1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->skb = skb;
1100 buffer->protocol = 0;
1101 buffer->bytecount = skb->len;
1102 buffer->gso_segs = 1;
1103 buffer->time_stamp = jiffies;
1104 dma_unmap_len_set(buffer, len, skb->len);
1105 dma_unmap_addr_set(buffer, dma, dma);
1106
1107 return 0;
1108 }
1109
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 struct sk_buff *skb,
1112 struct igc_tx_buffer *first)
1113 {
1114 union igc_adv_tx_desc *desc;
1115 u32 cmd_type, olinfo_status;
1116 int err;
1117
1118 if (!igc_desc_unused(ring))
1119 return -EBUSY;
1120
1121 err = igc_init_empty_frame(ring, first, skb);
1122 if (err)
1123 return err;
1124
1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 first->bytecount;
1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130 desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137 first->next_to_watch = desc;
1138
1139 ring->next_to_use++;
1140 if (ring->next_to_use == ring->count)
1141 ring->next_to_use = 0;
1142
1143 return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 __le32 launch_time, bool first_flag,
1150 u32 vlan_macip_lens, u32 type_tucmd,
1151 u32 mss_l4len_idx)
1152 {
1153 struct igc_adv_tx_context_desc *context_desc;
1154 u16 i = tx_ring->next_to_use;
1155
1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158 i++;
1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161 /* set bits to identify this as an advanced context descriptor */
1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164 /* For i225, context index must be unique per ring. */
1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168 if (first_flag)
1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1174 context_desc->launch_time = launch_time;
1175 }
1176
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 __le32 launch_time, bool first_flag)
1179 {
1180 struct sk_buff *skb = first->skb;
1181 u32 vlan_macip_lens = 0;
1182 u32 type_tucmd = 0;
1183
1184 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 !tx_ring->launchtime_enable)
1188 return;
1189 goto no_csum;
1190 }
1191
1192 switch (skb->csum_offset) {
1193 case offsetof(struct tcphdr, check):
1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 fallthrough;
1196 case offsetof(struct udphdr, check):
1197 break;
1198 case offsetof(struct sctphdr, checksum):
1199 /* validate that this is actually an SCTP request */
1200 if (skb_csum_is_sctp(skb)) {
1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 break;
1203 }
1204 fallthrough;
1205 default:
1206 skb_checksum_help(skb);
1207 goto csum_failed;
1208 }
1209
1210 /* update TX checksum flag */
1211 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 skb_network_offset(skb);
1214 no_csum:
1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 vlan_macip_lens, type_tucmd, 0);
1220 }
1221
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 struct net_device *netdev = tx_ring->netdev;
1225
1226 netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228 /* memory barriier comment */
1229 smp_mb();
1230
1231 /* We need to check again in a case another CPU has just
1232 * made room available.
1233 */
1234 if (igc_desc_unused(tx_ring) < size)
1235 return -EBUSY;
1236
1237 /* A reprieve! */
1238 netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240 u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 tx_ring->tx_stats.restart_queue2++;
1242 u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244 return 0;
1245 }
1246
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 if (igc_desc_unused(tx_ring) >= size)
1250 return 0;
1251 return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 (((_flag) <= (_result)) ? \
1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 /* set type for advanced descriptor with frame checksum insertion */
1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 IGC_ADVTXD_DCMD_DEXT |
1264 IGC_ADVTXD_DCMD_IFCS;
1265
1266 /* set HW vlan bit if vlan is present */
1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 IGC_ADVTXD_DCMD_VLE);
1269
1270 /* set segmentation bits for TSO */
1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 (IGC_ADVTXD_DCMD_TSE));
1273
1274 /* set timestamp bit if present, will select the register set
1275 * based on the _TSTAMP(_X) bit.
1276 */
1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 (IGC_ADVTXD_MAC_TSTAMP));
1279
1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289 /* insert frame checksum */
1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292 return cmd_type;
1293 }
1294
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 union igc_adv_tx_desc *tx_desc,
1297 u32 tx_flags, unsigned int paylen)
1298 {
1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301 /* insert L4 checksum */
1302 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303 (IGC_TXD_POPTS_TXSM << 8));
1304
1305 /* insert IPv4 checksum */
1306 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307 (IGC_TXD_POPTS_IXSM << 8));
1308
1309 /* Use the second timer (free running, in general) for the timestamp */
1310 olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311 IGC_TXD_PTP2_TIMER_1);
1312
1313 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317 struct igc_tx_buffer *first,
1318 const u8 hdr_len)
1319 {
1320 struct sk_buff *skb = first->skb;
1321 struct igc_tx_buffer *tx_buffer;
1322 union igc_adv_tx_desc *tx_desc;
1323 u32 tx_flags = first->tx_flags;
1324 skb_frag_t *frag;
1325 u16 i = tx_ring->next_to_use;
1326 unsigned int data_len, size;
1327 dma_addr_t dma;
1328 u32 cmd_type;
1329
1330 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331 tx_desc = IGC_TX_DESC(tx_ring, i);
1332
1333 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334
1335 size = skb_headlen(skb);
1336 data_len = skb->data_len;
1337
1338 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339
1340 tx_buffer = first;
1341
1342 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343 if (dma_mapping_error(tx_ring->dev, dma))
1344 goto dma_error;
1345
1346 /* record length, and DMA address */
1347 dma_unmap_len_set(tx_buffer, len, size);
1348 dma_unmap_addr_set(tx_buffer, dma, dma);
1349
1350 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351
1352 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353 tx_desc->read.cmd_type_len =
1354 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355
1356 i++;
1357 tx_desc++;
1358 if (i == tx_ring->count) {
1359 tx_desc = IGC_TX_DESC(tx_ring, 0);
1360 i = 0;
1361 }
1362 tx_desc->read.olinfo_status = 0;
1363
1364 dma += IGC_MAX_DATA_PER_TXD;
1365 size -= IGC_MAX_DATA_PER_TXD;
1366
1367 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368 }
1369
1370 if (likely(!data_len))
1371 break;
1372
1373 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374
1375 i++;
1376 tx_desc++;
1377 if (i == tx_ring->count) {
1378 tx_desc = IGC_TX_DESC(tx_ring, 0);
1379 i = 0;
1380 }
1381 tx_desc->read.olinfo_status = 0;
1382
1383 size = skb_frag_size(frag);
1384 data_len -= size;
1385
1386 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387 size, DMA_TO_DEVICE);
1388
1389 tx_buffer = &tx_ring->tx_buffer_info[i];
1390 }
1391
1392 /* write last descriptor with RS and EOP bits */
1393 cmd_type |= size | IGC_TXD_DCMD;
1394 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395
1396 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397
1398 /* set the timestamp */
1399 first->time_stamp = jiffies;
1400
1401 skb_tx_timestamp(skb);
1402
1403 /* Force memory writes to complete before letting h/w know there
1404 * are new descriptors to fetch. (Only applicable for weak-ordered
1405 * memory model archs, such as IA-64).
1406 *
1407 * We also need this memory barrier to make certain all of the
1408 * status bits have been updated before next_to_watch is written.
1409 */
1410 wmb();
1411
1412 /* set next_to_watch value indicating a packet is present */
1413 first->next_to_watch = tx_desc;
1414
1415 i++;
1416 if (i == tx_ring->count)
1417 i = 0;
1418
1419 tx_ring->next_to_use = i;
1420
1421 /* Make sure there is space in the ring for the next send. */
1422 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423
1424 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425 writel(i, tx_ring->tail);
1426 }
1427
1428 return 0;
1429 dma_error:
1430 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431 tx_buffer = &tx_ring->tx_buffer_info[i];
1432
1433 /* clear dma mappings for failed tx_buffer_info map */
1434 while (tx_buffer != first) {
1435 if (dma_unmap_len(tx_buffer, len))
1436 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438 if (i-- == 0)
1439 i += tx_ring->count;
1440 tx_buffer = &tx_ring->tx_buffer_info[i];
1441 }
1442
1443 if (dma_unmap_len(tx_buffer, len))
1444 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445
1446 dev_kfree_skb_any(tx_buffer->skb);
1447 tx_buffer->skb = NULL;
1448
1449 tx_ring->next_to_use = i;
1450
1451 return -1;
1452 }
1453
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1454 static int igc_tso(struct igc_ring *tx_ring,
1455 struct igc_tx_buffer *first,
1456 __le32 launch_time, bool first_flag,
1457 u8 *hdr_len)
1458 {
1459 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460 struct sk_buff *skb = first->skb;
1461 union {
1462 struct iphdr *v4;
1463 struct ipv6hdr *v6;
1464 unsigned char *hdr;
1465 } ip;
1466 union {
1467 struct tcphdr *tcp;
1468 struct udphdr *udp;
1469 unsigned char *hdr;
1470 } l4;
1471 u32 paylen, l4_offset;
1472 int err;
1473
1474 if (skb->ip_summed != CHECKSUM_PARTIAL)
1475 return 0;
1476
1477 if (!skb_is_gso(skb))
1478 return 0;
1479
1480 err = skb_cow_head(skb, 0);
1481 if (err < 0)
1482 return err;
1483
1484 ip.hdr = skb_network_header(skb);
1485 l4.hdr = skb_checksum_start(skb);
1486
1487 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489
1490 /* initialize outer IP header fields */
1491 if (ip.v4->version == 4) {
1492 unsigned char *csum_start = skb_checksum_start(skb);
1493 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494
1495 /* IP header will have to cancel out any data that
1496 * is not a part of the outer IP header
1497 */
1498 ip.v4->check = csum_fold(csum_partial(trans_start,
1499 csum_start - trans_start,
1500 0));
1501 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502
1503 ip.v4->tot_len = 0;
1504 first->tx_flags |= IGC_TX_FLAGS_TSO |
1505 IGC_TX_FLAGS_CSUM |
1506 IGC_TX_FLAGS_IPV4;
1507 } else {
1508 ip.v6->payload_len = 0;
1509 first->tx_flags |= IGC_TX_FLAGS_TSO |
1510 IGC_TX_FLAGS_CSUM;
1511 }
1512
1513 /* determine offset of inner transport header */
1514 l4_offset = l4.hdr - skb->data;
1515
1516 /* remove payload length from inner checksum */
1517 paylen = skb->len - l4_offset;
1518 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519 /* compute length of segmentation header */
1520 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521 csum_replace_by_diff(&l4.tcp->check,
1522 (__force __wsum)htonl(paylen));
1523 } else {
1524 /* compute length of segmentation header */
1525 *hdr_len = sizeof(*l4.udp) + l4_offset;
1526 csum_replace_by_diff(&l4.udp->check,
1527 (__force __wsum)htonl(paylen));
1528 }
1529
1530 /* update gso size and bytecount with header size */
1531 first->gso_segs = skb_shinfo(skb)->gso_segs;
1532 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533
1534 /* MSS L4LEN IDX */
1535 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537
1538 /* VLAN MACLEN IPLEN */
1539 vlan_macip_lens = l4.hdr - ip.hdr;
1540 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542
1543 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545
1546 return 1;
1547 }
1548
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551 int i;
1552
1553 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555
1556 if (tstamp->skb)
1557 continue;
1558
1559 tstamp->skb = skb_get(skb);
1560 tstamp->start = jiffies;
1561 *flags = tstamp->flags;
1562
1563 return true;
1564 }
1565
1566 return false;
1567 }
1568
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570 struct igc_ring *tx_ring)
1571 {
1572 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573 bool first_flag = false, insert_empty = false;
1574 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575 __be16 protocol = vlan_get_protocol(skb);
1576 struct igc_tx_buffer *first;
1577 __le32 launch_time = 0;
1578 u32 tx_flags = 0;
1579 unsigned short f;
1580 ktime_t txtime;
1581 u8 hdr_len = 0;
1582 int tso = 0;
1583
1584 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586 * + 2 desc gap to keep tail from touching head,
1587 * + 1 desc for context descriptor,
1588 * otherwise try next time
1589 */
1590 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591 count += TXD_USE_COUNT(skb_frag_size(
1592 &skb_shinfo(skb)->frags[f]));
1593
1594 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595 /* this is a hard error */
1596 return NETDEV_TX_BUSY;
1597 }
1598
1599 if (!tx_ring->launchtime_enable)
1600 goto done;
1601
1602 txtime = skb->tstamp;
1603 skb->tstamp = ktime_set(0, 0);
1604 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605
1606 if (insert_empty) {
1607 struct igc_tx_buffer *empty_info;
1608 struct sk_buff *empty;
1609 void *data;
1610
1611 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613 if (!empty)
1614 goto done;
1615
1616 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618
1619 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620
1621 if (igc_init_tx_empty_descriptor(tx_ring,
1622 empty,
1623 empty_info) < 0)
1624 dev_kfree_skb_any(empty);
1625 }
1626
1627 done:
1628 /* record the location of the first descriptor for this packet */
1629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630 first->type = IGC_TX_BUFFER_TYPE_SKB;
1631 first->skb = skb;
1632 first->bytecount = skb->len;
1633 first->gso_segs = 1;
1634
1635 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636 goto out_drop;
1637
1638 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639 adapter->stats.txdrop++;
1640 goto out_drop;
1641 }
1642
1643 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645 unsigned long flags;
1646 u32 tstamp_flags;
1647
1648 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1649 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1651 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1652 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1653 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1654 } else {
1655 adapter->tx_hwtstamp_skipped++;
1656 }
1657
1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659 }
1660
1661 if (skb_vlan_tag_present(skb)) {
1662 tx_flags |= IGC_TX_FLAGS_VLAN;
1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664 }
1665
1666 /* record initial flags and protocol */
1667 first->tx_flags = tx_flags;
1668 first->protocol = protocol;
1669
1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671 if (tso < 0)
1672 goto out_drop;
1673 else if (!tso)
1674 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675
1676 igc_tx_map(tx_ring, first, hdr_len);
1677
1678 return NETDEV_TX_OK;
1679
1680 out_drop:
1681 dev_kfree_skb_any(first->skb);
1682 first->skb = NULL;
1683
1684 return NETDEV_TX_OK;
1685 }
1686
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688 struct sk_buff *skb)
1689 {
1690 unsigned int r_idx = skb->queue_mapping;
1691
1692 if (r_idx >= adapter->num_tx_queues)
1693 r_idx = r_idx % adapter->num_tx_queues;
1694
1695 return adapter->tx_ring[r_idx];
1696 }
1697
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699 struct net_device *netdev)
1700 {
1701 struct igc_adapter *adapter = netdev_priv(netdev);
1702
1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704 * in order to meet this minimum size requirement.
1705 */
1706 if (skb->len < 17) {
1707 if (skb_padto(skb, 17))
1708 return NETDEV_TX_OK;
1709 skb->len = 17;
1710 }
1711
1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713 }
1714
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1715 static void igc_rx_checksum(struct igc_ring *ring,
1716 union igc_adv_rx_desc *rx_desc,
1717 struct sk_buff *skb)
1718 {
1719 skb_checksum_none_assert(skb);
1720
1721 /* Ignore Checksum bit is set */
1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723 return;
1724
1725 /* Rx checksum disabled via ethtool */
1726 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727 return;
1728
1729 /* TCP/UDP checksum error bit is set */
1730 if (igc_test_staterr(rx_desc,
1731 IGC_RXDEXT_STATERR_L4E |
1732 IGC_RXDEXT_STATERR_IPE)) {
1733 /* work around errata with sctp packets where the TCPE aka
1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735 * packets (aka let the stack check the crc32c)
1736 */
1737 if (!(skb->len == 60 &&
1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739 u64_stats_update_begin(&ring->rx_syncp);
1740 ring->rx_stats.csum_err++;
1741 u64_stats_update_end(&ring->rx_syncp);
1742 }
1743 /* let the stack verify checksum errors */
1744 return;
1745 }
1746 /* It must be a TCP or UDP packet with a valid checksum */
1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748 IGC_RXD_STAT_UDPCS))
1749 skb->ip_summed = CHECKSUM_UNNECESSARY;
1750
1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752 le32_to_cpu(rx_desc->wb.upper.status_error));
1753 }
1754
1755 /* Mapping HW RSS Type to enum pkt_hash_types */
1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1770 [13] = PKT_HASH_TYPE_NONE,
1771 [14] = PKT_HASH_TYPE_NONE,
1772 [15] = PKT_HASH_TYPE_NONE,
1773 };
1774
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1775 static inline void igc_rx_hash(struct igc_ring *ring,
1776 union igc_adv_rx_desc *rx_desc,
1777 struct sk_buff *skb)
1778 {
1779 if (ring->netdev->features & NETIF_F_RXHASH) {
1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781 u32 rss_type = igc_rss_type(rx_desc);
1782
1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784 }
1785 }
1786
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1787 static void igc_rx_vlan(struct igc_ring *rx_ring,
1788 union igc_adv_rx_desc *rx_desc,
1789 struct sk_buff *skb)
1790 {
1791 struct net_device *dev = rx_ring->netdev;
1792 u16 vid;
1793
1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799 else
1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801
1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803 }
1804 }
1805
1806 /**
1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808 * @rx_ring: rx descriptor ring packet is being transacted on
1809 * @rx_desc: pointer to the EOP Rx descriptor
1810 * @skb: pointer to current skb being populated
1811 *
1812 * This function checks the ring, descriptor, and packet information in order
1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814 * skb.
1815 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1816 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817 union igc_adv_rx_desc *rx_desc,
1818 struct sk_buff *skb)
1819 {
1820 igc_rx_hash(rx_ring, rx_desc, skb);
1821
1822 igc_rx_checksum(rx_ring, rx_desc, skb);
1823
1824 igc_rx_vlan(rx_ring, rx_desc, skb);
1825
1826 skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829 }
1830
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832 {
1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834 struct igc_adapter *adapter = netdev_priv(netdev);
1835 struct igc_hw *hw = &adapter->hw;
1836 u32 ctrl;
1837
1838 ctrl = rd32(IGC_CTRL);
1839
1840 if (enable) {
1841 /* enable VLAN tag insert/strip */
1842 ctrl |= IGC_CTRL_VME;
1843 } else {
1844 /* disable VLAN tag insert/strip */
1845 ctrl &= ~IGC_CTRL_VME;
1846 }
1847 wr32(IGC_CTRL, ctrl);
1848 }
1849
igc_restore_vlan(struct igc_adapter * adapter)1850 static void igc_restore_vlan(struct igc_adapter *adapter)
1851 {
1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853 }
1854
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856 const unsigned int size,
1857 int *rx_buffer_pgcnt)
1858 {
1859 struct igc_rx_buffer *rx_buffer;
1860
1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862 *rx_buffer_pgcnt =
1863 #if (PAGE_SIZE < 8192)
1864 page_count(rx_buffer->page);
1865 #else
1866 0;
1867 #endif
1868 prefetchw(rx_buffer->page);
1869
1870 /* we are reusing so sync this buffer for CPU use */
1871 dma_sync_single_range_for_cpu(rx_ring->dev,
1872 rx_buffer->dma,
1873 rx_buffer->page_offset,
1874 size,
1875 DMA_FROM_DEVICE);
1876
1877 rx_buffer->pagecnt_bias--;
1878
1879 return rx_buffer;
1880 }
1881
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883 unsigned int truesize)
1884 {
1885 #if (PAGE_SIZE < 8192)
1886 buffer->page_offset ^= truesize;
1887 #else
1888 buffer->page_offset += truesize;
1889 #endif
1890 }
1891
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893 unsigned int size)
1894 {
1895 unsigned int truesize;
1896
1897 #if (PAGE_SIZE < 8192)
1898 truesize = igc_rx_pg_size(ring) / 2;
1899 #else
1900 truesize = ring_uses_build_skb(ring) ?
1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903 SKB_DATA_ALIGN(size);
1904 #endif
1905 return truesize;
1906 }
1907
1908 /**
1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: size of buffer to be added
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1917 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918 struct igc_rx_buffer *rx_buffer,
1919 struct sk_buff *skb,
1920 unsigned int size)
1921 {
1922 unsigned int truesize;
1923
1924 #if (PAGE_SIZE < 8192)
1925 truesize = igc_rx_pg_size(rx_ring) / 2;
1926 #else
1927 truesize = ring_uses_build_skb(rx_ring) ?
1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929 SKB_DATA_ALIGN(size);
1930 #endif
1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 rx_buffer->page_offset, size, truesize);
1933
1934 igc_rx_buffer_flip(rx_buffer, truesize);
1935 }
1936
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938 struct igc_rx_buffer *rx_buffer,
1939 struct xdp_buff *xdp)
1940 {
1941 unsigned int size = xdp->data_end - xdp->data;
1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 unsigned int metasize = xdp->data - xdp->data_meta;
1944 struct sk_buff *skb;
1945
1946 /* prefetch first cache line of first page */
1947 net_prefetch(xdp->data_meta);
1948
1949 /* build an skb around the page buffer */
1950 skb = napi_build_skb(xdp->data_hard_start, truesize);
1951 if (unlikely(!skb))
1952 return NULL;
1953
1954 /* update pointers within the skb to store the data */
1955 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956 __skb_put(skb, size);
1957 if (metasize)
1958 skb_metadata_set(skb, metasize);
1959
1960 igc_rx_buffer_flip(rx_buffer, truesize);
1961 return skb;
1962 }
1963
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965 struct igc_rx_buffer *rx_buffer,
1966 struct igc_xdp_buff *ctx)
1967 {
1968 struct xdp_buff *xdp = &ctx->xdp;
1969 unsigned int metasize = xdp->data - xdp->data_meta;
1970 unsigned int size = xdp->data_end - xdp->data;
1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972 void *va = xdp->data;
1973 unsigned int headlen;
1974 struct sk_buff *skb;
1975
1976 /* prefetch first cache line of first page */
1977 net_prefetch(xdp->data_meta);
1978
1979 /* allocate a skb to store the frags */
1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981 IGC_RX_HDR_LEN + metasize);
1982 if (unlikely(!skb))
1983 return NULL;
1984
1985 if (ctx->rx_ts) {
1986 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1987 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1988 }
1989
1990 /* Determine available headroom for copy */
1991 headlen = size;
1992 if (headlen > IGC_RX_HDR_LEN)
1993 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1994
1995 /* align pull length to size of long to optimize memcpy performance */
1996 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1997 ALIGN(headlen + metasize, sizeof(long)));
1998
1999 if (metasize) {
2000 skb_metadata_set(skb, metasize);
2001 __skb_pull(skb, metasize);
2002 }
2003
2004 /* update all of the pointers */
2005 size -= headlen;
2006 if (size) {
2007 skb_add_rx_frag(skb, 0, rx_buffer->page,
2008 (va + headlen) - page_address(rx_buffer->page),
2009 size, truesize);
2010 igc_rx_buffer_flip(rx_buffer, truesize);
2011 } else {
2012 rx_buffer->pagecnt_bias++;
2013 }
2014
2015 return skb;
2016 }
2017
2018 /**
2019 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2020 * @rx_ring: rx descriptor ring to store buffers on
2021 * @old_buff: donor buffer to have page reused
2022 *
2023 * Synchronizes page for reuse by the adapter
2024 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2025 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2026 struct igc_rx_buffer *old_buff)
2027 {
2028 u16 nta = rx_ring->next_to_alloc;
2029 struct igc_rx_buffer *new_buff;
2030
2031 new_buff = &rx_ring->rx_buffer_info[nta];
2032
2033 /* update, and store next to alloc */
2034 nta++;
2035 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2036
2037 /* Transfer page from old buffer to new buffer.
2038 * Move each member individually to avoid possible store
2039 * forwarding stalls.
2040 */
2041 new_buff->dma = old_buff->dma;
2042 new_buff->page = old_buff->page;
2043 new_buff->page_offset = old_buff->page_offset;
2044 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2045 }
2046
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2047 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2048 int rx_buffer_pgcnt)
2049 {
2050 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2051 struct page *page = rx_buffer->page;
2052
2053 /* avoid re-using remote and pfmemalloc pages */
2054 if (!dev_page_is_reusable(page))
2055 return false;
2056
2057 #if (PAGE_SIZE < 8192)
2058 /* if we are only owner of page we can reuse it */
2059 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2060 return false;
2061 #else
2062 #define IGC_LAST_OFFSET \
2063 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2064
2065 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2066 return false;
2067 #endif
2068
2069 /* If we have drained the page fragment pool we need to update
2070 * the pagecnt_bias and page count so that we fully restock the
2071 * number of references the driver holds.
2072 */
2073 if (unlikely(pagecnt_bias == 1)) {
2074 page_ref_add(page, USHRT_MAX - 1);
2075 rx_buffer->pagecnt_bias = USHRT_MAX;
2076 }
2077
2078 return true;
2079 }
2080
2081 /**
2082 * igc_is_non_eop - process handling of non-EOP buffers
2083 * @rx_ring: Rx ring being processed
2084 * @rx_desc: Rx descriptor for current buffer
2085 *
2086 * This function updates next to clean. If the buffer is an EOP buffer
2087 * this function exits returning false, otherwise it will place the
2088 * sk_buff in the next buffer to be chained and return true indicating
2089 * that this is in fact a non-EOP buffer.
2090 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2091 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2092 union igc_adv_rx_desc *rx_desc)
2093 {
2094 u32 ntc = rx_ring->next_to_clean + 1;
2095
2096 /* fetch, update, and store next to clean */
2097 ntc = (ntc < rx_ring->count) ? ntc : 0;
2098 rx_ring->next_to_clean = ntc;
2099
2100 prefetch(IGC_RX_DESC(rx_ring, ntc));
2101
2102 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2103 return false;
2104
2105 return true;
2106 }
2107
2108 /**
2109 * igc_cleanup_headers - Correct corrupted or empty headers
2110 * @rx_ring: rx descriptor ring packet is being transacted on
2111 * @rx_desc: pointer to the EOP Rx descriptor
2112 * @skb: pointer to current skb being fixed
2113 *
2114 * Address the case where we are pulling data in on pages only
2115 * and as such no data is present in the skb header.
2116 *
2117 * In addition if skb is not at least 60 bytes we need to pad it so that
2118 * it is large enough to qualify as a valid Ethernet frame.
2119 *
2120 * Returns true if an error was encountered and skb was freed.
2121 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2122 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2123 union igc_adv_rx_desc *rx_desc,
2124 struct sk_buff *skb)
2125 {
2126 /* XDP packets use error pointer so abort at this point */
2127 if (IS_ERR(skb))
2128 return true;
2129
2130 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2131 struct net_device *netdev = rx_ring->netdev;
2132
2133 if (!(netdev->features & NETIF_F_RXALL)) {
2134 dev_kfree_skb_any(skb);
2135 return true;
2136 }
2137 }
2138
2139 /* if eth_skb_pad returns an error the skb was freed */
2140 if (eth_skb_pad(skb))
2141 return true;
2142
2143 return false;
2144 }
2145
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2146 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2147 struct igc_rx_buffer *rx_buffer,
2148 int rx_buffer_pgcnt)
2149 {
2150 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2151 /* hand second half of page back to the ring */
2152 igc_reuse_rx_page(rx_ring, rx_buffer);
2153 } else {
2154 /* We are not reusing the buffer so unmap it and free
2155 * any references we are holding to it
2156 */
2157 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2158 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2159 IGC_RX_DMA_ATTR);
2160 __page_frag_cache_drain(rx_buffer->page,
2161 rx_buffer->pagecnt_bias);
2162 }
2163
2164 /* clear contents of rx_buffer */
2165 rx_buffer->page = NULL;
2166 }
2167
igc_rx_offset(struct igc_ring * rx_ring)2168 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2169 {
2170 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2171
2172 if (ring_uses_build_skb(rx_ring))
2173 return IGC_SKB_PAD;
2174 if (igc_xdp_is_enabled(adapter))
2175 return XDP_PACKET_HEADROOM;
2176
2177 return 0;
2178 }
2179
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2180 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2181 struct igc_rx_buffer *bi)
2182 {
2183 struct page *page = bi->page;
2184 dma_addr_t dma;
2185
2186 /* since we are recycling buffers we should seldom need to alloc */
2187 if (likely(page))
2188 return true;
2189
2190 /* alloc new page for storage */
2191 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2192 if (unlikely(!page)) {
2193 rx_ring->rx_stats.alloc_failed++;
2194 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2195 return false;
2196 }
2197
2198 /* map page for use */
2199 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2200 igc_rx_pg_size(rx_ring),
2201 DMA_FROM_DEVICE,
2202 IGC_RX_DMA_ATTR);
2203
2204 /* if mapping failed free memory back to system since
2205 * there isn't much point in holding memory we can't use
2206 */
2207 if (dma_mapping_error(rx_ring->dev, dma)) {
2208 __free_page(page);
2209
2210 rx_ring->rx_stats.alloc_failed++;
2211 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2212 return false;
2213 }
2214
2215 bi->dma = dma;
2216 bi->page = page;
2217 bi->page_offset = igc_rx_offset(rx_ring);
2218 page_ref_add(page, USHRT_MAX - 1);
2219 bi->pagecnt_bias = USHRT_MAX;
2220
2221 return true;
2222 }
2223
2224 /**
2225 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2226 * @rx_ring: rx descriptor ring
2227 * @cleaned_count: number of buffers to clean
2228 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2229 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2230 {
2231 union igc_adv_rx_desc *rx_desc;
2232 u16 i = rx_ring->next_to_use;
2233 struct igc_rx_buffer *bi;
2234 u16 bufsz;
2235
2236 /* nothing to do */
2237 if (!cleaned_count)
2238 return;
2239
2240 rx_desc = IGC_RX_DESC(rx_ring, i);
2241 bi = &rx_ring->rx_buffer_info[i];
2242 i -= rx_ring->count;
2243
2244 bufsz = igc_rx_bufsz(rx_ring);
2245
2246 do {
2247 if (!igc_alloc_mapped_page(rx_ring, bi))
2248 break;
2249
2250 /* sync the buffer for use by the device */
2251 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2252 bi->page_offset, bufsz,
2253 DMA_FROM_DEVICE);
2254
2255 /* Refresh the desc even if buffer_addrs didn't change
2256 * because each write-back erases this info.
2257 */
2258 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2259
2260 rx_desc++;
2261 bi++;
2262 i++;
2263 if (unlikely(!i)) {
2264 rx_desc = IGC_RX_DESC(rx_ring, 0);
2265 bi = rx_ring->rx_buffer_info;
2266 i -= rx_ring->count;
2267 }
2268
2269 /* clear the length for the next_to_use descriptor */
2270 rx_desc->wb.upper.length = 0;
2271
2272 cleaned_count--;
2273 } while (cleaned_count);
2274
2275 i += rx_ring->count;
2276
2277 if (rx_ring->next_to_use != i) {
2278 /* record the next descriptor to use */
2279 rx_ring->next_to_use = i;
2280
2281 /* update next to alloc since we have filled the ring */
2282 rx_ring->next_to_alloc = i;
2283
2284 /* Force memory writes to complete before letting h/w
2285 * know there are new descriptors to fetch. (Only
2286 * applicable for weak-ordered memory model archs,
2287 * such as IA-64).
2288 */
2289 wmb();
2290 writel(i, rx_ring->tail);
2291 }
2292 }
2293
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2294 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2295 {
2296 union igc_adv_rx_desc *desc;
2297 u16 i = ring->next_to_use;
2298 struct igc_rx_buffer *bi;
2299 dma_addr_t dma;
2300 bool ok = true;
2301
2302 if (!count)
2303 return ok;
2304
2305 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2306
2307 desc = IGC_RX_DESC(ring, i);
2308 bi = &ring->rx_buffer_info[i];
2309 i -= ring->count;
2310
2311 do {
2312 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2313 if (!bi->xdp) {
2314 ok = false;
2315 break;
2316 }
2317
2318 dma = xsk_buff_xdp_get_dma(bi->xdp);
2319 desc->read.pkt_addr = cpu_to_le64(dma);
2320
2321 desc++;
2322 bi++;
2323 i++;
2324 if (unlikely(!i)) {
2325 desc = IGC_RX_DESC(ring, 0);
2326 bi = ring->rx_buffer_info;
2327 i -= ring->count;
2328 }
2329
2330 /* Clear the length for the next_to_use descriptor. */
2331 desc->wb.upper.length = 0;
2332
2333 count--;
2334 } while (count);
2335
2336 i += ring->count;
2337
2338 if (ring->next_to_use != i) {
2339 ring->next_to_use = i;
2340
2341 /* Force memory writes to complete before letting h/w
2342 * know there are new descriptors to fetch. (Only
2343 * applicable for weak-ordered memory model archs,
2344 * such as IA-64).
2345 */
2346 wmb();
2347 writel(i, ring->tail);
2348 }
2349
2350 return ok;
2351 }
2352
2353 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2354 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2355 struct xdp_frame *xdpf)
2356 {
2357 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2358 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2359 u16 count, index = ring->next_to_use;
2360 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2361 struct igc_tx_buffer *buffer = head;
2362 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2363 u32 olinfo_status, len = xdpf->len, cmd_type;
2364 void *data = xdpf->data;
2365 u16 i;
2366
2367 count = TXD_USE_COUNT(len);
2368 for (i = 0; i < nr_frags; i++)
2369 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2370
2371 if (igc_maybe_stop_tx(ring, count + 3)) {
2372 /* this is a hard error */
2373 return -EBUSY;
2374 }
2375
2376 i = 0;
2377 head->bytecount = xdp_get_frame_len(xdpf);
2378 head->type = IGC_TX_BUFFER_TYPE_XDP;
2379 head->gso_segs = 1;
2380 head->xdpf = xdpf;
2381
2382 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2383 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2384
2385 for (;;) {
2386 dma_addr_t dma;
2387
2388 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2389 if (dma_mapping_error(ring->dev, dma)) {
2390 netdev_err_once(ring->netdev,
2391 "Failed to map DMA for TX\n");
2392 goto unmap;
2393 }
2394
2395 dma_unmap_len_set(buffer, len, len);
2396 dma_unmap_addr_set(buffer, dma, dma);
2397
2398 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2399 IGC_ADVTXD_DCMD_IFCS | len;
2400
2401 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2402 desc->read.buffer_addr = cpu_to_le64(dma);
2403
2404 buffer->protocol = 0;
2405
2406 if (++index == ring->count)
2407 index = 0;
2408
2409 if (i == nr_frags)
2410 break;
2411
2412 buffer = &ring->tx_buffer_info[index];
2413 desc = IGC_TX_DESC(ring, index);
2414 desc->read.olinfo_status = 0;
2415
2416 data = skb_frag_address(&sinfo->frags[i]);
2417 len = skb_frag_size(&sinfo->frags[i]);
2418 i++;
2419 }
2420 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2421
2422 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2423 /* set the timestamp */
2424 head->time_stamp = jiffies;
2425 /* set next_to_watch value indicating a packet is present */
2426 head->next_to_watch = desc;
2427 ring->next_to_use = index;
2428
2429 return 0;
2430
2431 unmap:
2432 for (;;) {
2433 buffer = &ring->tx_buffer_info[index];
2434 if (dma_unmap_len(buffer, len))
2435 dma_unmap_page(ring->dev,
2436 dma_unmap_addr(buffer, dma),
2437 dma_unmap_len(buffer, len),
2438 DMA_TO_DEVICE);
2439 dma_unmap_len_set(buffer, len, 0);
2440 if (buffer == head)
2441 break;
2442
2443 if (!index)
2444 index += ring->count;
2445 index--;
2446 }
2447
2448 return -ENOMEM;
2449 }
2450
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2451 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2452 int cpu)
2453 {
2454 int index = cpu;
2455
2456 if (unlikely(index < 0))
2457 index = 0;
2458
2459 while (index >= adapter->num_tx_queues)
2460 index -= adapter->num_tx_queues;
2461
2462 return adapter->tx_ring[index];
2463 }
2464
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2465 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2466 {
2467 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2468 int cpu = smp_processor_id();
2469 struct netdev_queue *nq;
2470 struct igc_ring *ring;
2471 int res;
2472
2473 if (unlikely(!xdpf))
2474 return -EFAULT;
2475
2476 ring = igc_xdp_get_tx_ring(adapter, cpu);
2477 nq = txring_txq(ring);
2478
2479 __netif_tx_lock(nq, cpu);
2480 /* Avoid transmit queue timeout since we share it with the slow path */
2481 txq_trans_cond_update(nq);
2482 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2483 __netif_tx_unlock(nq);
2484 return res;
2485 }
2486
2487 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2488 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2489 struct bpf_prog *prog,
2490 struct xdp_buff *xdp)
2491 {
2492 u32 act = bpf_prog_run_xdp(prog, xdp);
2493
2494 switch (act) {
2495 case XDP_PASS:
2496 return IGC_XDP_PASS;
2497 case XDP_TX:
2498 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2499 goto out_failure;
2500 return IGC_XDP_TX;
2501 case XDP_REDIRECT:
2502 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2503 goto out_failure;
2504 return IGC_XDP_REDIRECT;
2505 break;
2506 default:
2507 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2508 fallthrough;
2509 case XDP_ABORTED:
2510 out_failure:
2511 trace_xdp_exception(adapter->netdev, prog, act);
2512 fallthrough;
2513 case XDP_DROP:
2514 return IGC_XDP_CONSUMED;
2515 }
2516 }
2517
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2518 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2519 struct xdp_buff *xdp)
2520 {
2521 struct bpf_prog *prog;
2522 int res;
2523
2524 prog = READ_ONCE(adapter->xdp_prog);
2525 if (!prog) {
2526 res = IGC_XDP_PASS;
2527 goto out;
2528 }
2529
2530 res = __igc_xdp_run_prog(adapter, prog, xdp);
2531
2532 out:
2533 return ERR_PTR(-res);
2534 }
2535
2536 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2537 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2538 {
2539 /* Once tail pointer is updated, hardware can fetch the descriptors
2540 * any time so we issue a write membar here to ensure all memory
2541 * writes are complete before the tail pointer is updated.
2542 */
2543 wmb();
2544 writel(ring->next_to_use, ring->tail);
2545 }
2546
igc_finalize_xdp(struct igc_adapter * adapter,int status)2547 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2548 {
2549 int cpu = smp_processor_id();
2550 struct netdev_queue *nq;
2551 struct igc_ring *ring;
2552
2553 if (status & IGC_XDP_TX) {
2554 ring = igc_xdp_get_tx_ring(adapter, cpu);
2555 nq = txring_txq(ring);
2556
2557 __netif_tx_lock(nq, cpu);
2558 igc_flush_tx_descriptors(ring);
2559 __netif_tx_unlock(nq);
2560 }
2561
2562 if (status & IGC_XDP_REDIRECT)
2563 xdp_do_flush();
2564 }
2565
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2566 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2567 unsigned int packets, unsigned int bytes)
2568 {
2569 struct igc_ring *ring = q_vector->rx.ring;
2570
2571 u64_stats_update_begin(&ring->rx_syncp);
2572 ring->rx_stats.packets += packets;
2573 ring->rx_stats.bytes += bytes;
2574 u64_stats_update_end(&ring->rx_syncp);
2575
2576 q_vector->rx.total_packets += packets;
2577 q_vector->rx.total_bytes += bytes;
2578 }
2579
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2580 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2581 {
2582 unsigned int total_bytes = 0, total_packets = 0;
2583 struct igc_adapter *adapter = q_vector->adapter;
2584 struct igc_ring *rx_ring = q_vector->rx.ring;
2585 struct sk_buff *skb = rx_ring->skb;
2586 u16 cleaned_count = igc_desc_unused(rx_ring);
2587 int xdp_status = 0, rx_buffer_pgcnt;
2588
2589 while (likely(total_packets < budget)) {
2590 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2591 struct igc_rx_buffer *rx_buffer;
2592 union igc_adv_rx_desc *rx_desc;
2593 unsigned int size, truesize;
2594 int pkt_offset = 0;
2595 void *pktbuf;
2596
2597 /* return some buffers to hardware, one at a time is too slow */
2598 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2599 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2600 cleaned_count = 0;
2601 }
2602
2603 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2604 size = le16_to_cpu(rx_desc->wb.upper.length);
2605 if (!size)
2606 break;
2607
2608 /* This memory barrier is needed to keep us from reading
2609 * any other fields out of the rx_desc until we know the
2610 * descriptor has been written back
2611 */
2612 dma_rmb();
2613
2614 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2615 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2616
2617 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2618
2619 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2620 ctx.rx_ts = pktbuf;
2621 pkt_offset = IGC_TS_HDR_LEN;
2622 size -= IGC_TS_HDR_LEN;
2623 }
2624
2625 if (!skb) {
2626 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2627 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2628 igc_rx_offset(rx_ring) + pkt_offset,
2629 size, true);
2630 xdp_buff_clear_frags_flag(&ctx.xdp);
2631 ctx.rx_desc = rx_desc;
2632
2633 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2634 }
2635
2636 if (IS_ERR(skb)) {
2637 unsigned int xdp_res = -PTR_ERR(skb);
2638
2639 switch (xdp_res) {
2640 case IGC_XDP_CONSUMED:
2641 rx_buffer->pagecnt_bias++;
2642 break;
2643 case IGC_XDP_TX:
2644 case IGC_XDP_REDIRECT:
2645 igc_rx_buffer_flip(rx_buffer, truesize);
2646 xdp_status |= xdp_res;
2647 break;
2648 }
2649
2650 total_packets++;
2651 total_bytes += size;
2652 } else if (skb)
2653 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2654 else if (ring_uses_build_skb(rx_ring))
2655 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2656 else
2657 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2658
2659 /* exit if we failed to retrieve a buffer */
2660 if (!skb) {
2661 rx_ring->rx_stats.alloc_failed++;
2662 rx_buffer->pagecnt_bias++;
2663 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2664 break;
2665 }
2666
2667 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2668 cleaned_count++;
2669
2670 /* fetch next buffer in frame if non-eop */
2671 if (igc_is_non_eop(rx_ring, rx_desc))
2672 continue;
2673
2674 /* verify the packet layout is correct */
2675 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2676 skb = NULL;
2677 continue;
2678 }
2679
2680 /* probably a little skewed due to removing CRC */
2681 total_bytes += skb->len;
2682
2683 /* populate checksum, VLAN, and protocol */
2684 igc_process_skb_fields(rx_ring, rx_desc, skb);
2685
2686 napi_gro_receive(&q_vector->napi, skb);
2687
2688 /* reset skb pointer */
2689 skb = NULL;
2690
2691 /* update budget accounting */
2692 total_packets++;
2693 }
2694
2695 if (xdp_status)
2696 igc_finalize_xdp(adapter, xdp_status);
2697
2698 /* place incomplete frames back on ring for completion */
2699 rx_ring->skb = skb;
2700
2701 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2702
2703 if (cleaned_count)
2704 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2705
2706 return total_packets;
2707 }
2708
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2709 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2710 struct xdp_buff *xdp)
2711 {
2712 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2713 unsigned int metasize = xdp->data - xdp->data_meta;
2714 struct sk_buff *skb;
2715
2716 net_prefetch(xdp->data_meta);
2717
2718 skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2719 if (unlikely(!skb))
2720 return NULL;
2721
2722 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2723 ALIGN(totalsize, sizeof(long)));
2724
2725 if (metasize) {
2726 skb_metadata_set(skb, metasize);
2727 __skb_pull(skb, metasize);
2728 }
2729
2730 return skb;
2731 }
2732
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2734 union igc_adv_rx_desc *desc,
2735 struct xdp_buff *xdp,
2736 ktime_t timestamp)
2737 {
2738 struct igc_ring *ring = q_vector->rx.ring;
2739 struct sk_buff *skb;
2740
2741 skb = igc_construct_skb_zc(ring, xdp);
2742 if (!skb) {
2743 ring->rx_stats.alloc_failed++;
2744 set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2745 return;
2746 }
2747
2748 if (timestamp)
2749 skb_hwtstamps(skb)->hwtstamp = timestamp;
2750
2751 if (igc_cleanup_headers(ring, desc, skb))
2752 return;
2753
2754 igc_process_skb_fields(ring, desc, skb);
2755 napi_gro_receive(&q_vector->napi, skb);
2756 }
2757
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2758 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2759 {
2760 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2761 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2762 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2763 */
2764 return (struct igc_xdp_buff *)xdp;
2765 }
2766
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2767 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2768 {
2769 struct igc_adapter *adapter = q_vector->adapter;
2770 struct igc_ring *ring = q_vector->rx.ring;
2771 u16 cleaned_count = igc_desc_unused(ring);
2772 int total_bytes = 0, total_packets = 0;
2773 u16 ntc = ring->next_to_clean;
2774 struct bpf_prog *prog;
2775 bool failure = false;
2776 int xdp_status = 0;
2777
2778 rcu_read_lock();
2779
2780 prog = READ_ONCE(adapter->xdp_prog);
2781
2782 while (likely(total_packets < budget)) {
2783 union igc_adv_rx_desc *desc;
2784 struct igc_rx_buffer *bi;
2785 struct igc_xdp_buff *ctx;
2786 ktime_t timestamp = 0;
2787 unsigned int size;
2788 int res;
2789
2790 desc = IGC_RX_DESC(ring, ntc);
2791 size = le16_to_cpu(desc->wb.upper.length);
2792 if (!size)
2793 break;
2794
2795 /* This memory barrier is needed to keep us from reading
2796 * any other fields out of the rx_desc until we know the
2797 * descriptor has been written back
2798 */
2799 dma_rmb();
2800
2801 bi = &ring->rx_buffer_info[ntc];
2802
2803 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2804 ctx->rx_desc = desc;
2805
2806 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2807 ctx->rx_ts = bi->xdp->data;
2808
2809 bi->xdp->data += IGC_TS_HDR_LEN;
2810
2811 /* HW timestamp has been copied into local variable. Metadata
2812 * length when XDP program is called should be 0.
2813 */
2814 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2815 size -= IGC_TS_HDR_LEN;
2816 }
2817
2818 bi->xdp->data_end = bi->xdp->data + size;
2819 xsk_buff_dma_sync_for_cpu(bi->xdp);
2820
2821 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2822 switch (res) {
2823 case IGC_XDP_PASS:
2824 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2825 fallthrough;
2826 case IGC_XDP_CONSUMED:
2827 xsk_buff_free(bi->xdp);
2828 break;
2829 case IGC_XDP_TX:
2830 case IGC_XDP_REDIRECT:
2831 xdp_status |= res;
2832 break;
2833 }
2834
2835 bi->xdp = NULL;
2836 total_bytes += size;
2837 total_packets++;
2838 cleaned_count++;
2839 ntc++;
2840 if (ntc == ring->count)
2841 ntc = 0;
2842 }
2843
2844 ring->next_to_clean = ntc;
2845 rcu_read_unlock();
2846
2847 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2848 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2849
2850 if (xdp_status)
2851 igc_finalize_xdp(adapter, xdp_status);
2852
2853 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2854
2855 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2856 if (failure || ring->next_to_clean == ring->next_to_use)
2857 xsk_set_rx_need_wakeup(ring->xsk_pool);
2858 else
2859 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2860 return total_packets;
2861 }
2862
2863 return failure ? budget : total_packets;
2864 }
2865
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2866 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2867 unsigned int packets, unsigned int bytes)
2868 {
2869 struct igc_ring *ring = q_vector->tx.ring;
2870
2871 u64_stats_update_begin(&ring->tx_syncp);
2872 ring->tx_stats.bytes += bytes;
2873 ring->tx_stats.packets += packets;
2874 u64_stats_update_end(&ring->tx_syncp);
2875
2876 q_vector->tx.total_bytes += bytes;
2877 q_vector->tx.total_packets += packets;
2878 }
2879
igc_xsk_request_timestamp(void * _priv)2880 static void igc_xsk_request_timestamp(void *_priv)
2881 {
2882 struct igc_metadata_request *meta_req = _priv;
2883 struct igc_ring *tx_ring = meta_req->tx_ring;
2884 struct igc_tx_timestamp_request *tstamp;
2885 u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2886 struct igc_adapter *adapter;
2887 unsigned long lock_flags;
2888 bool found = false;
2889 int i;
2890
2891 if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2892 adapter = netdev_priv(tx_ring->netdev);
2893
2894 spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2895
2896 /* Search for available tstamp regs */
2897 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2898 tstamp = &adapter->tx_tstamp[i];
2899
2900 /* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2901 * When tstamp->skb is equal to NULL,
2902 * tstamp->xsk_tx_buffer is equal to NULL as well.
2903 * This condition means that the particular tstamp reg
2904 * is not occupied by other packet.
2905 */
2906 if (!tstamp->skb) {
2907 found = true;
2908 break;
2909 }
2910 }
2911
2912 /* Return if no available tstamp regs */
2913 if (!found) {
2914 adapter->tx_hwtstamp_skipped++;
2915 spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2916 lock_flags);
2917 return;
2918 }
2919
2920 tstamp->start = jiffies;
2921 tstamp->xsk_queue_index = tx_ring->queue_index;
2922 tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2923 tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2924
2925 /* Hold the transmit completion until timestamp is ready */
2926 meta_req->tx_buffer->xsk_pending_ts = true;
2927
2928 /* Keep the pointer to tx_timestamp, which is located in XDP
2929 * metadata area. It is the location to store the value of
2930 * tx hardware timestamp.
2931 */
2932 xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2933
2934 /* Set timestamp bit based on the _TSTAMP(_X) bit. */
2935 tx_flags |= tstamp->flags;
2936 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2937 IGC_TX_FLAGS_TSTAMP,
2938 (IGC_ADVTXD_MAC_TSTAMP));
2939 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2940 IGC_TX_FLAGS_TSTAMP_1,
2941 (IGC_ADVTXD_TSTAMP_REG_1));
2942 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2943 IGC_TX_FLAGS_TSTAMP_2,
2944 (IGC_ADVTXD_TSTAMP_REG_2));
2945 meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2946 IGC_TX_FLAGS_TSTAMP_3,
2947 (IGC_ADVTXD_TSTAMP_REG_3));
2948
2949 spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2950 }
2951 }
2952
igc_xsk_fill_timestamp(void * _priv)2953 static u64 igc_xsk_fill_timestamp(void *_priv)
2954 {
2955 return *(u64 *)_priv;
2956 }
2957
2958 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
2959 .tmo_request_timestamp = igc_xsk_request_timestamp,
2960 .tmo_fill_timestamp = igc_xsk_fill_timestamp,
2961 };
2962
igc_xdp_xmit_zc(struct igc_ring * ring)2963 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2964 {
2965 struct xsk_buff_pool *pool = ring->xsk_pool;
2966 struct netdev_queue *nq = txring_txq(ring);
2967 union igc_adv_tx_desc *tx_desc = NULL;
2968 int cpu = smp_processor_id();
2969 struct xdp_desc xdp_desc;
2970 u16 budget, ntu;
2971
2972 if (!netif_carrier_ok(ring->netdev))
2973 return;
2974
2975 __netif_tx_lock(nq, cpu);
2976
2977 /* Avoid transmit queue timeout since we share it with the slow path */
2978 txq_trans_cond_update(nq);
2979
2980 ntu = ring->next_to_use;
2981 budget = igc_desc_unused(ring);
2982
2983 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2984 struct igc_metadata_request meta_req;
2985 struct xsk_tx_metadata *meta = NULL;
2986 struct igc_tx_buffer *bi;
2987 u32 olinfo_status;
2988 dma_addr_t dma;
2989
2990 meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
2991 IGC_ADVTXD_DCMD_DEXT |
2992 IGC_ADVTXD_DCMD_IFCS |
2993 IGC_TXD_DCMD | xdp_desc.len;
2994 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2995
2996 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2997 meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
2998 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2999 bi = &ring->tx_buffer_info[ntu];
3000
3001 meta_req.tx_ring = ring;
3002 meta_req.tx_buffer = bi;
3003 meta_req.meta = meta;
3004 xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3005 &meta_req);
3006
3007 tx_desc = IGC_TX_DESC(ring, ntu);
3008 tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3009 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3010 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3011
3012 bi->type = IGC_TX_BUFFER_TYPE_XSK;
3013 bi->protocol = 0;
3014 bi->bytecount = xdp_desc.len;
3015 bi->gso_segs = 1;
3016 bi->time_stamp = jiffies;
3017 bi->next_to_watch = tx_desc;
3018
3019 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3020
3021 ntu++;
3022 if (ntu == ring->count)
3023 ntu = 0;
3024 }
3025
3026 ring->next_to_use = ntu;
3027 if (tx_desc) {
3028 igc_flush_tx_descriptors(ring);
3029 xsk_tx_release(pool);
3030 }
3031
3032 __netif_tx_unlock(nq);
3033 }
3034
3035 /**
3036 * igc_clean_tx_irq - Reclaim resources after transmit completes
3037 * @q_vector: pointer to q_vector containing needed info
3038 * @napi_budget: Used to determine if we are in netpoll
3039 *
3040 * returns true if ring is completely cleaned
3041 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3042 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3043 {
3044 struct igc_adapter *adapter = q_vector->adapter;
3045 unsigned int total_bytes = 0, total_packets = 0;
3046 unsigned int budget = q_vector->tx.work_limit;
3047 struct igc_ring *tx_ring = q_vector->tx.ring;
3048 unsigned int i = tx_ring->next_to_clean;
3049 struct igc_tx_buffer *tx_buffer;
3050 union igc_adv_tx_desc *tx_desc;
3051 u32 xsk_frames = 0;
3052
3053 if (test_bit(__IGC_DOWN, &adapter->state))
3054 return true;
3055
3056 tx_buffer = &tx_ring->tx_buffer_info[i];
3057 tx_desc = IGC_TX_DESC(tx_ring, i);
3058 i -= tx_ring->count;
3059
3060 do {
3061 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3062
3063 /* if next_to_watch is not set then there is no work pending */
3064 if (!eop_desc)
3065 break;
3066
3067 /* prevent any other reads prior to eop_desc */
3068 smp_rmb();
3069
3070 /* if DD is not set pending work has not been completed */
3071 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3072 break;
3073
3074 /* Hold the completions while there's a pending tx hardware
3075 * timestamp request from XDP Tx metadata.
3076 */
3077 if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3078 tx_buffer->xsk_pending_ts)
3079 break;
3080
3081 /* clear next_to_watch to prevent false hangs */
3082 tx_buffer->next_to_watch = NULL;
3083
3084 /* update the statistics for this packet */
3085 total_bytes += tx_buffer->bytecount;
3086 total_packets += tx_buffer->gso_segs;
3087
3088 switch (tx_buffer->type) {
3089 case IGC_TX_BUFFER_TYPE_XSK:
3090 xsk_frames++;
3091 break;
3092 case IGC_TX_BUFFER_TYPE_XDP:
3093 xdp_return_frame(tx_buffer->xdpf);
3094 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3095 break;
3096 case IGC_TX_BUFFER_TYPE_SKB:
3097 napi_consume_skb(tx_buffer->skb, napi_budget);
3098 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3099 break;
3100 default:
3101 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3102 break;
3103 }
3104
3105 /* clear last DMA location and unmap remaining buffers */
3106 while (tx_desc != eop_desc) {
3107 tx_buffer++;
3108 tx_desc++;
3109 i++;
3110 if (unlikely(!i)) {
3111 i -= tx_ring->count;
3112 tx_buffer = tx_ring->tx_buffer_info;
3113 tx_desc = IGC_TX_DESC(tx_ring, 0);
3114 }
3115
3116 /* unmap any remaining paged data */
3117 if (dma_unmap_len(tx_buffer, len))
3118 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3119 }
3120
3121 /* move us one more past the eop_desc for start of next pkt */
3122 tx_buffer++;
3123 tx_desc++;
3124 i++;
3125 if (unlikely(!i)) {
3126 i -= tx_ring->count;
3127 tx_buffer = tx_ring->tx_buffer_info;
3128 tx_desc = IGC_TX_DESC(tx_ring, 0);
3129 }
3130
3131 /* issue prefetch for next Tx descriptor */
3132 prefetch(tx_desc);
3133
3134 /* update budget accounting */
3135 budget--;
3136 } while (likely(budget));
3137
3138 netdev_tx_completed_queue(txring_txq(tx_ring),
3139 total_packets, total_bytes);
3140
3141 i += tx_ring->count;
3142 tx_ring->next_to_clean = i;
3143
3144 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3145
3146 if (tx_ring->xsk_pool) {
3147 if (xsk_frames)
3148 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3149 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3150 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3151 igc_xdp_xmit_zc(tx_ring);
3152 }
3153
3154 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3155 struct igc_hw *hw = &adapter->hw;
3156
3157 /* Detect a transmit hang in hardware, this serializes the
3158 * check with the clearing of time_stamp and movement of i
3159 */
3160 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3161 if (tx_buffer->next_to_watch &&
3162 time_after(jiffies, tx_buffer->time_stamp +
3163 (adapter->tx_timeout_factor * HZ)) &&
3164 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3165 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3166 !tx_ring->oper_gate_closed) {
3167 /* detected Tx unit hang */
3168 netdev_err(tx_ring->netdev,
3169 "Detected Tx Unit Hang\n"
3170 " Tx Queue <%d>\n"
3171 " TDH <%x>\n"
3172 " TDT <%x>\n"
3173 " next_to_use <%x>\n"
3174 " next_to_clean <%x>\n"
3175 "buffer_info[next_to_clean]\n"
3176 " time_stamp <%lx>\n"
3177 " next_to_watch <%p>\n"
3178 " jiffies <%lx>\n"
3179 " desc.status <%x>\n",
3180 tx_ring->queue_index,
3181 rd32(IGC_TDH(tx_ring->reg_idx)),
3182 readl(tx_ring->tail),
3183 tx_ring->next_to_use,
3184 tx_ring->next_to_clean,
3185 tx_buffer->time_stamp,
3186 tx_buffer->next_to_watch,
3187 jiffies,
3188 tx_buffer->next_to_watch->wb.status);
3189 netif_stop_subqueue(tx_ring->netdev,
3190 tx_ring->queue_index);
3191
3192 /* we are about to reset, no point in enabling stuff */
3193 return true;
3194 }
3195 }
3196
3197 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3198 if (unlikely(total_packets &&
3199 netif_carrier_ok(tx_ring->netdev) &&
3200 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3201 /* Make sure that anybody stopping the queue after this
3202 * sees the new next_to_clean.
3203 */
3204 smp_mb();
3205 if (__netif_subqueue_stopped(tx_ring->netdev,
3206 tx_ring->queue_index) &&
3207 !(test_bit(__IGC_DOWN, &adapter->state))) {
3208 netif_wake_subqueue(tx_ring->netdev,
3209 tx_ring->queue_index);
3210
3211 u64_stats_update_begin(&tx_ring->tx_syncp);
3212 tx_ring->tx_stats.restart_queue++;
3213 u64_stats_update_end(&tx_ring->tx_syncp);
3214 }
3215 }
3216
3217 return !!budget;
3218 }
3219
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3220 static int igc_find_mac_filter(struct igc_adapter *adapter,
3221 enum igc_mac_filter_type type, const u8 *addr)
3222 {
3223 struct igc_hw *hw = &adapter->hw;
3224 int max_entries = hw->mac.rar_entry_count;
3225 u32 ral, rah;
3226 int i;
3227
3228 for (i = 0; i < max_entries; i++) {
3229 ral = rd32(IGC_RAL(i));
3230 rah = rd32(IGC_RAH(i));
3231
3232 if (!(rah & IGC_RAH_AV))
3233 continue;
3234 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3235 continue;
3236 if ((rah & IGC_RAH_RAH_MASK) !=
3237 le16_to_cpup((__le16 *)(addr + 4)))
3238 continue;
3239 if (ral != le32_to_cpup((__le32 *)(addr)))
3240 continue;
3241
3242 return i;
3243 }
3244
3245 return -1;
3246 }
3247
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3248 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3249 {
3250 struct igc_hw *hw = &adapter->hw;
3251 int max_entries = hw->mac.rar_entry_count;
3252 u32 rah;
3253 int i;
3254
3255 for (i = 0; i < max_entries; i++) {
3256 rah = rd32(IGC_RAH(i));
3257
3258 if (!(rah & IGC_RAH_AV))
3259 return i;
3260 }
3261
3262 return -1;
3263 }
3264
3265 /**
3266 * igc_add_mac_filter() - Add MAC address filter
3267 * @adapter: Pointer to adapter where the filter should be added
3268 * @type: MAC address filter type (source or destination)
3269 * @addr: MAC address
3270 * @queue: If non-negative, queue assignment feature is enabled and frames
3271 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3272 * assignment is disabled.
3273 *
3274 * Return: 0 in case of success, negative errno code otherwise.
3275 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3276 static int igc_add_mac_filter(struct igc_adapter *adapter,
3277 enum igc_mac_filter_type type, const u8 *addr,
3278 int queue)
3279 {
3280 struct net_device *dev = adapter->netdev;
3281 int index;
3282
3283 index = igc_find_mac_filter(adapter, type, addr);
3284 if (index >= 0)
3285 goto update_filter;
3286
3287 index = igc_get_avail_mac_filter_slot(adapter);
3288 if (index < 0)
3289 return -ENOSPC;
3290
3291 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3292 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3293 addr, queue);
3294
3295 update_filter:
3296 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3297 return 0;
3298 }
3299
3300 /**
3301 * igc_del_mac_filter() - Delete MAC address filter
3302 * @adapter: Pointer to adapter where the filter should be deleted from
3303 * @type: MAC address filter type (source or destination)
3304 * @addr: MAC address
3305 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3306 static void igc_del_mac_filter(struct igc_adapter *adapter,
3307 enum igc_mac_filter_type type, const u8 *addr)
3308 {
3309 struct net_device *dev = adapter->netdev;
3310 int index;
3311
3312 index = igc_find_mac_filter(adapter, type, addr);
3313 if (index < 0)
3314 return;
3315
3316 if (index == 0) {
3317 /* If this is the default filter, we don't actually delete it.
3318 * We just reset to its default value i.e. disable queue
3319 * assignment.
3320 */
3321 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3322
3323 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3324 } else {
3325 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3326 index,
3327 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3328 addr);
3329
3330 igc_clear_mac_filter_hw(adapter, index);
3331 }
3332 }
3333
3334 /**
3335 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3336 * @adapter: Pointer to adapter where the filter should be added
3337 * @prio: VLAN priority value
3338 * @queue: Queue number which matching frames are assigned to
3339 *
3340 * Return: 0 in case of success, negative errno code otherwise.
3341 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3342 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3343 int queue)
3344 {
3345 struct net_device *dev = adapter->netdev;
3346 struct igc_hw *hw = &adapter->hw;
3347 u32 vlanpqf;
3348
3349 vlanpqf = rd32(IGC_VLANPQF);
3350
3351 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3352 netdev_dbg(dev, "VLAN priority filter already in use\n");
3353 return -EEXIST;
3354 }
3355
3356 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3357 vlanpqf |= IGC_VLANPQF_VALID(prio);
3358
3359 wr32(IGC_VLANPQF, vlanpqf);
3360
3361 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3362 prio, queue);
3363 return 0;
3364 }
3365
3366 /**
3367 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3368 * @adapter: Pointer to adapter where the filter should be deleted from
3369 * @prio: VLAN priority value
3370 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3371 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3372 {
3373 struct igc_hw *hw = &adapter->hw;
3374 u32 vlanpqf;
3375
3376 vlanpqf = rd32(IGC_VLANPQF);
3377
3378 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3379 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3380
3381 wr32(IGC_VLANPQF, vlanpqf);
3382
3383 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3384 prio);
3385 }
3386
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3387 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3388 {
3389 struct igc_hw *hw = &adapter->hw;
3390 int i;
3391
3392 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3393 u32 etqf = rd32(IGC_ETQF(i));
3394
3395 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3396 return i;
3397 }
3398
3399 return -1;
3400 }
3401
3402 /**
3403 * igc_add_etype_filter() - Add ethertype filter
3404 * @adapter: Pointer to adapter where the filter should be added
3405 * @etype: Ethertype value
3406 * @queue: If non-negative, queue assignment feature is enabled and frames
3407 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3408 * assignment is disabled.
3409 *
3410 * Return: 0 in case of success, negative errno code otherwise.
3411 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3412 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3413 int queue)
3414 {
3415 struct igc_hw *hw = &adapter->hw;
3416 int index;
3417 u32 etqf;
3418
3419 index = igc_get_avail_etype_filter_slot(adapter);
3420 if (index < 0)
3421 return -ENOSPC;
3422
3423 etqf = rd32(IGC_ETQF(index));
3424
3425 etqf &= ~IGC_ETQF_ETYPE_MASK;
3426 etqf |= etype;
3427
3428 if (queue >= 0) {
3429 etqf &= ~IGC_ETQF_QUEUE_MASK;
3430 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3431 etqf |= IGC_ETQF_QUEUE_ENABLE;
3432 }
3433
3434 etqf |= IGC_ETQF_FILTER_ENABLE;
3435
3436 wr32(IGC_ETQF(index), etqf);
3437
3438 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3439 etype, queue);
3440 return 0;
3441 }
3442
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3443 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3444 {
3445 struct igc_hw *hw = &adapter->hw;
3446 int i;
3447
3448 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3449 u32 etqf = rd32(IGC_ETQF(i));
3450
3451 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3452 return i;
3453 }
3454
3455 return -1;
3456 }
3457
3458 /**
3459 * igc_del_etype_filter() - Delete ethertype filter
3460 * @adapter: Pointer to adapter where the filter should be deleted from
3461 * @etype: Ethertype value
3462 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3463 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3464 {
3465 struct igc_hw *hw = &adapter->hw;
3466 int index;
3467
3468 index = igc_find_etype_filter(adapter, etype);
3469 if (index < 0)
3470 return;
3471
3472 wr32(IGC_ETQF(index), 0);
3473
3474 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3475 etype);
3476 }
3477
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3478 static int igc_flex_filter_select(struct igc_adapter *adapter,
3479 struct igc_flex_filter *input,
3480 u32 *fhft)
3481 {
3482 struct igc_hw *hw = &adapter->hw;
3483 u8 fhft_index;
3484 u32 fhftsl;
3485
3486 if (input->index >= MAX_FLEX_FILTER) {
3487 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3488 return -EINVAL;
3489 }
3490
3491 /* Indirect table select register */
3492 fhftsl = rd32(IGC_FHFTSL);
3493 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3494 switch (input->index) {
3495 case 0 ... 7:
3496 fhftsl |= 0x00;
3497 break;
3498 case 8 ... 15:
3499 fhftsl |= 0x01;
3500 break;
3501 case 16 ... 23:
3502 fhftsl |= 0x02;
3503 break;
3504 case 24 ... 31:
3505 fhftsl |= 0x03;
3506 break;
3507 }
3508 wr32(IGC_FHFTSL, fhftsl);
3509
3510 /* Normalize index down to host table register */
3511 fhft_index = input->index % 8;
3512
3513 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3514 IGC_FHFT_EXT(fhft_index - 4);
3515
3516 return 0;
3517 }
3518
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3519 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3520 struct igc_flex_filter *input)
3521 {
3522 struct igc_hw *hw = &adapter->hw;
3523 u8 *data = input->data;
3524 u8 *mask = input->mask;
3525 u32 queuing;
3526 u32 fhft;
3527 u32 wufc;
3528 int ret;
3529 int i;
3530
3531 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3532 * out early to avoid surprises later.
3533 */
3534 if (input->length % 8 != 0) {
3535 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3536 return -EINVAL;
3537 }
3538
3539 /* Select corresponding flex filter register and get base for host table. */
3540 ret = igc_flex_filter_select(adapter, input, &fhft);
3541 if (ret)
3542 return ret;
3543
3544 /* When adding a filter globally disable flex filter feature. That is
3545 * recommended within the datasheet.
3546 */
3547 wufc = rd32(IGC_WUFC);
3548 wufc &= ~IGC_WUFC_FLEX_HQ;
3549 wr32(IGC_WUFC, wufc);
3550
3551 /* Configure filter */
3552 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3553 queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3554 queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3555
3556 if (input->immediate_irq)
3557 queuing |= IGC_FHFT_IMM_INT;
3558
3559 if (input->drop)
3560 queuing |= IGC_FHFT_DROP;
3561
3562 wr32(fhft + 0xFC, queuing);
3563
3564 /* Write data (128 byte) and mask (128 bit) */
3565 for (i = 0; i < 16; ++i) {
3566 const size_t data_idx = i * 8;
3567 const size_t row_idx = i * 16;
3568 u32 dw0 =
3569 (data[data_idx + 0] << 0) |
3570 (data[data_idx + 1] << 8) |
3571 (data[data_idx + 2] << 16) |
3572 (data[data_idx + 3] << 24);
3573 u32 dw1 =
3574 (data[data_idx + 4] << 0) |
3575 (data[data_idx + 5] << 8) |
3576 (data[data_idx + 6] << 16) |
3577 (data[data_idx + 7] << 24);
3578 u32 tmp;
3579
3580 /* Write row: dw0, dw1 and mask */
3581 wr32(fhft + row_idx, dw0);
3582 wr32(fhft + row_idx + 4, dw1);
3583
3584 /* mask is only valid for MASK(7, 0) */
3585 tmp = rd32(fhft + row_idx + 8);
3586 tmp &= ~GENMASK(7, 0);
3587 tmp |= mask[i];
3588 wr32(fhft + row_idx + 8, tmp);
3589 }
3590
3591 /* Enable filter. */
3592 wufc |= IGC_WUFC_FLEX_HQ;
3593 if (input->index > 8) {
3594 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3595 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3596
3597 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3598
3599 wr32(IGC_WUFC_EXT, wufc_ext);
3600 } else {
3601 wufc |= (IGC_WUFC_FLX0 << input->index);
3602 }
3603 wr32(IGC_WUFC, wufc);
3604
3605 netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3606 input->index);
3607
3608 return 0;
3609 }
3610
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3611 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3612 const void *src, unsigned int offset,
3613 size_t len, const void *mask)
3614 {
3615 int i;
3616
3617 /* data */
3618 memcpy(&flex->data[offset], src, len);
3619
3620 /* mask */
3621 for (i = 0; i < len; ++i) {
3622 const unsigned int idx = i + offset;
3623 const u8 *ptr = mask;
3624
3625 if (mask) {
3626 if (ptr[i] & 0xff)
3627 flex->mask[idx / 8] |= BIT(idx % 8);
3628
3629 continue;
3630 }
3631
3632 flex->mask[idx / 8] |= BIT(idx % 8);
3633 }
3634 }
3635
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3636 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3637 {
3638 struct igc_hw *hw = &adapter->hw;
3639 u32 wufc, wufc_ext;
3640 int i;
3641
3642 wufc = rd32(IGC_WUFC);
3643 wufc_ext = rd32(IGC_WUFC_EXT);
3644
3645 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3646 if (i < 8) {
3647 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3648 return i;
3649 } else {
3650 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3651 return i;
3652 }
3653 }
3654
3655 return -ENOSPC;
3656 }
3657
igc_flex_filter_in_use(struct igc_adapter * adapter)3658 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3659 {
3660 struct igc_hw *hw = &adapter->hw;
3661 u32 wufc, wufc_ext;
3662
3663 wufc = rd32(IGC_WUFC);
3664 wufc_ext = rd32(IGC_WUFC_EXT);
3665
3666 if (wufc & IGC_WUFC_FILTER_MASK)
3667 return true;
3668
3669 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3670 return true;
3671
3672 return false;
3673 }
3674
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3675 static int igc_add_flex_filter(struct igc_adapter *adapter,
3676 struct igc_nfc_rule *rule)
3677 {
3678 struct igc_nfc_filter *filter = &rule->filter;
3679 unsigned int eth_offset, user_offset;
3680 struct igc_flex_filter flex = { };
3681 int ret, index;
3682 bool vlan;
3683
3684 index = igc_find_avail_flex_filter_slot(adapter);
3685 if (index < 0)
3686 return -ENOSPC;
3687
3688 /* Construct the flex filter:
3689 * -> dest_mac [6]
3690 * -> src_mac [6]
3691 * -> tpid [2]
3692 * -> vlan tci [2]
3693 * -> ether type [2]
3694 * -> user data [8]
3695 * -> = 26 bytes => 32 length
3696 */
3697 flex.index = index;
3698 flex.length = 32;
3699 flex.rx_queue = rule->action;
3700
3701 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3702 eth_offset = vlan ? 16 : 12;
3703 user_offset = vlan ? 18 : 14;
3704
3705 /* Add destination MAC */
3706 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3707 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3708 ETH_ALEN, NULL);
3709
3710 /* Add source MAC */
3711 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3712 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3713 ETH_ALEN, NULL);
3714
3715 /* Add VLAN etype */
3716 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3717 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3718
3719 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3720 sizeof(vlan_etype), NULL);
3721 }
3722
3723 /* Add VLAN TCI */
3724 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3725 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3726 sizeof(filter->vlan_tci), NULL);
3727
3728 /* Add Ether type */
3729 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3730 __be16 etype = cpu_to_be16(filter->etype);
3731
3732 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3733 sizeof(etype), NULL);
3734 }
3735
3736 /* Add user data */
3737 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3738 igc_flex_filter_add_field(&flex, &filter->user_data,
3739 user_offset,
3740 sizeof(filter->user_data),
3741 filter->user_mask);
3742
3743 /* Add it down to the hardware and enable it. */
3744 ret = igc_write_flex_filter_ll(adapter, &flex);
3745 if (ret)
3746 return ret;
3747
3748 filter->flex_index = index;
3749
3750 return 0;
3751 }
3752
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3753 static void igc_del_flex_filter(struct igc_adapter *adapter,
3754 u16 reg_index)
3755 {
3756 struct igc_hw *hw = &adapter->hw;
3757 u32 wufc;
3758
3759 /* Just disable the filter. The filter table itself is kept
3760 * intact. Another flex_filter_add() should override the "old" data
3761 * then.
3762 */
3763 if (reg_index > 8) {
3764 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3765
3766 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3767 wr32(IGC_WUFC_EXT, wufc_ext);
3768 } else {
3769 wufc = rd32(IGC_WUFC);
3770
3771 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3772 wr32(IGC_WUFC, wufc);
3773 }
3774
3775 if (igc_flex_filter_in_use(adapter))
3776 return;
3777
3778 /* No filters are in use, we may disable flex filters */
3779 wufc = rd32(IGC_WUFC);
3780 wufc &= ~IGC_WUFC_FLEX_HQ;
3781 wr32(IGC_WUFC, wufc);
3782 }
3783
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3784 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3785 struct igc_nfc_rule *rule)
3786 {
3787 int err;
3788
3789 if (rule->flex) {
3790 return igc_add_flex_filter(adapter, rule);
3791 }
3792
3793 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3794 err = igc_add_etype_filter(adapter, rule->filter.etype,
3795 rule->action);
3796 if (err)
3797 return err;
3798 }
3799
3800 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3801 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3802 rule->filter.src_addr, rule->action);
3803 if (err)
3804 return err;
3805 }
3806
3807 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3808 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3809 rule->filter.dst_addr, rule->action);
3810 if (err)
3811 return err;
3812 }
3813
3814 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3815 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3816
3817 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3818 if (err)
3819 return err;
3820 }
3821
3822 return 0;
3823 }
3824
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3825 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3826 const struct igc_nfc_rule *rule)
3827 {
3828 if (rule->flex) {
3829 igc_del_flex_filter(adapter, rule->filter.flex_index);
3830 return;
3831 }
3832
3833 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3834 igc_del_etype_filter(adapter, rule->filter.etype);
3835
3836 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3837 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3838
3839 igc_del_vlan_prio_filter(adapter, prio);
3840 }
3841
3842 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3843 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3844 rule->filter.src_addr);
3845
3846 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3847 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3848 rule->filter.dst_addr);
3849 }
3850
3851 /**
3852 * igc_get_nfc_rule() - Get NFC rule
3853 * @adapter: Pointer to adapter
3854 * @location: Rule location
3855 *
3856 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3857 *
3858 * Return: Pointer to NFC rule at @location. If not found, NULL.
3859 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3860 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3861 u32 location)
3862 {
3863 struct igc_nfc_rule *rule;
3864
3865 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3866 if (rule->location == location)
3867 return rule;
3868 if (rule->location > location)
3869 break;
3870 }
3871
3872 return NULL;
3873 }
3874
3875 /**
3876 * igc_del_nfc_rule() - Delete NFC rule
3877 * @adapter: Pointer to adapter
3878 * @rule: Pointer to rule to be deleted
3879 *
3880 * Disable NFC rule in hardware and delete it from adapter.
3881 *
3882 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3883 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3884 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3885 {
3886 igc_disable_nfc_rule(adapter, rule);
3887
3888 list_del(&rule->list);
3889 adapter->nfc_rule_count--;
3890
3891 kfree(rule);
3892 }
3893
igc_flush_nfc_rules(struct igc_adapter * adapter)3894 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3895 {
3896 struct igc_nfc_rule *rule, *tmp;
3897
3898 mutex_lock(&adapter->nfc_rule_lock);
3899
3900 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3901 igc_del_nfc_rule(adapter, rule);
3902
3903 mutex_unlock(&adapter->nfc_rule_lock);
3904 }
3905
3906 /**
3907 * igc_add_nfc_rule() - Add NFC rule
3908 * @adapter: Pointer to adapter
3909 * @rule: Pointer to rule to be added
3910 *
3911 * Enable NFC rule in hardware and add it to adapter.
3912 *
3913 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3914 *
3915 * Return: 0 on success, negative errno on failure.
3916 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3917 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3918 {
3919 struct igc_nfc_rule *pred, *cur;
3920 int err;
3921
3922 err = igc_enable_nfc_rule(adapter, rule);
3923 if (err)
3924 return err;
3925
3926 pred = NULL;
3927 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3928 if (cur->location >= rule->location)
3929 break;
3930 pred = cur;
3931 }
3932
3933 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3934 adapter->nfc_rule_count++;
3935 return 0;
3936 }
3937
igc_restore_nfc_rules(struct igc_adapter * adapter)3938 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3939 {
3940 struct igc_nfc_rule *rule;
3941
3942 mutex_lock(&adapter->nfc_rule_lock);
3943
3944 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3945 igc_enable_nfc_rule(adapter, rule);
3946
3947 mutex_unlock(&adapter->nfc_rule_lock);
3948 }
3949
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3950 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3951 {
3952 struct igc_adapter *adapter = netdev_priv(netdev);
3953
3954 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3955 }
3956
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3957 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3958 {
3959 struct igc_adapter *adapter = netdev_priv(netdev);
3960
3961 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3962 return 0;
3963 }
3964
3965 /**
3966 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3967 * @netdev: network interface device structure
3968 *
3969 * The set_rx_mode entry point is called whenever the unicast or multicast
3970 * address lists or the network interface flags are updated. This routine is
3971 * responsible for configuring the hardware for proper unicast, multicast,
3972 * promiscuous mode, and all-multi behavior.
3973 */
igc_set_rx_mode(struct net_device * netdev)3974 static void igc_set_rx_mode(struct net_device *netdev)
3975 {
3976 struct igc_adapter *adapter = netdev_priv(netdev);
3977 struct igc_hw *hw = &adapter->hw;
3978 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3979 int count;
3980
3981 /* Check for Promiscuous and All Multicast modes */
3982 if (netdev->flags & IFF_PROMISC) {
3983 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3984 } else {
3985 if (netdev->flags & IFF_ALLMULTI) {
3986 rctl |= IGC_RCTL_MPE;
3987 } else {
3988 /* Write addresses to the MTA, if the attempt fails
3989 * then we should just turn on promiscuous mode so
3990 * that we can at least receive multicast traffic
3991 */
3992 count = igc_write_mc_addr_list(netdev);
3993 if (count < 0)
3994 rctl |= IGC_RCTL_MPE;
3995 }
3996 }
3997
3998 /* Write addresses to available RAR registers, if there is not
3999 * sufficient space to store all the addresses then enable
4000 * unicast promiscuous mode
4001 */
4002 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4003 rctl |= IGC_RCTL_UPE;
4004
4005 /* update state of unicast and multicast */
4006 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4007 wr32(IGC_RCTL, rctl);
4008
4009 #if (PAGE_SIZE < 8192)
4010 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4011 rlpml = IGC_MAX_FRAME_BUILD_SKB;
4012 #endif
4013 wr32(IGC_RLPML, rlpml);
4014 }
4015
4016 /**
4017 * igc_configure - configure the hardware for RX and TX
4018 * @adapter: private board structure
4019 */
igc_configure(struct igc_adapter * adapter)4020 static void igc_configure(struct igc_adapter *adapter)
4021 {
4022 struct net_device *netdev = adapter->netdev;
4023 int i = 0;
4024
4025 igc_get_hw_control(adapter);
4026 igc_set_rx_mode(netdev);
4027
4028 igc_restore_vlan(adapter);
4029
4030 igc_setup_tctl(adapter);
4031 igc_setup_mrqc(adapter);
4032 igc_setup_rctl(adapter);
4033
4034 igc_set_default_mac_filter(adapter);
4035 igc_restore_nfc_rules(adapter);
4036
4037 igc_configure_tx(adapter);
4038 igc_configure_rx(adapter);
4039
4040 igc_rx_fifo_flush_base(&adapter->hw);
4041
4042 /* call igc_desc_unused which always leaves
4043 * at least 1 descriptor unused to make sure
4044 * next_to_use != next_to_clean
4045 */
4046 for (i = 0; i < adapter->num_rx_queues; i++) {
4047 struct igc_ring *ring = adapter->rx_ring[i];
4048
4049 if (ring->xsk_pool)
4050 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4051 else
4052 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4053 }
4054 }
4055
4056 /**
4057 * igc_write_ivar - configure ivar for given MSI-X vector
4058 * @hw: pointer to the HW structure
4059 * @msix_vector: vector number we are allocating to a given ring
4060 * @index: row index of IVAR register to write within IVAR table
4061 * @offset: column offset of in IVAR, should be multiple of 8
4062 *
4063 * The IVAR table consists of 2 columns,
4064 * each containing an cause allocation for an Rx and Tx ring, and a
4065 * variable number of rows depending on the number of queues supported.
4066 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4067 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4068 int index, int offset)
4069 {
4070 u32 ivar = array_rd32(IGC_IVAR0, index);
4071
4072 /* clear any bits that are currently set */
4073 ivar &= ~((u32)0xFF << offset);
4074
4075 /* write vector and valid bit */
4076 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4077
4078 array_wr32(IGC_IVAR0, index, ivar);
4079 }
4080
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4081 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4082 {
4083 struct igc_adapter *adapter = q_vector->adapter;
4084 struct igc_hw *hw = &adapter->hw;
4085 int rx_queue = IGC_N0_QUEUE;
4086 int tx_queue = IGC_N0_QUEUE;
4087
4088 if (q_vector->rx.ring)
4089 rx_queue = q_vector->rx.ring->reg_idx;
4090 if (q_vector->tx.ring)
4091 tx_queue = q_vector->tx.ring->reg_idx;
4092
4093 switch (hw->mac.type) {
4094 case igc_i225:
4095 if (rx_queue > IGC_N0_QUEUE)
4096 igc_write_ivar(hw, msix_vector,
4097 rx_queue >> 1,
4098 (rx_queue & 0x1) << 4);
4099 if (tx_queue > IGC_N0_QUEUE)
4100 igc_write_ivar(hw, msix_vector,
4101 tx_queue >> 1,
4102 ((tx_queue & 0x1) << 4) + 8);
4103 q_vector->eims_value = BIT(msix_vector);
4104 break;
4105 default:
4106 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4107 break;
4108 }
4109
4110 /* add q_vector eims value to global eims_enable_mask */
4111 adapter->eims_enable_mask |= q_vector->eims_value;
4112
4113 /* configure q_vector to set itr on first interrupt */
4114 q_vector->set_itr = 1;
4115 }
4116
4117 /**
4118 * igc_configure_msix - Configure MSI-X hardware
4119 * @adapter: Pointer to adapter structure
4120 *
4121 * igc_configure_msix sets up the hardware to properly
4122 * generate MSI-X interrupts.
4123 */
igc_configure_msix(struct igc_adapter * adapter)4124 static void igc_configure_msix(struct igc_adapter *adapter)
4125 {
4126 struct igc_hw *hw = &adapter->hw;
4127 int i, vector = 0;
4128 u32 tmp;
4129
4130 adapter->eims_enable_mask = 0;
4131
4132 /* set vector for other causes, i.e. link changes */
4133 switch (hw->mac.type) {
4134 case igc_i225:
4135 /* Turn on MSI-X capability first, or our settings
4136 * won't stick. And it will take days to debug.
4137 */
4138 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4139 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4140 IGC_GPIE_NSICR);
4141
4142 /* enable msix_other interrupt */
4143 adapter->eims_other = BIT(vector);
4144 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4145
4146 wr32(IGC_IVAR_MISC, tmp);
4147 break;
4148 default:
4149 /* do nothing, since nothing else supports MSI-X */
4150 break;
4151 } /* switch (hw->mac.type) */
4152
4153 adapter->eims_enable_mask |= adapter->eims_other;
4154
4155 for (i = 0; i < adapter->num_q_vectors; i++)
4156 igc_assign_vector(adapter->q_vector[i], vector++);
4157
4158 wrfl();
4159 }
4160
4161 /**
4162 * igc_irq_enable - Enable default interrupt generation settings
4163 * @adapter: board private structure
4164 */
igc_irq_enable(struct igc_adapter * adapter)4165 static void igc_irq_enable(struct igc_adapter *adapter)
4166 {
4167 struct igc_hw *hw = &adapter->hw;
4168
4169 if (adapter->msix_entries) {
4170 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4171 u32 regval = rd32(IGC_EIAC);
4172
4173 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4174 regval = rd32(IGC_EIAM);
4175 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4176 wr32(IGC_EIMS, adapter->eims_enable_mask);
4177 wr32(IGC_IMS, ims);
4178 } else {
4179 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4180 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4181 }
4182 }
4183
4184 /**
4185 * igc_irq_disable - Mask off interrupt generation on the NIC
4186 * @adapter: board private structure
4187 */
igc_irq_disable(struct igc_adapter * adapter)4188 static void igc_irq_disable(struct igc_adapter *adapter)
4189 {
4190 struct igc_hw *hw = &adapter->hw;
4191
4192 if (adapter->msix_entries) {
4193 u32 regval = rd32(IGC_EIAM);
4194
4195 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4196 wr32(IGC_EIMC, adapter->eims_enable_mask);
4197 regval = rd32(IGC_EIAC);
4198 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4199 }
4200
4201 wr32(IGC_IAM, 0);
4202 wr32(IGC_IMC, ~0);
4203 wrfl();
4204
4205 if (adapter->msix_entries) {
4206 int vector = 0, i;
4207
4208 synchronize_irq(adapter->msix_entries[vector++].vector);
4209
4210 for (i = 0; i < adapter->num_q_vectors; i++)
4211 synchronize_irq(adapter->msix_entries[vector++].vector);
4212 } else {
4213 synchronize_irq(adapter->pdev->irq);
4214 }
4215 }
4216
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4217 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4218 const u32 max_rss_queues)
4219 {
4220 /* Determine if we need to pair queues. */
4221 /* If rss_queues > half of max_rss_queues, pair the queues in
4222 * order to conserve interrupts due to limited supply.
4223 */
4224 if (adapter->rss_queues > (max_rss_queues / 2))
4225 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4226 else
4227 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4228 }
4229
igc_get_max_rss_queues(struct igc_adapter * adapter)4230 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4231 {
4232 return IGC_MAX_RX_QUEUES;
4233 }
4234
igc_init_queue_configuration(struct igc_adapter * adapter)4235 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4236 {
4237 u32 max_rss_queues;
4238
4239 max_rss_queues = igc_get_max_rss_queues(adapter);
4240 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4241
4242 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4243 }
4244
4245 /**
4246 * igc_reset_q_vector - Reset config for interrupt vector
4247 * @adapter: board private structure to initialize
4248 * @v_idx: Index of vector to be reset
4249 *
4250 * If NAPI is enabled it will delete any references to the
4251 * NAPI struct. This is preparation for igc_free_q_vector.
4252 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4253 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4254 {
4255 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4256
4257 /* if we're coming from igc_set_interrupt_capability, the vectors are
4258 * not yet allocated
4259 */
4260 if (!q_vector)
4261 return;
4262
4263 if (q_vector->tx.ring)
4264 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4265
4266 if (q_vector->rx.ring)
4267 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4268
4269 netif_napi_del(&q_vector->napi);
4270 }
4271
4272 /**
4273 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4274 * @adapter: board private structure to initialize
4275 * @v_idx: Index of vector to be freed
4276 *
4277 * This function frees the memory allocated to the q_vector.
4278 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4279 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4280 {
4281 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4282
4283 adapter->q_vector[v_idx] = NULL;
4284
4285 /* igc_get_stats64() might access the rings on this vector,
4286 * we must wait a grace period before freeing it.
4287 */
4288 if (q_vector)
4289 kfree_rcu(q_vector, rcu);
4290 }
4291
4292 /**
4293 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4294 * @adapter: board private structure to initialize
4295 *
4296 * This function frees the memory allocated to the q_vectors. In addition if
4297 * NAPI is enabled it will delete any references to the NAPI struct prior
4298 * to freeing the q_vector.
4299 */
igc_free_q_vectors(struct igc_adapter * adapter)4300 static void igc_free_q_vectors(struct igc_adapter *adapter)
4301 {
4302 int v_idx = adapter->num_q_vectors;
4303
4304 adapter->num_tx_queues = 0;
4305 adapter->num_rx_queues = 0;
4306 adapter->num_q_vectors = 0;
4307
4308 while (v_idx--) {
4309 igc_reset_q_vector(adapter, v_idx);
4310 igc_free_q_vector(adapter, v_idx);
4311 }
4312 }
4313
4314 /**
4315 * igc_update_itr - update the dynamic ITR value based on statistics
4316 * @q_vector: pointer to q_vector
4317 * @ring_container: ring info to update the itr for
4318 *
4319 * Stores a new ITR value based on packets and byte
4320 * counts during the last interrupt. The advantage of per interrupt
4321 * computation is faster updates and more accurate ITR for the current
4322 * traffic pattern. Constants in this function were computed
4323 * based on theoretical maximum wire speed and thresholds were set based
4324 * on testing data as well as attempting to minimize response time
4325 * while increasing bulk throughput.
4326 * NOTE: These calculations are only valid when operating in a single-
4327 * queue environment.
4328 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4329 static void igc_update_itr(struct igc_q_vector *q_vector,
4330 struct igc_ring_container *ring_container)
4331 {
4332 unsigned int packets = ring_container->total_packets;
4333 unsigned int bytes = ring_container->total_bytes;
4334 u8 itrval = ring_container->itr;
4335
4336 /* no packets, exit with status unchanged */
4337 if (packets == 0)
4338 return;
4339
4340 switch (itrval) {
4341 case lowest_latency:
4342 /* handle TSO and jumbo frames */
4343 if (bytes / packets > 8000)
4344 itrval = bulk_latency;
4345 else if ((packets < 5) && (bytes > 512))
4346 itrval = low_latency;
4347 break;
4348 case low_latency: /* 50 usec aka 20000 ints/s */
4349 if (bytes > 10000) {
4350 /* this if handles the TSO accounting */
4351 if (bytes / packets > 8000)
4352 itrval = bulk_latency;
4353 else if ((packets < 10) || ((bytes / packets) > 1200))
4354 itrval = bulk_latency;
4355 else if ((packets > 35))
4356 itrval = lowest_latency;
4357 } else if (bytes / packets > 2000) {
4358 itrval = bulk_latency;
4359 } else if (packets <= 2 && bytes < 512) {
4360 itrval = lowest_latency;
4361 }
4362 break;
4363 case bulk_latency: /* 250 usec aka 4000 ints/s */
4364 if (bytes > 25000) {
4365 if (packets > 35)
4366 itrval = low_latency;
4367 } else if (bytes < 1500) {
4368 itrval = low_latency;
4369 }
4370 break;
4371 }
4372
4373 /* clear work counters since we have the values we need */
4374 ring_container->total_bytes = 0;
4375 ring_container->total_packets = 0;
4376
4377 /* write updated itr to ring container */
4378 ring_container->itr = itrval;
4379 }
4380
igc_set_itr(struct igc_q_vector * q_vector)4381 static void igc_set_itr(struct igc_q_vector *q_vector)
4382 {
4383 struct igc_adapter *adapter = q_vector->adapter;
4384 u32 new_itr = q_vector->itr_val;
4385 u8 current_itr = 0;
4386
4387 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4388 switch (adapter->link_speed) {
4389 case SPEED_10:
4390 case SPEED_100:
4391 current_itr = 0;
4392 new_itr = IGC_4K_ITR;
4393 goto set_itr_now;
4394 default:
4395 break;
4396 }
4397
4398 igc_update_itr(q_vector, &q_vector->tx);
4399 igc_update_itr(q_vector, &q_vector->rx);
4400
4401 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4402
4403 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4404 if (current_itr == lowest_latency &&
4405 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4406 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4407 current_itr = low_latency;
4408
4409 switch (current_itr) {
4410 /* counts and packets in update_itr are dependent on these numbers */
4411 case lowest_latency:
4412 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4413 break;
4414 case low_latency:
4415 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4416 break;
4417 case bulk_latency:
4418 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4419 break;
4420 default:
4421 break;
4422 }
4423
4424 set_itr_now:
4425 if (new_itr != q_vector->itr_val) {
4426 /* this attempts to bias the interrupt rate towards Bulk
4427 * by adding intermediate steps when interrupt rate is
4428 * increasing
4429 */
4430 new_itr = new_itr > q_vector->itr_val ?
4431 max((new_itr * q_vector->itr_val) /
4432 (new_itr + (q_vector->itr_val >> 2)),
4433 new_itr) : new_itr;
4434 /* Don't write the value here; it resets the adapter's
4435 * internal timer, and causes us to delay far longer than
4436 * we should between interrupts. Instead, we write the ITR
4437 * value at the beginning of the next interrupt so the timing
4438 * ends up being correct.
4439 */
4440 q_vector->itr_val = new_itr;
4441 q_vector->set_itr = 1;
4442 }
4443 }
4444
igc_reset_interrupt_capability(struct igc_adapter * adapter)4445 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4446 {
4447 int v_idx = adapter->num_q_vectors;
4448
4449 if (adapter->msix_entries) {
4450 pci_disable_msix(adapter->pdev);
4451 kfree(adapter->msix_entries);
4452 adapter->msix_entries = NULL;
4453 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4454 pci_disable_msi(adapter->pdev);
4455 }
4456
4457 while (v_idx--)
4458 igc_reset_q_vector(adapter, v_idx);
4459 }
4460
4461 /**
4462 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4463 * @adapter: Pointer to adapter structure
4464 * @msix: boolean value for MSI-X capability
4465 *
4466 * Attempt to configure interrupts using the best available
4467 * capabilities of the hardware and kernel.
4468 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4469 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4470 bool msix)
4471 {
4472 int numvecs, i;
4473 int err;
4474
4475 if (!msix)
4476 goto msi_only;
4477 adapter->flags |= IGC_FLAG_HAS_MSIX;
4478
4479 /* Number of supported queues. */
4480 adapter->num_rx_queues = adapter->rss_queues;
4481
4482 adapter->num_tx_queues = adapter->rss_queues;
4483
4484 /* start with one vector for every Rx queue */
4485 numvecs = adapter->num_rx_queues;
4486
4487 /* if Tx handler is separate add 1 for every Tx queue */
4488 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4489 numvecs += adapter->num_tx_queues;
4490
4491 /* store the number of vectors reserved for queues */
4492 adapter->num_q_vectors = numvecs;
4493
4494 /* add 1 vector for link status interrupts */
4495 numvecs++;
4496
4497 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4498 GFP_KERNEL);
4499
4500 if (!adapter->msix_entries)
4501 return;
4502
4503 /* populate entry values */
4504 for (i = 0; i < numvecs; i++)
4505 adapter->msix_entries[i].entry = i;
4506
4507 err = pci_enable_msix_range(adapter->pdev,
4508 adapter->msix_entries,
4509 numvecs,
4510 numvecs);
4511 if (err > 0)
4512 return;
4513
4514 kfree(adapter->msix_entries);
4515 adapter->msix_entries = NULL;
4516
4517 igc_reset_interrupt_capability(adapter);
4518
4519 msi_only:
4520 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4521
4522 adapter->rss_queues = 1;
4523 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4524 adapter->num_rx_queues = 1;
4525 adapter->num_tx_queues = 1;
4526 adapter->num_q_vectors = 1;
4527 if (!pci_enable_msi(adapter->pdev))
4528 adapter->flags |= IGC_FLAG_HAS_MSI;
4529 }
4530
4531 /**
4532 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4533 * @q_vector: pointer to q_vector
4534 *
4535 * Stores a new ITR value based on strictly on packet size. This
4536 * algorithm is less sophisticated than that used in igc_update_itr,
4537 * due to the difficulty of synchronizing statistics across multiple
4538 * receive rings. The divisors and thresholds used by this function
4539 * were determined based on theoretical maximum wire speed and testing
4540 * data, in order to minimize response time while increasing bulk
4541 * throughput.
4542 * NOTE: This function is called only when operating in a multiqueue
4543 * receive environment.
4544 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4545 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4546 {
4547 struct igc_adapter *adapter = q_vector->adapter;
4548 int new_val = q_vector->itr_val;
4549 int avg_wire_size = 0;
4550 unsigned int packets;
4551
4552 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4553 * ints/sec - ITR timer value of 120 ticks.
4554 */
4555 switch (adapter->link_speed) {
4556 case SPEED_10:
4557 case SPEED_100:
4558 new_val = IGC_4K_ITR;
4559 goto set_itr_val;
4560 default:
4561 break;
4562 }
4563
4564 packets = q_vector->rx.total_packets;
4565 if (packets)
4566 avg_wire_size = q_vector->rx.total_bytes / packets;
4567
4568 packets = q_vector->tx.total_packets;
4569 if (packets)
4570 avg_wire_size = max_t(u32, avg_wire_size,
4571 q_vector->tx.total_bytes / packets);
4572
4573 /* if avg_wire_size isn't set no work was done */
4574 if (!avg_wire_size)
4575 goto clear_counts;
4576
4577 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4578 avg_wire_size += 24;
4579
4580 /* Don't starve jumbo frames */
4581 avg_wire_size = min(avg_wire_size, 3000);
4582
4583 /* Give a little boost to mid-size frames */
4584 if (avg_wire_size > 300 && avg_wire_size < 1200)
4585 new_val = avg_wire_size / 3;
4586 else
4587 new_val = avg_wire_size / 2;
4588
4589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4590 if (new_val < IGC_20K_ITR &&
4591 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4592 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4593 new_val = IGC_20K_ITR;
4594
4595 set_itr_val:
4596 if (new_val != q_vector->itr_val) {
4597 q_vector->itr_val = new_val;
4598 q_vector->set_itr = 1;
4599 }
4600 clear_counts:
4601 q_vector->rx.total_bytes = 0;
4602 q_vector->rx.total_packets = 0;
4603 q_vector->tx.total_bytes = 0;
4604 q_vector->tx.total_packets = 0;
4605 }
4606
igc_ring_irq_enable(struct igc_q_vector * q_vector)4607 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4608 {
4609 struct igc_adapter *adapter = q_vector->adapter;
4610 struct igc_hw *hw = &adapter->hw;
4611
4612 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4613 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4614 if (adapter->num_q_vectors == 1)
4615 igc_set_itr(q_vector);
4616 else
4617 igc_update_ring_itr(q_vector);
4618 }
4619
4620 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4621 if (adapter->msix_entries)
4622 wr32(IGC_EIMS, q_vector->eims_value);
4623 else
4624 igc_irq_enable(adapter);
4625 }
4626 }
4627
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4628 static void igc_add_ring(struct igc_ring *ring,
4629 struct igc_ring_container *head)
4630 {
4631 head->ring = ring;
4632 head->count++;
4633 }
4634
4635 /**
4636 * igc_cache_ring_register - Descriptor ring to register mapping
4637 * @adapter: board private structure to initialize
4638 *
4639 * Once we know the feature-set enabled for the device, we'll cache
4640 * the register offset the descriptor ring is assigned to.
4641 */
igc_cache_ring_register(struct igc_adapter * adapter)4642 static void igc_cache_ring_register(struct igc_adapter *adapter)
4643 {
4644 int i = 0, j = 0;
4645
4646 switch (adapter->hw.mac.type) {
4647 case igc_i225:
4648 default:
4649 for (; i < adapter->num_rx_queues; i++)
4650 adapter->rx_ring[i]->reg_idx = i;
4651 for (; j < adapter->num_tx_queues; j++)
4652 adapter->tx_ring[j]->reg_idx = j;
4653 break;
4654 }
4655 }
4656
4657 /**
4658 * igc_poll - NAPI Rx polling callback
4659 * @napi: napi polling structure
4660 * @budget: count of how many packets we should handle
4661 */
igc_poll(struct napi_struct * napi,int budget)4662 static int igc_poll(struct napi_struct *napi, int budget)
4663 {
4664 struct igc_q_vector *q_vector = container_of(napi,
4665 struct igc_q_vector,
4666 napi);
4667 struct igc_ring *rx_ring = q_vector->rx.ring;
4668 bool clean_complete = true;
4669 int work_done = 0;
4670
4671 if (q_vector->tx.ring)
4672 clean_complete = igc_clean_tx_irq(q_vector, budget);
4673
4674 if (rx_ring) {
4675 int cleaned = rx_ring->xsk_pool ?
4676 igc_clean_rx_irq_zc(q_vector, budget) :
4677 igc_clean_rx_irq(q_vector, budget);
4678
4679 work_done += cleaned;
4680 if (cleaned >= budget)
4681 clean_complete = false;
4682 }
4683
4684 /* If all work not completed, return budget and keep polling */
4685 if (!clean_complete)
4686 return budget;
4687
4688 /* Exit the polling mode, but don't re-enable interrupts if stack might
4689 * poll us due to busy-polling
4690 */
4691 if (likely(napi_complete_done(napi, work_done)))
4692 igc_ring_irq_enable(q_vector);
4693
4694 return min(work_done, budget - 1);
4695 }
4696
4697 /**
4698 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4699 * @adapter: board private structure to initialize
4700 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4701 * @v_idx: index of vector in adapter struct
4702 * @txr_count: total number of Tx rings to allocate
4703 * @txr_idx: index of first Tx ring to allocate
4704 * @rxr_count: total number of Rx rings to allocate
4705 * @rxr_idx: index of first Rx ring to allocate
4706 *
4707 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4708 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4709 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4710 unsigned int v_count, unsigned int v_idx,
4711 unsigned int txr_count, unsigned int txr_idx,
4712 unsigned int rxr_count, unsigned int rxr_idx)
4713 {
4714 struct igc_q_vector *q_vector;
4715 struct igc_ring *ring;
4716 int ring_count;
4717
4718 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4719 if (txr_count > 1 || rxr_count > 1)
4720 return -ENOMEM;
4721
4722 ring_count = txr_count + rxr_count;
4723
4724 /* allocate q_vector and rings */
4725 q_vector = adapter->q_vector[v_idx];
4726 if (!q_vector)
4727 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4728 GFP_KERNEL);
4729 else
4730 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4731 if (!q_vector)
4732 return -ENOMEM;
4733
4734 /* initialize NAPI */
4735 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4736
4737 /* tie q_vector and adapter together */
4738 adapter->q_vector[v_idx] = q_vector;
4739 q_vector->adapter = adapter;
4740
4741 /* initialize work limits */
4742 q_vector->tx.work_limit = adapter->tx_work_limit;
4743
4744 /* initialize ITR configuration */
4745 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4746 q_vector->itr_val = IGC_START_ITR;
4747
4748 /* initialize pointer to rings */
4749 ring = q_vector->ring;
4750
4751 /* initialize ITR */
4752 if (rxr_count) {
4753 /* rx or rx/tx vector */
4754 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4755 q_vector->itr_val = adapter->rx_itr_setting;
4756 } else {
4757 /* tx only vector */
4758 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4759 q_vector->itr_val = adapter->tx_itr_setting;
4760 }
4761
4762 if (txr_count) {
4763 /* assign generic ring traits */
4764 ring->dev = &adapter->pdev->dev;
4765 ring->netdev = adapter->netdev;
4766
4767 /* configure backlink on ring */
4768 ring->q_vector = q_vector;
4769
4770 /* update q_vector Tx values */
4771 igc_add_ring(ring, &q_vector->tx);
4772
4773 /* apply Tx specific ring traits */
4774 ring->count = adapter->tx_ring_count;
4775 ring->queue_index = txr_idx;
4776
4777 /* assign ring to adapter */
4778 adapter->tx_ring[txr_idx] = ring;
4779
4780 /* push pointer to next ring */
4781 ring++;
4782 }
4783
4784 if (rxr_count) {
4785 /* assign generic ring traits */
4786 ring->dev = &adapter->pdev->dev;
4787 ring->netdev = adapter->netdev;
4788
4789 /* configure backlink on ring */
4790 ring->q_vector = q_vector;
4791
4792 /* update q_vector Rx values */
4793 igc_add_ring(ring, &q_vector->rx);
4794
4795 /* apply Rx specific ring traits */
4796 ring->count = adapter->rx_ring_count;
4797 ring->queue_index = rxr_idx;
4798
4799 /* assign ring to adapter */
4800 adapter->rx_ring[rxr_idx] = ring;
4801 }
4802
4803 return 0;
4804 }
4805
4806 /**
4807 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4808 * @adapter: board private structure to initialize
4809 *
4810 * We allocate one q_vector per queue interrupt. If allocation fails we
4811 * return -ENOMEM.
4812 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4813 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4814 {
4815 int rxr_remaining = adapter->num_rx_queues;
4816 int txr_remaining = adapter->num_tx_queues;
4817 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4818 int q_vectors = adapter->num_q_vectors;
4819 int err;
4820
4821 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4822 for (; rxr_remaining; v_idx++) {
4823 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4824 0, 0, 1, rxr_idx);
4825
4826 if (err)
4827 goto err_out;
4828
4829 /* update counts and index */
4830 rxr_remaining--;
4831 rxr_idx++;
4832 }
4833 }
4834
4835 for (; v_idx < q_vectors; v_idx++) {
4836 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4837 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4838
4839 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4840 tqpv, txr_idx, rqpv, rxr_idx);
4841
4842 if (err)
4843 goto err_out;
4844
4845 /* update counts and index */
4846 rxr_remaining -= rqpv;
4847 txr_remaining -= tqpv;
4848 rxr_idx++;
4849 txr_idx++;
4850 }
4851
4852 return 0;
4853
4854 err_out:
4855 adapter->num_tx_queues = 0;
4856 adapter->num_rx_queues = 0;
4857 adapter->num_q_vectors = 0;
4858
4859 while (v_idx--)
4860 igc_free_q_vector(adapter, v_idx);
4861
4862 return -ENOMEM;
4863 }
4864
4865 /**
4866 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4867 * @adapter: Pointer to adapter structure
4868 * @msix: boolean for MSI-X capability
4869 *
4870 * This function initializes the interrupts and allocates all of the queues.
4871 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4872 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4873 {
4874 struct net_device *dev = adapter->netdev;
4875 int err = 0;
4876
4877 igc_set_interrupt_capability(adapter, msix);
4878
4879 err = igc_alloc_q_vectors(adapter);
4880 if (err) {
4881 netdev_err(dev, "Unable to allocate memory for vectors\n");
4882 goto err_alloc_q_vectors;
4883 }
4884
4885 igc_cache_ring_register(adapter);
4886
4887 return 0;
4888
4889 err_alloc_q_vectors:
4890 igc_reset_interrupt_capability(adapter);
4891 return err;
4892 }
4893
4894 /**
4895 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4896 * @adapter: board private structure to initialize
4897 *
4898 * igc_sw_init initializes the Adapter private data structure.
4899 * Fields are initialized based on PCI device information and
4900 * OS network device settings (MTU size).
4901 */
igc_sw_init(struct igc_adapter * adapter)4902 static int igc_sw_init(struct igc_adapter *adapter)
4903 {
4904 struct net_device *netdev = adapter->netdev;
4905 struct pci_dev *pdev = adapter->pdev;
4906 struct igc_hw *hw = &adapter->hw;
4907
4908 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4909
4910 /* set default ring sizes */
4911 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4912 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4913
4914 /* set default ITR values */
4915 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4916 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4917
4918 /* set default work limits */
4919 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4920
4921 /* adjust max frame to be at least the size of a standard frame */
4922 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4923 VLAN_HLEN;
4924 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4925
4926 mutex_init(&adapter->nfc_rule_lock);
4927 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4928 adapter->nfc_rule_count = 0;
4929
4930 spin_lock_init(&adapter->stats64_lock);
4931 spin_lock_init(&adapter->qbv_tx_lock);
4932 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4933 adapter->flags |= IGC_FLAG_HAS_MSIX;
4934
4935 igc_init_queue_configuration(adapter);
4936
4937 /* This call may decrease the number of queues */
4938 if (igc_init_interrupt_scheme(adapter, true)) {
4939 netdev_err(netdev, "Unable to allocate memory for queues\n");
4940 return -ENOMEM;
4941 }
4942
4943 /* Explicitly disable IRQ since the NIC can be in any state. */
4944 igc_irq_disable(adapter);
4945
4946 set_bit(__IGC_DOWN, &adapter->state);
4947
4948 return 0;
4949 }
4950
4951 /**
4952 * igc_up - Open the interface and prepare it to handle traffic
4953 * @adapter: board private structure
4954 */
igc_up(struct igc_adapter * adapter)4955 void igc_up(struct igc_adapter *adapter)
4956 {
4957 struct igc_hw *hw = &adapter->hw;
4958 int i = 0;
4959
4960 /* hardware has been reset, we need to reload some things */
4961 igc_configure(adapter);
4962
4963 clear_bit(__IGC_DOWN, &adapter->state);
4964
4965 for (i = 0; i < adapter->num_q_vectors; i++)
4966 napi_enable(&adapter->q_vector[i]->napi);
4967
4968 if (adapter->msix_entries)
4969 igc_configure_msix(adapter);
4970 else
4971 igc_assign_vector(adapter->q_vector[0], 0);
4972
4973 /* Clear any pending interrupts. */
4974 rd32(IGC_ICR);
4975 igc_irq_enable(adapter);
4976
4977 netif_tx_start_all_queues(adapter->netdev);
4978
4979 /* start the watchdog. */
4980 hw->mac.get_link_status = true;
4981 schedule_work(&adapter->watchdog_task);
4982 }
4983
4984 /**
4985 * igc_update_stats - Update the board statistics counters
4986 * @adapter: board private structure
4987 */
igc_update_stats(struct igc_adapter * adapter)4988 void igc_update_stats(struct igc_adapter *adapter)
4989 {
4990 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4991 struct pci_dev *pdev = adapter->pdev;
4992 struct igc_hw *hw = &adapter->hw;
4993 u64 _bytes, _packets;
4994 u64 bytes, packets;
4995 unsigned int start;
4996 u32 mpc;
4997 int i;
4998
4999 /* Prevent stats update while adapter is being reset, or if the pci
5000 * connection is down.
5001 */
5002 if (adapter->link_speed == 0)
5003 return;
5004 if (pci_channel_offline(pdev))
5005 return;
5006
5007 packets = 0;
5008 bytes = 0;
5009
5010 rcu_read_lock();
5011 for (i = 0; i < adapter->num_rx_queues; i++) {
5012 struct igc_ring *ring = adapter->rx_ring[i];
5013 u32 rqdpc = rd32(IGC_RQDPC(i));
5014
5015 if (hw->mac.type >= igc_i225)
5016 wr32(IGC_RQDPC(i), 0);
5017
5018 if (rqdpc) {
5019 ring->rx_stats.drops += rqdpc;
5020 net_stats->rx_fifo_errors += rqdpc;
5021 }
5022
5023 do {
5024 start = u64_stats_fetch_begin(&ring->rx_syncp);
5025 _bytes = ring->rx_stats.bytes;
5026 _packets = ring->rx_stats.packets;
5027 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5028 bytes += _bytes;
5029 packets += _packets;
5030 }
5031
5032 net_stats->rx_bytes = bytes;
5033 net_stats->rx_packets = packets;
5034
5035 packets = 0;
5036 bytes = 0;
5037 for (i = 0; i < adapter->num_tx_queues; i++) {
5038 struct igc_ring *ring = adapter->tx_ring[i];
5039
5040 do {
5041 start = u64_stats_fetch_begin(&ring->tx_syncp);
5042 _bytes = ring->tx_stats.bytes;
5043 _packets = ring->tx_stats.packets;
5044 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5045 bytes += _bytes;
5046 packets += _packets;
5047 }
5048 net_stats->tx_bytes = bytes;
5049 net_stats->tx_packets = packets;
5050 rcu_read_unlock();
5051
5052 /* read stats registers */
5053 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5054 adapter->stats.gprc += rd32(IGC_GPRC);
5055 adapter->stats.gorc += rd32(IGC_GORCL);
5056 rd32(IGC_GORCH); /* clear GORCL */
5057 adapter->stats.bprc += rd32(IGC_BPRC);
5058 adapter->stats.mprc += rd32(IGC_MPRC);
5059 adapter->stats.roc += rd32(IGC_ROC);
5060
5061 adapter->stats.prc64 += rd32(IGC_PRC64);
5062 adapter->stats.prc127 += rd32(IGC_PRC127);
5063 adapter->stats.prc255 += rd32(IGC_PRC255);
5064 adapter->stats.prc511 += rd32(IGC_PRC511);
5065 adapter->stats.prc1023 += rd32(IGC_PRC1023);
5066 adapter->stats.prc1522 += rd32(IGC_PRC1522);
5067 adapter->stats.tlpic += rd32(IGC_TLPIC);
5068 adapter->stats.rlpic += rd32(IGC_RLPIC);
5069 adapter->stats.hgptc += rd32(IGC_HGPTC);
5070
5071 mpc = rd32(IGC_MPC);
5072 adapter->stats.mpc += mpc;
5073 net_stats->rx_fifo_errors += mpc;
5074 adapter->stats.scc += rd32(IGC_SCC);
5075 adapter->stats.ecol += rd32(IGC_ECOL);
5076 adapter->stats.mcc += rd32(IGC_MCC);
5077 adapter->stats.latecol += rd32(IGC_LATECOL);
5078 adapter->stats.dc += rd32(IGC_DC);
5079 adapter->stats.rlec += rd32(IGC_RLEC);
5080 adapter->stats.xonrxc += rd32(IGC_XONRXC);
5081 adapter->stats.xontxc += rd32(IGC_XONTXC);
5082 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5083 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5084 adapter->stats.fcruc += rd32(IGC_FCRUC);
5085 adapter->stats.gptc += rd32(IGC_GPTC);
5086 adapter->stats.gotc += rd32(IGC_GOTCL);
5087 rd32(IGC_GOTCH); /* clear GOTCL */
5088 adapter->stats.rnbc += rd32(IGC_RNBC);
5089 adapter->stats.ruc += rd32(IGC_RUC);
5090 adapter->stats.rfc += rd32(IGC_RFC);
5091 adapter->stats.rjc += rd32(IGC_RJC);
5092 adapter->stats.tor += rd32(IGC_TORH);
5093 adapter->stats.tot += rd32(IGC_TOTH);
5094 adapter->stats.tpr += rd32(IGC_TPR);
5095
5096 adapter->stats.ptc64 += rd32(IGC_PTC64);
5097 adapter->stats.ptc127 += rd32(IGC_PTC127);
5098 adapter->stats.ptc255 += rd32(IGC_PTC255);
5099 adapter->stats.ptc511 += rd32(IGC_PTC511);
5100 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5101 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5102
5103 adapter->stats.mptc += rd32(IGC_MPTC);
5104 adapter->stats.bptc += rd32(IGC_BPTC);
5105
5106 adapter->stats.tpt += rd32(IGC_TPT);
5107 adapter->stats.colc += rd32(IGC_COLC);
5108 adapter->stats.colc += rd32(IGC_RERC);
5109
5110 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5111
5112 adapter->stats.tsctc += rd32(IGC_TSCTC);
5113
5114 adapter->stats.iac += rd32(IGC_IAC);
5115
5116 /* Fill out the OS statistics structure */
5117 net_stats->multicast = adapter->stats.mprc;
5118 net_stats->collisions = adapter->stats.colc;
5119
5120 /* Rx Errors */
5121
5122 /* RLEC on some newer hardware can be incorrect so build
5123 * our own version based on RUC and ROC
5124 */
5125 net_stats->rx_errors = adapter->stats.rxerrc +
5126 adapter->stats.crcerrs + adapter->stats.algnerrc +
5127 adapter->stats.ruc + adapter->stats.roc +
5128 adapter->stats.cexterr;
5129 net_stats->rx_length_errors = adapter->stats.ruc +
5130 adapter->stats.roc;
5131 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5132 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5133 net_stats->rx_missed_errors = adapter->stats.mpc;
5134
5135 /* Tx Errors */
5136 net_stats->tx_errors = adapter->stats.ecol +
5137 adapter->stats.latecol;
5138 net_stats->tx_aborted_errors = adapter->stats.ecol;
5139 net_stats->tx_window_errors = adapter->stats.latecol;
5140 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5141
5142 /* Tx Dropped */
5143 net_stats->tx_dropped = adapter->stats.txdrop;
5144
5145 /* Management Stats */
5146 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5147 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5148 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5149 }
5150
5151 /**
5152 * igc_down - Close the interface
5153 * @adapter: board private structure
5154 */
igc_down(struct igc_adapter * adapter)5155 void igc_down(struct igc_adapter *adapter)
5156 {
5157 struct net_device *netdev = adapter->netdev;
5158 struct igc_hw *hw = &adapter->hw;
5159 u32 tctl, rctl;
5160 int i = 0;
5161
5162 set_bit(__IGC_DOWN, &adapter->state);
5163
5164 igc_ptp_suspend(adapter);
5165
5166 if (pci_device_is_present(adapter->pdev)) {
5167 /* disable receives in the hardware */
5168 rctl = rd32(IGC_RCTL);
5169 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5170 /* flush and sleep below */
5171 }
5172 /* set trans_start so we don't get spurious watchdogs during reset */
5173 netif_trans_update(netdev);
5174
5175 netif_carrier_off(netdev);
5176 netif_tx_stop_all_queues(netdev);
5177
5178 if (pci_device_is_present(adapter->pdev)) {
5179 /* disable transmits in the hardware */
5180 tctl = rd32(IGC_TCTL);
5181 tctl &= ~IGC_TCTL_EN;
5182 wr32(IGC_TCTL, tctl);
5183 /* flush both disables and wait for them to finish */
5184 wrfl();
5185 usleep_range(10000, 20000);
5186
5187 igc_irq_disable(adapter);
5188 }
5189
5190 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5191
5192 for (i = 0; i < adapter->num_q_vectors; i++) {
5193 if (adapter->q_vector[i]) {
5194 napi_synchronize(&adapter->q_vector[i]->napi);
5195 napi_disable(&adapter->q_vector[i]->napi);
5196 }
5197 }
5198
5199 del_timer_sync(&adapter->watchdog_timer);
5200 del_timer_sync(&adapter->phy_info_timer);
5201
5202 /* record the stats before reset*/
5203 spin_lock(&adapter->stats64_lock);
5204 igc_update_stats(adapter);
5205 spin_unlock(&adapter->stats64_lock);
5206
5207 adapter->link_speed = 0;
5208 adapter->link_duplex = 0;
5209
5210 if (!pci_channel_offline(adapter->pdev))
5211 igc_reset(adapter);
5212
5213 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5214 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5215
5216 igc_disable_all_tx_rings_hw(adapter);
5217 igc_clean_all_tx_rings(adapter);
5218 igc_clean_all_rx_rings(adapter);
5219 }
5220
igc_reinit_locked(struct igc_adapter * adapter)5221 void igc_reinit_locked(struct igc_adapter *adapter)
5222 {
5223 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5224 usleep_range(1000, 2000);
5225 igc_down(adapter);
5226 igc_up(adapter);
5227 clear_bit(__IGC_RESETTING, &adapter->state);
5228 }
5229
igc_reset_task(struct work_struct * work)5230 static void igc_reset_task(struct work_struct *work)
5231 {
5232 struct igc_adapter *adapter;
5233
5234 adapter = container_of(work, struct igc_adapter, reset_task);
5235
5236 rtnl_lock();
5237 /* If we're already down or resetting, just bail */
5238 if (test_bit(__IGC_DOWN, &adapter->state) ||
5239 test_bit(__IGC_RESETTING, &adapter->state)) {
5240 rtnl_unlock();
5241 return;
5242 }
5243
5244 igc_rings_dump(adapter);
5245 igc_regs_dump(adapter);
5246 netdev_err(adapter->netdev, "Reset adapter\n");
5247 igc_reinit_locked(adapter);
5248 rtnl_unlock();
5249 }
5250
5251 /**
5252 * igc_change_mtu - Change the Maximum Transfer Unit
5253 * @netdev: network interface device structure
5254 * @new_mtu: new value for maximum frame size
5255 *
5256 * Returns 0 on success, negative on failure
5257 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5258 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5259 {
5260 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5261 struct igc_adapter *adapter = netdev_priv(netdev);
5262
5263 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5264 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5265 return -EINVAL;
5266 }
5267
5268 /* adjust max frame to be at least the size of a standard frame */
5269 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5270 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5271
5272 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5273 usleep_range(1000, 2000);
5274
5275 /* igc_down has a dependency on max_frame_size */
5276 adapter->max_frame_size = max_frame;
5277
5278 if (netif_running(netdev))
5279 igc_down(adapter);
5280
5281 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282 WRITE_ONCE(netdev->mtu, new_mtu);
5283
5284 if (netif_running(netdev))
5285 igc_up(adapter);
5286 else
5287 igc_reset(adapter);
5288
5289 clear_bit(__IGC_RESETTING, &adapter->state);
5290
5291 return 0;
5292 }
5293
5294 /**
5295 * igc_tx_timeout - Respond to a Tx Hang
5296 * @netdev: network interface device structure
5297 * @txqueue: queue number that timed out
5298 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5299 static void igc_tx_timeout(struct net_device *netdev,
5300 unsigned int __always_unused txqueue)
5301 {
5302 struct igc_adapter *adapter = netdev_priv(netdev);
5303 struct igc_hw *hw = &adapter->hw;
5304
5305 /* Do the reset outside of interrupt context */
5306 adapter->tx_timeout_count++;
5307 schedule_work(&adapter->reset_task);
5308 wr32(IGC_EICS,
5309 (adapter->eims_enable_mask & ~adapter->eims_other));
5310 }
5311
5312 /**
5313 * igc_get_stats64 - Get System Network Statistics
5314 * @netdev: network interface device structure
5315 * @stats: rtnl_link_stats64 pointer
5316 *
5317 * Returns the address of the device statistics structure.
5318 * The statistics are updated here and also from the timer callback.
5319 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5320 static void igc_get_stats64(struct net_device *netdev,
5321 struct rtnl_link_stats64 *stats)
5322 {
5323 struct igc_adapter *adapter = netdev_priv(netdev);
5324
5325 spin_lock(&adapter->stats64_lock);
5326 if (!test_bit(__IGC_RESETTING, &adapter->state))
5327 igc_update_stats(adapter);
5328 memcpy(stats, &adapter->stats64, sizeof(*stats));
5329 spin_unlock(&adapter->stats64_lock);
5330 }
5331
igc_fix_features(struct net_device * netdev,netdev_features_t features)5332 static netdev_features_t igc_fix_features(struct net_device *netdev,
5333 netdev_features_t features)
5334 {
5335 /* Since there is no support for separate Rx/Tx vlan accel
5336 * enable/disable make sure Tx flag is always in same state as Rx.
5337 */
5338 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5339 features |= NETIF_F_HW_VLAN_CTAG_TX;
5340 else
5341 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5342
5343 return features;
5344 }
5345
igc_set_features(struct net_device * netdev,netdev_features_t features)5346 static int igc_set_features(struct net_device *netdev,
5347 netdev_features_t features)
5348 {
5349 netdev_features_t changed = netdev->features ^ features;
5350 struct igc_adapter *adapter = netdev_priv(netdev);
5351
5352 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5353 igc_vlan_mode(netdev, features);
5354
5355 /* Add VLAN support */
5356 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5357 return 0;
5358
5359 if (!(features & NETIF_F_NTUPLE))
5360 igc_flush_nfc_rules(adapter);
5361
5362 netdev->features = features;
5363
5364 if (netif_running(netdev))
5365 igc_reinit_locked(adapter);
5366 else
5367 igc_reset(adapter);
5368
5369 return 1;
5370 }
5371
5372 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5373 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5374 netdev_features_t features)
5375 {
5376 unsigned int network_hdr_len, mac_hdr_len;
5377
5378 /* Make certain the headers can be described by a context descriptor */
5379 mac_hdr_len = skb_network_offset(skb);
5380 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5381 return features & ~(NETIF_F_HW_CSUM |
5382 NETIF_F_SCTP_CRC |
5383 NETIF_F_HW_VLAN_CTAG_TX |
5384 NETIF_F_TSO |
5385 NETIF_F_TSO6);
5386
5387 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5388 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5389 return features & ~(NETIF_F_HW_CSUM |
5390 NETIF_F_SCTP_CRC |
5391 NETIF_F_TSO |
5392 NETIF_F_TSO6);
5393
5394 /* We can only support IPv4 TSO in tunnels if we can mangle the
5395 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5396 */
5397 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5398 features &= ~NETIF_F_TSO;
5399
5400 return features;
5401 }
5402
igc_tsync_interrupt(struct igc_adapter * adapter)5403 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5404 {
5405 struct igc_hw *hw = &adapter->hw;
5406 u32 tsauxc, sec, nsec, tsicr;
5407 struct ptp_clock_event event;
5408 struct timespec64 ts;
5409
5410 tsicr = rd32(IGC_TSICR);
5411
5412 if (tsicr & IGC_TSICR_SYS_WRAP) {
5413 event.type = PTP_CLOCK_PPS;
5414 if (adapter->ptp_caps.pps)
5415 ptp_clock_event(adapter->ptp_clock, &event);
5416 }
5417
5418 if (tsicr & IGC_TSICR_TXTS) {
5419 /* retrieve hardware timestamp */
5420 igc_ptp_tx_tstamp_event(adapter);
5421 }
5422
5423 if (tsicr & IGC_TSICR_TT0) {
5424 spin_lock(&adapter->tmreg_lock);
5425 ts = timespec64_add(adapter->perout[0].start,
5426 adapter->perout[0].period);
5427 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5428 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5429 tsauxc = rd32(IGC_TSAUXC);
5430 tsauxc |= IGC_TSAUXC_EN_TT0;
5431 wr32(IGC_TSAUXC, tsauxc);
5432 adapter->perout[0].start = ts;
5433 spin_unlock(&adapter->tmreg_lock);
5434 }
5435
5436 if (tsicr & IGC_TSICR_TT1) {
5437 spin_lock(&adapter->tmreg_lock);
5438 ts = timespec64_add(adapter->perout[1].start,
5439 adapter->perout[1].period);
5440 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5441 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5442 tsauxc = rd32(IGC_TSAUXC);
5443 tsauxc |= IGC_TSAUXC_EN_TT1;
5444 wr32(IGC_TSAUXC, tsauxc);
5445 adapter->perout[1].start = ts;
5446 spin_unlock(&adapter->tmreg_lock);
5447 }
5448
5449 if (tsicr & IGC_TSICR_AUTT0) {
5450 nsec = rd32(IGC_AUXSTMPL0);
5451 sec = rd32(IGC_AUXSTMPH0);
5452 event.type = PTP_CLOCK_EXTTS;
5453 event.index = 0;
5454 event.timestamp = sec * NSEC_PER_SEC + nsec;
5455 ptp_clock_event(adapter->ptp_clock, &event);
5456 }
5457
5458 if (tsicr & IGC_TSICR_AUTT1) {
5459 nsec = rd32(IGC_AUXSTMPL1);
5460 sec = rd32(IGC_AUXSTMPH1);
5461 event.type = PTP_CLOCK_EXTTS;
5462 event.index = 1;
5463 event.timestamp = sec * NSEC_PER_SEC + nsec;
5464 ptp_clock_event(adapter->ptp_clock, &event);
5465 }
5466 }
5467
5468 /**
5469 * igc_msix_other - msix other interrupt handler
5470 * @irq: interrupt number
5471 * @data: pointer to a q_vector
5472 */
igc_msix_other(int irq,void * data)5473 static irqreturn_t igc_msix_other(int irq, void *data)
5474 {
5475 struct igc_adapter *adapter = data;
5476 struct igc_hw *hw = &adapter->hw;
5477 u32 icr = rd32(IGC_ICR);
5478
5479 /* reading ICR causes bit 31 of EICR to be cleared */
5480 if (icr & IGC_ICR_DRSTA)
5481 schedule_work(&adapter->reset_task);
5482
5483 if (icr & IGC_ICR_DOUTSYNC) {
5484 /* HW is reporting DMA is out of sync */
5485 adapter->stats.doosync++;
5486 }
5487
5488 if (icr & IGC_ICR_LSC) {
5489 hw->mac.get_link_status = true;
5490 /* guard against interrupt when we're going down */
5491 if (!test_bit(__IGC_DOWN, &adapter->state))
5492 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5493 }
5494
5495 if (icr & IGC_ICR_TS)
5496 igc_tsync_interrupt(adapter);
5497
5498 wr32(IGC_EIMS, adapter->eims_other);
5499
5500 return IRQ_HANDLED;
5501 }
5502
igc_write_itr(struct igc_q_vector * q_vector)5503 static void igc_write_itr(struct igc_q_vector *q_vector)
5504 {
5505 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5506
5507 if (!q_vector->set_itr)
5508 return;
5509
5510 if (!itr_val)
5511 itr_val = IGC_ITR_VAL_MASK;
5512
5513 itr_val |= IGC_EITR_CNT_IGNR;
5514
5515 writel(itr_val, q_vector->itr_register);
5516 q_vector->set_itr = 0;
5517 }
5518
igc_msix_ring(int irq,void * data)5519 static irqreturn_t igc_msix_ring(int irq, void *data)
5520 {
5521 struct igc_q_vector *q_vector = data;
5522
5523 /* Write the ITR value calculated from the previous interrupt. */
5524 igc_write_itr(q_vector);
5525
5526 napi_schedule(&q_vector->napi);
5527
5528 return IRQ_HANDLED;
5529 }
5530
5531 /**
5532 * igc_request_msix - Initialize MSI-X interrupts
5533 * @adapter: Pointer to adapter structure
5534 *
5535 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5536 * kernel.
5537 */
igc_request_msix(struct igc_adapter * adapter)5538 static int igc_request_msix(struct igc_adapter *adapter)
5539 {
5540 unsigned int num_q_vectors = adapter->num_q_vectors;
5541 int i = 0, err = 0, vector = 0, free_vector = 0;
5542 struct net_device *netdev = adapter->netdev;
5543
5544 err = request_irq(adapter->msix_entries[vector].vector,
5545 &igc_msix_other, 0, netdev->name, adapter);
5546 if (err)
5547 goto err_out;
5548
5549 if (num_q_vectors > MAX_Q_VECTORS) {
5550 num_q_vectors = MAX_Q_VECTORS;
5551 dev_warn(&adapter->pdev->dev,
5552 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5553 adapter->num_q_vectors, MAX_Q_VECTORS);
5554 }
5555 for (i = 0; i < num_q_vectors; i++) {
5556 struct igc_q_vector *q_vector = adapter->q_vector[i];
5557
5558 vector++;
5559
5560 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5561
5562 if (q_vector->rx.ring && q_vector->tx.ring)
5563 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5564 q_vector->rx.ring->queue_index);
5565 else if (q_vector->tx.ring)
5566 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5567 q_vector->tx.ring->queue_index);
5568 else if (q_vector->rx.ring)
5569 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5570 q_vector->rx.ring->queue_index);
5571 else
5572 sprintf(q_vector->name, "%s-unused", netdev->name);
5573
5574 err = request_irq(adapter->msix_entries[vector].vector,
5575 igc_msix_ring, 0, q_vector->name,
5576 q_vector);
5577 if (err)
5578 goto err_free;
5579 }
5580
5581 igc_configure_msix(adapter);
5582 return 0;
5583
5584 err_free:
5585 /* free already assigned IRQs */
5586 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5587
5588 vector--;
5589 for (i = 0; i < vector; i++) {
5590 free_irq(adapter->msix_entries[free_vector++].vector,
5591 adapter->q_vector[i]);
5592 }
5593 err_out:
5594 return err;
5595 }
5596
5597 /**
5598 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5599 * @adapter: Pointer to adapter structure
5600 *
5601 * This function resets the device so that it has 0 rx queues, tx queues, and
5602 * MSI-X interrupts allocated.
5603 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5604 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5605 {
5606 igc_free_q_vectors(adapter);
5607 igc_reset_interrupt_capability(adapter);
5608 }
5609
5610 /* Need to wait a few seconds after link up to get diagnostic information from
5611 * the phy
5612 */
igc_update_phy_info(struct timer_list * t)5613 static void igc_update_phy_info(struct timer_list *t)
5614 {
5615 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5616
5617 igc_get_phy_info(&adapter->hw);
5618 }
5619
5620 /**
5621 * igc_has_link - check shared code for link and determine up/down
5622 * @adapter: pointer to driver private info
5623 */
igc_has_link(struct igc_adapter * adapter)5624 bool igc_has_link(struct igc_adapter *adapter)
5625 {
5626 struct igc_hw *hw = &adapter->hw;
5627 bool link_active = false;
5628
5629 /* get_link_status is set on LSC (link status) interrupt or
5630 * rx sequence error interrupt. get_link_status will stay
5631 * false until the igc_check_for_link establishes link
5632 * for copper adapters ONLY
5633 */
5634 if (!hw->mac.get_link_status)
5635 return true;
5636 hw->mac.ops.check_for_link(hw);
5637 link_active = !hw->mac.get_link_status;
5638
5639 if (hw->mac.type == igc_i225) {
5640 if (!netif_carrier_ok(adapter->netdev)) {
5641 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5642 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5643 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5644 adapter->link_check_timeout = jiffies;
5645 }
5646 }
5647
5648 return link_active;
5649 }
5650
5651 /**
5652 * igc_watchdog - Timer Call-back
5653 * @t: timer for the watchdog
5654 */
igc_watchdog(struct timer_list * t)5655 static void igc_watchdog(struct timer_list *t)
5656 {
5657 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5658 /* Do the rest outside of interrupt context */
5659 schedule_work(&adapter->watchdog_task);
5660 }
5661
igc_watchdog_task(struct work_struct * work)5662 static void igc_watchdog_task(struct work_struct *work)
5663 {
5664 struct igc_adapter *adapter = container_of(work,
5665 struct igc_adapter,
5666 watchdog_task);
5667 struct net_device *netdev = adapter->netdev;
5668 struct igc_hw *hw = &adapter->hw;
5669 struct igc_phy_info *phy = &hw->phy;
5670 u16 phy_data, retry_count = 20;
5671 u32 link;
5672 int i;
5673
5674 link = igc_has_link(adapter);
5675
5676 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5677 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5678 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5679 else
5680 link = false;
5681 }
5682
5683 if (link) {
5684 /* Cancel scheduled suspend requests. */
5685 pm_runtime_resume(netdev->dev.parent);
5686
5687 if (!netif_carrier_ok(netdev)) {
5688 u32 ctrl;
5689
5690 hw->mac.ops.get_speed_and_duplex(hw,
5691 &adapter->link_speed,
5692 &adapter->link_duplex);
5693
5694 ctrl = rd32(IGC_CTRL);
5695 /* Link status message must follow this format */
5696 netdev_info(netdev,
5697 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5698 adapter->link_speed,
5699 adapter->link_duplex == FULL_DUPLEX ?
5700 "Full" : "Half",
5701 (ctrl & IGC_CTRL_TFCE) &&
5702 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5703 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5704 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5705
5706 /* disable EEE if enabled */
5707 if ((adapter->flags & IGC_FLAG_EEE) &&
5708 adapter->link_duplex == HALF_DUPLEX) {
5709 netdev_info(netdev,
5710 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5711 adapter->hw.dev_spec._base.eee_enable = false;
5712 adapter->flags &= ~IGC_FLAG_EEE;
5713 }
5714
5715 /* check if SmartSpeed worked */
5716 igc_check_downshift(hw);
5717 if (phy->speed_downgraded)
5718 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5719
5720 /* adjust timeout factor according to speed/duplex */
5721 adapter->tx_timeout_factor = 1;
5722 switch (adapter->link_speed) {
5723 case SPEED_10:
5724 adapter->tx_timeout_factor = 14;
5725 break;
5726 case SPEED_100:
5727 case SPEED_1000:
5728 case SPEED_2500:
5729 adapter->tx_timeout_factor = 1;
5730 break;
5731 }
5732
5733 /* Once the launch time has been set on the wire, there
5734 * is a delay before the link speed can be determined
5735 * based on link-up activity. Write into the register
5736 * as soon as we know the correct link speed.
5737 */
5738 igc_tsn_adjust_txtime_offset(adapter);
5739
5740 if (adapter->link_speed != SPEED_1000)
5741 goto no_wait;
5742
5743 /* wait for Remote receiver status OK */
5744 retry_read_status:
5745 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5746 &phy_data)) {
5747 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5748 retry_count) {
5749 msleep(100);
5750 retry_count--;
5751 goto retry_read_status;
5752 } else if (!retry_count) {
5753 netdev_err(netdev, "exceed max 2 second\n");
5754 }
5755 } else {
5756 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5757 }
5758 no_wait:
5759 netif_carrier_on(netdev);
5760
5761 /* link state has changed, schedule phy info update */
5762 if (!test_bit(__IGC_DOWN, &adapter->state))
5763 mod_timer(&adapter->phy_info_timer,
5764 round_jiffies(jiffies + 2 * HZ));
5765 }
5766 } else {
5767 if (netif_carrier_ok(netdev)) {
5768 adapter->link_speed = 0;
5769 adapter->link_duplex = 0;
5770
5771 /* Links status message must follow this format */
5772 netdev_info(netdev, "NIC Link is Down\n");
5773 netif_carrier_off(netdev);
5774
5775 /* link state has changed, schedule phy info update */
5776 if (!test_bit(__IGC_DOWN, &adapter->state))
5777 mod_timer(&adapter->phy_info_timer,
5778 round_jiffies(jiffies + 2 * HZ));
5779
5780 pm_schedule_suspend(netdev->dev.parent,
5781 MSEC_PER_SEC * 5);
5782 }
5783 }
5784
5785 spin_lock(&adapter->stats64_lock);
5786 igc_update_stats(adapter);
5787 spin_unlock(&adapter->stats64_lock);
5788
5789 for (i = 0; i < adapter->num_tx_queues; i++) {
5790 struct igc_ring *tx_ring = adapter->tx_ring[i];
5791
5792 if (!netif_carrier_ok(netdev)) {
5793 /* We've lost link, so the controller stops DMA,
5794 * but we've got queued Tx work that's never going
5795 * to get done, so reset controller to flush Tx.
5796 * (Do the reset outside of interrupt context).
5797 */
5798 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5799 adapter->tx_timeout_count++;
5800 schedule_work(&adapter->reset_task);
5801 /* return immediately since reset is imminent */
5802 return;
5803 }
5804 }
5805
5806 /* Force detection of hung controller every watchdog period */
5807 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5808 }
5809
5810 /* Cause software interrupt to ensure Rx ring is cleaned */
5811 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5812 u32 eics = 0;
5813
5814 for (i = 0; i < adapter->num_q_vectors; i++) {
5815 struct igc_q_vector *q_vector = adapter->q_vector[i];
5816 struct igc_ring *rx_ring;
5817
5818 if (!q_vector->rx.ring)
5819 continue;
5820
5821 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5822
5823 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5824 eics |= q_vector->eims_value;
5825 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5826 }
5827 }
5828 if (eics)
5829 wr32(IGC_EICS, eics);
5830 } else {
5831 struct igc_ring *rx_ring = adapter->rx_ring[0];
5832
5833 if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5834 clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5835 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5836 }
5837 }
5838
5839 igc_ptp_tx_hang(adapter);
5840
5841 /* Reset the timer */
5842 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5843 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5844 mod_timer(&adapter->watchdog_timer,
5845 round_jiffies(jiffies + HZ));
5846 else
5847 mod_timer(&adapter->watchdog_timer,
5848 round_jiffies(jiffies + 2 * HZ));
5849 }
5850 }
5851
5852 /**
5853 * igc_intr_msi - Interrupt Handler
5854 * @irq: interrupt number
5855 * @data: pointer to a network interface device structure
5856 */
igc_intr_msi(int irq,void * data)5857 static irqreturn_t igc_intr_msi(int irq, void *data)
5858 {
5859 struct igc_adapter *adapter = data;
5860 struct igc_q_vector *q_vector = adapter->q_vector[0];
5861 struct igc_hw *hw = &adapter->hw;
5862 /* read ICR disables interrupts using IAM */
5863 u32 icr = rd32(IGC_ICR);
5864
5865 igc_write_itr(q_vector);
5866
5867 if (icr & IGC_ICR_DRSTA)
5868 schedule_work(&adapter->reset_task);
5869
5870 if (icr & IGC_ICR_DOUTSYNC) {
5871 /* HW is reporting DMA is out of sync */
5872 adapter->stats.doosync++;
5873 }
5874
5875 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5876 hw->mac.get_link_status = true;
5877 if (!test_bit(__IGC_DOWN, &adapter->state))
5878 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5879 }
5880
5881 if (icr & IGC_ICR_TS)
5882 igc_tsync_interrupt(adapter);
5883
5884 napi_schedule(&q_vector->napi);
5885
5886 return IRQ_HANDLED;
5887 }
5888
5889 /**
5890 * igc_intr - Legacy Interrupt Handler
5891 * @irq: interrupt number
5892 * @data: pointer to a network interface device structure
5893 */
igc_intr(int irq,void * data)5894 static irqreturn_t igc_intr(int irq, void *data)
5895 {
5896 struct igc_adapter *adapter = data;
5897 struct igc_q_vector *q_vector = adapter->q_vector[0];
5898 struct igc_hw *hw = &adapter->hw;
5899 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5900 * need for the IMC write
5901 */
5902 u32 icr = rd32(IGC_ICR);
5903
5904 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5905 * not set, then the adapter didn't send an interrupt
5906 */
5907 if (!(icr & IGC_ICR_INT_ASSERTED))
5908 return IRQ_NONE;
5909
5910 igc_write_itr(q_vector);
5911
5912 if (icr & IGC_ICR_DRSTA)
5913 schedule_work(&adapter->reset_task);
5914
5915 if (icr & IGC_ICR_DOUTSYNC) {
5916 /* HW is reporting DMA is out of sync */
5917 adapter->stats.doosync++;
5918 }
5919
5920 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5921 hw->mac.get_link_status = true;
5922 /* guard against interrupt when we're going down */
5923 if (!test_bit(__IGC_DOWN, &adapter->state))
5924 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5925 }
5926
5927 if (icr & IGC_ICR_TS)
5928 igc_tsync_interrupt(adapter);
5929
5930 napi_schedule(&q_vector->napi);
5931
5932 return IRQ_HANDLED;
5933 }
5934
igc_free_irq(struct igc_adapter * adapter)5935 static void igc_free_irq(struct igc_adapter *adapter)
5936 {
5937 if (adapter->msix_entries) {
5938 int vector = 0, i;
5939
5940 free_irq(adapter->msix_entries[vector++].vector, adapter);
5941
5942 for (i = 0; i < adapter->num_q_vectors; i++)
5943 free_irq(adapter->msix_entries[vector++].vector,
5944 adapter->q_vector[i]);
5945 } else {
5946 free_irq(adapter->pdev->irq, adapter);
5947 }
5948 }
5949
5950 /**
5951 * igc_request_irq - initialize interrupts
5952 * @adapter: Pointer to adapter structure
5953 *
5954 * Attempts to configure interrupts using the best available
5955 * capabilities of the hardware and kernel.
5956 */
igc_request_irq(struct igc_adapter * adapter)5957 static int igc_request_irq(struct igc_adapter *adapter)
5958 {
5959 struct net_device *netdev = adapter->netdev;
5960 struct pci_dev *pdev = adapter->pdev;
5961 int err = 0;
5962
5963 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5964 err = igc_request_msix(adapter);
5965 if (!err)
5966 goto request_done;
5967 /* fall back to MSI */
5968 igc_free_all_tx_resources(adapter);
5969 igc_free_all_rx_resources(adapter);
5970
5971 igc_clear_interrupt_scheme(adapter);
5972 err = igc_init_interrupt_scheme(adapter, false);
5973 if (err)
5974 goto request_done;
5975 igc_setup_all_tx_resources(adapter);
5976 igc_setup_all_rx_resources(adapter);
5977 igc_configure(adapter);
5978 }
5979
5980 igc_assign_vector(adapter->q_vector[0], 0);
5981
5982 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5983 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5984 netdev->name, adapter);
5985 if (!err)
5986 goto request_done;
5987
5988 /* fall back to legacy interrupts */
5989 igc_reset_interrupt_capability(adapter);
5990 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5991 }
5992
5993 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5994 netdev->name, adapter);
5995
5996 if (err)
5997 netdev_err(netdev, "Error %d getting interrupt\n", err);
5998
5999 request_done:
6000 return err;
6001 }
6002
6003 /**
6004 * __igc_open - Called when a network interface is made active
6005 * @netdev: network interface device structure
6006 * @resuming: boolean indicating if the device is resuming
6007 *
6008 * Returns 0 on success, negative value on failure
6009 *
6010 * The open entry point is called when a network interface is made
6011 * active by the system (IFF_UP). At this point all resources needed
6012 * for transmit and receive operations are allocated, the interrupt
6013 * handler is registered with the OS, the watchdog timer is started,
6014 * and the stack is notified that the interface is ready.
6015 */
__igc_open(struct net_device * netdev,bool resuming)6016 static int __igc_open(struct net_device *netdev, bool resuming)
6017 {
6018 struct igc_adapter *adapter = netdev_priv(netdev);
6019 struct pci_dev *pdev = adapter->pdev;
6020 struct igc_hw *hw = &adapter->hw;
6021 int err = 0;
6022 int i = 0;
6023
6024 /* disallow open during test */
6025
6026 if (test_bit(__IGC_TESTING, &adapter->state)) {
6027 WARN_ON(resuming);
6028 return -EBUSY;
6029 }
6030
6031 if (!resuming)
6032 pm_runtime_get_sync(&pdev->dev);
6033
6034 netif_carrier_off(netdev);
6035
6036 /* allocate transmit descriptors */
6037 err = igc_setup_all_tx_resources(adapter);
6038 if (err)
6039 goto err_setup_tx;
6040
6041 /* allocate receive descriptors */
6042 err = igc_setup_all_rx_resources(adapter);
6043 if (err)
6044 goto err_setup_rx;
6045
6046 igc_power_up_link(adapter);
6047
6048 igc_configure(adapter);
6049
6050 err = igc_request_irq(adapter);
6051 if (err)
6052 goto err_req_irq;
6053
6054 clear_bit(__IGC_DOWN, &adapter->state);
6055
6056 for (i = 0; i < adapter->num_q_vectors; i++)
6057 napi_enable(&adapter->q_vector[i]->napi);
6058
6059 /* Clear any pending interrupts. */
6060 rd32(IGC_ICR);
6061 igc_irq_enable(adapter);
6062
6063 if (!resuming)
6064 pm_runtime_put(&pdev->dev);
6065
6066 netif_tx_start_all_queues(netdev);
6067
6068 /* start the watchdog. */
6069 hw->mac.get_link_status = true;
6070 schedule_work(&adapter->watchdog_task);
6071
6072 return IGC_SUCCESS;
6073
6074 err_req_irq:
6075 igc_release_hw_control(adapter);
6076 igc_power_down_phy_copper_base(&adapter->hw);
6077 igc_free_all_rx_resources(adapter);
6078 err_setup_rx:
6079 igc_free_all_tx_resources(adapter);
6080 err_setup_tx:
6081 igc_reset(adapter);
6082 if (!resuming)
6083 pm_runtime_put(&pdev->dev);
6084
6085 return err;
6086 }
6087
igc_open(struct net_device * netdev)6088 int igc_open(struct net_device *netdev)
6089 {
6090 struct igc_adapter *adapter = netdev_priv(netdev);
6091 int err;
6092
6093 /* Notify the stack of the actual queue counts. */
6094 err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6095 adapter->num_rx_queues);
6096 if (err) {
6097 netdev_err(netdev, "error setting real queue count\n");
6098 return err;
6099 }
6100
6101 return __igc_open(netdev, false);
6102 }
6103
6104 /**
6105 * __igc_close - Disables a network interface
6106 * @netdev: network interface device structure
6107 * @suspending: boolean indicating the device is suspending
6108 *
6109 * Returns 0, this is not allowed to fail
6110 *
6111 * The close entry point is called when an interface is de-activated
6112 * by the OS. The hardware is still under the driver's control, but
6113 * needs to be disabled. A global MAC reset is issued to stop the
6114 * hardware, and all transmit and receive resources are freed.
6115 */
__igc_close(struct net_device * netdev,bool suspending)6116 static int __igc_close(struct net_device *netdev, bool suspending)
6117 {
6118 struct igc_adapter *adapter = netdev_priv(netdev);
6119 struct pci_dev *pdev = adapter->pdev;
6120
6121 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6122
6123 if (!suspending)
6124 pm_runtime_get_sync(&pdev->dev);
6125
6126 igc_down(adapter);
6127
6128 igc_release_hw_control(adapter);
6129
6130 igc_free_irq(adapter);
6131
6132 igc_free_all_tx_resources(adapter);
6133 igc_free_all_rx_resources(adapter);
6134
6135 if (!suspending)
6136 pm_runtime_put_sync(&pdev->dev);
6137
6138 return 0;
6139 }
6140
igc_close(struct net_device * netdev)6141 int igc_close(struct net_device *netdev)
6142 {
6143 if (netif_device_present(netdev) || netdev->dismantle)
6144 return __igc_close(netdev, false);
6145 return 0;
6146 }
6147
6148 /**
6149 * igc_ioctl - Access the hwtstamp interface
6150 * @netdev: network interface device structure
6151 * @ifr: interface request data
6152 * @cmd: ioctl command
6153 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6154 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6155 {
6156 switch (cmd) {
6157 case SIOCGHWTSTAMP:
6158 return igc_ptp_get_ts_config(netdev, ifr);
6159 case SIOCSHWTSTAMP:
6160 return igc_ptp_set_ts_config(netdev, ifr);
6161 default:
6162 return -EOPNOTSUPP;
6163 }
6164 }
6165
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6166 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6167 bool enable)
6168 {
6169 struct igc_ring *ring;
6170
6171 if (queue < 0 || queue >= adapter->num_tx_queues)
6172 return -EINVAL;
6173
6174 ring = adapter->tx_ring[queue];
6175 ring->launchtime_enable = enable;
6176
6177 return 0;
6178 }
6179
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6180 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6181 {
6182 struct timespec64 b;
6183
6184 b = ktime_to_timespec64(base_time);
6185
6186 return timespec64_compare(now, &b) > 0;
6187 }
6188
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6189 static bool validate_schedule(struct igc_adapter *adapter,
6190 const struct tc_taprio_qopt_offload *qopt)
6191 {
6192 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6193 struct igc_hw *hw = &adapter->hw;
6194 struct timespec64 now;
6195 size_t n;
6196
6197 if (qopt->cycle_time_extension)
6198 return false;
6199
6200 igc_ptp_read(adapter, &now);
6201
6202 /* If we program the controller's BASET registers with a time
6203 * in the future, it will hold all the packets until that
6204 * time, causing a lot of TX Hangs, so to avoid that, we
6205 * reject schedules that would start in the future.
6206 * Note: Limitation above is no longer in i226.
6207 */
6208 if (!is_base_time_past(qopt->base_time, &now) &&
6209 igc_is_device_id_i225(hw))
6210 return false;
6211
6212 for (n = 0; n < qopt->num_entries; n++) {
6213 const struct tc_taprio_sched_entry *e, *prev;
6214 int i;
6215
6216 prev = n ? &qopt->entries[n - 1] : NULL;
6217 e = &qopt->entries[n];
6218
6219 /* i225 only supports "global" frame preemption
6220 * settings.
6221 */
6222 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6223 return false;
6224
6225 for (i = 0; i < adapter->num_tx_queues; i++)
6226 if (e->gate_mask & BIT(i)) {
6227 queue_uses[i]++;
6228
6229 /* There are limitations: A single queue cannot
6230 * be opened and closed multiple times per cycle
6231 * unless the gate stays open. Check for it.
6232 */
6233 if (queue_uses[i] > 1 &&
6234 !(prev->gate_mask & BIT(i)))
6235 return false;
6236 }
6237 }
6238
6239 return true;
6240 }
6241
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6242 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6243 struct tc_etf_qopt_offload *qopt)
6244 {
6245 struct igc_hw *hw = &adapter->hw;
6246 int err;
6247
6248 if (hw->mac.type != igc_i225)
6249 return -EOPNOTSUPP;
6250
6251 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6252 if (err)
6253 return err;
6254
6255 return igc_tsn_offload_apply(adapter);
6256 }
6257
igc_qbv_clear_schedule(struct igc_adapter * adapter)6258 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6259 {
6260 unsigned long flags;
6261 int i;
6262
6263 adapter->base_time = 0;
6264 adapter->cycle_time = NSEC_PER_SEC;
6265 adapter->taprio_offload_enable = false;
6266 adapter->qbv_config_change_errors = 0;
6267 adapter->qbv_count = 0;
6268
6269 for (i = 0; i < adapter->num_tx_queues; i++) {
6270 struct igc_ring *ring = adapter->tx_ring[i];
6271
6272 ring->start_time = 0;
6273 ring->end_time = NSEC_PER_SEC;
6274 ring->max_sdu = 0;
6275 }
6276
6277 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6278
6279 adapter->qbv_transition = false;
6280
6281 for (i = 0; i < adapter->num_tx_queues; i++) {
6282 struct igc_ring *ring = adapter->tx_ring[i];
6283
6284 ring->oper_gate_closed = false;
6285 ring->admin_gate_closed = false;
6286 }
6287
6288 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6289
6290 return 0;
6291 }
6292
igc_tsn_clear_schedule(struct igc_adapter * adapter)6293 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6294 {
6295 igc_qbv_clear_schedule(adapter);
6296
6297 return 0;
6298 }
6299
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6300 static void igc_taprio_stats(struct net_device *dev,
6301 struct tc_taprio_qopt_stats *stats)
6302 {
6303 /* When Strict_End is enabled, the tx_overruns counter
6304 * will always be zero.
6305 */
6306 stats->tx_overruns = 0;
6307 }
6308
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6309 static void igc_taprio_queue_stats(struct net_device *dev,
6310 struct tc_taprio_qopt_queue_stats *queue_stats)
6311 {
6312 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6313
6314 /* When Strict_End is enabled, the tx_overruns counter
6315 * will always be zero.
6316 */
6317 stats->tx_overruns = 0;
6318 }
6319
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6320 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6321 struct tc_taprio_qopt_offload *qopt)
6322 {
6323 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6324 struct igc_hw *hw = &adapter->hw;
6325 u32 start_time = 0, end_time = 0;
6326 struct timespec64 now;
6327 unsigned long flags;
6328 size_t n;
6329 int i;
6330
6331 if (qopt->base_time < 0)
6332 return -ERANGE;
6333
6334 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6335 return -EALREADY;
6336
6337 if (!validate_schedule(adapter, qopt))
6338 return -EINVAL;
6339
6340 igc_ptp_read(adapter, &now);
6341
6342 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6343 is_base_time_past(qopt->base_time, &now))
6344 adapter->qbv_config_change_errors++;
6345
6346 adapter->cycle_time = qopt->cycle_time;
6347 adapter->base_time = qopt->base_time;
6348 adapter->taprio_offload_enable = true;
6349
6350 for (n = 0; n < qopt->num_entries; n++) {
6351 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6352
6353 end_time += e->interval;
6354
6355 /* If any of the conditions below are true, we need to manually
6356 * control the end time of the cycle.
6357 * 1. Qbv users can specify a cycle time that is not equal
6358 * to the total GCL intervals. Hence, recalculation is
6359 * necessary here to exclude the time interval that
6360 * exceeds the cycle time.
6361 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6362 * once the end of the list is reached, it will switch
6363 * to the END_OF_CYCLE state and leave the gates in the
6364 * same state until the next cycle is started.
6365 */
6366 if (end_time > adapter->cycle_time ||
6367 n + 1 == qopt->num_entries)
6368 end_time = adapter->cycle_time;
6369
6370 for (i = 0; i < adapter->num_tx_queues; i++) {
6371 struct igc_ring *ring = adapter->tx_ring[i];
6372
6373 if (!(e->gate_mask & BIT(i)))
6374 continue;
6375
6376 /* Check whether a queue stays open for more than one
6377 * entry. If so, keep the start and advance the end
6378 * time.
6379 */
6380 if (!queue_configured[i])
6381 ring->start_time = start_time;
6382 ring->end_time = end_time;
6383
6384 if (ring->start_time >= adapter->cycle_time)
6385 queue_configured[i] = false;
6386 else
6387 queue_configured[i] = true;
6388 }
6389
6390 start_time += e->interval;
6391 }
6392
6393 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6394
6395 /* Check whether a queue gets configured.
6396 * If not, set the start and end time to be end time.
6397 */
6398 for (i = 0; i < adapter->num_tx_queues; i++) {
6399 struct igc_ring *ring = adapter->tx_ring[i];
6400
6401 if (!is_base_time_past(qopt->base_time, &now)) {
6402 ring->admin_gate_closed = false;
6403 } else {
6404 ring->oper_gate_closed = false;
6405 ring->admin_gate_closed = false;
6406 }
6407
6408 if (!queue_configured[i]) {
6409 if (!is_base_time_past(qopt->base_time, &now))
6410 ring->admin_gate_closed = true;
6411 else
6412 ring->oper_gate_closed = true;
6413
6414 ring->start_time = end_time;
6415 ring->end_time = end_time;
6416 }
6417 }
6418
6419 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6420
6421 for (i = 0; i < adapter->num_tx_queues; i++) {
6422 struct igc_ring *ring = adapter->tx_ring[i];
6423 struct net_device *dev = adapter->netdev;
6424
6425 if (qopt->max_sdu[i])
6426 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6427 else
6428 ring->max_sdu = 0;
6429 }
6430
6431 return 0;
6432 }
6433
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6434 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6435 struct tc_taprio_qopt_offload *qopt)
6436 {
6437 struct igc_hw *hw = &adapter->hw;
6438 int err;
6439
6440 if (hw->mac.type != igc_i225)
6441 return -EOPNOTSUPP;
6442
6443 switch (qopt->cmd) {
6444 case TAPRIO_CMD_REPLACE:
6445 err = igc_save_qbv_schedule(adapter, qopt);
6446 break;
6447 case TAPRIO_CMD_DESTROY:
6448 err = igc_tsn_clear_schedule(adapter);
6449 break;
6450 case TAPRIO_CMD_STATS:
6451 igc_taprio_stats(adapter->netdev, &qopt->stats);
6452 return 0;
6453 case TAPRIO_CMD_QUEUE_STATS:
6454 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6455 return 0;
6456 default:
6457 return -EOPNOTSUPP;
6458 }
6459
6460 if (err)
6461 return err;
6462
6463 return igc_tsn_offload_apply(adapter);
6464 }
6465
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6466 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6467 bool enable, int idleslope, int sendslope,
6468 int hicredit, int locredit)
6469 {
6470 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6471 struct net_device *netdev = adapter->netdev;
6472 struct igc_ring *ring;
6473 int i;
6474
6475 /* i225 has two sets of credit-based shaper logic.
6476 * Supporting it only on the top two priority queues
6477 */
6478 if (queue < 0 || queue > 1)
6479 return -EINVAL;
6480
6481 ring = adapter->tx_ring[queue];
6482
6483 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6484 if (adapter->tx_ring[i])
6485 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6486
6487 /* CBS should be enabled on the highest priority queue first in order
6488 * for the CBS algorithm to operate as intended.
6489 */
6490 if (enable) {
6491 if (queue == 1 && !cbs_status[0]) {
6492 netdev_err(netdev,
6493 "Enabling CBS on queue1 before queue0\n");
6494 return -EINVAL;
6495 }
6496 } else {
6497 if (queue == 0 && cbs_status[1]) {
6498 netdev_err(netdev,
6499 "Disabling CBS on queue0 before queue1\n");
6500 return -EINVAL;
6501 }
6502 }
6503
6504 ring->cbs_enable = enable;
6505 ring->idleslope = idleslope;
6506 ring->sendslope = sendslope;
6507 ring->hicredit = hicredit;
6508 ring->locredit = locredit;
6509
6510 return 0;
6511 }
6512
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6513 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6514 struct tc_cbs_qopt_offload *qopt)
6515 {
6516 struct igc_hw *hw = &adapter->hw;
6517 int err;
6518
6519 if (hw->mac.type != igc_i225)
6520 return -EOPNOTSUPP;
6521
6522 if (qopt->queue < 0 || qopt->queue > 1)
6523 return -EINVAL;
6524
6525 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6526 qopt->idleslope, qopt->sendslope,
6527 qopt->hicredit, qopt->locredit);
6528 if (err)
6529 return err;
6530
6531 return igc_tsn_offload_apply(adapter);
6532 }
6533
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6534 static int igc_tc_query_caps(struct igc_adapter *adapter,
6535 struct tc_query_caps_base *base)
6536 {
6537 struct igc_hw *hw = &adapter->hw;
6538
6539 switch (base->type) {
6540 case TC_SETUP_QDISC_MQPRIO: {
6541 struct tc_mqprio_caps *caps = base->caps;
6542
6543 caps->validate_queue_counts = true;
6544
6545 return 0;
6546 }
6547 case TC_SETUP_QDISC_TAPRIO: {
6548 struct tc_taprio_caps *caps = base->caps;
6549
6550 caps->broken_mqprio = true;
6551
6552 if (hw->mac.type == igc_i225) {
6553 caps->supports_queue_max_sdu = true;
6554 caps->gate_mask_per_txq = true;
6555 }
6556
6557 return 0;
6558 }
6559 default:
6560 return -EOPNOTSUPP;
6561 }
6562 }
6563
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6564 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6565 u16 *offset)
6566 {
6567 int i;
6568
6569 adapter->strict_priority_enable = true;
6570 adapter->num_tc = num_tc;
6571
6572 for (i = 0; i < num_tc; i++)
6573 adapter->queue_per_tc[i] = offset[i];
6574 }
6575
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6576 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6577 struct tc_mqprio_qopt_offload *mqprio)
6578 {
6579 struct igc_hw *hw = &adapter->hw;
6580 int i;
6581
6582 if (hw->mac.type != igc_i225)
6583 return -EOPNOTSUPP;
6584
6585 if (!mqprio->qopt.num_tc) {
6586 adapter->strict_priority_enable = false;
6587 goto apply;
6588 }
6589
6590 /* There are as many TCs as Tx queues. */
6591 if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6592 NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6593 "Only %d traffic classes supported",
6594 adapter->num_tx_queues);
6595 return -EOPNOTSUPP;
6596 }
6597
6598 /* Only one queue per TC is supported. */
6599 for (i = 0; i < mqprio->qopt.num_tc; i++) {
6600 if (mqprio->qopt.count[i] != 1) {
6601 NL_SET_ERR_MSG_MOD(mqprio->extack,
6602 "Only one queue per TC supported");
6603 return -EOPNOTSUPP;
6604 }
6605 }
6606
6607 /* Preemption is not supported yet. */
6608 if (mqprio->preemptible_tcs) {
6609 NL_SET_ERR_MSG_MOD(mqprio->extack,
6610 "Preemption is not supported yet");
6611 return -EOPNOTSUPP;
6612 }
6613
6614 igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6615 mqprio->qopt.offset);
6616
6617 mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6618
6619 apply:
6620 return igc_tsn_offload_apply(adapter);
6621 }
6622
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6623 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6624 void *type_data)
6625 {
6626 struct igc_adapter *adapter = netdev_priv(dev);
6627
6628 adapter->tc_setup_type = type;
6629
6630 switch (type) {
6631 case TC_QUERY_CAPS:
6632 return igc_tc_query_caps(adapter, type_data);
6633 case TC_SETUP_QDISC_TAPRIO:
6634 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6635
6636 case TC_SETUP_QDISC_ETF:
6637 return igc_tsn_enable_launchtime(adapter, type_data);
6638
6639 case TC_SETUP_QDISC_CBS:
6640 return igc_tsn_enable_cbs(adapter, type_data);
6641
6642 case TC_SETUP_QDISC_MQPRIO:
6643 return igc_tsn_enable_mqprio(adapter, type_data);
6644
6645 default:
6646 return -EOPNOTSUPP;
6647 }
6648 }
6649
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6650 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6651 {
6652 struct igc_adapter *adapter = netdev_priv(dev);
6653
6654 switch (bpf->command) {
6655 case XDP_SETUP_PROG:
6656 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6657 case XDP_SETUP_XSK_POOL:
6658 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6659 bpf->xsk.queue_id);
6660 default:
6661 return -EOPNOTSUPP;
6662 }
6663 }
6664
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6665 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6666 struct xdp_frame **frames, u32 flags)
6667 {
6668 struct igc_adapter *adapter = netdev_priv(dev);
6669 int cpu = smp_processor_id();
6670 struct netdev_queue *nq;
6671 struct igc_ring *ring;
6672 int i, nxmit;
6673
6674 if (unlikely(!netif_carrier_ok(dev)))
6675 return -ENETDOWN;
6676
6677 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6678 return -EINVAL;
6679
6680 ring = igc_xdp_get_tx_ring(adapter, cpu);
6681 nq = txring_txq(ring);
6682
6683 __netif_tx_lock(nq, cpu);
6684
6685 /* Avoid transmit queue timeout since we share it with the slow path */
6686 txq_trans_cond_update(nq);
6687
6688 nxmit = 0;
6689 for (i = 0; i < num_frames; i++) {
6690 int err;
6691 struct xdp_frame *xdpf = frames[i];
6692
6693 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6694 if (err)
6695 break;
6696 nxmit++;
6697 }
6698
6699 if (flags & XDP_XMIT_FLUSH)
6700 igc_flush_tx_descriptors(ring);
6701
6702 __netif_tx_unlock(nq);
6703
6704 return nxmit;
6705 }
6706
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6707 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6708 struct igc_q_vector *q_vector)
6709 {
6710 struct igc_hw *hw = &adapter->hw;
6711 u32 eics = 0;
6712
6713 eics |= q_vector->eims_value;
6714 wr32(IGC_EICS, eics);
6715 }
6716
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6717 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6718 {
6719 struct igc_adapter *adapter = netdev_priv(dev);
6720 struct igc_q_vector *q_vector;
6721 struct igc_ring *ring;
6722
6723 if (test_bit(__IGC_DOWN, &adapter->state))
6724 return -ENETDOWN;
6725
6726 if (!igc_xdp_is_enabled(adapter))
6727 return -ENXIO;
6728
6729 if (queue_id >= adapter->num_rx_queues)
6730 return -EINVAL;
6731
6732 ring = adapter->rx_ring[queue_id];
6733
6734 if (!ring->xsk_pool)
6735 return -ENXIO;
6736
6737 q_vector = adapter->q_vector[queue_id];
6738 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6739 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6740
6741 return 0;
6742 }
6743
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6744 static ktime_t igc_get_tstamp(struct net_device *dev,
6745 const struct skb_shared_hwtstamps *hwtstamps,
6746 bool cycles)
6747 {
6748 struct igc_adapter *adapter = netdev_priv(dev);
6749 struct igc_inline_rx_tstamps *tstamp;
6750 ktime_t timestamp;
6751
6752 tstamp = hwtstamps->netdev_data;
6753
6754 if (cycles)
6755 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6756 else
6757 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6758
6759 return timestamp;
6760 }
6761
6762 static const struct net_device_ops igc_netdev_ops = {
6763 .ndo_open = igc_open,
6764 .ndo_stop = igc_close,
6765 .ndo_start_xmit = igc_xmit_frame,
6766 .ndo_set_rx_mode = igc_set_rx_mode,
6767 .ndo_set_mac_address = igc_set_mac,
6768 .ndo_change_mtu = igc_change_mtu,
6769 .ndo_tx_timeout = igc_tx_timeout,
6770 .ndo_get_stats64 = igc_get_stats64,
6771 .ndo_fix_features = igc_fix_features,
6772 .ndo_set_features = igc_set_features,
6773 .ndo_features_check = igc_features_check,
6774 .ndo_eth_ioctl = igc_ioctl,
6775 .ndo_setup_tc = igc_setup_tc,
6776 .ndo_bpf = igc_bpf,
6777 .ndo_xdp_xmit = igc_xdp_xmit,
6778 .ndo_xsk_wakeup = igc_xsk_wakeup,
6779 .ndo_get_tstamp = igc_get_tstamp,
6780 };
6781
6782 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6783 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6784 {
6785 struct igc_adapter *adapter = hw->back;
6786
6787 pci_read_config_word(adapter->pdev, reg, value);
6788 }
6789
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6790 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6791 {
6792 struct igc_adapter *adapter = hw->back;
6793
6794 pci_write_config_word(adapter->pdev, reg, *value);
6795 }
6796
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6797 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6798 {
6799 struct igc_adapter *adapter = hw->back;
6800
6801 if (!pci_is_pcie(adapter->pdev))
6802 return -IGC_ERR_CONFIG;
6803
6804 pcie_capability_read_word(adapter->pdev, reg, value);
6805
6806 return IGC_SUCCESS;
6807 }
6808
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6809 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6810 {
6811 struct igc_adapter *adapter = hw->back;
6812
6813 if (!pci_is_pcie(adapter->pdev))
6814 return -IGC_ERR_CONFIG;
6815
6816 pcie_capability_write_word(adapter->pdev, reg, *value);
6817
6818 return IGC_SUCCESS;
6819 }
6820
igc_rd32(struct igc_hw * hw,u32 reg)6821 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6822 {
6823 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6824 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6825 u32 value = 0;
6826
6827 if (IGC_REMOVED(hw_addr))
6828 return ~value;
6829
6830 value = readl(&hw_addr[reg]);
6831
6832 /* reads should not return all F's */
6833 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6834 struct net_device *netdev = igc->netdev;
6835
6836 hw->hw_addr = NULL;
6837 netif_device_detach(netdev);
6838 netdev_err(netdev, "PCIe link lost, device now detached\n");
6839 WARN(pci_device_is_present(igc->pdev),
6840 "igc: Failed to read reg 0x%x!\n", reg);
6841 }
6842
6843 return value;
6844 }
6845
6846 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6847 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6848 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6849 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6850 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6851 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6852 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6853 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6854 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6855 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6856 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6857 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6858 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6859 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6860 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6861 [13] = XDP_RSS_TYPE_NONE,
6862 [14] = XDP_RSS_TYPE_NONE,
6863 [15] = XDP_RSS_TYPE_NONE,
6864 };
6865
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6866 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6867 enum xdp_rss_hash_type *rss_type)
6868 {
6869 const struct igc_xdp_buff *ctx = (void *)_ctx;
6870
6871 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6872 return -ENODATA;
6873
6874 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6875 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6876
6877 return 0;
6878 }
6879
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6880 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6881 {
6882 const struct igc_xdp_buff *ctx = (void *)_ctx;
6883 struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6884 struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6885
6886 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6887 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6888
6889 return 0;
6890 }
6891
6892 return -ENODATA;
6893 }
6894
6895 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6896 .xmo_rx_hash = igc_xdp_rx_hash,
6897 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6898 };
6899
igc_qbv_scheduling_timer(struct hrtimer * timer)6900 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6901 {
6902 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6903 hrtimer);
6904 unsigned long flags;
6905 unsigned int i;
6906
6907 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6908
6909 adapter->qbv_transition = true;
6910 for (i = 0; i < adapter->num_tx_queues; i++) {
6911 struct igc_ring *tx_ring = adapter->tx_ring[i];
6912
6913 if (tx_ring->admin_gate_closed) {
6914 tx_ring->admin_gate_closed = false;
6915 tx_ring->oper_gate_closed = true;
6916 } else {
6917 tx_ring->oper_gate_closed = false;
6918 }
6919 }
6920 adapter->qbv_transition = false;
6921
6922 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6923
6924 return HRTIMER_NORESTART;
6925 }
6926
6927 /**
6928 * igc_probe - Device Initialization Routine
6929 * @pdev: PCI device information struct
6930 * @ent: entry in igc_pci_tbl
6931 *
6932 * Returns 0 on success, negative on failure
6933 *
6934 * igc_probe initializes an adapter identified by a pci_dev structure.
6935 * The OS initialization, configuring the adapter private structure,
6936 * and a hardware reset occur.
6937 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6938 static int igc_probe(struct pci_dev *pdev,
6939 const struct pci_device_id *ent)
6940 {
6941 struct igc_adapter *adapter;
6942 struct net_device *netdev;
6943 struct igc_hw *hw;
6944 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6945 int err;
6946
6947 err = pci_enable_device_mem(pdev);
6948 if (err)
6949 return err;
6950
6951 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6952 if (err) {
6953 dev_err(&pdev->dev,
6954 "No usable DMA configuration, aborting\n");
6955 goto err_dma;
6956 }
6957
6958 err = pci_request_mem_regions(pdev, igc_driver_name);
6959 if (err)
6960 goto err_pci_reg;
6961
6962 err = pci_enable_ptm(pdev, NULL);
6963 if (err < 0)
6964 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6965
6966 pci_set_master(pdev);
6967
6968 err = -ENOMEM;
6969 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6970 IGC_MAX_TX_QUEUES);
6971
6972 if (!netdev)
6973 goto err_alloc_etherdev;
6974
6975 SET_NETDEV_DEV(netdev, &pdev->dev);
6976
6977 pci_set_drvdata(pdev, netdev);
6978 adapter = netdev_priv(netdev);
6979 adapter->netdev = netdev;
6980 adapter->pdev = pdev;
6981 hw = &adapter->hw;
6982 hw->back = adapter;
6983 adapter->port_num = hw->bus.func;
6984 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6985
6986 err = pci_save_state(pdev);
6987 if (err)
6988 goto err_ioremap;
6989
6990 err = -EIO;
6991 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6992 pci_resource_len(pdev, 0));
6993 if (!adapter->io_addr)
6994 goto err_ioremap;
6995
6996 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6997 hw->hw_addr = adapter->io_addr;
6998
6999 netdev->netdev_ops = &igc_netdev_ops;
7000 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7001 netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7002 igc_ethtool_set_ops(netdev);
7003 netdev->watchdog_timeo = 5 * HZ;
7004
7005 netdev->mem_start = pci_resource_start(pdev, 0);
7006 netdev->mem_end = pci_resource_end(pdev, 0);
7007
7008 /* PCI config space info */
7009 hw->vendor_id = pdev->vendor;
7010 hw->device_id = pdev->device;
7011 hw->revision_id = pdev->revision;
7012 hw->subsystem_vendor_id = pdev->subsystem_vendor;
7013 hw->subsystem_device_id = pdev->subsystem_device;
7014
7015 /* Copy the default MAC and PHY function pointers */
7016 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7017 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7018
7019 /* Initialize skew-specific constants */
7020 err = ei->get_invariants(hw);
7021 if (err)
7022 goto err_sw_init;
7023
7024 /* Add supported features to the features list*/
7025 netdev->features |= NETIF_F_SG;
7026 netdev->features |= NETIF_F_TSO;
7027 netdev->features |= NETIF_F_TSO6;
7028 netdev->features |= NETIF_F_TSO_ECN;
7029 netdev->features |= NETIF_F_RXHASH;
7030 netdev->features |= NETIF_F_RXCSUM;
7031 netdev->features |= NETIF_F_HW_CSUM;
7032 netdev->features |= NETIF_F_SCTP_CRC;
7033 netdev->features |= NETIF_F_HW_TC;
7034
7035 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7036 NETIF_F_GSO_GRE_CSUM | \
7037 NETIF_F_GSO_IPXIP4 | \
7038 NETIF_F_GSO_IPXIP6 | \
7039 NETIF_F_GSO_UDP_TUNNEL | \
7040 NETIF_F_GSO_UDP_TUNNEL_CSUM)
7041
7042 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7043 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7044
7045 /* setup the private structure */
7046 err = igc_sw_init(adapter);
7047 if (err)
7048 goto err_sw_init;
7049
7050 /* copy netdev features into list of user selectable features */
7051 netdev->hw_features |= NETIF_F_NTUPLE;
7052 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7053 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7054 netdev->hw_features |= netdev->features;
7055
7056 netdev->features |= NETIF_F_HIGHDMA;
7057
7058 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7059 netdev->mpls_features |= NETIF_F_HW_CSUM;
7060 netdev->hw_enc_features |= netdev->vlan_features;
7061
7062 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7063 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7064
7065 /* MTU range: 68 - 9216 */
7066 netdev->min_mtu = ETH_MIN_MTU;
7067 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7068
7069 /* before reading the NVM, reset the controller to put the device in a
7070 * known good starting state
7071 */
7072 hw->mac.ops.reset_hw(hw);
7073
7074 if (igc_get_flash_presence_i225(hw)) {
7075 if (hw->nvm.ops.validate(hw) < 0) {
7076 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7077 err = -EIO;
7078 goto err_eeprom;
7079 }
7080 }
7081
7082 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7083 /* copy the MAC address out of the NVM */
7084 if (hw->mac.ops.read_mac_addr(hw))
7085 dev_err(&pdev->dev, "NVM Read Error\n");
7086 }
7087
7088 eth_hw_addr_set(netdev, hw->mac.addr);
7089
7090 if (!is_valid_ether_addr(netdev->dev_addr)) {
7091 dev_err(&pdev->dev, "Invalid MAC Address\n");
7092 err = -EIO;
7093 goto err_eeprom;
7094 }
7095
7096 /* configure RXPBSIZE and TXPBSIZE */
7097 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
7098 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
7099
7100 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7101 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7102
7103 INIT_WORK(&adapter->reset_task, igc_reset_task);
7104 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7105
7106 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7107 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
7108
7109 /* Initialize link properties that are user-changeable */
7110 adapter->fc_autoneg = true;
7111 hw->phy.autoneg_advertised = 0xaf;
7112
7113 hw->fc.requested_mode = igc_fc_default;
7114 hw->fc.current_mode = igc_fc_default;
7115
7116 /* By default, support wake on port A */
7117 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7118
7119 /* initialize the wol settings based on the eeprom settings */
7120 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7121 adapter->wol |= IGC_WUFC_MAG;
7122
7123 device_set_wakeup_enable(&adapter->pdev->dev,
7124 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7125
7126 igc_ptp_init(adapter);
7127
7128 igc_tsn_clear_schedule(adapter);
7129
7130 /* reset the hardware with the new settings */
7131 igc_reset(adapter);
7132
7133 /* let the f/w know that the h/w is now under the control of the
7134 * driver.
7135 */
7136 igc_get_hw_control(adapter);
7137
7138 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7139 err = register_netdev(netdev);
7140 if (err)
7141 goto err_register;
7142
7143 /* carrier off reporting is important to ethtool even BEFORE open */
7144 netif_carrier_off(netdev);
7145
7146 /* Check if Media Autosense is enabled */
7147 adapter->ei = *ei;
7148
7149 /* print pcie link status and MAC address */
7150 pcie_print_link_status(pdev);
7151 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7152
7153 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7154 /* Disable EEE for internal PHY devices */
7155 hw->dev_spec._base.eee_enable = false;
7156 adapter->flags &= ~IGC_FLAG_EEE;
7157 igc_set_eee_i225(hw, false, false, false);
7158
7159 pm_runtime_put_noidle(&pdev->dev);
7160
7161 if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7162 err = igc_led_setup(adapter);
7163 if (err)
7164 goto err_register;
7165 }
7166
7167 return 0;
7168
7169 err_register:
7170 igc_release_hw_control(adapter);
7171 err_eeprom:
7172 if (!igc_check_reset_block(hw))
7173 igc_reset_phy(hw);
7174 err_sw_init:
7175 igc_clear_interrupt_scheme(adapter);
7176 iounmap(adapter->io_addr);
7177 err_ioremap:
7178 free_netdev(netdev);
7179 err_alloc_etherdev:
7180 pci_release_mem_regions(pdev);
7181 err_pci_reg:
7182 err_dma:
7183 pci_disable_device(pdev);
7184 return err;
7185 }
7186
7187 /**
7188 * igc_remove - Device Removal Routine
7189 * @pdev: PCI device information struct
7190 *
7191 * igc_remove is called by the PCI subsystem to alert the driver
7192 * that it should release a PCI device. This could be caused by a
7193 * Hot-Plug event, or because the driver is going to be removed from
7194 * memory.
7195 */
igc_remove(struct pci_dev * pdev)7196 static void igc_remove(struct pci_dev *pdev)
7197 {
7198 struct net_device *netdev = pci_get_drvdata(pdev);
7199 struct igc_adapter *adapter = netdev_priv(netdev);
7200
7201 pm_runtime_get_noresume(&pdev->dev);
7202
7203 igc_flush_nfc_rules(adapter);
7204
7205 igc_ptp_stop(adapter);
7206
7207 pci_disable_ptm(pdev);
7208 pci_clear_master(pdev);
7209
7210 set_bit(__IGC_DOWN, &adapter->state);
7211
7212 del_timer_sync(&adapter->watchdog_timer);
7213 del_timer_sync(&adapter->phy_info_timer);
7214
7215 cancel_work_sync(&adapter->reset_task);
7216 cancel_work_sync(&adapter->watchdog_task);
7217 hrtimer_cancel(&adapter->hrtimer);
7218
7219 if (IS_ENABLED(CONFIG_IGC_LEDS))
7220 igc_led_free(adapter);
7221
7222 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7223 * would have already happened in close and is redundant.
7224 */
7225 igc_release_hw_control(adapter);
7226 unregister_netdev(netdev);
7227
7228 igc_clear_interrupt_scheme(adapter);
7229 pci_iounmap(pdev, adapter->io_addr);
7230 pci_release_mem_regions(pdev);
7231
7232 free_netdev(netdev);
7233
7234 pci_disable_device(pdev);
7235 }
7236
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7237 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7238 bool runtime)
7239 {
7240 struct net_device *netdev = pci_get_drvdata(pdev);
7241 struct igc_adapter *adapter = netdev_priv(netdev);
7242 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7243 struct igc_hw *hw = &adapter->hw;
7244 u32 ctrl, rctl, status;
7245 bool wake;
7246
7247 rtnl_lock();
7248 netif_device_detach(netdev);
7249
7250 if (netif_running(netdev))
7251 __igc_close(netdev, true);
7252
7253 igc_ptp_suspend(adapter);
7254
7255 igc_clear_interrupt_scheme(adapter);
7256 rtnl_unlock();
7257
7258 status = rd32(IGC_STATUS);
7259 if (status & IGC_STATUS_LU)
7260 wufc &= ~IGC_WUFC_LNKC;
7261
7262 if (wufc) {
7263 igc_setup_rctl(adapter);
7264 igc_set_rx_mode(netdev);
7265
7266 /* turn on all-multi mode if wake on multicast is enabled */
7267 if (wufc & IGC_WUFC_MC) {
7268 rctl = rd32(IGC_RCTL);
7269 rctl |= IGC_RCTL_MPE;
7270 wr32(IGC_RCTL, rctl);
7271 }
7272
7273 ctrl = rd32(IGC_CTRL);
7274 ctrl |= IGC_CTRL_ADVD3WUC;
7275 wr32(IGC_CTRL, ctrl);
7276
7277 /* Allow time for pending master requests to run */
7278 igc_disable_pcie_master(hw);
7279
7280 wr32(IGC_WUC, IGC_WUC_PME_EN);
7281 wr32(IGC_WUFC, wufc);
7282 } else {
7283 wr32(IGC_WUC, 0);
7284 wr32(IGC_WUFC, 0);
7285 }
7286
7287 wake = wufc || adapter->en_mng_pt;
7288 if (!wake)
7289 igc_power_down_phy_copper_base(&adapter->hw);
7290 else
7291 igc_power_up_link(adapter);
7292
7293 if (enable_wake)
7294 *enable_wake = wake;
7295
7296 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7297 * would have already happened in close and is redundant.
7298 */
7299 igc_release_hw_control(adapter);
7300
7301 pci_disable_device(pdev);
7302
7303 return 0;
7304 }
7305
igc_runtime_suspend(struct device * dev)7306 static int igc_runtime_suspend(struct device *dev)
7307 {
7308 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7309 }
7310
igc_deliver_wake_packet(struct net_device * netdev)7311 static void igc_deliver_wake_packet(struct net_device *netdev)
7312 {
7313 struct igc_adapter *adapter = netdev_priv(netdev);
7314 struct igc_hw *hw = &adapter->hw;
7315 struct sk_buff *skb;
7316 u32 wupl;
7317
7318 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7319
7320 /* WUPM stores only the first 128 bytes of the wake packet.
7321 * Read the packet only if we have the whole thing.
7322 */
7323 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7324 return;
7325
7326 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7327 if (!skb)
7328 return;
7329
7330 skb_put(skb, wupl);
7331
7332 /* Ensure reads are 32-bit aligned */
7333 wupl = roundup(wupl, 4);
7334
7335 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7336
7337 skb->protocol = eth_type_trans(skb, netdev);
7338 netif_rx(skb);
7339 }
7340
igc_resume(struct device * dev)7341 static int igc_resume(struct device *dev)
7342 {
7343 struct pci_dev *pdev = to_pci_dev(dev);
7344 struct net_device *netdev = pci_get_drvdata(pdev);
7345 struct igc_adapter *adapter = netdev_priv(netdev);
7346 struct igc_hw *hw = &adapter->hw;
7347 u32 err, val;
7348
7349 pci_set_power_state(pdev, PCI_D0);
7350 pci_restore_state(pdev);
7351 pci_save_state(pdev);
7352
7353 if (!pci_device_is_present(pdev))
7354 return -ENODEV;
7355 err = pci_enable_device_mem(pdev);
7356 if (err) {
7357 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7358 return err;
7359 }
7360 pci_set_master(pdev);
7361
7362 pci_enable_wake(pdev, PCI_D3hot, 0);
7363 pci_enable_wake(pdev, PCI_D3cold, 0);
7364
7365 if (igc_init_interrupt_scheme(adapter, true)) {
7366 netdev_err(netdev, "Unable to allocate memory for queues\n");
7367 return -ENOMEM;
7368 }
7369
7370 igc_reset(adapter);
7371
7372 /* let the f/w know that the h/w is now under the control of the
7373 * driver.
7374 */
7375 igc_get_hw_control(adapter);
7376
7377 val = rd32(IGC_WUS);
7378 if (val & WAKE_PKT_WUS)
7379 igc_deliver_wake_packet(netdev);
7380
7381 wr32(IGC_WUS, ~0);
7382
7383 if (netif_running(netdev)) {
7384 err = __igc_open(netdev, true);
7385 if (!err)
7386 netif_device_attach(netdev);
7387 }
7388
7389 return err;
7390 }
7391
igc_runtime_resume(struct device * dev)7392 static int igc_runtime_resume(struct device *dev)
7393 {
7394 return igc_resume(dev);
7395 }
7396
igc_suspend(struct device * dev)7397 static int igc_suspend(struct device *dev)
7398 {
7399 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7400 }
7401
igc_runtime_idle(struct device * dev)7402 static int __maybe_unused igc_runtime_idle(struct device *dev)
7403 {
7404 struct net_device *netdev = dev_get_drvdata(dev);
7405 struct igc_adapter *adapter = netdev_priv(netdev);
7406
7407 if (!igc_has_link(adapter))
7408 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7409
7410 return -EBUSY;
7411 }
7412
igc_shutdown(struct pci_dev * pdev)7413 static void igc_shutdown(struct pci_dev *pdev)
7414 {
7415 bool wake;
7416
7417 __igc_shutdown(pdev, &wake, 0);
7418
7419 if (system_state == SYSTEM_POWER_OFF) {
7420 pci_wake_from_d3(pdev, wake);
7421 pci_set_power_state(pdev, PCI_D3hot);
7422 }
7423 }
7424
7425 /**
7426 * igc_io_error_detected - called when PCI error is detected
7427 * @pdev: Pointer to PCI device
7428 * @state: The current PCI connection state
7429 *
7430 * This function is called after a PCI bus error affecting
7431 * this device has been detected.
7432 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7433 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7434 pci_channel_state_t state)
7435 {
7436 struct net_device *netdev = pci_get_drvdata(pdev);
7437 struct igc_adapter *adapter = netdev_priv(netdev);
7438
7439 netif_device_detach(netdev);
7440
7441 if (state == pci_channel_io_perm_failure)
7442 return PCI_ERS_RESULT_DISCONNECT;
7443
7444 if (netif_running(netdev))
7445 igc_down(adapter);
7446 pci_disable_device(pdev);
7447
7448 /* Request a slot reset. */
7449 return PCI_ERS_RESULT_NEED_RESET;
7450 }
7451
7452 /**
7453 * igc_io_slot_reset - called after the PCI bus has been reset.
7454 * @pdev: Pointer to PCI device
7455 *
7456 * Restart the card from scratch, as if from a cold-boot. Implementation
7457 * resembles the first-half of the igc_resume routine.
7458 **/
igc_io_slot_reset(struct pci_dev * pdev)7459 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7460 {
7461 struct net_device *netdev = pci_get_drvdata(pdev);
7462 struct igc_adapter *adapter = netdev_priv(netdev);
7463 struct igc_hw *hw = &adapter->hw;
7464 pci_ers_result_t result;
7465
7466 if (pci_enable_device_mem(pdev)) {
7467 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7468 result = PCI_ERS_RESULT_DISCONNECT;
7469 } else {
7470 pci_set_master(pdev);
7471 pci_restore_state(pdev);
7472 pci_save_state(pdev);
7473
7474 pci_enable_wake(pdev, PCI_D3hot, 0);
7475 pci_enable_wake(pdev, PCI_D3cold, 0);
7476
7477 /* In case of PCI error, adapter loses its HW address
7478 * so we should re-assign it here.
7479 */
7480 hw->hw_addr = adapter->io_addr;
7481
7482 igc_reset(adapter);
7483 wr32(IGC_WUS, ~0);
7484 result = PCI_ERS_RESULT_RECOVERED;
7485 }
7486
7487 return result;
7488 }
7489
7490 /**
7491 * igc_io_resume - called when traffic can start to flow again.
7492 * @pdev: Pointer to PCI device
7493 *
7494 * This callback is called when the error recovery driver tells us that
7495 * its OK to resume normal operation. Implementation resembles the
7496 * second-half of the igc_resume routine.
7497 */
igc_io_resume(struct pci_dev * pdev)7498 static void igc_io_resume(struct pci_dev *pdev)
7499 {
7500 struct net_device *netdev = pci_get_drvdata(pdev);
7501 struct igc_adapter *adapter = netdev_priv(netdev);
7502
7503 rtnl_lock();
7504 if (netif_running(netdev)) {
7505 if (igc_open(netdev)) {
7506 rtnl_unlock();
7507 netdev_err(netdev, "igc_open failed after reset\n");
7508 return;
7509 }
7510 }
7511
7512 netif_device_attach(netdev);
7513
7514 /* let the f/w know that the h/w is now under the control of the
7515 * driver.
7516 */
7517 igc_get_hw_control(adapter);
7518 rtnl_unlock();
7519 }
7520
7521 static const struct pci_error_handlers igc_err_handler = {
7522 .error_detected = igc_io_error_detected,
7523 .slot_reset = igc_io_slot_reset,
7524 .resume = igc_io_resume,
7525 };
7526
7527 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7528 igc_runtime_suspend, igc_runtime_resume,
7529 igc_runtime_idle);
7530
7531 static struct pci_driver igc_driver = {
7532 .name = igc_driver_name,
7533 .id_table = igc_pci_tbl,
7534 .probe = igc_probe,
7535 .remove = igc_remove,
7536 .driver.pm = pm_ptr(&igc_pm_ops),
7537 .shutdown = igc_shutdown,
7538 .err_handler = &igc_err_handler,
7539 };
7540
7541 /**
7542 * igc_reinit_queues - return error
7543 * @adapter: pointer to adapter structure
7544 */
igc_reinit_queues(struct igc_adapter * adapter)7545 int igc_reinit_queues(struct igc_adapter *adapter)
7546 {
7547 struct net_device *netdev = adapter->netdev;
7548 int err = 0;
7549
7550 if (netif_running(netdev))
7551 igc_close(netdev);
7552
7553 igc_reset_interrupt_capability(adapter);
7554
7555 if (igc_init_interrupt_scheme(adapter, true)) {
7556 netdev_err(netdev, "Unable to allocate memory for queues\n");
7557 return -ENOMEM;
7558 }
7559
7560 if (netif_running(netdev))
7561 err = igc_open(netdev);
7562
7563 return err;
7564 }
7565
7566 /**
7567 * igc_get_hw_dev - return device
7568 * @hw: pointer to hardware structure
7569 *
7570 * used by hardware layer to print debugging information
7571 */
igc_get_hw_dev(struct igc_hw * hw)7572 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7573 {
7574 struct igc_adapter *adapter = hw->back;
7575
7576 return adapter->netdev;
7577 }
7578
igc_disable_rx_ring_hw(struct igc_ring * ring)7579 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7580 {
7581 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7582 u8 idx = ring->reg_idx;
7583 u32 rxdctl;
7584
7585 rxdctl = rd32(IGC_RXDCTL(idx));
7586 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7587 rxdctl |= IGC_RXDCTL_SWFLUSH;
7588 wr32(IGC_RXDCTL(idx), rxdctl);
7589 }
7590
igc_disable_rx_ring(struct igc_ring * ring)7591 void igc_disable_rx_ring(struct igc_ring *ring)
7592 {
7593 igc_disable_rx_ring_hw(ring);
7594 igc_clean_rx_ring(ring);
7595 }
7596
igc_enable_rx_ring(struct igc_ring * ring)7597 void igc_enable_rx_ring(struct igc_ring *ring)
7598 {
7599 struct igc_adapter *adapter = ring->q_vector->adapter;
7600
7601 igc_configure_rx_ring(adapter, ring);
7602
7603 if (ring->xsk_pool)
7604 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7605 else
7606 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7607 }
7608
igc_disable_tx_ring(struct igc_ring * ring)7609 void igc_disable_tx_ring(struct igc_ring *ring)
7610 {
7611 igc_disable_tx_ring_hw(ring);
7612 igc_clean_tx_ring(ring);
7613 }
7614
igc_enable_tx_ring(struct igc_ring * ring)7615 void igc_enable_tx_ring(struct igc_ring *ring)
7616 {
7617 struct igc_adapter *adapter = ring->q_vector->adapter;
7618
7619 igc_configure_tx_ring(adapter, ring);
7620 }
7621
7622 /**
7623 * igc_init_module - Driver Registration Routine
7624 *
7625 * igc_init_module is the first routine called when the driver is
7626 * loaded. All it does is register with the PCI subsystem.
7627 */
igc_init_module(void)7628 static int __init igc_init_module(void)
7629 {
7630 int ret;
7631
7632 pr_info("%s\n", igc_driver_string);
7633 pr_info("%s\n", igc_copyright);
7634
7635 ret = pci_register_driver(&igc_driver);
7636 return ret;
7637 }
7638
7639 module_init(igc_init_module);
7640
7641 /**
7642 * igc_exit_module - Driver Exit Cleanup Routine
7643 *
7644 * igc_exit_module is called just before the driver is removed
7645 * from memory.
7646 */
igc_exit_module(void)7647 static void __exit igc_exit_module(void)
7648 {
7649 pci_unregister_driver(&igc_driver);
7650 }
7651
7652 module_exit(igc_exit_module);
7653 /* igc_main.c */
7654