1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1096 netdev_name(ring->netdev));
1097 return -ENOMEM;
1098 }
1099
1100 buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1101 buffer->skb = skb;
1102 buffer->protocol = 0;
1103 buffer->bytecount = skb->len;
1104 buffer->gso_segs = 1;
1105 buffer->time_stamp = jiffies;
1106 dma_unmap_len_set(buffer, len, skb->len);
1107 dma_unmap_addr_set(buffer, dma, dma);
1108
1109 return 0;
1110 }
1111
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1112 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1113 struct sk_buff *skb,
1114 struct igc_tx_buffer *first)
1115 {
1116 union igc_adv_tx_desc *desc;
1117 u32 cmd_type, olinfo_status;
1118
1119 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1120 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1121 first->bytecount;
1122 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1123
1124 desc = IGC_TX_DESC(ring, ring->next_to_use);
1125 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1126 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1127 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1128
1129 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1130
1131 first->next_to_watch = desc;
1132
1133 ring->next_to_use++;
1134 if (ring->next_to_use == ring->count)
1135 ring->next_to_use = 0;
1136 }
1137
1138 #define IGC_EMPTY_FRAME_SIZE 60
1139
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1140 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1141 __le32 launch_time, bool first_flag,
1142 u32 vlan_macip_lens, u32 type_tucmd,
1143 u32 mss_l4len_idx)
1144 {
1145 struct igc_adv_tx_context_desc *context_desc;
1146 u16 i = tx_ring->next_to_use;
1147
1148 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1149
1150 i++;
1151 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1152
1153 /* set bits to identify this as an advanced context descriptor */
1154 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1155
1156 /* For i225, context index must be unique per ring. */
1157 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1158 mss_l4len_idx |= tx_ring->reg_idx << 4;
1159
1160 if (first_flag)
1161 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1162
1163 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1164 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1165 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1166 context_desc->launch_time = launch_time;
1167 }
1168
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1169 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1170 __le32 launch_time, bool first_flag)
1171 {
1172 struct sk_buff *skb = first->skb;
1173 u32 vlan_macip_lens = 0;
1174 u32 type_tucmd = 0;
1175
1176 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1177 csum_failed:
1178 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1179 !tx_ring->launchtime_enable)
1180 return;
1181 goto no_csum;
1182 }
1183
1184 switch (skb->csum_offset) {
1185 case offsetof(struct tcphdr, check):
1186 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1187 fallthrough;
1188 case offsetof(struct udphdr, check):
1189 break;
1190 case offsetof(struct sctphdr, checksum):
1191 /* validate that this is actually an SCTP request */
1192 if (skb_csum_is_sctp(skb)) {
1193 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1194 break;
1195 }
1196 fallthrough;
1197 default:
1198 skb_checksum_help(skb);
1199 goto csum_failed;
1200 }
1201
1202 /* update TX checksum flag */
1203 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1204 vlan_macip_lens = skb_checksum_start_offset(skb) -
1205 skb_network_offset(skb);
1206 no_csum:
1207 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1208 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1209
1210 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1211 vlan_macip_lens, type_tucmd, 0);
1212 }
1213
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1214 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 struct net_device *netdev = tx_ring->netdev;
1217
1218 netif_stop_subqueue(netdev, tx_ring->queue_index);
1219
1220 /* memory barriier comment */
1221 smp_mb();
1222
1223 /* We need to check again in a case another CPU has just
1224 * made room available.
1225 */
1226 if (igc_desc_unused(tx_ring) < size)
1227 return -EBUSY;
1228
1229 /* A reprieve! */
1230 netif_wake_subqueue(netdev, tx_ring->queue_index);
1231
1232 u64_stats_update_begin(&tx_ring->tx_syncp2);
1233 tx_ring->tx_stats.restart_queue2++;
1234 u64_stats_update_end(&tx_ring->tx_syncp2);
1235
1236 return 0;
1237 }
1238
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1239 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1240 {
1241 if (igc_desc_unused(tx_ring) >= size)
1242 return 0;
1243 return __igc_maybe_stop_tx(tx_ring, size);
1244 }
1245
1246 #define IGC_SET_FLAG(_input, _flag, _result) \
1247 (((_flag) <= (_result)) ? \
1248 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1249 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1250
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1251 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1252 {
1253 /* set type for advanced descriptor with frame checksum insertion */
1254 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1255 IGC_ADVTXD_DCMD_DEXT |
1256 IGC_ADVTXD_DCMD_IFCS;
1257
1258 /* set HW vlan bit if vlan is present */
1259 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1260 IGC_ADVTXD_DCMD_VLE);
1261
1262 /* set segmentation bits for TSO */
1263 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1264 (IGC_ADVTXD_DCMD_TSE));
1265
1266 /* set timestamp bit if present, will select the register set
1267 * based on the _TSTAMP(_X) bit.
1268 */
1269 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1270 (IGC_ADVTXD_MAC_TSTAMP));
1271
1272 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1273 (IGC_ADVTXD_TSTAMP_REG_1));
1274
1275 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1276 (IGC_ADVTXD_TSTAMP_REG_2));
1277
1278 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1279 (IGC_ADVTXD_TSTAMP_REG_3));
1280
1281 /* insert frame checksum */
1282 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1283
1284 return cmd_type;
1285 }
1286
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1287 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1288 union igc_adv_tx_desc *tx_desc,
1289 u32 tx_flags, unsigned int paylen)
1290 {
1291 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1292
1293 /* insert L4 checksum */
1294 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1295 (IGC_TXD_POPTS_TXSM << 8));
1296
1297 /* insert IPv4 checksum */
1298 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1299 (IGC_TXD_POPTS_IXSM << 8));
1300
1301 /* Use the second timer (free running, in general) for the timestamp */
1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1303 IGC_TXD_PTP2_TIMER_1);
1304
1305 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1306 }
1307
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1308 static int igc_tx_map(struct igc_ring *tx_ring,
1309 struct igc_tx_buffer *first,
1310 const u8 hdr_len)
1311 {
1312 struct sk_buff *skb = first->skb;
1313 struct igc_tx_buffer *tx_buffer;
1314 union igc_adv_tx_desc *tx_desc;
1315 u32 tx_flags = first->tx_flags;
1316 skb_frag_t *frag;
1317 u16 i = tx_ring->next_to_use;
1318 unsigned int data_len, size;
1319 dma_addr_t dma;
1320 u32 cmd_type;
1321
1322 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1323 tx_desc = IGC_TX_DESC(tx_ring, i);
1324
1325 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1326
1327 size = skb_headlen(skb);
1328 data_len = skb->data_len;
1329
1330 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1331
1332 tx_buffer = first;
1333
1334 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1335 if (dma_mapping_error(tx_ring->dev, dma))
1336 goto dma_error;
1337
1338 /* record length, and DMA address */
1339 dma_unmap_len_set(tx_buffer, len, size);
1340 dma_unmap_addr_set(tx_buffer, dma, dma);
1341
1342 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1343
1344 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1345 tx_desc->read.cmd_type_len =
1346 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1347
1348 i++;
1349 tx_desc++;
1350 if (i == tx_ring->count) {
1351 tx_desc = IGC_TX_DESC(tx_ring, 0);
1352 i = 0;
1353 }
1354 tx_desc->read.olinfo_status = 0;
1355
1356 dma += IGC_MAX_DATA_PER_TXD;
1357 size -= IGC_MAX_DATA_PER_TXD;
1358
1359 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1360 }
1361
1362 if (likely(!data_len))
1363 break;
1364
1365 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1366
1367 i++;
1368 tx_desc++;
1369 if (i == tx_ring->count) {
1370 tx_desc = IGC_TX_DESC(tx_ring, 0);
1371 i = 0;
1372 }
1373 tx_desc->read.olinfo_status = 0;
1374
1375 size = skb_frag_size(frag);
1376 data_len -= size;
1377
1378 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1379 size, DMA_TO_DEVICE);
1380
1381 tx_buffer = &tx_ring->tx_buffer_info[i];
1382 }
1383
1384 /* write last descriptor with RS and EOP bits */
1385 cmd_type |= size | IGC_TXD_DCMD;
1386 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1387
1388 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1389
1390 /* set the timestamp */
1391 first->time_stamp = jiffies;
1392
1393 skb_tx_timestamp(skb);
1394
1395 /* Force memory writes to complete before letting h/w know there
1396 * are new descriptors to fetch. (Only applicable for weak-ordered
1397 * memory model archs, such as IA-64).
1398 *
1399 * We also need this memory barrier to make certain all of the
1400 * status bits have been updated before next_to_watch is written.
1401 */
1402 wmb();
1403
1404 /* set next_to_watch value indicating a packet is present */
1405 first->next_to_watch = tx_desc;
1406
1407 i++;
1408 if (i == tx_ring->count)
1409 i = 0;
1410
1411 tx_ring->next_to_use = i;
1412
1413 /* Make sure there is space in the ring for the next send. */
1414 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1415
1416 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1417 writel(i, tx_ring->tail);
1418 }
1419
1420 return 0;
1421 dma_error:
1422 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1423 tx_buffer = &tx_ring->tx_buffer_info[i];
1424
1425 /* clear dma mappings for failed tx_buffer_info map */
1426 while (tx_buffer != first) {
1427 if (dma_unmap_len(tx_buffer, len))
1428 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1429
1430 if (i-- == 0)
1431 i += tx_ring->count;
1432 tx_buffer = &tx_ring->tx_buffer_info[i];
1433 }
1434
1435 if (dma_unmap_len(tx_buffer, len))
1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438 dev_kfree_skb_any(tx_buffer->skb);
1439 tx_buffer->skb = NULL;
1440
1441 tx_ring->next_to_use = i;
1442
1443 return -1;
1444 }
1445
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1446 static int igc_tso(struct igc_ring *tx_ring,
1447 struct igc_tx_buffer *first,
1448 __le32 launch_time, bool first_flag,
1449 u8 *hdr_len)
1450 {
1451 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1452 struct sk_buff *skb = first->skb;
1453 union {
1454 struct iphdr *v4;
1455 struct ipv6hdr *v6;
1456 unsigned char *hdr;
1457 } ip;
1458 union {
1459 struct tcphdr *tcp;
1460 struct udphdr *udp;
1461 unsigned char *hdr;
1462 } l4;
1463 u32 paylen, l4_offset;
1464 int err;
1465
1466 if (skb->ip_summed != CHECKSUM_PARTIAL)
1467 return 0;
1468
1469 if (!skb_is_gso(skb))
1470 return 0;
1471
1472 err = skb_cow_head(skb, 0);
1473 if (err < 0)
1474 return err;
1475
1476 ip.hdr = skb_network_header(skb);
1477 l4.hdr = skb_checksum_start(skb);
1478
1479 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1480 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1481
1482 /* initialize outer IP header fields */
1483 if (ip.v4->version == 4) {
1484 unsigned char *csum_start = skb_checksum_start(skb);
1485 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1486
1487 /* IP header will have to cancel out any data that
1488 * is not a part of the outer IP header
1489 */
1490 ip.v4->check = csum_fold(csum_partial(trans_start,
1491 csum_start - trans_start,
1492 0));
1493 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1494
1495 ip.v4->tot_len = 0;
1496 first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 IGC_TX_FLAGS_CSUM |
1498 IGC_TX_FLAGS_IPV4;
1499 } else {
1500 ip.v6->payload_len = 0;
1501 first->tx_flags |= IGC_TX_FLAGS_TSO |
1502 IGC_TX_FLAGS_CSUM;
1503 }
1504
1505 /* determine offset of inner transport header */
1506 l4_offset = l4.hdr - skb->data;
1507
1508 /* remove payload length from inner checksum */
1509 paylen = skb->len - l4_offset;
1510 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1511 /* compute length of segmentation header */
1512 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1513 csum_replace_by_diff(&l4.tcp->check,
1514 (__force __wsum)htonl(paylen));
1515 } else {
1516 /* compute length of segmentation header */
1517 *hdr_len = sizeof(*l4.udp) + l4_offset;
1518 csum_replace_by_diff(&l4.udp->check,
1519 (__force __wsum)htonl(paylen));
1520 }
1521
1522 /* update gso size and bytecount with header size */
1523 first->gso_segs = skb_shinfo(skb)->gso_segs;
1524 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1525
1526 /* MSS L4LEN IDX */
1527 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1528 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1529
1530 /* VLAN MACLEN IPLEN */
1531 vlan_macip_lens = l4.hdr - ip.hdr;
1532 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1533 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1534
1535 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1536 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1537
1538 return 1;
1539 }
1540
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1541 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1542 {
1543 int i;
1544
1545 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1546 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1547
1548 if (tstamp->skb)
1549 continue;
1550
1551 tstamp->skb = skb_get(skb);
1552 tstamp->start = jiffies;
1553 *flags = tstamp->flags;
1554
1555 return true;
1556 }
1557
1558 return false;
1559 }
1560
igc_insert_empty_frame(struct igc_ring * tx_ring)1561 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1562 {
1563 struct igc_tx_buffer *empty_info;
1564 struct sk_buff *empty_skb;
1565 void *data;
1566 int ret;
1567
1568 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1569 empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1570 if (unlikely(!empty_skb)) {
1571 net_err_ratelimited("%s: skb alloc error for empty frame\n",
1572 netdev_name(tx_ring->netdev));
1573 return -ENOMEM;
1574 }
1575
1576 data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1577 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1578
1579 /* Prepare DMA mapping and Tx buffer information */
1580 ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1581 if (unlikely(ret)) {
1582 dev_kfree_skb_any(empty_skb);
1583 return ret;
1584 }
1585
1586 /* Prepare advanced context descriptor for empty packet */
1587 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1588
1589 /* Prepare advanced data descriptor for empty packet */
1590 igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1591
1592 return 0;
1593 }
1594
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1595 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1596 struct igc_ring *tx_ring)
1597 {
1598 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1599 bool first_flag = false, insert_empty = false;
1600 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1601 __be16 protocol = vlan_get_protocol(skb);
1602 struct igc_tx_buffer *first;
1603 __le32 launch_time = 0;
1604 u32 tx_flags = 0;
1605 unsigned short f;
1606 ktime_t txtime;
1607 u8 hdr_len = 0;
1608 int tso = 0;
1609
1610 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1611 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1612 * + 2 desc gap to keep tail from touching head,
1613 * + 1 desc for context descriptor,
1614 * + 2 desc for inserting an empty packet for launch time,
1615 * otherwise try next time
1616 */
1617 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1618 count += TXD_USE_COUNT(skb_frag_size(
1619 &skb_shinfo(skb)->frags[f]));
1620
1621 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1622 /* this is a hard error */
1623 return NETDEV_TX_BUSY;
1624 }
1625
1626 if (!tx_ring->launchtime_enable)
1627 goto done;
1628
1629 txtime = skb->tstamp;
1630 skb->tstamp = ktime_set(0, 0);
1631 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1632
1633 if (insert_empty) {
1634 /* Reset the launch time if the required empty frame fails to
1635 * be inserted. However, this packet is not dropped, so it
1636 * "dirties" the current Qbv cycle. This ensures that the
1637 * upcoming packet, which is scheduled in the next Qbv cycle,
1638 * does not require an empty frame. This way, the launch time
1639 * continues to function correctly despite the current failure
1640 * to insert the empty frame.
1641 */
1642 if (igc_insert_empty_frame(tx_ring))
1643 launch_time = 0;
1644 }
1645
1646 done:
1647 /* record the location of the first descriptor for this packet */
1648 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1649 first->type = IGC_TX_BUFFER_TYPE_SKB;
1650 first->skb = skb;
1651 first->bytecount = skb->len;
1652 first->gso_segs = 1;
1653
1654 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1655 goto out_drop;
1656
1657 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1658 adapter->stats.txdrop++;
1659 goto out_drop;
1660 }
1661
1662 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1663 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1664 unsigned long flags;
1665 u32 tstamp_flags;
1666
1667 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1668 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1669 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1670 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1671 if (skb->sk &&
1672 READ_ONCE(skb->sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC)
1673 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1674 } else {
1675 adapter->tx_hwtstamp_skipped++;
1676 }
1677
1678 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1679 }
1680
1681 if (skb_vlan_tag_present(skb)) {
1682 tx_flags |= IGC_TX_FLAGS_VLAN;
1683 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1684 }
1685
1686 /* record initial flags and protocol */
1687 first->tx_flags = tx_flags;
1688 first->protocol = protocol;
1689
1690 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1691 if (tso < 0)
1692 goto out_drop;
1693 else if (!tso)
1694 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1695
1696 igc_tx_map(tx_ring, first, hdr_len);
1697
1698 return NETDEV_TX_OK;
1699
1700 out_drop:
1701 dev_kfree_skb_any(first->skb);
1702 first->skb = NULL;
1703
1704 return NETDEV_TX_OK;
1705 }
1706
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1707 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1708 struct sk_buff *skb)
1709 {
1710 unsigned int r_idx = skb->queue_mapping;
1711
1712 if (r_idx >= adapter->num_tx_queues)
1713 r_idx = r_idx % adapter->num_tx_queues;
1714
1715 return adapter->tx_ring[r_idx];
1716 }
1717
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1718 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1719 struct net_device *netdev)
1720 {
1721 struct igc_adapter *adapter = netdev_priv(netdev);
1722
1723 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1724 * in order to meet this minimum size requirement.
1725 */
1726 if (skb->len < 17) {
1727 if (skb_padto(skb, 17))
1728 return NETDEV_TX_OK;
1729 skb->len = 17;
1730 }
1731
1732 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1733 }
1734
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1735 static void igc_rx_checksum(struct igc_ring *ring,
1736 union igc_adv_rx_desc *rx_desc,
1737 struct sk_buff *skb)
1738 {
1739 skb_checksum_none_assert(skb);
1740
1741 /* Ignore Checksum bit is set */
1742 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1743 return;
1744
1745 /* Rx checksum disabled via ethtool */
1746 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1747 return;
1748
1749 /* TCP/UDP checksum error bit is set */
1750 if (igc_test_staterr(rx_desc,
1751 IGC_RXDEXT_STATERR_L4E |
1752 IGC_RXDEXT_STATERR_IPE)) {
1753 /* work around errata with sctp packets where the TCPE aka
1754 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1755 * packets (aka let the stack check the crc32c)
1756 */
1757 if (!(skb->len == 60 &&
1758 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1759 u64_stats_update_begin(&ring->rx_syncp);
1760 ring->rx_stats.csum_err++;
1761 u64_stats_update_end(&ring->rx_syncp);
1762 }
1763 /* let the stack verify checksum errors */
1764 return;
1765 }
1766 /* It must be a TCP or UDP packet with a valid checksum */
1767 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1768 IGC_RXD_STAT_UDPCS))
1769 skb->ip_summed = CHECKSUM_UNNECESSARY;
1770
1771 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1772 le32_to_cpu(rx_desc->wb.upper.status_error));
1773 }
1774
1775 /* Mapping HW RSS Type to enum pkt_hash_types */
1776 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1777 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1778 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1779 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1780 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1781 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1782 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1783 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1784 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1785 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1786 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1787 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1788 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1789 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1790 [13] = PKT_HASH_TYPE_NONE,
1791 [14] = PKT_HASH_TYPE_NONE,
1792 [15] = PKT_HASH_TYPE_NONE,
1793 };
1794
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1795 static inline void igc_rx_hash(struct igc_ring *ring,
1796 union igc_adv_rx_desc *rx_desc,
1797 struct sk_buff *skb)
1798 {
1799 if (ring->netdev->features & NETIF_F_RXHASH) {
1800 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1801 u32 rss_type = igc_rss_type(rx_desc);
1802
1803 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1804 }
1805 }
1806
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1807 static void igc_rx_vlan(struct igc_ring *rx_ring,
1808 union igc_adv_rx_desc *rx_desc,
1809 struct sk_buff *skb)
1810 {
1811 struct net_device *dev = rx_ring->netdev;
1812 u16 vid;
1813
1814 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1815 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1816 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1817 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1818 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1819 else
1820 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1821
1822 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1823 }
1824 }
1825
1826 /**
1827 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1828 * @rx_ring: rx descriptor ring packet is being transacted on
1829 * @rx_desc: pointer to the EOP Rx descriptor
1830 * @skb: pointer to current skb being populated
1831 *
1832 * This function checks the ring, descriptor, and packet information in order
1833 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1834 * skb.
1835 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1836 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1837 union igc_adv_rx_desc *rx_desc,
1838 struct sk_buff *skb)
1839 {
1840 igc_rx_hash(rx_ring, rx_desc, skb);
1841
1842 igc_rx_checksum(rx_ring, rx_desc, skb);
1843
1844 igc_rx_vlan(rx_ring, rx_desc, skb);
1845
1846 skb_record_rx_queue(skb, rx_ring->queue_index);
1847
1848 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1849 }
1850
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1851 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1852 {
1853 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1854 struct igc_adapter *adapter = netdev_priv(netdev);
1855 struct igc_hw *hw = &adapter->hw;
1856 u32 ctrl;
1857
1858 ctrl = rd32(IGC_CTRL);
1859
1860 if (enable) {
1861 /* enable VLAN tag insert/strip */
1862 ctrl |= IGC_CTRL_VME;
1863 } else {
1864 /* disable VLAN tag insert/strip */
1865 ctrl &= ~IGC_CTRL_VME;
1866 }
1867 wr32(IGC_CTRL, ctrl);
1868 }
1869
igc_restore_vlan(struct igc_adapter * adapter)1870 static void igc_restore_vlan(struct igc_adapter *adapter)
1871 {
1872 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1873 }
1874
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1875 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1876 const unsigned int size,
1877 int *rx_buffer_pgcnt)
1878 {
1879 struct igc_rx_buffer *rx_buffer;
1880
1881 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1882 *rx_buffer_pgcnt =
1883 #if (PAGE_SIZE < 8192)
1884 page_count(rx_buffer->page);
1885 #else
1886 0;
1887 #endif
1888 prefetchw(rx_buffer->page);
1889
1890 /* we are reusing so sync this buffer for CPU use */
1891 dma_sync_single_range_for_cpu(rx_ring->dev,
1892 rx_buffer->dma,
1893 rx_buffer->page_offset,
1894 size,
1895 DMA_FROM_DEVICE);
1896
1897 rx_buffer->pagecnt_bias--;
1898
1899 return rx_buffer;
1900 }
1901
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1902 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1903 unsigned int truesize)
1904 {
1905 #if (PAGE_SIZE < 8192)
1906 buffer->page_offset ^= truesize;
1907 #else
1908 buffer->page_offset += truesize;
1909 #endif
1910 }
1911
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1912 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1913 unsigned int size)
1914 {
1915 unsigned int truesize;
1916
1917 #if (PAGE_SIZE < 8192)
1918 truesize = igc_rx_pg_size(ring) / 2;
1919 #else
1920 truesize = ring_uses_build_skb(ring) ?
1921 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1922 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1923 SKB_DATA_ALIGN(size);
1924 #endif
1925 return truesize;
1926 }
1927
1928 /**
1929 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1930 * @rx_ring: rx descriptor ring to transact packets on
1931 * @rx_buffer: buffer containing page to add
1932 * @skb: sk_buff to place the data into
1933 * @size: size of buffer to be added
1934 *
1935 * This function will add the data contained in rx_buffer->page to the skb.
1936 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1937 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1938 struct igc_rx_buffer *rx_buffer,
1939 struct sk_buff *skb,
1940 unsigned int size)
1941 {
1942 unsigned int truesize;
1943
1944 #if (PAGE_SIZE < 8192)
1945 truesize = igc_rx_pg_size(rx_ring) / 2;
1946 #else
1947 truesize = ring_uses_build_skb(rx_ring) ?
1948 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1949 SKB_DATA_ALIGN(size);
1950 #endif
1951 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1952 rx_buffer->page_offset, size, truesize);
1953
1954 igc_rx_buffer_flip(rx_buffer, truesize);
1955 }
1956
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1957 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1958 struct igc_rx_buffer *rx_buffer,
1959 struct xdp_buff *xdp)
1960 {
1961 unsigned int size = xdp->data_end - xdp->data;
1962 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1963 unsigned int metasize = xdp->data - xdp->data_meta;
1964 struct sk_buff *skb;
1965
1966 /* prefetch first cache line of first page */
1967 net_prefetch(xdp->data_meta);
1968
1969 /* build an skb around the page buffer */
1970 skb = napi_build_skb(xdp->data_hard_start, truesize);
1971 if (unlikely(!skb))
1972 return NULL;
1973
1974 /* update pointers within the skb to store the data */
1975 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1976 __skb_put(skb, size);
1977 if (metasize)
1978 skb_metadata_set(skb, metasize);
1979
1980 igc_rx_buffer_flip(rx_buffer, truesize);
1981 return skb;
1982 }
1983
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1984 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1985 struct igc_rx_buffer *rx_buffer,
1986 struct igc_xdp_buff *ctx)
1987 {
1988 struct xdp_buff *xdp = &ctx->xdp;
1989 unsigned int metasize = xdp->data - xdp->data_meta;
1990 unsigned int size = xdp->data_end - xdp->data;
1991 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1992 void *va = xdp->data;
1993 unsigned int headlen;
1994 struct sk_buff *skb;
1995
1996 /* prefetch first cache line of first page */
1997 net_prefetch(xdp->data_meta);
1998
1999 /* allocate a skb to store the frags */
2000 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2001 IGC_RX_HDR_LEN + metasize);
2002 if (unlikely(!skb))
2003 return NULL;
2004
2005 if (ctx->rx_ts) {
2006 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2007 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2008 }
2009
2010 /* Determine available headroom for copy */
2011 headlen = size;
2012 if (headlen > IGC_RX_HDR_LEN)
2013 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2014
2015 /* align pull length to size of long to optimize memcpy performance */
2016 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2017 ALIGN(headlen + metasize, sizeof(long)));
2018
2019 if (metasize) {
2020 skb_metadata_set(skb, metasize);
2021 __skb_pull(skb, metasize);
2022 }
2023
2024 /* update all of the pointers */
2025 size -= headlen;
2026 if (size) {
2027 skb_add_rx_frag(skb, 0, rx_buffer->page,
2028 (va + headlen) - page_address(rx_buffer->page),
2029 size, truesize);
2030 igc_rx_buffer_flip(rx_buffer, truesize);
2031 } else {
2032 rx_buffer->pagecnt_bias++;
2033 }
2034
2035 return skb;
2036 }
2037
2038 /**
2039 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2040 * @rx_ring: rx descriptor ring to store buffers on
2041 * @old_buff: donor buffer to have page reused
2042 *
2043 * Synchronizes page for reuse by the adapter
2044 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2045 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2046 struct igc_rx_buffer *old_buff)
2047 {
2048 u16 nta = rx_ring->next_to_alloc;
2049 struct igc_rx_buffer *new_buff;
2050
2051 new_buff = &rx_ring->rx_buffer_info[nta];
2052
2053 /* update, and store next to alloc */
2054 nta++;
2055 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2056
2057 /* Transfer page from old buffer to new buffer.
2058 * Move each member individually to avoid possible store
2059 * forwarding stalls.
2060 */
2061 new_buff->dma = old_buff->dma;
2062 new_buff->page = old_buff->page;
2063 new_buff->page_offset = old_buff->page_offset;
2064 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2065 }
2066
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2067 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2068 int rx_buffer_pgcnt)
2069 {
2070 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2071 struct page *page = rx_buffer->page;
2072
2073 /* avoid re-using remote and pfmemalloc pages */
2074 if (!dev_page_is_reusable(page))
2075 return false;
2076
2077 #if (PAGE_SIZE < 8192)
2078 /* if we are only owner of page we can reuse it */
2079 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2080 return false;
2081 #else
2082 #define IGC_LAST_OFFSET \
2083 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2084
2085 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2086 return false;
2087 #endif
2088
2089 /* If we have drained the page fragment pool we need to update
2090 * the pagecnt_bias and page count so that we fully restock the
2091 * number of references the driver holds.
2092 */
2093 if (unlikely(pagecnt_bias == 1)) {
2094 page_ref_add(page, USHRT_MAX - 1);
2095 rx_buffer->pagecnt_bias = USHRT_MAX;
2096 }
2097
2098 return true;
2099 }
2100
2101 /**
2102 * igc_is_non_eop - process handling of non-EOP buffers
2103 * @rx_ring: Rx ring being processed
2104 * @rx_desc: Rx descriptor for current buffer
2105 *
2106 * This function updates next to clean. If the buffer is an EOP buffer
2107 * this function exits returning false, otherwise it will place the
2108 * sk_buff in the next buffer to be chained and return true indicating
2109 * that this is in fact a non-EOP buffer.
2110 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2111 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2112 union igc_adv_rx_desc *rx_desc)
2113 {
2114 u32 ntc = rx_ring->next_to_clean + 1;
2115
2116 /* fetch, update, and store next to clean */
2117 ntc = (ntc < rx_ring->count) ? ntc : 0;
2118 rx_ring->next_to_clean = ntc;
2119
2120 prefetch(IGC_RX_DESC(rx_ring, ntc));
2121
2122 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2123 return false;
2124
2125 return true;
2126 }
2127
2128 /**
2129 * igc_cleanup_headers - Correct corrupted or empty headers
2130 * @rx_ring: rx descriptor ring packet is being transacted on
2131 * @rx_desc: pointer to the EOP Rx descriptor
2132 * @skb: pointer to current skb being fixed
2133 *
2134 * Address the case where we are pulling data in on pages only
2135 * and as such no data is present in the skb header.
2136 *
2137 * In addition if skb is not at least 60 bytes we need to pad it so that
2138 * it is large enough to qualify as a valid Ethernet frame.
2139 *
2140 * Returns true if an error was encountered and skb was freed.
2141 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2142 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2143 union igc_adv_rx_desc *rx_desc,
2144 struct sk_buff *skb)
2145 {
2146 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2147 struct net_device *netdev = rx_ring->netdev;
2148
2149 if (!(netdev->features & NETIF_F_RXALL)) {
2150 dev_kfree_skb_any(skb);
2151 return true;
2152 }
2153 }
2154
2155 /* if eth_skb_pad returns an error the skb was freed */
2156 if (eth_skb_pad(skb))
2157 return true;
2158
2159 return false;
2160 }
2161
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2162 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2163 struct igc_rx_buffer *rx_buffer,
2164 int rx_buffer_pgcnt)
2165 {
2166 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2167 /* hand second half of page back to the ring */
2168 igc_reuse_rx_page(rx_ring, rx_buffer);
2169 } else {
2170 /* We are not reusing the buffer so unmap it and free
2171 * any references we are holding to it
2172 */
2173 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2174 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2175 IGC_RX_DMA_ATTR);
2176 __page_frag_cache_drain(rx_buffer->page,
2177 rx_buffer->pagecnt_bias);
2178 }
2179
2180 /* clear contents of rx_buffer */
2181 rx_buffer->page = NULL;
2182 }
2183
igc_rx_offset(struct igc_ring * rx_ring)2184 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2185 {
2186 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2187
2188 if (ring_uses_build_skb(rx_ring))
2189 return IGC_SKB_PAD;
2190 if (igc_xdp_is_enabled(adapter))
2191 return XDP_PACKET_HEADROOM;
2192
2193 return 0;
2194 }
2195
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2196 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2197 struct igc_rx_buffer *bi)
2198 {
2199 struct page *page = bi->page;
2200 dma_addr_t dma;
2201
2202 /* since we are recycling buffers we should seldom need to alloc */
2203 if (likely(page))
2204 return true;
2205
2206 /* alloc new page for storage */
2207 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2208 if (unlikely(!page)) {
2209 rx_ring->rx_stats.alloc_failed++;
2210 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2211 return false;
2212 }
2213
2214 /* map page for use */
2215 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2216 igc_rx_pg_size(rx_ring),
2217 DMA_FROM_DEVICE,
2218 IGC_RX_DMA_ATTR);
2219
2220 /* if mapping failed free memory back to system since
2221 * there isn't much point in holding memory we can't use
2222 */
2223 if (dma_mapping_error(rx_ring->dev, dma)) {
2224 __free_page(page);
2225
2226 rx_ring->rx_stats.alloc_failed++;
2227 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2228 return false;
2229 }
2230
2231 bi->dma = dma;
2232 bi->page = page;
2233 bi->page_offset = igc_rx_offset(rx_ring);
2234 page_ref_add(page, USHRT_MAX - 1);
2235 bi->pagecnt_bias = USHRT_MAX;
2236
2237 return true;
2238 }
2239
2240 /**
2241 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2242 * @rx_ring: rx descriptor ring
2243 * @cleaned_count: number of buffers to clean
2244 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2245 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2246 {
2247 union igc_adv_rx_desc *rx_desc;
2248 u16 i = rx_ring->next_to_use;
2249 struct igc_rx_buffer *bi;
2250 u16 bufsz;
2251
2252 /* nothing to do */
2253 if (!cleaned_count)
2254 return;
2255
2256 rx_desc = IGC_RX_DESC(rx_ring, i);
2257 bi = &rx_ring->rx_buffer_info[i];
2258 i -= rx_ring->count;
2259
2260 bufsz = igc_rx_bufsz(rx_ring);
2261
2262 do {
2263 if (!igc_alloc_mapped_page(rx_ring, bi))
2264 break;
2265
2266 /* sync the buffer for use by the device */
2267 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2268 bi->page_offset, bufsz,
2269 DMA_FROM_DEVICE);
2270
2271 /* Refresh the desc even if buffer_addrs didn't change
2272 * because each write-back erases this info.
2273 */
2274 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2275
2276 rx_desc++;
2277 bi++;
2278 i++;
2279 if (unlikely(!i)) {
2280 rx_desc = IGC_RX_DESC(rx_ring, 0);
2281 bi = rx_ring->rx_buffer_info;
2282 i -= rx_ring->count;
2283 }
2284
2285 /* clear the length for the next_to_use descriptor */
2286 rx_desc->wb.upper.length = 0;
2287
2288 cleaned_count--;
2289 } while (cleaned_count);
2290
2291 i += rx_ring->count;
2292
2293 if (rx_ring->next_to_use != i) {
2294 /* record the next descriptor to use */
2295 rx_ring->next_to_use = i;
2296
2297 /* update next to alloc since we have filled the ring */
2298 rx_ring->next_to_alloc = i;
2299
2300 /* Force memory writes to complete before letting h/w
2301 * know there are new descriptors to fetch. (Only
2302 * applicable for weak-ordered memory model archs,
2303 * such as IA-64).
2304 */
2305 wmb();
2306 writel(i, rx_ring->tail);
2307 }
2308 }
2309
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2310 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2311 {
2312 union igc_adv_rx_desc *desc;
2313 u16 i = ring->next_to_use;
2314 struct igc_rx_buffer *bi;
2315 dma_addr_t dma;
2316 bool ok = true;
2317
2318 if (!count)
2319 return ok;
2320
2321 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2322
2323 desc = IGC_RX_DESC(ring, i);
2324 bi = &ring->rx_buffer_info[i];
2325 i -= ring->count;
2326
2327 do {
2328 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2329 if (!bi->xdp) {
2330 ok = false;
2331 break;
2332 }
2333
2334 dma = xsk_buff_xdp_get_dma(bi->xdp);
2335 desc->read.pkt_addr = cpu_to_le64(dma);
2336
2337 desc++;
2338 bi++;
2339 i++;
2340 if (unlikely(!i)) {
2341 desc = IGC_RX_DESC(ring, 0);
2342 bi = ring->rx_buffer_info;
2343 i -= ring->count;
2344 }
2345
2346 /* Clear the length for the next_to_use descriptor. */
2347 desc->wb.upper.length = 0;
2348
2349 count--;
2350 } while (count);
2351
2352 i += ring->count;
2353
2354 if (ring->next_to_use != i) {
2355 ring->next_to_use = i;
2356
2357 /* Force memory writes to complete before letting h/w
2358 * know there are new descriptors to fetch. (Only
2359 * applicable for weak-ordered memory model archs,
2360 * such as IA-64).
2361 */
2362 wmb();
2363 writel(i, ring->tail);
2364 }
2365
2366 return ok;
2367 }
2368
2369 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2370 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2371 struct xdp_frame *xdpf)
2372 {
2373 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2374 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2375 u16 count, index = ring->next_to_use;
2376 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2377 struct igc_tx_buffer *buffer = head;
2378 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2379 u32 olinfo_status, len = xdpf->len, cmd_type;
2380 void *data = xdpf->data;
2381 u16 i;
2382
2383 count = TXD_USE_COUNT(len);
2384 for (i = 0; i < nr_frags; i++)
2385 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2386
2387 if (igc_maybe_stop_tx(ring, count + 3)) {
2388 /* this is a hard error */
2389 return -EBUSY;
2390 }
2391
2392 i = 0;
2393 head->bytecount = xdp_get_frame_len(xdpf);
2394 head->type = IGC_TX_BUFFER_TYPE_XDP;
2395 head->gso_segs = 1;
2396 head->xdpf = xdpf;
2397
2398 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2399 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2400
2401 for (;;) {
2402 dma_addr_t dma;
2403
2404 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2405 if (dma_mapping_error(ring->dev, dma)) {
2406 netdev_err_once(ring->netdev,
2407 "Failed to map DMA for TX\n");
2408 goto unmap;
2409 }
2410
2411 dma_unmap_len_set(buffer, len, len);
2412 dma_unmap_addr_set(buffer, dma, dma);
2413
2414 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2415 IGC_ADVTXD_DCMD_IFCS | len;
2416
2417 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2418 desc->read.buffer_addr = cpu_to_le64(dma);
2419
2420 buffer->protocol = 0;
2421
2422 if (++index == ring->count)
2423 index = 0;
2424
2425 if (i == nr_frags)
2426 break;
2427
2428 buffer = &ring->tx_buffer_info[index];
2429 desc = IGC_TX_DESC(ring, index);
2430 desc->read.olinfo_status = 0;
2431
2432 data = skb_frag_address(&sinfo->frags[i]);
2433 len = skb_frag_size(&sinfo->frags[i]);
2434 i++;
2435 }
2436 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2437
2438 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2439 /* set the timestamp */
2440 head->time_stamp = jiffies;
2441 /* set next_to_watch value indicating a packet is present */
2442 head->next_to_watch = desc;
2443 ring->next_to_use = index;
2444
2445 return 0;
2446
2447 unmap:
2448 for (;;) {
2449 buffer = &ring->tx_buffer_info[index];
2450 if (dma_unmap_len(buffer, len))
2451 dma_unmap_page(ring->dev,
2452 dma_unmap_addr(buffer, dma),
2453 dma_unmap_len(buffer, len),
2454 DMA_TO_DEVICE);
2455 dma_unmap_len_set(buffer, len, 0);
2456 if (buffer == head)
2457 break;
2458
2459 if (!index)
2460 index += ring->count;
2461 index--;
2462 }
2463
2464 return -ENOMEM;
2465 }
2466
igc_get_tx_ring(struct igc_adapter * adapter,int cpu)2467 struct igc_ring *igc_get_tx_ring(struct igc_adapter *adapter, int cpu)
2468 {
2469 int index = cpu;
2470
2471 if (unlikely(index < 0))
2472 index = 0;
2473
2474 while (index >= adapter->num_tx_queues)
2475 index -= adapter->num_tx_queues;
2476
2477 return adapter->tx_ring[index];
2478 }
2479
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2480 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2481 {
2482 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2483 int cpu = smp_processor_id();
2484 struct netdev_queue *nq;
2485 struct igc_ring *ring;
2486 int res;
2487
2488 if (unlikely(!xdpf))
2489 return -EFAULT;
2490
2491 ring = igc_get_tx_ring(adapter, cpu);
2492 nq = txring_txq(ring);
2493
2494 __netif_tx_lock(nq, cpu);
2495 /* Avoid transmit queue timeout since we share it with the slow path */
2496 txq_trans_cond_update(nq);
2497 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2498 __netif_tx_unlock(nq);
2499 return res;
2500 }
2501
2502 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2503 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2504 struct bpf_prog *prog,
2505 struct xdp_buff *xdp)
2506 {
2507 u32 act = bpf_prog_run_xdp(prog, xdp);
2508
2509 switch (act) {
2510 case XDP_PASS:
2511 return IGC_XDP_PASS;
2512 case XDP_TX:
2513 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2514 goto out_failure;
2515 return IGC_XDP_TX;
2516 case XDP_REDIRECT:
2517 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2518 goto out_failure;
2519 return IGC_XDP_REDIRECT;
2520 break;
2521 default:
2522 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2523 fallthrough;
2524 case XDP_ABORTED:
2525 out_failure:
2526 trace_xdp_exception(adapter->netdev, prog, act);
2527 fallthrough;
2528 case XDP_DROP:
2529 return IGC_XDP_CONSUMED;
2530 }
2531 }
2532
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2533 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2534 {
2535 struct bpf_prog *prog;
2536 int res;
2537
2538 prog = READ_ONCE(adapter->xdp_prog);
2539 if (!prog) {
2540 res = IGC_XDP_PASS;
2541 goto out;
2542 }
2543
2544 res = __igc_xdp_run_prog(adapter, prog, xdp);
2545
2546 out:
2547 return res;
2548 }
2549
2550 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2551 void igc_flush_tx_descriptors(struct igc_ring *ring)
2552 {
2553 /* Once tail pointer is updated, hardware can fetch the descriptors
2554 * any time so we issue a write membar here to ensure all memory
2555 * writes are complete before the tail pointer is updated.
2556 */
2557 wmb();
2558 writel(ring->next_to_use, ring->tail);
2559 }
2560
igc_finalize_xdp(struct igc_adapter * adapter,int status)2561 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2562 {
2563 int cpu = smp_processor_id();
2564 struct netdev_queue *nq;
2565 struct igc_ring *ring;
2566
2567 if (status & IGC_XDP_TX) {
2568 ring = igc_get_tx_ring(adapter, cpu);
2569 nq = txring_txq(ring);
2570
2571 __netif_tx_lock(nq, cpu);
2572 igc_flush_tx_descriptors(ring);
2573 __netif_tx_unlock(nq);
2574 }
2575
2576 if (status & IGC_XDP_REDIRECT)
2577 xdp_do_flush();
2578 }
2579
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2580 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2581 unsigned int packets, unsigned int bytes)
2582 {
2583 struct igc_ring *ring = q_vector->rx.ring;
2584
2585 u64_stats_update_begin(&ring->rx_syncp);
2586 ring->rx_stats.packets += packets;
2587 ring->rx_stats.bytes += bytes;
2588 u64_stats_update_end(&ring->rx_syncp);
2589
2590 q_vector->rx.total_packets += packets;
2591 q_vector->rx.total_bytes += bytes;
2592 }
2593
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2594 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2595 {
2596 unsigned int total_bytes = 0, total_packets = 0;
2597 struct igc_adapter *adapter = q_vector->adapter;
2598 struct igc_ring *rx_ring = q_vector->rx.ring;
2599 struct sk_buff *skb = rx_ring->skb;
2600 u16 cleaned_count = igc_desc_unused(rx_ring);
2601 int xdp_status = 0, rx_buffer_pgcnt;
2602 int xdp_res = 0;
2603
2604 while (likely(total_packets < budget)) {
2605 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2606 struct igc_rx_buffer *rx_buffer;
2607 union igc_adv_rx_desc *rx_desc;
2608 unsigned int size, truesize;
2609 int pkt_offset = 0;
2610 void *pktbuf;
2611
2612 /* return some buffers to hardware, one at a time is too slow */
2613 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2614 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2615 cleaned_count = 0;
2616 }
2617
2618 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2619 size = le16_to_cpu(rx_desc->wb.upper.length);
2620 if (!size)
2621 break;
2622
2623 /* This memory barrier is needed to keep us from reading
2624 * any other fields out of the rx_desc until we know the
2625 * descriptor has been written back
2626 */
2627 dma_rmb();
2628
2629 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2630 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2631
2632 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2633
2634 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2635 ctx.rx_ts = pktbuf;
2636 pkt_offset = IGC_TS_HDR_LEN;
2637 size -= IGC_TS_HDR_LEN;
2638 }
2639
2640 if (igc_fpe_is_pmac_enabled(adapter) &&
2641 igc_fpe_handle_mpacket(adapter, rx_desc, size, pktbuf)) {
2642 /* Advance the ring next-to-clean */
2643 igc_is_non_eop(rx_ring, rx_desc);
2644 cleaned_count++;
2645 continue;
2646 }
2647
2648 if (!skb) {
2649 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2650 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2651 igc_rx_offset(rx_ring) + pkt_offset,
2652 size, true);
2653 xdp_buff_clear_frags_flag(&ctx.xdp);
2654 ctx.rx_desc = rx_desc;
2655
2656 xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2657 }
2658
2659 if (xdp_res) {
2660 switch (xdp_res) {
2661 case IGC_XDP_CONSUMED:
2662 rx_buffer->pagecnt_bias++;
2663 break;
2664 case IGC_XDP_TX:
2665 case IGC_XDP_REDIRECT:
2666 igc_rx_buffer_flip(rx_buffer, truesize);
2667 xdp_status |= xdp_res;
2668 break;
2669 }
2670
2671 total_packets++;
2672 total_bytes += size;
2673 } else if (skb)
2674 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2675 else if (ring_uses_build_skb(rx_ring))
2676 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2677 else
2678 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2679
2680 /* exit if we failed to retrieve a buffer */
2681 if (!xdp_res && !skb) {
2682 rx_ring->rx_stats.alloc_failed++;
2683 rx_buffer->pagecnt_bias++;
2684 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2685 break;
2686 }
2687
2688 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2689 cleaned_count++;
2690
2691 /* fetch next buffer in frame if non-eop */
2692 if (igc_is_non_eop(rx_ring, rx_desc))
2693 continue;
2694
2695 /* verify the packet layout is correct */
2696 if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2697 skb = NULL;
2698 continue;
2699 }
2700
2701 /* probably a little skewed due to removing CRC */
2702 total_bytes += skb->len;
2703
2704 /* populate checksum, VLAN, and protocol */
2705 igc_process_skb_fields(rx_ring, rx_desc, skb);
2706
2707 napi_gro_receive(&q_vector->napi, skb);
2708
2709 /* reset skb pointer */
2710 skb = NULL;
2711
2712 /* update budget accounting */
2713 total_packets++;
2714 }
2715
2716 if (xdp_status)
2717 igc_finalize_xdp(adapter, xdp_status);
2718
2719 /* place incomplete frames back on ring for completion */
2720 rx_ring->skb = skb;
2721
2722 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2723
2724 if (cleaned_count)
2725 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2726
2727 return total_packets;
2728 }
2729
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2730 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2731 struct igc_xdp_buff *ctx)
2732 {
2733 struct xdp_buff *xdp = &ctx->xdp;
2734 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2735 unsigned int metasize = xdp->data - xdp->data_meta;
2736 struct sk_buff *skb;
2737
2738 net_prefetch(xdp->data_meta);
2739
2740 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2741 if (unlikely(!skb))
2742 return NULL;
2743
2744 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2745 ALIGN(totalsize, sizeof(long)));
2746
2747 if (metasize) {
2748 skb_metadata_set(skb, metasize);
2749 __skb_pull(skb, metasize);
2750 }
2751
2752 if (ctx->rx_ts) {
2753 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2754 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2755 }
2756
2757 return skb;
2758 }
2759
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2760 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2761 union igc_adv_rx_desc *desc,
2762 struct igc_xdp_buff *ctx)
2763 {
2764 struct igc_ring *ring = q_vector->rx.ring;
2765 struct sk_buff *skb;
2766
2767 skb = igc_construct_skb_zc(ring, ctx);
2768 if (!skb) {
2769 ring->rx_stats.alloc_failed++;
2770 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2771 return;
2772 }
2773
2774 if (igc_cleanup_headers(ring, desc, skb))
2775 return;
2776
2777 igc_process_skb_fields(ring, desc, skb);
2778 napi_gro_receive(&q_vector->napi, skb);
2779 }
2780
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2781 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2782 {
2783 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2784 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2785 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2786 */
2787 return (struct igc_xdp_buff *)xdp;
2788 }
2789
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2790 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2791 {
2792 struct igc_adapter *adapter = q_vector->adapter;
2793 struct igc_ring *ring = q_vector->rx.ring;
2794 u16 cleaned_count = igc_desc_unused(ring);
2795 int total_bytes = 0, total_packets = 0;
2796 u16 ntc = ring->next_to_clean;
2797 struct bpf_prog *prog;
2798 bool failure = false;
2799 int xdp_status = 0;
2800
2801 rcu_read_lock();
2802
2803 prog = READ_ONCE(adapter->xdp_prog);
2804
2805 while (likely(total_packets < budget)) {
2806 union igc_adv_rx_desc *desc;
2807 struct igc_rx_buffer *bi;
2808 struct igc_xdp_buff *ctx;
2809 unsigned int size;
2810 int res;
2811
2812 desc = IGC_RX_DESC(ring, ntc);
2813 size = le16_to_cpu(desc->wb.upper.length);
2814 if (!size)
2815 break;
2816
2817 /* This memory barrier is needed to keep us from reading
2818 * any other fields out of the rx_desc until we know the
2819 * descriptor has been written back
2820 */
2821 dma_rmb();
2822
2823 bi = &ring->rx_buffer_info[ntc];
2824
2825 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2826 ctx->rx_desc = desc;
2827
2828 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2829 ctx->rx_ts = bi->xdp->data;
2830
2831 bi->xdp->data += IGC_TS_HDR_LEN;
2832
2833 /* HW timestamp has been copied into local variable. Metadata
2834 * length when XDP program is called should be 0.
2835 */
2836 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2837 size -= IGC_TS_HDR_LEN;
2838 } else {
2839 ctx->rx_ts = NULL;
2840 }
2841
2842 bi->xdp->data_end = bi->xdp->data + size;
2843 xsk_buff_dma_sync_for_cpu(bi->xdp);
2844
2845 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2846 switch (res) {
2847 case IGC_XDP_PASS:
2848 igc_dispatch_skb_zc(q_vector, desc, ctx);
2849 fallthrough;
2850 case IGC_XDP_CONSUMED:
2851 xsk_buff_free(bi->xdp);
2852 break;
2853 case IGC_XDP_TX:
2854 case IGC_XDP_REDIRECT:
2855 xdp_status |= res;
2856 break;
2857 }
2858
2859 bi->xdp = NULL;
2860 total_bytes += size;
2861 total_packets++;
2862 cleaned_count++;
2863 ntc++;
2864 if (ntc == ring->count)
2865 ntc = 0;
2866 }
2867
2868 ring->next_to_clean = ntc;
2869 rcu_read_unlock();
2870
2871 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2872 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2873
2874 if (xdp_status)
2875 igc_finalize_xdp(adapter, xdp_status);
2876
2877 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2878
2879 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2880 if (failure || ring->next_to_clean == ring->next_to_use)
2881 xsk_set_rx_need_wakeup(ring->xsk_pool);
2882 else
2883 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2884 return total_packets;
2885 }
2886
2887 return failure ? budget : total_packets;
2888 }
2889
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2890 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2891 unsigned int packets, unsigned int bytes)
2892 {
2893 struct igc_ring *ring = q_vector->tx.ring;
2894
2895 u64_stats_update_begin(&ring->tx_syncp);
2896 ring->tx_stats.bytes += bytes;
2897 ring->tx_stats.packets += packets;
2898 u64_stats_update_end(&ring->tx_syncp);
2899
2900 q_vector->tx.total_bytes += bytes;
2901 q_vector->tx.total_packets += packets;
2902 }
2903
igc_xsk_request_timestamp(void * _priv)2904 static void igc_xsk_request_timestamp(void *_priv)
2905 {
2906 struct igc_metadata_request *meta_req = _priv;
2907 struct igc_ring *tx_ring = meta_req->tx_ring;
2908 struct igc_tx_timestamp_request *tstamp;
2909 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2910 struct igc_adapter *adapter;
2911 unsigned long lock_flags;
2912 bool found = false;
2913 int i;
2914
2915 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2916 adapter = netdev_priv(tx_ring->netdev);
2917
2918 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2919
2920 /* Search for available tstamp regs */
2921 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2922 tstamp = &adapter->tx_tstamp[i];
2923
2924 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2925 * When tstamp->skb is equal to NULL,
2926 * tstamp->xsk_tx_buffer is equal to NULL as well.
2927 * This condition means that the particular tstamp reg
2928 * is not occupied by other packet.
2929 */
2930 if (!tstamp->skb) {
2931 found = true;
2932 break;
2933 }
2934 }
2935
2936 /* Return if no available tstamp regs */
2937 if (!found) {
2938 adapter->tx_hwtstamp_skipped++;
2939 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2940 lock_flags);
2941 return;
2942 }
2943
2944 tstamp->start = jiffies;
2945 tstamp->xsk_queue_index = tx_ring->queue_index;
2946 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2947 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2948
2949 /* Hold the transmit completion until timestamp is ready */
2950 meta_req->tx_buffer->xsk_pending_ts = true;
2951
2952 /* Keep the pointer to tx_timestamp, which is located in XDP
2953 * metadata area. It is the location to store the value of
2954 * tx hardware timestamp.
2955 */
2956 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2957
2958 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2959 tx_flags |= tstamp->flags;
2960 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2961 IGC_TX_FLAGS_TSTAMP,
2962 (IGC_ADVTXD_MAC_TSTAMP));
2963 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2964 IGC_TX_FLAGS_TSTAMP_1,
2965 (IGC_ADVTXD_TSTAMP_REG_1));
2966 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2967 IGC_TX_FLAGS_TSTAMP_2,
2968 (IGC_ADVTXD_TSTAMP_REG_2));
2969 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2970 IGC_TX_FLAGS_TSTAMP_3,
2971 (IGC_ADVTXD_TSTAMP_REG_3));
2972
2973 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2974 }
2975 }
2976
igc_xsk_fill_timestamp(void * _priv)2977 static u64 igc_xsk_fill_timestamp(void *_priv)
2978 {
2979 return *(u64 *)_priv;
2980 }
2981
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2982 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2983 {
2984 struct igc_metadata_request *meta_req = _priv;
2985 struct igc_ring *tx_ring = meta_req->tx_ring;
2986 __le32 launch_time_offset;
2987 bool insert_empty = false;
2988 bool first_flag = false;
2989 u16 used_desc = 0;
2990
2991 if (!tx_ring->launchtime_enable)
2992 return;
2993
2994 launch_time_offset = igc_tx_launchtime(tx_ring,
2995 ns_to_ktime(launch_time),
2996 &first_flag, &insert_empty);
2997 if (insert_empty) {
2998 /* Disregard the launch time request if the required empty frame
2999 * fails to be inserted.
3000 */
3001 if (igc_insert_empty_frame(tx_ring))
3002 return;
3003
3004 meta_req->tx_buffer =
3005 &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3006 /* Inserting an empty packet requires two descriptors:
3007 * one data descriptor and one context descriptor.
3008 */
3009 used_desc += 2;
3010 }
3011
3012 /* Use one context descriptor to specify launch time and first flag. */
3013 igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3014 used_desc += 1;
3015
3016 /* Update the number of used descriptors in this request */
3017 meta_req->used_desc += used_desc;
3018 }
3019
3020 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3021 .tmo_request_timestamp = igc_xsk_request_timestamp,
3022 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
3023 .tmo_request_launch_time = igc_xsk_request_launch_time,
3024 };
3025
igc_xdp_xmit_zc(struct igc_ring * ring)3026 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3027 {
3028 struct xsk_buff_pool *pool = ring->xsk_pool;
3029 struct netdev_queue *nq = txring_txq(ring);
3030 union igc_adv_tx_desc *tx_desc = NULL;
3031 int cpu = smp_processor_id();
3032 struct xdp_desc xdp_desc;
3033 u16 budget, ntu;
3034
3035 if (!netif_carrier_ok(ring->netdev))
3036 return;
3037
3038 __netif_tx_lock(nq, cpu);
3039
3040 /* Avoid transmit queue timeout since we share it with the slow path */
3041 txq_trans_cond_update(nq);
3042
3043 ntu = ring->next_to_use;
3044 budget = igc_desc_unused(ring);
3045
3046 /* Packets with launch time require one data descriptor and one context
3047 * descriptor. When the launch time falls into the next Qbv cycle, we
3048 * may need to insert an empty packet, which requires two more
3049 * descriptors. Therefore, to be safe, we always ensure we have at least
3050 * 4 descriptors available.
3051 */
3052 while (budget >= 4 && xsk_tx_peek_desc(pool, &xdp_desc)) {
3053 struct igc_metadata_request meta_req;
3054 struct xsk_tx_metadata *meta = NULL;
3055 struct igc_tx_buffer *bi;
3056 u32 olinfo_status;
3057 dma_addr_t dma;
3058
3059 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3060 IGC_ADVTXD_DCMD_DEXT |
3061 IGC_ADVTXD_DCMD_IFCS |
3062 IGC_TXD_DCMD | xdp_desc.len;
3063 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3064
3065 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3066 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3067 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3068 bi = &ring->tx_buffer_info[ntu];
3069
3070 meta_req.tx_ring = ring;
3071 meta_req.tx_buffer = bi;
3072 meta_req.meta = meta;
3073 meta_req.used_desc = 0;
3074 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3075 &meta_req);
3076
3077 /* xsk_tx_metadata_request() may have updated next_to_use */
3078 ntu = ring->next_to_use;
3079
3080 /* xsk_tx_metadata_request() may have updated Tx buffer info */
3081 bi = meta_req.tx_buffer;
3082
3083 /* xsk_tx_metadata_request() may use a few descriptors */
3084 budget -= meta_req.used_desc;
3085
3086 tx_desc = IGC_TX_DESC(ring, ntu);
3087 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3088 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3089 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3090
3091 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3092 bi->protocol = 0;
3093 bi->bytecount = xdp_desc.len;
3094 bi->gso_segs = 1;
3095 bi->time_stamp = jiffies;
3096 bi->next_to_watch = tx_desc;
3097
3098 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3099
3100 ntu++;
3101 if (ntu == ring->count)
3102 ntu = 0;
3103
3104 ring->next_to_use = ntu;
3105 budget--;
3106 }
3107
3108 if (tx_desc) {
3109 igc_flush_tx_descriptors(ring);
3110 xsk_tx_release(pool);
3111 }
3112
3113 __netif_tx_unlock(nq);
3114 }
3115
3116 /**
3117 * igc_clean_tx_irq - Reclaim resources after transmit completes
3118 * @q_vector: pointer to q_vector containing needed info
3119 * @napi_budget: Used to determine if we are in netpoll
3120 *
3121 * returns true if ring is completely cleaned
3122 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3123 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3124 {
3125 struct igc_adapter *adapter = q_vector->adapter;
3126 unsigned int total_bytes = 0, total_packets = 0;
3127 unsigned int budget = q_vector->tx.work_limit;
3128 struct igc_ring *tx_ring = q_vector->tx.ring;
3129 unsigned int i = tx_ring->next_to_clean;
3130 struct igc_tx_buffer *tx_buffer;
3131 union igc_adv_tx_desc *tx_desc;
3132 u32 xsk_frames = 0;
3133
3134 if (test_bit(__IGC_DOWN, &adapter->state))
3135 return true;
3136
3137 tx_buffer = &tx_ring->tx_buffer_info[i];
3138 tx_desc = IGC_TX_DESC(tx_ring, i);
3139 i -= tx_ring->count;
3140
3141 do {
3142 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3143
3144 /* if next_to_watch is not set then there is no work pending */
3145 if (!eop_desc)
3146 break;
3147
3148 /* prevent any other reads prior to eop_desc */
3149 smp_rmb();
3150
3151 /* if DD is not set pending work has not been completed */
3152 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3153 break;
3154
3155 if (igc_fpe_is_pmac_enabled(adapter) &&
3156 igc_fpe_transmitted_smd_v(tx_desc))
3157 ethtool_mmsv_event_handle(&adapter->fpe.mmsv,
3158 ETHTOOL_MMSV_LD_SENT_VERIFY_MPACKET);
3159
3160 /* Hold the completions while there's a pending tx hardware
3161 * timestamp request from XDP Tx metadata.
3162 */
3163 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3164 tx_buffer->xsk_pending_ts)
3165 break;
3166
3167 /* clear next_to_watch to prevent false hangs */
3168 tx_buffer->next_to_watch = NULL;
3169
3170 /* update the statistics for this packet */
3171 total_bytes += tx_buffer->bytecount;
3172 total_packets += tx_buffer->gso_segs;
3173
3174 switch (tx_buffer->type) {
3175 case IGC_TX_BUFFER_TYPE_XSK:
3176 xsk_frames++;
3177 break;
3178 case IGC_TX_BUFFER_TYPE_XDP:
3179 xdp_return_frame(tx_buffer->xdpf);
3180 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3181 break;
3182 case IGC_TX_BUFFER_TYPE_SKB:
3183 napi_consume_skb(tx_buffer->skb, napi_budget);
3184 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3185 break;
3186 default:
3187 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3188 break;
3189 }
3190
3191 /* clear last DMA location and unmap remaining buffers */
3192 while (tx_desc != eop_desc) {
3193 tx_buffer++;
3194 tx_desc++;
3195 i++;
3196 if (unlikely(!i)) {
3197 i -= tx_ring->count;
3198 tx_buffer = tx_ring->tx_buffer_info;
3199 tx_desc = IGC_TX_DESC(tx_ring, 0);
3200 }
3201
3202 /* unmap any remaining paged data */
3203 if (dma_unmap_len(tx_buffer, len))
3204 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3205 }
3206
3207 /* move us one more past the eop_desc for start of next pkt */
3208 tx_buffer++;
3209 tx_desc++;
3210 i++;
3211 if (unlikely(!i)) {
3212 i -= tx_ring->count;
3213 tx_buffer = tx_ring->tx_buffer_info;
3214 tx_desc = IGC_TX_DESC(tx_ring, 0);
3215 }
3216
3217 /* issue prefetch for next Tx descriptor */
3218 prefetch(tx_desc);
3219
3220 /* update budget accounting */
3221 budget--;
3222 } while (likely(budget));
3223
3224 netdev_tx_completed_queue(txring_txq(tx_ring),
3225 total_packets, total_bytes);
3226
3227 i += tx_ring->count;
3228 tx_ring->next_to_clean = i;
3229
3230 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3231
3232 if (tx_ring->xsk_pool) {
3233 if (xsk_frames)
3234 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3235 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3236 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3237 igc_xdp_xmit_zc(tx_ring);
3238 }
3239
3240 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3241 struct igc_hw *hw = &adapter->hw;
3242
3243 /* Detect a transmit hang in hardware, this serializes the
3244 * check with the clearing of time_stamp and movement of i
3245 */
3246 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3247 if (tx_buffer->next_to_watch &&
3248 time_after(jiffies, tx_buffer->time_stamp +
3249 (adapter->tx_timeout_factor * HZ)) &&
3250 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3251 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3252 !tx_ring->oper_gate_closed) {
3253 /* detected Tx unit hang */
3254 netdev_err(tx_ring->netdev,
3255 "Detected Tx Unit Hang\n"
3256 " Tx Queue <%d>\n"
3257 " TDH <%x>\n"
3258 " TDT <%x>\n"
3259 " next_to_use <%x>\n"
3260 " next_to_clean <%x>\n"
3261 "buffer_info[next_to_clean]\n"
3262 " time_stamp <%lx>\n"
3263 " next_to_watch <%p>\n"
3264 " jiffies <%lx>\n"
3265 " desc.status <%x>\n",
3266 tx_ring->queue_index,
3267 rd32(IGC_TDH(tx_ring->reg_idx)),
3268 readl(tx_ring->tail),
3269 tx_ring->next_to_use,
3270 tx_ring->next_to_clean,
3271 tx_buffer->time_stamp,
3272 tx_buffer->next_to_watch,
3273 jiffies,
3274 tx_buffer->next_to_watch->wb.status);
3275 netif_stop_subqueue(tx_ring->netdev,
3276 tx_ring->queue_index);
3277
3278 /* we are about to reset, no point in enabling stuff */
3279 return true;
3280 }
3281 }
3282
3283 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3284 if (unlikely(total_packets &&
3285 netif_carrier_ok(tx_ring->netdev) &&
3286 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3287 /* Make sure that anybody stopping the queue after this
3288 * sees the new next_to_clean.
3289 */
3290 smp_mb();
3291 if (__netif_subqueue_stopped(tx_ring->netdev,
3292 tx_ring->queue_index) &&
3293 !(test_bit(__IGC_DOWN, &adapter->state))) {
3294 netif_wake_subqueue(tx_ring->netdev,
3295 tx_ring->queue_index);
3296
3297 u64_stats_update_begin(&tx_ring->tx_syncp);
3298 tx_ring->tx_stats.restart_queue++;
3299 u64_stats_update_end(&tx_ring->tx_syncp);
3300 }
3301 }
3302
3303 return !!budget;
3304 }
3305
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3306 static int igc_find_mac_filter(struct igc_adapter *adapter,
3307 enum igc_mac_filter_type type, const u8 *addr)
3308 {
3309 struct igc_hw *hw = &adapter->hw;
3310 int max_entries = hw->mac.rar_entry_count;
3311 u32 ral, rah;
3312 int i;
3313
3314 for (i = 0; i < max_entries; i++) {
3315 ral = rd32(IGC_RAL(i));
3316 rah = rd32(IGC_RAH(i));
3317
3318 if (!(rah & IGC_RAH_AV))
3319 continue;
3320 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3321 continue;
3322 if ((rah & IGC_RAH_RAH_MASK) !=
3323 le16_to_cpup((__le16 *)(addr + 4)))
3324 continue;
3325 if (ral != le32_to_cpup((__le32 *)(addr)))
3326 continue;
3327
3328 return i;
3329 }
3330
3331 return -1;
3332 }
3333
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3334 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3335 {
3336 struct igc_hw *hw = &adapter->hw;
3337 int max_entries = hw->mac.rar_entry_count;
3338 u32 rah;
3339 int i;
3340
3341 for (i = 0; i < max_entries; i++) {
3342 rah = rd32(IGC_RAH(i));
3343
3344 if (!(rah & IGC_RAH_AV))
3345 return i;
3346 }
3347
3348 return -1;
3349 }
3350
3351 /**
3352 * igc_add_mac_filter() - Add MAC address filter
3353 * @adapter: Pointer to adapter where the filter should be added
3354 * @type: MAC address filter type (source or destination)
3355 * @addr: MAC address
3356 * @queue: If non-negative, queue assignment feature is enabled and frames
3357 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3358 * assignment is disabled.
3359 *
3360 * Return: 0 in case of success, negative errno code otherwise.
3361 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3362 static int igc_add_mac_filter(struct igc_adapter *adapter,
3363 enum igc_mac_filter_type type, const u8 *addr,
3364 int queue)
3365 {
3366 struct net_device *dev = adapter->netdev;
3367 int index;
3368
3369 index = igc_find_mac_filter(adapter, type, addr);
3370 if (index >= 0)
3371 goto update_filter;
3372
3373 index = igc_get_avail_mac_filter_slot(adapter);
3374 if (index < 0)
3375 return -ENOSPC;
3376
3377 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3378 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3379 addr, queue);
3380
3381 update_filter:
3382 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3383 return 0;
3384 }
3385
3386 /**
3387 * igc_del_mac_filter() - Delete MAC address filter
3388 * @adapter: Pointer to adapter where the filter should be deleted from
3389 * @type: MAC address filter type (source or destination)
3390 * @addr: MAC address
3391 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3392 static void igc_del_mac_filter(struct igc_adapter *adapter,
3393 enum igc_mac_filter_type type, const u8 *addr)
3394 {
3395 struct net_device *dev = adapter->netdev;
3396 int index;
3397
3398 index = igc_find_mac_filter(adapter, type, addr);
3399 if (index < 0)
3400 return;
3401
3402 if (index == 0) {
3403 /* If this is the default filter, we don't actually delete it.
3404 * We just reset to its default value i.e. disable queue
3405 * assignment.
3406 */
3407 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3408
3409 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3410 } else {
3411 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3412 index,
3413 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3414 addr);
3415
3416 igc_clear_mac_filter_hw(adapter, index);
3417 }
3418 }
3419
3420 /**
3421 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3422 * @adapter: Pointer to adapter where the filter should be added
3423 * @prio: VLAN priority value
3424 * @queue: Queue number which matching frames are assigned to
3425 *
3426 * Return: 0 in case of success, negative errno code otherwise.
3427 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3428 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3429 int queue)
3430 {
3431 struct net_device *dev = adapter->netdev;
3432 struct igc_hw *hw = &adapter->hw;
3433 u32 vlanpqf;
3434
3435 vlanpqf = rd32(IGC_VLANPQF);
3436
3437 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3438 netdev_dbg(dev, "VLAN priority filter already in use\n");
3439 return -EEXIST;
3440 }
3441
3442 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3443 vlanpqf |= IGC_VLANPQF_VALID(prio);
3444
3445 wr32(IGC_VLANPQF, vlanpqf);
3446
3447 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3448 prio, queue);
3449 return 0;
3450 }
3451
3452 /**
3453 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3454 * @adapter: Pointer to adapter where the filter should be deleted from
3455 * @prio: VLAN priority value
3456 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3457 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3458 {
3459 struct igc_hw *hw = &adapter->hw;
3460 u32 vlanpqf;
3461
3462 vlanpqf = rd32(IGC_VLANPQF);
3463
3464 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3465 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3466
3467 wr32(IGC_VLANPQF, vlanpqf);
3468
3469 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3470 prio);
3471 }
3472
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3473 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3474 {
3475 struct igc_hw *hw = &adapter->hw;
3476 int i;
3477
3478 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3479 u32 etqf = rd32(IGC_ETQF(i));
3480
3481 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3482 return i;
3483 }
3484
3485 return -1;
3486 }
3487
3488 /**
3489 * igc_add_etype_filter() - Add ethertype filter
3490 * @adapter: Pointer to adapter where the filter should be added
3491 * @etype: Ethertype value
3492 * @queue: If non-negative, queue assignment feature is enabled and frames
3493 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3494 * assignment is disabled.
3495 *
3496 * Return: 0 in case of success, negative errno code otherwise.
3497 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3498 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3499 int queue)
3500 {
3501 struct igc_hw *hw = &adapter->hw;
3502 int index;
3503 u32 etqf;
3504
3505 index = igc_get_avail_etype_filter_slot(adapter);
3506 if (index < 0)
3507 return -ENOSPC;
3508
3509 etqf = rd32(IGC_ETQF(index));
3510
3511 etqf &= ~IGC_ETQF_ETYPE_MASK;
3512 etqf |= etype;
3513
3514 if (queue >= 0) {
3515 etqf &= ~IGC_ETQF_QUEUE_MASK;
3516 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3517 etqf |= IGC_ETQF_QUEUE_ENABLE;
3518 }
3519
3520 etqf |= IGC_ETQF_FILTER_ENABLE;
3521
3522 wr32(IGC_ETQF(index), etqf);
3523
3524 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3525 etype, queue);
3526 return 0;
3527 }
3528
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3529 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3530 {
3531 struct igc_hw *hw = &adapter->hw;
3532 int i;
3533
3534 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3535 u32 etqf = rd32(IGC_ETQF(i));
3536
3537 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3538 return i;
3539 }
3540
3541 return -1;
3542 }
3543
3544 /**
3545 * igc_del_etype_filter() - Delete ethertype filter
3546 * @adapter: Pointer to adapter where the filter should be deleted from
3547 * @etype: Ethertype value
3548 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3549 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3550 {
3551 struct igc_hw *hw = &adapter->hw;
3552 int index;
3553
3554 index = igc_find_etype_filter(adapter, etype);
3555 if (index < 0)
3556 return;
3557
3558 wr32(IGC_ETQF(index), 0);
3559
3560 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3561 etype);
3562 }
3563
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3564 static int igc_flex_filter_select(struct igc_adapter *adapter,
3565 struct igc_flex_filter *input,
3566 u32 *fhft)
3567 {
3568 struct igc_hw *hw = &adapter->hw;
3569 u8 fhft_index;
3570 u32 fhftsl;
3571
3572 if (input->index >= MAX_FLEX_FILTER) {
3573 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3574 return -EINVAL;
3575 }
3576
3577 /* Indirect table select register */
3578 fhftsl = rd32(IGC_FHFTSL);
3579 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3580 switch (input->index) {
3581 case 0 ... 7:
3582 fhftsl |= 0x00;
3583 break;
3584 case 8 ... 15:
3585 fhftsl |= 0x01;
3586 break;
3587 case 16 ... 23:
3588 fhftsl |= 0x02;
3589 break;
3590 case 24 ... 31:
3591 fhftsl |= 0x03;
3592 break;
3593 }
3594 wr32(IGC_FHFTSL, fhftsl);
3595
3596 /* Normalize index down to host table register */
3597 fhft_index = input->index % 8;
3598
3599 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3600 IGC_FHFT_EXT(fhft_index - 4);
3601
3602 return 0;
3603 }
3604
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3605 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3606 struct igc_flex_filter *input)
3607 {
3608 struct igc_hw *hw = &adapter->hw;
3609 u8 *data = input->data;
3610 u8 *mask = input->mask;
3611 u32 queuing;
3612 u32 fhft;
3613 u32 wufc;
3614 int ret;
3615 int i;
3616
3617 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3618 * out early to avoid surprises later.
3619 */
3620 if (input->length % 8 != 0) {
3621 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3622 return -EINVAL;
3623 }
3624
3625 /* Select corresponding flex filter register and get base for host table. */
3626 ret = igc_flex_filter_select(adapter, input, &fhft);
3627 if (ret)
3628 return ret;
3629
3630 /* When adding a filter globally disable flex filter feature. That is
3631 * recommended within the datasheet.
3632 */
3633 wufc = rd32(IGC_WUFC);
3634 wufc &= ~IGC_WUFC_FLEX_HQ;
3635 wr32(IGC_WUFC, wufc);
3636
3637 /* Configure filter */
3638 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3639 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3640 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3641
3642 if (input->immediate_irq)
3643 queuing |= IGC_FHFT_IMM_INT;
3644
3645 if (input->drop)
3646 queuing |= IGC_FHFT_DROP;
3647
3648 wr32(fhft + 0xFC, queuing);
3649
3650 /* Write data (128 byte) and mask (128 bit) */
3651 for (i = 0; i < 16; ++i) {
3652 const size_t data_idx = i * 8;
3653 const size_t row_idx = i * 16;
3654 u32 dw0 =
3655 (data[data_idx + 0] << 0) |
3656 (data[data_idx + 1] << 8) |
3657 (data[data_idx + 2] << 16) |
3658 (data[data_idx + 3] << 24);
3659 u32 dw1 =
3660 (data[data_idx + 4] << 0) |
3661 (data[data_idx + 5] << 8) |
3662 (data[data_idx + 6] << 16) |
3663 (data[data_idx + 7] << 24);
3664 u32 tmp;
3665
3666 /* Write row: dw0, dw1 and mask */
3667 wr32(fhft + row_idx, dw0);
3668 wr32(fhft + row_idx + 4, dw1);
3669
3670 /* mask is only valid for MASK(7, 0) */
3671 tmp = rd32(fhft + row_idx + 8);
3672 tmp &= ~GENMASK(7, 0);
3673 tmp |= mask[i];
3674 wr32(fhft + row_idx + 8, tmp);
3675 }
3676
3677 /* Enable filter. */
3678 wufc |= IGC_WUFC_FLEX_HQ;
3679 if (input->index > 8) {
3680 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3681 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3682
3683 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3684
3685 wr32(IGC_WUFC_EXT, wufc_ext);
3686 } else {
3687 wufc |= (IGC_WUFC_FLX0 << input->index);
3688 }
3689 wr32(IGC_WUFC, wufc);
3690
3691 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3692 input->index);
3693
3694 return 0;
3695 }
3696
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3697 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3698 const void *src, unsigned int offset,
3699 size_t len, const void *mask)
3700 {
3701 int i;
3702
3703 /* data */
3704 memcpy(&flex->data[offset], src, len);
3705
3706 /* mask */
3707 for (i = 0; i < len; ++i) {
3708 const unsigned int idx = i + offset;
3709 const u8 *ptr = mask;
3710
3711 if (mask) {
3712 if (ptr[i] & 0xff)
3713 flex->mask[idx / 8] |= BIT(idx % 8);
3714
3715 continue;
3716 }
3717
3718 flex->mask[idx / 8] |= BIT(idx % 8);
3719 }
3720 }
3721
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3722 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3723 {
3724 struct igc_hw *hw = &adapter->hw;
3725 u32 wufc, wufc_ext;
3726 int i;
3727
3728 wufc = rd32(IGC_WUFC);
3729 wufc_ext = rd32(IGC_WUFC_EXT);
3730
3731 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3732 if (i < 8) {
3733 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3734 return i;
3735 } else {
3736 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3737 return i;
3738 }
3739 }
3740
3741 return -ENOSPC;
3742 }
3743
igc_flex_filter_in_use(struct igc_adapter * adapter)3744 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3745 {
3746 struct igc_hw *hw = &adapter->hw;
3747 u32 wufc, wufc_ext;
3748
3749 wufc = rd32(IGC_WUFC);
3750 wufc_ext = rd32(IGC_WUFC_EXT);
3751
3752 if (wufc & IGC_WUFC_FILTER_MASK)
3753 return true;
3754
3755 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3756 return true;
3757
3758 return false;
3759 }
3760
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3761 static int igc_add_flex_filter(struct igc_adapter *adapter,
3762 struct igc_nfc_rule *rule)
3763 {
3764 struct igc_nfc_filter *filter = &rule->filter;
3765 unsigned int eth_offset, user_offset;
3766 struct igc_flex_filter flex = { };
3767 int ret, index;
3768 bool vlan;
3769
3770 index = igc_find_avail_flex_filter_slot(adapter);
3771 if (index < 0)
3772 return -ENOSPC;
3773
3774 /* Construct the flex filter:
3775 * -> dest_mac [6]
3776 * -> src_mac [6]
3777 * -> tpid [2]
3778 * -> vlan tci [2]
3779 * -> ether type [2]
3780 * -> user data [8]
3781 * -> = 26 bytes => 32 length
3782 */
3783 flex.index = index;
3784 flex.length = 32;
3785 flex.rx_queue = rule->action;
3786
3787 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3788 eth_offset = vlan ? 16 : 12;
3789 user_offset = vlan ? 18 : 14;
3790
3791 /* Add destination MAC */
3792 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3793 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3794 ETH_ALEN, NULL);
3795
3796 /* Add source MAC */
3797 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3798 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3799 ETH_ALEN, NULL);
3800
3801 /* Add VLAN etype */
3802 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3803 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3804
3805 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3806 sizeof(vlan_etype), NULL);
3807 }
3808
3809 /* Add VLAN TCI */
3810 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3811 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3812 sizeof(filter->vlan_tci), NULL);
3813
3814 /* Add Ether type */
3815 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3816 __be16 etype = cpu_to_be16(filter->etype);
3817
3818 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3819 sizeof(etype), NULL);
3820 }
3821
3822 /* Add user data */
3823 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3824 igc_flex_filter_add_field(&flex, &filter->user_data,
3825 user_offset,
3826 sizeof(filter->user_data),
3827 filter->user_mask);
3828
3829 /* Add it down to the hardware and enable it. */
3830 ret = igc_write_flex_filter_ll(adapter, &flex);
3831 if (ret)
3832 return ret;
3833
3834 filter->flex_index = index;
3835
3836 return 0;
3837 }
3838
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3839 static void igc_del_flex_filter(struct igc_adapter *adapter,
3840 u16 reg_index)
3841 {
3842 struct igc_hw *hw = &adapter->hw;
3843 u32 wufc;
3844
3845 /* Just disable the filter. The filter table itself is kept
3846 * intact. Another flex_filter_add() should override the "old" data
3847 * then.
3848 */
3849 if (reg_index > 8) {
3850 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3851
3852 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3853 wr32(IGC_WUFC_EXT, wufc_ext);
3854 } else {
3855 wufc = rd32(IGC_WUFC);
3856
3857 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3858 wr32(IGC_WUFC, wufc);
3859 }
3860
3861 if (igc_flex_filter_in_use(adapter))
3862 return;
3863
3864 /* No filters are in use, we may disable flex filters */
3865 wufc = rd32(IGC_WUFC);
3866 wufc &= ~IGC_WUFC_FLEX_HQ;
3867 wr32(IGC_WUFC, wufc);
3868 }
3869
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3870 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3871 struct igc_nfc_rule *rule)
3872 {
3873 int err;
3874
3875 if (rule->flex) {
3876 return igc_add_flex_filter(adapter, rule);
3877 }
3878
3879 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3880 err = igc_add_etype_filter(adapter, rule->filter.etype,
3881 rule->action);
3882 if (err)
3883 return err;
3884 }
3885
3886 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3887 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3888 rule->filter.src_addr, rule->action);
3889 if (err)
3890 return err;
3891 }
3892
3893 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3894 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3895 rule->filter.dst_addr, rule->action);
3896 if (err)
3897 return err;
3898 }
3899
3900 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3901 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3902
3903 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3904 if (err)
3905 return err;
3906 }
3907
3908 return 0;
3909 }
3910
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3911 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3912 const struct igc_nfc_rule *rule)
3913 {
3914 if (rule->flex) {
3915 igc_del_flex_filter(adapter, rule->filter.flex_index);
3916 return;
3917 }
3918
3919 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3920 igc_del_etype_filter(adapter, rule->filter.etype);
3921
3922 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3923 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3924
3925 igc_del_vlan_prio_filter(adapter, prio);
3926 }
3927
3928 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3929 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3930 rule->filter.src_addr);
3931
3932 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3933 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3934 rule->filter.dst_addr);
3935 }
3936
3937 /**
3938 * igc_get_nfc_rule() - Get NFC rule
3939 * @adapter: Pointer to adapter
3940 * @location: Rule location
3941 *
3942 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3943 *
3944 * Return: Pointer to NFC rule at @location. If not found, NULL.
3945 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3946 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3947 u32 location)
3948 {
3949 struct igc_nfc_rule *rule;
3950
3951 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3952 if (rule->location == location)
3953 return rule;
3954 if (rule->location > location)
3955 break;
3956 }
3957
3958 return NULL;
3959 }
3960
3961 /**
3962 * igc_del_nfc_rule() - Delete NFC rule
3963 * @adapter: Pointer to adapter
3964 * @rule: Pointer to rule to be deleted
3965 *
3966 * Disable NFC rule in hardware and delete it from adapter.
3967 *
3968 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3969 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3970 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3971 {
3972 igc_disable_nfc_rule(adapter, rule);
3973
3974 list_del(&rule->list);
3975 adapter->nfc_rule_count--;
3976
3977 kfree(rule);
3978 }
3979
igc_flush_nfc_rules(struct igc_adapter * adapter)3980 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3981 {
3982 struct igc_nfc_rule *rule, *tmp;
3983
3984 mutex_lock(&adapter->nfc_rule_lock);
3985
3986 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3987 igc_del_nfc_rule(adapter, rule);
3988
3989 mutex_unlock(&adapter->nfc_rule_lock);
3990 }
3991
3992 /**
3993 * igc_add_nfc_rule() - Add NFC rule
3994 * @adapter: Pointer to adapter
3995 * @rule: Pointer to rule to be added
3996 *
3997 * Enable NFC rule in hardware and add it to adapter.
3998 *
3999 * Context: Expects adapter->nfc_rule_lock to be held by caller.
4000 *
4001 * Return: 0 on success, negative errno on failure.
4002 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)4003 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
4004 {
4005 struct igc_nfc_rule *pred, *cur;
4006 int err;
4007
4008 err = igc_enable_nfc_rule(adapter, rule);
4009 if (err)
4010 return err;
4011
4012 pred = NULL;
4013 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4014 if (cur->location >= rule->location)
4015 break;
4016 pred = cur;
4017 }
4018
4019 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4020 adapter->nfc_rule_count++;
4021 return 0;
4022 }
4023
igc_restore_nfc_rules(struct igc_adapter * adapter)4024 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4025 {
4026 struct igc_nfc_rule *rule;
4027
4028 mutex_lock(&adapter->nfc_rule_lock);
4029
4030 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4031 igc_enable_nfc_rule(adapter, rule);
4032
4033 mutex_unlock(&adapter->nfc_rule_lock);
4034 }
4035
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4036 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4037 {
4038 struct igc_adapter *adapter = netdev_priv(netdev);
4039
4040 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4041 }
4042
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4043 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4044 {
4045 struct igc_adapter *adapter = netdev_priv(netdev);
4046
4047 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4048 return 0;
4049 }
4050
4051 /**
4052 * igc_enable_empty_addr_recv - Enable Rx of packets with all-zeroes MAC address
4053 * @adapter: Pointer to the igc_adapter structure.
4054 *
4055 * Frame preemption verification requires that packets with the all-zeroes
4056 * MAC address are allowed to be received by the driver. This function adds the
4057 * all-zeroes destination address to the list of acceptable addresses.
4058 *
4059 * Return: 0 on success, negative value otherwise.
4060 */
igc_enable_empty_addr_recv(struct igc_adapter * adapter)4061 int igc_enable_empty_addr_recv(struct igc_adapter *adapter)
4062 {
4063 u8 empty[ETH_ALEN] = {};
4064
4065 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty, -1);
4066 }
4067
igc_disable_empty_addr_recv(struct igc_adapter * adapter)4068 void igc_disable_empty_addr_recv(struct igc_adapter *adapter)
4069 {
4070 u8 empty[ETH_ALEN] = {};
4071
4072 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty);
4073 }
4074
4075 /**
4076 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4077 * @netdev: network interface device structure
4078 *
4079 * The set_rx_mode entry point is called whenever the unicast or multicast
4080 * address lists or the network interface flags are updated. This routine is
4081 * responsible for configuring the hardware for proper unicast, multicast,
4082 * promiscuous mode, and all-multi behavior.
4083 */
igc_set_rx_mode(struct net_device * netdev)4084 static void igc_set_rx_mode(struct net_device *netdev)
4085 {
4086 struct igc_adapter *adapter = netdev_priv(netdev);
4087 struct igc_hw *hw = &adapter->hw;
4088 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4089 int count;
4090
4091 /* Check for Promiscuous and All Multicast modes */
4092 if (netdev->flags & IFF_PROMISC) {
4093 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4094 } else {
4095 if (netdev->flags & IFF_ALLMULTI) {
4096 rctl |= IGC_RCTL_MPE;
4097 } else {
4098 /* Write addresses to the MTA, if the attempt fails
4099 * then we should just turn on promiscuous mode so
4100 * that we can at least receive multicast traffic
4101 */
4102 count = igc_write_mc_addr_list(netdev);
4103 if (count < 0)
4104 rctl |= IGC_RCTL_MPE;
4105 }
4106 }
4107
4108 /* Write addresses to available RAR registers, if there is not
4109 * sufficient space to store all the addresses then enable
4110 * unicast promiscuous mode
4111 */
4112 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4113 rctl |= IGC_RCTL_UPE;
4114
4115 /* update state of unicast and multicast */
4116 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4117 wr32(IGC_RCTL, rctl);
4118
4119 #if (PAGE_SIZE < 8192)
4120 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4121 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4122 #endif
4123 wr32(IGC_RLPML, rlpml);
4124 }
4125
4126 /**
4127 * igc_configure - configure the hardware for RX and TX
4128 * @adapter: private board structure
4129 */
igc_configure(struct igc_adapter * adapter)4130 static void igc_configure(struct igc_adapter *adapter)
4131 {
4132 struct net_device *netdev = adapter->netdev;
4133 int i = 0;
4134
4135 igc_get_hw_control(adapter);
4136 igc_set_rx_mode(netdev);
4137
4138 igc_restore_vlan(adapter);
4139
4140 igc_setup_tctl(adapter);
4141 igc_setup_mrqc(adapter);
4142 igc_setup_rctl(adapter);
4143
4144 igc_set_default_mac_filter(adapter);
4145 igc_restore_nfc_rules(adapter);
4146
4147 igc_configure_tx(adapter);
4148 igc_configure_rx(adapter);
4149
4150 igc_rx_fifo_flush_base(&adapter->hw);
4151
4152 /* call igc_desc_unused which always leaves
4153 * at least 1 descriptor unused to make sure
4154 * next_to_use != next_to_clean
4155 */
4156 for (i = 0; i < adapter->num_rx_queues; i++) {
4157 struct igc_ring *ring = adapter->rx_ring[i];
4158
4159 if (ring->xsk_pool)
4160 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4161 else
4162 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4163 }
4164 }
4165
4166 /**
4167 * igc_write_ivar - configure ivar for given MSI-X vector
4168 * @hw: pointer to the HW structure
4169 * @msix_vector: vector number we are allocating to a given ring
4170 * @index: row index of IVAR register to write within IVAR table
4171 * @offset: column offset of in IVAR, should be multiple of 8
4172 *
4173 * The IVAR table consists of 2 columns,
4174 * each containing an cause allocation for an Rx and Tx ring, and a
4175 * variable number of rows depending on the number of queues supported.
4176 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4177 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4178 int index, int offset)
4179 {
4180 u32 ivar = array_rd32(IGC_IVAR0, index);
4181
4182 /* clear any bits that are currently set */
4183 ivar &= ~((u32)0xFF << offset);
4184
4185 /* write vector and valid bit */
4186 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4187
4188 array_wr32(IGC_IVAR0, index, ivar);
4189 }
4190
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4191 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4192 {
4193 struct igc_adapter *adapter = q_vector->adapter;
4194 struct igc_hw *hw = &adapter->hw;
4195 int rx_queue = IGC_N0_QUEUE;
4196 int tx_queue = IGC_N0_QUEUE;
4197
4198 if (q_vector->rx.ring)
4199 rx_queue = q_vector->rx.ring->reg_idx;
4200 if (q_vector->tx.ring)
4201 tx_queue = q_vector->tx.ring->reg_idx;
4202
4203 switch (hw->mac.type) {
4204 case igc_i225:
4205 if (rx_queue > IGC_N0_QUEUE)
4206 igc_write_ivar(hw, msix_vector,
4207 rx_queue >> 1,
4208 (rx_queue & 0x1) << 4);
4209 if (tx_queue > IGC_N0_QUEUE)
4210 igc_write_ivar(hw, msix_vector,
4211 tx_queue >> 1,
4212 ((tx_queue & 0x1) << 4) + 8);
4213 q_vector->eims_value = BIT(msix_vector);
4214 break;
4215 default:
4216 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4217 break;
4218 }
4219
4220 /* add q_vector eims value to global eims_enable_mask */
4221 adapter->eims_enable_mask |= q_vector->eims_value;
4222
4223 /* configure q_vector to set itr on first interrupt */
4224 q_vector->set_itr = 1;
4225 }
4226
4227 /**
4228 * igc_configure_msix - Configure MSI-X hardware
4229 * @adapter: Pointer to adapter structure
4230 *
4231 * igc_configure_msix sets up the hardware to properly
4232 * generate MSI-X interrupts.
4233 */
igc_configure_msix(struct igc_adapter * adapter)4234 static void igc_configure_msix(struct igc_adapter *adapter)
4235 {
4236 struct igc_hw *hw = &adapter->hw;
4237 int i, vector = 0;
4238 u32 tmp;
4239
4240 adapter->eims_enable_mask = 0;
4241
4242 /* set vector for other causes, i.e. link changes */
4243 switch (hw->mac.type) {
4244 case igc_i225:
4245 /* Turn on MSI-X capability first, or our settings
4246 * won't stick. And it will take days to debug.
4247 */
4248 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4249 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4250 IGC_GPIE_NSICR);
4251
4252 /* enable msix_other interrupt */
4253 adapter->eims_other = BIT(vector);
4254 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4255
4256 wr32(IGC_IVAR_MISC, tmp);
4257 break;
4258 default:
4259 /* do nothing, since nothing else supports MSI-X */
4260 break;
4261 } /* switch (hw->mac.type) */
4262
4263 adapter->eims_enable_mask |= adapter->eims_other;
4264
4265 for (i = 0; i < adapter->num_q_vectors; i++)
4266 igc_assign_vector(adapter->q_vector[i], vector++);
4267
4268 wrfl();
4269 }
4270
4271 /**
4272 * igc_irq_enable - Enable default interrupt generation settings
4273 * @adapter: board private structure
4274 */
igc_irq_enable(struct igc_adapter * adapter)4275 static void igc_irq_enable(struct igc_adapter *adapter)
4276 {
4277 struct igc_hw *hw = &adapter->hw;
4278
4279 if (adapter->msix_entries) {
4280 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4281 u32 regval = rd32(IGC_EIAC);
4282
4283 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4284 regval = rd32(IGC_EIAM);
4285 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4286 wr32(IGC_EIMS, adapter->eims_enable_mask);
4287 wr32(IGC_IMS, ims);
4288 } else {
4289 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4290 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4291 }
4292 }
4293
4294 /**
4295 * igc_irq_disable - Mask off interrupt generation on the NIC
4296 * @adapter: board private structure
4297 */
igc_irq_disable(struct igc_adapter * adapter)4298 static void igc_irq_disable(struct igc_adapter *adapter)
4299 {
4300 struct igc_hw *hw = &adapter->hw;
4301
4302 if (adapter->msix_entries) {
4303 u32 regval = rd32(IGC_EIAM);
4304
4305 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4306 wr32(IGC_EIMC, adapter->eims_enable_mask);
4307 regval = rd32(IGC_EIAC);
4308 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4309 }
4310
4311 wr32(IGC_IAM, 0);
4312 wr32(IGC_IMC, ~0);
4313 wrfl();
4314
4315 if (adapter->msix_entries) {
4316 int vector = 0, i;
4317
4318 synchronize_irq(adapter->msix_entries[vector++].vector);
4319
4320 for (i = 0; i < adapter->num_q_vectors; i++)
4321 synchronize_irq(adapter->msix_entries[vector++].vector);
4322 } else {
4323 synchronize_irq(adapter->pdev->irq);
4324 }
4325 }
4326
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4327 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4328 const u32 max_rss_queues)
4329 {
4330 /* Determine if we need to pair queues. */
4331 /* If rss_queues > half of max_rss_queues, pair the queues in
4332 * order to conserve interrupts due to limited supply.
4333 */
4334 if (adapter->rss_queues > (max_rss_queues / 2))
4335 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4336 else
4337 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4338 }
4339
igc_get_max_rss_queues(struct igc_adapter * adapter)4340 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4341 {
4342 return IGC_MAX_RX_QUEUES;
4343 }
4344
igc_init_queue_configuration(struct igc_adapter * adapter)4345 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4346 {
4347 u32 max_rss_queues;
4348
4349 max_rss_queues = igc_get_max_rss_queues(adapter);
4350 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4351
4352 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4353 }
4354
4355 /**
4356 * igc_reset_q_vector - Reset config for interrupt vector
4357 * @adapter: board private structure to initialize
4358 * @v_idx: Index of vector to be reset
4359 *
4360 * If NAPI is enabled it will delete any references to the
4361 * NAPI struct. This is preparation for igc_free_q_vector.
4362 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4363 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4364 {
4365 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4366
4367 /* if we're coming from igc_set_interrupt_capability, the vectors are
4368 * not yet allocated
4369 */
4370 if (!q_vector)
4371 return;
4372
4373 if (q_vector->tx.ring)
4374 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4375
4376 if (q_vector->rx.ring)
4377 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4378
4379 netif_napi_del(&q_vector->napi);
4380 }
4381
4382 /**
4383 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4384 * @adapter: board private structure to initialize
4385 * @v_idx: Index of vector to be freed
4386 *
4387 * This function frees the memory allocated to the q_vector.
4388 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4389 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4390 {
4391 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4392
4393 adapter->q_vector[v_idx] = NULL;
4394
4395 /* igc_get_stats64() might access the rings on this vector,
4396 * we must wait a grace period before freeing it.
4397 */
4398 if (q_vector)
4399 kfree_rcu(q_vector, rcu);
4400 }
4401
4402 /**
4403 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4404 * @adapter: board private structure to initialize
4405 *
4406 * This function frees the memory allocated to the q_vectors. In addition if
4407 * NAPI is enabled it will delete any references to the NAPI struct prior
4408 * to freeing the q_vector.
4409 */
igc_free_q_vectors(struct igc_adapter * adapter)4410 static void igc_free_q_vectors(struct igc_adapter *adapter)
4411 {
4412 int v_idx = adapter->num_q_vectors;
4413
4414 adapter->num_tx_queues = 0;
4415 adapter->num_rx_queues = 0;
4416 adapter->num_q_vectors = 0;
4417
4418 while (v_idx--) {
4419 igc_reset_q_vector(adapter, v_idx);
4420 igc_free_q_vector(adapter, v_idx);
4421 }
4422 }
4423
4424 /**
4425 * igc_update_itr - update the dynamic ITR value based on statistics
4426 * @q_vector: pointer to q_vector
4427 * @ring_container: ring info to update the itr for
4428 *
4429 * Stores a new ITR value based on packets and byte
4430 * counts during the last interrupt. The advantage of per interrupt
4431 * computation is faster updates and more accurate ITR for the current
4432 * traffic pattern. Constants in this function were computed
4433 * based on theoretical maximum wire speed and thresholds were set based
4434 * on testing data as well as attempting to minimize response time
4435 * while increasing bulk throughput.
4436 * NOTE: These calculations are only valid when operating in a single-
4437 * queue environment.
4438 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4439 static void igc_update_itr(struct igc_q_vector *q_vector,
4440 struct igc_ring_container *ring_container)
4441 {
4442 unsigned int packets = ring_container->total_packets;
4443 unsigned int bytes = ring_container->total_bytes;
4444 u8 itrval = ring_container->itr;
4445
4446 /* no packets, exit with status unchanged */
4447 if (packets == 0)
4448 return;
4449
4450 switch (itrval) {
4451 case lowest_latency:
4452 /* handle TSO and jumbo frames */
4453 if (bytes / packets > 8000)
4454 itrval = bulk_latency;
4455 else if ((packets < 5) && (bytes > 512))
4456 itrval = low_latency;
4457 break;
4458 case low_latency: /* 50 usec aka 20000 ints/s */
4459 if (bytes > 10000) {
4460 /* this if handles the TSO accounting */
4461 if (bytes / packets > 8000)
4462 itrval = bulk_latency;
4463 else if ((packets < 10) || ((bytes / packets) > 1200))
4464 itrval = bulk_latency;
4465 else if ((packets > 35))
4466 itrval = lowest_latency;
4467 } else if (bytes / packets > 2000) {
4468 itrval = bulk_latency;
4469 } else if (packets <= 2 && bytes < 512) {
4470 itrval = lowest_latency;
4471 }
4472 break;
4473 case bulk_latency: /* 250 usec aka 4000 ints/s */
4474 if (bytes > 25000) {
4475 if (packets > 35)
4476 itrval = low_latency;
4477 } else if (bytes < 1500) {
4478 itrval = low_latency;
4479 }
4480 break;
4481 }
4482
4483 /* clear work counters since we have the values we need */
4484 ring_container->total_bytes = 0;
4485 ring_container->total_packets = 0;
4486
4487 /* write updated itr to ring container */
4488 ring_container->itr = itrval;
4489 }
4490
igc_set_itr(struct igc_q_vector * q_vector)4491 static void igc_set_itr(struct igc_q_vector *q_vector)
4492 {
4493 struct igc_adapter *adapter = q_vector->adapter;
4494 u32 new_itr = q_vector->itr_val;
4495 u8 current_itr = 0;
4496
4497 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4498 switch (adapter->link_speed) {
4499 case SPEED_10:
4500 case SPEED_100:
4501 current_itr = 0;
4502 new_itr = IGC_4K_ITR;
4503 goto set_itr_now;
4504 default:
4505 break;
4506 }
4507
4508 igc_update_itr(q_vector, &q_vector->tx);
4509 igc_update_itr(q_vector, &q_vector->rx);
4510
4511 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4512
4513 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4514 if (current_itr == lowest_latency &&
4515 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4516 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4517 current_itr = low_latency;
4518
4519 switch (current_itr) {
4520 /* counts and packets in update_itr are dependent on these numbers */
4521 case lowest_latency:
4522 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4523 break;
4524 case low_latency:
4525 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4526 break;
4527 case bulk_latency:
4528 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4529 break;
4530 default:
4531 break;
4532 }
4533
4534 set_itr_now:
4535 if (new_itr != q_vector->itr_val) {
4536 /* this attempts to bias the interrupt rate towards Bulk
4537 * by adding intermediate steps when interrupt rate is
4538 * increasing
4539 */
4540 new_itr = new_itr > q_vector->itr_val ?
4541 max((new_itr * q_vector->itr_val) /
4542 (new_itr + (q_vector->itr_val >> 2)),
4543 new_itr) : new_itr;
4544 /* Don't write the value here; it resets the adapter's
4545 * internal timer, and causes us to delay far longer than
4546 * we should between interrupts. Instead, we write the ITR
4547 * value at the beginning of the next interrupt so the timing
4548 * ends up being correct.
4549 */
4550 q_vector->itr_val = new_itr;
4551 q_vector->set_itr = 1;
4552 }
4553 }
4554
igc_reset_interrupt_capability(struct igc_adapter * adapter)4555 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4556 {
4557 int v_idx = adapter->num_q_vectors;
4558
4559 if (adapter->msix_entries) {
4560 pci_disable_msix(adapter->pdev);
4561 kfree(adapter->msix_entries);
4562 adapter->msix_entries = NULL;
4563 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4564 pci_disable_msi(adapter->pdev);
4565 }
4566
4567 while (v_idx--)
4568 igc_reset_q_vector(adapter, v_idx);
4569 }
4570
4571 /**
4572 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4573 * @adapter: Pointer to adapter structure
4574 * @msix: boolean value for MSI-X capability
4575 *
4576 * Attempt to configure interrupts using the best available
4577 * capabilities of the hardware and kernel.
4578 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4579 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4580 bool msix)
4581 {
4582 int numvecs, i;
4583 int err;
4584
4585 if (!msix)
4586 goto msi_only;
4587 adapter->flags |= IGC_FLAG_HAS_MSIX;
4588
4589 /* Number of supported queues. */
4590 adapter->num_rx_queues = adapter->rss_queues;
4591
4592 adapter->num_tx_queues = adapter->rss_queues;
4593
4594 /* start with one vector for every Rx queue */
4595 numvecs = adapter->num_rx_queues;
4596
4597 /* if Tx handler is separate add 1 for every Tx queue */
4598 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4599 numvecs += adapter->num_tx_queues;
4600
4601 /* store the number of vectors reserved for queues */
4602 adapter->num_q_vectors = numvecs;
4603
4604 /* add 1 vector for link status interrupts */
4605 numvecs++;
4606
4607 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4608 GFP_KERNEL);
4609
4610 if (!adapter->msix_entries)
4611 return;
4612
4613 /* populate entry values */
4614 for (i = 0; i < numvecs; i++)
4615 adapter->msix_entries[i].entry = i;
4616
4617 err = pci_enable_msix_range(adapter->pdev,
4618 adapter->msix_entries,
4619 numvecs,
4620 numvecs);
4621 if (err > 0)
4622 return;
4623
4624 kfree(adapter->msix_entries);
4625 adapter->msix_entries = NULL;
4626
4627 igc_reset_interrupt_capability(adapter);
4628
4629 msi_only:
4630 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4631
4632 adapter->rss_queues = 1;
4633 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4634 adapter->num_rx_queues = 1;
4635 adapter->num_tx_queues = 1;
4636 adapter->num_q_vectors = 1;
4637 if (!pci_enable_msi(adapter->pdev))
4638 adapter->flags |= IGC_FLAG_HAS_MSI;
4639 }
4640
4641 /**
4642 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4643 * @q_vector: pointer to q_vector
4644 *
4645 * Stores a new ITR value based on strictly on packet size. This
4646 * algorithm is less sophisticated than that used in igc_update_itr,
4647 * due to the difficulty of synchronizing statistics across multiple
4648 * receive rings. The divisors and thresholds used by this function
4649 * were determined based on theoretical maximum wire speed and testing
4650 * data, in order to minimize response time while increasing bulk
4651 * throughput.
4652 * NOTE: This function is called only when operating in a multiqueue
4653 * receive environment.
4654 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4655 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4656 {
4657 struct igc_adapter *adapter = q_vector->adapter;
4658 int new_val = q_vector->itr_val;
4659 int avg_wire_size = 0;
4660 unsigned int packets;
4661
4662 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4663 * ints/sec - ITR timer value of 120 ticks.
4664 */
4665 switch (adapter->link_speed) {
4666 case SPEED_10:
4667 case SPEED_100:
4668 new_val = IGC_4K_ITR;
4669 goto set_itr_val;
4670 default:
4671 break;
4672 }
4673
4674 packets = q_vector->rx.total_packets;
4675 if (packets)
4676 avg_wire_size = q_vector->rx.total_bytes / packets;
4677
4678 packets = q_vector->tx.total_packets;
4679 if (packets)
4680 avg_wire_size = max_t(u32, avg_wire_size,
4681 q_vector->tx.total_bytes / packets);
4682
4683 /* if avg_wire_size isn't set no work was done */
4684 if (!avg_wire_size)
4685 goto clear_counts;
4686
4687 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4688 avg_wire_size += 24;
4689
4690 /* Don't starve jumbo frames */
4691 avg_wire_size = min(avg_wire_size, 3000);
4692
4693 /* Give a little boost to mid-size frames */
4694 if (avg_wire_size > 300 && avg_wire_size < 1200)
4695 new_val = avg_wire_size / 3;
4696 else
4697 new_val = avg_wire_size / 2;
4698
4699 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4700 if (new_val < IGC_20K_ITR &&
4701 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4702 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4703 new_val = IGC_20K_ITR;
4704
4705 set_itr_val:
4706 if (new_val != q_vector->itr_val) {
4707 q_vector->itr_val = new_val;
4708 q_vector->set_itr = 1;
4709 }
4710 clear_counts:
4711 q_vector->rx.total_bytes = 0;
4712 q_vector->rx.total_packets = 0;
4713 q_vector->tx.total_bytes = 0;
4714 q_vector->tx.total_packets = 0;
4715 }
4716
igc_ring_irq_enable(struct igc_q_vector * q_vector)4717 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4718 {
4719 struct igc_adapter *adapter = q_vector->adapter;
4720 struct igc_hw *hw = &adapter->hw;
4721
4722 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4723 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4724 if (adapter->num_q_vectors == 1)
4725 igc_set_itr(q_vector);
4726 else
4727 igc_update_ring_itr(q_vector);
4728 }
4729
4730 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4731 if (adapter->msix_entries)
4732 wr32(IGC_EIMS, q_vector->eims_value);
4733 else
4734 igc_irq_enable(adapter);
4735 }
4736 }
4737
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4738 static void igc_add_ring(struct igc_ring *ring,
4739 struct igc_ring_container *head)
4740 {
4741 head->ring = ring;
4742 head->count++;
4743 }
4744
4745 /**
4746 * igc_cache_ring_register - Descriptor ring to register mapping
4747 * @adapter: board private structure to initialize
4748 *
4749 * Once we know the feature-set enabled for the device, we'll cache
4750 * the register offset the descriptor ring is assigned to.
4751 */
igc_cache_ring_register(struct igc_adapter * adapter)4752 static void igc_cache_ring_register(struct igc_adapter *adapter)
4753 {
4754 int i = 0, j = 0;
4755
4756 switch (adapter->hw.mac.type) {
4757 case igc_i225:
4758 default:
4759 for (; i < adapter->num_rx_queues; i++)
4760 adapter->rx_ring[i]->reg_idx = i;
4761 for (; j < adapter->num_tx_queues; j++)
4762 adapter->tx_ring[j]->reg_idx = j;
4763 break;
4764 }
4765 }
4766
4767 /**
4768 * igc_poll - NAPI Rx polling callback
4769 * @napi: napi polling structure
4770 * @budget: count of how many packets we should handle
4771 */
igc_poll(struct napi_struct * napi,int budget)4772 static int igc_poll(struct napi_struct *napi, int budget)
4773 {
4774 struct igc_q_vector *q_vector = container_of(napi,
4775 struct igc_q_vector,
4776 napi);
4777 struct igc_ring *rx_ring = q_vector->rx.ring;
4778 bool clean_complete = true;
4779 int work_done = 0;
4780
4781 if (q_vector->tx.ring)
4782 clean_complete = igc_clean_tx_irq(q_vector, budget);
4783
4784 if (rx_ring) {
4785 int cleaned = rx_ring->xsk_pool ?
4786 igc_clean_rx_irq_zc(q_vector, budget) :
4787 igc_clean_rx_irq(q_vector, budget);
4788
4789 work_done += cleaned;
4790 if (cleaned >= budget)
4791 clean_complete = false;
4792 }
4793
4794 /* If all work not completed, return budget and keep polling */
4795 if (!clean_complete)
4796 return budget;
4797
4798 /* Exit the polling mode, but don't re-enable interrupts if stack might
4799 * poll us due to busy-polling
4800 */
4801 if (likely(napi_complete_done(napi, work_done)))
4802 igc_ring_irq_enable(q_vector);
4803
4804 return min(work_done, budget - 1);
4805 }
4806
4807 /**
4808 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4809 * @adapter: board private structure to initialize
4810 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4811 * @v_idx: index of vector in adapter struct
4812 * @txr_count: total number of Tx rings to allocate
4813 * @txr_idx: index of first Tx ring to allocate
4814 * @rxr_count: total number of Rx rings to allocate
4815 * @rxr_idx: index of first Rx ring to allocate
4816 *
4817 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4818 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4819 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4820 unsigned int v_count, unsigned int v_idx,
4821 unsigned int txr_count, unsigned int txr_idx,
4822 unsigned int rxr_count, unsigned int rxr_idx)
4823 {
4824 struct igc_q_vector *q_vector;
4825 struct igc_ring *ring;
4826 int ring_count;
4827
4828 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4829 if (txr_count > 1 || rxr_count > 1)
4830 return -ENOMEM;
4831
4832 ring_count = txr_count + rxr_count;
4833
4834 /* allocate q_vector and rings */
4835 q_vector = adapter->q_vector[v_idx];
4836 if (!q_vector)
4837 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4838 GFP_KERNEL);
4839 else
4840 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4841 if (!q_vector)
4842 return -ENOMEM;
4843
4844 /* initialize NAPI */
4845 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4846
4847 /* tie q_vector and adapter together */
4848 adapter->q_vector[v_idx] = q_vector;
4849 q_vector->adapter = adapter;
4850
4851 /* initialize work limits */
4852 q_vector->tx.work_limit = adapter->tx_work_limit;
4853
4854 /* initialize ITR configuration */
4855 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4856 q_vector->itr_val = IGC_START_ITR;
4857
4858 /* initialize pointer to rings */
4859 ring = q_vector->ring;
4860
4861 /* initialize ITR */
4862 if (rxr_count) {
4863 /* rx or rx/tx vector */
4864 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4865 q_vector->itr_val = adapter->rx_itr_setting;
4866 } else {
4867 /* tx only vector */
4868 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4869 q_vector->itr_val = adapter->tx_itr_setting;
4870 }
4871
4872 if (txr_count) {
4873 /* assign generic ring traits */
4874 ring->dev = &adapter->pdev->dev;
4875 ring->netdev = adapter->netdev;
4876
4877 /* configure backlink on ring */
4878 ring->q_vector = q_vector;
4879
4880 /* update q_vector Tx values */
4881 igc_add_ring(ring, &q_vector->tx);
4882
4883 /* apply Tx specific ring traits */
4884 ring->count = adapter->tx_ring_count;
4885 ring->queue_index = txr_idx;
4886
4887 /* assign ring to adapter */
4888 adapter->tx_ring[txr_idx] = ring;
4889
4890 /* push pointer to next ring */
4891 ring++;
4892 }
4893
4894 if (rxr_count) {
4895 /* assign generic ring traits */
4896 ring->dev = &adapter->pdev->dev;
4897 ring->netdev = adapter->netdev;
4898
4899 /* configure backlink on ring */
4900 ring->q_vector = q_vector;
4901
4902 /* update q_vector Rx values */
4903 igc_add_ring(ring, &q_vector->rx);
4904
4905 /* apply Rx specific ring traits */
4906 ring->count = adapter->rx_ring_count;
4907 ring->queue_index = rxr_idx;
4908
4909 /* assign ring to adapter */
4910 adapter->rx_ring[rxr_idx] = ring;
4911 }
4912
4913 return 0;
4914 }
4915
4916 /**
4917 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4918 * @adapter: board private structure to initialize
4919 *
4920 * We allocate one q_vector per queue interrupt. If allocation fails we
4921 * return -ENOMEM.
4922 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4923 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4924 {
4925 int rxr_remaining = adapter->num_rx_queues;
4926 int txr_remaining = adapter->num_tx_queues;
4927 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4928 int q_vectors = adapter->num_q_vectors;
4929 int err;
4930
4931 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4932 for (; rxr_remaining; v_idx++) {
4933 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4934 0, 0, 1, rxr_idx);
4935
4936 if (err)
4937 goto err_out;
4938
4939 /* update counts and index */
4940 rxr_remaining--;
4941 rxr_idx++;
4942 }
4943 }
4944
4945 for (; v_idx < q_vectors; v_idx++) {
4946 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4947 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4948
4949 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4950 tqpv, txr_idx, rqpv, rxr_idx);
4951
4952 if (err)
4953 goto err_out;
4954
4955 /* update counts and index */
4956 rxr_remaining -= rqpv;
4957 txr_remaining -= tqpv;
4958 rxr_idx++;
4959 txr_idx++;
4960 }
4961
4962 return 0;
4963
4964 err_out:
4965 adapter->num_tx_queues = 0;
4966 adapter->num_rx_queues = 0;
4967 adapter->num_q_vectors = 0;
4968
4969 while (v_idx--)
4970 igc_free_q_vector(adapter, v_idx);
4971
4972 return -ENOMEM;
4973 }
4974
4975 /**
4976 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4977 * @adapter: Pointer to adapter structure
4978 * @msix: boolean for MSI-X capability
4979 *
4980 * This function initializes the interrupts and allocates all of the queues.
4981 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4982 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4983 {
4984 struct net_device *dev = adapter->netdev;
4985 int err = 0;
4986
4987 igc_set_interrupt_capability(adapter, msix);
4988
4989 err = igc_alloc_q_vectors(adapter);
4990 if (err) {
4991 netdev_err(dev, "Unable to allocate memory for vectors\n");
4992 goto err_alloc_q_vectors;
4993 }
4994
4995 igc_cache_ring_register(adapter);
4996
4997 return 0;
4998
4999 err_alloc_q_vectors:
5000 igc_reset_interrupt_capability(adapter);
5001 return err;
5002 }
5003
5004 /**
5005 * igc_sw_init - Initialize general software structures (struct igc_adapter)
5006 * @adapter: board private structure to initialize
5007 *
5008 * igc_sw_init initializes the Adapter private data structure.
5009 * Fields are initialized based on PCI device information and
5010 * OS network device settings (MTU size).
5011 */
igc_sw_init(struct igc_adapter * adapter)5012 static int igc_sw_init(struct igc_adapter *adapter)
5013 {
5014 struct net_device *netdev = adapter->netdev;
5015 struct pci_dev *pdev = adapter->pdev;
5016 struct igc_hw *hw = &adapter->hw;
5017
5018 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
5019
5020 /* set default ring sizes */
5021 adapter->tx_ring_count = IGC_DEFAULT_TXD;
5022 adapter->rx_ring_count = IGC_DEFAULT_RXD;
5023
5024 /* set default ITR values */
5025 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
5026 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
5027
5028 /* set default work limits */
5029 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
5030
5031 /* adjust max frame to be at least the size of a standard frame */
5032 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
5033 VLAN_HLEN;
5034 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
5035
5036 mutex_init(&adapter->nfc_rule_lock);
5037 INIT_LIST_HEAD(&adapter->nfc_rule_list);
5038 adapter->nfc_rule_count = 0;
5039
5040 spin_lock_init(&adapter->stats64_lock);
5041 spin_lock_init(&adapter->qbv_tx_lock);
5042 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
5043 adapter->flags |= IGC_FLAG_HAS_MSIX;
5044
5045 igc_init_queue_configuration(adapter);
5046
5047 /* This call may decrease the number of queues */
5048 if (igc_init_interrupt_scheme(adapter, true)) {
5049 netdev_err(netdev, "Unable to allocate memory for queues\n");
5050 return -ENOMEM;
5051 }
5052
5053 /* Explicitly disable IRQ since the NIC can be in any state. */
5054 igc_irq_disable(adapter);
5055
5056 set_bit(__IGC_DOWN, &adapter->state);
5057
5058 return 0;
5059 }
5060
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5061 static void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5062 struct napi_struct *napi)
5063 {
5064 struct igc_q_vector *q_vector = adapter->q_vector[vector];
5065
5066 if (q_vector->rx.ring)
5067 netif_queue_set_napi(adapter->netdev,
5068 q_vector->rx.ring->queue_index,
5069 NETDEV_QUEUE_TYPE_RX, napi);
5070
5071 if (q_vector->tx.ring)
5072 netif_queue_set_napi(adapter->netdev,
5073 q_vector->tx.ring->queue_index,
5074 NETDEV_QUEUE_TYPE_TX, napi);
5075 }
5076
5077 /**
5078 * igc_up - Open the interface and prepare it to handle traffic
5079 * @adapter: board private structure
5080 */
igc_up(struct igc_adapter * adapter)5081 void igc_up(struct igc_adapter *adapter)
5082 {
5083 struct igc_hw *hw = &adapter->hw;
5084 struct napi_struct *napi;
5085 int i = 0;
5086
5087 /* hardware has been reset, we need to reload some things */
5088 igc_configure(adapter);
5089
5090 clear_bit(__IGC_DOWN, &adapter->state);
5091
5092 for (i = 0; i < adapter->num_q_vectors; i++) {
5093 napi = &adapter->q_vector[i]->napi;
5094 napi_enable(napi);
5095 igc_set_queue_napi(adapter, i, napi);
5096 }
5097
5098 if (adapter->msix_entries)
5099 igc_configure_msix(adapter);
5100 else
5101 igc_assign_vector(adapter->q_vector[0], 0);
5102
5103 /* Clear any pending interrupts. */
5104 rd32(IGC_ICR);
5105 igc_irq_enable(adapter);
5106
5107 netif_tx_start_all_queues(adapter->netdev);
5108
5109 /* start the watchdog. */
5110 hw->mac.get_link_status = true;
5111 schedule_work(&adapter->watchdog_task);
5112 }
5113
5114 /**
5115 * igc_update_stats - Update the board statistics counters
5116 * @adapter: board private structure
5117 */
igc_update_stats(struct igc_adapter * adapter)5118 void igc_update_stats(struct igc_adapter *adapter)
5119 {
5120 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5121 struct pci_dev *pdev = adapter->pdev;
5122 struct igc_hw *hw = &adapter->hw;
5123 u64 _bytes, _packets;
5124 u64 bytes, packets;
5125 unsigned int start;
5126 u32 mpc;
5127 int i;
5128
5129 /* Prevent stats update while adapter is being reset, or if the pci
5130 * connection is down.
5131 */
5132 if (adapter->link_speed == 0)
5133 return;
5134 if (pci_channel_offline(pdev))
5135 return;
5136
5137 packets = 0;
5138 bytes = 0;
5139
5140 rcu_read_lock();
5141 for (i = 0; i < adapter->num_rx_queues; i++) {
5142 struct igc_ring *ring = adapter->rx_ring[i];
5143 u32 rqdpc = rd32(IGC_RQDPC(i));
5144
5145 if (hw->mac.type >= igc_i225)
5146 wr32(IGC_RQDPC(i), 0);
5147
5148 if (rqdpc) {
5149 ring->rx_stats.drops += rqdpc;
5150 net_stats->rx_fifo_errors += rqdpc;
5151 }
5152
5153 do {
5154 start = u64_stats_fetch_begin(&ring->rx_syncp);
5155 _bytes = ring->rx_stats.bytes;
5156 _packets = ring->rx_stats.packets;
5157 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5158 bytes += _bytes;
5159 packets += _packets;
5160 }
5161
5162 net_stats->rx_bytes = bytes;
5163 net_stats->rx_packets = packets;
5164
5165 packets = 0;
5166 bytes = 0;
5167 for (i = 0; i < adapter->num_tx_queues; i++) {
5168 struct igc_ring *ring = adapter->tx_ring[i];
5169
5170 do {
5171 start = u64_stats_fetch_begin(&ring->tx_syncp);
5172 _bytes = ring->tx_stats.bytes;
5173 _packets = ring->tx_stats.packets;
5174 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5175 bytes += _bytes;
5176 packets += _packets;
5177 }
5178 net_stats->tx_bytes = bytes;
5179 net_stats->tx_packets = packets;
5180 rcu_read_unlock();
5181
5182 /* read stats registers */
5183 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5184 adapter->stats.gprc += rd32(IGC_GPRC);
5185 adapter->stats.gorc += rd32(IGC_GORCL);
5186 rd32(IGC_GORCH); /* clear GORCL */
5187 adapter->stats.bprc += rd32(IGC_BPRC);
5188 adapter->stats.mprc += rd32(IGC_MPRC);
5189 adapter->stats.roc += rd32(IGC_ROC);
5190
5191 adapter->stats.prc64 += rd32(IGC_PRC64);
5192 adapter->stats.prc127 += rd32(IGC_PRC127);
5193 adapter->stats.prc255 += rd32(IGC_PRC255);
5194 adapter->stats.prc511 += rd32(IGC_PRC511);
5195 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5196 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5197 adapter->stats.tlpic += rd32(IGC_TLPIC);
5198 adapter->stats.rlpic += rd32(IGC_RLPIC);
5199 adapter->stats.hgptc += rd32(IGC_HGPTC);
5200
5201 mpc = rd32(IGC_MPC);
5202 adapter->stats.mpc += mpc;
5203 net_stats->rx_fifo_errors += mpc;
5204 adapter->stats.scc += rd32(IGC_SCC);
5205 adapter->stats.ecol += rd32(IGC_ECOL);
5206 adapter->stats.mcc += rd32(IGC_MCC);
5207 adapter->stats.latecol += rd32(IGC_LATECOL);
5208 adapter->stats.dc += rd32(IGC_DC);
5209 adapter->stats.rlec += rd32(IGC_RLEC);
5210 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5211 adapter->stats.xontxc += rd32(IGC_XONTXC);
5212 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5213 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5214 adapter->stats.fcruc += rd32(IGC_FCRUC);
5215 adapter->stats.gptc += rd32(IGC_GPTC);
5216 adapter->stats.gotc += rd32(IGC_GOTCL);
5217 rd32(IGC_GOTCH); /* clear GOTCL */
5218 adapter->stats.rnbc += rd32(IGC_RNBC);
5219 adapter->stats.ruc += rd32(IGC_RUC);
5220 adapter->stats.rfc += rd32(IGC_RFC);
5221 adapter->stats.rjc += rd32(IGC_RJC);
5222 adapter->stats.tor += rd32(IGC_TORH);
5223 adapter->stats.tot += rd32(IGC_TOTH);
5224 adapter->stats.tpr += rd32(IGC_TPR);
5225
5226 adapter->stats.ptc64 += rd32(IGC_PTC64);
5227 adapter->stats.ptc127 += rd32(IGC_PTC127);
5228 adapter->stats.ptc255 += rd32(IGC_PTC255);
5229 adapter->stats.ptc511 += rd32(IGC_PTC511);
5230 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5231 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5232
5233 adapter->stats.mptc += rd32(IGC_MPTC);
5234 adapter->stats.bptc += rd32(IGC_BPTC);
5235
5236 adapter->stats.tpt += rd32(IGC_TPT);
5237 adapter->stats.colc += rd32(IGC_COLC);
5238 adapter->stats.colc += rd32(IGC_RERC);
5239
5240 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5241
5242 adapter->stats.tsctc += rd32(IGC_TSCTC);
5243
5244 adapter->stats.iac += rd32(IGC_IAC);
5245
5246 /* Fill out the OS statistics structure */
5247 net_stats->multicast = adapter->stats.mprc;
5248 net_stats->collisions = adapter->stats.colc;
5249
5250 /* Rx Errors */
5251
5252 /* RLEC on some newer hardware can be incorrect so build
5253 * our own version based on RUC and ROC
5254 */
5255 net_stats->rx_errors = adapter->stats.rxerrc +
5256 adapter->stats.crcerrs + adapter->stats.algnerrc +
5257 adapter->stats.ruc + adapter->stats.roc +
5258 adapter->stats.cexterr;
5259 net_stats->rx_length_errors = adapter->stats.ruc +
5260 adapter->stats.roc;
5261 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5262 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5263 net_stats->rx_missed_errors = adapter->stats.mpc;
5264
5265 /* Tx Errors */
5266 net_stats->tx_errors = adapter->stats.ecol +
5267 adapter->stats.latecol;
5268 net_stats->tx_aborted_errors = adapter->stats.ecol;
5269 net_stats->tx_window_errors = adapter->stats.latecol;
5270 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5271
5272 /* Tx Dropped */
5273 net_stats->tx_dropped = adapter->stats.txdrop;
5274
5275 /* Management Stats */
5276 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5277 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5278 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5279 }
5280
5281 /**
5282 * igc_down - Close the interface
5283 * @adapter: board private structure
5284 */
igc_down(struct igc_adapter * adapter)5285 void igc_down(struct igc_adapter *adapter)
5286 {
5287 struct net_device *netdev = adapter->netdev;
5288 struct igc_hw *hw = &adapter->hw;
5289 u32 tctl, rctl;
5290 int i = 0;
5291
5292 set_bit(__IGC_DOWN, &adapter->state);
5293
5294 igc_ptp_suspend(adapter);
5295
5296 if (pci_device_is_present(adapter->pdev)) {
5297 /* disable receives in the hardware */
5298 rctl = rd32(IGC_RCTL);
5299 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5300 /* flush and sleep below */
5301 }
5302 /* set trans_start so we don't get spurious watchdogs during reset */
5303 netif_trans_update(netdev);
5304
5305 netif_carrier_off(netdev);
5306 netif_tx_stop_all_queues(netdev);
5307
5308 if (pci_device_is_present(adapter->pdev)) {
5309 /* disable transmits in the hardware */
5310 tctl = rd32(IGC_TCTL);
5311 tctl &= ~IGC_TCTL_EN;
5312 wr32(IGC_TCTL, tctl);
5313 /* flush both disables and wait for them to finish */
5314 wrfl();
5315 usleep_range(10000, 20000);
5316
5317 igc_irq_disable(adapter);
5318 }
5319
5320 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5321
5322 for (i = 0; i < adapter->num_q_vectors; i++) {
5323 if (adapter->q_vector[i]) {
5324 napi_synchronize(&adapter->q_vector[i]->napi);
5325 igc_set_queue_napi(adapter, i, NULL);
5326 napi_disable(&adapter->q_vector[i]->napi);
5327 }
5328 }
5329
5330 timer_delete_sync(&adapter->watchdog_timer);
5331 timer_delete_sync(&adapter->phy_info_timer);
5332
5333 /* record the stats before reset*/
5334 spin_lock(&adapter->stats64_lock);
5335 igc_update_stats(adapter);
5336 spin_unlock(&adapter->stats64_lock);
5337
5338 adapter->link_speed = 0;
5339 adapter->link_duplex = 0;
5340
5341 if (!pci_channel_offline(adapter->pdev))
5342 igc_reset(adapter);
5343
5344 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5345 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5346
5347 igc_disable_all_tx_rings_hw(adapter);
5348 igc_clean_all_tx_rings(adapter);
5349 igc_clean_all_rx_rings(adapter);
5350
5351 if (adapter->fpe.mmsv.pmac_enabled)
5352 ethtool_mmsv_stop(&adapter->fpe.mmsv);
5353 }
5354
igc_reinit_locked(struct igc_adapter * adapter)5355 void igc_reinit_locked(struct igc_adapter *adapter)
5356 {
5357 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5358 usleep_range(1000, 2000);
5359 igc_down(adapter);
5360 igc_up(adapter);
5361 clear_bit(__IGC_RESETTING, &adapter->state);
5362 }
5363
igc_reset_task(struct work_struct * work)5364 static void igc_reset_task(struct work_struct *work)
5365 {
5366 struct igc_adapter *adapter;
5367
5368 adapter = container_of(work, struct igc_adapter, reset_task);
5369
5370 rtnl_lock();
5371 /* If we're already down or resetting, just bail */
5372 if (test_bit(__IGC_DOWN, &adapter->state) ||
5373 test_bit(__IGC_RESETTING, &adapter->state)) {
5374 rtnl_unlock();
5375 return;
5376 }
5377
5378 igc_rings_dump(adapter);
5379 igc_regs_dump(adapter);
5380 netdev_err(adapter->netdev, "Reset adapter\n");
5381 igc_reinit_locked(adapter);
5382 rtnl_unlock();
5383 }
5384
5385 /**
5386 * igc_change_mtu - Change the Maximum Transfer Unit
5387 * @netdev: network interface device structure
5388 * @new_mtu: new value for maximum frame size
5389 *
5390 * Returns 0 on success, negative on failure
5391 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5392 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5393 {
5394 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5395 struct igc_adapter *adapter = netdev_priv(netdev);
5396
5397 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5398 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5399 return -EINVAL;
5400 }
5401
5402 /* adjust max frame to be at least the size of a standard frame */
5403 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5404 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5405
5406 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5407 usleep_range(1000, 2000);
5408
5409 /* igc_down has a dependency on max_frame_size */
5410 adapter->max_frame_size = max_frame;
5411
5412 if (netif_running(netdev))
5413 igc_down(adapter);
5414
5415 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5416 WRITE_ONCE(netdev->mtu, new_mtu);
5417
5418 if (netif_running(netdev))
5419 igc_up(adapter);
5420 else
5421 igc_reset(adapter);
5422
5423 clear_bit(__IGC_RESETTING, &adapter->state);
5424
5425 return 0;
5426 }
5427
5428 /**
5429 * igc_tx_timeout - Respond to a Tx Hang
5430 * @netdev: network interface device structure
5431 * @txqueue: queue number that timed out
5432 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5433 static void igc_tx_timeout(struct net_device *netdev,
5434 unsigned int __always_unused txqueue)
5435 {
5436 struct igc_adapter *adapter = netdev_priv(netdev);
5437 struct igc_hw *hw = &adapter->hw;
5438
5439 /* Do the reset outside of interrupt context */
5440 adapter->tx_timeout_count++;
5441 schedule_work(&adapter->reset_task);
5442 wr32(IGC_EICS,
5443 (adapter->eims_enable_mask & ~adapter->eims_other));
5444 }
5445
5446 /**
5447 * igc_get_stats64 - Get System Network Statistics
5448 * @netdev: network interface device structure
5449 * @stats: rtnl_link_stats64 pointer
5450 *
5451 * Returns the address of the device statistics structure.
5452 * The statistics are updated here and also from the timer callback.
5453 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5454 static void igc_get_stats64(struct net_device *netdev,
5455 struct rtnl_link_stats64 *stats)
5456 {
5457 struct igc_adapter *adapter = netdev_priv(netdev);
5458
5459 spin_lock(&adapter->stats64_lock);
5460 if (!test_bit(__IGC_RESETTING, &adapter->state))
5461 igc_update_stats(adapter);
5462 memcpy(stats, &adapter->stats64, sizeof(*stats));
5463 spin_unlock(&adapter->stats64_lock);
5464 }
5465
igc_fix_features(struct net_device * netdev,netdev_features_t features)5466 static netdev_features_t igc_fix_features(struct net_device *netdev,
5467 netdev_features_t features)
5468 {
5469 /* Since there is no support for separate Rx/Tx vlan accel
5470 * enable/disable make sure Tx flag is always in same state as Rx.
5471 */
5472 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5473 features |= NETIF_F_HW_VLAN_CTAG_TX;
5474 else
5475 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5476
5477 return features;
5478 }
5479
igc_set_features(struct net_device * netdev,netdev_features_t features)5480 static int igc_set_features(struct net_device *netdev,
5481 netdev_features_t features)
5482 {
5483 netdev_features_t changed = netdev->features ^ features;
5484 struct igc_adapter *adapter = netdev_priv(netdev);
5485
5486 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5487 igc_vlan_mode(netdev, features);
5488
5489 /* Add VLAN support */
5490 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5491 return 0;
5492
5493 if (!(features & NETIF_F_NTUPLE))
5494 igc_flush_nfc_rules(adapter);
5495
5496 netdev->features = features;
5497
5498 if (netif_running(netdev))
5499 igc_reinit_locked(adapter);
5500 else
5501 igc_reset(adapter);
5502
5503 return 1;
5504 }
5505
5506 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5507 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5508 netdev_features_t features)
5509 {
5510 unsigned int network_hdr_len, mac_hdr_len;
5511
5512 /* Make certain the headers can be described by a context descriptor */
5513 mac_hdr_len = skb_network_offset(skb);
5514 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5515 return features & ~(NETIF_F_HW_CSUM |
5516 NETIF_F_SCTP_CRC |
5517 NETIF_F_HW_VLAN_CTAG_TX |
5518 NETIF_F_TSO |
5519 NETIF_F_TSO6);
5520
5521 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5522 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5523 return features & ~(NETIF_F_HW_CSUM |
5524 NETIF_F_SCTP_CRC |
5525 NETIF_F_TSO |
5526 NETIF_F_TSO6);
5527
5528 /* We can only support IPv4 TSO in tunnels if we can mangle the
5529 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5530 */
5531 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5532 features &= ~NETIF_F_TSO;
5533
5534 return features;
5535 }
5536
igc_tsync_interrupt(struct igc_adapter * adapter)5537 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5538 {
5539 struct igc_hw *hw = &adapter->hw;
5540 u32 tsauxc, sec, nsec, tsicr;
5541 struct ptp_clock_event event;
5542 struct timespec64 ts;
5543
5544 tsicr = rd32(IGC_TSICR);
5545
5546 if (tsicr & IGC_TSICR_SYS_WRAP) {
5547 event.type = PTP_CLOCK_PPS;
5548 if (adapter->ptp_caps.pps)
5549 ptp_clock_event(adapter->ptp_clock, &event);
5550 }
5551
5552 if (tsicr & IGC_TSICR_TXTS) {
5553 /* retrieve hardware timestamp */
5554 igc_ptp_tx_tstamp_event(adapter);
5555 }
5556
5557 if (tsicr & IGC_TSICR_TT0) {
5558 spin_lock(&adapter->tmreg_lock);
5559 ts = timespec64_add(adapter->perout[0].start,
5560 adapter->perout[0].period);
5561 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5562 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5563 tsauxc = rd32(IGC_TSAUXC);
5564 tsauxc |= IGC_TSAUXC_EN_TT0;
5565 wr32(IGC_TSAUXC, tsauxc);
5566 adapter->perout[0].start = ts;
5567 spin_unlock(&adapter->tmreg_lock);
5568 }
5569
5570 if (tsicr & IGC_TSICR_TT1) {
5571 spin_lock(&adapter->tmreg_lock);
5572 ts = timespec64_add(adapter->perout[1].start,
5573 adapter->perout[1].period);
5574 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5575 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5576 tsauxc = rd32(IGC_TSAUXC);
5577 tsauxc |= IGC_TSAUXC_EN_TT1;
5578 wr32(IGC_TSAUXC, tsauxc);
5579 adapter->perout[1].start = ts;
5580 spin_unlock(&adapter->tmreg_lock);
5581 }
5582
5583 if (tsicr & IGC_TSICR_AUTT0) {
5584 nsec = rd32(IGC_AUXSTMPL0);
5585 sec = rd32(IGC_AUXSTMPH0);
5586 event.type = PTP_CLOCK_EXTTS;
5587 event.index = 0;
5588 event.timestamp = sec * NSEC_PER_SEC + nsec;
5589 ptp_clock_event(adapter->ptp_clock, &event);
5590 }
5591
5592 if (tsicr & IGC_TSICR_AUTT1) {
5593 nsec = rd32(IGC_AUXSTMPL1);
5594 sec = rd32(IGC_AUXSTMPH1);
5595 event.type = PTP_CLOCK_EXTTS;
5596 event.index = 1;
5597 event.timestamp = sec * NSEC_PER_SEC + nsec;
5598 ptp_clock_event(adapter->ptp_clock, &event);
5599 }
5600 }
5601
5602 /**
5603 * igc_msix_other - msix other interrupt handler
5604 * @irq: interrupt number
5605 * @data: pointer to a q_vector
5606 */
igc_msix_other(int irq,void * data)5607 static irqreturn_t igc_msix_other(int irq, void *data)
5608 {
5609 struct igc_adapter *adapter = data;
5610 struct igc_hw *hw = &adapter->hw;
5611 u32 icr = rd32(IGC_ICR);
5612
5613 /* reading ICR causes bit 31 of EICR to be cleared */
5614 if (icr & IGC_ICR_DRSTA)
5615 schedule_work(&adapter->reset_task);
5616
5617 if (icr & IGC_ICR_DOUTSYNC) {
5618 /* HW is reporting DMA is out of sync */
5619 adapter->stats.doosync++;
5620 }
5621
5622 if (icr & IGC_ICR_LSC) {
5623 hw->mac.get_link_status = true;
5624 /* guard against interrupt when we're going down */
5625 if (!test_bit(__IGC_DOWN, &adapter->state))
5626 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5627 }
5628
5629 if (icr & IGC_ICR_TS)
5630 igc_tsync_interrupt(adapter);
5631
5632 wr32(IGC_EIMS, adapter->eims_other);
5633
5634 return IRQ_HANDLED;
5635 }
5636
igc_write_itr(struct igc_q_vector * q_vector)5637 static void igc_write_itr(struct igc_q_vector *q_vector)
5638 {
5639 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5640
5641 if (!q_vector->set_itr)
5642 return;
5643
5644 if (!itr_val)
5645 itr_val = IGC_ITR_VAL_MASK;
5646
5647 itr_val |= IGC_EITR_CNT_IGNR;
5648
5649 writel(itr_val, q_vector->itr_register);
5650 q_vector->set_itr = 0;
5651 }
5652
igc_msix_ring(int irq,void * data)5653 static irqreturn_t igc_msix_ring(int irq, void *data)
5654 {
5655 struct igc_q_vector *q_vector = data;
5656
5657 /* Write the ITR value calculated from the previous interrupt. */
5658 igc_write_itr(q_vector);
5659
5660 napi_schedule(&q_vector->napi);
5661
5662 return IRQ_HANDLED;
5663 }
5664
5665 /**
5666 * igc_request_msix - Initialize MSI-X interrupts
5667 * @adapter: Pointer to adapter structure
5668 *
5669 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5670 * kernel.
5671 */
igc_request_msix(struct igc_adapter * adapter)5672 static int igc_request_msix(struct igc_adapter *adapter)
5673 {
5674 unsigned int num_q_vectors = adapter->num_q_vectors;
5675 int i = 0, err = 0, vector = 0, free_vector = 0;
5676 struct net_device *netdev = adapter->netdev;
5677
5678 err = request_irq(adapter->msix_entries[vector].vector,
5679 &igc_msix_other, 0, netdev->name, adapter);
5680 if (err)
5681 goto err_out;
5682
5683 if (num_q_vectors > MAX_Q_VECTORS) {
5684 num_q_vectors = MAX_Q_VECTORS;
5685 dev_warn(&adapter->pdev->dev,
5686 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5687 adapter->num_q_vectors, MAX_Q_VECTORS);
5688 }
5689 for (i = 0; i < num_q_vectors; i++) {
5690 struct igc_q_vector *q_vector = adapter->q_vector[i];
5691
5692 vector++;
5693
5694 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5695
5696 if (q_vector->rx.ring && q_vector->tx.ring)
5697 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5698 q_vector->rx.ring->queue_index);
5699 else if (q_vector->tx.ring)
5700 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5701 q_vector->tx.ring->queue_index);
5702 else if (q_vector->rx.ring)
5703 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5704 q_vector->rx.ring->queue_index);
5705 else
5706 sprintf(q_vector->name, "%s-unused", netdev->name);
5707
5708 err = request_irq(adapter->msix_entries[vector].vector,
5709 igc_msix_ring, 0, q_vector->name,
5710 q_vector);
5711 if (err)
5712 goto err_free;
5713
5714 netif_napi_set_irq(&q_vector->napi,
5715 adapter->msix_entries[vector].vector);
5716 }
5717
5718 igc_configure_msix(adapter);
5719 return 0;
5720
5721 err_free:
5722 /* free already assigned IRQs */
5723 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5724
5725 vector--;
5726 for (i = 0; i < vector; i++) {
5727 free_irq(adapter->msix_entries[free_vector++].vector,
5728 adapter->q_vector[i]);
5729 }
5730 err_out:
5731 return err;
5732 }
5733
5734 /**
5735 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5736 * @adapter: Pointer to adapter structure
5737 *
5738 * This function resets the device so that it has 0 rx queues, tx queues, and
5739 * MSI-X interrupts allocated.
5740 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5741 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5742 {
5743 igc_free_q_vectors(adapter);
5744 igc_reset_interrupt_capability(adapter);
5745 }
5746
5747 /* Need to wait a few seconds after link up to get diagnostic information from
5748 * the phy
5749 */
igc_update_phy_info(struct timer_list * t)5750 static void igc_update_phy_info(struct timer_list *t)
5751 {
5752 struct igc_adapter *adapter = timer_container_of(adapter, t,
5753 phy_info_timer);
5754
5755 igc_get_phy_info(&adapter->hw);
5756 }
5757
5758 /**
5759 * igc_has_link - check shared code for link and determine up/down
5760 * @adapter: pointer to driver private info
5761 */
igc_has_link(struct igc_adapter * adapter)5762 bool igc_has_link(struct igc_adapter *adapter)
5763 {
5764 struct igc_hw *hw = &adapter->hw;
5765 bool link_active = false;
5766
5767 /* get_link_status is set on LSC (link status) interrupt or
5768 * rx sequence error interrupt. get_link_status will stay
5769 * false until the igc_check_for_link establishes link
5770 * for copper adapters ONLY
5771 */
5772 if (!hw->mac.get_link_status)
5773 return true;
5774 hw->mac.ops.check_for_link(hw);
5775 link_active = !hw->mac.get_link_status;
5776
5777 if (hw->mac.type == igc_i225) {
5778 if (!netif_carrier_ok(adapter->netdev)) {
5779 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5780 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5781 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5782 adapter->link_check_timeout = jiffies;
5783 }
5784 }
5785
5786 return link_active;
5787 }
5788
5789 /**
5790 * igc_watchdog - Timer Call-back
5791 * @t: timer for the watchdog
5792 */
igc_watchdog(struct timer_list * t)5793 static void igc_watchdog(struct timer_list *t)
5794 {
5795 struct igc_adapter *adapter = timer_container_of(adapter, t,
5796 watchdog_timer);
5797 /* Do the rest outside of interrupt context */
5798 schedule_work(&adapter->watchdog_task);
5799 }
5800
igc_watchdog_task(struct work_struct * work)5801 static void igc_watchdog_task(struct work_struct *work)
5802 {
5803 struct igc_adapter *adapter = container_of(work,
5804 struct igc_adapter,
5805 watchdog_task);
5806 struct net_device *netdev = adapter->netdev;
5807 struct igc_hw *hw = &adapter->hw;
5808 struct igc_phy_info *phy = &hw->phy;
5809 u16 phy_data, retry_count = 20;
5810 u32 link;
5811 int i;
5812
5813 link = igc_has_link(adapter);
5814
5815 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5816 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5817 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5818 else
5819 link = false;
5820 }
5821
5822 if (link) {
5823 /* Cancel scheduled suspend requests. */
5824 pm_runtime_resume(netdev->dev.parent);
5825
5826 if (!netif_carrier_ok(netdev)) {
5827 u32 ctrl;
5828
5829 hw->mac.ops.get_speed_and_duplex(hw,
5830 &adapter->link_speed,
5831 &adapter->link_duplex);
5832
5833 ctrl = rd32(IGC_CTRL);
5834 /* Link status message must follow this format */
5835 netdev_info(netdev,
5836 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5837 adapter->link_speed,
5838 adapter->link_duplex == FULL_DUPLEX ?
5839 "Full" : "Half",
5840 (ctrl & IGC_CTRL_TFCE) &&
5841 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5842 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5843 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5844
5845 /* disable EEE if enabled */
5846 if ((adapter->flags & IGC_FLAG_EEE) &&
5847 adapter->link_duplex == HALF_DUPLEX) {
5848 netdev_info(netdev,
5849 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5850 adapter->hw.dev_spec._base.eee_enable = false;
5851 adapter->flags &= ~IGC_FLAG_EEE;
5852 }
5853
5854 /* check if SmartSpeed worked */
5855 igc_check_downshift(hw);
5856 if (phy->speed_downgraded)
5857 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5858
5859 /* adjust timeout factor according to speed/duplex */
5860 adapter->tx_timeout_factor = 1;
5861 switch (adapter->link_speed) {
5862 case SPEED_10:
5863 adapter->tx_timeout_factor = 14;
5864 break;
5865 case SPEED_100:
5866 case SPEED_1000:
5867 case SPEED_2500:
5868 adapter->tx_timeout_factor = 1;
5869 break;
5870 }
5871
5872 /* Once the launch time has been set on the wire, there
5873 * is a delay before the link speed can be determined
5874 * based on link-up activity. Write into the register
5875 * as soon as we know the correct link speed.
5876 */
5877 igc_tsn_adjust_txtime_offset(adapter);
5878
5879 if (adapter->fpe.mmsv.pmac_enabled)
5880 ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5881 true);
5882
5883 if (adapter->link_speed != SPEED_1000)
5884 goto no_wait;
5885
5886 /* wait for Remote receiver status OK */
5887 retry_read_status:
5888 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5889 &phy_data)) {
5890 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5891 retry_count) {
5892 msleep(100);
5893 retry_count--;
5894 goto retry_read_status;
5895 } else if (!retry_count) {
5896 netdev_err(netdev, "exceed max 2 second\n");
5897 }
5898 } else {
5899 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5900 }
5901 no_wait:
5902 netif_carrier_on(netdev);
5903
5904 /* link state has changed, schedule phy info update */
5905 if (!test_bit(__IGC_DOWN, &adapter->state))
5906 mod_timer(&adapter->phy_info_timer,
5907 round_jiffies(jiffies + 2 * HZ));
5908 }
5909 } else {
5910 if (netif_carrier_ok(netdev)) {
5911 adapter->link_speed = 0;
5912 adapter->link_duplex = 0;
5913
5914 /* Links status message must follow this format */
5915 netdev_info(netdev, "NIC Link is Down\n");
5916 netif_carrier_off(netdev);
5917
5918 if (adapter->fpe.mmsv.pmac_enabled)
5919 ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5920 false);
5921
5922 /* link state has changed, schedule phy info update */
5923 if (!test_bit(__IGC_DOWN, &adapter->state))
5924 mod_timer(&adapter->phy_info_timer,
5925 round_jiffies(jiffies + 2 * HZ));
5926
5927 pm_schedule_suspend(netdev->dev.parent,
5928 MSEC_PER_SEC * 5);
5929 }
5930 }
5931
5932 spin_lock(&adapter->stats64_lock);
5933 igc_update_stats(adapter);
5934 spin_unlock(&adapter->stats64_lock);
5935
5936 for (i = 0; i < adapter->num_tx_queues; i++) {
5937 struct igc_ring *tx_ring = adapter->tx_ring[i];
5938
5939 if (!netif_carrier_ok(netdev)) {
5940 /* We've lost link, so the controller stops DMA,
5941 * but we've got queued Tx work that's never going
5942 * to get done, so reset controller to flush Tx.
5943 * (Do the reset outside of interrupt context).
5944 */
5945 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5946 adapter->tx_timeout_count++;
5947 schedule_work(&adapter->reset_task);
5948 /* return immediately since reset is imminent */
5949 return;
5950 }
5951 }
5952
5953 /* Force detection of hung controller every watchdog period */
5954 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5955 }
5956
5957 /* Cause software interrupt to ensure Rx ring is cleaned */
5958 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5959 u32 eics = 0;
5960
5961 for (i = 0; i < adapter->num_q_vectors; i++) {
5962 struct igc_q_vector *q_vector = adapter->q_vector[i];
5963 struct igc_ring *rx_ring;
5964
5965 if (!q_vector->rx.ring)
5966 continue;
5967
5968 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5969
5970 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5971 eics |= q_vector->eims_value;
5972 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5973 }
5974 }
5975 if (eics)
5976 wr32(IGC_EICS, eics);
5977 } else {
5978 struct igc_ring *rx_ring = adapter->rx_ring[0];
5979
5980 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5981 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5982 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5983 }
5984 }
5985
5986 igc_ptp_tx_hang(adapter);
5987
5988 /* Reset the timer */
5989 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5990 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5991 mod_timer(&adapter->watchdog_timer,
5992 round_jiffies(jiffies + HZ));
5993 else
5994 mod_timer(&adapter->watchdog_timer,
5995 round_jiffies(jiffies + 2 * HZ));
5996 }
5997 }
5998
5999 /**
6000 * igc_intr_msi - Interrupt Handler
6001 * @irq: interrupt number
6002 * @data: pointer to a network interface device structure
6003 */
igc_intr_msi(int irq,void * data)6004 static irqreturn_t igc_intr_msi(int irq, void *data)
6005 {
6006 struct igc_adapter *adapter = data;
6007 struct igc_q_vector *q_vector = adapter->q_vector[0];
6008 struct igc_hw *hw = &adapter->hw;
6009 /* read ICR disables interrupts using IAM */
6010 u32 icr = rd32(IGC_ICR);
6011
6012 igc_write_itr(q_vector);
6013
6014 if (icr & IGC_ICR_DRSTA)
6015 schedule_work(&adapter->reset_task);
6016
6017 if (icr & IGC_ICR_DOUTSYNC) {
6018 /* HW is reporting DMA is out of sync */
6019 adapter->stats.doosync++;
6020 }
6021
6022 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6023 hw->mac.get_link_status = true;
6024 if (!test_bit(__IGC_DOWN, &adapter->state))
6025 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6026 }
6027
6028 if (icr & IGC_ICR_TS)
6029 igc_tsync_interrupt(adapter);
6030
6031 napi_schedule(&q_vector->napi);
6032
6033 return IRQ_HANDLED;
6034 }
6035
6036 /**
6037 * igc_intr - Legacy Interrupt Handler
6038 * @irq: interrupt number
6039 * @data: pointer to a network interface device structure
6040 */
igc_intr(int irq,void * data)6041 static irqreturn_t igc_intr(int irq, void *data)
6042 {
6043 struct igc_adapter *adapter = data;
6044 struct igc_q_vector *q_vector = adapter->q_vector[0];
6045 struct igc_hw *hw = &adapter->hw;
6046 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6047 * need for the IMC write
6048 */
6049 u32 icr = rd32(IGC_ICR);
6050
6051 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6052 * not set, then the adapter didn't send an interrupt
6053 */
6054 if (!(icr & IGC_ICR_INT_ASSERTED))
6055 return IRQ_NONE;
6056
6057 igc_write_itr(q_vector);
6058
6059 if (icr & IGC_ICR_DRSTA)
6060 schedule_work(&adapter->reset_task);
6061
6062 if (icr & IGC_ICR_DOUTSYNC) {
6063 /* HW is reporting DMA is out of sync */
6064 adapter->stats.doosync++;
6065 }
6066
6067 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6068 hw->mac.get_link_status = true;
6069 /* guard against interrupt when we're going down */
6070 if (!test_bit(__IGC_DOWN, &adapter->state))
6071 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6072 }
6073
6074 if (icr & IGC_ICR_TS)
6075 igc_tsync_interrupt(adapter);
6076
6077 napi_schedule(&q_vector->napi);
6078
6079 return IRQ_HANDLED;
6080 }
6081
igc_free_irq(struct igc_adapter * adapter)6082 static void igc_free_irq(struct igc_adapter *adapter)
6083 {
6084 if (adapter->msix_entries) {
6085 int vector = 0, i;
6086
6087 free_irq(adapter->msix_entries[vector++].vector, adapter);
6088
6089 for (i = 0; i < adapter->num_q_vectors; i++)
6090 free_irq(adapter->msix_entries[vector++].vector,
6091 adapter->q_vector[i]);
6092 } else {
6093 free_irq(adapter->pdev->irq, adapter);
6094 }
6095 }
6096
6097 /**
6098 * igc_request_irq - initialize interrupts
6099 * @adapter: Pointer to adapter structure
6100 *
6101 * Attempts to configure interrupts using the best available
6102 * capabilities of the hardware and kernel.
6103 */
igc_request_irq(struct igc_adapter * adapter)6104 static int igc_request_irq(struct igc_adapter *adapter)
6105 {
6106 struct net_device *netdev = adapter->netdev;
6107 struct pci_dev *pdev = adapter->pdev;
6108 int err = 0;
6109
6110 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6111 err = igc_request_msix(adapter);
6112 if (!err)
6113 goto request_done;
6114 /* fall back to MSI */
6115 igc_free_all_tx_resources(adapter);
6116 igc_free_all_rx_resources(adapter);
6117
6118 igc_clear_interrupt_scheme(adapter);
6119 err = igc_init_interrupt_scheme(adapter, false);
6120 if (err)
6121 goto request_done;
6122 igc_setup_all_tx_resources(adapter);
6123 igc_setup_all_rx_resources(adapter);
6124 igc_configure(adapter);
6125 }
6126
6127 igc_assign_vector(adapter->q_vector[0], 0);
6128
6129 if (adapter->flags & IGC_FLAG_HAS_MSI) {
6130 err = request_irq(pdev->irq, &igc_intr_msi, 0,
6131 netdev->name, adapter);
6132 if (!err)
6133 goto request_done;
6134
6135 /* fall back to legacy interrupts */
6136 igc_reset_interrupt_capability(adapter);
6137 adapter->flags &= ~IGC_FLAG_HAS_MSI;
6138 }
6139
6140 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6141 netdev->name, adapter);
6142
6143 if (err)
6144 netdev_err(netdev, "Error %d getting interrupt\n", err);
6145
6146 request_done:
6147 return err;
6148 }
6149
6150 /**
6151 * __igc_open - Called when a network interface is made active
6152 * @netdev: network interface device structure
6153 * @resuming: boolean indicating if the device is resuming
6154 *
6155 * Returns 0 on success, negative value on failure
6156 *
6157 * The open entry point is called when a network interface is made
6158 * active by the system (IFF_UP). At this point all resources needed
6159 * for transmit and receive operations are allocated, the interrupt
6160 * handler is registered with the OS, the watchdog timer is started,
6161 * and the stack is notified that the interface is ready.
6162 */
__igc_open(struct net_device * netdev,bool resuming)6163 static int __igc_open(struct net_device *netdev, bool resuming)
6164 {
6165 struct igc_adapter *adapter = netdev_priv(netdev);
6166 struct pci_dev *pdev = adapter->pdev;
6167 struct igc_hw *hw = &adapter->hw;
6168 struct napi_struct *napi;
6169 int err = 0;
6170 int i = 0;
6171
6172 /* disallow open during test */
6173
6174 if (test_bit(__IGC_TESTING, &adapter->state)) {
6175 WARN_ON(resuming);
6176 return -EBUSY;
6177 }
6178
6179 if (!resuming)
6180 pm_runtime_get_sync(&pdev->dev);
6181
6182 netif_carrier_off(netdev);
6183
6184 /* allocate transmit descriptors */
6185 err = igc_setup_all_tx_resources(adapter);
6186 if (err)
6187 goto err_setup_tx;
6188
6189 /* allocate receive descriptors */
6190 err = igc_setup_all_rx_resources(adapter);
6191 if (err)
6192 goto err_setup_rx;
6193
6194 igc_power_up_link(adapter);
6195
6196 igc_configure(adapter);
6197
6198 err = igc_request_irq(adapter);
6199 if (err)
6200 goto err_req_irq;
6201
6202 clear_bit(__IGC_DOWN, &adapter->state);
6203
6204 for (i = 0; i < adapter->num_q_vectors; i++) {
6205 napi = &adapter->q_vector[i]->napi;
6206 napi_enable(napi);
6207 igc_set_queue_napi(adapter, i, napi);
6208 }
6209
6210 /* Clear any pending interrupts. */
6211 rd32(IGC_ICR);
6212 igc_irq_enable(adapter);
6213
6214 if (!resuming)
6215 pm_runtime_put(&pdev->dev);
6216
6217 netif_tx_start_all_queues(netdev);
6218
6219 /* start the watchdog. */
6220 hw->mac.get_link_status = true;
6221 schedule_work(&adapter->watchdog_task);
6222
6223 return IGC_SUCCESS;
6224
6225 err_req_irq:
6226 igc_release_hw_control(adapter);
6227 igc_power_down_phy_copper_base(&adapter->hw);
6228 igc_free_all_rx_resources(adapter);
6229 err_setup_rx:
6230 igc_free_all_tx_resources(adapter);
6231 err_setup_tx:
6232 igc_reset(adapter);
6233 if (!resuming)
6234 pm_runtime_put(&pdev->dev);
6235
6236 return err;
6237 }
6238
igc_open(struct net_device * netdev)6239 int igc_open(struct net_device *netdev)
6240 {
6241 struct igc_adapter *adapter = netdev_priv(netdev);
6242 int err;
6243
6244 /* Notify the stack of the actual queue counts. */
6245 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6246 adapter->num_rx_queues);
6247 if (err) {
6248 netdev_err(netdev, "error setting real queue count\n");
6249 return err;
6250 }
6251
6252 return __igc_open(netdev, false);
6253 }
6254
6255 /**
6256 * __igc_close - Disables a network interface
6257 * @netdev: network interface device structure
6258 * @suspending: boolean indicating the device is suspending
6259 *
6260 * Returns 0, this is not allowed to fail
6261 *
6262 * The close entry point is called when an interface is de-activated
6263 * by the OS. The hardware is still under the driver's control, but
6264 * needs to be disabled. A global MAC reset is issued to stop the
6265 * hardware, and all transmit and receive resources are freed.
6266 */
__igc_close(struct net_device * netdev,bool suspending)6267 static int __igc_close(struct net_device *netdev, bool suspending)
6268 {
6269 struct igc_adapter *adapter = netdev_priv(netdev);
6270 struct pci_dev *pdev = adapter->pdev;
6271
6272 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6273
6274 if (!suspending)
6275 pm_runtime_get_sync(&pdev->dev);
6276
6277 igc_down(adapter);
6278
6279 igc_release_hw_control(adapter);
6280
6281 igc_free_irq(adapter);
6282
6283 igc_free_all_tx_resources(adapter);
6284 igc_free_all_rx_resources(adapter);
6285
6286 if (!suspending)
6287 pm_runtime_put_sync(&pdev->dev);
6288
6289 return 0;
6290 }
6291
igc_close(struct net_device * netdev)6292 int igc_close(struct net_device *netdev)
6293 {
6294 if (netif_device_present(netdev) || netdev->dismantle)
6295 return __igc_close(netdev, false);
6296 return 0;
6297 }
6298
6299 /**
6300 * igc_ioctl - Access the hwtstamp interface
6301 * @netdev: network interface device structure
6302 * @ifr: interface request data
6303 * @cmd: ioctl command
6304 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6305 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6306 {
6307 switch (cmd) {
6308 case SIOCGHWTSTAMP:
6309 return igc_ptp_get_ts_config(netdev, ifr);
6310 case SIOCSHWTSTAMP:
6311 return igc_ptp_set_ts_config(netdev, ifr);
6312 default:
6313 return -EOPNOTSUPP;
6314 }
6315 }
6316
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6317 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6318 bool enable)
6319 {
6320 struct igc_ring *ring;
6321
6322 if (queue < 0 || queue >= adapter->num_tx_queues)
6323 return -EINVAL;
6324
6325 ring = adapter->tx_ring[queue];
6326 ring->launchtime_enable = enable;
6327
6328 return 0;
6329 }
6330
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6331 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6332 {
6333 struct timespec64 b;
6334
6335 b = ktime_to_timespec64(base_time);
6336
6337 return timespec64_compare(now, &b) > 0;
6338 }
6339
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6340 static bool validate_schedule(struct igc_adapter *adapter,
6341 const struct tc_taprio_qopt_offload *qopt)
6342 {
6343 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6344 struct igc_hw *hw = &adapter->hw;
6345 struct timespec64 now;
6346 size_t n;
6347
6348 if (qopt->cycle_time_extension)
6349 return false;
6350
6351 igc_ptp_read(adapter, &now);
6352
6353 /* If we program the controller's BASET registers with a time
6354 * in the future, it will hold all the packets until that
6355 * time, causing a lot of TX Hangs, so to avoid that, we
6356 * reject schedules that would start in the future.
6357 * Note: Limitation above is no longer in i226.
6358 */
6359 if (!is_base_time_past(qopt->base_time, &now) &&
6360 igc_is_device_id_i225(hw))
6361 return false;
6362
6363 for (n = 0; n < qopt->num_entries; n++) {
6364 const struct tc_taprio_sched_entry *e, *prev;
6365 int i;
6366
6367 prev = n ? &qopt->entries[n - 1] : NULL;
6368 e = &qopt->entries[n];
6369
6370 /* i225 only supports "global" frame preemption
6371 * settings.
6372 */
6373 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6374 return false;
6375
6376 for (i = 0; i < adapter->num_tx_queues; i++)
6377 if (e->gate_mask & BIT(i)) {
6378 queue_uses[i]++;
6379
6380 /* There are limitations: A single queue cannot
6381 * be opened and closed multiple times per cycle
6382 * unless the gate stays open. Check for it.
6383 */
6384 if (queue_uses[i] > 1 &&
6385 !(prev->gate_mask & BIT(i)))
6386 return false;
6387 }
6388 }
6389
6390 return true;
6391 }
6392
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6393 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6394 struct tc_etf_qopt_offload *qopt)
6395 {
6396 struct igc_hw *hw = &adapter->hw;
6397 int err;
6398
6399 if (hw->mac.type != igc_i225)
6400 return -EOPNOTSUPP;
6401
6402 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6403 if (err)
6404 return err;
6405
6406 return igc_tsn_offload_apply(adapter);
6407 }
6408
igc_qbv_clear_schedule(struct igc_adapter * adapter)6409 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6410 {
6411 unsigned long flags;
6412 int i;
6413
6414 adapter->base_time = 0;
6415 adapter->cycle_time = NSEC_PER_SEC;
6416 adapter->taprio_offload_enable = false;
6417 adapter->qbv_config_change_errors = 0;
6418 adapter->qbv_count = 0;
6419
6420 for (i = 0; i < adapter->num_tx_queues; i++) {
6421 struct igc_ring *ring = adapter->tx_ring[i];
6422
6423 ring->start_time = 0;
6424 ring->end_time = NSEC_PER_SEC;
6425 ring->max_sdu = 0;
6426 }
6427
6428 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6429
6430 adapter->qbv_transition = false;
6431
6432 for (i = 0; i < adapter->num_tx_queues; i++) {
6433 struct igc_ring *ring = adapter->tx_ring[i];
6434
6435 ring->oper_gate_closed = false;
6436 ring->admin_gate_closed = false;
6437 }
6438
6439 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6440
6441 return 0;
6442 }
6443
igc_tsn_clear_schedule(struct igc_adapter * adapter)6444 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6445 {
6446 igc_qbv_clear_schedule(adapter);
6447
6448 return 0;
6449 }
6450
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6451 static void igc_taprio_stats(struct net_device *dev,
6452 struct tc_taprio_qopt_stats *stats)
6453 {
6454 /* When Strict_End is enabled, the tx_overruns counter
6455 * will always be zero.
6456 */
6457 stats->tx_overruns = 0;
6458 }
6459
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6460 static void igc_taprio_queue_stats(struct net_device *dev,
6461 struct tc_taprio_qopt_queue_stats *queue_stats)
6462 {
6463 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6464
6465 /* When Strict_End is enabled, the tx_overruns counter
6466 * will always be zero.
6467 */
6468 stats->tx_overruns = 0;
6469 }
6470
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6471 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6472 struct tc_taprio_qopt_offload *qopt)
6473 {
6474 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6475 struct igc_hw *hw = &adapter->hw;
6476 u32 start_time = 0, end_time = 0;
6477 struct timespec64 now;
6478 unsigned long flags;
6479 size_t n;
6480 int i;
6481
6482 if (qopt->base_time < 0)
6483 return -ERANGE;
6484
6485 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6486 return -EALREADY;
6487
6488 if (!validate_schedule(adapter, qopt))
6489 return -EINVAL;
6490
6491 /* preemptible isn't supported yet */
6492 if (qopt->mqprio.preemptible_tcs)
6493 return -EOPNOTSUPP;
6494
6495 igc_ptp_read(adapter, &now);
6496
6497 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6498 is_base_time_past(qopt->base_time, &now))
6499 adapter->qbv_config_change_errors++;
6500
6501 adapter->cycle_time = qopt->cycle_time;
6502 adapter->base_time = qopt->base_time;
6503 adapter->taprio_offload_enable = true;
6504
6505 for (n = 0; n < qopt->num_entries; n++) {
6506 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6507
6508 end_time += e->interval;
6509
6510 /* If any of the conditions below are true, we need to manually
6511 * control the end time of the cycle.
6512 * 1. Qbv users can specify a cycle time that is not equal
6513 * to the total GCL intervals. Hence, recalculation is
6514 * necessary here to exclude the time interval that
6515 * exceeds the cycle time.
6516 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6517 * once the end of the list is reached, it will switch
6518 * to the END_OF_CYCLE state and leave the gates in the
6519 * same state until the next cycle is started.
6520 */
6521 if (end_time > adapter->cycle_time ||
6522 n + 1 == qopt->num_entries)
6523 end_time = adapter->cycle_time;
6524
6525 for (i = 0; i < adapter->num_tx_queues; i++) {
6526 struct igc_ring *ring = adapter->tx_ring[i];
6527
6528 if (!(e->gate_mask & BIT(i)))
6529 continue;
6530
6531 /* Check whether a queue stays open for more than one
6532 * entry. If so, keep the start and advance the end
6533 * time.
6534 */
6535 if (!queue_configured[i])
6536 ring->start_time = start_time;
6537 ring->end_time = end_time;
6538
6539 if (ring->start_time >= adapter->cycle_time)
6540 queue_configured[i] = false;
6541 else
6542 queue_configured[i] = true;
6543 }
6544
6545 start_time += e->interval;
6546 }
6547
6548 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6549
6550 /* Check whether a queue gets configured.
6551 * If not, set the start and end time to be end time.
6552 */
6553 for (i = 0; i < adapter->num_tx_queues; i++) {
6554 struct igc_ring *ring = adapter->tx_ring[i];
6555
6556 if (!is_base_time_past(qopt->base_time, &now)) {
6557 ring->admin_gate_closed = false;
6558 } else {
6559 ring->oper_gate_closed = false;
6560 ring->admin_gate_closed = false;
6561 }
6562
6563 if (!queue_configured[i]) {
6564 if (!is_base_time_past(qopt->base_time, &now))
6565 ring->admin_gate_closed = true;
6566 else
6567 ring->oper_gate_closed = true;
6568
6569 ring->start_time = end_time;
6570 ring->end_time = end_time;
6571 }
6572 }
6573
6574 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6575
6576 for (i = 0; i < adapter->num_tx_queues; i++) {
6577 struct igc_ring *ring = adapter->tx_ring[i];
6578 struct net_device *dev = adapter->netdev;
6579
6580 if (qopt->max_sdu[i])
6581 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6582 else
6583 ring->max_sdu = 0;
6584 }
6585
6586 return 0;
6587 }
6588
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6589 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6590 struct tc_taprio_qopt_offload *qopt)
6591 {
6592 struct igc_hw *hw = &adapter->hw;
6593 int err;
6594
6595 if (hw->mac.type != igc_i225)
6596 return -EOPNOTSUPP;
6597
6598 switch (qopt->cmd) {
6599 case TAPRIO_CMD_REPLACE:
6600 err = igc_save_qbv_schedule(adapter, qopt);
6601 break;
6602 case TAPRIO_CMD_DESTROY:
6603 err = igc_tsn_clear_schedule(adapter);
6604 break;
6605 case TAPRIO_CMD_STATS:
6606 igc_taprio_stats(adapter->netdev, &qopt->stats);
6607 return 0;
6608 case TAPRIO_CMD_QUEUE_STATS:
6609 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6610 return 0;
6611 default:
6612 return -EOPNOTSUPP;
6613 }
6614
6615 if (err)
6616 return err;
6617
6618 return igc_tsn_offload_apply(adapter);
6619 }
6620
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6621 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6622 bool enable, int idleslope, int sendslope,
6623 int hicredit, int locredit)
6624 {
6625 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6626 struct net_device *netdev = adapter->netdev;
6627 struct igc_ring *ring;
6628 int i;
6629
6630 /* i225 has two sets of credit-based shaper logic.
6631 * Supporting it only on the top two priority queues
6632 */
6633 if (queue < 0 || queue > 1)
6634 return -EINVAL;
6635
6636 ring = adapter->tx_ring[queue];
6637
6638 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6639 if (adapter->tx_ring[i])
6640 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6641
6642 /* CBS should be enabled on the highest priority queue first in order
6643 * for the CBS algorithm to operate as intended.
6644 */
6645 if (enable) {
6646 if (queue == 1 && !cbs_status[0]) {
6647 netdev_err(netdev,
6648 "Enabling CBS on queue1 before queue0\n");
6649 return -EINVAL;
6650 }
6651 } else {
6652 if (queue == 0 && cbs_status[1]) {
6653 netdev_err(netdev,
6654 "Disabling CBS on queue0 before queue1\n");
6655 return -EINVAL;
6656 }
6657 }
6658
6659 ring->cbs_enable = enable;
6660 ring->idleslope = idleslope;
6661 ring->sendslope = sendslope;
6662 ring->hicredit = hicredit;
6663 ring->locredit = locredit;
6664
6665 return 0;
6666 }
6667
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6668 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6669 struct tc_cbs_qopt_offload *qopt)
6670 {
6671 struct igc_hw *hw = &adapter->hw;
6672 int err;
6673
6674 if (hw->mac.type != igc_i225)
6675 return -EOPNOTSUPP;
6676
6677 if (qopt->queue < 0 || qopt->queue > 1)
6678 return -EINVAL;
6679
6680 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6681 qopt->idleslope, qopt->sendslope,
6682 qopt->hicredit, qopt->locredit);
6683 if (err)
6684 return err;
6685
6686 return igc_tsn_offload_apply(adapter);
6687 }
6688
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6689 static int igc_tc_query_caps(struct igc_adapter *adapter,
6690 struct tc_query_caps_base *base)
6691 {
6692 struct igc_hw *hw = &adapter->hw;
6693
6694 switch (base->type) {
6695 case TC_SETUP_QDISC_MQPRIO: {
6696 struct tc_mqprio_caps *caps = base->caps;
6697
6698 caps->validate_queue_counts = true;
6699
6700 return 0;
6701 }
6702 case TC_SETUP_QDISC_TAPRIO: {
6703 struct tc_taprio_caps *caps = base->caps;
6704
6705 caps->broken_mqprio = true;
6706
6707 if (hw->mac.type == igc_i225) {
6708 caps->supports_queue_max_sdu = true;
6709 caps->gate_mask_per_txq = true;
6710 }
6711
6712 return 0;
6713 }
6714 default:
6715 return -EOPNOTSUPP;
6716 }
6717 }
6718
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6719 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6720 u16 *offset)
6721 {
6722 int i;
6723
6724 adapter->strict_priority_enable = true;
6725 adapter->num_tc = num_tc;
6726
6727 for (i = 0; i < num_tc; i++)
6728 adapter->queue_per_tc[i] = offset[i];
6729 }
6730
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6731 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6732 struct tc_mqprio_qopt_offload *mqprio)
6733 {
6734 struct igc_hw *hw = &adapter->hw;
6735 int err, i;
6736
6737 if (hw->mac.type != igc_i225)
6738 return -EOPNOTSUPP;
6739
6740 if (!mqprio->qopt.num_tc) {
6741 adapter->strict_priority_enable = false;
6742 netdev_reset_tc(adapter->netdev);
6743 goto apply;
6744 }
6745
6746 /* There are as many TCs as Tx queues. */
6747 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6748 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6749 "Only %d traffic classes supported",
6750 adapter->num_tx_queues);
6751 return -EOPNOTSUPP;
6752 }
6753
6754 /* Only one queue per TC is supported. */
6755 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6756 if (mqprio->qopt.count[i] != 1) {
6757 NL_SET_ERR_MSG_MOD(mqprio->extack,
6758 "Only one queue per TC supported");
6759 return -EOPNOTSUPP;
6760 }
6761 }
6762
6763 /* Preemption is not supported yet. */
6764 if (mqprio->preemptible_tcs) {
6765 NL_SET_ERR_MSG_MOD(mqprio->extack,
6766 "Preemption is not supported yet");
6767 return -EOPNOTSUPP;
6768 }
6769
6770 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6771 mqprio->qopt.offset);
6772
6773 err = netdev_set_num_tc(adapter->netdev, adapter->num_tc);
6774 if (err)
6775 return err;
6776
6777 for (i = 0; i < adapter->num_tc; i++) {
6778 err = netdev_set_tc_queue(adapter->netdev, i, 1,
6779 adapter->queue_per_tc[i]);
6780 if (err)
6781 return err;
6782 }
6783
6784 /* In case the card is configured with less than four queues. */
6785 for (; i < IGC_MAX_TX_QUEUES; i++)
6786 adapter->queue_per_tc[i] = i;
6787
6788 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6789
6790 apply:
6791 return igc_tsn_offload_apply(adapter);
6792 }
6793
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6794 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6795 void *type_data)
6796 {
6797 struct igc_adapter *adapter = netdev_priv(dev);
6798
6799 adapter->tc_setup_type = type;
6800
6801 switch (type) {
6802 case TC_QUERY_CAPS:
6803 return igc_tc_query_caps(adapter, type_data);
6804 case TC_SETUP_QDISC_TAPRIO:
6805 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6806
6807 case TC_SETUP_QDISC_ETF:
6808 return igc_tsn_enable_launchtime(adapter, type_data);
6809
6810 case TC_SETUP_QDISC_CBS:
6811 return igc_tsn_enable_cbs(adapter, type_data);
6812
6813 case TC_SETUP_QDISC_MQPRIO:
6814 return igc_tsn_enable_mqprio(adapter, type_data);
6815
6816 default:
6817 return -EOPNOTSUPP;
6818 }
6819 }
6820
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6821 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6822 {
6823 struct igc_adapter *adapter = netdev_priv(dev);
6824
6825 switch (bpf->command) {
6826 case XDP_SETUP_PROG:
6827 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6828 case XDP_SETUP_XSK_POOL:
6829 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6830 bpf->xsk.queue_id);
6831 default:
6832 return -EOPNOTSUPP;
6833 }
6834 }
6835
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6836 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6837 struct xdp_frame **frames, u32 flags)
6838 {
6839 struct igc_adapter *adapter = netdev_priv(dev);
6840 int cpu = smp_processor_id();
6841 struct netdev_queue *nq;
6842 struct igc_ring *ring;
6843 int i, nxmit;
6844
6845 if (unlikely(!netif_carrier_ok(dev)))
6846 return -ENETDOWN;
6847
6848 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6849 return -EINVAL;
6850
6851 ring = igc_get_tx_ring(adapter, cpu);
6852 nq = txring_txq(ring);
6853
6854 __netif_tx_lock(nq, cpu);
6855
6856 /* Avoid transmit queue timeout since we share it with the slow path */
6857 txq_trans_cond_update(nq);
6858
6859 nxmit = 0;
6860 for (i = 0; i < num_frames; i++) {
6861 int err;
6862 struct xdp_frame *xdpf = frames[i];
6863
6864 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6865 if (err)
6866 break;
6867 nxmit++;
6868 }
6869
6870 if (flags & XDP_XMIT_FLUSH)
6871 igc_flush_tx_descriptors(ring);
6872
6873 __netif_tx_unlock(nq);
6874
6875 return nxmit;
6876 }
6877
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6878 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6879 struct igc_q_vector *q_vector)
6880 {
6881 struct igc_hw *hw = &adapter->hw;
6882 u32 eics = 0;
6883
6884 eics |= q_vector->eims_value;
6885 wr32(IGC_EICS, eics);
6886 }
6887
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6888 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6889 {
6890 struct igc_adapter *adapter = netdev_priv(dev);
6891 struct igc_q_vector *q_vector;
6892 struct igc_ring *ring;
6893
6894 if (test_bit(__IGC_DOWN, &adapter->state))
6895 return -ENETDOWN;
6896
6897 if (!igc_xdp_is_enabled(adapter))
6898 return -ENXIO;
6899
6900 if (queue_id >= adapter->num_rx_queues)
6901 return -EINVAL;
6902
6903 ring = adapter->rx_ring[queue_id];
6904
6905 if (!ring->xsk_pool)
6906 return -ENXIO;
6907
6908 q_vector = adapter->q_vector[queue_id];
6909 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6910 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6911
6912 return 0;
6913 }
6914
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6915 static ktime_t igc_get_tstamp(struct net_device *dev,
6916 const struct skb_shared_hwtstamps *hwtstamps,
6917 bool cycles)
6918 {
6919 struct igc_adapter *adapter = netdev_priv(dev);
6920 struct igc_inline_rx_tstamps *tstamp;
6921 ktime_t timestamp;
6922
6923 tstamp = hwtstamps->netdev_data;
6924
6925 if (cycles)
6926 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6927 else
6928 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6929
6930 return timestamp;
6931 }
6932
6933 static const struct net_device_ops igc_netdev_ops = {
6934 .ndo_open = igc_open,
6935 .ndo_stop = igc_close,
6936 .ndo_start_xmit = igc_xmit_frame,
6937 .ndo_set_rx_mode = igc_set_rx_mode,
6938 .ndo_set_mac_address = igc_set_mac,
6939 .ndo_change_mtu = igc_change_mtu,
6940 .ndo_tx_timeout = igc_tx_timeout,
6941 .ndo_get_stats64 = igc_get_stats64,
6942 .ndo_fix_features = igc_fix_features,
6943 .ndo_set_features = igc_set_features,
6944 .ndo_features_check = igc_features_check,
6945 .ndo_eth_ioctl = igc_ioctl,
6946 .ndo_setup_tc = igc_setup_tc,
6947 .ndo_bpf = igc_bpf,
6948 .ndo_xdp_xmit = igc_xdp_xmit,
6949 .ndo_xsk_wakeup = igc_xsk_wakeup,
6950 .ndo_get_tstamp = igc_get_tstamp,
6951 };
6952
igc_rd32(struct igc_hw * hw,u32 reg)6953 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6954 {
6955 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6956 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6957 u32 value = 0;
6958
6959 if (IGC_REMOVED(hw_addr))
6960 return ~value;
6961
6962 value = readl(&hw_addr[reg]);
6963
6964 /* reads should not return all F's */
6965 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6966 struct net_device *netdev = igc->netdev;
6967
6968 hw->hw_addr = NULL;
6969 netif_device_detach(netdev);
6970 netdev_err(netdev, "PCIe link lost, device now detached\n");
6971 WARN(pci_device_is_present(igc->pdev),
6972 "igc: Failed to read reg 0x%x!\n", reg);
6973 }
6974
6975 return value;
6976 }
6977
6978 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6979 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6980 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6981 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6982 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6983 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6984 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6985 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6986 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6987 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6988 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6989 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6990 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6991 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6992 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6993 [13] = XDP_RSS_TYPE_NONE,
6994 [14] = XDP_RSS_TYPE_NONE,
6995 [15] = XDP_RSS_TYPE_NONE,
6996 };
6997
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6998 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6999 enum xdp_rss_hash_type *rss_type)
7000 {
7001 const struct igc_xdp_buff *ctx = (void *)_ctx;
7002
7003 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
7004 return -ENODATA;
7005
7006 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
7007 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
7008
7009 return 0;
7010 }
7011
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)7012 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7013 {
7014 const struct igc_xdp_buff *ctx = (void *)_ctx;
7015 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
7016 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
7017
7018 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
7019 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
7020
7021 return 0;
7022 }
7023
7024 return -ENODATA;
7025 }
7026
7027 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
7028 .xmo_rx_hash = igc_xdp_rx_hash,
7029 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
7030 };
7031
igc_qbv_scheduling_timer(struct hrtimer * timer)7032 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
7033 {
7034 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
7035 hrtimer);
7036 unsigned long flags;
7037 unsigned int i;
7038
7039 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
7040
7041 adapter->qbv_transition = true;
7042 for (i = 0; i < adapter->num_tx_queues; i++) {
7043 struct igc_ring *tx_ring = adapter->tx_ring[i];
7044
7045 if (tx_ring->admin_gate_closed) {
7046 tx_ring->admin_gate_closed = false;
7047 tx_ring->oper_gate_closed = true;
7048 } else {
7049 tx_ring->oper_gate_closed = false;
7050 }
7051 }
7052 adapter->qbv_transition = false;
7053
7054 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
7055
7056 return HRTIMER_NORESTART;
7057 }
7058
7059 /**
7060 * igc_probe - Device Initialization Routine
7061 * @pdev: PCI device information struct
7062 * @ent: entry in igc_pci_tbl
7063 *
7064 * Returns 0 on success, negative on failure
7065 *
7066 * igc_probe initializes an adapter identified by a pci_dev structure.
7067 * The OS initialization, configuring the adapter private structure,
7068 * and a hardware reset occur.
7069 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7070 static int igc_probe(struct pci_dev *pdev,
7071 const struct pci_device_id *ent)
7072 {
7073 struct igc_adapter *adapter;
7074 struct net_device *netdev;
7075 struct igc_hw *hw;
7076 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7077 int err;
7078
7079 err = pci_enable_device_mem(pdev);
7080 if (err)
7081 return err;
7082
7083 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7084 if (err) {
7085 dev_err(&pdev->dev,
7086 "No usable DMA configuration, aborting\n");
7087 goto err_dma;
7088 }
7089
7090 err = pci_request_mem_regions(pdev, igc_driver_name);
7091 if (err)
7092 goto err_pci_reg;
7093
7094 err = pci_enable_ptm(pdev, NULL);
7095 if (err < 0)
7096 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7097
7098 pci_set_master(pdev);
7099
7100 err = -ENOMEM;
7101 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7102 IGC_MAX_TX_QUEUES);
7103
7104 if (!netdev)
7105 goto err_alloc_etherdev;
7106
7107 SET_NETDEV_DEV(netdev, &pdev->dev);
7108
7109 pci_set_drvdata(pdev, netdev);
7110 adapter = netdev_priv(netdev);
7111 adapter->netdev = netdev;
7112 adapter->pdev = pdev;
7113 hw = &adapter->hw;
7114 hw->back = adapter;
7115 adapter->port_num = hw->bus.func;
7116 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7117
7118 err = pci_save_state(pdev);
7119 if (err)
7120 goto err_ioremap;
7121
7122 err = -EIO;
7123 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7124 pci_resource_len(pdev, 0));
7125 if (!adapter->io_addr)
7126 goto err_ioremap;
7127
7128 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7129 hw->hw_addr = adapter->io_addr;
7130
7131 netdev->netdev_ops = &igc_netdev_ops;
7132 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7133 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7134 igc_ethtool_set_ops(netdev);
7135 netdev->watchdog_timeo = 5 * HZ;
7136
7137 netdev->mem_start = pci_resource_start(pdev, 0);
7138 netdev->mem_end = pci_resource_end(pdev, 0);
7139
7140 /* PCI config space info */
7141 hw->vendor_id = pdev->vendor;
7142 hw->device_id = pdev->device;
7143 hw->revision_id = pdev->revision;
7144 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7145 hw->subsystem_device_id = pdev->subsystem_device;
7146
7147 /* Copy the default MAC and PHY function pointers */
7148 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7149 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7150
7151 /* Initialize skew-specific constants */
7152 err = ei->get_invariants(hw);
7153 if (err)
7154 goto err_sw_init;
7155
7156 /* Add supported features to the features list*/
7157 netdev->features |= NETIF_F_SG;
7158 netdev->features |= NETIF_F_TSO;
7159 netdev->features |= NETIF_F_TSO6;
7160 netdev->features |= NETIF_F_TSO_ECN;
7161 netdev->features |= NETIF_F_RXHASH;
7162 netdev->features |= NETIF_F_RXCSUM;
7163 netdev->features |= NETIF_F_HW_CSUM;
7164 netdev->features |= NETIF_F_SCTP_CRC;
7165 netdev->features |= NETIF_F_HW_TC;
7166
7167 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7168 NETIF_F_GSO_GRE_CSUM | \
7169 NETIF_F_GSO_IPXIP4 | \
7170 NETIF_F_GSO_IPXIP6 | \
7171 NETIF_F_GSO_UDP_TUNNEL | \
7172 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7173
7174 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7175 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7176
7177 /* setup the private structure */
7178 err = igc_sw_init(adapter);
7179 if (err)
7180 goto err_sw_init;
7181
7182 /* copy netdev features into list of user selectable features */
7183 netdev->hw_features |= NETIF_F_NTUPLE;
7184 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7185 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7186 netdev->hw_features |= netdev->features;
7187
7188 netdev->features |= NETIF_F_HIGHDMA;
7189
7190 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7191 netdev->mpls_features |= NETIF_F_HW_CSUM;
7192 netdev->hw_enc_features |= netdev->vlan_features;
7193
7194 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7195 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7196
7197 /* enable HW vlan tag insertion/stripping by default */
7198 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7199
7200 /* MTU range: 68 - 9216 */
7201 netdev->min_mtu = ETH_MIN_MTU;
7202 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7203
7204 /* before reading the NVM, reset the controller to put the device in a
7205 * known good starting state
7206 */
7207 hw->mac.ops.reset_hw(hw);
7208
7209 if (igc_get_flash_presence_i225(hw)) {
7210 if (hw->nvm.ops.validate(hw) < 0) {
7211 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7212 err = -EIO;
7213 goto err_eeprom;
7214 }
7215 }
7216
7217 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7218 /* copy the MAC address out of the NVM */
7219 if (hw->mac.ops.read_mac_addr(hw))
7220 dev_err(&pdev->dev, "NVM Read Error\n");
7221 }
7222
7223 eth_hw_addr_set(netdev, hw->mac.addr);
7224
7225 if (!is_valid_ether_addr(netdev->dev_addr)) {
7226 dev_err(&pdev->dev, "Invalid MAC Address\n");
7227 err = -EIO;
7228 goto err_eeprom;
7229 }
7230
7231 /* configure RXPBSIZE and TXPBSIZE */
7232 wr32(IGC_RXPBS, IGC_RXPBSIZE_EXP_BMC_DEFAULT);
7233 wr32(IGC_TXPBS, IGC_TXPBSIZE_DEFAULT);
7234
7235 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7236 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7237
7238 INIT_WORK(&adapter->reset_task, igc_reset_task);
7239 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7240
7241 hrtimer_setup(&adapter->hrtimer, &igc_qbv_scheduling_timer, CLOCK_MONOTONIC,
7242 HRTIMER_MODE_REL);
7243
7244 /* Initialize link properties that are user-changeable */
7245 adapter->fc_autoneg = true;
7246 hw->phy.autoneg_advertised = 0xaf;
7247
7248 hw->fc.requested_mode = igc_fc_default;
7249 hw->fc.current_mode = igc_fc_default;
7250
7251 /* By default, support wake on port A */
7252 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7253
7254 /* initialize the wol settings based on the eeprom settings */
7255 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7256 adapter->wol |= IGC_WUFC_MAG;
7257
7258 device_set_wakeup_enable(&adapter->pdev->dev,
7259 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7260
7261 igc_ptp_init(adapter);
7262
7263 igc_tsn_clear_schedule(adapter);
7264
7265 igc_fpe_init(adapter);
7266
7267 /* reset the hardware with the new settings */
7268 igc_reset(adapter);
7269
7270 /* let the f/w know that the h/w is now under the control of the
7271 * driver.
7272 */
7273 igc_get_hw_control(adapter);
7274
7275 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7276 err = register_netdev(netdev);
7277 if (err)
7278 goto err_register;
7279
7280 /* carrier off reporting is important to ethtool even BEFORE open */
7281 netif_carrier_off(netdev);
7282
7283 /* Check if Media Autosense is enabled */
7284 adapter->ei = *ei;
7285
7286 /* print pcie link status and MAC address */
7287 pcie_print_link_status(pdev);
7288 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7289
7290 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7291 /* Disable EEE for internal PHY devices */
7292 hw->dev_spec._base.eee_enable = false;
7293 adapter->flags &= ~IGC_FLAG_EEE;
7294 igc_set_eee_i225(hw, false, false, false);
7295
7296 pm_runtime_put_noidle(&pdev->dev);
7297
7298 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7299 err = igc_led_setup(adapter);
7300 if (err)
7301 goto err_register;
7302 }
7303
7304 return 0;
7305
7306 err_register:
7307 igc_release_hw_control(adapter);
7308 igc_ptp_stop(adapter);
7309 err_eeprom:
7310 if (!igc_check_reset_block(hw))
7311 igc_reset_phy(hw);
7312 err_sw_init:
7313 igc_clear_interrupt_scheme(adapter);
7314 iounmap(adapter->io_addr);
7315 err_ioremap:
7316 free_netdev(netdev);
7317 err_alloc_etherdev:
7318 pci_release_mem_regions(pdev);
7319 err_pci_reg:
7320 err_dma:
7321 pci_disable_device(pdev);
7322 return err;
7323 }
7324
7325 /**
7326 * igc_remove - Device Removal Routine
7327 * @pdev: PCI device information struct
7328 *
7329 * igc_remove is called by the PCI subsystem to alert the driver
7330 * that it should release a PCI device. This could be caused by a
7331 * Hot-Plug event, or because the driver is going to be removed from
7332 * memory.
7333 */
igc_remove(struct pci_dev * pdev)7334 static void igc_remove(struct pci_dev *pdev)
7335 {
7336 struct net_device *netdev = pci_get_drvdata(pdev);
7337 struct igc_adapter *adapter = netdev_priv(netdev);
7338
7339 pm_runtime_get_noresume(&pdev->dev);
7340
7341 igc_flush_nfc_rules(adapter);
7342
7343 igc_ptp_stop(adapter);
7344
7345 pci_disable_ptm(pdev);
7346 pci_clear_master(pdev);
7347
7348 set_bit(__IGC_DOWN, &adapter->state);
7349
7350 timer_delete_sync(&adapter->watchdog_timer);
7351 timer_delete_sync(&adapter->phy_info_timer);
7352
7353 cancel_work_sync(&adapter->reset_task);
7354 cancel_work_sync(&adapter->watchdog_task);
7355 hrtimer_cancel(&adapter->hrtimer);
7356
7357 if (IS_ENABLED(CONFIG_IGC_LEDS))
7358 igc_led_free(adapter);
7359
7360 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7361 * would have already happened in close and is redundant.
7362 */
7363 igc_release_hw_control(adapter);
7364 unregister_netdev(netdev);
7365
7366 igc_clear_interrupt_scheme(adapter);
7367 pci_iounmap(pdev, adapter->io_addr);
7368 pci_release_mem_regions(pdev);
7369
7370 free_netdev(netdev);
7371
7372 pci_disable_device(pdev);
7373 }
7374
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7375 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7376 bool runtime)
7377 {
7378 struct net_device *netdev = pci_get_drvdata(pdev);
7379 struct igc_adapter *adapter = netdev_priv(netdev);
7380 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7381 struct igc_hw *hw = &adapter->hw;
7382 u32 ctrl, rctl, status;
7383 bool wake;
7384
7385 rtnl_lock();
7386 netif_device_detach(netdev);
7387
7388 if (netif_running(netdev))
7389 __igc_close(netdev, true);
7390
7391 igc_ptp_suspend(adapter);
7392
7393 igc_clear_interrupt_scheme(adapter);
7394 rtnl_unlock();
7395
7396 status = rd32(IGC_STATUS);
7397 if (status & IGC_STATUS_LU)
7398 wufc &= ~IGC_WUFC_LNKC;
7399
7400 if (wufc) {
7401 igc_setup_rctl(adapter);
7402 igc_set_rx_mode(netdev);
7403
7404 /* turn on all-multi mode if wake on multicast is enabled */
7405 if (wufc & IGC_WUFC_MC) {
7406 rctl = rd32(IGC_RCTL);
7407 rctl |= IGC_RCTL_MPE;
7408 wr32(IGC_RCTL, rctl);
7409 }
7410
7411 ctrl = rd32(IGC_CTRL);
7412 ctrl |= IGC_CTRL_ADVD3WUC;
7413 wr32(IGC_CTRL, ctrl);
7414
7415 /* Allow time for pending master requests to run */
7416 igc_disable_pcie_master(hw);
7417
7418 wr32(IGC_WUC, IGC_WUC_PME_EN);
7419 wr32(IGC_WUFC, wufc);
7420 } else {
7421 wr32(IGC_WUC, 0);
7422 wr32(IGC_WUFC, 0);
7423 }
7424
7425 wake = wufc || adapter->en_mng_pt;
7426 if (!wake)
7427 igc_power_down_phy_copper_base(&adapter->hw);
7428 else
7429 igc_power_up_link(adapter);
7430
7431 if (enable_wake)
7432 *enable_wake = wake;
7433
7434 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7435 * would have already happened in close and is redundant.
7436 */
7437 igc_release_hw_control(adapter);
7438
7439 pci_disable_device(pdev);
7440
7441 return 0;
7442 }
7443
igc_runtime_suspend(struct device * dev)7444 static int igc_runtime_suspend(struct device *dev)
7445 {
7446 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7447 }
7448
igc_deliver_wake_packet(struct net_device * netdev)7449 static void igc_deliver_wake_packet(struct net_device *netdev)
7450 {
7451 struct igc_adapter *adapter = netdev_priv(netdev);
7452 struct igc_hw *hw = &adapter->hw;
7453 struct sk_buff *skb;
7454 u32 wupl;
7455
7456 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7457
7458 /* WUPM stores only the first 128 bytes of the wake packet.
7459 * Read the packet only if we have the whole thing.
7460 */
7461 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7462 return;
7463
7464 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7465 if (!skb)
7466 return;
7467
7468 skb_put(skb, wupl);
7469
7470 /* Ensure reads are 32-bit aligned */
7471 wupl = roundup(wupl, 4);
7472
7473 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7474
7475 skb->protocol = eth_type_trans(skb, netdev);
7476 netif_rx(skb);
7477 }
7478
__igc_resume(struct device * dev,bool rpm)7479 static int __igc_resume(struct device *dev, bool rpm)
7480 {
7481 struct pci_dev *pdev = to_pci_dev(dev);
7482 struct net_device *netdev = pci_get_drvdata(pdev);
7483 struct igc_adapter *adapter = netdev_priv(netdev);
7484 struct igc_hw *hw = &adapter->hw;
7485 u32 err, val;
7486
7487 pci_set_power_state(pdev, PCI_D0);
7488 pci_restore_state(pdev);
7489 pci_save_state(pdev);
7490
7491 if (!pci_device_is_present(pdev))
7492 return -ENODEV;
7493 err = pci_enable_device_mem(pdev);
7494 if (err) {
7495 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7496 return err;
7497 }
7498 pci_set_master(pdev);
7499
7500 pci_enable_wake(pdev, PCI_D3hot, 0);
7501 pci_enable_wake(pdev, PCI_D3cold, 0);
7502
7503 if (igc_init_interrupt_scheme(adapter, true)) {
7504 netdev_err(netdev, "Unable to allocate memory for queues\n");
7505 return -ENOMEM;
7506 }
7507
7508 igc_reset(adapter);
7509
7510 /* let the f/w know that the h/w is now under the control of the
7511 * driver.
7512 */
7513 igc_get_hw_control(adapter);
7514
7515 val = rd32(IGC_WUS);
7516 if (val & WAKE_PKT_WUS)
7517 igc_deliver_wake_packet(netdev);
7518
7519 wr32(IGC_WUS, ~0);
7520
7521 if (netif_running(netdev)) {
7522 if (!rpm)
7523 rtnl_lock();
7524 err = __igc_open(netdev, true);
7525 if (!rpm)
7526 rtnl_unlock();
7527 if (!err)
7528 netif_device_attach(netdev);
7529 }
7530
7531 return err;
7532 }
7533
igc_resume(struct device * dev)7534 static int igc_resume(struct device *dev)
7535 {
7536 return __igc_resume(dev, false);
7537 }
7538
igc_runtime_resume(struct device * dev)7539 static int igc_runtime_resume(struct device *dev)
7540 {
7541 return __igc_resume(dev, true);
7542 }
7543
igc_suspend(struct device * dev)7544 static int igc_suspend(struct device *dev)
7545 {
7546 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7547 }
7548
igc_runtime_idle(struct device * dev)7549 static int __maybe_unused igc_runtime_idle(struct device *dev)
7550 {
7551 struct net_device *netdev = dev_get_drvdata(dev);
7552 struct igc_adapter *adapter = netdev_priv(netdev);
7553
7554 if (!igc_has_link(adapter))
7555 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7556
7557 return -EBUSY;
7558 }
7559
igc_shutdown(struct pci_dev * pdev)7560 static void igc_shutdown(struct pci_dev *pdev)
7561 {
7562 bool wake;
7563
7564 __igc_shutdown(pdev, &wake, 0);
7565
7566 if (system_state == SYSTEM_POWER_OFF) {
7567 pci_wake_from_d3(pdev, wake);
7568 pci_set_power_state(pdev, PCI_D3hot);
7569 }
7570 }
7571
7572 /**
7573 * igc_io_error_detected - called when PCI error is detected
7574 * @pdev: Pointer to PCI device
7575 * @state: The current PCI connection state
7576 *
7577 * This function is called after a PCI bus error affecting
7578 * this device has been detected.
7579 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7580 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7581 pci_channel_state_t state)
7582 {
7583 struct net_device *netdev = pci_get_drvdata(pdev);
7584 struct igc_adapter *adapter = netdev_priv(netdev);
7585
7586 rtnl_lock();
7587 netif_device_detach(netdev);
7588
7589 if (state == pci_channel_io_perm_failure) {
7590 rtnl_unlock();
7591 return PCI_ERS_RESULT_DISCONNECT;
7592 }
7593
7594 if (netif_running(netdev))
7595 igc_down(adapter);
7596 pci_disable_device(pdev);
7597 rtnl_unlock();
7598
7599 /* Request a slot reset. */
7600 return PCI_ERS_RESULT_NEED_RESET;
7601 }
7602
7603 /**
7604 * igc_io_slot_reset - called after the PCI bus has been reset.
7605 * @pdev: Pointer to PCI device
7606 *
7607 * Restart the card from scratch, as if from a cold-boot. Implementation
7608 * resembles the first-half of the __igc_resume routine.
7609 **/
igc_io_slot_reset(struct pci_dev * pdev)7610 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7611 {
7612 struct net_device *netdev = pci_get_drvdata(pdev);
7613 struct igc_adapter *adapter = netdev_priv(netdev);
7614 struct igc_hw *hw = &adapter->hw;
7615 pci_ers_result_t result;
7616
7617 if (pci_enable_device_mem(pdev)) {
7618 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7619 result = PCI_ERS_RESULT_DISCONNECT;
7620 } else {
7621 pci_set_master(pdev);
7622 pci_restore_state(pdev);
7623 pci_save_state(pdev);
7624
7625 pci_enable_wake(pdev, PCI_D3hot, 0);
7626 pci_enable_wake(pdev, PCI_D3cold, 0);
7627
7628 /* In case of PCI error, adapter loses its HW address
7629 * so we should re-assign it here.
7630 */
7631 hw->hw_addr = adapter->io_addr;
7632
7633 igc_reset(adapter);
7634 wr32(IGC_WUS, ~0);
7635 result = PCI_ERS_RESULT_RECOVERED;
7636 }
7637
7638 return result;
7639 }
7640
7641 /**
7642 * igc_io_resume - called when traffic can start to flow again.
7643 * @pdev: Pointer to PCI device
7644 *
7645 * This callback is called when the error recovery driver tells us that
7646 * its OK to resume normal operation. Implementation resembles the
7647 * second-half of the __igc_resume routine.
7648 */
igc_io_resume(struct pci_dev * pdev)7649 static void igc_io_resume(struct pci_dev *pdev)
7650 {
7651 struct net_device *netdev = pci_get_drvdata(pdev);
7652 struct igc_adapter *adapter = netdev_priv(netdev);
7653
7654 rtnl_lock();
7655 if (netif_running(netdev)) {
7656 if (igc_open(netdev)) {
7657 rtnl_unlock();
7658 netdev_err(netdev, "igc_open failed after reset\n");
7659 return;
7660 }
7661 }
7662
7663 netif_device_attach(netdev);
7664
7665 /* let the f/w know that the h/w is now under the control of the
7666 * driver.
7667 */
7668 igc_get_hw_control(adapter);
7669 rtnl_unlock();
7670 }
7671
7672 static const struct pci_error_handlers igc_err_handler = {
7673 .error_detected = igc_io_error_detected,
7674 .slot_reset = igc_io_slot_reset,
7675 .resume = igc_io_resume,
7676 };
7677
7678 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7679 igc_runtime_suspend, igc_runtime_resume,
7680 igc_runtime_idle);
7681
7682 static struct pci_driver igc_driver = {
7683 .name = igc_driver_name,
7684 .id_table = igc_pci_tbl,
7685 .probe = igc_probe,
7686 .remove = igc_remove,
7687 .driver.pm = pm_ptr(&igc_pm_ops),
7688 .shutdown = igc_shutdown,
7689 .err_handler = &igc_err_handler,
7690 };
7691
7692 /**
7693 * igc_reinit_queues - return error
7694 * @adapter: pointer to adapter structure
7695 */
igc_reinit_queues(struct igc_adapter * adapter)7696 int igc_reinit_queues(struct igc_adapter *adapter)
7697 {
7698 struct net_device *netdev = adapter->netdev;
7699 int err = 0;
7700
7701 if (netif_running(netdev))
7702 igc_close(netdev);
7703
7704 igc_reset_interrupt_capability(adapter);
7705
7706 if (igc_init_interrupt_scheme(adapter, true)) {
7707 netdev_err(netdev, "Unable to allocate memory for queues\n");
7708 return -ENOMEM;
7709 }
7710
7711 if (netif_running(netdev))
7712 err = igc_open(netdev);
7713
7714 return err;
7715 }
7716
7717 /**
7718 * igc_get_hw_dev - return device
7719 * @hw: pointer to hardware structure
7720 *
7721 * used by hardware layer to print debugging information
7722 */
igc_get_hw_dev(struct igc_hw * hw)7723 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7724 {
7725 struct igc_adapter *adapter = hw->back;
7726
7727 return adapter->netdev;
7728 }
7729
igc_disable_rx_ring_hw(struct igc_ring * ring)7730 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7731 {
7732 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7733 u8 idx = ring->reg_idx;
7734 u32 rxdctl;
7735
7736 rxdctl = rd32(IGC_RXDCTL(idx));
7737 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7738 rxdctl |= IGC_RXDCTL_SWFLUSH;
7739 wr32(IGC_RXDCTL(idx), rxdctl);
7740 }
7741
igc_disable_rx_ring(struct igc_ring * ring)7742 void igc_disable_rx_ring(struct igc_ring *ring)
7743 {
7744 igc_disable_rx_ring_hw(ring);
7745 igc_clean_rx_ring(ring);
7746 }
7747
igc_enable_rx_ring(struct igc_ring * ring)7748 void igc_enable_rx_ring(struct igc_ring *ring)
7749 {
7750 struct igc_adapter *adapter = ring->q_vector->adapter;
7751
7752 igc_configure_rx_ring(adapter, ring);
7753
7754 if (ring->xsk_pool)
7755 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7756 else
7757 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7758 }
7759
igc_disable_tx_ring(struct igc_ring * ring)7760 void igc_disable_tx_ring(struct igc_ring *ring)
7761 {
7762 igc_disable_tx_ring_hw(ring);
7763 igc_clean_tx_ring(ring);
7764 }
7765
igc_enable_tx_ring(struct igc_ring * ring)7766 void igc_enable_tx_ring(struct igc_ring *ring)
7767 {
7768 struct igc_adapter *adapter = ring->q_vector->adapter;
7769
7770 igc_configure_tx_ring(adapter, ring);
7771 }
7772
7773 /**
7774 * igc_init_module - Driver Registration Routine
7775 *
7776 * igc_init_module is the first routine called when the driver is
7777 * loaded. All it does is register with the PCI subsystem.
7778 */
igc_init_module(void)7779 static int __init igc_init_module(void)
7780 {
7781 int ret;
7782
7783 pr_info("%s\n", igc_driver_string);
7784 pr_info("%s\n", igc_copyright);
7785
7786 ret = pci_register_driver(&igc_driver);
7787 return ret;
7788 }
7789
7790 module_init(igc_init_module);
7791
7792 /**
7793 * igc_exit_module - Driver Exit Cleanup Routine
7794 *
7795 * igc_exit_module is called just before the driver is removed
7796 * from memory.
7797 */
igc_exit_module(void)7798 static void __exit igc_exit_module(void)
7799 {
7800 pci_unregister_driver(&igc_driver);
7801 }
7802
7803 module_exit(igc_exit_module);
7804 /* igc_main.c */
7805