_FROM_DEVICE);
2270 
2271 		/* Refresh the desc even if buffer_addrs didn't change
2272 		 * because each write-back erases this info.
2273 		 */
2274 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2275 
2276 		rx_desc++;
2277 		bi++;
2278 		i++;
2279 		if (unlikely(!i)) {
2280 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2281 			bi = rx_ring->rx_buffer_info;
2282 			i -= rx_ring->count;
2283 		}
2284 
2285 		/* clear the length for the next_to_use descriptor */
2286 		rx_desc->wb.upper.length = 0;
2287 
2288 		cleaned_count--;
2289 	} while (cleaned_count);
2290 
2291 	i += rx_ring->count;
2292 
2293 	if (rx_ring->next_to_use != i) {
2294 		/* record the next descriptor to use */
2295 		rx_ring->next_to_use = i;
2296 
2297 		/* update next to alloc since we have filled the ring */
2298 		rx_ring->next_to_alloc = i;
2299 
2300 		/* Force memory writes to complete before letting h/w
2301 		 * know there are new descriptors to fetch.  (Only
2302 		 * applicable for weak-ordered memory model archs,
2303 		 * such as IA-64).
2304 		 */
2305 		wmb();
2306 		writel(i, rx_ring->tail);
2307 	}
2308 }
2309 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2310 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2311 {
2312 	union igc_adv_rx_desc *desc;
2313 	u16 i = ring->next_to_use;
2314 	struct igc_rx_buffer *bi;
2315 	dma_addr_t dma;
2316 	bool ok = true;
2317 
2318 	if (!count)
2319 		return ok;
2320 
2321 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2322 
2323 	desc = IGC_RX_DESC(ring, i);
2324 	bi = &ring->rx_buffer_info[i];
2325 	i -= ring->count;
2326 
2327 	do {
2328 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2329 		if (!bi->xdp) {
2330 			ok = false;
2331 			break;
2332 		}
2333 
2334 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2335 		desc->read.pkt_addr = cpu_to_le64(dma);
2336 
2337 		desc++;
2338 		bi++;
2339 		i++;
2340 		if (unlikely(!i)) {
2341 			desc = IGC_RX_DESC(ring, 0);
2342 			bi = ring->rx_buffer_info;
2343 			i -= ring->count;
2344 		}
2345 
2346 		/* Clear the length for the next_to_use descriptor. */
2347 		desc->wb.upper.length = 0;
2348 
2349 		count--;
2350 	} while (count);
2351 
2352 	i += ring->count;
2353 
2354 	if (ring->next_to_use != i) {
2355 		ring->next_to_use = i;
2356 
2357 		/* Force memory writes to complete before letting h/w
2358 		 * know there are new descriptors to fetch.  (Only
2359 		 * applicable for weak-ordered memory model archs,
2360 		 * such as IA-64).
2361 		 */
2362 		wmb();
2363 		writel(i, ring->tail);
2364 	}
2365 
2366 	return ok;
2367 }
2368 
2369 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2370 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2371 				      struct xdp_frame *xdpf)
2372 {
2373 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2374 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2375 	u16 count, index = ring->next_to_use;
2376 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2377 	struct igc_tx_buffer *buffer = head;
2378 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2379 	u32 olinfo_status, len = xdpf->len, cmd_type;
2380 	void *data = xdpf->data;
2381 	u16 i;
2382 
2383 	count = TXD_USE_COUNT(len);
2384 	for (i = 0; i < nr_frags; i++)
2385 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2386 
2387 	if (igc_maybe_stop_tx(ring, count + 3)) {
2388 		/* this is a hard error */
2389 		return -EBUSY;
2390 	}
2391 
2392 	i = 0;
2393 	head->bytecount = xdp_get_frame_len(xdpf);
2394 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2395 	head->gso_segs = 1;
2396 	head->xdpf = xdpf;
2397 
2398 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2399 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2400 
2401 	for (;;) {
2402 		dma_addr_t dma;
2403 
2404 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2405 		if (dma_mapping_error(ring->dev, dma)) {
2406 			netdev_err_once(ring->netdev,
2407 					"Failed to map DMA for TX\n");
2408 			goto unmap;
2409 		}
2410 
2411 		dma_unmap_len_set(buffer, len, len);
2412 		dma_unmap_addr_set(buffer, dma, dma);
2413 
2414 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2415 			   IGC_ADVTXD_DCMD_IFCS | len;
2416 
2417 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2418 		desc->read.buffer_addr = cpu_to_le64(dma);
2419 
2420 		buffer->protocol = 0;
2421 
2422 		if (++index == ring->count)
2423 			index = 0;
2424 
2425 		if (i == nr_frags)
2426 			break;
2427 
2428 		buffer = &ring->tx_buffer_info[index];
2429 		desc = IGC_TX_DESC(ring, index);
2430 		desc->read.olinfo_status = 0;
2431 
2432 		data = skb_frag_address(&sinfo->frags[i]);
2433 		len = skb_frag_size(&sinfo->frags[i]);
2434 		i++;
2435 	}
2436 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2437 
2438 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2439 	/* set the timestamp */
2440 	head->time_stamp = jiffies;
2441 	/* set next_to_watch value indicating a packet is present */
2442 	head->next_to_watch = desc;
2443 	ring->next_to_use = index;
2444 
2445 	return 0;
2446 
2447 unmap:
2448 	for (;;) {
2449 		buffer = &ring->tx_buffer_info[index];
2450 		if (dma_unmap_len(buffer, len))
2451 			dma_unmap_page(ring->dev,
2452 				       dma_unmap_addr(buffer, dma),
2453 				       dma_unmap_len(buffer, len),
2454 				       DMA_TO_DEVICE);
2455 		dma_unmap_len_set(buffer, len, 0);
2456 		if (buffer == head)
2457 			break;
2458 
2459 		if (!index)
2460 			index += ring->count;
2461 		index--;
2462 	}
2463 
2464 	return -ENOMEM;
2465 }
2466 
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2467 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2468 					    int cpu)
2469 {
2470 	int index = cpu;
2471 
2472 	if (unlikely(index < 0))
2473 		index = 0;
2474 
2475 	while (index >= adapter->num_tx_queues)
2476 		index -= adapter->num_tx_queues;
2477 
2478 	return adapter->tx_ring[index];
2479 }
2480 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2481 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2482 {
2483 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2484 	int cpu = smp_processor_id();
2485 	struct netdev_queue *nq;
2486 	struct igc_ring *ring;
2487 	int res;
2488 
2489 	if (unlikely(!xdpf))
2490 		return -EFAULT;
2491 
2492 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2493 	nq = txring_txq(ring);
2494 
2495 	__netif_tx_lock(nq, cpu);
2496 	/* Avoid transmit queue timeout since we share it with the slow path */
2497 	txq_trans_cond_update(nq);
2498 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2499 	__netif_tx_unlock(nq);
2500 	return res;
2501 }
2502 
2503 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2504 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2505 			      struct bpf_prog *prog,
2506 			      struct xdp_buff *xdp)
2507 {
2508 	u32 act = bpf_prog_run_xdp(prog, xdp);
2509 
2510 	switch (act) {
2511 	case XDP_PASS:
2512 		return IGC_XDP_PASS;
2513 	case XDP_TX:
2514 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2515 			goto out_failure;
2516 		return IGC_XDP_TX;
2517 	case XDP_REDIRECT:
2518 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2519 			goto out_failure;
2520 		return IGC_XDP_REDIRECT;
2521 		break;
2522 	default:
2523 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2524 		fallthrough;
2525 	case XDP_ABORTED:
2526 out_failure:
2527 		trace_xdp_exception(adapter->netdev, prog, act);
2528 		fallthrough;
2529 	case XDP_DROP:
2530 		return IGC_XDP_CONSUMED;
2531 	}
2532 }
2533 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2534 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2535 {
2536 	struct bpf_prog *prog;
2537 	int res;
2538 
2539 	prog = READ_ONCE(adapter->xdp_prog);
2540 	if (!prog) {
2541 		res = IGC_XDP_PASS;
2542 		goto out;
2543 	}
2544 
2545 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2546 
2547 out:
2548 	return res;
2549 }
2550 
2551 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2552 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2553 {
2554 	/* Once tail pointer is updated, hardware can fetch the descriptors
2555 	 * any time so we issue a write membar here to ensure all memory
2556 	 * writes are complete before the tail pointer is updated.
2557 	 */
2558 	wmb();
2559 	writel(ring->next_to_use, ring->tail);
2560 }
2561 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2562 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2563 {
2564 	int cpu = smp_processor_id();
2565 	struct netdev_queue *nq;
2566 	struct igc_ring *ring;
2567 
2568 	if (status & IGC_XDP_TX) {
2569 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2570 		nq = txring_txq(ring);
2571 
2572 		__netif_tx_lock(nq, cpu);
2573 		igc_flush_tx_descriptors(ring);
2574 		__netif_tx_unlock(nq);
2575 	}
2576 
2577 	if (status & IGC_XDP_REDIRECT)
2578 		xdp_do_flush();
2579 }
2580 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2581 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2582 				unsigned int packets, unsigned int bytes)
2583 {
2584 	struct igc_ring *ring = q_vector->rx.ring;
2585 
2586 	u64_stats_update_begin(&ring->rx_syncp);
2587 	ring->rx_stats.packets += packets;
2588 	ring->rx_stats.bytes += bytes;
2589 	u64_stats_update_end(&ring->rx_syncp);
2590 
2591 	q_vector->rx.total_packets += packets;
2592 	q_vector->rx.total_bytes += bytes;
2593 }
2594 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2595 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2596 {
2597 	unsigned int total_bytes = 0, total_packets = 0;
2598 	struct igc_adapter *adapter = q_vector->adapter;
2599 	struct igc_ring *rx_ring = q_vector->rx.ring;
2600 	struct sk_buff *skb = rx_ring->skb;
2601 	u16 cleaned_count = igc_desc_unused(rx_ring);
2602 	int xdp_status = 0, rx_buffer_pgcnt;
2603 	int xdp_res = 0;
2604 
2605 	while (likely(total_packets < budget)) {
2606 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2607 		struct igc_rx_buffer *rx_buffer;
2608 		union igc_adv_rx_desc *rx_desc;
2609 		unsigned int size, truesize;
2610 		int pkt_offset = 0;
2611 		void *pktbuf;
2612 
2613 		/* return some buffers to hardware, one at a time is too slow */
2614 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2615 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2616 			cleaned_count = 0;
2617 		}
2618 
2619 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2620 		size = le16_to_cpu(rx_desc->wb.upper.length);
2621 		if (!size)
2622 			break;
2623 
2624 		/* This memory barrier is needed to keep us from reading
2625 		 * any other fields out of the rx_desc until we know the
2626 		 * descriptor has been written back
2627 		 */
2628 		dma_rmb();
2629 
2630 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2631 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2632 
2633 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2634 
2635 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2636 			ctx.rx_ts = pktbuf;
2637 			pkt_offset = IGC_TS_HDR_LEN;
2638 			size -= IGC_TS_HDR_LEN;
2639 		}
2640 
2641 		if (!skb) {
2642 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2643 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2644 					 igc_rx_offset(rx_ring) + pkt_offset,
2645 					 size, true);
2646 			xdp_buff_clear_frags_flag(&ctx.xdp);
2647 			ctx.rx_desc = rx_desc;
2648 
2649 			xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2650 		}
2651 
2652 		if (xdp_res) {
2653 			switch (xdp_res) {
2654 			case IGC_XDP_CONSUMED:
2655 				rx_buffer->pagecnt_bias++;
2656 				break;
2657 			case IGC_XDP_TX:
2658 			case IGC_XDP_REDIRECT:
2659 				igc_rx_buffer_flip(rx_buffer, truesize);
2660 				xdp_status |= xdp_res;
2661 				break;
2662 			}
2663 
2664 			total_packets++;
2665 			total_bytes += size;
2666 		} else if (skb)
2667 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2668 		else if (ring_uses_build_skb(rx_ring))
2669 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2670 		else
2671 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2672 
2673 		/* exit if we failed to retrieve a buffer */
2674 		if (!xdp_res && !skb) {
2675 			rx_ring->rx_stats.alloc_failed++;
2676 			rx_buffer->pagecnt_bias++;
2677 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2678 			break;
2679 		}
2680 
2681 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2682 		cleaned_count++;
2683 
2684 		/* fetch next buffer in frame if non-eop */
2685 		if (igc_is_non_eop(rx_ring, rx_desc))
2686 			continue;
2687 
2688 		/* verify the packet layout is correct */
2689 		if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2690 			skb = NULL;
2691 			continue;
2692 		}
2693 
2694 		/* probably a little skewed due to removing CRC */
2695 		total_bytes += skb->len;
2696 
2697 		/* populate checksum, VLAN, and protocol */
2698 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2699 
2700 		napi_gro_receive(&q_vector->napi, skb);
2701 
2702 		/* reset skb pointer */
2703 		skb = NULL;
2704 
2705 		/* update budget accounting */
2706 		total_packets++;
2707 	}
2708 
2709 	if (xdp_status)
2710 		igc_finalize_xdp(adapter, xdp_status);
2711 
2712 	/* place incomplete frames back on ring for completion */
2713 	rx_ring->skb = skb;
2714 
2715 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2716 
2717 	if (cleaned_count)
2718 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2719 
2720 	return total_packets;
2721 }
2722 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2723 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2724 					    struct igc_xdp_buff *ctx)
2725 {
2726 	struct xdp_buff *xdp = &ctx->xdp;
2727 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2728 	unsigned int metasize = xdp->data - xdp->data_meta;
2729 	struct sk_buff *skb;
2730 
2731 	net_prefetch(xdp->data_meta);
2732 
2733 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2734 	if (unlikely(!skb))
2735 		return NULL;
2736 
2737 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2738 	       ALIGN(totalsize, sizeof(long)));
2739 
2740 	if (metasize) {
2741 		skb_metadata_set(skb, metasize);
2742 		__skb_pull(skb, metasize);
2743 	}
2744 
2745 	if (ctx->rx_ts) {
2746 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2747 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2748 	}
2749 
2750 	return skb;
2751 }
2752 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2753 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2754 				union igc_adv_rx_desc *desc,
2755 				struct igc_xdp_buff *ctx)
2756 {
2757 	struct igc_ring *ring = q_vector->rx.ring;
2758 	struct sk_buff *skb;
2759 
2760 	skb = igc_construct_skb_zc(ring, ctx);
2761 	if (!skb) {
2762 		ring->rx_stats.alloc_failed++;
2763 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2764 		return;
2765 	}
2766 
2767 	if (igc_cleanup_headers(ring, desc, skb))
2768 		return;
2769 
2770 	igc_process_skb_fields(ring, desc, skb);
2771 	napi_gro_receive(&q_vector->napi, skb);
2772 }
2773 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2774 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2775 {
2776 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2777 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2778 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2779 	 */
2780        return (struct igc_xdp_buff *)xdp;
2781 }
2782 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2783 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2784 {
2785 	struct igc_adapter *adapter = q_vector->adapter;
2786 	struct igc_ring *ring = q_vector->rx.ring;
2787 	u16 cleaned_count = igc_desc_unused(ring);
2788 	int total_bytes = 0, total_packets = 0;
2789 	u16 ntc = ring->next_to_clean;
2790 	struct bpf_prog *prog;
2791 	bool failure = false;
2792 	int xdp_status = 0;
2793 
2794 	rcu_read_lock();
2795 
2796 	prog = READ_ONCE(adapter->xdp_prog);
2797 
2798 	while (likely(total_packets < budget)) {
2799 		union igc_adv_rx_desc *desc;
2800 		struct igc_rx_buffer *bi;
2801 		struct igc_xdp_buff *ctx;
2802 		unsigned int size;
2803 		int res;
2804 
2805 		desc = IGC_RX_DESC(ring, ntc);
2806 		size = le16_to_cpu(desc->wb.upper.length);
2807 		if (!size)
2808 			break;
2809 
2810 		/* This memory barrier is needed to keep us from reading
2811 		 * any other fields out of the rx_desc until we know the
2812 		 * descriptor has been written back
2813 		 */
2814 		dma_rmb();
2815 
2816 		bi = &ring->rx_buffer_info[ntc];
2817 
2818 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2819 		ctx->rx_desc = desc;
2820 
2821 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2822 			ctx->rx_ts = bi->xdp->data;
2823 
2824 			bi->xdp->data += IGC_TS_HDR_LEN;
2825 
2826 			/* HW timestamp has been copied into local variable. Metadata
2827 			 * length when XDP program is called should be 0.
2828 			 */
2829 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2830 			size -= IGC_TS_HDR_LEN;
2831 		} else {
2832 			ctx->rx_ts = NULL;
2833 		}
2834 
2835 		bi->xdp->data_end = bi->xdp->data + size;
2836 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2837 
2838 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2839 		switch (res) {
2840 		case IGC_XDP_PASS:
2841 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2842 			fallthrough;
2843 		case IGC_XDP_CONSUMED:
2844 			xsk_buff_free(bi->xdp);
2845 			break;
2846 		case IGC_XDP_TX:
2847 		case IGC_XDP_REDIRECT:
2848 			xdp_status |= res;
2849 			break;
2850 		}
2851 
2852 		bi->xdp = NULL;
2853 		total_bytes += size;
2854 		total_packets++;
2855 		cleaned_count++;
2856 		ntc++;
2857 		if (ntc == ring->count)
2858 			ntc = 0;
2859 	}
2860 
2861 	ring->next_to_clean = ntc;
2862 	rcu_read_unlock();
2863 
2864 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2865 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2866 
2867 	if (xdp_status)
2868 		igc_finalize_xdp(adapter, xdp_status);
2869 
2870 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2871 
2872 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2873 		if (failure || ring->next_to_clean == ring->next_to_use)
2874 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2875 		else
2876 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2877 		return total_packets;
2878 	}
2879 
2880 	return failure ? budget : total_packets;
2881 }
2882 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2883 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2884 				unsigned int packets, unsigned int bytes)
2885 {
2886 	struct igc_ring *ring = q_vector->tx.ring;
2887 
2888 	u64_stats_update_begin(&ring->tx_syncp);
2889 	ring->tx_stats.bytes += bytes;
2890 	ring->tx_stats.packets += packets;
2891 	u64_stats_update_end(&ring->tx_syncp);
2892 
2893 	q_vector->tx.total_bytes += bytes;
2894 	q_vector->tx.total_packets += packets;
2895 }
2896 
igc_xsk_request_timestamp(void * _priv)2897 static void igc_xsk_request_timestamp(void *_priv)
2898 {
2899 	struct igc_metadata_request *meta_req = _priv;
2900 	struct igc_ring *tx_ring = meta_req->tx_ring;
2901 	struct igc_tx_timestamp_request *tstamp;
2902 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2903 	struct igc_adapter *adapter;
2904 	unsigned long lock_flags;
2905 	bool found = false;
2906 	int i;
2907 
2908 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2909 		adapter = netdev_priv(tx_ring->netdev);
2910 
2911 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2912 
2913 		/* Search for available tstamp regs */
2914 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2915 			tstamp = &adapter->tx_tstamp[i];
2916 
2917 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2918 			 * When tstamp->skb is equal to NULL,
2919 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2920 			 * This condition means that the particular tstamp reg
2921 			 * is not occupied by other packet.
2922 			 */
2923 			if (!tstamp->skb) {
2924 				found = true;
2925 				break;
2926 			}
2927 		}
2928 
2929 		/* Return if no available tstamp regs */
2930 		if (!found) {
2931 			adapter->tx_hwtstamp_skipped++;
2932 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2933 					       lock_flags);
2934 			return;
2935 		}
2936 
2937 		tstamp->start = jiffies;
2938 		tstamp->xsk_queue_index = tx_ring->queue_index;
2939 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2940 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2941 
2942 		/* Hold the transmit completion until timestamp is ready */
2943 		meta_req->tx_buffer->xsk_pending_ts = true;
2944 
2945 		/* Keep the pointer to tx_timestamp, which is located in XDP
2946 		 * metadata area. It is the location to store the value of
2947 		 * tx hardware timestamp.
2948 		 */
2949 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2950 
2951 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2952 		tx_flags |= tstamp->flags;
2953 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2954 						   IGC_TX_FLAGS_TSTAMP,
2955 						   (IGC_ADVTXD_MAC_TSTAMP));
2956 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2957 						   IGC_TX_FLAGS_TSTAMP_1,
2958 						   (IGC_ADVTXD_TSTAMP_REG_1));
2959 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2960 						   IGC_TX_FLAGS_TSTAMP_2,
2961 						   (IGC_ADVTXD_TSTAMP_REG_2));
2962 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2963 						   IGC_TX_FLAGS_TSTAMP_3,
2964 						   (IGC_ADVTXD_TSTAMP_REG_3));
2965 
2966 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2967 	}
2968 }
2969 
igc_xsk_fill_timestamp(void * _priv)2970 static u64 igc_xsk_fill_timestamp(void *_priv)
2971 {
2972 	return *(u64 *)_priv;
2973 }
2974 
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2975 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2976 {
2977 	struct igc_metadata_request *meta_req = _priv;
2978 	struct igc_ring *tx_ring = meta_req->tx_ring;
2979 	__le32 launch_time_offset;
2980 	bool insert_empty = false;
2981 	bool first_flag = false;
2982 	u16 used_desc = 0;
2983 
2984 	if (!tx_ring->launchtime_enable)
2985 		return;
2986 
2987 	launch_time_offset = igc_tx_launchtime(tx_ring,
2988 					       ns_to_ktime(launch_time),
2989 					       &first_flag, &insert_empty);
2990 	if (insert_empty) {
2991 		/* Disregard the launch time request if the required empty frame
2992 		 * fails to be inserted.
2993 		 */
2994 		if (igc_insert_empty_frame(tx_ring))
2995 			return;
2996 
2997 		meta_req->tx_buffer =
2998 			&tx_ring->tx_buffer_info[tx_ring->next_to_use];
2999 		/* Inserting an empty packet requires two descriptors:
3000 		 * one data descriptor and one context descriptor.
3001 		 */
3002 		used_desc += 2;
3003 	}
3004 
3005 	/* Use one context descriptor to specify launch time and first flag. */
3006 	igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3007 	used_desc += 1;
3008 
3009 	/* Update the number of used descriptors in this request */
3010 	meta_req->used_desc += used_desc;
3011 }
3012 
3013 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3014 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
3015 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
3016 	.tmo_request_launch_time	= igc_xsk_request_launch_time,
3017 };
3018 
igc_xdp_xmit_zc(struct igc_ring * ring)3019 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3020 {
3021 	struct xsk_buff_pool *pool = ring->xsk_pool;
3022 	struct netdev_queue *nq = txring_txq(ring);
3023 	union igc_adv_tx_desc *tx_desc = NULL;
3024 	int cpu = smp_processor_id();
3025 	struct xdp_desc xdp_desc;
3026 	u16 budget, ntu;
3027 
3028 	if (!netif_carrier_ok(ring->netdev))
3029 		return;
3030 
3031 	__netif_tx_lock(nq, cpu);
3032 
3033 	/* Avoid transmit queue timeout since we share it with the slow path */
3034 	txq_trans_cond_update(nq);
3035 
3036 	ntu = ring->next_to_use;
3037 	budget = igc_desc_unused(ring);
3038 
3039 	/* Packets with launch time require one data descriptor and one context
3040 	 * descriptor. When the launch time falls into the next Qbv cycle, we
3041 	 * may need to insert an empty packet, which requires two more
3042 	 * descriptors. Therefore, to be safe, we always ensure we have at least
3043 	 * 4 descriptors available.
3044 	 */
3045 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget >= 4) {
3046 		struct igc_metadata_request meta_req;
3047 		struct xsk_tx_metadata *meta = NULL;
3048 		struct igc_tx_buffer *bi;
3049 		u32 olinfo_status;
3050 		dma_addr_t dma;
3051 
3052 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3053 				    IGC_ADVTXD_DCMD_DEXT |
3054 				    IGC_ADVTXD_DCMD_IFCS |
3055 				    IGC_TXD_DCMD | xdp_desc.len;
3056 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3057 
3058 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3059 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3060 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3061 		bi = &ring->tx_buffer_info[ntu];
3062 
3063 		meta_req.tx_ring = ring;
3064 		meta_req.tx_buffer = bi;
3065 		meta_req.meta = meta;
3066 		meta_req.used_desc = 0;
3067 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3068 					&meta_req);
3069 
3070 		/* xsk_tx_metadata_request() may have updated next_to_use */
3071 		ntu = ring->next_to_use;
3072 
3073 		/* xsk_tx_metadata_request() may have updated Tx buffer info */
3074 		bi = meta_req.tx_buffer;
3075 
3076 		/* xsk_tx_metadata_request() may use a few descriptors */
3077 		budget -= meta_req.used_desc;
3078 
3079 		tx_desc = IGC_TX_DESC(ring, ntu);
3080 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3081 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3082 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3083 
3084 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3085 		bi->protocol = 0;
3086 		bi->bytecount = xdp_desc.len;
3087 		bi->gso_segs = 1;
3088 		bi->time_stamp = jiffies;
3089 		bi->next_to_watch = tx_desc;
3090 
3091 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3092 
3093 		ntu++;
3094 		if (ntu == ring->count)
3095 			ntu = 0;
3096 
3097 		ring->next_to_use = ntu;
3098 		budget--;
3099 	}
3100 
3101 	if (tx_desc) {
3102 		igc_flush_tx_descriptors(ring);
3103 		xsk_tx_release(pool);
3104 	}
3105 
3106 	__netif_tx_unlock(nq);
3107 }
3108 
3109 /**
3110  * igc_clean_tx_irq - Reclaim resources after transmit completes
3111  * @q_vector: pointer to q_vector containing needed info
3112  * @napi_budget: Used to determine if we are in netpoll
3113  *
3114  * returns true if ring is completely cleaned
3115  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3116 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3117 {
3118 	struct igc_adapter *adapter = q_vector->adapter;
3119 	unsigned int total_bytes = 0, total_packets = 0;
3120 	unsigned int budget = q_vector->tx.work_limit;
3121 	struct igc_ring *tx_ring = q_vector->tx.ring;
3122 	unsigned int i = tx_ring->next_to_clean;
3123 	struct igc_tx_buffer *tx_buffer;
3124 	union igc_adv_tx_desc *tx_desc;
3125 	u32 xsk_frames = 0;
3126 
3127 	if (test_bit(__IGC_DOWN, &adapter->state))
3128 		return true;
3129 
3130 	tx_buffer = &tx_ring->tx_buffer_info[i];
3131 	tx_desc = IGC_TX_DESC(tx_ring, i);
3132 	i -= tx_ring->count;
3133 
3134 	do {
3135 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3136 
3137 		/* if next_to_watch is not set then there is no work pending */
3138 		if (!eop_desc)
3139 			break;
3140 
3141 		/* prevent any other reads prior to eop_desc */
3142 		smp_rmb();
3143 
3144 		/* if DD is not set pending work has not been completed */
3145 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3146 			break;
3147 
3148 		/* Hold the completions while there's a pending tx hardware
3149 		 * timestamp request from XDP Tx metadata.
3150 		 */
3151 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3152 		    tx_buffer->xsk_pending_ts)
3153 			break;
3154 
3155 		/* clear next_to_watch to prevent false hangs */
3156 		tx_buffer->next_to_watch = NULL;
3157 
3158 		/* update the statistics for this packet */
3159 		total_bytes += tx_buffer->bytecount;
3160 		total_packets += tx_buffer->gso_segs;
3161 
3162 		switch (tx_buffer->type) {
3163 		case IGC_TX_BUFFER_TYPE_XSK:
3164 			xsk_frames++;
3165 			break;
3166 		case IGC_TX_BUFFER_TYPE_XDP:
3167 			xdp_return_frame(tx_buffer->xdpf);
3168 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3169 			break;
3170 		case IGC_TX_BUFFER_TYPE_SKB:
3171 			napi_consume_skb(tx_buffer->skb, napi_budget);
3172 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3173 			break;
3174 		default:
3175 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3176 			break;
3177 		}
3178 
3179 		/* clear last DMA location and unmap remaining buffers */
3180 		while (tx_desc != eop_desc) {
3181 			tx_buffer++;
3182 			tx_desc++;
3183 			i++;
3184 			if (unlikely(!i)) {
3185 				i -= tx_ring->count;
3186 				tx_buffer = tx_ring->tx_buffer_info;
3187 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3188 			}
3189 
3190 			/* unmap any remaining paged data */
3191 			if (dma_unmap_len(tx_buffer, len))
3192 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3193 		}
3194 
3195 		/* move us one more past the eop_desc for start of next pkt */
3196 		tx_buffer++;
3197 		tx_desc++;
3198 		i++;
3199 		if (unlikely(!i)) {
3200 			i -= tx_ring->count;
3201 			tx_buffer = tx_ring->tx_buffer_info;
3202 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3203 		}
3204 
3205 		/* issue prefetch for next Tx descriptor */
3206 		prefetch(tx_desc);
3207 
3208 		/* update budget accounting */
3209 		budget--;
3210 	} while (likely(budget));
3211 
3212 	netdev_tx_completed_queue(txring_txq(tx_ring),
3213 				  total_packets, total_bytes);
3214 
3215 	i += tx_ring->count;
3216 	tx_ring->next_to_clean = i;
3217 
3218 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3219 
3220 	if (tx_ring->xsk_pool) {
3221 		if (xsk_frames)
3222 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3223 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3224 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3225 		igc_xdp_xmit_zc(tx_ring);
3226 	}
3227 
3228 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3229 		struct igc_hw *hw = &adapter->hw;
3230 
3231 		/* Detect a transmit hang in hardware, this serializes the
3232 		 * check with the clearing of time_stamp and movement of i
3233 		 */
3234 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3235 		if (tx_buffer->next_to_watch &&
3236 		    time_after(jiffies, tx_buffer->time_stamp +
3237 		    (adapter->tx_timeout_factor * HZ)) &&
3238 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3239 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3240 		    !tx_ring->oper_gate_closed) {
3241 			/* detected Tx unit hang */
3242 			netdev_err(tx_ring->netdev,
3243 				   "Detected Tx Unit Hang\n"
3244 				   "  Tx Queue             <%d>\n"
3245 				   "  TDH                  <%x>\n"
3246 				   "  TDT                  <%x>\n"
3247 				   "  next_to_use          <%x>\n"
3248 				   "  next_to_clean        <%x>\n"
3249 				   "buffer_info[next_to_clean]\n"
3250 				   "  time_stamp           <%lx>\n"
3251 				   "  next_to_watch        <%p>\n"
3252 				   "  jiffies              <%lx>\n"
3253 				   "  desc.status          <%x>\n",
3254 				   tx_ring->queue_index,
3255 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3256 				   readl(tx_ring->tail),
3257 				   tx_ring->next_to_use,
3258 				   tx_ring->next_to_clean,
3259 				   tx_buffer->time_stamp,
3260 				   tx_buffer->next_to_watch,
3261 				   jiffies,
3262 				   tx_buffer->next_to_watch->wb.status);
3263 			netif_stop_subqueue(tx_ring->netdev,
3264 					    tx_ring->queue_index);
3265 
3266 			/* we are about to reset, no point in enabling stuff */
3267 			return true;
3268 		}
3269 	}
3270 
3271 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3272 	if (unlikely(total_packets &&
3273 		     netif_carrier_ok(tx_ring->netdev) &&
3274 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3275 		/* Make sure that anybody stopping the queue after this
3276 		 * sees the new next_to_clean.
3277 		 */
3278 		smp_mb();
3279 		if (__netif_subqueue_stopped(tx_ring->netdev,
3280 					     tx_ring->queue_index) &&
3281 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3282 			netif_wake_subqueue(tx_ring->netdev,
3283 					    tx_ring->queue_index);
3284 
3285 			u64_stats_update_begin(&tx_ring->tx_syncp);
3286 			tx_ring->tx_stats.restart_queue++;
3287 			u64_stats_update_end(&tx_ring->tx_syncp);
3288 		}
3289 	}
3290 
3291 	return !!budget;
3292 }
3293 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3294 static int igc_find_mac_filter(struct igc_adapter *adapter,
3295 			       enum igc_mac_filter_type type, const u8 *addr)
3296 {
3297 	struct igc_hw *hw = &adapter->hw;
3298 	int max_entries = hw->mac.rar_entry_count;
3299 	u32 ral, rah;
3300 	int i;
3301 
3302 	for (i = 0; i < max_entries; i++) {
3303 		ral = rd32(IGC_RAL(i));
3304 		rah = rd32(IGC_RAH(i));
3305 
3306 		if (!(rah & IGC_RAH_AV))
3307 			continue;
3308 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3309 			continue;
3310 		if ((rah & IGC_RAH_RAH_MASK) !=
3311 		    le16_to_cpup((__le16 *)(addr + 4)))
3312 			continue;
3313 		if (ral != le32_to_cpup((__le32 *)(addr)))
3314 			continue;
3315 
3316 		return i;
3317 	}
3318 
3319 	return -1;
3320 }
3321 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3322 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3323 {
3324 	struct igc_hw *hw = &adapter->hw;
3325 	int max_entries = hw->mac.rar_entry_count;
3326 	u32 rah;
3327 	int i;
3328 
3329 	for (i = 0; i < max_entries; i++) {
3330 		rah = rd32(IGC_RAH(i));
3331 
3332 		if (!(rah & IGC_RAH_AV))
3333 			return i;
3334 	}
3335 
3336 	return -1;
3337 }
3338 
3339 /**
3340  * igc_add_mac_filter() - Add MAC address filter
3341  * @adapter: Pointer to adapter where the filter should be added
3342  * @type: MAC address filter type (source or destination)
3343  * @addr: MAC address
3344  * @queue: If non-negative, queue assignment feature is enabled and frames
3345  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3346  *         assignment is disabled.
3347  *
3348  * Return: 0 in case of success, negative errno code otherwise.
3349  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3350 static int igc_add_mac_filter(struct igc_adapter *adapter,
3351 			      enum igc_mac_filter_type type, const u8 *addr,
3352 			      int queue)
3353 {
3354 	struct net_device *dev = adapter->netdev;
3355 	int index;
3356 
3357 	index = igc_find_mac_filter(adapter, type, addr);
3358 	if (index >= 0)
3359 		goto update_filter;
3360 
3361 	index = igc_get_avail_mac_filter_slot(adapter);
3362 	if (index < 0)
3363 		return -ENOSPC;
3364 
3365 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3366 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3367 		   addr, queue);
3368 
3369 update_filter:
3370 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3371 	return 0;
3372 }
3373 
3374 /**
3375  * igc_del_mac_filter() - Delete MAC address filter
3376  * @adapter: Pointer to adapter where the filter should be deleted from
3377  * @type: MAC address filter type (source or destination)
3378  * @addr: MAC address
3379  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3380 static void igc_del_mac_filter(struct igc_adapter *adapter,
3381 			       enum igc_mac_filter_type type, const u8 *addr)
3382 {
3383 	struct net_device *dev = adapter->netdev;
3384 	int index;
3385 
3386 	index = igc_find_mac_filter(adapter, type, addr);
3387 	if (index < 0)
3388 		return;
3389 
3390 	if (index == 0) {
3391 		/* If this is the default filter, we don't actually delete it.
3392 		 * We just reset to its default value i.e. disable queue
3393 		 * assignment.
3394 		 */
3395 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3396 
3397 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3398 	} else {
3399 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3400 			   index,
3401 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3402 			   addr);
3403 
3404 		igc_clear_mac_filter_hw(adapter, index);
3405 	}
3406 }
3407 
3408 /**
3409  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3410  * @adapter: Pointer to adapter where the filter should be added
3411  * @prio: VLAN priority value
3412  * @queue: Queue number which matching frames are assigned to
3413  *
3414  * Return: 0 in case of success, negative errno code otherwise.
3415  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3416 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3417 				    int queue)
3418 {
3419 	struct net_device *dev = adapter->netdev;
3420 	struct igc_hw *hw = &adapter->hw;
3421 	u32 vlanpqf;
3422 
3423 	vlanpqf = rd32(IGC_VLANPQF);
3424 
3425 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3426 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3427 		return -EEXIST;
3428 	}
3429 
3430 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3431 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3432 
3433 	wr32(IGC_VLANPQF, vlanpqf);
3434 
3435 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3436 		   prio, queue);
3437 	return 0;
3438 }
3439 
3440 /**
3441  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3442  * @adapter: Pointer to adapter where the filter should be deleted from
3443  * @prio: VLAN priority value
3444  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3445 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3446 {
3447 	struct igc_hw *hw = &adapter->hw;
3448 	u32 vlanpqf;
3449 
3450 	vlanpqf = rd32(IGC_VLANPQF);
3451 
3452 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3453 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3454 
3455 	wr32(IGC_VLANPQF, vlanpqf);
3456 
3457 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3458 		   prio);
3459 }
3460 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3461 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3462 {
3463 	struct igc_hw *hw = &adapter->hw;
3464 	int i;
3465 
3466 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3467 		u32 etqf = rd32(IGC_ETQF(i));
3468 
3469 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3470 			return i;
3471 	}
3472 
3473 	return -1;
3474 }
3475 
3476 /**
3477  * igc_add_etype_filter() - Add ethertype filter
3478  * @adapter: Pointer to adapter where the filter should be added
3479  * @etype: Ethertype value
3480  * @queue: If non-negative, queue assignment feature is enabled and frames
3481  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3482  *         assignment is disabled.
3483  *
3484  * Return: 0 in case of success, negative errno code otherwise.
3485  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3486 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3487 				int queue)
3488 {
3489 	struct igc_hw *hw = &adapter->hw;
3490 	int index;
3491 	u32 etqf;
3492 
3493 	index = igc_get_avail_etype_filter_slot(adapter);
3494 	if (index < 0)
3495 		return -ENOSPC;
3496 
3497 	etqf = rd32(IGC_ETQF(index));
3498 
3499 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3500 	etqf |= etype;
3501 
3502 	if (queue >= 0) {
3503 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3504 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3505 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3506 	}
3507 
3508 	etqf |= IGC_ETQF_FILTER_ENABLE;
3509 
3510 	wr32(IGC_ETQF(index), etqf);
3511 
3512 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3513 		   etype, queue);
3514 	return 0;
3515 }
3516 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3517 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3518 {
3519 	struct igc_hw *hw = &adapter->hw;
3520 	int i;
3521 
3522 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3523 		u32 etqf = rd32(IGC_ETQF(i));
3524 
3525 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3526 			return i;
3527 	}
3528 
3529 	return -1;
3530 }
3531 
3532 /**
3533  * igc_del_etype_filter() - Delete ethertype filter
3534  * @adapter: Pointer to adapter where the filter should be deleted from
3535  * @etype: Ethertype value
3536  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3537 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3538 {
3539 	struct igc_hw *hw = &adapter->hw;
3540 	int index;
3541 
3542 	index = igc_find_etype_filter(adapter, etype);
3543 	if (index < 0)
3544 		return;
3545 
3546 	wr32(IGC_ETQF(index), 0);
3547 
3548 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3549 		   etype);
3550 }
3551 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3552 static int igc_flex_filter_select(struct igc_adapter *adapter,
3553 				  struct igc_flex_filter *input,
3554 				  u32 *fhft)
3555 {
3556 	struct igc_hw *hw = &adapter->hw;
3557 	u8 fhft_index;
3558 	u32 fhftsl;
3559 
3560 	if (input->index >= MAX_FLEX_FILTER) {
3561 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3562 		return -EINVAL;
3563 	}
3564 
3565 	/* Indirect table select register */
3566 	fhftsl = rd32(IGC_FHFTSL);
3567 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3568 	switch (input->index) {
3569 	case 0 ... 7:
3570 		fhftsl |= 0x00;
3571 		break;
3572 	case 8 ... 15:
3573 		fhftsl |= 0x01;
3574 		break;
3575 	case 16 ... 23:
3576 		fhftsl |= 0x02;
3577 		break;
3578 	case 24 ... 31:
3579 		fhftsl |= 0x03;
3580 		break;
3581 	}
3582 	wr32(IGC_FHFTSL, fhftsl);
3583 
3584 	/* Normalize index down to host table register */
3585 	fhft_index = input->index % 8;
3586 
3587 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3588 		IGC_FHFT_EXT(fhft_index - 4);
3589 
3590 	return 0;
3591 }
3592 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3593 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3594 				    struct igc_flex_filter *input)
3595 {
3596 	struct igc_hw *hw = &adapter->hw;
3597 	u8 *data = input->data;
3598 	u8 *mask = input->mask;
3599 	u32 queuing;
3600 	u32 fhft;
3601 	u32 wufc;
3602 	int ret;
3603 	int i;
3604 
3605 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3606 	 * out early to avoid surprises later.
3607 	 */
3608 	if (input->length % 8 != 0) {
3609 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3610 		return -EINVAL;
3611 	}
3612 
3613 	/* Select corresponding flex filter register and get base for host table. */
3614 	ret = igc_flex_filter_select(adapter, input, &fhft);
3615 	if (ret)
3616 		return ret;
3617 
3618 	/* When adding a filter globally disable flex filter feature. That is
3619 	 * recommended within the datasheet.
3620 	 */
3621 	wufc = rd32(IGC_WUFC);
3622 	wufc &= ~IGC_WUFC_FLEX_HQ;
3623 	wr32(IGC_WUFC, wufc);
3624 
3625 	/* Configure filter */
3626 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3627 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3628 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3629 
3630 	if (input->immediate_irq)
3631 		queuing |= IGC_FHFT_IMM_INT;
3632 
3633 	if (input->drop)
3634 		queuing |= IGC_FHFT_DROP;
3635 
3636 	wr32(fhft + 0xFC, queuing);
3637 
3638 	/* Write data (128 byte) and mask (128 bit) */
3639 	for (i = 0; i < 16; ++i) {
3640 		const size_t data_idx = i * 8;
3641 		const size_t row_idx = i * 16;
3642 		u32 dw0 =
3643 			(data[data_idx + 0] << 0) |
3644 			(data[data_idx + 1] << 8) |
3645 			(data[data_idx + 2] << 16) |
3646 			(data[data_idx + 3] << 24);
3647 		u32 dw1 =
3648 			(data[data_idx + 4] << 0) |
3649 			(data[data_idx + 5] << 8) |
3650 			(data[data_idx + 6] << 16) |
3651 			(data[data_idx + 7] << 24);
3652 		u32 tmp;
3653 
3654 		/* Write row: dw0, dw1 and mask */
3655 		wr32(fhft + row_idx, dw0);
3656 		wr32(fhft + row_idx + 4, dw1);
3657 
3658 		/* mask is only valid for MASK(7, 0) */
3659 		tmp = rd32(fhft + row_idx + 8);
3660 		tmp &= ~GENMASK(7, 0);
3661 		tmp |= mask[i];
3662 		wr32(fhft + row_idx + 8, tmp);
3663 	}
3664 
3665 	/* Enable filter. */
3666 	wufc |= IGC_WUFC_FLEX_HQ;
3667 	if (input->index > 8) {
3668 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3669 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3670 
3671 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3672 
3673 		wr32(IGC_WUFC_EXT, wufc_ext);
3674 	} else {
3675 		wufc |= (IGC_WUFC_FLX0 << input->index);
3676 	}
3677 	wr32(IGC_WUFC, wufc);
3678 
3679 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3680 		   input->index);
3681 
3682 	return 0;
3683 }
3684 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3685 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3686 				      const void *src, unsigned int offset,
3687 				      size_t len, const void *mask)
3688 {
3689 	int i;
3690 
3691 	/* data */
3692 	memcpy(&flex->data[offset], src, len);
3693 
3694 	/* mask */
3695 	for (i = 0; i < len; ++i) {
3696 		const unsigned int idx = i + offset;
3697 		const u8 *ptr = mask;
3698 
3699 		if (mask) {
3700 			if (ptr[i] & 0xff)
3701 				flex->mask[idx / 8] |= BIT(idx % 8);
3702 
3703 			continue;
3704 		}
3705 
3706 		flex->mask[idx / 8] |= BIT(idx % 8);
3707 	}
3708 }
3709 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3710 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3711 {
3712 	struct igc_hw *hw = &adapter->hw;
3713 	u32 wufc, wufc_ext;
3714 	int i;
3715 
3716 	wufc = rd32(IGC_WUFC);
3717 	wufc_ext = rd32(IGC_WUFC_EXT);
3718 
3719 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3720 		if (i < 8) {
3721 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3722 				return i;
3723 		} else {
3724 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3725 				return i;
3726 		}
3727 	}
3728 
3729 	return -ENOSPC;
3730 }
3731 
igc_flex_filter_in_use(struct igc_adapter * adapter)3732 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3733 {
3734 	struct igc_hw *hw = &adapter->hw;
3735 	u32 wufc, wufc_ext;
3736 
3737 	wufc = rd32(IGC_WUFC);
3738 	wufc_ext = rd32(IGC_WUFC_EXT);
3739 
3740 	if (wufc & IGC_WUFC_FILTER_MASK)
3741 		return true;
3742 
3743 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3744 		return true;
3745 
3746 	return false;
3747 }
3748 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3749 static int igc_add_flex_filter(struct igc_adapter *adapter,
3750 			       struct igc_nfc_rule *rule)
3751 {
3752 	struct igc_nfc_filter *filter = &rule->filter;
3753 	unsigned int eth_offset, user_offset;
3754 	struct igc_flex_filter flex = { };
3755 	int ret, index;
3756 	bool vlan;
3757 
3758 	index = igc_find_avail_flex_filter_slot(adapter);
3759 	if (index < 0)
3760 		return -ENOSPC;
3761 
3762 	/* Construct the flex filter:
3763 	 *  -> dest_mac [6]
3764 	 *  -> src_mac [6]
3765 	 *  -> tpid [2]
3766 	 *  -> vlan tci [2]
3767 	 *  -> ether type [2]
3768 	 *  -> user data [8]
3769 	 *  -> = 26 bytes => 32 length
3770 	 */
3771 	flex.index    = index;
3772 	flex.length   = 32;
3773 	flex.rx_queue = rule->action;
3774 
3775 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3776 	eth_offset = vlan ? 16 : 12;
3777 	user_offset = vlan ? 18 : 14;
3778 
3779 	/* Add destination MAC  */
3780 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3781 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3782 					  ETH_ALEN, NULL);
3783 
3784 	/* Add source MAC */
3785 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3786 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3787 					  ETH_ALEN, NULL);
3788 
3789 	/* Add VLAN etype */
3790 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3791 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3792 
3793 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3794 					  sizeof(vlan_etype), NULL);
3795 	}
3796 
3797 	/* Add VLAN TCI */
3798 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3799 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3800 					  sizeof(filter->vlan_tci), NULL);
3801 
3802 	/* Add Ether type */
3803 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3804 		__be16 etype = cpu_to_be16(filter->etype);
3805 
3806 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3807 					  sizeof(etype), NULL);
3808 	}
3809 
3810 	/* Add user data */
3811 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3812 		igc_flex_filter_add_field(&flex, &filter->user_data,
3813 					  user_offset,
3814 					  sizeof(filter->user_data),
3815 					  filter->user_mask);
3816 
3817 	/* Add it down to the hardware and enable it. */
3818 	ret = igc_write_flex_filter_ll(adapter, &flex);
3819 	if (ret)
3820 		return ret;
3821 
3822 	filter->flex_index = index;
3823 
3824 	return 0;
3825 }
3826 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3827 static void igc_del_flex_filter(struct igc_adapter *adapter,
3828 				u16 reg_index)
3829 {
3830 	struct igc_hw *hw = &adapter->hw;
3831 	u32 wufc;
3832 
3833 	/* Just disable the filter. The filter table itself is kept
3834 	 * intact. Another flex_filter_add() should override the "old" data
3835 	 * then.
3836 	 */
3837 	if (reg_index > 8) {
3838 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3839 
3840 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3841 		wr32(IGC_WUFC_EXT, wufc_ext);
3842 	} else {
3843 		wufc = rd32(IGC_WUFC);
3844 
3845 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3846 		wr32(IGC_WUFC, wufc);
3847 	}
3848 
3849 	if (igc_flex_filter_in_use(adapter))
3850 		return;
3851 
3852 	/* No filters are in use, we may disable flex filters */
3853 	wufc = rd32(IGC_WUFC);
3854 	wufc &= ~IGC_WUFC_FLEX_HQ;
3855 	wr32(IGC_WUFC, wufc);
3856 }
3857 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3858 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3859 			       struct igc_nfc_rule *rule)
3860 {
3861 	int err;
3862 
3863 	if (rule->flex) {
3864 		return igc_add_flex_filter(adapter, rule);
3865 	}
3866 
3867 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3868 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3869 					   rule->action);
3870 		if (err)
3871 			return err;
3872 	}
3873 
3874 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3875 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3876 					 rule->filter.src_addr, rule->action);
3877 		if (err)
3878 			return err;
3879 	}
3880 
3881 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3882 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3883 					 rule->filter.dst_addr, rule->action);
3884 		if (err)
3885 			return err;
3886 	}
3887 
3888 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3889 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3890 
3891 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3892 		if (err)
3893 			return err;
3894 	}
3895 
3896 	return 0;
3897 }
3898 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3899 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3900 				 const struct igc_nfc_rule *rule)
3901 {
3902 	if (rule->flex) {
3903 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3904 		return;
3905 	}
3906 
3907 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3908 		igc_del_etype_filter(adapter, rule->filter.etype);
3909 
3910 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3911 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3912 
3913 		igc_del_vlan_prio_filter(adapter, prio);
3914 	}
3915 
3916 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3917 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3918 				   rule->filter.src_addr);
3919 
3920 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3921 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3922 				   rule->filter.dst_addr);
3923 }
3924 
3925 /**
3926  * igc_get_nfc_rule() - Get NFC rule
3927  * @adapter: Pointer to adapter
3928  * @location: Rule location
3929  *
3930  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3931  *
3932  * Return: Pointer to NFC rule at @location. If not found, NULL.
3933  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3934 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3935 				      u32 location)
3936 {
3937 	struct igc_nfc_rule *rule;
3938 
3939 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3940 		if (rule->location == location)
3941 			return rule;
3942 		if (rule->location > location)
3943 			break;
3944 	}
3945 
3946 	return NULL;
3947 }
3948 
3949 /**
3950  * igc_del_nfc_rule() - Delete NFC rule
3951  * @adapter: Pointer to adapter
3952  * @rule: Pointer to rule to be deleted
3953  *
3954  * Disable NFC rule in hardware and delete it from adapter.
3955  *
3956  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3957  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3958 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3959 {
3960 	igc_disable_nfc_rule(adapter, rule);
3961 
3962 	list_del(&rule->list);
3963 	adapter->nfc_rule_count--;
3964 
3965 	kfree(rule);
3966 }
3967 
igc_flush_nfc_rules(struct igc_adapter * adapter)3968 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3969 {
3970 	struct igc_nfc_rule *rule, *tmp;
3971 
3972 	mutex_lock(&adapter->nfc_rule_lock);
3973 
3974 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3975 		igc_del_nfc_rule(adapter, rule);
3976 
3977 	mutex_unlock(&adapter->nfc_rule_lock);
3978 }
3979 
3980 /**
3981  * igc_add_nfc_rule() - Add NFC rule
3982  * @adapter: Pointer to adapter
3983  * @rule: Pointer to rule to be added
3984  *
3985  * Enable NFC rule in hardware and add it to adapter.
3986  *
3987  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3988  *
3989  * Return: 0 on success, negative errno on failure.
3990  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3991 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3992 {
3993 	struct igc_nfc_rule *pred, *cur;
3994 	int err;
3995 
3996 	err = igc_enable_nfc_rule(adapter, rule);
3997 	if (err)
3998 		return err;
3999 
4000 	pred = NULL;
4001 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4002 		if (cur->location >= rule->location)
4003 			break;
4004 		pred = cur;
4005 	}
4006 
4007 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4008 	adapter->nfc_rule_count++;
4009 	return 0;
4010 }
4011 
igc_restore_nfc_rules(struct igc_adapter * adapter)4012 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4013 {
4014 	struct igc_nfc_rule *rule;
4015 
4016 	mutex_lock(&adapter->nfc_rule_lock);
4017 
4018 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4019 		igc_enable_nfc_rule(adapter, rule);
4020 
4021 	mutex_unlock(&adapter->nfc_rule_lock);
4022 }
4023 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4024 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4025 {
4026 	struct igc_adapter *adapter = netdev_priv(netdev);
4027 
4028 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4029 }
4030 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4031 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4032 {
4033 	struct igc_adapter *adapter = netdev_priv(netdev);
4034 
4035 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4036 	return 0;
4037 }
4038 
4039 /**
4040  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4041  * @netdev: network interface device structure
4042  *
4043  * The set_rx_mode entry point is called whenever the unicast or multicast
4044  * address lists or the network interface flags are updated.  This routine is
4045  * responsible for configuring the hardware for proper unicast, multicast,
4046  * promiscuous mode, and all-multi behavior.
4047  */
igc_set_rx_mode(struct net_device * netdev)4048 static void igc_set_rx_mode(struct net_device *netdev)
4049 {
4050 	struct igc_adapter *adapter = netdev_priv(netdev);
4051 	struct igc_hw *hw = &adapter->hw;
4052 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4053 	int count;
4054 
4055 	/* Check for Promiscuous and All Multicast modes */
4056 	if (netdev->flags & IFF_PROMISC) {
4057 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4058 	} else {
4059 		if (netdev->flags & IFF_ALLMULTI) {
4060 			rctl |= IGC_RCTL_MPE;
4061 		} else {
4062 			/* Write addresses to the MTA, if the attempt fails
4063 			 * then we should just turn on promiscuous mode so
4064 			 * that we can at least receive multicast traffic
4065 			 */
4066 			count = igc_write_mc_addr_list(netdev);
4067 			if (count < 0)
4068 				rctl |= IGC_RCTL_MPE;
4069 		}
4070 	}
4071 
4072 	/* Write addresses to available RAR registers, if there is not
4073 	 * sufficient space to store all the addresses then enable
4074 	 * unicast promiscuous mode
4075 	 */
4076 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4077 		rctl |= IGC_RCTL_UPE;
4078 
4079 	/* update state of unicast and multicast */
4080 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4081 	wr32(IGC_RCTL, rctl);
4082 
4083 #if (PAGE_SIZE < 8192)
4084 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4085 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4086 #endif
4087 	wr32(IGC_RLPML, rlpml);
4088 }
4089 
4090 /**
4091  * igc_configure - configure the hardware for RX and TX
4092  * @adapter: private board structure
4093  */
igc_configure(struct igc_adapter * adapter)4094 static void igc_configure(struct igc_adapter *adapter)
4095 {
4096 	struct net_device *netdev = adapter->netdev;
4097 	int i = 0;
4098 
4099 	igc_get_hw_control(adapter);
4100 	igc_set_rx_mode(netdev);
4101 
4102 	igc_restore_vlan(adapter);
4103 
4104 	igc_setup_tctl(adapter);
4105 	igc_setup_mrqc(adapter);
4106 	igc_setup_rctl(adapter);
4107 
4108 	igc_set_default_mac_filter(adapter);
4109 	igc_restore_nfc_rules(adapter);
4110 
4111 	igc_configure_tx(adapter);
4112 	igc_configure_rx(adapter);
4113 
4114 	igc_rx_fifo_flush_base(&adapter->hw);
4115 
4116 	/* call igc_desc_unused which always leaves
4117 	 * at least 1 descriptor unused to make sure
4118 	 * next_to_use != next_to_clean
4119 	 */
4120 	for (i = 0; i < adapter->num_rx_queues; i++) {
4121 		struct igc_ring *ring = adapter->rx_ring[i];
4122 
4123 		if (ring->xsk_pool)
4124 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4125 		else
4126 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4127 	}
4128 }
4129 
4130 /**
4131  * igc_write_ivar - configure ivar for given MSI-X vector
4132  * @hw: pointer to the HW structure
4133  * @msix_vector: vector number we are allocating to a given ring
4134  * @index: row index of IVAR register to write within IVAR table
4135  * @offset: column offset of in IVAR, should be multiple of 8
4136  *
4137  * The IVAR table consists of 2 columns,
4138  * each containing an cause allocation for an Rx and Tx ring, and a
4139  * variable number of rows depending on the number of queues supported.
4140  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4141 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4142 			   int index, int offset)
4143 {
4144 	u32 ivar = array_rd32(IGC_IVAR0, index);
4145 
4146 	/* clear any bits that are currently set */
4147 	ivar &= ~((u32)0xFF << offset);
4148 
4149 	/* write vector and valid bit */
4150 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4151 
4152 	array_wr32(IGC_IVAR0, index, ivar);
4153 }
4154 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4155 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4156 {
4157 	struct igc_adapter *adapter = q_vector->adapter;
4158 	struct igc_hw *hw = &adapter->hw;
4159 	int rx_queue = IGC_N0_QUEUE;
4160 	int tx_queue = IGC_N0_QUEUE;
4161 
4162 	if (q_vector->rx.ring)
4163 		rx_queue = q_vector->rx.ring->reg_idx;
4164 	if (q_vector->tx.ring)
4165 		tx_queue = q_vector->tx.ring->reg_idx;
4166 
4167 	switch (hw->mac.type) {
4168 	case igc_i225:
4169 		if (rx_queue > IGC_N0_QUEUE)
4170 			igc_write_ivar(hw, msix_vector,
4171 				       rx_queue >> 1,
4172 				       (rx_queue & 0x1) << 4);
4173 		if (tx_queue > IGC_N0_QUEUE)
4174 			igc_write_ivar(hw, msix_vector,
4175 				       tx_queue >> 1,
4176 				       ((tx_queue & 0x1) << 4) + 8);
4177 		q_vector->eims_value = BIT(msix_vector);
4178 		break;
4179 	default:
4180 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4181 		break;
4182 	}
4183 
4184 	/* add q_vector eims value to global eims_enable_mask */
4185 	adapter->eims_enable_mask |= q_vector->eims_value;
4186 
4187 	/* configure q_vector to set itr on first interrupt */
4188 	q_vector->set_itr = 1;
4189 }
4190 
4191 /**
4192  * igc_configure_msix - Configure MSI-X hardware
4193  * @adapter: Pointer to adapter structure
4194  *
4195  * igc_configure_msix sets up the hardware to properly
4196  * generate MSI-X interrupts.
4197  */
igc_configure_msix(struct igc_adapter * adapter)4198 static void igc_configure_msix(struct igc_adapter *adapter)
4199 {
4200 	struct igc_hw *hw = &adapter->hw;
4201 	int i, vector = 0;
4202 	u32 tmp;
4203 
4204 	adapter->eims_enable_mask = 0;
4205 
4206 	/* set vector for other causes, i.e. link changes */
4207 	switch (hw->mac.type) {
4208 	case igc_i225:
4209 		/* Turn on MSI-X capability first, or our settings
4210 		 * won't stick.  And it will take days to debug.
4211 		 */
4212 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4213 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4214 		     IGC_GPIE_NSICR);
4215 
4216 		/* enable msix_other interrupt */
4217 		adapter->eims_other = BIT(vector);
4218 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4219 
4220 		wr32(IGC_IVAR_MISC, tmp);
4221 		break;
4222 	default:
4223 		/* do nothing, since nothing else supports MSI-X */
4224 		break;
4225 	} /* switch (hw->mac.type) */
4226 
4227 	adapter->eims_enable_mask |= adapter->eims_other;
4228 
4229 	for (i = 0; i < adapter->num_q_vectors; i++)
4230 		igc_assign_vector(adapter->q_vector[i], vector++);
4231 
4232 	wrfl();
4233 }
4234 
4235 /**
4236  * igc_irq_enable - Enable default interrupt generation settings
4237  * @adapter: board private structure
4238  */
igc_irq_enable(struct igc_adapter * adapter)4239 static void igc_irq_enable(struct igc_adapter *adapter)
4240 {
4241 	struct igc_hw *hw = &adapter->hw;
4242 
4243 	if (adapter->msix_entries) {
4244 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4245 		u32 regval = rd32(IGC_EIAC);
4246 
4247 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4248 		regval = rd32(IGC_EIAM);
4249 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4250 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4251 		wr32(IGC_IMS, ims);
4252 	} else {
4253 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4254 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4255 	}
4256 }
4257 
4258 /**
4259  * igc_irq_disable - Mask off interrupt generation on the NIC
4260  * @adapter: board private structure
4261  */
igc_irq_disable(struct igc_adapter * adapter)4262 static void igc_irq_disable(struct igc_adapter *adapter)
4263 {
4264 	struct igc_hw *hw = &adapter->hw;
4265 
4266 	if (adapter->msix_entries) {
4267 		u32 regval = rd32(IGC_EIAM);
4268 
4269 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4270 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4271 		regval = rd32(IGC_EIAC);
4272 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4273 	}
4274 
4275 	wr32(IGC_IAM, 0);
4276 	wr32(IGC_IMC, ~0);
4277 	wrfl();
4278 
4279 	if (adapter->msix_entries) {
4280 		int vector = 0, i;
4281 
4282 		synchronize_irq(adapter->msix_entries[vector++].vector);
4283 
4284 		for (i = 0; i < adapter->num_q_vectors; i++)
4285 			synchronize_irq(adapter->msix_entries[vector++].vector);
4286 	} else {
4287 		synchronize_irq(adapter->pdev->irq);
4288 	}
4289 }
4290 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4291 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4292 			      const u32 max_rss_queues)
4293 {
4294 	/* Determine if we need to pair queues. */
4295 	/* If rss_queues > half of max_rss_queues, pair the queues in
4296 	 * order to conserve interrupts due to limited supply.
4297 	 */
4298 	if (adapter->rss_queues > (max_rss_queues / 2))
4299 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4300 	else
4301 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4302 }
4303 
igc_get_max_rss_queues(struct igc_adapter * adapter)4304 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4305 {
4306 	return IGC_MAX_RX_QUEUES;
4307 }
4308 
igc_init_queue_configuration(struct igc_adapter * adapter)4309 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4310 {
4311 	u32 max_rss_queues;
4312 
4313 	max_rss_queues = igc_get_max_rss_queues(adapter);
4314 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4315 
4316 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4317 }
4318 
4319 /**
4320  * igc_reset_q_vector - Reset config for interrupt vector
4321  * @adapter: board private structure to initialize
4322  * @v_idx: Index of vector to be reset
4323  *
4324  * If NAPI is enabled it will delete any references to the
4325  * NAPI struct. This is preparation for igc_free_q_vector.
4326  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4327 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4328 {
4329 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4330 
4331 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4332 	 * not yet allocated
4333 	 */
4334 	if (!q_vector)
4335 		return;
4336 
4337 	if (q_vector->tx.ring)
4338 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4339 
4340 	if (q_vector->rx.ring)
4341 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4342 
4343 	netif_napi_del(&q_vector->napi);
4344 }
4345 
4346 /**
4347  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4348  * @adapter: board private structure to initialize
4349  * @v_idx: Index of vector to be freed
4350  *
4351  * This function frees the memory allocated to the q_vector.
4352  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4353 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4354 {
4355 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4356 
4357 	adapter->q_vector[v_idx] = NULL;
4358 
4359 	/* igc_get_stats64() might access the rings on this vector,
4360 	 * we must wait a grace period before freeing it.
4361 	 */
4362 	if (q_vector)
4363 		kfree_rcu(q_vector, rcu);
4364 }
4365 
4366 /**
4367  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4368  * @adapter: board private structure to initialize
4369  *
4370  * This function frees the memory allocated to the q_vectors.  In addition if
4371  * NAPI is enabled it will delete any references to the NAPI struct prior
4372  * to freeing the q_vector.
4373  */
igc_free_q_vectors(struct igc_adapter * adapter)4374 static void igc_free_q_vectors(struct igc_adapter *adapter)
4375 {
4376 	int v_idx = adapter->num_q_vectors;
4377 
4378 	adapter->num_tx_queues = 0;
4379 	adapter->num_rx_queues = 0;
4380 	adapter->num_q_vectors = 0;
4381 
4382 	while (v_idx--) {
4383 		igc_reset_q_vector(adapter, v_idx);
4384 		igc_free_q_vector(adapter, v_idx);
4385 	}
4386 }
4387 
4388 /**
4389  * igc_update_itr - update the dynamic ITR value based on statistics
4390  * @q_vector: pointer to q_vector
4391  * @ring_container: ring info to update the itr for
4392  *
4393  * Stores a new ITR value based on packets and byte
4394  * counts during the last interrupt.  The advantage of per interrupt
4395  * computation is faster updates and more accurate ITR for the current
4396  * traffic pattern.  Constants in this function were computed
4397  * based on theoretical maximum wire speed and thresholds were set based
4398  * on testing data as well as attempting to minimize response time
4399  * while increasing bulk throughput.
4400  * NOTE: These calculations are only valid when operating in a single-
4401  * queue environment.
4402  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4403 static void igc_update_itr(struct igc_q_vector *q_vector,
4404 			   struct igc_ring_container *ring_container)
4405 {
4406 	unsigned int packets = ring_container->total_packets;
4407 	unsigned int bytes = ring_container->total_bytes;
4408 	u8 itrval = ring_container->itr;
4409 
4410 	/* no packets, exit with status unchanged */
4411 	if (packets == 0)
4412 		return;
4413 
4414 	switch (itrval) {
4415 	case lowest_latency:
4416 		/* handle TSO and jumbo frames */
4417 		if (bytes / packets > 8000)
4418 			itrval = bulk_latency;
4419 		else if ((packets < 5) && (bytes > 512))
4420 			itrval = low_latency;
4421 		break;
4422 	case low_latency:  /* 50 usec aka 20000 ints/s */
4423 		if (bytes > 10000) {
4424 			/* this if handles the TSO accounting */
4425 			if (bytes / packets > 8000)
4426 				itrval = bulk_latency;
4427 			else if ((packets < 10) || ((bytes / packets) > 1200))
4428 				itrval = bulk_latency;
4429 			else if ((packets > 35))
4430 				itrval = lowest_latency;
4431 		} else if (bytes / packets > 2000) {
4432 			itrval = bulk_latency;
4433 		} else if (packets <= 2 && bytes < 512) {
4434 			itrval = lowest_latency;
4435 		}
4436 		break;
4437 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4438 		if (bytes > 25000) {
4439 			if (packets > 35)
4440 				itrval = low_latency;
4441 		} else if (bytes < 1500) {
4442 			itrval = low_latency;
4443 		}
4444 		break;
4445 	}
4446 
4447 	/* clear work counters since we have the values we need */
4448 	ring_container->total_bytes = 0;
4449 	ring_container->total_packets = 0;
4450 
4451 	/* write updated itr to ring container */
4452 	ring_container->itr = itrval;
4453 }
4454 
igc_set_itr(struct igc_q_vector * q_vector)4455 static void igc_set_itr(struct igc_q_vector *q_vector)
4456 {
4457 	struct igc_adapter *adapter = q_vector->adapter;
4458 	u32 new_itr = q_vector->itr_val;
4459 	u8 current_itr = 0;
4460 
4461 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4462 	switch (adapter->link_speed) {
4463 	case SPEED_10:
4464 	case SPEED_100:
4465 		current_itr = 0;
4466 		new_itr = IGC_4K_ITR;
4467 		goto set_itr_now;
4468 	default:
4469 		break;
4470 	}
4471 
4472 	igc_update_itr(q_vector, &q_vector->tx);
4473 	igc_update_itr(q_vector, &q_vector->rx);
4474 
4475 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4476 
4477 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4478 	if (current_itr == lowest_latency &&
4479 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4480 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4481 		current_itr = low_latency;
4482 
4483 	switch (current_itr) {
4484 	/* counts and packets in update_itr are dependent on these numbers */
4485 	case lowest_latency:
4486 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4487 		break;
4488 	case low_latency:
4489 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4490 		break;
4491 	case bulk_latency:
4492 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4493 		break;
4494 	default:
4495 		break;
4496 	}
4497 
4498 set_itr_now:
4499 	if (new_itr != q_vector->itr_val) {
4500 		/* this attempts to bias the interrupt rate towards Bulk
4501 		 * by adding intermediate steps when interrupt rate is
4502 		 * increasing
4503 		 */
4504 		new_itr = new_itr > q_vector->itr_val ?
4505 			  max((new_itr * q_vector->itr_val) /
4506 			  (new_itr + (q_vector->itr_val >> 2)),
4507 			  new_itr) : new_itr;
4508 		/* Don't write the value here; it resets the adapter's
4509 		 * internal timer, and causes us to delay far longer than
4510 		 * we should between interrupts.  Instead, we write the ITR
4511 		 * value at the beginning of the next interrupt so the timing
4512 		 * ends up being correct.
4513 		 */
4514 		q_vector->itr_val = new_itr;
4515 		q_vector->set_itr = 1;
4516 	}
4517 }
4518 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4519 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4520 {
4521 	int v_idx = adapter->num_q_vectors;
4522 
4523 	if (adapter->msix_entries) {
4524 		pci_disable_msix(adapter->pdev);
4525 		kfree(adapter->msix_entries);
4526 		adapter->msix_entries = NULL;
4527 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4528 		pci_disable_msi(adapter->pdev);
4529 	}
4530 
4531 	while (v_idx--)
4532 		igc_reset_q_vector(adapter, v_idx);
4533 }
4534 
4535 /**
4536  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4537  * @adapter: Pointer to adapter structure
4538  * @msix: boolean value for MSI-X capability
4539  *
4540  * Attempt to configure interrupts using the best available
4541  * capabilities of the hardware and kernel.
4542  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4543 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4544 					 bool msix)
4545 {
4546 	int numvecs, i;
4547 	int err;
4548 
4549 	if (!msix)
4550 		goto msi_only;
4551 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4552 
4553 	/* Number of supported queues. */
4554 	adapter->num_rx_queues = adapter->rss_queues;
4555 
4556 	adapter->num_tx_queues = adapter->rss_queues;
4557 
4558 	/* start with one vector for every Rx queue */
4559 	numvecs = adapter->num_rx_queues;
4560 
4561 	/* if Tx handler is separate add 1 for every Tx queue */
4562 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4563 		numvecs += adapter->num_tx_queues;
4564 
4565 	/* store the number of vectors reserved for queues */
4566 	adapter->num_q_vectors = numvecs;
4567 
4568 	/* add 1 vector for link status interrupts */
4569 	numvecs++;
4570 
4571 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4572 					GFP_KERNEL);
4573 
4574 	if (!adapter->msix_entries)
4575 		return;
4576 
4577 	/* populate entry values */
4578 	for (i = 0; i < numvecs; i++)
4579 		adapter->msix_entries[i].entry = i;
4580 
4581 	err = pci_enable_msix_range(adapter->pdev,
4582 				    adapter->msix_entries,
4583 				    numvecs,
4584 				    numvecs);
4585 	if (err > 0)
4586 		return;
4587 
4588 	kfree(adapter->msix_entries);
4589 	adapter->msix_entries = NULL;
4590 
4591 	igc_reset_interrupt_capability(adapter);
4592 
4593 msi_only:
4594 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4595 
4596 	adapter->rss_queues = 1;
4597 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4598 	adapter->num_rx_queues = 1;
4599 	adapter->num_tx_queues = 1;
4600 	adapter->num_q_vectors = 1;
4601 	if (!pci_enable_msi(adapter->pdev))
4602 		adapter->flags |= IGC_FLAG_HAS_MSI;
4603 }
4604 
4605 /**
4606  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4607  * @q_vector: pointer to q_vector
4608  *
4609  * Stores a new ITR value based on strictly on packet size.  This
4610  * algorithm is less sophisticated than that used in igc_update_itr,
4611  * due to the difficulty of synchronizing statistics across multiple
4612  * receive rings.  The divisors and thresholds used by this function
4613  * were determined based on theoretical maximum wire speed and testing
4614  * data, in order to minimize response time while increasing bulk
4615  * throughput.
4616  * NOTE: This function is called only when operating in a multiqueue
4617  * receive environment.
4618  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4619 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4620 {
4621 	struct igc_adapter *adapter = q_vector->adapter;
4622 	int new_val = q_vector->itr_val;
4623 	int avg_wire_size = 0;
4624 	unsigned int packets;
4625 
4626 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4627 	 * ints/sec - ITR timer value of 120 ticks.
4628 	 */
4629 	switch (adapter->link_speed) {
4630 	case SPEED_10:
4631 	case SPEED_100:
4632 		new_val = IGC_4K_ITR;
4633 		goto set_itr_val;
4634 	default:
4635 		break;
4636 	}
4637 
4638 	packets = q_vector->rx.total_packets;
4639 	if (packets)
4640 		avg_wire_size = q_vector->rx.total_bytes / packets;
4641 
4642 	packets = q_vector->tx.total_packets;
4643 	if (packets)
4644 		avg_wire_size = max_t(u32, avg_wire_size,
4645 				      q_vector->tx.total_bytes / packets);
4646 
4647 	/* if avg_wire_size isn't set no work was done */
4648 	if (!avg_wire_size)
4649 		goto clear_counts;
4650 
4651 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4652 	avg_wire_size += 24;
4653 
4654 	/* Don't starve jumbo frames */
4655 	avg_wire_size = min(avg_wire_size, 3000);
4656 
4657 	/* Give a little boost to mid-size frames */
4658 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4659 		new_val = avg_wire_size / 3;
4660 	else
4661 		new_val = avg_wire_size / 2;
4662 
4663 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4664 	if (new_val < IGC_20K_ITR &&
4665 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4666 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4667 		new_val = IGC_20K_ITR;
4668 
4669 set_itr_val:
4670 	if (new_val != q_vector->itr_val) {
4671 		q_vector->itr_val = new_val;
4672 		q_vector->set_itr = 1;
4673 	}
4674 clear_counts:
4675 	q_vector->rx.total_bytes = 0;
4676 	q_vector->rx.total_packets = 0;
4677 	q_vector->tx.total_bytes = 0;
4678 	q_vector->tx.total_packets = 0;
4679 }
4680 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4681 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4682 {
4683 	struct igc_adapter *adapter = q_vector->adapter;
4684 	struct igc_hw *hw = &adapter->hw;
4685 
4686 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4687 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4688 		if (adapter->num_q_vectors == 1)
4689 			igc_set_itr(q_vector);
4690 		else
4691 			igc_update_ring_itr(q_vector);
4692 	}
4693 
4694 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4695 		if (adapter->msix_entries)
4696 			wr32(IGC_EIMS, q_vector->eims_value);
4697 		else
4698 			igc_irq_enable(adapter);
4699 	}
4700 }
4701 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4702 static void igc_add_ring(struct igc_ring *ring,
4703 			 struct igc_ring_container *head)
4704 {
4705 	head->ring = ring;
4706 	head->count++;
4707 }
4708 
4709 /**
4710  * igc_cache_ring_register - Descriptor ring to register mapping
4711  * @adapter: board private structure to initialize
4712  *
4713  * Once we know the feature-set enabled for the device, we'll cache
4714  * the register offset the descriptor ring is assigned to.
4715  */
igc_cache_ring_register(struct igc_adapter * adapter)4716 static void igc_cache_ring_register(struct igc_adapter *adapter)
4717 {
4718 	int i = 0, j = 0;
4719 
4720 	switch (adapter->hw.mac.type) {
4721 	case igc_i225:
4722 	default:
4723 		for (; i < adapter->num_rx_queues; i++)
4724 			adapter->rx_ring[i]->reg_idx = i;
4725 		for (; j < adapter->num_tx_queues; j++)
4726 			adapter->tx_ring[j]->reg_idx = j;
4727 		break;
4728 	}
4729 }
4730 
4731 /**
4732  * igc_poll - NAPI Rx polling callback
4733  * @napi: napi polling structure
4734  * @budget: count of how many packets we should handle
4735  */
igc_poll(struct napi_struct * napi,int budget)4736 static int igc_poll(struct napi_struct *napi, int budget)
4737 {
4738 	struct igc_q_vector *q_vector = container_of(napi,
4739 						     struct igc_q_vector,
4740 						     napi);
4741 	struct igc_ring *rx_ring = q_vector->rx.ring;
4742 	bool clean_complete = true;
4743 	int work_done = 0;
4744 
4745 	if (q_vector->tx.ring)
4746 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4747 
4748 	if (rx_ring) {
4749 		int cleaned = rx_ring->xsk_pool ?
4750 			      igc_clean_rx_irq_zc(q_vector, budget) :
4751 			      igc_clean_rx_irq(q_vector, budget);
4752 
4753 		work_done += cleaned;
4754 		if (cleaned >= budget)
4755 			clean_complete = false;
4756 	}
4757 
4758 	/* If all work not completed, return budget and keep polling */
4759 	if (!clean_complete)
4760 		return budget;
4761 
4762 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4763 	 * poll us due to busy-polling
4764 	 */
4765 	if (likely(napi_complete_done(napi, work_done)))
4766 		igc_ring_irq_enable(q_vector);
4767 
4768 	return min(work_done, budget - 1);
4769 }
4770 
4771 /**
4772  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4773  * @adapter: board private structure to initialize
4774  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4775  * @v_idx: index of vector in adapter struct
4776  * @txr_count: total number of Tx rings to allocate
4777  * @txr_idx: index of first Tx ring to allocate
4778  * @rxr_count: total number of Rx rings to allocate
4779  * @rxr_idx: index of first Rx ring to allocate
4780  *
4781  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4782  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4783 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4784 			      unsigned int v_count, unsigned int v_idx,
4785 			      unsigned int txr_count, unsigned int txr_idx,
4786 			      unsigned int rxr_count, unsigned int rxr_idx)
4787 {
4788 	struct igc_q_vector *q_vector;
4789 	struct igc_ring *ring;
4790 	int ring_count;
4791 
4792 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4793 	if (txr_count > 1 || rxr_count > 1)
4794 		return -ENOMEM;
4795 
4796 	ring_count = txr_count + rxr_count;
4797 
4798 	/* allocate q_vector and rings */
4799 	q_vector = adapter->q_vector[v_idx];
4800 	if (!q_vector)
4801 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4802 				   GFP_KERNEL);
4803 	else
4804 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4805 	if (!q_vector)
4806 		return -ENOMEM;
4807 
4808 	/* initialize NAPI */
4809 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4810 
4811 	/* tie q_vector and adapter together */
4812 	adapter->q_vector[v_idx] = q_vector;
4813 	q_vector->adapter = adapter;
4814 
4815 	/* initialize work limits */
4816 	q_vector->tx.work_limit = adapter->tx_work_limit;
4817 
4818 	/* initialize ITR configuration */
4819 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4820 	q_vector->itr_val = IGC_START_ITR;
4821 
4822 	/* initialize pointer to rings */
4823 	ring = q_vector->ring;
4824 
4825 	/* initialize ITR */
4826 	if (rxr_count) {
4827 		/* rx or rx/tx vector */
4828 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4829 			q_vector->itr_val = adapter->rx_itr_setting;
4830 	} else {
4831 		/* tx only vector */
4832 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4833 			q_vector->itr_val = adapter->tx_itr_setting;
4834 	}
4835 
4836 	if (txr_count) {
4837 		/* assign generic ring traits */
4838 		ring->dev = &adapter->pdev->dev;
4839 		ring->netdev = adapter->netdev;
4840 
4841 		/* configure backlink on ring */
4842 		ring->q_vector = q_vector;
4843 
4844 		/* update q_vector Tx values */
4845 		igc_add_ring(ring, &q_vector->tx);
4846 
4847 		/* apply Tx specific ring traits */
4848 		ring->count = adapter->tx_ring_count;
4849 		ring->queue_index = txr_idx;
4850 
4851 		/* assign ring to adapter */
4852 		adapter->tx_ring[txr_idx] = ring;
4853 
4854 		/* push pointer to next ring */
4855 		ring++;
4856 	}
4857 
4858 	if (rxr_count) {
4859 		/* assign generic ring traits */
4860 		ring->dev = &adapter->pdev->dev;
4861 		ring->netdev = adapter->netdev;
4862 
4863 		/* configure backlink on ring */
4864 		ring->q_vector = q_vector;
4865 
4866 		/* update q_vector Rx values */
4867 		igc_add_ring(ring, &q_vector->rx);
4868 
4869 		/* apply Rx specific ring traits */
4870 		ring->count = adapter->rx_ring_count;
4871 		ring->queue_index = rxr_idx;
4872 
4873 		/* assign ring to adapter */
4874 		adapter->rx_ring[rxr_idx] = ring;
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 /**
4881  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4882  * @adapter: board private structure to initialize
4883  *
4884  * We allocate one q_vector per queue interrupt.  If allocation fails we
4885  * return -ENOMEM.
4886  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4887 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4888 {
4889 	int rxr_remaining = adapter->num_rx_queues;
4890 	int txr_remaining = adapter->num_tx_queues;
4891 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4892 	int q_vectors = adapter->num_q_vectors;
4893 	int err;
4894 
4895 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4896 		for (; rxr_remaining; v_idx++) {
4897 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4898 						 0, 0, 1, rxr_idx);
4899 
4900 			if (err)
4901 				goto err_out;
4902 
4903 			/* update counts and index */
4904 			rxr_remaining--;
4905 			rxr_idx++;
4906 		}
4907 	}
4908 
4909 	for (; v_idx < q_vectors; v_idx++) {
4910 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4911 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4912 
4913 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4914 					 tqpv, txr_idx, rqpv, rxr_idx);
4915 
4916 		if (err)
4917 			goto err_out;
4918 
4919 		/* update counts and index */
4920 		rxr_remaining -= rqpv;
4921 		txr_remaining -= tqpv;
4922 		rxr_idx++;
4923 		txr_idx++;
4924 	}
4925 
4926 	return 0;
4927 
4928 err_out:
4929 	adapter->num_tx_queues = 0;
4930 	adapter->num_rx_queues = 0;
4931 	adapter->num_q_vectors = 0;
4932 
4933 	while (v_idx--)
4934 		igc_free_q_vector(adapter, v_idx);
4935 
4936 	return -ENOMEM;
4937 }
4938 
4939 /**
4940  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4941  * @adapter: Pointer to adapter structure
4942  * @msix: boolean for MSI-X capability
4943  *
4944  * This function initializes the interrupts and allocates all of the queues.
4945  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4946 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4947 {
4948 	struct net_device *dev = adapter->netdev;
4949 	int err = 0;
4950 
4951 	igc_set_interrupt_capability(adapter, msix);
4952 
4953 	err = igc_alloc_q_vectors(adapter);
4954 	if (err) {
4955 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4956 		goto err_alloc_q_vectors;
4957 	}
4958 
4959 	igc_cache_ring_register(adapter);
4960 
4961 	return 0;
4962 
4963 err_alloc_q_vectors:
4964 	igc_reset_interrupt_capability(adapter);
4965 	return err;
4966 }
4967 
4968 /**
4969  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4970  * @adapter: board private structure to initialize
4971  *
4972  * igc_sw_init initializes the Adapter private data structure.
4973  * Fields are initialized based on PCI device information and
4974  * OS network device settings (MTU size).
4975  */
igc_sw_init(struct igc_adapter * adapter)4976 static int igc_sw_init(struct igc_adapter *adapter)
4977 {
4978 	struct net_device *netdev = adapter->netdev;
4979 	struct pci_dev *pdev = adapter->pdev;
4980 	struct igc_hw *hw = &adapter->hw;
4981 
4982 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4983 
4984 	/* set default ring sizes */
4985 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4986 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4987 
4988 	/* set default ITR values */
4989 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4990 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4991 
4992 	/* set default work limits */
4993 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4994 
4995 	/* adjust max frame to be at least the size of a standard frame */
4996 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4997 				VLAN_HLEN;
4998 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4999 
5000 	mutex_init(&adapter->nfc_rule_lock);
5001 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
5002 	adapter->nfc_rule_count = 0;
5003 
5004 	spin_lock_init(&adapter->stats64_lock);
5005 	spin_lock_init(&adapter->qbv_tx_lock);
5006 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
5007 	adapter->flags |= IGC_FLAG_HAS_MSIX;
5008 
5009 	igc_init_queue_configuration(adapter);
5010 
5011 	/* This call may decrease the number of queues */
5012 	if (igc_init_interrupt_scheme(adapter, true)) {
5013 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5014 		return -ENOMEM;
5015 	}
5016 
5017 	/* Explicitly disable IRQ since the NIC can be in any state. */
5018 	igc_irq_disable(adapter);
5019 
5020 	set_bit(__IGC_DOWN, &adapter->state);
5021 
5022 	return 0;
5023 }
5024 
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5025 void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5026 			struct napi_struct *napi)
5027 {
5028 	struct igc_q_vector *q_vector = adapter->q_vector[vector];
5029 
5030 	if (q_vector->rx.ring)
5031 		netif_queue_set_napi(adapter->netdev,
5032 				     q_vector->rx.ring->queue_index,
5033 				     NETDEV_QUEUE_TYPE_RX, napi);
5034 
5035 	if (q_vector->tx.ring)
5036 		netif_queue_set_napi(adapter->netdev,
5037 				     q_vector->tx.ring->queue_index,
5038 				     NETDEV_QUEUE_TYPE_TX, napi);
5039 }
5040 
5041 /**
5042  * igc_up - Open the interface and prepare it to handle traffic
5043  * @adapter: board private structure
5044  */
igc_up(struct igc_adapter * adapter)5045 void igc_up(struct igc_adapter *adapter)
5046 {
5047 	struct igc_hw *hw = &adapter->hw;
5048 	struct napi_struct *napi;
5049 	int i = 0;
5050 
5051 	/* hardware has been reset, we need to reload some things */
5052 	igc_configure(adapter);
5053 
5054 	clear_bit(__IGC_DOWN, &adapter->state);
5055 
5056 	for (i = 0; i < adapter->num_q_vectors; i++) {
5057 		napi = &adapter->q_vector[i]->napi;
5058 		napi_enable(napi);
5059 		igc_set_queue_napi(adapter, i, napi);
5060 	}
5061 
5062 	if (adapter->msix_entries)
5063 		igc_configure_msix(adapter);
5064 	else
5065 		igc_assign_vector(adapter->q_vector[0], 0);
5066 
5067 	/* Clear any pending interrupts. */
5068 	rd32(IGC_ICR);
5069 	igc_irq_enable(adapter);
5070 
5071 	netif_tx_start_all_queues(adapter->netdev);
5072 
5073 	/* start the watchdog. */
5074 	hw->mac.get_link_status = true;
5075 	schedule_work(&adapter->watchdog_task);
5076 }
5077 
5078 /**
5079  * igc_update_stats - Update the board statistics counters
5080  * @adapter: board private structure
5081  */
igc_update_stats(struct igc_adapter * adapter)5082 void igc_update_stats(struct igc_adapter *adapter)
5083 {
5084 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5085 	struct pci_dev *pdev = adapter->pdev;
5086 	struct igc_hw *hw = &adapter->hw;
5087 	u64 _bytes, _packets;
5088 	u64 bytes, packets;
5089 	unsigned int start;
5090 	u32 mpc;
5091 	int i;
5092 
5093 	/* Prevent stats update while adapter is being reset, or if the pci
5094 	 * connection is down.
5095 	 */
5096 	if (adapter->link_speed == 0)
5097 		return;
5098 	if (pci_channel_offline(pdev))
5099 		return;
5100 
5101 	packets = 0;
5102 	bytes = 0;
5103 
5104 	rcu_read_lock();
5105 	for (i = 0; i < adapter->num_rx_queues; i++) {
5106 		struct igc_ring *ring = adapter->rx_ring[i];
5107 		u32 rqdpc = rd32(IGC_RQDPC(i));
5108 
5109 		if (hw->mac.type >= igc_i225)
5110 			wr32(IGC_RQDPC(i), 0);
5111 
5112 		if (rqdpc) {
5113 			ring->rx_stats.drops += rqdpc;
5114 			net_stats->rx_fifo_errors += rqdpc;
5115 		}
5116 
5117 		do {
5118 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5119 			_bytes = ring->rx_stats.bytes;
5120 			_packets = ring->rx_stats.packets;
5121 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5122 		bytes += _bytes;
5123 		packets += _packets;
5124 	}
5125 
5126 	net_stats->rx_bytes = bytes;
5127 	net_stats->rx_packets = packets;
5128 
5129 	packets = 0;
5130 	bytes = 0;
5131 	for (i = 0; i < adapter->num_tx_queues; i++) {
5132 		struct igc_ring *ring = adapter->tx_ring[i];
5133 
5134 		do {
5135 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5136 			_bytes = ring->tx_stats.bytes;
5137 			_packets = ring->tx_stats.packets;
5138 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5139 		bytes += _bytes;
5140 		packets += _packets;
5141 	}
5142 	net_stats->tx_bytes = bytes;
5143 	net_stats->tx_packets = packets;
5144 	rcu_read_unlock();
5145 
5146 	/* read stats registers */
5147 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5148 	adapter->stats.gprc += rd32(IGC_GPRC);
5149 	adapter->stats.gorc += rd32(IGC_GORCL);
5150 	rd32(IGC_GORCH); /* clear GORCL */
5151 	adapter->stats.bprc += rd32(IGC_BPRC);
5152 	adapter->stats.mprc += rd32(IGC_MPRC);
5153 	adapter->stats.roc += rd32(IGC_ROC);
5154 
5155 	adapter->stats.prc64 += rd32(IGC_PRC64);
5156 	adapter->stats.prc127 += rd32(IGC_PRC127);
5157 	adapter->stats.prc255 += rd32(IGC_PRC255);
5158 	adapter->stats.prc511 += rd32(IGC_PRC511);
5159 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5160 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5161 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5162 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5163 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5164 
5165 	mpc = rd32(IGC_MPC);
5166 	adapter->stats.mpc += mpc;
5167 	net_stats->rx_fifo_errors += mpc;
5168 	adapter->stats.scc += rd32(IGC_SCC);
5169 	adapter->stats.ecol += rd32(IGC_ECOL);
5170 	adapter->stats.mcc += rd32(IGC_MCC);
5171 	adapter->stats.latecol += rd32(IGC_LATECOL);
5172 	adapter->stats.dc += rd32(IGC_DC);
5173 	adapter->stats.rlec += rd32(IGC_RLEC);
5174 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5175 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5176 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5177 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5178 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5179 	adapter->stats.gptc += rd32(IGC_GPTC);
5180 	adapter->stats.gotc += rd32(IGC_GOTCL);
5181 	rd32(IGC_GOTCH); /* clear GOTCL */
5182 	adapter->stats.rnbc += rd32(IGC_RNBC);
5183 	adapter->stats.ruc += rd32(IGC_RUC);
5184 	adapter->stats.rfc += rd32(IGC_RFC);
5185 	adapter->stats.rjc += rd32(IGC_RJC);
5186 	adapter->stats.tor += rd32(IGC_TORH);
5187 	adapter->stats.tot += rd32(IGC_TOTH);
5188 	adapter->stats.tpr += rd32(IGC_TPR);
5189 
5190 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5191 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5192 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5193 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5194 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5195 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5196 
5197 	adapter->stats.mptc += rd32(IGC_MPTC);
5198 	adapter->stats.bptc += rd32(IGC_BPTC);
5199 
5200 	adapter->stats.tpt += rd32(IGC_TPT);
5201 	adapter->stats.colc += rd32(IGC_COLC);
5202 	adapter->stats.colc += rd32(IGC_RERC);
5203 
5204 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5205 
5206 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5207 
5208 	adapter->stats.iac += rd32(IGC_IAC);
5209 
5210 	/* Fill out the OS statistics structure */
5211 	net_stats->multicast = adapter->stats.mprc;
5212 	net_stats->collisions = adapter->stats.colc;
5213 
5214 	/* Rx Errors */
5215 
5216 	/* RLEC on some newer hardware can be incorrect so build
5217 	 * our own version based on RUC and ROC
5218 	 */
5219 	net_stats->rx_errors = adapter->stats.rxerrc +
5220 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5221 		adapter->stats.ruc + adapter->stats.roc +
5222 		adapter->stats.cexterr;
5223 	net_stats->rx_length_errors = adapter->stats.ruc +
5224 				      adapter->stats.roc;
5225 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5226 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5227 	net_stats->rx_missed_errors = adapter->stats.mpc;
5228 
5229 	/* Tx Errors */
5230 	net_stats->tx_errors = adapter->stats.ecol +
5231 			       adapter->stats.latecol;
5232 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5233 	net_stats->tx_window_errors = adapter->stats.latecol;
5234 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5235 
5236 	/* Tx Dropped */
5237 	net_stats->tx_dropped = adapter->stats.txdrop;
5238 
5239 	/* Management Stats */
5240 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5241 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5242 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5243 }
5244 
5245 /**
5246  * igc_down - Close the interface
5247  * @adapter: board private structure
5248  */
igc_down(struct igc_adapter * adapter)5249 void igc_down(struct igc_adapter *adapter)
5250 {
5251 	struct net_device *netdev = adapter->netdev;
5252 	struct igc_hw *hw = &adapter->hw;
5253 	u32 tctl, rctl;
5254 	int i = 0;
5255 
5256 	set_bit(__IGC_DOWN, &adapter->state);
5257 
5258 	igc_ptp_suspend(adapter);
5259 
5260 	if (pci_device_is_present(adapter->pdev)) {
5261 		/* disable receives in the hardware */
5262 		rctl = rd32(IGC_RCTL);
5263 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5264 		/* flush and sleep below */
5265 	}
5266 	/* set trans_start so we don't get spurious watchdogs during reset */
5267 	netif_trans_update(netdev);
5268 
5269 	netif_carrier_off(netdev);
5270 	netif_tx_stop_all_queues(netdev);
5271 
5272 	if (pci_device_is_present(adapter->pdev)) {
5273 		/* disable transmits in the hardware */
5274 		tctl = rd32(IGC_TCTL);
5275 		tctl &= ~IGC_TCTL_EN;
5276 		wr32(IGC_TCTL, tctl);
5277 		/* flush both disables and wait for them to finish */
5278 		wrfl();
5279 		usleep_range(10000, 20000);
5280 
5281 		igc_irq_disable(adapter);
5282 	}
5283 
5284 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5285 
5286 	for (i = 0; i < adapter->num_q_vectors; i++) {
5287 		if (adapter->q_vector[i]) {
5288 			napi_synchronize(&adapter->q_vector[i]->napi);
5289 			igc_set_queue_napi(adapter, i, NULL);
5290 			napi_disable(&adapter->q_vector[i]->napi);
5291 		}
5292 	}
5293 
5294 	del_timer_sync(&adapter->watchdog_timer);
5295 	del_timer_sync(&adapter->phy_info_timer);
5296 
5297 	/* record the stats before reset*/
5298 	spin_lock(&adapter->stats64_lock);
5299 	igc_update_stats(adapter);
5300 	spin_unlock(&adapter->stats64_lock);
5301 
5302 	adapter->link_speed = 0;
5303 	adapter->link_duplex = 0;
5304 
5305 	if (!pci_channel_offline(adapter->pdev))
5306 		igc_reset(adapter);
5307 
5308 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5309 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5310 
5311 	igc_disable_all_tx_rings_hw(adapter);
5312 	igc_clean_all_tx_rings(adapter);
5313 	igc_clean_all_rx_rings(adapter);
5314 }
5315 
igc_reinit_locked(struct igc_adapter * adapter)5316 void igc_reinit_locked(struct igc_adapter *adapter)
5317 {
5318 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5319 		usleep_range(1000, 2000);
5320 	igc_down(adapter);
5321 	igc_up(adapter);
5322 	clear_bit(__IGC_RESETTING, &adapter->state);
5323 }
5324 
igc_reset_task(struct work_struct * work)5325 static void igc_reset_task(struct work_struct *work)
5326 {
5327 	struct igc_adapter *adapter;
5328 
5329 	adapter = container_of(work, struct igc_adapter, reset_task);
5330 
5331 	rtnl_lock();
5332 	/* If we're already down or resetting, just bail */
5333 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5334 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5335 		rtnl_unlock();
5336 		return;
5337 	}
5338 
5339 	igc_rings_dump(adapter);
5340 	igc_regs_dump(adapter);
5341 	netdev_err(adapter->netdev, "Reset adapter\n");
5342 	igc_reinit_locked(adapter);
5343 	rtnl_unlock();
5344 }
5345 
5346 /**
5347  * igc_change_mtu - Change the Maximum Transfer Unit
5348  * @netdev: network interface device structure
5349  * @new_mtu: new value for maximum frame size
5350  *
5351  * Returns 0 on success, negative on failure
5352  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5353 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5354 {
5355 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5356 	struct igc_adapter *adapter = netdev_priv(netdev);
5357 
5358 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5359 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5360 		return -EINVAL;
5361 	}
5362 
5363 	/* adjust max frame to be at least the size of a standard frame */
5364 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5365 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5366 
5367 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5368 		usleep_range(1000, 2000);
5369 
5370 	/* igc_down has a dependency on max_frame_size */
5371 	adapter->max_frame_size = max_frame;
5372 
5373 	if (netif_running(netdev))
5374 		igc_down(adapter);
5375 
5376 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5377 	WRITE_ONCE(netdev->mtu, new_mtu);
5378 
5379 	if (netif_running(netdev))
5380 		igc_up(adapter);
5381 	else
5382 		igc_reset(adapter);
5383 
5384 	clear_bit(__IGC_RESETTING, &adapter->state);
5385 
5386 	return 0;
5387 }
5388 
5389 /**
5390  * igc_tx_timeout - Respond to a Tx Hang
5391  * @netdev: network interface device structure
5392  * @txqueue: queue number that timed out
5393  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5394 static void igc_tx_timeout(struct net_device *netdev,
5395 			   unsigned int __always_unused txqueue)
5396 {
5397 	struct igc_adapter *adapter = netdev_priv(netdev);
5398 	struct igc_hw *hw = &adapter->hw;
5399 
5400 	/* Do the reset outside of interrupt context */
5401 	adapter->tx_timeout_count++;
5402 	schedule_work(&adapter->reset_task);
5403 	wr32(IGC_EICS,
5404 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5405 }
5406 
5407 /**
5408  * igc_get_stats64 - Get System Network Statistics
5409  * @netdev: network interface device structure
5410  * @stats: rtnl_link_stats64 pointer
5411  *
5412  * Returns the address of the device statistics structure.
5413  * The statistics are updated here and also from the timer callback.
5414  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5415 static void igc_get_stats64(struct net_device *netdev,
5416 			    struct rtnl_link_stats64 *stats)
5417 {
5418 	struct igc_adapter *adapter = netdev_priv(netdev);
5419 
5420 	spin_lock(&adapter->stats64_lock);
5421 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5422 		igc_update_stats(adapter);
5423 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5424 	spin_unlock(&adapter->stats64_lock);
5425 }
5426 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5427 static netdev_features_t igc_fix_features(struct net_device *netdev,
5428 					  netdev_features_t features)
5429 {
5430 	/* Since there is no support for separate Rx/Tx vlan accel
5431 	 * enable/disable make sure Tx flag is always in same state as Rx.
5432 	 */
5433 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5434 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5435 	else
5436 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5437 
5438 	return features;
5439 }
5440 
igc_set_features(struct net_device * netdev,netdev_features_t features)5441 static int igc_set_features(struct net_device *netdev,
5442 			    netdev_features_t features)
5443 {
5444 	netdev_features_t changed = netdev->features ^ features;
5445 	struct igc_adapter *adapter = netdev_priv(netdev);
5446 
5447 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5448 		igc_vlan_mode(netdev, features);
5449 
5450 	/* Add VLAN support */
5451 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5452 		return 0;
5453 
5454 	if (!(features & NETIF_F_NTUPLE))
5455 		igc_flush_nfc_rules(adapter);
5456 
5457 	netdev->features = features;
5458 
5459 	if (netif_running(netdev))
5460 		igc_reinit_locked(adapter);
5461 	else
5462 		igc_reset(adapter);
5463 
5464 	return 1;
5465 }
5466 
5467 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5468 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5469 		   netdev_features_t features)
5470 {
5471 	unsigned int network_hdr_len, mac_hdr_len;
5472 
5473 	/* Make certain the headers can be described by a context descriptor */
5474 	mac_hdr_len = skb_network_offset(skb);
5475 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5476 		return features & ~(NETIF_F_HW_CSUM |
5477 				    NETIF_F_SCTP_CRC |
5478 				    NETIF_F_HW_VLAN_CTAG_TX |
5479 				    NETIF_F_TSO |
5480 				    NETIF_F_TSO6);
5481 
5482 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5483 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5484 		return features & ~(NETIF_F_HW_CSUM |
5485 				    NETIF_F_SCTP_CRC |
5486 				    NETIF_F_TSO |
5487 				    NETIF_F_TSO6);
5488 
5489 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5490 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5491 	 */
5492 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5493 		features &= ~NETIF_F_TSO;
5494 
5495 	return features;
5496 }
5497 
igc_tsync_interrupt(struct igc_adapter * adapter)5498 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5499 {
5500 	struct igc_hw *hw = &adapter->hw;
5501 	u32 tsauxc, sec, nsec, tsicr;
5502 	struct ptp_clock_event event;
5503 	struct timespec64 ts;
5504 
5505 	tsicr = rd32(IGC_TSICR);
5506 
5507 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5508 		event.type = PTP_CLOCK_PPS;
5509 		if (adapter->ptp_caps.pps)
5510 			ptp_clock_event(adapter->ptp_clock, &event);
5511 	}
5512 
5513 	if (tsicr & IGC_TSICR_TXTS) {
5514 		/* retrieve hardware timestamp */
5515 		igc_ptp_tx_tstamp_event(adapter);
5516 	}
5517 
5518 	if (tsicr & IGC_TSICR_TT0) {
5519 		spin_lock(&adapter->tmreg_lock);
5520 		ts = timespec64_add(adapter->perout[0].start,
5521 				    adapter->perout[0].period);
5522 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5523 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5524 		tsauxc = rd32(IGC_TSAUXC);
5525 		tsauxc |= IGC_TSAUXC_EN_TT0;
5526 		wr32(IGC_TSAUXC, tsauxc);
5527 		adapter->perout[0].start = ts;
5528 		spin_unlock(&adapter->tmreg_lock);
5529 	}
5530 
5531 	if (tsicr & IGC_TSICR_TT1) {
5532 		spin_lock(&adapter->tmreg_lock);
5533 		ts = timespec64_add(adapter->perout[1].start,
5534 				    adapter->perout[1].period);
5535 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5536 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5537 		tsauxc = rd32(IGC_TSAUXC);
5538 		tsauxc |= IGC_TSAUXC_EN_TT1;
5539 		wr32(IGC_TSAUXC, tsauxc);
5540 		adapter->perout[1].start = ts;
5541 		spin_unlock(&adapter->tmreg_lock);
5542 	}
5543 
5544 	if (tsicr & IGC_TSICR_AUTT0) {
5545 		nsec = rd32(IGC_AUXSTMPL0);
5546 		sec  = rd32(IGC_AUXSTMPH0);
5547 		event.type = PTP_CLOCK_EXTTS;
5548 		event.index = 0;
5549 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5550 		ptp_clock_event(adapter->ptp_clock, &event);
5551 	}
5552 
5553 	if (tsicr & IGC_TSICR_AUTT1) {
5554 		nsec = rd32(IGC_AUXSTMPL1);
5555 		sec  = rd32(IGC_AUXSTMPH1);
5556 		event.type = PTP_CLOCK_EXTTS;
5557 		event.index = 1;
5558 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5559 		ptp_clock_event(adapter->ptp_clock, &event);
5560 	}
5561 }
5562 
5563 /**
5564  * igc_msix_other - msix other interrupt handler
5565  * @irq: interrupt number
5566  * @data: pointer to a q_vector
5567  */
igc_msix_other(int irq,void * data)5568 static irqreturn_t igc_msix_other(int irq, void *data)
5569 {
5570 	struct igc_adapter *adapter = data;
5571 	struct igc_hw *hw = &adapter->hw;
5572 	u32 icr = rd32(IGC_ICR);
5573 
5574 	/* reading ICR causes bit 31 of EICR to be cleared */
5575 	if (icr & IGC_ICR_DRSTA)
5576 		schedule_work(&adapter->reset_task);
5577 
5578 	if (icr & IGC_ICR_DOUTSYNC) {
5579 		/* HW is reporting DMA is out of sync */
5580 		adapter->stats.doosync++;
5581 	}
5582 
5583 	if (icr & IGC_ICR_LSC) {
5584 		hw->mac.get_link_status = true;
5585 		/* guard against interrupt when we're going down */
5586 		if (!test_bit(__IGC_DOWN, &adapter->state))
5587 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5588 	}
5589 
5590 	if (icr & IGC_ICR_TS)
5591 		igc_tsync_interrupt(adapter);
5592 
5593 	wr32(IGC_EIMS, adapter->eims_other);
5594 
5595 	return IRQ_HANDLED;
5596 }
5597 
igc_write_itr(struct igc_q_vector * q_vector)5598 static void igc_write_itr(struct igc_q_vector *q_vector)
5599 {
5600 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5601 
5602 	if (!q_vector->set_itr)
5603 		return;
5604 
5605 	if (!itr_val)
5606 		itr_val = IGC_ITR_VAL_MASK;
5607 
5608 	itr_val |= IGC_EITR_CNT_IGNR;
5609 
5610 	writel(itr_val, q_vector->itr_register);
5611 	q_vector->set_itr = 0;
5612 }
5613 
igc_msix_ring(int irq,void * data)5614 static irqreturn_t igc_msix_ring(int irq, void *data)
5615 {
5616 	struct igc_q_vector *q_vector = data;
5617 
5618 	/* Write the ITR value calculated from the previous interrupt. */
5619 	igc_write_itr(q_vector);
5620 
5621 	napi_schedule(&q_vector->napi);
5622 
5623 	return IRQ_HANDLED;
5624 }
5625 
5626 /**
5627  * igc_request_msix - Initialize MSI-X interrupts
5628  * @adapter: Pointer to adapter structure
5629  *
5630  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5631  * kernel.
5632  */
igc_request_msix(struct igc_adapter * adapter)5633 static int igc_request_msix(struct igc_adapter *adapter)
5634 {
5635 	unsigned int num_q_vectors = adapter->num_q_vectors;
5636 	int i = 0, err = 0, vector = 0, free_vector = 0;
5637 	struct net_device *netdev = adapter->netdev;
5638 
5639 	err = request_irq(adapter->msix_entries[vector].vector,
5640 			  &igc_msix_other, 0, netdev->name, adapter);
5641 	if (err)
5642 		goto err_out;
5643 
5644 	if (num_q_vectors > MAX_Q_VECTORS) {
5645 		num_q_vectors = MAX_Q_VECTORS;
5646 		dev_warn(&adapter->pdev->dev,
5647 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5648 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5649 	}
5650 	for (i = 0; i < num_q_vectors; i++) {
5651 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5652 
5653 		vector++;
5654 
5655 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5656 
5657 		if (q_vector->rx.ring && q_vector->tx.ring)
5658 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5659 				q_vector->rx.ring->queue_index);
5660 		else if (q_vector->tx.ring)
5661 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5662 				q_vector->tx.ring->queue_index);
5663 		else if (q_vector->rx.ring)
5664 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5665 				q_vector->rx.ring->queue_index);
5666 		else
5667 			sprintf(q_vector->name, "%s-unused", netdev->name);
5668 
5669 		err = request_irq(adapter->msix_entries[vector].vector,
5670 				  igc_msix_ring, 0, q_vector->name,
5671 				  q_vector);
5672 		if (err)
5673 			goto err_free;
5674 
5675 		netif_napi_set_irq(&q_vector->napi,
5676 				   adapter->msix_entries[vector].vector);
5677 	}
5678 
5679 	igc_configure_msix(adapter);
5680 	return 0;
5681 
5682 err_free:
5683 	/* free already assigned IRQs */
5684 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5685 
5686 	vector--;
5687 	for (i = 0; i < vector; i++) {
5688 		free_irq(adapter->msix_entries[free_vector++].vector,
5689 			 adapter->q_vector[i]);
5690 	}
5691 err_out:
5692 	return err;
5693 }
5694 
5695 /**
5696  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5697  * @adapter: Pointer to adapter structure
5698  *
5699  * This function resets the device so that it has 0 rx queues, tx queues, and
5700  * MSI-X interrupts allocated.
5701  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5702 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5703 {
5704 	igc_free_q_vectors(adapter);
5705 	igc_reset_interrupt_capability(adapter);
5706 }
5707 
5708 /* Need to wait a few seconds after link up to get diagnostic information from
5709  * the phy
5710  */
igc_update_phy_info(struct timer_list * t)5711 static void igc_update_phy_info(struct timer_list *t)
5712 {
5713 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5714 
5715 	igc_get_phy_info(&adapter->hw);
5716 }
5717 
5718 /**
5719  * igc_has_link - check shared code for link and determine up/down
5720  * @adapter: pointer to driver private info
5721  */
igc_has_link(struct igc_adapter * adapter)5722 bool igc_has_link(struct igc_adapter *adapter)
5723 {
5724 	struct igc_hw *hw = &adapter->hw;
5725 	bool link_active = false;
5726 
5727 	/* get_link_status is set on LSC (link status) interrupt or
5728 	 * rx sequence error interrupt.  get_link_status will stay
5729 	 * false until the igc_check_for_link establishes link
5730 	 * for copper adapters ONLY
5731 	 */
5732 	if (!hw->mac.get_link_status)
5733 		return true;
5734 	hw->mac.ops.check_for_link(hw);
5735 	link_active = !hw->mac.get_link_status;
5736 
5737 	if (hw->mac.type == igc_i225) {
5738 		if (!netif_carrier_ok(adapter->netdev)) {
5739 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5740 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5741 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5742 			adapter->link_check_timeout = jiffies;
5743 		}
5744 	}
5745 
5746 	return link_active;
5747 }
5748 
5749 /**
5750  * igc_watchdog - Timer Call-back
5751  * @t: timer for the watchdog
5752  */
igc_watchdog(struct timer_list * t)5753 static void igc_watchdog(struct timer_list *t)
5754 {
5755 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5756 	/* Do the rest outside of interrupt context */
5757 	schedule_work(&adapter->watchdog_task);
5758 }
5759 
igc_watchdog_task(struct work_struct * work)5760 static void igc_watchdog_task(struct work_struct *work)
5761 {
5762 	struct igc_adapter *adapter = container_of(work,
5763 						   struct igc_adapter,
5764 						   watchdog_task);
5765 	struct net_device *netdev = adapter->netdev;
5766 	struct igc_hw *hw = &adapter->hw;
5767 	struct igc_phy_info *phy = &hw->phy;
5768 	u16 phy_data, retry_count = 20;
5769 	u32 link;
5770 	int i;
5771 
5772 	link = igc_has_link(adapter);
5773 
5774 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5775 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5776 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5777 		else
5778 			link = false;
5779 	}
5780 
5781 	if (link) {
5782 		/* Cancel scheduled suspend requests. */
5783 		pm_runtime_resume(netdev->dev.parent);
5784 
5785 		if (!netif_carrier_ok(netdev)) {
5786 			u32 ctrl;
5787 
5788 			hw->mac.ops.get_speed_and_duplex(hw,
5789 							 &adapter->link_speed,
5790 							 &adapter->link_duplex);
5791 
5792 			ctrl = rd32(IGC_CTRL);
5793 			/* Link status message must follow this format */
5794 			netdev_info(netdev,
5795 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5796 				    adapter->link_speed,
5797 				    adapter->link_duplex == FULL_DUPLEX ?
5798 				    "Full" : "Half",
5799 				    (ctrl & IGC_CTRL_TFCE) &&
5800 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5801 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5802 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5803 
5804 			/* disable EEE if enabled */
5805 			if ((adapter->flags & IGC_FLAG_EEE) &&
5806 			    adapter->link_duplex == HALF_DUPLEX) {
5807 				netdev_info(netdev,
5808 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5809 				adapter->hw.dev_spec._base.eee_enable = false;
5810 				adapter->flags &= ~IGC_FLAG_EEE;
5811 			}
5812 
5813 			/* check if SmartSpeed worked */
5814 			igc_check_downshift(hw);
5815 			if (phy->speed_downgraded)
5816 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5817 
5818 			/* adjust timeout factor according to speed/duplex */
5819 			adapter->tx_timeout_factor = 1;
5820 			switch (adapter->link_speed) {
5821 			case SPEED_10:
5822 				adapter->tx_timeout_factor = 14;
5823 				break;
5824 			case SPEED_100:
5825 			case SPEED_1000:
5826 			case SPEED_2500:
5827 				adapter->tx_timeout_factor = 1;
5828 				break;
5829 			}
5830 
5831 			/* Once the launch time has been set on the wire, there
5832 			 * is a delay before the link speed can be determined
5833 			 * based on link-up activity. Write into the register
5834 			 * as soon as we know the correct link speed.
5835 			 */
5836 			igc_tsn_adjust_txtime_offset(adapter);
5837 
5838 			if (adapter->link_speed != SPEED_1000)
5839 				goto no_wait;
5840 
5841 			/* wait for Remote receiver status OK */
5842 retry_read_status:
5843 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5844 					      &phy_data)) {
5845 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5846 				    retry_count) {
5847 					msleep(100);
5848 					retry_count--;
5849 					goto retry_read_status;
5850 				} else if (!retry_count) {
5851 					netdev_err(netdev, "exceed max 2 second\n");
5852 				}
5853 			} else {
5854 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5855 			}
5856 no_wait:
5857 			netif_carrier_on(netdev);
5858 
5859 			/* link state has changed, schedule phy info update */
5860 			if (!test_bit(__IGC_DOWN, &adapter->state))
5861 				mod_timer(&adapter->phy_info_timer,
5862 					  round_jiffies(jiffies + 2 * HZ));
5863 		}
5864 	} else {
5865 		if (netif_carrier_ok(netdev)) {
5866 			adapter->link_speed = 0;
5867 			adapter->link_duplex = 0;
5868 
5869 			/* Links status message must follow this format */
5870 			netdev_info(netdev, "NIC Link is Down\n");
5871 			netif_carrier_off(netdev);
5872 
5873 			/* link state has changed, schedule phy info update */
5874 			if (!test_bit(__IGC_DOWN, &adapter->state))
5875 				mod_timer(&adapter->phy_info_timer,
5876 					  round_jiffies(jiffies + 2 * HZ));
5877 
5878 			pm_schedule_suspend(netdev->dev.parent,
5879 					    MSEC_PER_SEC * 5);
5880 		}
5881 	}
5882 
5883 	spin_lock(&adapter->stats64_lock);
5884 	igc_update_stats(adapter);
5885 	spin_unlock(&adapter->stats64_lock);
5886 
5887 	for (i = 0; i < adapter->num_tx_queues; i++) {
5888 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5889 
5890 		if (!netif_carrier_ok(netdev)) {
5891 			/* We've lost link, so the controller stops DMA,
5892 			 * but we've got queued Tx work that's never going
5893 			 * to get done, so reset controller to flush Tx.
5894 			 * (Do the reset outside of interrupt context).
5895 			 */
5896 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5897 				adapter->tx_timeout_count++;
5898 				schedule_work(&adapter->reset_task);
5899 				/* return immediately since reset is imminent */
5900 				return;
5901 			}
5902 		}
5903 
5904 		/* Force detection of hung controller every watchdog period */
5905 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5906 	}
5907 
5908 	/* Cause software interrupt to ensure Rx ring is cleaned */
5909 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5910 		u32 eics = 0;
5911 
5912 		for (i = 0; i < adapter->num_q_vectors; i++) {
5913 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5914 			struct igc_ring *rx_ring;
5915 
5916 			if (!q_vector->rx.ring)
5917 				continue;
5918 
5919 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5920 
5921 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5922 				eics |= q_vector->eims_value;
5923 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5924 			}
5925 		}
5926 		if (eics)
5927 			wr32(IGC_EICS, eics);
5928 	} else {
5929 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5930 
5931 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5932 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5933 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5934 		}
5935 	}
5936 
5937 	igc_ptp_tx_hang(adapter);
5938 
5939 	/* Reset the timer */
5940 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5941 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5942 			mod_timer(&adapter->watchdog_timer,
5943 				  round_jiffies(jiffies +  HZ));
5944 		else
5945 			mod_timer(&adapter->watchdog_timer,
5946 				  round_jiffies(jiffies + 2 * HZ));
5947 	}
5948 }
5949 
5950 /**
5951  * igc_intr_msi - Interrupt Handler
5952  * @irq: interrupt number
5953  * @data: pointer to a network interface device structure
5954  */
igc_intr_msi(int irq,void * data)5955 static irqreturn_t igc_intr_msi(int irq, void *data)
5956 {
5957 	struct igc_adapter *adapter = data;
5958 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5959 	struct igc_hw *hw = &adapter->hw;
5960 	/* read ICR disables interrupts using IAM */
5961 	u32 icr = rd32(IGC_ICR);
5962 
5963 	igc_write_itr(q_vector);
5964 
5965 	if (icr & IGC_ICR_DRSTA)
5966 		schedule_work(&adapter->reset_task);
5967 
5968 	if (icr & IGC_ICR_DOUTSYNC) {
5969 		/* HW is reporting DMA is out of sync */
5970 		adapter->stats.doosync++;
5971 	}
5972 
5973 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5974 		hw->mac.get_link_status = true;
5975 		if (!test_bit(__IGC_DOWN, &adapter->state))
5976 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5977 	}
5978 
5979 	if (icr & IGC_ICR_TS)
5980 		igc_tsync_interrupt(adapter);
5981 
5982 	napi_schedule(&q_vector->napi);
5983 
5984 	return IRQ_HANDLED;
5985 }
5986 
5987 /**
5988  * igc_intr - Legacy Interrupt Handler
5989  * @irq: interrupt number
5990  * @data: pointer to a network interface device structure
5991  */
igc_intr(int irq,void * data)5992 static irqreturn_t igc_intr(int irq, void *data)
5993 {
5994 	struct igc_adapter *adapter = data;
5995 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5996 	struct igc_hw *hw = &adapter->hw;
5997 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5998 	 * need for the IMC write
5999 	 */
6000 	u32 icr = rd32(IGC_ICR);
6001 
6002 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6003 	 * not set, then the adapter didn't send an interrupt
6004 	 */
6005 	if (!(icr & IGC_ICR_INT_ASSERTED))
6006 		return IRQ_NONE;
6007 
6008 	igc_write_itr(q_vector);
6009 
6010 	if (icr & IGC_ICR_DRSTA)
6011 		schedule_work(&adapter->reset_task);
6012 
6013 	if (icr & IGC_ICR_DOUTSYNC) {
6014 		/* HW is reporting DMA is out of sync */
6015 		adapter->stats.doosync++;
6016 	}
6017 
6018 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6019 		hw->mac.get_link_status = true;
6020 		/* guard against interrupt when we're going down */
6021 		if (!test_bit(__IGC_DOWN, &adapter->state))
6022 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6023 	}
6024 
6025 	if (icr & IGC_ICR_TS)
6026 		igc_tsync_interrupt(adapter);
6027 
6028 	napi_schedule(&q_vector->napi);
6029 
6030 	return IRQ_HANDLED;
6031 }
6032 
igc_free_irq(struct igc_adapter * adapter)6033 static void igc_free_irq(struct igc_adapter *adapter)
6034 {
6035 	if (adapter->msix_entries) {
6036 		int vector = 0, i;
6037 
6038 		free_irq(adapter->msix_entries[vector++].vector, adapter);
6039 
6040 		for (i = 0; i < adapter->num_q_vectors; i++)
6041 			free_irq(adapter->msix_entries[vector++].vector,
6042 				 adapter->q_vector[i]);
6043 	} else {
6044 		free_irq(adapter->pdev->irq, adapter);
6045 	}
6046 }
6047 
6048 /**
6049  * igc_request_irq - initialize interrupts
6050  * @adapter: Pointer to adapter structure
6051  *
6052  * Attempts to configure interrupts using the best available
6053  * capabilities of the hardware and kernel.
6054  */
igc_request_irq(struct igc_adapter * adapter)6055 static int igc_request_irq(struct igc_adapter *adapter)
6056 {
6057 	struct net_device *netdev = adapter->netdev;
6058 	struct pci_dev *pdev = adapter->pdev;
6059 	int err = 0;
6060 
6061 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6062 		err = igc_request_msix(adapter);
6063 		if (!err)
6064 			goto request_done;
6065 		/* fall back to MSI */
6066 		igc_free_all_tx_resources(adapter);
6067 		igc_free_all_rx_resources(adapter);
6068 
6069 		igc_clear_interrupt_scheme(adapter);
6070 		err = igc_init_interrupt_scheme(adapter, false);
6071 		if (err)
6072 			goto request_done;
6073 		igc_setup_all_tx_resources(adapter);
6074 		igc_setup_all_rx_resources(adapter);
6075 		igc_configure(adapter);
6076 	}
6077 
6078 	igc_assign_vector(adapter->q_vector[0], 0);
6079 
6080 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
6081 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
6082 				  netdev->name, adapter);
6083 		if (!err)
6084 			goto request_done;
6085 
6086 		/* fall back to legacy interrupts */
6087 		igc_reset_interrupt_capability(adapter);
6088 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
6089 	}
6090 
6091 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6092 			  netdev->name, adapter);
6093 
6094 	if (err)
6095 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6096 
6097 request_done:
6098 	return err;
6099 }
6100 
6101 /**
6102  * __igc_open - Called when a network interface is made active
6103  * @netdev: network interface device structure
6104  * @resuming: boolean indicating if the device is resuming
6105  *
6106  * Returns 0 on success, negative value on failure
6107  *
6108  * The open entry point is called when a network interface is made
6109  * active by the system (IFF_UP).  At this point all resources needed
6110  * for transmit and receive operations are allocated, the interrupt
6111  * handler is registered with the OS, the watchdog timer is started,
6112  * and the stack is notified that the interface is ready.
6113  */
__igc_open(struct net_device * netdev,bool resuming)6114 static int __igc_open(struct net_device *netdev, bool resuming)
6115 {
6116 	struct igc_adapter *adapter = netdev_priv(netdev);
6117 	struct pci_dev *pdev = adapter->pdev;
6118 	struct igc_hw *hw = &adapter->hw;
6119 	struct napi_struct *napi;
6120 	int err = 0;
6121 	int i = 0;
6122 
6123 	/* disallow open during test */
6124 
6125 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6126 		WARN_ON(resuming);
6127 		return -EBUSY;
6128 	}
6129 
6130 	if (!resuming)
6131 		pm_runtime_get_sync(&pdev->dev);
6132 
6133 	netif_carrier_off(netdev);
6134 
6135 	/* allocate transmit descriptors */
6136 	err = igc_setup_all_tx_resources(adapter);
6137 	if (err)
6138 		goto err_setup_tx;
6139 
6140 	/* allocate receive descriptors */
6141 	err = igc_setup_all_rx_resources(adapter);
6142 	if (err)
6143 		goto err_setup_rx;
6144 
6145 	igc_power_up_link(adapter);
6146 
6147 	igc_configure(adapter);
6148 
6149 	err = igc_request_irq(adapter);
6150 	if (err)
6151 		goto err_req_irq;
6152 
6153 	clear_bit(__IGC_DOWN, &adapter->state);
6154 
6155 	for (i = 0; i < adapter->num_q_vectors; i++) {
6156 		napi = &adapter->q_vector[i]->napi;
6157 		napi_enable(napi);
6158 		igc_set_queue_napi(adapter, i, napi);
6159 	}
6160 
6161 	/* Clear any pending interrupts. */
6162 	rd32(IGC_ICR);
6163 	igc_irq_enable(adapter);
6164 
6165 	if (!resuming)
6166 		pm_runtime_put(&pdev->dev);
6167 
6168 	netif_tx_start_all_queues(netdev);
6169 
6170 	/* start the watchdog. */
6171 	hw->mac.get_link_status = true;
6172 	schedule_work(&adapter->watchdog_task);
6173 
6174 	return IGC_SUCCESS;
6175 
6176 err_req_irq:
6177 	igc_release_hw_control(adapter);
6178 	igc_power_down_phy_copper_base(&adapter->hw);
6179 	igc_free_all_rx_resources(adapter);
6180 err_setup_rx:
6181 	igc_free_all_tx_resources(adapter);
6182 err_setup_tx:
6183 	igc_reset(adapter);
6184 	if (!resuming)
6185 		pm_runtime_put(&pdev->dev);
6186 
6187 	return err;
6188 }
6189 
igc_open(struct net_device * netdev)6190 int igc_open(struct net_device *netdev)
6191 {
6192 	struct igc_adapter *adapter = netdev_priv(netdev);
6193 	int err;
6194 
6195 	/* Notify the stack of the actual queue counts. */
6196 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6197 					adapter->num_rx_queues);
6198 	if (err) {
6199 		netdev_err(netdev, "error setting real queue count\n");
6200 		return err;
6201 	}
6202 
6203 	return __igc_open(netdev, false);
6204 }
6205 
6206 /**
6207  * __igc_close - Disables a network interface
6208  * @netdev: network interface device structure
6209  * @suspending: boolean indicating the device is suspending
6210  *
6211  * Returns 0, this is not allowed to fail
6212  *
6213  * The close entry point is called when an interface is de-activated
6214  * by the OS.  The hardware is still under the driver's control, but
6215  * needs to be disabled.  A global MAC reset is issued to stop the
6216  * hardware, and all transmit and receive resources are freed.
6217  */
__igc_close(struct net_device * netdev,bool suspending)6218 static int __igc_close(struct net_device *netdev, bool suspending)
6219 {
6220 	struct igc_adapter *adapter = netdev_priv(netdev);
6221 	struct pci_dev *pdev = adapter->pdev;
6222 
6223 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6224 
6225 	if (!suspending)
6226 		pm_runtime_get_sync(&pdev->dev);
6227 
6228 	igc_down(adapter);
6229 
6230 	igc_release_hw_control(adapter);
6231 
6232 	igc_free_irq(adapter);
6233 
6234 	igc_free_all_tx_resources(adapter);
6235 	igc_free_all_rx_resources(adapter);
6236 
6237 	if (!suspending)
6238 		pm_runtime_put_sync(&pdev->dev);
6239 
6240 	return 0;
6241 }
6242 
igc_close(struct net_device * netdev)6243 int igc_close(struct net_device *netdev)
6244 {
6245 	if (netif_device_present(netdev) || netdev->dismantle)
6246 		return __igc_close(netdev, false);
6247 	return 0;
6248 }
6249 
6250 /**
6251  * igc_ioctl - Access the hwtstamp interface
6252  * @netdev: network interface device structure
6253  * @ifr: interface request data
6254  * @cmd: ioctl command
6255  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6256 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6257 {
6258 	switch (cmd) {
6259 	case SIOCGHWTSTAMP:
6260 		return igc_ptp_get_ts_config(netdev, ifr);
6261 	case SIOCSHWTSTAMP:
6262 		return igc_ptp_set_ts_config(netdev, ifr);
6263 	default:
6264 		return -EOPNOTSUPP;
6265 	}
6266 }
6267 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6268 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6269 				      bool enable)
6270 {
6271 	struct igc_ring *ring;
6272 
6273 	if (queue < 0 || queue >= adapter->num_tx_queues)
6274 		return -EINVAL;
6275 
6276 	ring = adapter->tx_ring[queue];
6277 	ring->launchtime_enable = enable;
6278 
6279 	return 0;
6280 }
6281 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6282 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6283 {
6284 	struct timespec64 b;
6285 
6286 	b = ktime_to_timespec64(base_time);
6287 
6288 	return timespec64_compare(now, &b) > 0;
6289 }
6290 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6291 static bool validate_schedule(struct igc_adapter *adapter,
6292 			      const struct tc_taprio_qopt_offload *qopt)
6293 {
6294 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6295 	struct igc_hw *hw = &adapter->hw;
6296 	struct timespec64 now;
6297 	size_t n;
6298 
6299 	if (qopt->cycle_time_extension)
6300 		return false;
6301 
6302 	igc_ptp_read(adapter, &now);
6303 
6304 	/* If we program the controller's BASET registers with a time
6305 	 * in the future, it will hold all the packets until that
6306 	 * time, causing a lot of TX Hangs, so to avoid that, we
6307 	 * reject schedules that would start in the future.
6308 	 * Note: Limitation above is no longer in i226.
6309 	 */
6310 	if (!is_base_time_past(qopt->base_time, &now) &&
6311 	    igc_is_device_id_i225(hw))
6312 		return false;
6313 
6314 	for (n = 0; n < qopt->num_entries; n++) {
6315 		const struct tc_taprio_sched_entry *e, *prev;
6316 		int i;
6317 
6318 		prev = n ? &qopt->entries[n - 1] : NULL;
6319 		e = &qopt->entries[n];
6320 
6321 		/* i225 only supports "global" frame preemption
6322 		 * settings.
6323 		 */
6324 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6325 			return false;
6326 
6327 		for (i = 0; i < adapter->num_tx_queues; i++)
6328 			if (e->gate_mask & BIT(i)) {
6329 				queue_uses[i]++;
6330 
6331 				/* There are limitations: A single queue cannot
6332 				 * be opened and closed multiple times per cycle
6333 				 * unless the gate stays open. Check for it.
6334 				 */
6335 				if (queue_uses[i] > 1 &&
6336 				    !(prev->gate_mask & BIT(i)))
6337 					return false;
6338 			}
6339 	}
6340 
6341 	return true;
6342 }
6343 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6344 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6345 				     struct tc_etf_qopt_offload *qopt)
6346 {
6347 	struct igc_hw *hw = &adapter->hw;
6348 	int err;
6349 
6350 	if (hw->mac.type != igc_i225)
6351 		return -EOPNOTSUPP;
6352 
6353 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6354 	if (err)
6355 		return err;
6356 
6357 	return igc_tsn_offload_apply(adapter);
6358 }
6359 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6360 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6361 {
6362 	unsigned long flags;
6363 	int i;
6364 
6365 	adapter->base_time = 0;
6366 	adapter->cycle_time = NSEC_PER_SEC;
6367 	adapter->taprio_offload_enable = false;
6368 	adapter->qbv_config_change_errors = 0;
6369 	adapter->qbv_count = 0;
6370 
6371 	for (i = 0; i < adapter->num_tx_queues; i++) {
6372 		struct igc_ring *ring = adapter->tx_ring[i];
6373 
6374 		ring->start_time = 0;
6375 		ring->end_time = NSEC_PER_SEC;
6376 		ring->max_sdu = 0;
6377 	}
6378 
6379 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6380 
6381 	adapter->qbv_transition = false;
6382 
6383 	for (i = 0; i < adapter->num_tx_queues; i++) {
6384 		struct igc_ring *ring = adapter->tx_ring[i];
6385 
6386 		ring->oper_gate_closed = false;
6387 		ring->admin_gate_closed = false;
6388 	}
6389 
6390 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6391 
6392 	return 0;
6393 }
6394 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6395 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6396 {
6397 	igc_qbv_clear_schedule(adapter);
6398 
6399 	return 0;
6400 }
6401 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6402 static void igc_taprio_stats(struct net_device *dev,
6403 			     struct tc_taprio_qopt_stats *stats)
6404 {
6405 	/* When Strict_End is enabled, the tx_overruns counter
6406 	 * will always be zero.
6407 	 */
6408 	stats->tx_overruns = 0;
6409 }
6410 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6411 static void igc_taprio_queue_stats(struct net_device *dev,
6412 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6413 {
6414 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6415 
6416 	/* When Strict_End is enabled, the tx_overruns counter
6417 	 * will always be zero.
6418 	 */
6419 	stats->tx_overruns = 0;
6420 }
6421 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6422 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6423 				 struct tc_taprio_qopt_offload *qopt)
6424 {
6425 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6426 	struct igc_hw *hw = &adapter->hw;
6427 	u32 start_time = 0, end_time = 0;
6428 	struct timespec64 now;
6429 	unsigned long flags;
6430 	size_t n;
6431 	int i;
6432 
6433 	if (qopt->base_time < 0)
6434 		return -ERANGE;
6435 
6436 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6437 		return -EALREADY;
6438 
6439 	if (!validate_schedule(adapter, qopt))
6440 		return -EINVAL;
6441 
6442 	igc_ptp_read(adapter, &now);
6443 
6444 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6445 	    is_base_time_past(qopt->base_time, &now))
6446 		adapter->qbv_config_change_errors++;
6447 
6448 	adapter->cycle_time = qopt->cycle_time;
6449 	adapter->base_time = qopt->base_time;
6450 	adapter->taprio_offload_enable = true;
6451 
6452 	for (n = 0; n < qopt->num_entries; n++) {
6453 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6454 
6455 		end_time += e->interval;
6456 
6457 		/* If any of the conditions below are true, we need to manually
6458 		 * control the end time of the cycle.
6459 		 * 1. Qbv users can specify a cycle time that is not equal
6460 		 * to the total GCL intervals. Hence, recalculation is
6461 		 * necessary here to exclude the time interval that
6462 		 * exceeds the cycle time.
6463 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6464 		 * once the end of the list is reached, it will switch
6465 		 * to the END_OF_CYCLE state and leave the gates in the
6466 		 * same state until the next cycle is started.
6467 		 */
6468 		if (end_time > adapter->cycle_time ||
6469 		    n + 1 == qopt->num_entries)
6470 			end_time = adapter->cycle_time;
6471 
6472 		for (i = 0; i < adapter->num_tx_queues; i++) {
6473 			struct igc_ring *ring = adapter->tx_ring[i];
6474 
6475 			if (!(e->gate_mask & BIT(i)))
6476 				continue;
6477 
6478 			/* Check whether a queue stays open for more than one
6479 			 * entry. If so, keep the start and advance the end
6480 			 * time.
6481 			 */
6482 			if (!queue_configured[i])
6483 				ring->start_time = start_time;
6484 			ring->end_time = end_time;
6485 
6486 			if (ring->start_time >= adapter->cycle_time)
6487 				queue_configured[i] = false;
6488 			else
6489 				queue_configured[i] = true;
6490 		}
6491 
6492 		start_time += e->interval;
6493 	}
6494 
6495 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6496 
6497 	/* Check whether a queue gets configured.
6498 	 * If not, set the start and end time to be end time.
6499 	 */
6500 	for (i = 0; i < adapter->num_tx_queues; i++) {
6501 		struct igc_ring *ring = adapter->tx_ring[i];
6502 
6503 		if (!is_base_time_past(qopt->base_time, &now)) {
6504 			ring->admin_gate_closed = false;
6505 		} else {
6506 			ring->oper_gate_closed = false;
6507 			ring->admin_gate_closed = false;
6508 		}
6509 
6510 		if (!queue_configured[i]) {
6511 			if (!is_base_time_past(qopt->base_time, &now))
6512 				ring->admin_gate_closed = true;
6513 			else
6514 				ring->oper_gate_closed = true;
6515 
6516 			ring->start_time = end_time;
6517 			ring->end_time = end_time;
6518 		}
6519 	}
6520 
6521 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6522 
6523 	for (i = 0; i < adapter->num_tx_queues; i++) {
6524 		struct igc_ring *ring = adapter->tx_ring[i];
6525 		struct net_device *dev = adapter->netdev;
6526 
6527 		if (qopt->max_sdu[i])
6528 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6529 		else
6530 			ring->max_sdu = 0;
6531 	}
6532 
6533 	return 0;
6534 }
6535 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6536 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6537 					 struct tc_taprio_qopt_offload *qopt)
6538 {
6539 	struct igc_hw *hw = &adapter->hw;
6540 	int err;
6541 
6542 	if (hw->mac.type != igc_i225)
6543 		return -EOPNOTSUPP;
6544 
6545 	switch (qopt->cmd) {
6546 	case TAPRIO_CMD_REPLACE:
6547 		err = igc_save_qbv_schedule(adapter, qopt);
6548 		break;
6549 	case TAPRIO_CMD_DESTROY:
6550 		err = igc_tsn_clear_schedule(adapter);
6551 		break;
6552 	case TAPRIO_CMD_STATS:
6553 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6554 		return 0;
6555 	case TAPRIO_CMD_QUEUE_STATS:
6556 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6557 		return 0;
6558 	default:
6559 		return -EOPNOTSUPP;
6560 	}
6561 
6562 	if (err)
6563 		return err;
6564 
6565 	return igc_tsn_offload_apply(adapter);
6566 }
6567 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6568 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6569 			       bool enable, int idleslope, int sendslope,
6570 			       int hicredit, int locredit)
6571 {
6572 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6573 	struct net_device *netdev = adapter->netdev;
6574 	struct igc_ring *ring;
6575 	int i;
6576 
6577 	/* i225 has two sets of credit-based shaper logic.
6578 	 * Supporting it only on the top two priority queues
6579 	 */
6580 	if (queue < 0 || queue > 1)
6581 		return -EINVAL;
6582 
6583 	ring = adapter->tx_ring[queue];
6584 
6585 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6586 		if (adapter->tx_ring[i])
6587 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6588 
6589 	/* CBS should be enabled on the highest priority queue first in order
6590 	 * for the CBS algorithm to operate as intended.
6591 	 */
6592 	if (enable) {
6593 		if (queue == 1 && !cbs_status[0]) {
6594 			netdev_err(netdev,
6595 				   "Enabling CBS on queue1 before queue0\n");
6596 			return -EINVAL;
6597 		}
6598 	} else {
6599 		if (queue == 0 && cbs_status[1]) {
6600 			netdev_err(netdev,
6601 				   "Disabling CBS on queue0 before queue1\n");
6602 			return -EINVAL;
6603 		}
6604 	}
6605 
6606 	ring->cbs_enable = enable;
6607 	ring->idleslope = idleslope;
6608 	ring->sendslope = sendslope;
6609 	ring->hicredit = hicredit;
6610 	ring->locredit = locredit;
6611 
6612 	return 0;
6613 }
6614 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6615 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6616 			      struct tc_cbs_qopt_offload *qopt)
6617 {
6618 	struct igc_hw *hw = &adapter->hw;
6619 	int err;
6620 
6621 	if (hw->mac.type != igc_i225)
6622 		return -EOPNOTSUPP;
6623 
6624 	if (qopt->queue < 0 || qopt->queue > 1)
6625 		return -EINVAL;
6626 
6627 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6628 				  qopt->idleslope, qopt->sendslope,
6629 				  qopt->hicredit, qopt->locredit);
6630 	if (err)
6631 		return err;
6632 
6633 	return igc_tsn_offload_apply(adapter);
6634 }
6635 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6636 static int igc_tc_query_caps(struct igc_adapter *adapter,
6637 			     struct tc_query_caps_base *base)
6638 {
6639 	struct igc_hw *hw = &adapter->hw;
6640 
6641 	switch (base->type) {
6642 	case TC_SETUP_QDISC_MQPRIO: {
6643 		struct tc_mqprio_caps *caps = base->caps;
6644 
6645 		caps->validate_queue_counts = true;
6646 
6647 		return 0;
6648 	}
6649 	case TC_SETUP_QDISC_TAPRIO: {
6650 		struct tc_taprio_caps *caps = base->caps;
6651 
6652 		caps->broken_mqprio = true;
6653 
6654 		if (hw->mac.type == igc_i225) {
6655 			caps->supports_queue_max_sdu = true;
6656 			caps->gate_mask_per_txq = true;
6657 		}
6658 
6659 		return 0;
6660 	}
6661 	default:
6662 		return -EOPNOTSUPP;
6663 	}
6664 }
6665 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6666 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6667 				   u16 *offset)
6668 {
6669 	int i;
6670 
6671 	adapter->strict_priority_enable = true;
6672 	adapter->num_tc = num_tc;
6673 
6674 	for (i = 0; i < num_tc; i++)
6675 		adapter->queue_per_tc[i] = offset[i];
6676 }
6677 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6678 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6679 				 struct tc_mqprio_qopt_offload *mqprio)
6680 {
6681 	struct igc_hw *hw = &adapter->hw;
6682 	int i;
6683 
6684 	if (hw->mac.type != igc_i225)
6685 		return -EOPNOTSUPP;
6686 
6687 	if (!mqprio->qopt.num_tc) {
6688 		adapter->strict_priority_enable = false;
6689 		goto apply;
6690 	}
6691 
6692 	/* There are as many TCs as Tx queues. */
6693 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6694 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6695 				       "Only %d traffic classes supported",
6696 				       adapter->num_tx_queues);
6697 		return -EOPNOTSUPP;
6698 	}
6699 
6700 	/* Only one queue per TC is supported. */
6701 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6702 		if (mqprio->qopt.count[i] != 1) {
6703 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6704 					   "Only one queue per TC supported");
6705 			return -EOPNOTSUPP;
6706 		}
6707 	}
6708 
6709 	/* Preemption is not supported yet. */
6710 	if (mqprio->preemptible_tcs) {
6711 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6712 				   "Preemption is not supported yet");
6713 		return -EOPNOTSUPP;
6714 	}
6715 
6716 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6717 			       mqprio->qopt.offset);
6718 
6719 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6720 
6721 apply:
6722 	return igc_tsn_offload_apply(adapter);
6723 }
6724 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6725 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6726 			void *type_data)
6727 {
6728 	struct igc_adapter *adapter = netdev_priv(dev);
6729 
6730 	adapter->tc_setup_type = type;
6731 
6732 	switch (type) {
6733 	case TC_QUERY_CAPS:
6734 		return igc_tc_query_caps(adapter, type_data);
6735 	case TC_SETUP_QDISC_TAPRIO:
6736 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6737 
6738 	case TC_SETUP_QDISC_ETF:
6739 		return igc_tsn_enable_launchtime(adapter, type_data);
6740 
6741 	case TC_SETUP_QDISC_CBS:
6742 		return igc_tsn_enable_cbs(adapter, type_data);
6743 
6744 	case TC_SETUP_QDISC_MQPRIO:
6745 		return igc_tsn_enable_mqprio(adapter, type_data);
6746 
6747 	default:
6748 		return -EOPNOTSUPP;
6749 	}
6750 }
6751 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6752 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6753 {
6754 	struct igc_adapter *adapter = netdev_priv(dev);
6755 
6756 	switch (bpf->command) {
6757 	case XDP_SETUP_PROG:
6758 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6759 	case XDP_SETUP_XSK_POOL:
6760 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6761 					  bpf->xsk.queue_id);
6762 	default:
6763 		return -EOPNOTSUPP;
6764 	}
6765 }
6766 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6767 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6768 			struct xdp_frame **frames, u32 flags)
6769 {
6770 	struct igc_adapter *adapter = netdev_priv(dev);
6771 	int cpu = smp_processor_id();
6772 	struct netdev_queue *nq;
6773 	struct igc_ring *ring;
6774 	int i, nxmit;
6775 
6776 	if (unlikely(!netif_carrier_ok(dev)))
6777 		return -ENETDOWN;
6778 
6779 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6780 		return -EINVAL;
6781 
6782 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6783 	nq = txring_txq(ring);
6784 
6785 	__netif_tx_lock(nq, cpu);
6786 
6787 	/* Avoid transmit queue timeout since we share it with the slow path */
6788 	txq_trans_cond_update(nq);
6789 
6790 	nxmit = 0;
6791 	for (i = 0; i < num_frames; i++) {
6792 		int err;
6793 		struct xdp_frame *xdpf = frames[i];
6794 
6795 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6796 		if (err)
6797 			break;
6798 		nxmit++;
6799 	}
6800 
6801 	if (flags & XDP_XMIT_FLUSH)
6802 		igc_flush_tx_descriptors(ring);
6803 
6804 	__netif_tx_unlock(nq);
6805 
6806 	return nxmit;
6807 }
6808 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6809 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6810 					struct igc_q_vector *q_vector)
6811 {
6812 	struct igc_hw *hw = &adapter->hw;
6813 	u32 eics = 0;
6814 
6815 	eics |= q_vector->eims_value;
6816 	wr32(IGC_EICS, eics);
6817 }
6818 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6819 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6820 {
6821 	struct igc_adapter *adapter = netdev_priv(dev);
6822 	struct igc_q_vector *q_vector;
6823 	struct igc_ring *ring;
6824 
6825 	if (test_bit(__IGC_DOWN, &adapter->state))
6826 		return -ENETDOWN;
6827 
6828 	if (!igc_xdp_is_enabled(adapter))
6829 		return -ENXIO;
6830 
6831 	if (queue_id >= adapter->num_rx_queues)
6832 		return -EINVAL;
6833 
6834 	ring = adapter->rx_ring[queue_id];
6835 
6836 	if (!ring->xsk_pool)
6837 		return -ENXIO;
6838 
6839 	q_vector = adapter->q_vector[queue_id];
6840 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6841 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6842 
6843 	return 0;
6844 }
6845 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6846 static ktime_t igc_get_tstamp(struct net_device *dev,
6847 			      const struct skb_shared_hwtstamps *hwtstamps,
6848 			      bool cycles)
6849 {
6850 	struct igc_adapter *adapter = netdev_priv(dev);
6851 	struct igc_inline_rx_tstamps *tstamp;
6852 	ktime_t timestamp;
6853 
6854 	tstamp = hwtstamps->netdev_data;
6855 
6856 	if (cycles)
6857 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6858 	else
6859 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6860 
6861 	return timestamp;
6862 }
6863 
6864 static const struct net_device_ops igc_netdev_ops = {
6865 	.ndo_open		= igc_open,
6866 	.ndo_stop		= igc_close,
6867 	.ndo_start_xmit		= igc_xmit_frame,
6868 	.ndo_set_rx_mode	= igc_set_rx_mode,
6869 	.ndo_set_mac_address	= igc_set_mac,
6870 	.ndo_change_mtu		= igc_change_mtu,
6871 	.ndo_tx_timeout		= igc_tx_timeout,
6872 	.ndo_get_stats64	= igc_get_stats64,
6873 	.ndo_fix_features	= igc_fix_features,
6874 	.ndo_set_features	= igc_set_features,
6875 	.ndo_features_check	= igc_features_check,
6876 	.ndo_eth_ioctl		= igc_ioctl,
6877 	.ndo_setup_tc		= igc_setup_tc,
6878 	.ndo_bpf		= igc_bpf,
6879 	.ndo_xdp_xmit		= igc_xdp_xmit,
6880 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6881 	.ndo_get_tstamp		= igc_get_tstamp,
6882 };
6883 
igc_rd32(struct igc_hw * hw,u32 reg)6884 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6885 {
6886 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6887 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6888 	u32 value = 0;
6889 
6890 	if (IGC_REMOVED(hw_addr))
6891 		return ~value;
6892 
6893 	value = readl(&hw_addr[reg]);
6894 
6895 	/* reads should not return all F's */
6896 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6897 		struct net_device *netdev = igc->netdev;
6898 
6899 		hw->hw_addr = NULL;
6900 		netif_device_detach(netdev);
6901 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6902 		WARN(pci_device_is_present(igc->pdev),
6903 		     "igc: Failed to read reg 0x%x!\n", reg);
6904 	}
6905 
6906 	return value;
6907 }
6908 
6909 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6910 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6911 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6912 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6913 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6914 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6915 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6916 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6917 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6918 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6919 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6920 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6921 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6922 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6923 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6924 	[13] = XDP_RSS_TYPE_NONE,
6925 	[14] = XDP_RSS_TYPE_NONE,
6926 	[15] = XDP_RSS_TYPE_NONE,
6927 };
6928 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6929 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6930 			   enum xdp_rss_hash_type *rss_type)
6931 {
6932 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6933 
6934 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6935 		return -ENODATA;
6936 
6937 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6938 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6939 
6940 	return 0;
6941 }
6942 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6943 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6944 {
6945 	const struct igc_xdp_buff *ctx = (void *)_ctx;
6946 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6947 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6948 
6949 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6950 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6951 
6952 		return 0;
6953 	}
6954 
6955 	return -ENODATA;
6956 }
6957 
6958 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6959 	.xmo_rx_hash			= igc_xdp_rx_hash,
6960 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6961 };
6962 
igc_qbv_scheduling_timer(struct hrtimer * timer)6963 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6964 {
6965 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6966 						   hrtimer);
6967 	unsigned long flags;
6968 	unsigned int i;
6969 
6970 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6971 
6972 	adapter->qbv_transition = true;
6973 	for (i = 0; i < adapter->num_tx_queues; i++) {
6974 		struct igc_ring *tx_ring = adapter->tx_ring[i];
6975 
6976 		if (tx_ring->admin_gate_closed) {
6977 			tx_ring->admin_gate_closed = false;
6978 			tx_ring->oper_gate_closed = true;
6979 		} else {
6980 			tx_ring->oper_gate_closed = false;
6981 		}
6982 	}
6983 	adapter->qbv_transition = false;
6984 
6985 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6986 
6987 	return HRTIMER_NORESTART;
6988 }
6989 
6990 /**
6991  * igc_probe - Device Initialization Routine
6992  * @pdev: PCI device information struct
6993  * @ent: entry in igc_pci_tbl
6994  *
6995  * Returns 0 on success, negative on failure
6996  *
6997  * igc_probe initializes an adapter identified by a pci_dev structure.
6998  * The OS initialization, configuring the adapter private structure,
6999  * and a hardware reset occur.
7000  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7001 static int igc_probe(struct pci_dev *pdev,
7002 		     const struct pci_device_id *ent)
7003 {
7004 	struct igc_adapter *adapter;
7005 	struct net_device *netdev;
7006 	struct igc_hw *hw;
7007 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7008 	int err;
7009 
7010 	err = pci_enable_device_mem(pdev);
7011 	if (err)
7012 		return err;
7013 
7014 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7015 	if (err) {
7016 		dev_err(&pdev->dev,
7017 			"No usable DMA configuration, aborting\n");
7018 		goto err_dma;
7019 	}
7020 
7021 	err = pci_request_mem_regions(pdev, igc_driver_name);
7022 	if (err)
7023 		goto err_pci_reg;
7024 
7025 	err = pci_enable_ptm(pdev, NULL);
7026 	if (err < 0)
7027 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7028 
7029 	pci_set_master(pdev);
7030 
7031 	err = -ENOMEM;
7032 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7033 				   IGC_MAX_TX_QUEUES);
7034 
7035 	if (!netdev)
7036 		goto err_alloc_etherdev;
7037 
7038 	SET_NETDEV_DEV(netdev, &pdev->dev);
7039 
7040 	pci_set_drvdata(pdev, netdev);
7041 	adapter = netdev_priv(netdev);
7042 	adapter->netdev = netdev;
7043 	adapter->pdev = pdev;
7044 	hw = &adapter->hw;
7045 	hw->back = adapter;
7046 	adapter->port_num = hw->bus.func;
7047 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7048 
7049 	err = pci_save_state(pdev);
7050 	if (err)
7051 		goto err_ioremap;
7052 
7053 	err = -EIO;
7054 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7055 				   pci_resource_len(pdev, 0));
7056 	if (!adapter->io_addr)
7057 		goto err_ioremap;
7058 
7059 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7060 	hw->hw_addr = adapter->io_addr;
7061 
7062 	netdev->netdev_ops = &igc_netdev_ops;
7063 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7064 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7065 	igc_ethtool_set_ops(netdev);
7066 	netdev->watchdog_timeo = 5 * HZ;
7067 
7068 	netdev->mem_start = pci_resource_start(pdev, 0);
7069 	netdev->mem_end = pci_resource_end(pdev, 0);
7070 
7071 	/* PCI config space info */
7072 	hw->vendor_id = pdev->vendor;
7073 	hw->device_id = pdev->device;
7074 	hw->revision_id = pdev->revision;
7075 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7076 	hw->subsystem_device_id = pdev->subsystem_device;
7077 
7078 	/* Copy the default MAC and PHY function pointers */
7079 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7080 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7081 
7082 	/* Initialize skew-specific constants */
7083 	err = ei->get_invariants(hw);
7084 	if (err)
7085 		goto err_sw_init;
7086 
7087 	/* Add supported features to the features list*/
7088 	netdev->features |= NETIF_F_SG;
7089 	netdev->features |= NETIF_F_TSO;
7090 	netdev->features |= NETIF_F_TSO6;
7091 	netdev->features |= NETIF_F_TSO_ECN;
7092 	netdev->features |= NETIF_F_RXHASH;
7093 	netdev->features |= NETIF_F_RXCSUM;
7094 	netdev->features |= NETIF_F_HW_CSUM;
7095 	netdev->features |= NETIF_F_SCTP_CRC;
7096 	netdev->features |= NETIF_F_HW_TC;
7097 
7098 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7099 				  NETIF_F_GSO_GRE_CSUM | \
7100 				  NETIF_F_GSO_IPXIP4 | \
7101 				  NETIF_F_GSO_IPXIP6 | \
7102 				  NETIF_F_GSO_UDP_TUNNEL | \
7103 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7104 
7105 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7106 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7107 
7108 	/* setup the private structure */
7109 	err = igc_sw_init(adapter);
7110 	if (err)
7111 		goto err_sw_init;
7112 
7113 	/* copy netdev features into list of user selectable features */
7114 	netdev->hw_features |= NETIF_F_NTUPLE;
7115 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7116 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7117 	netdev->hw_features |= netdev->features;
7118 
7119 	netdev->features |= NETIF_F_HIGHDMA;
7120 
7121 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7122 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7123 	netdev->hw_enc_features |= netdev->vlan_features;
7124 
7125 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7126 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7127 
7128 	/* MTU range: 68 - 9216 */
7129 	netdev->min_mtu = ETH_MIN_MTU;
7130 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7131 
7132 	/* before reading the NVM, reset the controller to put the device in a
7133 	 * known good starting state
7134 	 */
7135 	hw->mac.ops.reset_hw(hw);
7136 
7137 	if (igc_get_flash_presence_i225(hw)) {
7138 		if (hw->nvm.ops.validate(hw) < 0) {
7139 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7140 			err = -EIO;
7141 			goto err_eeprom;
7142 		}
7143 	}
7144 
7145 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7146 		/* copy the MAC address out of the NVM */
7147 		if (hw->mac.ops.read_mac_addr(hw))
7148 			dev_err(&pdev->dev, "NVM Read Error\n");
7149 	}
7150 
7151 	eth_hw_addr_set(netdev, hw->mac.addr);
7152 
7153 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7154 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7155 		err = -EIO;
7156 		goto err_eeprom;
7157 	}
7158 
7159 	/* configure RXPBSIZE and TXPBSIZE */
7160 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7161 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7162 
7163 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7164 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7165 
7166 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7167 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7168 
7169 	hrtimer_setup(&adapter->hrtimer, &igc_qbv_scheduling_timer, CLOCK_MONOTONIC,
7170 		      HRTIMER_MODE_REL);
7171 
7172 	/* Initialize link properties that are user-changeable */
7173 	adapter->fc_autoneg = true;
7174 	hw->phy.autoneg_advertised = 0xaf;
7175 
7176 	hw->fc.requested_mode = igc_fc_default;
7177 	hw->fc.current_mode = igc_fc_default;
7178 
7179 	/* By default, support wake on port A */
7180 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7181 
7182 	/* initialize the wol settings based on the eeprom settings */
7183 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7184 		adapter->wol |= IGC_WUFC_MAG;
7185 
7186 	device_set_wakeup_enable(&adapter->pdev->dev,
7187 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7188 
7189 	igc_ptp_init(adapter);
7190 
7191 	igc_tsn_clear_schedule(adapter);
7192 
7193 	/* reset the hardware with the new settings */
7194 	igc_reset(adapter);
7195 
7196 	/* let the f/w know that the h/w is now under the control of the
7197 	 * driver.
7198 	 */
7199 	igc_get_hw_control(adapter);
7200 
7201 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7202 	err = register_netdev(netdev);
7203 	if (err)
7204 		goto err_register;
7205 
7206 	 /* carrier off reporting is important to ethtool even BEFORE open */
7207 	netif_carrier_off(netdev);
7208 
7209 	/* Check if Media Autosense is enabled */
7210 	adapter->ei = *ei;
7211 
7212 	/* print pcie link status and MAC address */
7213 	pcie_print_link_status(pdev);
7214 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7215 
7216 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7217 	/* Disable EEE for internal PHY devices */
7218 	hw->dev_spec._base.eee_enable = false;
7219 	adapter->flags &= ~IGC_FLAG_EEE;
7220 	igc_set_eee_i225(hw, false, false, false);
7221 
7222 	pm_runtime_put_noidle(&pdev->dev);
7223 
7224 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7225 		err = igc_led_setup(adapter);
7226 		if (err)
7227 			goto err_register;
7228 	}
7229 
7230 	return 0;
7231 
7232 err_register:
7233 	igc_release_hw_control(adapter);
7234 err_eeprom:
7235 	if (!igc_check_reset_block(hw))
7236 		igc_reset_phy(hw);
7237 err_sw_init:
7238 	igc_clear_interrupt_scheme(adapter);
7239 	iounmap(adapter->io_addr);
7240 err_ioremap:
7241 	free_netdev(netdev);
7242 err_alloc_etherdev:
7243 	pci_release_mem_regions(pdev);
7244 err_pci_reg:
7245 err_dma:
7246 	pci_disable_device(pdev);
7247 	return err;
7248 }
7249 
7250 /**
7251  * igc_remove - Device Removal Routine
7252  * @pdev: PCI device information struct
7253  *
7254  * igc_remove is called by the PCI subsystem to alert the driver
7255  * that it should release a PCI device.  This could be caused by a
7256  * Hot-Plug event, or because the driver is going to be removed from
7257  * memory.
7258  */
igc_remove(struct pci_dev * pdev)7259 static void igc_remove(struct pci_dev *pdev)
7260 {
7261 	struct net_device *netdev = pci_get_drvdata(pdev);
7262 	struct igc_adapter *adapter = netdev_priv(netdev);
7263 
7264 	pm_runtime_get_noresume(&pdev->dev);
7265 
7266 	igc_flush_nfc_rules(adapter);
7267 
7268 	igc_ptp_stop(adapter);
7269 
7270 	pci_disable_ptm(pdev);
7271 	pci_clear_master(pdev);
7272 
7273 	set_bit(__IGC_DOWN, &adapter->state);
7274 
7275 	del_timer_sync(&adapter->watchdog_timer);
7276 	del_timer_sync(&adapter->phy_info_timer);
7277 
7278 	cancel_work_sync(&adapter->reset_task);
7279 	cancel_work_sync(&adapter->watchdog_task);
7280 	hrtimer_cancel(&adapter->hrtimer);
7281 
7282 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7283 		igc_led_free(adapter);
7284 
7285 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7286 	 * would have already happened in close and is redundant.
7287 	 */
7288 	igc_release_hw_control(adapter);
7289 	unregister_netdev(netdev);
7290 
7291 	igc_clear_interrupt_scheme(adapter);
7292 	pci_iounmap(pdev, adapter->io_addr);
7293 	pci_release_mem_regions(pdev);
7294 
7295 	free_netdev(netdev);
7296 
7297 	pci_disable_device(pdev);
7298 }
7299 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7300 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7301 			  bool runtime)
7302 {
7303 	struct net_device *netdev = pci_get_drvdata(pdev);
7304 	struct igc_adapter *adapter = netdev_priv(netdev);
7305 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7306 	struct igc_hw *hw = &adapter->hw;
7307 	u32 ctrl, rctl, status;
7308 	bool wake;
7309 
7310 	rtnl_lock();
7311 	netif_device_detach(netdev);
7312 
7313 	if (netif_running(netdev))
7314 		__igc_close(netdev, true);
7315 
7316 	igc_ptp_suspend(adapter);
7317 
7318 	igc_clear_interrupt_scheme(adapter);
7319 	rtnl_unlock();
7320 
7321 	status = rd32(IGC_STATUS);
7322 	if (status & IGC_STATUS_LU)
7323 		wufc &= ~IGC_WUFC_LNKC;
7324 
7325 	if (wufc) {
7326 		igc_setup_rctl(adapter);
7327 		igc_set_rx_mode(netdev);
7328 
7329 		/* turn on all-multi mode if wake on multicast is enabled */
7330 		if (wufc & IGC_WUFC_MC) {
7331 			rctl = rd32(IGC_RCTL);
7332 			rctl |= IGC_RCTL_MPE;
7333 			wr32(IGC_RCTL, rctl);
7334 		}
7335 
7336 		ctrl = rd32(IGC_CTRL);
7337 		ctrl |= IGC_CTRL_ADVD3WUC;
7338 		wr32(IGC_CTRL, ctrl);
7339 
7340 		/* Allow time for pending master requests to run */
7341 		igc_disable_pcie_master(hw);
7342 
7343 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7344 		wr32(IGC_WUFC, wufc);
7345 	} else {
7346 		wr32(IGC_WUC, 0);
7347 		wr32(IGC_WUFC, 0);
7348 	}
7349 
7350 	wake = wufc || adapter->en_mng_pt;
7351 	if (!wake)
7352 		igc_power_down_phy_copper_base(&adapter->hw);
7353 	else
7354 		igc_power_up_link(adapter);
7355 
7356 	if (enable_wake)
7357 		*enable_wake = wake;
7358 
7359 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7360 	 * would have already happened in close and is redundant.
7361 	 */
7362 	igc_release_hw_control(adapter);
7363 
7364 	pci_disable_device(pdev);
7365 
7366 	return 0;
7367 }
7368 
igc_runtime_suspend(struct device * dev)7369 static int igc_runtime_suspend(struct device *dev)
7370 {
7371 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7372 }
7373 
igc_deliver_wake_packet(struct net_device * netdev)7374 static void igc_deliver_wake_packet(struct net_device *netdev)
7375 {
7376 	struct igc_adapter *adapter = netdev_priv(netdev);
7377 	struct igc_hw *hw = &adapter->hw;
7378 	struct sk_buff *skb;
7379 	u32 wupl;
7380 
7381 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7382 
7383 	/* WUPM stores only the first 128 bytes of the wake packet.
7384 	 * Read the packet only if we have the whole thing.
7385 	 */
7386 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7387 		return;
7388 
7389 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7390 	if (!skb)
7391 		return;
7392 
7393 	skb_put(skb, wupl);
7394 
7395 	/* Ensure reads are 32-bit aligned */
7396 	wupl = roundup(wupl, 4);
7397 
7398 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7399 
7400 	skb->protocol = eth_type_trans(skb, netdev);
7401 	netif_rx(skb);
7402 }
7403 
__igc_resume(struct device * dev,bool rpm)7404 static int __igc_resume(struct device *dev, bool rpm)
7405 {
7406 	struct pci_dev *pdev = to_pci_dev(dev);
7407 	struct net_device *netdev = pci_get_drvdata(pdev);
7408 	struct igc_adapter *adapter = netdev_priv(netdev);
7409 	struct igc_hw *hw = &adapter->hw;
7410 	u32 err, val;
7411 
7412 	pci_set_power_state(pdev, PCI_D0);
7413 	pci_restore_state(pdev);
7414 	pci_save_state(pdev);
7415 
7416 	if (!pci_device_is_present(pdev))
7417 		return -ENODEV;
7418 	err = pci_enable_device_mem(pdev);
7419 	if (err) {
7420 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7421 		return err;
7422 	}
7423 	pci_set_master(pdev);
7424 
7425 	pci_enable_wake(pdev, PCI_D3hot, 0);
7426 	pci_enable_wake(pdev, PCI_D3cold, 0);
7427 
7428 	if (igc_init_interrupt_scheme(adapter, true)) {
7429 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7430 		return -ENOMEM;
7431 	}
7432 
7433 	igc_reset(adapter);
7434 
7435 	/* let the f/w know that the h/w is now under the control of the
7436 	 * driver.
7437 	 */
7438 	igc_get_hw_control(adapter);
7439 
7440 	val = rd32(IGC_WUS);
7441 	if (val & WAKE_PKT_WUS)
7442 		igc_deliver_wake_packet(netdev);
7443 
7444 	wr32(IGC_WUS, ~0);
7445 
7446 	if (netif_running(netdev)) {
7447 		if (!rpm)
7448 			rtnl_lock();
7449 		err = __igc_open(netdev, true);
7450 		if (!rpm)
7451 			rtnl_unlock();
7452 		if (!err)
7453 			netif_device_attach(netdev);
7454 	}
7455 
7456 	return err;
7457 }
7458 
igc_resume(struct device * dev)7459 static int igc_resume(struct device *dev)
7460 {
7461 	return __igc_resume(dev, false);
7462 }
7463 
igc_runtime_resume(struct device * dev)7464 static int igc_runtime_resume(struct device *dev)
7465 {
7466 	return __igc_resume(dev, true);
7467 }
7468 
igc_suspend(struct device * dev)7469 static int igc_suspend(struct device *dev)
7470 {
7471 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7472 }
7473 
igc_runtime_idle(struct device * dev)7474 static int __maybe_unused igc_runtime_idle(struct device *dev)
7475 {
7476 	struct net_device *netdev = dev_get_drvdata(dev);
7477 	struct igc_adapter *adapter = netdev_priv(netdev);
7478 
7479 	if (!igc_has_link(adapter))
7480 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7481 
7482 	return -EBUSY;
7483 }
7484 
igc_shutdown(struct pci_dev * pdev)7485 static void igc_shutdown(struct pci_dev *pdev)
7486 {
7487 	bool wake;
7488 
7489 	__igc_shutdown(pdev, &wake, 0);
7490 
7491 	if (system_state == SYSTEM_POWER_OFF) {
7492 		pci_wake_from_d3(pdev, wake);
7493 		pci_set_power_state(pdev, PCI_D3hot);
7494 	}
7495 }
7496 
7497 /**
7498  *  igc_io_error_detected - called when PCI error is detected
7499  *  @pdev: Pointer to PCI device
7500  *  @state: The current PCI connection state
7501  *
7502  *  This function is called after a PCI bus error affecting
7503  *  this device has been detected.
7504  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7505 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7506 					      pci_channel_state_t state)
7507 {
7508 	struct net_device *netdev = pci_get_drvdata(pdev);
7509 	struct igc_adapter *adapter = netdev_priv(netdev);
7510 
7511 	rtnl_lock();
7512 	netif_device_detach(netdev);
7513 
7514 	if (state == pci_channel_io_perm_failure) {
7515 		rtnl_unlock();
7516 		return PCI_ERS_RESULT_DISCONNECT;
7517 	}
7518 
7519 	if (netif_running(netdev))
7520 		igc_down(adapter);
7521 	pci_disable_device(pdev);
7522 	rtnl_unlock();
7523 
7524 	/* Request a slot reset. */
7525 	return PCI_ERS_RESULT_NEED_RESET;
7526 }
7527 
7528 /**
7529  *  igc_io_slot_reset - called after the PCI bus has been reset.
7530  *  @pdev: Pointer to PCI device
7531  *
7532  *  Restart the card from scratch, as if from a cold-boot. Implementation
7533  *  resembles the first-half of the __igc_resume routine.
7534  **/
igc_io_slot_reset(struct pci_dev * pdev)7535 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7536 {
7537 	struct net_device *netdev = pci_get_drvdata(pdev);
7538 	struct igc_adapter *adapter = netdev_priv(netdev);
7539 	struct igc_hw *hw = &adapter->hw;
7540 	pci_ers_result_t result;
7541 
7542 	if (pci_enable_device_mem(pdev)) {
7543 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7544 		result = PCI_ERS_RESULT_DISCONNECT;
7545 	} else {
7546 		pci_set_master(pdev);
7547 		pci_restore_state(pdev);
7548 		pci_save_state(pdev);
7549 
7550 		pci_enable_wake(pdev, PCI_D3hot, 0);
7551 		pci_enable_wake(pdev, PCI_D3cold, 0);
7552 
7553 		/* In case of PCI error, adapter loses its HW address
7554 		 * so we should re-assign it here.
7555 		 */
7556 		hw->hw_addr = adapter->io_addr;
7557 
7558 		igc_reset(adapter);
7559 		wr32(IGC_WUS, ~0);
7560 		result = PCI_ERS_RESULT_RECOVERED;
7561 	}
7562 
7563 	return result;
7564 }
7565 
7566 /**
7567  *  igc_io_resume - called when traffic can start to flow again.
7568  *  @pdev: Pointer to PCI device
7569  *
7570  *  This callback is called when the error recovery driver tells us that
7571  *  its OK to resume normal operation. Implementation resembles the
7572  *  second-half of the __igc_resume routine.
7573  */
igc_io_resume(struct pci_dev * pdev)7574 static void igc_io_resume(struct pci_dev *pdev)
7575 {
7576 	struct net_device *netdev = pci_get_drvdata(pdev);
7577 	struct igc_adapter *adapter = netdev_priv(netdev);
7578 
7579 	rtnl_lock();
7580 	if (netif_running(netdev)) {
7581 		if (igc_open(netdev)) {
7582 			rtnl_unlock();
7583 			netdev_err(netdev, "igc_open failed after reset\n");
7584 			return;
7585 		}
7586 	}
7587 
7588 	netif_device_attach(netdev);
7589 
7590 	/* let the f/w know that the h/w is now under the control of the
7591 	 * driver.
7592 	 */
7593 	igc_get_hw_control(adapter);
7594 	rtnl_unlock();
7595 }
7596 
7597 static const struct pci_error_handlers igc_err_handler = {
7598 	.error_detected = igc_io_error_detected,
7599 	.slot_reset = igc_io_slot_reset,
7600 	.resume = igc_io_resume,
7601 };
7602 
7603 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7604 			  igc_runtime_suspend, igc_runtime_resume,
7605 			  igc_runtime_idle);
7606 
7607 static struct pci_driver igc_driver = {
7608 	.name     = igc_driver_name,
7609 	.id_table = igc_pci_tbl,
7610 	.probe    = igc_probe,
7611 	.remove   = igc_remove,
7612 	.driver.pm = pm_ptr(&igc_pm_ops),
7613 	.shutdown = igc_shutdown,
7614 	.err_handler = &igc_err_handler,
7615 };
7616 
7617 /**
7618  * igc_reinit_queues - return error
7619  * @adapter: pointer to adapter structure
7620  */
igc_reinit_queues(struct igc_adapter * adapter)7621 int igc_reinit_queues(struct igc_adapter *adapter)
7622 {
7623 	struct net_device *netdev = adapter->netdev;
7624 	int err = 0;
7625 
7626 	if (netif_running(netdev))
7627 		igc_close(netdev);
7628 
7629 	igc_reset_interrupt_capability(adapter);
7630 
7631 	if (igc_init_interrupt_scheme(adapter, true)) {
7632 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7633 		return -ENOMEM;
7634 	}
7635 
7636 	if (netif_running(netdev))
7637 		err = igc_open(netdev);
7638 
7639 	return err;
7640 }
7641 
7642 /**
7643  * igc_get_hw_dev - return device
7644  * @hw: pointer to hardware structure
7645  *
7646  * used by hardware layer to print debugging information
7647  */
igc_get_hw_dev(struct igc_hw * hw)7648 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7649 {
7650 	struct igc_adapter *adapter = hw->back;
7651 
7652 	return adapter->netdev;
7653 }
7654 
igc_disable_rx_ring_hw(struct igc_ring * ring)7655 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7656 {
7657 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7658 	u8 idx = ring->reg_idx;
7659 	u32 rxdctl;
7660 
7661 	rxdctl = rd32(IGC_RXDCTL(idx));
7662 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7663 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7664 	wr32(IGC_RXDCTL(idx), rxdctl);
7665 }
7666 
igc_disable_rx_ring(struct igc_ring * ring)7667 void igc_disable_rx_ring(struct igc_ring *ring)
7668 {
7669 	igc_disable_rx_ring_hw(ring);
7670 	igc_clean_rx_ring(ring);
7671 }
7672 
igc_enable_rx_ring(struct igc_ring * ring)7673 void igc_enable_rx_ring(struct igc_ring *ring)
7674 {
7675 	struct igc_adapter *adapter = ring->q_vector->adapter;
7676 
7677 	igc_configure_rx_ring(adapter, ring);
7678 
7679 	if (ring->xsk_pool)
7680 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7681 	else
7682 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7683 }
7684 
igc_disable_tx_ring(struct igc_ring * ring)7685 void igc_disable_tx_ring(struct igc_ring *ring)
7686 {
7687 	igc_disable_tx_ring_hw(ring);
7688 	igc_clean_tx_ring(ring);
7689 }
7690 
igc_enable_tx_ring(struct igc_ring * ring)7691 void igc_enable_tx_ring(struct igc_ring *ring)
7692 {
7693 	struct igc_adapter *adapter = ring->q_vector->adapter;
7694 
7695 	igc_configure_tx_ring(adapter, ring);
7696 }
7697 
7698 /**
7699  * igc_init_module - Driver Registration Routine
7700  *
7701  * igc_init_module is the first routine called when the driver is
7702  * loaded. All it does is register with the PCI subsystem.
7703  */
igc_init_module(void)7704 static int __init igc_init_module(void)
7705 {
7706 	int ret;
7707 
7708 	pr_info("%s\n", igc_driver_string);
7709 	pr_info("%s\n", igc_copyright);
7710 
7711 	ret = pci_register_driver(&igc_driver);
7712 	return ret;
7713 }
7714 
7715 module_init(igc_init_module);
7716 
7717 /**
7718  * igc_exit_module - Driver Exit Cleanup Routine
7719  *
7720  * igc_exit_module is called just before the driver is removed
7721  * from memory.
7722  */
igc_exit_module(void)7723 static void __exit igc_exit_module(void)
7724 {
7725 	pci_unregister_driver(&igc_driver);
7726 }
7727 
7728 module_exit(igc_exit_module);
7729 /* igc_main.c */
7730