xref: /linux/drivers/net/ethernet/intel/igc/igc_ptp.c (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3 
4 #include "igc.h"
5 
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 #include <net/xdp_sock_drv.h>
15 
16 #define INCVALUE_MASK		0x7fffffff
17 #define ISGN			0x80000000
18 
19 #define IGC_PTP_TX_TIMEOUT		(HZ * 15)
20 
21 #define IGC_PTM_STAT_SLEEP		2
22 #define IGC_PTM_STAT_TIMEOUT		100
23 
24 /* SYSTIM read access for I225 */
igc_ptp_read(struct igc_adapter * adapter,struct timespec64 * ts)25 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
26 {
27 	struct igc_hw *hw = &adapter->hw;
28 	u32 sec, nsec;
29 
30 	/* The timestamp is latched when SYSTIML is read. */
31 	nsec = rd32(IGC_SYSTIML);
32 	sec = rd32(IGC_SYSTIMH);
33 
34 	ts->tv_sec = sec;
35 	ts->tv_nsec = nsec;
36 }
37 
igc_ptp_write_i225(struct igc_adapter * adapter,const struct timespec64 * ts)38 static void igc_ptp_write_i225(struct igc_adapter *adapter,
39 			       const struct timespec64 *ts)
40 {
41 	struct igc_hw *hw = &adapter->hw;
42 
43 	wr32(IGC_SYSTIML, ts->tv_nsec);
44 	wr32(IGC_SYSTIMH, ts->tv_sec);
45 }
46 
igc_ptp_adjfine_i225(struct ptp_clock_info * ptp,long scaled_ppm)47 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
48 {
49 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
50 					       ptp_caps);
51 	struct igc_hw *hw = &igc->hw;
52 	int neg_adj = 0;
53 	u64 rate;
54 	u32 inca;
55 
56 	if (scaled_ppm < 0) {
57 		neg_adj = 1;
58 		scaled_ppm = -scaled_ppm;
59 	}
60 	rate = scaled_ppm;
61 	rate <<= 14;
62 	rate = div_u64(rate, 78125);
63 
64 	inca = rate & INCVALUE_MASK;
65 	if (neg_adj)
66 		inca |= ISGN;
67 
68 	wr32(IGC_TIMINCA, inca);
69 
70 	return 0;
71 }
72 
igc_ptp_adjtime_i225(struct ptp_clock_info * ptp,s64 delta)73 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
74 {
75 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
76 					       ptp_caps);
77 	struct timespec64 now, then = ns_to_timespec64(delta);
78 	unsigned long flags;
79 
80 	spin_lock_irqsave(&igc->tmreg_lock, flags);
81 
82 	igc_ptp_read(igc, &now);
83 	now = timespec64_add(now, then);
84 	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
85 
86 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
87 
88 	return 0;
89 }
90 
igc_ptp_gettimex64_i225(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)91 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
92 				   struct timespec64 *ts,
93 				   struct ptp_system_timestamp *sts)
94 {
95 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
96 					       ptp_caps);
97 	struct igc_hw *hw = &igc->hw;
98 	unsigned long flags;
99 
100 	spin_lock_irqsave(&igc->tmreg_lock, flags);
101 
102 	ptp_read_system_prets(sts);
103 	ts->tv_nsec = rd32(IGC_SYSTIML);
104 	ts->tv_sec = rd32(IGC_SYSTIMH);
105 	ptp_read_system_postts(sts);
106 
107 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
108 
109 	return 0;
110 }
111 
igc_ptp_settime_i225(struct ptp_clock_info * ptp,const struct timespec64 * ts)112 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
113 				const struct timespec64 *ts)
114 {
115 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
116 					       ptp_caps);
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&igc->tmreg_lock, flags);
120 
121 	igc_ptp_write_i225(igc, ts);
122 
123 	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
124 
125 	return 0;
126 }
127 
igc_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)128 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
129 {
130 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
131 	static const u32 mask[IGC_N_SDP] = {
132 		IGC_CTRL_SDP0_DIR,
133 		IGC_CTRL_SDP1_DIR,
134 		IGC_CTRL_EXT_SDP2_DIR,
135 		IGC_CTRL_EXT_SDP3_DIR,
136 	};
137 
138 	if (input)
139 		*ptr &= ~mask[pin];
140 	else
141 		*ptr |= mask[pin];
142 }
143 
igc_pin_perout(struct igc_adapter * igc,int chan,int pin,int freq)144 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
145 {
146 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
147 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
148 	};
149 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
150 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
151 	};
152 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
153 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
154 	};
155 	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
156 		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
157 		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
158 	};
159 	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
160 		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
161 		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
162 	};
163 	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
164 		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
165 		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
166 	};
167 	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
168 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
169 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
170 	};
171 	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
172 		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
173 		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
174 	};
175 	struct igc_hw *hw = &igc->hw;
176 	u32 ctrl, ctrl_ext, tssdp = 0;
177 
178 	ctrl = rd32(IGC_CTRL);
179 	ctrl_ext = rd32(IGC_CTRL_EXT);
180 	tssdp = rd32(IGC_TSSDP);
181 
182 	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
183 
184 	/* Make sure this pin is not enabled as an input. */
185 	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
186 		tssdp &= ~IGC_AUX0_TS_SDP_EN;
187 
188 	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
189 		tssdp &= ~IGC_AUX1_TS_SDP_EN;
190 
191 	tssdp &= ~igc_ts_sdp_sel_clr[pin];
192 	if (freq) {
193 		if (chan == 1)
194 			tssdp |= igc_ts_sdp_sel_fc1[pin];
195 		else
196 			tssdp |= igc_ts_sdp_sel_fc0[pin];
197 	} else {
198 		if (chan == 1)
199 			tssdp |= igc_ts_sdp_sel_tt1[pin];
200 		else
201 			tssdp |= igc_ts_sdp_sel_tt0[pin];
202 	}
203 	tssdp |= igc_ts_sdp_en[pin];
204 
205 	wr32(IGC_TSSDP, tssdp);
206 	wr32(IGC_CTRL, ctrl);
207 	wr32(IGC_CTRL_EXT, ctrl_ext);
208 }
209 
igc_pin_extts(struct igc_adapter * igc,int chan,int pin)210 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
211 {
212 	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
213 		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
214 	};
215 	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
216 		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
217 	};
218 	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
219 		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
220 	};
221 	struct igc_hw *hw = &igc->hw;
222 	u32 ctrl, ctrl_ext, tssdp = 0;
223 
224 	ctrl = rd32(IGC_CTRL);
225 	ctrl_ext = rd32(IGC_CTRL_EXT);
226 	tssdp = rd32(IGC_TSSDP);
227 
228 	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
229 
230 	/* Make sure this pin is not enabled as an output. */
231 	tssdp &= ~igc_ts_sdp_en[pin];
232 
233 	if (chan == 1) {
234 		tssdp &= ~IGC_AUX1_SEL_SDP3;
235 		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
236 	} else {
237 		tssdp &= ~IGC_AUX0_SEL_SDP3;
238 		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
239 	}
240 
241 	wr32(IGC_TSSDP, tssdp);
242 	wr32(IGC_CTRL, ctrl);
243 	wr32(IGC_CTRL_EXT, ctrl_ext);
244 }
245 
igc_ptp_feature_enable_i225(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)246 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
247 				       struct ptp_clock_request *rq, int on)
248 {
249 	struct igc_adapter *igc =
250 		container_of(ptp, struct igc_adapter, ptp_caps);
251 	struct igc_hw *hw = &igc->hw;
252 	unsigned long flags;
253 	struct timespec64 ts;
254 	int use_freq = 0, pin = -1;
255 	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
256 	s64 ns;
257 
258 	switch (rq->type) {
259 	case PTP_CLK_REQ_EXTTS:
260 		/* Reject requests failing to enable both edges. */
261 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
262 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
263 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
264 			return -EOPNOTSUPP;
265 
266 		if (on) {
267 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
268 					   rq->extts.index);
269 			if (pin < 0)
270 				return -EBUSY;
271 		}
272 		if (rq->extts.index == 1) {
273 			tsauxc_mask = IGC_TSAUXC_EN_TS1;
274 			tsim_mask = IGC_TSICR_AUTT1;
275 		} else {
276 			tsauxc_mask = IGC_TSAUXC_EN_TS0;
277 			tsim_mask = IGC_TSICR_AUTT0;
278 		}
279 		spin_lock_irqsave(&igc->tmreg_lock, flags);
280 		tsauxc = rd32(IGC_TSAUXC);
281 		tsim = rd32(IGC_TSIM);
282 		if (on) {
283 			igc_pin_extts(igc, rq->extts.index, pin);
284 			tsauxc |= tsauxc_mask;
285 			tsim |= tsim_mask;
286 		} else {
287 			tsauxc &= ~tsauxc_mask;
288 			tsim &= ~tsim_mask;
289 		}
290 		wr32(IGC_TSAUXC, tsauxc);
291 		wr32(IGC_TSIM, tsim);
292 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
293 		return 0;
294 
295 	case PTP_CLK_REQ_PEROUT:
296 		if (on) {
297 			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
298 					   rq->perout.index);
299 			if (pin < 0)
300 				return -EBUSY;
301 		}
302 		ts.tv_sec = rq->perout.period.sec;
303 		ts.tv_nsec = rq->perout.period.nsec;
304 		ns = timespec64_to_ns(&ts);
305 		ns = ns >> 1;
306 		if (on && (ns <= 70000000LL || ns == 125000000LL ||
307 			   ns == 250000000LL || ns == 500000000LL)) {
308 			if (ns < 8LL)
309 				return -EINVAL;
310 			use_freq = 1;
311 		}
312 		ts = ns_to_timespec64(ns);
313 		if (rq->perout.index == 1) {
314 			if (use_freq) {
315 				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
316 				tsim_mask = 0;
317 			} else {
318 				tsauxc_mask = IGC_TSAUXC_EN_TT1;
319 				tsim_mask = IGC_TSICR_TT1;
320 			}
321 			trgttiml = IGC_TRGTTIML1;
322 			trgttimh = IGC_TRGTTIMH1;
323 			freqout = IGC_FREQOUT1;
324 		} else {
325 			if (use_freq) {
326 				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
327 				tsim_mask = 0;
328 			} else {
329 				tsauxc_mask = IGC_TSAUXC_EN_TT0;
330 				tsim_mask = IGC_TSICR_TT0;
331 			}
332 			trgttiml = IGC_TRGTTIML0;
333 			trgttimh = IGC_TRGTTIMH0;
334 			freqout = IGC_FREQOUT0;
335 		}
336 		spin_lock_irqsave(&igc->tmreg_lock, flags);
337 		tsauxc = rd32(IGC_TSAUXC);
338 		tsim = rd32(IGC_TSIM);
339 		if (rq->perout.index == 1) {
340 			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
341 				    IGC_TSAUXC_ST1);
342 			tsim &= ~IGC_TSICR_TT1;
343 		} else {
344 			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
345 				    IGC_TSAUXC_ST0);
346 			tsim &= ~IGC_TSICR_TT0;
347 		}
348 		if (on) {
349 			struct timespec64 safe_start;
350 			int i = rq->perout.index;
351 
352 			igc_pin_perout(igc, i, pin, use_freq);
353 			igc_ptp_read(igc, &safe_start);
354 
355 			/* PPS output start time is triggered by Target time(TT)
356 			 * register. Programming any past time value into TT
357 			 * register will cause PPS to never start. Need to make
358 			 * sure we program the TT register a time ahead in
359 			 * future. There isn't a stringent need to fire PPS out
360 			 * right away. Adding +2 seconds should take care of
361 			 * corner cases. Let's say if the SYSTIML is close to
362 			 * wrap up and the timer keeps ticking as we program the
363 			 * register, adding +2seconds is safe bet.
364 			 */
365 			safe_start.tv_sec += 2;
366 
367 			if (rq->perout.start.sec < safe_start.tv_sec)
368 				igc->perout[i].start.tv_sec = safe_start.tv_sec;
369 			else
370 				igc->perout[i].start.tv_sec = rq->perout.start.sec;
371 			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
372 			igc->perout[i].period.tv_sec = ts.tv_sec;
373 			igc->perout[i].period.tv_nsec = ts.tv_nsec;
374 			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
375 			/* For now, always select timer 0 as source. */
376 			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
377 					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
378 			if (use_freq)
379 				wr32(freqout, ns);
380 			tsauxc |= tsauxc_mask;
381 			tsim |= tsim_mask;
382 		}
383 		wr32(IGC_TSAUXC, tsauxc);
384 		wr32(IGC_TSIM, tsim);
385 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
386 		return 0;
387 
388 	case PTP_CLK_REQ_PPS:
389 		spin_lock_irqsave(&igc->tmreg_lock, flags);
390 		tsim = rd32(IGC_TSIM);
391 		if (on)
392 			tsim |= IGC_TSICR_SYS_WRAP;
393 		else
394 			tsim &= ~IGC_TSICR_SYS_WRAP;
395 		igc->pps_sys_wrap_on = on;
396 		wr32(IGC_TSIM, tsim);
397 		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
398 		return 0;
399 
400 	default:
401 		break;
402 	}
403 
404 	return -EOPNOTSUPP;
405 }
406 
igc_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)407 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
408 			      enum ptp_pin_function func, unsigned int chan)
409 {
410 	switch (func) {
411 	case PTP_PF_NONE:
412 	case PTP_PF_EXTTS:
413 	case PTP_PF_PEROUT:
414 		break;
415 	case PTP_PF_PHYSYNC:
416 		return -1;
417 	}
418 	return 0;
419 }
420 
421 /**
422  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
423  * @adapter: board private structure
424  * @hwtstamps: timestamp structure to update
425  * @systim: unsigned 64bit system time value
426  *
427  * We need to convert the system time value stored in the RX/TXSTMP registers
428  * into a hwtstamp which can be used by the upper level timestamping functions.
429  *
430  * Returns 0 on success.
431  **/
igc_ptp_systim_to_hwtstamp(struct igc_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)432 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
433 				      struct skb_shared_hwtstamps *hwtstamps,
434 				      u64 systim)
435 {
436 	switch (adapter->hw.mac.type) {
437 	case igc_i225:
438 		memset(hwtstamps, 0, sizeof(*hwtstamps));
439 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
440 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
441 						systim & 0xFFFFFFFF);
442 		break;
443 	default:
444 		return -EINVAL;
445 	}
446 	return 0;
447 }
448 
449 /**
450  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
451  * @adapter: Pointer to adapter the packet buffer belongs to
452  * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
453  *
454  * This function retrieves and converts the timestamp stored at @buf
455  * to ktime_t, adjusting for hardware latencies.
456  *
457  * Returns timestamp value.
458  */
igc_ptp_rx_pktstamp(struct igc_adapter * adapter,__le32 * buf)459 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
460 {
461 	ktime_t timestamp;
462 	u32 secs, nsecs;
463 	int adjust;
464 
465 	nsecs = le32_to_cpu(buf[0]);
466 	secs = le32_to_cpu(buf[1]);
467 
468 	timestamp = ktime_set(secs, nsecs);
469 
470 	/* Adjust timestamp for the RX latency based on link speed */
471 	switch (adapter->link_speed) {
472 	case SPEED_10:
473 		adjust = IGC_I225_RX_LATENCY_10;
474 		break;
475 	case SPEED_100:
476 		adjust = IGC_I225_RX_LATENCY_100;
477 		break;
478 	case SPEED_1000:
479 		adjust = IGC_I225_RX_LATENCY_1000;
480 		break;
481 	case SPEED_2500:
482 		adjust = IGC_I225_RX_LATENCY_2500;
483 		break;
484 	default:
485 		adjust = 0;
486 		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
487 		break;
488 	}
489 
490 	return ktime_sub_ns(timestamp, adjust);
491 }
492 
igc_ptp_disable_rx_timestamp(struct igc_adapter * adapter)493 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
494 {
495 	struct igc_hw *hw = &adapter->hw;
496 	u32 val;
497 	int i;
498 
499 	wr32(IGC_TSYNCRXCTL, 0);
500 
501 	for (i = 0; i < adapter->num_rx_queues; i++) {
502 		val = rd32(IGC_SRRCTL(i));
503 		val &= ~IGC_SRRCTL_TIMESTAMP;
504 		wr32(IGC_SRRCTL(i), val);
505 	}
506 
507 	val = rd32(IGC_RXPBS);
508 	val &= ~IGC_RXPBS_CFG_TS_EN;
509 	wr32(IGC_RXPBS, val);
510 }
511 
igc_ptp_enable_rx_timestamp(struct igc_adapter * adapter)512 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
513 {
514 	struct igc_hw *hw = &adapter->hw;
515 	u32 val;
516 	int i;
517 
518 	val = rd32(IGC_RXPBS);
519 	val |= IGC_RXPBS_CFG_TS_EN;
520 	wr32(IGC_RXPBS, val);
521 
522 	for (i = 0; i < adapter->num_rx_queues; i++) {
523 		val = rd32(IGC_SRRCTL(i));
524 		/* Enable retrieving timestamps from timer 0, the
525 		 * "adjustable clock" and timer 1 the "free running
526 		 * clock".
527 		 */
528 		val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
529 		       IGC_SRRCTL_TIMESTAMP;
530 		wr32(IGC_SRRCTL(i), val);
531 	}
532 
533 	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
534 	      IGC_TSYNCRXCTL_RXSYNSIG;
535 	wr32(IGC_TSYNCRXCTL, val);
536 }
537 
igc_ptp_free_tx_buffer(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp)538 static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter,
539 				   struct igc_tx_timestamp_request *tstamp)
540 {
541 	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
542 		/* Release the transmit completion */
543 		tstamp->xsk_tx_buffer->xsk_pending_ts = false;
544 
545 		/* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union.
546 		 * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will
547 		 * become NULL as well.
548 		 */
549 		tstamp->xsk_tx_buffer = NULL;
550 		tstamp->buffer_type = 0;
551 
552 		/* Trigger txrx interrupt for transmit completion */
553 		igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0);
554 
555 		return;
556 	}
557 
558 	dev_kfree_skb_any(tstamp->skb);
559 	tstamp->skb = NULL;
560 }
561 
igc_ptp_clear_tx_tstamp(struct igc_adapter * adapter)562 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
563 {
564 	unsigned long flags;
565 	int i;
566 
567 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
568 
569 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
570 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
571 
572 		if (tstamp->skb)
573 			igc_ptp_free_tx_buffer(adapter, tstamp);
574 	}
575 
576 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
577 }
578 
igc_ptp_disable_tx_timestamp(struct igc_adapter * adapter)579 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
580 {
581 	struct igc_hw *hw = &adapter->hw;
582 	int i;
583 
584 	/* Clear the flags first to avoid new packets to be enqueued
585 	 * for TX timestamping.
586 	 */
587 	for (i = 0; i < adapter->num_tx_queues; i++) {
588 		struct igc_ring *tx_ring = adapter->tx_ring[i];
589 
590 		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
591 	}
592 
593 	/* Now we can clean the pending TX timestamp requests. */
594 	igc_ptp_clear_tx_tstamp(adapter);
595 
596 	wr32(IGC_TSYNCTXCTL, 0);
597 }
598 
igc_ptp_enable_tx_timestamp(struct igc_adapter * adapter)599 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
600 {
601 	struct igc_hw *hw = &adapter->hw;
602 	int i;
603 
604 	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
605 
606 	/* Read TXSTMP registers to discard any timestamp previously stored. */
607 	rd32(IGC_TXSTMPL);
608 	rd32(IGC_TXSTMPH);
609 
610 	/* The hardware is ready to accept TX timestamp requests,
611 	 * notify the transmit path.
612 	 */
613 	for (i = 0; i < adapter->num_tx_queues; i++) {
614 		struct igc_ring *tx_ring = adapter->tx_ring[i];
615 
616 		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
617 	}
618 
619 }
620 
621 /**
622  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
623  * @adapter: networking device structure
624  * @config: hwtstamp configuration
625  *
626  * Return: 0 in case of success, negative errno code otherwise.
627  */
igc_ptp_set_timestamp_mode(struct igc_adapter * adapter,struct hwtstamp_config * config)628 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
629 				      struct hwtstamp_config *config)
630 {
631 	switch (config->tx_type) {
632 	case HWTSTAMP_TX_OFF:
633 		igc_ptp_disable_tx_timestamp(adapter);
634 		break;
635 	case HWTSTAMP_TX_ON:
636 		igc_ptp_enable_tx_timestamp(adapter);
637 		break;
638 	default:
639 		return -ERANGE;
640 	}
641 
642 	switch (config->rx_filter) {
643 	case HWTSTAMP_FILTER_NONE:
644 		igc_ptp_disable_rx_timestamp(adapter);
645 		break;
646 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
647 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
648 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
649 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
650 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
651 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
652 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
653 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
654 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
655 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
656 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 	case HWTSTAMP_FILTER_NTP_ALL:
659 	case HWTSTAMP_FILTER_ALL:
660 		igc_ptp_enable_rx_timestamp(adapter);
661 		config->rx_filter = HWTSTAMP_FILTER_ALL;
662 		break;
663 	default:
664 		return -ERANGE;
665 	}
666 
667 	return 0;
668 }
669 
670 /* Requires adapter->ptp_tx_lock held by caller. */
igc_ptp_tx_timeout(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp)671 static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
672 			       struct igc_tx_timestamp_request *tstamp)
673 {
674 	if (tstamp->skb)
675 		igc_ptp_free_tx_buffer(adapter, tstamp);
676 
677 	adapter->tx_hwtstamp_timeouts++;
678 
679 	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
680 }
681 
igc_ptp_tx_hang(struct igc_adapter * adapter)682 void igc_ptp_tx_hang(struct igc_adapter *adapter)
683 {
684 	struct igc_tx_timestamp_request *tstamp;
685 	struct igc_hw *hw = &adapter->hw;
686 	unsigned long flags;
687 	bool found = false;
688 	int i;
689 
690 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
691 
692 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
693 		tstamp = &adapter->tx_tstamp[i];
694 
695 		if (!tstamp->skb)
696 			continue;
697 
698 		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
699 			continue;
700 
701 		igc_ptp_tx_timeout(adapter, tstamp);
702 		found = true;
703 	}
704 
705 	if (found) {
706 		/* Reading the high register of the first set of timestamp registers
707 		 * clears all the equivalent bits in the TSYNCTXCTL register.
708 		 */
709 		rd32(IGC_TXSTMPH_0);
710 	}
711 
712 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
713 }
714 
igc_ptp_tx_reg_to_stamp(struct igc_adapter * adapter,struct igc_tx_timestamp_request * tstamp,u64 regval)715 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
716 				    struct igc_tx_timestamp_request *tstamp, u64 regval)
717 {
718 	struct skb_shared_hwtstamps shhwtstamps;
719 	struct sk_buff *skb;
720 	int adjust = 0;
721 
722 	skb = tstamp->skb;
723 	if (!skb)
724 		return;
725 
726 	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
727 		return;
728 
729 	switch (adapter->link_speed) {
730 	case SPEED_10:
731 		adjust = IGC_I225_TX_LATENCY_10;
732 		break;
733 	case SPEED_100:
734 		adjust = IGC_I225_TX_LATENCY_100;
735 		break;
736 	case SPEED_1000:
737 		adjust = IGC_I225_TX_LATENCY_1000;
738 		break;
739 	case SPEED_2500:
740 		adjust = IGC_I225_TX_LATENCY_2500;
741 		break;
742 	}
743 
744 	shhwtstamps.hwtstamp =
745 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
746 
747 	/* Copy the tx hardware timestamp into xdp metadata or skb */
748 	if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
749 		struct xsk_buff_pool *xsk_pool;
750 
751 		xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool;
752 		if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) {
753 			xsk_tx_metadata_complete(&tstamp->xsk_meta,
754 						 &igc_xsk_tx_metadata_ops,
755 						 &shhwtstamps.hwtstamp);
756 		}
757 	} else {
758 		skb_tstamp_tx(skb, &shhwtstamps);
759 	}
760 
761 	igc_ptp_free_tx_buffer(adapter, tstamp);
762 }
763 
764 /**
765  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
766  * @adapter: Board private structure
767  *
768  * Check against the ready mask for which of the timestamp register
769  * sets are ready to be retrieved, then retrieve that and notify the
770  * rest of the stack.
771  *
772  * Context: Expects adapter->ptp_tx_lock to be held by caller.
773  */
igc_ptp_tx_hwtstamp(struct igc_adapter * adapter)774 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
775 {
776 	struct igc_hw *hw = &adapter->hw;
777 	u64 regval;
778 	u32 mask;
779 	int i;
780 
781 	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
782 	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
783 		regval = rd32(IGC_TXSTMPL);
784 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
785 	} else {
786 		/* There's a bug in the hardware that could cause
787 		 * missing interrupts for TX timestamping. The issue
788 		 * is that for new interrupts to be triggered, the
789 		 * IGC_TXSTMPH_0 register must be read.
790 		 *
791 		 * To avoid discarding a valid timestamp that just
792 		 * happened at the "wrong" time, we need to confirm
793 		 * that there was no timestamp captured, we do that by
794 		 * assuming that no two timestamps in sequence have
795 		 * the same nanosecond value.
796 		 *
797 		 * So, we read the "low" register, read the "high"
798 		 * register (to latch a new timestamp) and read the
799 		 * "low" register again, if "old" and "new" versions
800 		 * of the "low" register are different, a valid
801 		 * timestamp was captured, we can read the "high"
802 		 * register again.
803 		 */
804 		u32 txstmpl_old, txstmpl_new;
805 
806 		txstmpl_old = rd32(IGC_TXSTMPL);
807 		rd32(IGC_TXSTMPH);
808 		txstmpl_new = rd32(IGC_TXSTMPL);
809 
810 		if (txstmpl_old == txstmpl_new)
811 			goto done;
812 
813 		regval = txstmpl_new;
814 		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
815 	}
816 
817 	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
818 
819 done:
820 	/* Now that the problematic first register was handled, we can
821 	 * use retrieve the timestamps from the other registers
822 	 * (starting from '1') with less complications.
823 	 */
824 	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
825 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
826 
827 		if (!(tstamp->mask & mask))
828 			continue;
829 
830 		regval = rd32(tstamp->regl);
831 		regval |= (u64)rd32(tstamp->regh) << 32;
832 
833 		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
834 	}
835 }
836 
837 /**
838  * igc_ptp_tx_tstamp_event
839  * @adapter: board private structure
840  *
841  * Called when a TX timestamp interrupt happens to retrieve the
842  * timestamp and send it up to the socket.
843  */
igc_ptp_tx_tstamp_event(struct igc_adapter * adapter)844 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
845 {
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
849 
850 	igc_ptp_tx_hwtstamp(adapter);
851 
852 	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
853 }
854 
855 /**
856  * igc_ptp_set_ts_config - set hardware time stamping config
857  * @netdev: network interface device structure
858  * @ifr: interface request data
859  *
860  **/
igc_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)861 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
862 {
863 	struct igc_adapter *adapter = netdev_priv(netdev);
864 	struct hwtstamp_config config;
865 	int err;
866 
867 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
868 		return -EFAULT;
869 
870 	err = igc_ptp_set_timestamp_mode(adapter, &config);
871 	if (err)
872 		return err;
873 
874 	/* save these settings for future reference */
875 	memcpy(&adapter->tstamp_config, &config,
876 	       sizeof(adapter->tstamp_config));
877 
878 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
879 		-EFAULT : 0;
880 }
881 
882 /**
883  * igc_ptp_get_ts_config - get hardware time stamping config
884  * @netdev: network interface device structure
885  * @ifr: interface request data
886  *
887  * Get the hwtstamp_config settings to return to the user. Rather than attempt
888  * to deconstruct the settings from the registers, just return a shadow copy
889  * of the last known settings.
890  **/
igc_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)891 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
892 {
893 	struct igc_adapter *adapter = netdev_priv(netdev);
894 	struct hwtstamp_config *config = &adapter->tstamp_config;
895 
896 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
897 		-EFAULT : 0;
898 }
899 
900 /* The two conditions below must be met for cross timestamping via
901  * PCIe PTM:
902  *
903  * 1. We have an way to convert the timestamps in the PTM messages
904  *    to something related to the system clocks (right now, only
905  *    X86 systems with support for the Always Running Timer allow that);
906  *
907  * 2. We have PTM enabled in the path from the device to the PCIe root port.
908  */
igc_is_crosststamp_supported(struct igc_adapter * adapter)909 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
910 {
911 	if (!IS_ENABLED(CONFIG_X86_TSC))
912 		return false;
913 
914 	/* FIXME: it was noticed that enabling support for PCIe PTM in
915 	 * some i225-V models could cause lockups when bringing the
916 	 * interface up/down. There should be no downsides to
917 	 * disabling crosstimestamping support for i225-V, as it
918 	 * doesn't have any PTP support. That way we gain some time
919 	 * while root causing the issue.
920 	 */
921 	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
922 		return false;
923 
924 	return pcie_ptm_enabled(adapter->pdev);
925 }
926 
igc_device_tstamp_to_system(u64 tstamp)927 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
928 {
929 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
930 	return (struct system_counterval_t) {
931 		.cs_id		= CSID_X86_ART,
932 		.cycles		= tstamp,
933 		.use_nsecs	= true,
934 	};
935 #else
936 	return (struct system_counterval_t) { };
937 #endif
938 }
939 
igc_ptm_log_error(struct igc_adapter * adapter,u32 ptm_stat)940 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
941 {
942 	struct net_device *netdev = adapter->netdev;
943 
944 	switch (ptm_stat) {
945 	case IGC_PTM_STAT_RET_ERR:
946 		netdev_err(netdev, "PTM Error: Root port timeout\n");
947 		break;
948 	case IGC_PTM_STAT_BAD_PTM_RES:
949 		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
950 		break;
951 	case IGC_PTM_STAT_T4M1_OVFL:
952 		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
953 		break;
954 	case IGC_PTM_STAT_ADJUST_1ST:
955 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
956 		break;
957 	case IGC_PTM_STAT_ADJUST_CYC:
958 		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
959 		break;
960 	default:
961 		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
962 		break;
963 	}
964 }
965 
966 /* The PTM lock: adapter->ptm_lock must be held when calling igc_ptm_trigger() */
igc_ptm_trigger(struct igc_hw * hw)967 static void igc_ptm_trigger(struct igc_hw *hw)
968 {
969 	u32 ctrl;
970 
971 	/* To "manually" start the PTM cycle we need to set the
972 	 * trigger (TRIG) bit
973 	 */
974 	ctrl = rd32(IGC_PTM_CTRL);
975 	ctrl |= IGC_PTM_CTRL_TRIG;
976 	wr32(IGC_PTM_CTRL, ctrl);
977 	/* Perform flush after write to CTRL register otherwise
978 	 * transaction may not start
979 	 */
980 	wrfl();
981 }
982 
983 /* The PTM lock: adapter->ptm_lock must be held when calling igc_ptm_reset() */
igc_ptm_reset(struct igc_hw * hw)984 static void igc_ptm_reset(struct igc_hw *hw)
985 {
986 	u32 ctrl;
987 
988 	ctrl = rd32(IGC_PTM_CTRL);
989 	ctrl &= ~IGC_PTM_CTRL_TRIG;
990 	wr32(IGC_PTM_CTRL, ctrl);
991 	/* Write to clear all status */
992 	wr32(IGC_PTM_STAT, IGC_PTM_STAT_ALL);
993 }
994 
igc_phc_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)995 static int igc_phc_get_syncdevicetime(ktime_t *device,
996 				      struct system_counterval_t *system,
997 				      void *ctx)
998 {
999 	struct igc_adapter *adapter = ctx;
1000 	struct igc_hw *hw = &adapter->hw;
1001 	u32 stat, t2_curr_h, t2_curr_l;
1002 	int err, count = 100;
1003 	ktime_t t1, t2_curr;
1004 
1005 	/* Doing this in a loop because in the event of a
1006 	 * badly timed (ha!) system clock adjustment, we may
1007 	 * get PTM errors from the PCI root, but these errors
1008 	 * are transitory. Repeating the process returns valid
1009 	 * data eventually.
1010 	 */
1011 	do {
1012 		/* Get a snapshot of system clocks to use as historic value. */
1013 		ktime_get_snapshot(&adapter->snapshot);
1014 
1015 		igc_ptm_trigger(hw);
1016 
1017 		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
1018 					 stat, IGC_PTM_STAT_SLEEP,
1019 					 IGC_PTM_STAT_TIMEOUT);
1020 		igc_ptm_reset(hw);
1021 
1022 		if (err < 0) {
1023 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1024 			return err;
1025 		}
1026 
1027 		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
1028 			break;
1029 
1030 		igc_ptm_log_error(adapter, stat);
1031 	} while (--count);
1032 
1033 	if (!count) {
1034 		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1035 		return -ETIMEDOUT;
1036 	}
1037 
1038 	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1039 
1040 	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1041 	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1042 
1043 	/* FIXME: When the register that tells the endianness of the
1044 	 * PTM registers are implemented, check them here and add the
1045 	 * appropriate conversion.
1046 	 */
1047 	t2_curr_h = swab32(t2_curr_h);
1048 
1049 	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1050 
1051 	*device = t1;
1052 	*system = igc_device_tstamp_to_system(t2_curr);
1053 
1054 	return 0;
1055 }
1056 
igc_ptp_getcrosststamp(struct ptp_clock_info * ptp,struct system_device_crosststamp * cts)1057 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1058 				  struct system_device_crosststamp *cts)
1059 {
1060 	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1061 						   ptp_caps);
1062 	int ret;
1063 
1064 	/* This blocks until any in progress PTM transactions complete */
1065 	mutex_lock(&adapter->ptm_lock);
1066 
1067 	ret = get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1068 					    adapter, &adapter->snapshot, cts);
1069 	mutex_unlock(&adapter->ptm_lock);
1070 
1071 	return ret;
1072 }
1073 
igc_ptp_getcyclesx64(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)1074 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1075 				struct timespec64 *ts,
1076 				struct ptp_system_timestamp *sts)
1077 {
1078 	struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1079 	struct igc_hw *hw = &igc->hw;
1080 	unsigned long flags;
1081 
1082 	spin_lock_irqsave(&igc->free_timer_lock, flags);
1083 
1084 	ptp_read_system_prets(sts);
1085 	ts->tv_nsec = rd32(IGC_SYSTIML_1);
1086 	ts->tv_sec = rd32(IGC_SYSTIMH_1);
1087 	ptp_read_system_postts(sts);
1088 
1089 	spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * igc_ptp_init - Initialize PTP functionality
1096  * @adapter: Board private structure
1097  *
1098  * This function is called at device probe to initialize the PTP
1099  * functionality.
1100  */
igc_ptp_init(struct igc_adapter * adapter)1101 void igc_ptp_init(struct igc_adapter *adapter)
1102 {
1103 	struct net_device *netdev = adapter->netdev;
1104 	struct igc_tx_timestamp_request *tstamp;
1105 	struct igc_hw *hw = &adapter->hw;
1106 	int i;
1107 
1108 	tstamp = &adapter->tx_tstamp[0];
1109 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1110 	tstamp->regl = IGC_TXSTMPL_0;
1111 	tstamp->regh = IGC_TXSTMPH_0;
1112 	tstamp->flags = 0;
1113 
1114 	tstamp = &adapter->tx_tstamp[1];
1115 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1116 	tstamp->regl = IGC_TXSTMPL_1;
1117 	tstamp->regh = IGC_TXSTMPH_1;
1118 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1119 
1120 	tstamp = &adapter->tx_tstamp[2];
1121 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1122 	tstamp->regl = IGC_TXSTMPL_2;
1123 	tstamp->regh = IGC_TXSTMPH_2;
1124 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1125 
1126 	tstamp = &adapter->tx_tstamp[3];
1127 	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1128 	tstamp->regl = IGC_TXSTMPL_3;
1129 	tstamp->regh = IGC_TXSTMPH_3;
1130 	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1131 
1132 	switch (hw->mac.type) {
1133 	case igc_i225:
1134 		for (i = 0; i < IGC_N_SDP; i++) {
1135 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1136 
1137 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1138 			ppd->index = i;
1139 			ppd->func = PTP_PF_NONE;
1140 		}
1141 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1142 		adapter->ptp_caps.owner = THIS_MODULE;
1143 		adapter->ptp_caps.max_adj = 62499999;
1144 		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1145 		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1146 		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1147 		adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1148 		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1149 		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1150 		adapter->ptp_caps.pps = 1;
1151 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1152 		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1153 		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1154 		adapter->ptp_caps.supported_extts_flags = PTP_RISING_EDGE |
1155 							  PTP_FALLING_EDGE |
1156 							  PTP_STRICT_FLAGS;
1157 		adapter->ptp_caps.n_pins = IGC_N_SDP;
1158 		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1159 
1160 		if (!igc_is_crosststamp_supported(adapter))
1161 			break;
1162 
1163 		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1164 		break;
1165 	default:
1166 		adapter->ptp_clock = NULL;
1167 		return;
1168 	}
1169 
1170 	spin_lock_init(&adapter->ptp_tx_lock);
1171 	spin_lock_init(&adapter->free_timer_lock);
1172 	spin_lock_init(&adapter->tmreg_lock);
1173 	mutex_init(&adapter->ptm_lock);
1174 
1175 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1176 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1177 
1178 	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1179 	adapter->ptp_reset_start = ktime_get();
1180 
1181 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1182 						&adapter->pdev->dev);
1183 	if (IS_ERR(adapter->ptp_clock)) {
1184 		adapter->ptp_clock = NULL;
1185 		netdev_err(netdev, "ptp_clock_register failed\n");
1186 		mutex_destroy(&adapter->ptm_lock);
1187 	} else if (adapter->ptp_clock) {
1188 		netdev_info(netdev, "PHC added\n");
1189 		adapter->ptp_flags |= IGC_PTP_ENABLED;
1190 	}
1191 }
1192 
igc_ptp_time_save(struct igc_adapter * adapter)1193 static void igc_ptp_time_save(struct igc_adapter *adapter)
1194 {
1195 	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1196 	adapter->ptp_reset_start = ktime_get();
1197 }
1198 
igc_ptp_time_restore(struct igc_adapter * adapter)1199 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1200 {
1201 	struct timespec64 ts = adapter->prev_ptp_time;
1202 	ktime_t delta;
1203 
1204 	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1205 
1206 	timespec64_add_ns(&ts, ktime_to_ns(delta));
1207 
1208 	igc_ptp_write_i225(adapter, &ts);
1209 }
1210 
igc_ptm_stop(struct igc_adapter * adapter)1211 static void igc_ptm_stop(struct igc_adapter *adapter)
1212 {
1213 	struct igc_hw *hw = &adapter->hw;
1214 	u32 ctrl;
1215 
1216 	mutex_lock(&adapter->ptm_lock);
1217 	ctrl = rd32(IGC_PTM_CTRL);
1218 	ctrl &= ~IGC_PTM_CTRL_EN;
1219 
1220 	wr32(IGC_PTM_CTRL, ctrl);
1221 	mutex_unlock(&adapter->ptm_lock);
1222 }
1223 
1224 /**
1225  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1226  * @adapter: Board private structure
1227  *
1228  * This function stops the overflow check work and PTP Tx timestamp work, and
1229  * will prepare the device for OS suspend.
1230  */
igc_ptp_suspend(struct igc_adapter * adapter)1231 void igc_ptp_suspend(struct igc_adapter *adapter)
1232 {
1233 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1234 		return;
1235 
1236 	igc_ptp_clear_tx_tstamp(adapter);
1237 
1238 	if (pci_device_is_present(adapter->pdev)) {
1239 		igc_ptp_time_save(adapter);
1240 		igc_ptm_stop(adapter);
1241 	}
1242 }
1243 
1244 /**
1245  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1246  * @adapter: Board private structure.
1247  *
1248  * This function stops the PTP support and cancels the delayed work.
1249  **/
igc_ptp_stop(struct igc_adapter * adapter)1250 void igc_ptp_stop(struct igc_adapter *adapter)
1251 {
1252 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1253 		return;
1254 
1255 	igc_ptp_suspend(adapter);
1256 
1257 	adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1258 	if (adapter->ptp_clock) {
1259 		ptp_clock_unregister(adapter->ptp_clock);
1260 		netdev_info(adapter->netdev, "PHC removed\n");
1261 		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1262 	}
1263 	mutex_destroy(&adapter->ptm_lock);
1264 }
1265 
1266 /**
1267  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1268  * @adapter: Board private structure.
1269  *
1270  * This function handles the reset work required to re-enable the PTP device.
1271  **/
igc_ptp_reset(struct igc_adapter * adapter)1272 void igc_ptp_reset(struct igc_adapter *adapter)
1273 {
1274 	struct igc_hw *hw = &adapter->hw;
1275 	u32 cycle_ctrl, ctrl, stat;
1276 	unsigned long flags;
1277 	u32 timadj;
1278 
1279 	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1280 		return;
1281 
1282 	/* reset the tstamp_config */
1283 	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1284 
1285 	mutex_lock(&adapter->ptm_lock);
1286 
1287 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1288 
1289 	switch (adapter->hw.mac.type) {
1290 	case igc_i225:
1291 		timadj = rd32(IGC_TIMADJ);
1292 		timadj |= IGC_TIMADJ_ADJUST_METH;
1293 		wr32(IGC_TIMADJ, timadj);
1294 
1295 		wr32(IGC_TSAUXC, 0x0);
1296 		wr32(IGC_TSSDP, 0x0);
1297 		wr32(IGC_TSIM,
1298 		     IGC_TSICR_INTERRUPTS |
1299 		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1300 		wr32(IGC_IMS, IGC_IMS_TS);
1301 
1302 		if (!igc_is_crosststamp_supported(adapter))
1303 			break;
1304 
1305 		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1306 		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1307 
1308 		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1309 
1310 		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1311 
1312 		ctrl = IGC_PTM_CTRL_EN |
1313 			IGC_PTM_CTRL_START_NOW |
1314 			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1315 			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT);
1316 
1317 		wr32(IGC_PTM_CTRL, ctrl);
1318 
1319 		/* Force the first cycle to run. */
1320 		igc_ptm_trigger(hw);
1321 
1322 		if (readx_poll_timeout_atomic(rd32, IGC_PTM_STAT, stat,
1323 					      stat, IGC_PTM_STAT_SLEEP,
1324 					      IGC_PTM_STAT_TIMEOUT))
1325 			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1326 
1327 		igc_ptm_reset(hw);
1328 		break;
1329 	default:
1330 		/* No work to do. */
1331 		goto out;
1332 	}
1333 
1334 	/* Re-initialize the timer. */
1335 	if (hw->mac.type == igc_i225) {
1336 		igc_ptp_time_restore(adapter);
1337 	} else {
1338 		timecounter_init(&adapter->tc, &adapter->cc,
1339 				 ktime_to_ns(ktime_get_real()));
1340 	}
1341 out:
1342 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1343 
1344 	mutex_unlock(&adapter->ptm_lock);
1345 
1346 	wrfl();
1347 }
1348