xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15 #include <linux/mdio.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 	"Copyright(c) 2018 Intel Corporation.";
44 
45 static const struct igc_info *igc_info_tbl[] = {
46 	[board_base] = &igc_base_info,
47 };
48 
49 static const struct pci_device_id igc_pci_tbl[] = {
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 	/* required last entry */
67 	{0, }
68 };
69 
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71 
72 enum latency_range {
73 	lowest_latency = 0,
74 	low_latency = 1,
75 	bulk_latency = 2,
76 	latency_invalid = 255
77 };
78 
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 	struct net_device *dev = adapter->netdev;
82 	struct igc_hw *hw = &adapter->hw;
83 	struct igc_fc_info *fc = &hw->fc;
84 	u32 pba, hwm;
85 
86 	/* Repartition PBA for greater than 9k MTU if required */
87 	pba = IGC_PBA_34K;
88 
89 	/* flow control settings
90 	 * The high water mark must be low enough to fit one full frame
91 	 * after transmitting the pause frame.  As such we must have enough
92 	 * space to allow for us to complete our current transmit and then
93 	 * receive the frame that is in progress from the link partner.
94 	 * Set it to:
95 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 	 */
97 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98 
99 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100 	fc->low_water = fc->high_water - 16;
101 	fc->pause_time = 0xFFFF;
102 	fc->send_xon = 1;
103 	fc->current_mode = fc->requested_mode;
104 
105 	hw->mac.ops.reset_hw(hw);
106 
107 	if (hw->mac.ops.init_hw(hw))
108 		netdev_err(dev, "Error on hardware initialization\n");
109 
110 	/* Re-establish EEE setting */
111 	igc_set_eee_i225(hw, true, true, true);
112 
113 	if (!netif_running(adapter->netdev))
114 		igc_power_down_phy_copper_base(&adapter->hw);
115 
116 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 	wr32(IGC_VET, ETH_P_8021Q);
118 
119 	/* Re-enable PTP, where applicable. */
120 	igc_ptp_reset(adapter);
121 
122 	/* Re-enable TSN offloading, where applicable. */
123 	igc_tsn_reset(adapter);
124 
125 	igc_get_phy_info(hw);
126 }
127 
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 	igc_reset_phy(&adapter->hw);
135 
136 	igc_power_up_phy_copper(&adapter->hw);
137 
138 	igc_setup_link(&adapter->hw);
139 }
140 
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 	struct igc_hw *hw = &adapter->hw;
152 	u32 ctrl_ext;
153 
154 	if (!pci_device_is_present(adapter->pdev))
155 		return;
156 
157 	/* Let firmware take over control of h/w */
158 	ctrl_ext = rd32(IGC_CTRL_EXT);
159 	wr32(IGC_CTRL_EXT,
160 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162 
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 	struct igc_hw *hw = &adapter->hw;
174 	u32 ctrl_ext;
175 
176 	/* Let firmware know the driver has taken over */
177 	ctrl_ext = rd32(IGC_CTRL_EXT);
178 	wr32(IGC_CTRL_EXT,
179 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186 
187 	dma_unmap_len_set(buf, len, 0);
188 }
189 
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 	u16 i = tx_ring->next_to_clean;
197 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 	u32 xsk_frames = 0;
199 
200 	while (i != tx_ring->next_to_use) {
201 		union igc_adv_tx_desc *eop_desc, *tx_desc;
202 
203 		switch (tx_buffer->type) {
204 		case IGC_TX_BUFFER_TYPE_XSK:
205 			xsk_frames++;
206 			break;
207 		case IGC_TX_BUFFER_TYPE_XDP:
208 			xdp_return_frame(tx_buffer->xdpf);
209 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 			break;
211 		case IGC_TX_BUFFER_TYPE_SKB:
212 			dev_kfree_skb_any(tx_buffer->skb);
213 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 			break;
215 		default:
216 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 			break;
218 		}
219 
220 		/* check for eop_desc to determine the end of the packet */
221 		eop_desc = tx_buffer->next_to_watch;
222 		tx_desc = IGC_TX_DESC(tx_ring, i);
223 
224 		/* unmap remaining buffers */
225 		while (tx_desc != eop_desc) {
226 			tx_buffer++;
227 			tx_desc++;
228 			i++;
229 			if (unlikely(i == tx_ring->count)) {
230 				i = 0;
231 				tx_buffer = tx_ring->tx_buffer_info;
232 				tx_desc = IGC_TX_DESC(tx_ring, 0);
233 			}
234 
235 			/* unmap any remaining paged data */
236 			if (dma_unmap_len(tx_buffer, len))
237 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 		}
239 
240 		tx_buffer->next_to_watch = NULL;
241 
242 		/* move us one more past the eop_desc for start of next pkt */
243 		tx_buffer++;
244 		i++;
245 		if (unlikely(i == tx_ring->count)) {
246 			i = 0;
247 			tx_buffer = tx_ring->tx_buffer_info;
248 		}
249 	}
250 
251 	if (tx_ring->xsk_pool && xsk_frames)
252 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253 
254 	/* reset BQL for queue */
255 	netdev_tx_reset_queue(txring_txq(tx_ring));
256 
257 	/* Zero out the buffer ring */
258 	memset(tx_ring->tx_buffer_info, 0,
259 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260 
261 	/* Zero out the descriptor ring */
262 	memset(tx_ring->desc, 0, tx_ring->size);
263 
264 	/* reset next_to_use and next_to_clean */
265 	tx_ring->next_to_use = 0;
266 	tx_ring->next_to_clean = 0;
267 }
268 
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 	igc_disable_tx_ring(tx_ring);
278 
279 	vfree(tx_ring->tx_buffer_info);
280 	tx_ring->tx_buffer_info = NULL;
281 
282 	/* if not set, then don't free */
283 	if (!tx_ring->desc)
284 		return;
285 
286 	dma_free_coherent(tx_ring->dev, tx_ring->size,
287 			  tx_ring->desc, tx_ring->dma);
288 
289 	tx_ring->desc = NULL;
290 }
291 
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 	int i;
301 
302 	for (i = 0; i < adapter->num_tx_queues; i++)
303 		igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305 
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 	int i;
313 
314 	for (i = 0; i < adapter->num_tx_queues; i++)
315 		if (adapter->tx_ring[i])
316 			igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318 
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 	u8 idx = ring->reg_idx;
323 	u32 txdctl;
324 
325 	txdctl = rd32(IGC_TXDCTL(idx));
326 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 	txdctl |= IGC_TXDCTL_SWFLUSH;
328 	wr32(IGC_TXDCTL(idx), txdctl);
329 }
330 
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 	int i;
338 
339 	for (i = 0; i < adapter->num_tx_queues; i++) {
340 		struct igc_ring *tx_ring = adapter->tx_ring[i];
341 
342 		igc_disable_tx_ring_hw(tx_ring);
343 	}
344 }
345 
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 	struct net_device *ndev = tx_ring->netdev;
355 	struct device *dev = tx_ring->dev;
356 	int size = 0;
357 
358 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 	tx_ring->tx_buffer_info = vzalloc(size);
360 	if (!tx_ring->tx_buffer_info)
361 		goto err;
362 
363 	/* round up to nearest 4K */
364 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 	tx_ring->size = ALIGN(tx_ring->size, 4096);
366 
367 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 					   &tx_ring->dma, GFP_KERNEL);
369 
370 	if (!tx_ring->desc)
371 		goto err;
372 
373 	tx_ring->next_to_use = 0;
374 	tx_ring->next_to_clean = 0;
375 
376 	return 0;
377 
378 err:
379 	vfree(tx_ring->tx_buffer_info);
380 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 	return -ENOMEM;
382 }
383 
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 	struct net_device *dev = adapter->netdev;
393 	int i, err = 0;
394 
395 	for (i = 0; i < adapter->num_tx_queues; i++) {
396 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 		if (err) {
398 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 			for (i--; i >= 0; i--)
400 				igc_free_tx_resources(adapter->tx_ring[i]);
401 			break;
402 		}
403 	}
404 
405 	return err;
406 }
407 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 	u16 i = rx_ring->next_to_clean;
411 
412 	dev_kfree_skb(rx_ring->skb);
413 	rx_ring->skb = NULL;
414 
415 	/* Free all the Rx ring sk_buffs */
416 	while (i != rx_ring->next_to_alloc) {
417 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418 
419 		/* Invalidate cache lines that may have been written to by
420 		 * device so that we avoid corrupting memory.
421 		 */
422 		dma_sync_single_range_for_cpu(rx_ring->dev,
423 					      buffer_info->dma,
424 					      buffer_info->page_offset,
425 					      igc_rx_bufsz(rx_ring),
426 					      DMA_FROM_DEVICE);
427 
428 		/* free resources associated with mapping */
429 		dma_unmap_page_attrs(rx_ring->dev,
430 				     buffer_info->dma,
431 				     igc_rx_pg_size(rx_ring),
432 				     DMA_FROM_DEVICE,
433 				     IGC_RX_DMA_ATTR);
434 		__page_frag_cache_drain(buffer_info->page,
435 					buffer_info->pagecnt_bias);
436 
437 		i++;
438 		if (i == rx_ring->count)
439 			i = 0;
440 	}
441 }
442 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 	struct igc_rx_buffer *bi;
446 	u16 i;
447 
448 	for (i = 0; i < ring->count; i++) {
449 		bi = &ring->rx_buffer_info[i];
450 		if (!bi->xdp)
451 			continue;
452 
453 		xsk_buff_free(bi->xdp);
454 		bi->xdp = NULL;
455 	}
456 }
457 
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 	if (ring->xsk_pool)
465 		igc_clean_rx_ring_xsk_pool(ring);
466 	else
467 		igc_clean_rx_ring_page_shared(ring);
468 
469 	clear_ring_uses_large_buffer(ring);
470 
471 	ring->next_to_alloc = 0;
472 	ring->next_to_clean = 0;
473 	ring->next_to_use = 0;
474 }
475 
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 	int i;
483 
484 	for (i = 0; i < adapter->num_rx_queues; i++)
485 		if (adapter->rx_ring[i])
486 			igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488 
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 	igc_clean_rx_ring(rx_ring);
498 
499 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500 
501 	vfree(rx_ring->rx_buffer_info);
502 	rx_ring->rx_buffer_info = NULL;
503 
504 	/* if not set, then don't free */
505 	if (!rx_ring->desc)
506 		return;
507 
508 	dma_free_coherent(rx_ring->dev, rx_ring->size,
509 			  rx_ring->desc, rx_ring->dma);
510 
511 	rx_ring->desc = NULL;
512 }
513 
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 	int i;
523 
524 	for (i = 0; i < adapter->num_rx_queues; i++)
525 		igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527 
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 	struct net_device *ndev = rx_ring->netdev;
537 	struct device *dev = rx_ring->dev;
538 	u8 index = rx_ring->queue_index;
539 	int size, desc_len, res;
540 
541 	/* XDP RX-queue info */
542 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 			       rx_ring->q_vector->napi.napi_id);
546 	if (res < 0) {
547 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 			   index);
549 		return res;
550 	}
551 
552 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 	rx_ring->rx_buffer_info = vzalloc(size);
554 	if (!rx_ring->rx_buffer_info)
555 		goto err;
556 
557 	desc_len = sizeof(union igc_adv_rx_desc);
558 
559 	/* Round up to nearest 4K */
560 	rx_ring->size = rx_ring->count * desc_len;
561 	rx_ring->size = ALIGN(rx_ring->size, 4096);
562 
563 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 					   &rx_ring->dma, GFP_KERNEL);
565 
566 	if (!rx_ring->desc)
567 		goto err;
568 
569 	rx_ring->next_to_alloc = 0;
570 	rx_ring->next_to_clean = 0;
571 	rx_ring->next_to_use = 0;
572 
573 	return 0;
574 
575 err:
576 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 	vfree(rx_ring->rx_buffer_info);
578 	rx_ring->rx_buffer_info = NULL;
579 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 	return -ENOMEM;
581 }
582 
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 	struct net_device *dev = adapter->netdev;
593 	int i, err = 0;
594 
595 	for (i = 0; i < adapter->num_rx_queues; i++) {
596 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 		if (err) {
598 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 			for (i--; i >= 0; i--)
600 				igc_free_rx_resources(adapter->rx_ring[i]);
601 			break;
602 		}
603 	}
604 
605 	return err;
606 }
607 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 					      struct igc_ring *ring)
610 {
611 	if (!igc_xdp_is_enabled(adapter) ||
612 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 		return NULL;
614 
615 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617 
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 				  struct igc_ring *ring)
627 {
628 	struct igc_hw *hw = &adapter->hw;
629 	union igc_adv_rx_desc *rx_desc;
630 	int reg_idx = ring->reg_idx;
631 	u32 srrctl = 0, rxdctl = 0;
632 	u64 rdba = ring->dma;
633 	u32 buf_size;
634 
635 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 	if (ring->xsk_pool) {
638 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 						   MEM_TYPE_XSK_BUFF_POOL,
640 						   NULL));
641 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 	} else {
643 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 						   MEM_TYPE_PAGE_SHARED,
645 						   NULL));
646 	}
647 
648 	if (igc_xdp_is_enabled(adapter))
649 		set_ring_uses_large_buffer(ring);
650 
651 	/* disable the queue */
652 	wr32(IGC_RXDCTL(reg_idx), 0);
653 
654 	/* Set DMA base address registers */
655 	wr32(IGC_RDBAL(reg_idx),
656 	     rdba & 0x00000000ffffffffULL);
657 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 	wr32(IGC_RDLEN(reg_idx),
659 	     ring->count * sizeof(union igc_adv_rx_desc));
660 
661 	/* initialize head and tail */
662 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 	wr32(IGC_RDH(reg_idx), 0);
664 	writel(0, ring->tail);
665 
666 	/* reset next-to- use/clean to place SW in sync with hardware */
667 	ring->next_to_clean = 0;
668 	ring->next_to_use = 0;
669 
670 	if (ring->xsk_pool)
671 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 	else if (ring_uses_large_buffer(ring))
673 		buf_size = IGC_RXBUFFER_3072;
674 	else
675 		buf_size = IGC_RXBUFFER_2048;
676 
677 	srrctl = rd32(IGC_SRRCTL(reg_idx));
678 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 		    IGC_SRRCTL_DESCTYPE_MASK);
680 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683 
684 	wr32(IGC_SRRCTL(reg_idx), srrctl);
685 
686 	rxdctl |= IGC_RX_PTHRESH;
687 	rxdctl |= IGC_RX_HTHRESH << 8;
688 	rxdctl |= IGC_RX_WTHRESH << 16;
689 
690 	/* initialize rx_buffer_info */
691 	memset(ring->rx_buffer_info, 0,
692 	       sizeof(struct igc_rx_buffer) * ring->count);
693 
694 	/* initialize Rx descriptor 0 */
695 	rx_desc = IGC_RX_DESC(ring, 0);
696 	rx_desc->wb.upper.length = 0;
697 
698 	/* enable receive descriptor fetching */
699 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700 
701 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703 
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 	int i;
713 
714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715 	 * the Base and Length of the Rx Descriptor Ring
716 	 */
717 	for (i = 0; i < adapter->num_rx_queues; i++)
718 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720 
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 				  struct igc_ring *ring)
730 {
731 	struct igc_hw *hw = &adapter->hw;
732 	int reg_idx = ring->reg_idx;
733 	u64 tdba = ring->dma;
734 	u32 txdctl = 0;
735 
736 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737 
738 	/* disable the queue */
739 	wr32(IGC_TXDCTL(reg_idx), 0);
740 	wrfl();
741 
742 	wr32(IGC_TDLEN(reg_idx),
743 	     ring->count * sizeof(union igc_adv_tx_desc));
744 	wr32(IGC_TDBAL(reg_idx),
745 	     tdba & 0x00000000ffffffffULL);
746 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747 
748 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 	wr32(IGC_TDH(reg_idx), 0);
750 	writel(0, ring->tail);
751 
752 	txdctl |= IGC_TX_PTHRESH;
753 	txdctl |= IGC_TX_HTHRESH << 8;
754 	txdctl |= IGC_TX_WTHRESH << 16;
755 
756 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 	wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759 
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 	int i;
769 
770 	for (i = 0; i < adapter->num_tx_queues; i++)
771 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773 
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 j, num_rx_queues;
782 	u32 mrqc, rxcsum;
783 	u32 rss_key[10];
784 
785 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 	for (j = 0; j < 10; j++)
787 		wr32(IGC_RSSRK(j), rss_key[j]);
788 
789 	num_rx_queues = adapter->rss_queues;
790 
791 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 		for (j = 0; j < IGC_RETA_SIZE; j++)
793 			adapter->rss_indir_tbl[j] =
794 			(j * num_rx_queues) / IGC_RETA_SIZE;
795 		adapter->rss_indir_tbl_init = num_rx_queues;
796 	}
797 	igc_write_rss_indir_tbl(adapter);
798 
799 	/* Disable raw packet checksumming so that RSS hash is placed in
800 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801 	 * offloads as they are enabled by default
802 	 */
803 	rxcsum = rd32(IGC_RXCSUM);
804 	rxcsum |= IGC_RXCSUM_PCSD;
805 
806 	/* Enable Receive Checksum Offload for SCTP */
807 	rxcsum |= IGC_RXCSUM_CRCOFL;
808 
809 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810 	wr32(IGC_RXCSUM, rxcsum);
811 
812 	/* Generate RSS hash based on packet types, TCP/UDP
813 	 * port numbers and/or IPv4/v6 src and dst addresses
814 	 */
815 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 	       IGC_MRQC_RSS_FIELD_IPV6 |
818 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820 
821 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825 
826 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827 
828 	wr32(IGC_MRQC, mrqc);
829 }
830 
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 	struct igc_hw *hw = &adapter->hw;
838 	u32 rctl;
839 
840 	rctl = rd32(IGC_RCTL);
841 
842 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844 
845 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847 
848 	/* enable stripping of CRC. Newer features require
849 	 * that the HW strips the CRC.
850 	 */
851 	rctl |= IGC_RCTL_SECRC;
852 
853 	/* disable store bad packets and clear size bits. */
854 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855 
856 	/* enable LPE to allow for reception of jumbo frames */
857 	rctl |= IGC_RCTL_LPE;
858 
859 	/* disable queue 0 to prevent tail write w/o re-config */
860 	wr32(IGC_RXDCTL(0), 0);
861 
862 	/* This is useful for sniffing bad packets. */
863 	if (adapter->netdev->features & NETIF_F_RXALL) {
864 		/* UPE and MPE will be handled by normal PROMISC logic
865 		 * in set_rx_mode
866 		 */
867 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870 
871 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 	}
874 
875 	wr32(IGC_RCTL, rctl);
876 }
877 
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 	struct igc_hw *hw = &adapter->hw;
885 	u32 tctl;
886 
887 	/* disable queue 0 which icould be enabled by default */
888 	wr32(IGC_TXDCTL(0), 0);
889 
890 	/* Program the Transmit Control Register */
891 	tctl = rd32(IGC_TCTL);
892 	tctl &= ~IGC_TCTL_CT;
893 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895 
896 	/* Enable transmits */
897 	tctl |= IGC_TCTL_EN;
898 
899 	wr32(IGC_TCTL, tctl);
900 }
901 
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 				  enum igc_mac_filter_type type,
914 				  const u8 *addr, int queue)
915 {
916 	struct net_device *dev = adapter->netdev;
917 	struct igc_hw *hw = &adapter->hw;
918 	u32 ral, rah;
919 
920 	if (WARN_ON(index >= hw->mac.rar_entry_count))
921 		return;
922 
923 	ral = le32_to_cpup((__le32 *)(addr));
924 	rah = le16_to_cpup((__le16 *)(addr + 4));
925 
926 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 		rah &= ~IGC_RAH_ASEL_MASK;
928 		rah |= IGC_RAH_ASEL_SRC_ADDR;
929 	}
930 
931 	if (queue >= 0) {
932 		rah &= ~IGC_RAH_QSEL_MASK;
933 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 		rah |= IGC_RAH_QSEL_ENABLE;
935 	}
936 
937 	rah |= IGC_RAH_AV;
938 
939 	wr32(IGC_RAL(index), ral);
940 	wr32(IGC_RAH(index), rah);
941 
942 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944 
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 	struct net_device *dev = adapter->netdev;
953 	struct igc_hw *hw = &adapter->hw;
954 
955 	if (WARN_ON(index >= hw->mac.rar_entry_count))
956 		return;
957 
958 	wr32(IGC_RAL(index), 0);
959 	wr32(IGC_RAH(index), 0);
960 
961 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963 
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 	struct net_device *dev = adapter->netdev;
968 	u8 *addr = adapter->hw.mac.addr;
969 
970 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971 
972 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974 
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 	struct igc_adapter *adapter = netdev_priv(netdev);
985 	struct igc_hw *hw = &adapter->hw;
986 	struct sockaddr *addr = p;
987 
988 	if (!is_valid_ether_addr(addr->sa_data))
989 		return -EADDRNOTAVAIL;
990 
991 	eth_hw_addr_set(netdev, addr->sa_data);
992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993 
994 	/* set the correct pool for the new PF MAC address in entry 0 */
995 	igc_set_default_mac_filter(adapter);
996 
997 	return 0;
998 }
999 
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 	struct igc_adapter *adapter = netdev_priv(netdev);
1012 	struct igc_hw *hw = &adapter->hw;
1013 	struct netdev_hw_addr *ha;
1014 	u8  *mta_list;
1015 	int i;
1016 
1017 	if (netdev_mc_empty(netdev)) {
1018 		/* nothing to program, so clear mc list */
1019 		igc_update_mc_addr_list(hw, NULL, 0);
1020 		return 0;
1021 	}
1022 
1023 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 	if (!mta_list)
1025 		return -ENOMEM;
1026 
1027 	/* The shared function expects a packed array of only addresses. */
1028 	i = 0;
1029 	netdev_for_each_mc_addr(ha, netdev)
1030 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031 
1032 	igc_update_mc_addr_list(hw, mta_list, i);
1033 	kfree(mta_list);
1034 
1035 	return netdev_mc_count(netdev);
1036 }
1037 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 				bool *first_flag, bool *insert_empty)
1040 {
1041 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 	ktime_t cycle_time = adapter->cycle_time;
1043 	ktime_t base_time = adapter->base_time;
1044 	ktime_t now = ktime_get_clocktai();
1045 	ktime_t baset_est, end_of_cycle;
1046 	s32 launchtime;
1047 	s64 n;
1048 
1049 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050 
1051 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053 
1054 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 		if (baset_est != ring->last_ff_cycle) {
1056 			*first_flag = true;
1057 			ring->last_ff_cycle = baset_est;
1058 
1059 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 				*insert_empty = true;
1061 		}
1062 	}
1063 
1064 	/* Introducing a window at end of cycle on which packets
1065 	 * potentially not honor launchtime. Window of 5us chosen
1066 	 * considering software update the tail pointer and packets
1067 	 * are dma'ed to packet buffer.
1068 	 */
1069 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 			    txtime);
1072 
1073 	ring->last_tx_cycle = end_of_cycle;
1074 
1075 	launchtime = ktime_sub_ns(txtime, baset_est);
1076 	if (launchtime > 0)
1077 		div_s64_rem(launchtime, cycle_time, &launchtime);
1078 	else
1079 		launchtime = 0;
1080 
1081 	return cpu_to_le32(launchtime);
1082 }
1083 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 				struct igc_tx_buffer *buffer,
1086 				struct sk_buff *skb)
1087 {
1088 	unsigned int size;
1089 	dma_addr_t dma;
1090 
1091 	size = skb_headlen(skb);
1092 
1093 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 	if (dma_mapping_error(ring->dev, dma)) {
1095 		net_err_ratelimited("%s: DMA mapping error for empty frame\n",
1096 				    netdev_name(ring->netdev));
1097 		return -ENOMEM;
1098 	}
1099 
1100 	buffer->type = IGC_TX_BUFFER_TYPE_SKB;
1101 	buffer->skb = skb;
1102 	buffer->protocol = 0;
1103 	buffer->bytecount = skb->len;
1104 	buffer->gso_segs = 1;
1105 	buffer->time_stamp = jiffies;
1106 	dma_unmap_len_set(buffer, len, skb->len);
1107 	dma_unmap_addr_set(buffer, dma, dma);
1108 
1109 	return 0;
1110 }
1111 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1112 static void igc_init_tx_empty_descriptor(struct igc_ring *ring,
1113 					 struct sk_buff *skb,
1114 					 struct igc_tx_buffer *first)
1115 {
1116 	union igc_adv_tx_desc *desc;
1117 	u32 cmd_type, olinfo_status;
1118 
1119 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1120 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1121 		   first->bytecount;
1122 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1123 
1124 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1125 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1126 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1127 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1128 
1129 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1130 
1131 	first->next_to_watch = desc;
1132 
1133 	ring->next_to_use++;
1134 	if (ring->next_to_use == ring->count)
1135 		ring->next_to_use = 0;
1136 }
1137 
1138 #define IGC_EMPTY_FRAME_SIZE 60
1139 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1140 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1141 			    __le32 launch_time, bool first_flag,
1142 			    u32 vlan_macip_lens, u32 type_tucmd,
1143 			    u32 mss_l4len_idx)
1144 {
1145 	struct igc_adv_tx_context_desc *context_desc;
1146 	u16 i = tx_ring->next_to_use;
1147 
1148 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1149 
1150 	i++;
1151 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1152 
1153 	/* set bits to identify this as an advanced context descriptor */
1154 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1155 
1156 	/* For i225, context index must be unique per ring. */
1157 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1158 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1159 
1160 	if (first_flag)
1161 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1162 
1163 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1164 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1165 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1166 	context_desc->launch_time	= launch_time;
1167 }
1168 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1169 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1170 			__le32 launch_time, bool first_flag)
1171 {
1172 	struct sk_buff *skb = first->skb;
1173 	u32 vlan_macip_lens = 0;
1174 	u32 type_tucmd = 0;
1175 
1176 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1177 csum_failed:
1178 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1179 		    !tx_ring->launchtime_enable)
1180 			return;
1181 		goto no_csum;
1182 	}
1183 
1184 	switch (skb->csum_offset) {
1185 	case offsetof(struct tcphdr, check):
1186 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1187 		fallthrough;
1188 	case offsetof(struct udphdr, check):
1189 		break;
1190 	case offsetof(struct sctphdr, checksum):
1191 		/* validate that this is actually an SCTP request */
1192 		if (skb_csum_is_sctp(skb)) {
1193 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1194 			break;
1195 		}
1196 		fallthrough;
1197 	default:
1198 		skb_checksum_help(skb);
1199 		goto csum_failed;
1200 	}
1201 
1202 	/* update TX checksum flag */
1203 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1204 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1205 			  skb_network_offset(skb);
1206 no_csum:
1207 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1208 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1209 
1210 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1211 			vlan_macip_lens, type_tucmd, 0);
1212 }
1213 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1214 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1215 {
1216 	struct net_device *netdev = tx_ring->netdev;
1217 
1218 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1219 
1220 	/* memory barriier comment */
1221 	smp_mb();
1222 
1223 	/* We need to check again in a case another CPU has just
1224 	 * made room available.
1225 	 */
1226 	if (igc_desc_unused(tx_ring) < size)
1227 		return -EBUSY;
1228 
1229 	/* A reprieve! */
1230 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1231 
1232 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1233 	tx_ring->tx_stats.restart_queue2++;
1234 	u64_stats_update_end(&tx_ring->tx_syncp2);
1235 
1236 	return 0;
1237 }
1238 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1239 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1240 {
1241 	if (igc_desc_unused(tx_ring) >= size)
1242 		return 0;
1243 	return __igc_maybe_stop_tx(tx_ring, size);
1244 }
1245 
1246 #define IGC_SET_FLAG(_input, _flag, _result) \
1247 	(((_flag) <= (_result)) ?				\
1248 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1249 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1250 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1251 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1252 {
1253 	/* set type for advanced descriptor with frame checksum insertion */
1254 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1255 		       IGC_ADVTXD_DCMD_DEXT |
1256 		       IGC_ADVTXD_DCMD_IFCS;
1257 
1258 	/* set HW vlan bit if vlan is present */
1259 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1260 				 IGC_ADVTXD_DCMD_VLE);
1261 
1262 	/* set segmentation bits for TSO */
1263 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1264 				 (IGC_ADVTXD_DCMD_TSE));
1265 
1266 	/* set timestamp bit if present, will select the register set
1267 	 * based on the _TSTAMP(_X) bit.
1268 	 */
1269 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1270 				 (IGC_ADVTXD_MAC_TSTAMP));
1271 
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1273 				 (IGC_ADVTXD_TSTAMP_REG_1));
1274 
1275 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1276 				 (IGC_ADVTXD_TSTAMP_REG_2));
1277 
1278 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1279 				 (IGC_ADVTXD_TSTAMP_REG_3));
1280 
1281 	/* insert frame checksum */
1282 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1283 
1284 	return cmd_type;
1285 }
1286 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1287 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1288 				 union igc_adv_tx_desc *tx_desc,
1289 				 u32 tx_flags, unsigned int paylen)
1290 {
1291 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1292 
1293 	/* insert L4 checksum */
1294 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1295 				      (IGC_TXD_POPTS_TXSM << 8));
1296 
1297 	/* insert IPv4 checksum */
1298 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1299 				      (IGC_TXD_POPTS_IXSM << 8));
1300 
1301 	/* Use the second timer (free running, in general) for the timestamp */
1302 	olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1303 				      IGC_TXD_PTP2_TIMER_1);
1304 
1305 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1306 }
1307 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1308 static int igc_tx_map(struct igc_ring *tx_ring,
1309 		      struct igc_tx_buffer *first,
1310 		      const u8 hdr_len)
1311 {
1312 	struct sk_buff *skb = first->skb;
1313 	struct igc_tx_buffer *tx_buffer;
1314 	union igc_adv_tx_desc *tx_desc;
1315 	u32 tx_flags = first->tx_flags;
1316 	skb_frag_t *frag;
1317 	u16 i = tx_ring->next_to_use;
1318 	unsigned int data_len, size;
1319 	dma_addr_t dma;
1320 	u32 cmd_type;
1321 
1322 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1323 	tx_desc = IGC_TX_DESC(tx_ring, i);
1324 
1325 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1326 
1327 	size = skb_headlen(skb);
1328 	data_len = skb->data_len;
1329 
1330 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1331 
1332 	tx_buffer = first;
1333 
1334 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1335 		if (dma_mapping_error(tx_ring->dev, dma))
1336 			goto dma_error;
1337 
1338 		/* record length, and DMA address */
1339 		dma_unmap_len_set(tx_buffer, len, size);
1340 		dma_unmap_addr_set(tx_buffer, dma, dma);
1341 
1342 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1343 
1344 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1345 			tx_desc->read.cmd_type_len =
1346 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1347 
1348 			i++;
1349 			tx_desc++;
1350 			if (i == tx_ring->count) {
1351 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1352 				i = 0;
1353 			}
1354 			tx_desc->read.olinfo_status = 0;
1355 
1356 			dma += IGC_MAX_DATA_PER_TXD;
1357 			size -= IGC_MAX_DATA_PER_TXD;
1358 
1359 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1360 		}
1361 
1362 		if (likely(!data_len))
1363 			break;
1364 
1365 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1366 
1367 		i++;
1368 		tx_desc++;
1369 		if (i == tx_ring->count) {
1370 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1371 			i = 0;
1372 		}
1373 		tx_desc->read.olinfo_status = 0;
1374 
1375 		size = skb_frag_size(frag);
1376 		data_len -= size;
1377 
1378 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1379 				       size, DMA_TO_DEVICE);
1380 
1381 		tx_buffer = &tx_ring->tx_buffer_info[i];
1382 	}
1383 
1384 	/* write last descriptor with RS and EOP bits */
1385 	cmd_type |= size | IGC_TXD_DCMD;
1386 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1387 
1388 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1389 
1390 	/* set the timestamp */
1391 	first->time_stamp = jiffies;
1392 
1393 	skb_tx_timestamp(skb);
1394 
1395 	/* Force memory writes to complete before letting h/w know there
1396 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1397 	 * memory model archs, such as IA-64).
1398 	 *
1399 	 * We also need this memory barrier to make certain all of the
1400 	 * status bits have been updated before next_to_watch is written.
1401 	 */
1402 	wmb();
1403 
1404 	/* set next_to_watch value indicating a packet is present */
1405 	first->next_to_watch = tx_desc;
1406 
1407 	i++;
1408 	if (i == tx_ring->count)
1409 		i = 0;
1410 
1411 	tx_ring->next_to_use = i;
1412 
1413 	/* Make sure there is space in the ring for the next send. */
1414 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1415 
1416 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1417 		writel(i, tx_ring->tail);
1418 	}
1419 
1420 	return 0;
1421 dma_error:
1422 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1423 	tx_buffer = &tx_ring->tx_buffer_info[i];
1424 
1425 	/* clear dma mappings for failed tx_buffer_info map */
1426 	while (tx_buffer != first) {
1427 		if (dma_unmap_len(tx_buffer, len))
1428 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1429 
1430 		if (i-- == 0)
1431 			i += tx_ring->count;
1432 		tx_buffer = &tx_ring->tx_buffer_info[i];
1433 	}
1434 
1435 	if (dma_unmap_len(tx_buffer, len))
1436 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437 
1438 	dev_kfree_skb_any(tx_buffer->skb);
1439 	tx_buffer->skb = NULL;
1440 
1441 	tx_ring->next_to_use = i;
1442 
1443 	return -1;
1444 }
1445 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1446 static int igc_tso(struct igc_ring *tx_ring,
1447 		   struct igc_tx_buffer *first,
1448 		   __le32 launch_time, bool first_flag,
1449 		   u8 *hdr_len)
1450 {
1451 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1452 	struct sk_buff *skb = first->skb;
1453 	union {
1454 		struct iphdr *v4;
1455 		struct ipv6hdr *v6;
1456 		unsigned char *hdr;
1457 	} ip;
1458 	union {
1459 		struct tcphdr *tcp;
1460 		struct udphdr *udp;
1461 		unsigned char *hdr;
1462 	} l4;
1463 	u32 paylen, l4_offset;
1464 	int err;
1465 
1466 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1467 		return 0;
1468 
1469 	if (!skb_is_gso(skb))
1470 		return 0;
1471 
1472 	err = skb_cow_head(skb, 0);
1473 	if (err < 0)
1474 		return err;
1475 
1476 	ip.hdr = skb_network_header(skb);
1477 	l4.hdr = skb_checksum_start(skb);
1478 
1479 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1480 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1481 
1482 	/* initialize outer IP header fields */
1483 	if (ip.v4->version == 4) {
1484 		unsigned char *csum_start = skb_checksum_start(skb);
1485 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1486 
1487 		/* IP header will have to cancel out any data that
1488 		 * is not a part of the outer IP header
1489 		 */
1490 		ip.v4->check = csum_fold(csum_partial(trans_start,
1491 						      csum_start - trans_start,
1492 						      0));
1493 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1494 
1495 		ip.v4->tot_len = 0;
1496 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1497 				   IGC_TX_FLAGS_CSUM |
1498 				   IGC_TX_FLAGS_IPV4;
1499 	} else {
1500 		ip.v6->payload_len = 0;
1501 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1502 				   IGC_TX_FLAGS_CSUM;
1503 	}
1504 
1505 	/* determine offset of inner transport header */
1506 	l4_offset = l4.hdr - skb->data;
1507 
1508 	/* remove payload length from inner checksum */
1509 	paylen = skb->len - l4_offset;
1510 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1511 		/* compute length of segmentation header */
1512 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1513 		csum_replace_by_diff(&l4.tcp->check,
1514 				     (__force __wsum)htonl(paylen));
1515 	} else {
1516 		/* compute length of segmentation header */
1517 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1518 		csum_replace_by_diff(&l4.udp->check,
1519 				     (__force __wsum)htonl(paylen));
1520 	}
1521 
1522 	/* update gso size and bytecount with header size */
1523 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1524 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1525 
1526 	/* MSS L4LEN IDX */
1527 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1528 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1529 
1530 	/* VLAN MACLEN IPLEN */
1531 	vlan_macip_lens = l4.hdr - ip.hdr;
1532 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1533 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1534 
1535 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1536 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1537 
1538 	return 1;
1539 }
1540 
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1541 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1542 {
1543 	int i;
1544 
1545 	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1546 		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1547 
1548 		if (tstamp->skb)
1549 			continue;
1550 
1551 		tstamp->skb = skb_get(skb);
1552 		tstamp->start = jiffies;
1553 		*flags = tstamp->flags;
1554 
1555 		return true;
1556 	}
1557 
1558 	return false;
1559 }
1560 
igc_insert_empty_frame(struct igc_ring * tx_ring)1561 static int igc_insert_empty_frame(struct igc_ring *tx_ring)
1562 {
1563 	struct igc_tx_buffer *empty_info;
1564 	struct sk_buff *empty_skb;
1565 	void *data;
1566 	int ret;
1567 
1568 	empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1569 	empty_skb = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1570 	if (unlikely(!empty_skb)) {
1571 		net_err_ratelimited("%s: skb alloc error for empty frame\n",
1572 				    netdev_name(tx_ring->netdev));
1573 		return -ENOMEM;
1574 	}
1575 
1576 	data = skb_put(empty_skb, IGC_EMPTY_FRAME_SIZE);
1577 	memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1578 
1579 	/* Prepare DMA mapping and Tx buffer information */
1580 	ret = igc_init_empty_frame(tx_ring, empty_info, empty_skb);
1581 	if (unlikely(ret)) {
1582 		dev_kfree_skb_any(empty_skb);
1583 		return ret;
1584 	}
1585 
1586 	/* Prepare advanced context descriptor for empty packet */
1587 	igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1588 
1589 	/* Prepare advanced data descriptor for empty packet */
1590 	igc_init_tx_empty_descriptor(tx_ring, empty_skb, empty_info);
1591 
1592 	return 0;
1593 }
1594 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1595 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1596 				       struct igc_ring *tx_ring)
1597 {
1598 	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1599 	bool first_flag = false, insert_empty = false;
1600 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1601 	__be16 protocol = vlan_get_protocol(skb);
1602 	struct igc_tx_buffer *first;
1603 	__le32 launch_time = 0;
1604 	u32 tx_flags = 0;
1605 	unsigned short f;
1606 	ktime_t txtime;
1607 	u8 hdr_len = 0;
1608 	int tso = 0;
1609 
1610 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1611 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1612 	 *	+ 2 desc gap to keep tail from touching head,
1613 	 *	+ 1 desc for context descriptor,
1614 	 *	+ 2 desc for inserting an empty packet for launch time,
1615 	 * otherwise try next time
1616 	 */
1617 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1618 		count += TXD_USE_COUNT(skb_frag_size(
1619 						&skb_shinfo(skb)->frags[f]));
1620 
1621 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1622 		/* this is a hard error */
1623 		return NETDEV_TX_BUSY;
1624 	}
1625 
1626 	if (!tx_ring->launchtime_enable)
1627 		goto done;
1628 
1629 	txtime = skb->tstamp;
1630 	skb->tstamp = ktime_set(0, 0);
1631 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1632 
1633 	if (insert_empty) {
1634 		/* Reset the launch time if the required empty frame fails to
1635 		 * be inserted. However, this packet is not dropped, so it
1636 		 * "dirties" the current Qbv cycle. This ensures that the
1637 		 * upcoming packet, which is scheduled in the next Qbv cycle,
1638 		 * does not require an empty frame. This way, the launch time
1639 		 * continues to function correctly despite the current failure
1640 		 * to insert the empty frame.
1641 		 */
1642 		if (igc_insert_empty_frame(tx_ring))
1643 			launch_time = 0;
1644 	}
1645 
1646 done:
1647 	/* record the location of the first descriptor for this packet */
1648 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1649 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1650 	first->skb = skb;
1651 	first->bytecount = skb->len;
1652 	first->gso_segs = 1;
1653 
1654 	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1655 		goto out_drop;
1656 
1657 	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1658 		adapter->stats.txdrop++;
1659 		goto out_drop;
1660 	}
1661 
1662 	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1663 		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1664 		unsigned long flags;
1665 		u32 tstamp_flags;
1666 
1667 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1668 		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1669 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1670 			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1671 			if (skb->sk &&
1672 			    READ_ONCE(skb->sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC)
1673 				tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1674 		} else {
1675 			adapter->tx_hwtstamp_skipped++;
1676 		}
1677 
1678 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1679 	}
1680 
1681 	if (skb_vlan_tag_present(skb)) {
1682 		tx_flags |= IGC_TX_FLAGS_VLAN;
1683 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1684 	}
1685 
1686 	/* record initial flags and protocol */
1687 	first->tx_flags = tx_flags;
1688 	first->protocol = protocol;
1689 
1690 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1691 	if (tso < 0)
1692 		goto out_drop;
1693 	else if (!tso)
1694 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1695 
1696 	igc_tx_map(tx_ring, first, hdr_len);
1697 
1698 	return NETDEV_TX_OK;
1699 
1700 out_drop:
1701 	dev_kfree_skb_any(first->skb);
1702 	first->skb = NULL;
1703 
1704 	return NETDEV_TX_OK;
1705 }
1706 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1707 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1708 						    struct sk_buff *skb)
1709 {
1710 	unsigned int r_idx = skb->queue_mapping;
1711 
1712 	if (r_idx >= adapter->num_tx_queues)
1713 		r_idx = r_idx % adapter->num_tx_queues;
1714 
1715 	return adapter->tx_ring[r_idx];
1716 }
1717 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1718 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1719 				  struct net_device *netdev)
1720 {
1721 	struct igc_adapter *adapter = netdev_priv(netdev);
1722 
1723 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1724 	 * in order to meet this minimum size requirement.
1725 	 */
1726 	if (skb->len < 17) {
1727 		if (skb_padto(skb, 17))
1728 			return NETDEV_TX_OK;
1729 		skb->len = 17;
1730 	}
1731 
1732 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1733 }
1734 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1735 static void igc_rx_checksum(struct igc_ring *ring,
1736 			    union igc_adv_rx_desc *rx_desc,
1737 			    struct sk_buff *skb)
1738 {
1739 	skb_checksum_none_assert(skb);
1740 
1741 	/* Ignore Checksum bit is set */
1742 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1743 		return;
1744 
1745 	/* Rx checksum disabled via ethtool */
1746 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1747 		return;
1748 
1749 	/* TCP/UDP checksum error bit is set */
1750 	if (igc_test_staterr(rx_desc,
1751 			     IGC_RXDEXT_STATERR_L4E |
1752 			     IGC_RXDEXT_STATERR_IPE)) {
1753 		/* work around errata with sctp packets where the TCPE aka
1754 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1755 		 * packets (aka let the stack check the crc32c)
1756 		 */
1757 		if (!(skb->len == 60 &&
1758 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1759 			u64_stats_update_begin(&ring->rx_syncp);
1760 			ring->rx_stats.csum_err++;
1761 			u64_stats_update_end(&ring->rx_syncp);
1762 		}
1763 		/* let the stack verify checksum errors */
1764 		return;
1765 	}
1766 	/* It must be a TCP or UDP packet with a valid checksum */
1767 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1768 				      IGC_RXD_STAT_UDPCS))
1769 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1770 
1771 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1772 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1773 }
1774 
1775 /* Mapping HW RSS Type to enum pkt_hash_types */
1776 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1777 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1778 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1779 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1780 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1781 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1782 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1783 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1784 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1785 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1786 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1787 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1788 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1789 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1790 	[13] = PKT_HASH_TYPE_NONE,
1791 	[14] = PKT_HASH_TYPE_NONE,
1792 	[15] = PKT_HASH_TYPE_NONE,
1793 };
1794 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1795 static inline void igc_rx_hash(struct igc_ring *ring,
1796 			       union igc_adv_rx_desc *rx_desc,
1797 			       struct sk_buff *skb)
1798 {
1799 	if (ring->netdev->features & NETIF_F_RXHASH) {
1800 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1801 		u32 rss_type = igc_rss_type(rx_desc);
1802 
1803 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1804 	}
1805 }
1806 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1807 static void igc_rx_vlan(struct igc_ring *rx_ring,
1808 			union igc_adv_rx_desc *rx_desc,
1809 			struct sk_buff *skb)
1810 {
1811 	struct net_device *dev = rx_ring->netdev;
1812 	u16 vid;
1813 
1814 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1815 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1816 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1817 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1818 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1819 		else
1820 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1821 
1822 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1823 	}
1824 }
1825 
1826 /**
1827  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1828  * @rx_ring: rx descriptor ring packet is being transacted on
1829  * @rx_desc: pointer to the EOP Rx descriptor
1830  * @skb: pointer to current skb being populated
1831  *
1832  * This function checks the ring, descriptor, and packet information in order
1833  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1834  * skb.
1835  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1836 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1837 				   union igc_adv_rx_desc *rx_desc,
1838 				   struct sk_buff *skb)
1839 {
1840 	igc_rx_hash(rx_ring, rx_desc, skb);
1841 
1842 	igc_rx_checksum(rx_ring, rx_desc, skb);
1843 
1844 	igc_rx_vlan(rx_ring, rx_desc, skb);
1845 
1846 	skb_record_rx_queue(skb, rx_ring->queue_index);
1847 
1848 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1849 }
1850 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1851 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1852 {
1853 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1854 	struct igc_adapter *adapter = netdev_priv(netdev);
1855 	struct igc_hw *hw = &adapter->hw;
1856 	u32 ctrl;
1857 
1858 	ctrl = rd32(IGC_CTRL);
1859 
1860 	if (enable) {
1861 		/* enable VLAN tag insert/strip */
1862 		ctrl |= IGC_CTRL_VME;
1863 	} else {
1864 		/* disable VLAN tag insert/strip */
1865 		ctrl &= ~IGC_CTRL_VME;
1866 	}
1867 	wr32(IGC_CTRL, ctrl);
1868 }
1869 
igc_restore_vlan(struct igc_adapter * adapter)1870 static void igc_restore_vlan(struct igc_adapter *adapter)
1871 {
1872 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1873 }
1874 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1875 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1876 					       const unsigned int size,
1877 					       int *rx_buffer_pgcnt)
1878 {
1879 	struct igc_rx_buffer *rx_buffer;
1880 
1881 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1882 	*rx_buffer_pgcnt =
1883 #if (PAGE_SIZE < 8192)
1884 		page_count(rx_buffer->page);
1885 #else
1886 		0;
1887 #endif
1888 	prefetchw(rx_buffer->page);
1889 
1890 	/* we are reusing so sync this buffer for CPU use */
1891 	dma_sync_single_range_for_cpu(rx_ring->dev,
1892 				      rx_buffer->dma,
1893 				      rx_buffer->page_offset,
1894 				      size,
1895 				      DMA_FROM_DEVICE);
1896 
1897 	rx_buffer->pagecnt_bias--;
1898 
1899 	return rx_buffer;
1900 }
1901 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1902 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1903 			       unsigned int truesize)
1904 {
1905 #if (PAGE_SIZE < 8192)
1906 	buffer->page_offset ^= truesize;
1907 #else
1908 	buffer->page_offset += truesize;
1909 #endif
1910 }
1911 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1912 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1913 					      unsigned int size)
1914 {
1915 	unsigned int truesize;
1916 
1917 #if (PAGE_SIZE < 8192)
1918 	truesize = igc_rx_pg_size(ring) / 2;
1919 #else
1920 	truesize = ring_uses_build_skb(ring) ?
1921 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1922 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1923 		   SKB_DATA_ALIGN(size);
1924 #endif
1925 	return truesize;
1926 }
1927 
1928 /**
1929  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1930  * @rx_ring: rx descriptor ring to transact packets on
1931  * @rx_buffer: buffer containing page to add
1932  * @skb: sk_buff to place the data into
1933  * @size: size of buffer to be added
1934  *
1935  * This function will add the data contained in rx_buffer->page to the skb.
1936  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1937 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1938 			    struct igc_rx_buffer *rx_buffer,
1939 			    struct sk_buff *skb,
1940 			    unsigned int size)
1941 {
1942 	unsigned int truesize;
1943 
1944 #if (PAGE_SIZE < 8192)
1945 	truesize = igc_rx_pg_size(rx_ring) / 2;
1946 #else
1947 	truesize = ring_uses_build_skb(rx_ring) ?
1948 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1949 		   SKB_DATA_ALIGN(size);
1950 #endif
1951 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1952 			rx_buffer->page_offset, size, truesize);
1953 
1954 	igc_rx_buffer_flip(rx_buffer, truesize);
1955 }
1956 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1957 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1958 				     struct igc_rx_buffer *rx_buffer,
1959 				     struct xdp_buff *xdp)
1960 {
1961 	unsigned int size = xdp->data_end - xdp->data;
1962 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1963 	unsigned int metasize = xdp->data - xdp->data_meta;
1964 	struct sk_buff *skb;
1965 
1966 	/* prefetch first cache line of first page */
1967 	net_prefetch(xdp->data_meta);
1968 
1969 	/* build an skb around the page buffer */
1970 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1971 	if (unlikely(!skb))
1972 		return NULL;
1973 
1974 	/* update pointers within the skb to store the data */
1975 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1976 	__skb_put(skb, size);
1977 	if (metasize)
1978 		skb_metadata_set(skb, metasize);
1979 
1980 	igc_rx_buffer_flip(rx_buffer, truesize);
1981 	return skb;
1982 }
1983 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct igc_xdp_buff * ctx)1984 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1985 					 struct igc_rx_buffer *rx_buffer,
1986 					 struct igc_xdp_buff *ctx)
1987 {
1988 	struct xdp_buff *xdp = &ctx->xdp;
1989 	unsigned int metasize = xdp->data - xdp->data_meta;
1990 	unsigned int size = xdp->data_end - xdp->data;
1991 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1992 	void *va = xdp->data;
1993 	unsigned int headlen;
1994 	struct sk_buff *skb;
1995 
1996 	/* prefetch first cache line of first page */
1997 	net_prefetch(xdp->data_meta);
1998 
1999 	/* allocate a skb to store the frags */
2000 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
2001 			     IGC_RX_HDR_LEN + metasize);
2002 	if (unlikely(!skb))
2003 		return NULL;
2004 
2005 	if (ctx->rx_ts) {
2006 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2007 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2008 	}
2009 
2010 	/* Determine available headroom for copy */
2011 	headlen = size;
2012 	if (headlen > IGC_RX_HDR_LEN)
2013 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
2014 
2015 	/* align pull length to size of long to optimize memcpy performance */
2016 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2017 	       ALIGN(headlen + metasize, sizeof(long)));
2018 
2019 	if (metasize) {
2020 		skb_metadata_set(skb, metasize);
2021 		__skb_pull(skb, metasize);
2022 	}
2023 
2024 	/* update all of the pointers */
2025 	size -= headlen;
2026 	if (size) {
2027 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2028 				(va + headlen) - page_address(rx_buffer->page),
2029 				size, truesize);
2030 		igc_rx_buffer_flip(rx_buffer, truesize);
2031 	} else {
2032 		rx_buffer->pagecnt_bias++;
2033 	}
2034 
2035 	return skb;
2036 }
2037 
2038 /**
2039  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2040  * @rx_ring: rx descriptor ring to store buffers on
2041  * @old_buff: donor buffer to have page reused
2042  *
2043  * Synchronizes page for reuse by the adapter
2044  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2045 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2046 			      struct igc_rx_buffer *old_buff)
2047 {
2048 	u16 nta = rx_ring->next_to_alloc;
2049 	struct igc_rx_buffer *new_buff;
2050 
2051 	new_buff = &rx_ring->rx_buffer_info[nta];
2052 
2053 	/* update, and store next to alloc */
2054 	nta++;
2055 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2056 
2057 	/* Transfer page from old buffer to new buffer.
2058 	 * Move each member individually to avoid possible store
2059 	 * forwarding stalls.
2060 	 */
2061 	new_buff->dma		= old_buff->dma;
2062 	new_buff->page		= old_buff->page;
2063 	new_buff->page_offset	= old_buff->page_offset;
2064 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2065 }
2066 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2067 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2068 				  int rx_buffer_pgcnt)
2069 {
2070 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2071 	struct page *page = rx_buffer->page;
2072 
2073 	/* avoid re-using remote and pfmemalloc pages */
2074 	if (!dev_page_is_reusable(page))
2075 		return false;
2076 
2077 #if (PAGE_SIZE < 8192)
2078 	/* if we are only owner of page we can reuse it */
2079 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2080 		return false;
2081 #else
2082 #define IGC_LAST_OFFSET \
2083 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2084 
2085 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2086 		return false;
2087 #endif
2088 
2089 	/* If we have drained the page fragment pool we need to update
2090 	 * the pagecnt_bias and page count so that we fully restock the
2091 	 * number of references the driver holds.
2092 	 */
2093 	if (unlikely(pagecnt_bias == 1)) {
2094 		page_ref_add(page, USHRT_MAX - 1);
2095 		rx_buffer->pagecnt_bias = USHRT_MAX;
2096 	}
2097 
2098 	return true;
2099 }
2100 
2101 /**
2102  * igc_is_non_eop - process handling of non-EOP buffers
2103  * @rx_ring: Rx ring being processed
2104  * @rx_desc: Rx descriptor for current buffer
2105  *
2106  * This function updates next to clean.  If the buffer is an EOP buffer
2107  * this function exits returning false, otherwise it will place the
2108  * sk_buff in the next buffer to be chained and return true indicating
2109  * that this is in fact a non-EOP buffer.
2110  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2111 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2112 			   union igc_adv_rx_desc *rx_desc)
2113 {
2114 	u32 ntc = rx_ring->next_to_clean + 1;
2115 
2116 	/* fetch, update, and store next to clean */
2117 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2118 	rx_ring->next_to_clean = ntc;
2119 
2120 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2121 
2122 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2123 		return false;
2124 
2125 	return true;
2126 }
2127 
2128 /**
2129  * igc_cleanup_headers - Correct corrupted or empty headers
2130  * @rx_ring: rx descriptor ring packet is being transacted on
2131  * @rx_desc: pointer to the EOP Rx descriptor
2132  * @skb: pointer to current skb being fixed
2133  *
2134  * Address the case where we are pulling data in on pages only
2135  * and as such no data is present in the skb header.
2136  *
2137  * In addition if skb is not at least 60 bytes we need to pad it so that
2138  * it is large enough to qualify as a valid Ethernet frame.
2139  *
2140  * Returns true if an error was encountered and skb was freed.
2141  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2142 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2143 				union igc_adv_rx_desc *rx_desc,
2144 				struct sk_buff *skb)
2145 {
2146 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2147 		struct net_device *netdev = rx_ring->netdev;
2148 
2149 		if (!(netdev->features & NETIF_F_RXALL)) {
2150 			dev_kfree_skb_any(skb);
2151 			return true;
2152 		}
2153 	}
2154 
2155 	/* if eth_skb_pad returns an error the skb was freed */
2156 	if (eth_skb_pad(skb))
2157 		return true;
2158 
2159 	return false;
2160 }
2161 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2162 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2163 			      struct igc_rx_buffer *rx_buffer,
2164 			      int rx_buffer_pgcnt)
2165 {
2166 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2167 		/* hand second half of page back to the ring */
2168 		igc_reuse_rx_page(rx_ring, rx_buffer);
2169 	} else {
2170 		/* We are not reusing the buffer so unmap it and free
2171 		 * any references we are holding to it
2172 		 */
2173 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2174 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2175 				     IGC_RX_DMA_ATTR);
2176 		__page_frag_cache_drain(rx_buffer->page,
2177 					rx_buffer->pagecnt_bias);
2178 	}
2179 
2180 	/* clear contents of rx_buffer */
2181 	rx_buffer->page = NULL;
2182 }
2183 
igc_rx_offset(struct igc_ring * rx_ring)2184 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2185 {
2186 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2187 
2188 	if (ring_uses_build_skb(rx_ring))
2189 		return IGC_SKB_PAD;
2190 	if (igc_xdp_is_enabled(adapter))
2191 		return XDP_PACKET_HEADROOM;
2192 
2193 	return 0;
2194 }
2195 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2196 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2197 				  struct igc_rx_buffer *bi)
2198 {
2199 	struct page *page = bi->page;
2200 	dma_addr_t dma;
2201 
2202 	/* since we are recycling buffers we should seldom need to alloc */
2203 	if (likely(page))
2204 		return true;
2205 
2206 	/* alloc new page for storage */
2207 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2208 	if (unlikely(!page)) {
2209 		rx_ring->rx_stats.alloc_failed++;
2210 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2211 		return false;
2212 	}
2213 
2214 	/* map page for use */
2215 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2216 				 igc_rx_pg_size(rx_ring),
2217 				 DMA_FROM_DEVICE,
2218 				 IGC_RX_DMA_ATTR);
2219 
2220 	/* if mapping failed free memory back to system since
2221 	 * there isn't much point in holding memory we can't use
2222 	 */
2223 	if (dma_mapping_error(rx_ring->dev, dma)) {
2224 		__free_page(page);
2225 
2226 		rx_ring->rx_stats.alloc_failed++;
2227 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2228 		return false;
2229 	}
2230 
2231 	bi->dma = dma;
2232 	bi->page = page;
2233 	bi->page_offset = igc_rx_offset(rx_ring);
2234 	page_ref_add(page, USHRT_MAX - 1);
2235 	bi->pagecnt_bias = USHRT_MAX;
2236 
2237 	return true;
2238 }
2239 
2240 /**
2241  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2242  * @rx_ring: rx descriptor ring
2243  * @cleaned_count: number of buffers to clean
2244  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2245 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2246 {
2247 	union igc_adv_rx_desc *rx_desc;
2248 	u16 i = rx_ring->next_to_use;
2249 	struct igc_rx_buffer *bi;
2250 	u16 bufsz;
2251 
2252 	/* nothing to do */
2253 	if (!cleaned_count)
2254 		return;
2255 
2256 	rx_desc = IGC_RX_DESC(rx_ring, i);
2257 	bi = &rx_ring->rx_buffer_info[i];
2258 	i -= rx_ring->count;
2259 
2260 	bufsz = igc_rx_bufsz(rx_ring);
2261 
2262 	do {
2263 		if (!igc_alloc_mapped_page(rx_ring, bi))
2264 			break;
2265 
2266 		/* sync the buffer for use by the device */
2267 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2268 						 bi->page_offset, bufsz,
2269 						 DMA_FROM_DEVICE);
2270 
2271 		/* Refresh the desc even if buffer_addrs didn't change
2272 		 * because each write-back erases this info.
2273 		 */
2274 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2275 
2276 		rx_desc++;
2277 		bi++;
2278 		i++;
2279 		if (unlikely(!i)) {
2280 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2281 			bi = rx_ring->rx_buffer_info;
2282 			i -= rx_ring->count;
2283 		}
2284 
2285 		/* clear the length for the next_to_use descriptor */
2286 		rx_desc->wb.upper.length = 0;
2287 
2288 		cleaned_count--;
2289 	} while (cleaned_count);
2290 
2291 	i += rx_ring->count;
2292 
2293 	if (rx_ring->next_to_use != i) {
2294 		/* record the next descriptor to use */
2295 		rx_ring->next_to_use = i;
2296 
2297 		/* update next to alloc since we have filled the ring */
2298 		rx_ring->next_to_alloc = i;
2299 
2300 		/* Force memory writes to complete before letting h/w
2301 		 * know there are new descriptors to fetch.  (Only
2302 		 * applicable for weak-ordered memory model archs,
2303 		 * such as IA-64).
2304 		 */
2305 		wmb();
2306 		writel(i, rx_ring->tail);
2307 	}
2308 }
2309 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2310 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2311 {
2312 	union igc_adv_rx_desc *desc;
2313 	u16 i = ring->next_to_use;
2314 	struct igc_rx_buffer *bi;
2315 	dma_addr_t dma;
2316 	bool ok = true;
2317 
2318 	if (!count)
2319 		return ok;
2320 
2321 	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2322 
2323 	desc = IGC_RX_DESC(ring, i);
2324 	bi = &ring->rx_buffer_info[i];
2325 	i -= ring->count;
2326 
2327 	do {
2328 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2329 		if (!bi->xdp) {
2330 			ok = false;
2331 			break;
2332 		}
2333 
2334 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2335 		desc->read.pkt_addr = cpu_to_le64(dma);
2336 
2337 		desc++;
2338 		bi++;
2339 		i++;
2340 		if (unlikely(!i)) {
2341 			desc = IGC_RX_DESC(ring, 0);
2342 			bi = ring->rx_buffer_info;
2343 			i -= ring->count;
2344 		}
2345 
2346 		/* Clear the length for the next_to_use descriptor. */
2347 		desc->wb.upper.length = 0;
2348 
2349 		count--;
2350 	} while (count);
2351 
2352 	i += ring->count;
2353 
2354 	if (ring->next_to_use != i) {
2355 		ring->next_to_use = i;
2356 
2357 		/* Force memory writes to complete before letting h/w
2358 		 * know there are new descriptors to fetch.  (Only
2359 		 * applicable for weak-ordered memory model archs,
2360 		 * such as IA-64).
2361 		 */
2362 		wmb();
2363 		writel(i, ring->tail);
2364 	}
2365 
2366 	return ok;
2367 }
2368 
2369 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2370 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2371 				      struct xdp_frame *xdpf)
2372 {
2373 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2374 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2375 	u16 count, index = ring->next_to_use;
2376 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2377 	struct igc_tx_buffer *buffer = head;
2378 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2379 	u32 olinfo_status, len = xdpf->len, cmd_type;
2380 	void *data = xdpf->data;
2381 	u16 i;
2382 
2383 	count = TXD_USE_COUNT(len);
2384 	for (i = 0; i < nr_frags; i++)
2385 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2386 
2387 	if (igc_maybe_stop_tx(ring, count + 3)) {
2388 		/* this is a hard error */
2389 		return -EBUSY;
2390 	}
2391 
2392 	i = 0;
2393 	head->bytecount = xdp_get_frame_len(xdpf);
2394 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2395 	head->gso_segs = 1;
2396 	head->xdpf = xdpf;
2397 
2398 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2399 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2400 
2401 	for (;;) {
2402 		dma_addr_t dma;
2403 
2404 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2405 		if (dma_mapping_error(ring->dev, dma)) {
2406 			netdev_err_once(ring->netdev,
2407 					"Failed to map DMA for TX\n");
2408 			goto unmap;
2409 		}
2410 
2411 		dma_unmap_len_set(buffer, len, len);
2412 		dma_unmap_addr_set(buffer, dma, dma);
2413 
2414 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2415 			   IGC_ADVTXD_DCMD_IFCS | len;
2416 
2417 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2418 		desc->read.buffer_addr = cpu_to_le64(dma);
2419 
2420 		buffer->protocol = 0;
2421 
2422 		if (++index == ring->count)
2423 			index = 0;
2424 
2425 		if (i == nr_frags)
2426 			break;
2427 
2428 		buffer = &ring->tx_buffer_info[index];
2429 		desc = IGC_TX_DESC(ring, index);
2430 		desc->read.olinfo_status = 0;
2431 
2432 		data = skb_frag_address(&sinfo->frags[i]);
2433 		len = skb_frag_size(&sinfo->frags[i]);
2434 		i++;
2435 	}
2436 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2437 
2438 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2439 	/* set the timestamp */
2440 	head->time_stamp = jiffies;
2441 	/* set next_to_watch value indicating a packet is present */
2442 	head->next_to_watch = desc;
2443 	ring->next_to_use = index;
2444 
2445 	return 0;
2446 
2447 unmap:
2448 	for (;;) {
2449 		buffer = &ring->tx_buffer_info[index];
2450 		if (dma_unmap_len(buffer, len))
2451 			dma_unmap_page(ring->dev,
2452 				       dma_unmap_addr(buffer, dma),
2453 				       dma_unmap_len(buffer, len),
2454 				       DMA_TO_DEVICE);
2455 		dma_unmap_len_set(buffer, len, 0);
2456 		if (buffer == head)
2457 			break;
2458 
2459 		if (!index)
2460 			index += ring->count;
2461 		index--;
2462 	}
2463 
2464 	return -ENOMEM;
2465 }
2466 
igc_get_tx_ring(struct igc_adapter * adapter,int cpu)2467 struct igc_ring *igc_get_tx_ring(struct igc_adapter *adapter, int cpu)
2468 {
2469 	int index = cpu;
2470 
2471 	if (unlikely(index < 0))
2472 		index = 0;
2473 
2474 	while (index >= adapter->num_tx_queues)
2475 		index -= adapter->num_tx_queues;
2476 
2477 	return adapter->tx_ring[index];
2478 }
2479 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2480 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2481 {
2482 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2483 	int cpu = smp_processor_id();
2484 	struct netdev_queue *nq;
2485 	struct igc_ring *ring;
2486 	int res;
2487 
2488 	if (unlikely(!xdpf))
2489 		return -EFAULT;
2490 
2491 	ring = igc_get_tx_ring(adapter, cpu);
2492 	nq = txring_txq(ring);
2493 
2494 	__netif_tx_lock(nq, cpu);
2495 	/* Avoid transmit queue timeout since we share it with the slow path */
2496 	txq_trans_cond_update(nq);
2497 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2498 	__netif_tx_unlock(nq);
2499 	return res;
2500 }
2501 
2502 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2503 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2504 			      struct bpf_prog *prog,
2505 			      struct xdp_buff *xdp)
2506 {
2507 	u32 act = bpf_prog_run_xdp(prog, xdp);
2508 
2509 	switch (act) {
2510 	case XDP_PASS:
2511 		return IGC_XDP_PASS;
2512 	case XDP_TX:
2513 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2514 			goto out_failure;
2515 		return IGC_XDP_TX;
2516 	case XDP_REDIRECT:
2517 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2518 			goto out_failure;
2519 		return IGC_XDP_REDIRECT;
2520 		break;
2521 	default:
2522 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2523 		fallthrough;
2524 	case XDP_ABORTED:
2525 out_failure:
2526 		trace_xdp_exception(adapter->netdev, prog, act);
2527 		fallthrough;
2528 	case XDP_DROP:
2529 		return IGC_XDP_CONSUMED;
2530 	}
2531 }
2532 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2533 static int igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp)
2534 {
2535 	struct bpf_prog *prog;
2536 	int res;
2537 
2538 	prog = READ_ONCE(adapter->xdp_prog);
2539 	if (!prog) {
2540 		res = IGC_XDP_PASS;
2541 		goto out;
2542 	}
2543 
2544 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2545 
2546 out:
2547 	return res;
2548 }
2549 
2550 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2551 void igc_flush_tx_descriptors(struct igc_ring *ring)
2552 {
2553 	/* Once tail pointer is updated, hardware can fetch the descriptors
2554 	 * any time so we issue a write membar here to ensure all memory
2555 	 * writes are complete before the tail pointer is updated.
2556 	 */
2557 	wmb();
2558 	writel(ring->next_to_use, ring->tail);
2559 }
2560 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2561 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2562 {
2563 	int cpu = smp_processor_id();
2564 	struct netdev_queue *nq;
2565 	struct igc_ring *ring;
2566 
2567 	if (status & IGC_XDP_TX) {
2568 		ring = igc_get_tx_ring(adapter, cpu);
2569 		nq = txring_txq(ring);
2570 
2571 		__netif_tx_lock(nq, cpu);
2572 		igc_flush_tx_descriptors(ring);
2573 		__netif_tx_unlock(nq);
2574 	}
2575 
2576 	if (status & IGC_XDP_REDIRECT)
2577 		xdp_do_flush();
2578 }
2579 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2580 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2581 				unsigned int packets, unsigned int bytes)
2582 {
2583 	struct igc_ring *ring = q_vector->rx.ring;
2584 
2585 	u64_stats_update_begin(&ring->rx_syncp);
2586 	ring->rx_stats.packets += packets;
2587 	ring->rx_stats.bytes += bytes;
2588 	u64_stats_update_end(&ring->rx_syncp);
2589 
2590 	q_vector->rx.total_packets += packets;
2591 	q_vector->rx.total_bytes += bytes;
2592 }
2593 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2594 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2595 {
2596 	unsigned int total_bytes = 0, total_packets = 0;
2597 	struct igc_adapter *adapter = q_vector->adapter;
2598 	struct igc_ring *rx_ring = q_vector->rx.ring;
2599 	struct sk_buff *skb = rx_ring->skb;
2600 	u16 cleaned_count = igc_desc_unused(rx_ring);
2601 	int xdp_status = 0, rx_buffer_pgcnt;
2602 	int xdp_res = 0;
2603 
2604 	while (likely(total_packets < budget)) {
2605 		struct igc_xdp_buff ctx = { .rx_ts = NULL };
2606 		struct igc_rx_buffer *rx_buffer;
2607 		union igc_adv_rx_desc *rx_desc;
2608 		unsigned int size, truesize;
2609 		int pkt_offset = 0;
2610 		void *pktbuf;
2611 
2612 		/* return some buffers to hardware, one at a time is too slow */
2613 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2614 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2615 			cleaned_count = 0;
2616 		}
2617 
2618 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2619 		size = le16_to_cpu(rx_desc->wb.upper.length);
2620 		if (!size)
2621 			break;
2622 
2623 		/* This memory barrier is needed to keep us from reading
2624 		 * any other fields out of the rx_desc until we know the
2625 		 * descriptor has been written back
2626 		 */
2627 		dma_rmb();
2628 
2629 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2630 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2631 
2632 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2633 
2634 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2635 			ctx.rx_ts = pktbuf;
2636 			pkt_offset = IGC_TS_HDR_LEN;
2637 			size -= IGC_TS_HDR_LEN;
2638 		}
2639 
2640 		if (igc_fpe_is_pmac_enabled(adapter) &&
2641 		    igc_fpe_handle_mpacket(adapter, rx_desc, size, pktbuf)) {
2642 			/* Advance the ring next-to-clean */
2643 			igc_is_non_eop(rx_ring, rx_desc);
2644 			cleaned_count++;
2645 			continue;
2646 		}
2647 
2648 		if (!skb) {
2649 			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2650 			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2651 					 igc_rx_offset(rx_ring) + pkt_offset,
2652 					 size, true);
2653 			xdp_buff_clear_frags_flag(&ctx.xdp);
2654 			ctx.rx_desc = rx_desc;
2655 
2656 			xdp_res = igc_xdp_run_prog(adapter, &ctx.xdp);
2657 		}
2658 
2659 		if (xdp_res) {
2660 			switch (xdp_res) {
2661 			case IGC_XDP_CONSUMED:
2662 				rx_buffer->pagecnt_bias++;
2663 				break;
2664 			case IGC_XDP_TX:
2665 			case IGC_XDP_REDIRECT:
2666 				igc_rx_buffer_flip(rx_buffer, truesize);
2667 				xdp_status |= xdp_res;
2668 				break;
2669 			}
2670 
2671 			total_packets++;
2672 			total_bytes += size;
2673 		} else if (skb)
2674 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2675 		else if (ring_uses_build_skb(rx_ring))
2676 			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2677 		else
2678 			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2679 
2680 		/* exit if we failed to retrieve a buffer */
2681 		if (!xdp_res && !skb) {
2682 			rx_ring->rx_stats.alloc_failed++;
2683 			rx_buffer->pagecnt_bias++;
2684 			set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
2685 			break;
2686 		}
2687 
2688 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2689 		cleaned_count++;
2690 
2691 		/* fetch next buffer in frame if non-eop */
2692 		if (igc_is_non_eop(rx_ring, rx_desc))
2693 			continue;
2694 
2695 		/* verify the packet layout is correct */
2696 		if (xdp_res || igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2697 			skb = NULL;
2698 			continue;
2699 		}
2700 
2701 		/* probably a little skewed due to removing CRC */
2702 		total_bytes += skb->len;
2703 
2704 		/* populate checksum, VLAN, and protocol */
2705 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2706 
2707 		napi_gro_receive(&q_vector->napi, skb);
2708 
2709 		/* reset skb pointer */
2710 		skb = NULL;
2711 
2712 		/* update budget accounting */
2713 		total_packets++;
2714 	}
2715 
2716 	if (xdp_status)
2717 		igc_finalize_xdp(adapter, xdp_status);
2718 
2719 	/* place incomplete frames back on ring for completion */
2720 	rx_ring->skb = skb;
2721 
2722 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2723 
2724 	if (cleaned_count)
2725 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2726 
2727 	return total_packets;
2728 }
2729 
igc_construct_skb_zc(struct igc_ring * ring,struct igc_xdp_buff * ctx)2730 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2731 					    struct igc_xdp_buff *ctx)
2732 {
2733 	struct xdp_buff *xdp = &ctx->xdp;
2734 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2735 	unsigned int metasize = xdp->data - xdp->data_meta;
2736 	struct sk_buff *skb;
2737 
2738 	net_prefetch(xdp->data_meta);
2739 
2740 	skb = napi_alloc_skb(&ring->q_vector->napi, totalsize);
2741 	if (unlikely(!skb))
2742 		return NULL;
2743 
2744 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2745 	       ALIGN(totalsize, sizeof(long)));
2746 
2747 	if (metasize) {
2748 		skb_metadata_set(skb, metasize);
2749 		__skb_pull(skb, metasize);
2750 	}
2751 
2752 	if (ctx->rx_ts) {
2753 		skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
2754 		skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
2755 	}
2756 
2757 	return skb;
2758 }
2759 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct igc_xdp_buff * ctx)2760 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2761 				union igc_adv_rx_desc *desc,
2762 				struct igc_xdp_buff *ctx)
2763 {
2764 	struct igc_ring *ring = q_vector->rx.ring;
2765 	struct sk_buff *skb;
2766 
2767 	skb = igc_construct_skb_zc(ring, ctx);
2768 	if (!skb) {
2769 		ring->rx_stats.alloc_failed++;
2770 		set_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &ring->flags);
2771 		return;
2772 	}
2773 
2774 	if (igc_cleanup_headers(ring, desc, skb))
2775 		return;
2776 
2777 	igc_process_skb_fields(ring, desc, skb);
2778 	napi_gro_receive(&q_vector->napi, skb);
2779 }
2780 
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2781 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2782 {
2783 	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2784 	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2785 	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2786 	 */
2787        return (struct igc_xdp_buff *)xdp;
2788 }
2789 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2790 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2791 {
2792 	struct igc_adapter *adapter = q_vector->adapter;
2793 	struct igc_ring *ring = q_vector->rx.ring;
2794 	u16 cleaned_count = igc_desc_unused(ring);
2795 	int total_bytes = 0, total_packets = 0;
2796 	u16 ntc = ring->next_to_clean;
2797 	struct bpf_prog *prog;
2798 	bool failure = false;
2799 	int xdp_status = 0;
2800 
2801 	rcu_read_lock();
2802 
2803 	prog = READ_ONCE(adapter->xdp_prog);
2804 
2805 	while (likely(total_packets < budget)) {
2806 		union igc_adv_rx_desc *desc;
2807 		struct igc_rx_buffer *bi;
2808 		struct igc_xdp_buff *ctx;
2809 		unsigned int size;
2810 		int res;
2811 
2812 		desc = IGC_RX_DESC(ring, ntc);
2813 		size = le16_to_cpu(desc->wb.upper.length);
2814 		if (!size)
2815 			break;
2816 
2817 		/* This memory barrier is needed to keep us from reading
2818 		 * any other fields out of the rx_desc until we know the
2819 		 * descriptor has been written back
2820 		 */
2821 		dma_rmb();
2822 
2823 		bi = &ring->rx_buffer_info[ntc];
2824 
2825 		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2826 		ctx->rx_desc = desc;
2827 
2828 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2829 			ctx->rx_ts = bi->xdp->data;
2830 
2831 			bi->xdp->data += IGC_TS_HDR_LEN;
2832 
2833 			/* HW timestamp has been copied into local variable. Metadata
2834 			 * length when XDP program is called should be 0.
2835 			 */
2836 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2837 			size -= IGC_TS_HDR_LEN;
2838 		} else {
2839 			ctx->rx_ts = NULL;
2840 		}
2841 
2842 		bi->xdp->data_end = bi->xdp->data + size;
2843 		xsk_buff_dma_sync_for_cpu(bi->xdp);
2844 
2845 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2846 		switch (res) {
2847 		case IGC_XDP_PASS:
2848 			igc_dispatch_skb_zc(q_vector, desc, ctx);
2849 			fallthrough;
2850 		case IGC_XDP_CONSUMED:
2851 			xsk_buff_free(bi->xdp);
2852 			break;
2853 		case IGC_XDP_TX:
2854 		case IGC_XDP_REDIRECT:
2855 			xdp_status |= res;
2856 			break;
2857 		}
2858 
2859 		bi->xdp = NULL;
2860 		total_bytes += size;
2861 		total_packets++;
2862 		cleaned_count++;
2863 		ntc++;
2864 		if (ntc == ring->count)
2865 			ntc = 0;
2866 	}
2867 
2868 	ring->next_to_clean = ntc;
2869 	rcu_read_unlock();
2870 
2871 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2872 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2873 
2874 	if (xdp_status)
2875 		igc_finalize_xdp(adapter, xdp_status);
2876 
2877 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2878 
2879 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2880 		if (failure || ring->next_to_clean == ring->next_to_use)
2881 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2882 		else
2883 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2884 		return total_packets;
2885 	}
2886 
2887 	return failure ? budget : total_packets;
2888 }
2889 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2890 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2891 				unsigned int packets, unsigned int bytes)
2892 {
2893 	struct igc_ring *ring = q_vector->tx.ring;
2894 
2895 	u64_stats_update_begin(&ring->tx_syncp);
2896 	ring->tx_stats.bytes += bytes;
2897 	ring->tx_stats.packets += packets;
2898 	u64_stats_update_end(&ring->tx_syncp);
2899 
2900 	q_vector->tx.total_bytes += bytes;
2901 	q_vector->tx.total_packets += packets;
2902 }
2903 
igc_xsk_request_timestamp(void * _priv)2904 static void igc_xsk_request_timestamp(void *_priv)
2905 {
2906 	struct igc_metadata_request *meta_req = _priv;
2907 	struct igc_ring *tx_ring = meta_req->tx_ring;
2908 	struct igc_tx_timestamp_request *tstamp;
2909 	u32 tx_flags = IGC_TX_FLAGS_TSTAMP;
2910 	struct igc_adapter *adapter;
2911 	unsigned long lock_flags;
2912 	bool found = false;
2913 	int i;
2914 
2915 	if (test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags)) {
2916 		adapter = netdev_priv(tx_ring->netdev);
2917 
2918 		spin_lock_irqsave(&adapter->ptp_tx_lock, lock_flags);
2919 
2920 		/* Search for available tstamp regs */
2921 		for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
2922 			tstamp = &adapter->tx_tstamp[i];
2923 
2924 			/* tstamp->skb and tstamp->xsk_tx_buffer are in union.
2925 			 * When tstamp->skb is equal to NULL,
2926 			 * tstamp->xsk_tx_buffer is equal to NULL as well.
2927 			 * This condition means that the particular tstamp reg
2928 			 * is not occupied by other packet.
2929 			 */
2930 			if (!tstamp->skb) {
2931 				found = true;
2932 				break;
2933 			}
2934 		}
2935 
2936 		/* Return if no available tstamp regs */
2937 		if (!found) {
2938 			adapter->tx_hwtstamp_skipped++;
2939 			spin_unlock_irqrestore(&adapter->ptp_tx_lock,
2940 					       lock_flags);
2941 			return;
2942 		}
2943 
2944 		tstamp->start = jiffies;
2945 		tstamp->xsk_queue_index = tx_ring->queue_index;
2946 		tstamp->xsk_tx_buffer = meta_req->tx_buffer;
2947 		tstamp->buffer_type = IGC_TX_BUFFER_TYPE_XSK;
2948 
2949 		/* Hold the transmit completion until timestamp is ready */
2950 		meta_req->tx_buffer->xsk_pending_ts = true;
2951 
2952 		/* Keep the pointer to tx_timestamp, which is located in XDP
2953 		 * metadata area. It is the location to store the value of
2954 		 * tx hardware timestamp.
2955 		 */
2956 		xsk_tx_metadata_to_compl(meta_req->meta, &tstamp->xsk_meta);
2957 
2958 		/* Set timestamp bit based on the _TSTAMP(_X) bit. */
2959 		tx_flags |= tstamp->flags;
2960 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2961 						   IGC_TX_FLAGS_TSTAMP,
2962 						   (IGC_ADVTXD_MAC_TSTAMP));
2963 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2964 						   IGC_TX_FLAGS_TSTAMP_1,
2965 						   (IGC_ADVTXD_TSTAMP_REG_1));
2966 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2967 						   IGC_TX_FLAGS_TSTAMP_2,
2968 						   (IGC_ADVTXD_TSTAMP_REG_2));
2969 		meta_req->cmd_type |= IGC_SET_FLAG(tx_flags,
2970 						   IGC_TX_FLAGS_TSTAMP_3,
2971 						   (IGC_ADVTXD_TSTAMP_REG_3));
2972 
2973 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, lock_flags);
2974 	}
2975 }
2976 
igc_xsk_fill_timestamp(void * _priv)2977 static u64 igc_xsk_fill_timestamp(void *_priv)
2978 {
2979 	return *(u64 *)_priv;
2980 }
2981 
igc_xsk_request_launch_time(u64 launch_time,void * _priv)2982 static void igc_xsk_request_launch_time(u64 launch_time, void *_priv)
2983 {
2984 	struct igc_metadata_request *meta_req = _priv;
2985 	struct igc_ring *tx_ring = meta_req->tx_ring;
2986 	__le32 launch_time_offset;
2987 	bool insert_empty = false;
2988 	bool first_flag = false;
2989 	u16 used_desc = 0;
2990 
2991 	if (!tx_ring->launchtime_enable)
2992 		return;
2993 
2994 	launch_time_offset = igc_tx_launchtime(tx_ring,
2995 					       ns_to_ktime(launch_time),
2996 					       &first_flag, &insert_empty);
2997 	if (insert_empty) {
2998 		/* Disregard the launch time request if the required empty frame
2999 		 * fails to be inserted.
3000 		 */
3001 		if (igc_insert_empty_frame(tx_ring))
3002 			return;
3003 
3004 		meta_req->tx_buffer =
3005 			&tx_ring->tx_buffer_info[tx_ring->next_to_use];
3006 		/* Inserting an empty packet requires two descriptors:
3007 		 * one data descriptor and one context descriptor.
3008 		 */
3009 		used_desc += 2;
3010 	}
3011 
3012 	/* Use one context descriptor to specify launch time and first flag. */
3013 	igc_tx_ctxtdesc(tx_ring, launch_time_offset, first_flag, 0, 0, 0);
3014 	used_desc += 1;
3015 
3016 	/* Update the number of used descriptors in this request */
3017 	meta_req->used_desc += used_desc;
3018 }
3019 
3020 const struct xsk_tx_metadata_ops igc_xsk_tx_metadata_ops = {
3021 	.tmo_request_timestamp		= igc_xsk_request_timestamp,
3022 	.tmo_fill_timestamp		= igc_xsk_fill_timestamp,
3023 	.tmo_request_launch_time	= igc_xsk_request_launch_time,
3024 };
3025 
igc_xdp_xmit_zc(struct igc_ring * ring)3026 static void igc_xdp_xmit_zc(struct igc_ring *ring)
3027 {
3028 	struct xsk_buff_pool *pool = ring->xsk_pool;
3029 	struct netdev_queue *nq = txring_txq(ring);
3030 	union igc_adv_tx_desc *tx_desc = NULL;
3031 	int cpu = smp_processor_id();
3032 	struct xdp_desc xdp_desc;
3033 	u16 budget, ntu;
3034 
3035 	if (!netif_carrier_ok(ring->netdev))
3036 		return;
3037 
3038 	__netif_tx_lock(nq, cpu);
3039 
3040 	/* Avoid transmit queue timeout since we share it with the slow path */
3041 	txq_trans_cond_update(nq);
3042 
3043 	ntu = ring->next_to_use;
3044 	budget = igc_desc_unused(ring);
3045 
3046 	/* Packets with launch time require one data descriptor and one context
3047 	 * descriptor. When the launch time falls into the next Qbv cycle, we
3048 	 * may need to insert an empty packet, which requires two more
3049 	 * descriptors. Therefore, to be safe, we always ensure we have at least
3050 	 * 4 descriptors available.
3051 	 */
3052 	while (budget >= 4 && xsk_tx_peek_desc(pool, &xdp_desc)) {
3053 		struct igc_metadata_request meta_req;
3054 		struct xsk_tx_metadata *meta = NULL;
3055 		struct igc_tx_buffer *bi;
3056 		u32 olinfo_status;
3057 		dma_addr_t dma;
3058 
3059 		meta_req.cmd_type = IGC_ADVTXD_DTYP_DATA |
3060 				    IGC_ADVTXD_DCMD_DEXT |
3061 				    IGC_ADVTXD_DCMD_IFCS |
3062 				    IGC_TXD_DCMD | xdp_desc.len;
3063 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
3064 
3065 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
3066 		meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
3067 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
3068 		bi = &ring->tx_buffer_info[ntu];
3069 
3070 		meta_req.tx_ring = ring;
3071 		meta_req.tx_buffer = bi;
3072 		meta_req.meta = meta;
3073 		meta_req.used_desc = 0;
3074 		xsk_tx_metadata_request(meta, &igc_xsk_tx_metadata_ops,
3075 					&meta_req);
3076 
3077 		/* xsk_tx_metadata_request() may have updated next_to_use */
3078 		ntu = ring->next_to_use;
3079 
3080 		/* xsk_tx_metadata_request() may have updated Tx buffer info */
3081 		bi = meta_req.tx_buffer;
3082 
3083 		/* xsk_tx_metadata_request() may use a few descriptors */
3084 		budget -= meta_req.used_desc;
3085 
3086 		tx_desc = IGC_TX_DESC(ring, ntu);
3087 		tx_desc->read.cmd_type_len = cpu_to_le32(meta_req.cmd_type);
3088 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3089 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3090 
3091 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
3092 		bi->protocol = 0;
3093 		bi->bytecount = xdp_desc.len;
3094 		bi->gso_segs = 1;
3095 		bi->time_stamp = jiffies;
3096 		bi->next_to_watch = tx_desc;
3097 
3098 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
3099 
3100 		ntu++;
3101 		if (ntu == ring->count)
3102 			ntu = 0;
3103 
3104 		ring->next_to_use = ntu;
3105 		budget--;
3106 	}
3107 
3108 	if (tx_desc) {
3109 		igc_flush_tx_descriptors(ring);
3110 		xsk_tx_release(pool);
3111 	}
3112 
3113 	__netif_tx_unlock(nq);
3114 }
3115 
3116 /**
3117  * igc_clean_tx_irq - Reclaim resources after transmit completes
3118  * @q_vector: pointer to q_vector containing needed info
3119  * @napi_budget: Used to determine if we are in netpoll
3120  *
3121  * returns true if ring is completely cleaned
3122  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)3123 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
3124 {
3125 	struct igc_adapter *adapter = q_vector->adapter;
3126 	unsigned int total_bytes = 0, total_packets = 0;
3127 	unsigned int budget = q_vector->tx.work_limit;
3128 	struct igc_ring *tx_ring = q_vector->tx.ring;
3129 	unsigned int i = tx_ring->next_to_clean;
3130 	struct igc_tx_buffer *tx_buffer;
3131 	union igc_adv_tx_desc *tx_desc;
3132 	u32 xsk_frames = 0;
3133 
3134 	if (test_bit(__IGC_DOWN, &adapter->state))
3135 		return true;
3136 
3137 	tx_buffer = &tx_ring->tx_buffer_info[i];
3138 	tx_desc = IGC_TX_DESC(tx_ring, i);
3139 	i -= tx_ring->count;
3140 
3141 	do {
3142 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
3143 
3144 		/* if next_to_watch is not set then there is no work pending */
3145 		if (!eop_desc)
3146 			break;
3147 
3148 		/* prevent any other reads prior to eop_desc */
3149 		smp_rmb();
3150 
3151 		/* if DD is not set pending work has not been completed */
3152 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
3153 			break;
3154 
3155 		if (igc_fpe_is_pmac_enabled(adapter) &&
3156 		    igc_fpe_transmitted_smd_v(tx_desc))
3157 			ethtool_mmsv_event_handle(&adapter->fpe.mmsv,
3158 						  ETHTOOL_MMSV_LD_SENT_VERIFY_MPACKET);
3159 
3160 		/* Hold the completions while there's a pending tx hardware
3161 		 * timestamp request from XDP Tx metadata.
3162 		 */
3163 		if (tx_buffer->type == IGC_TX_BUFFER_TYPE_XSK &&
3164 		    tx_buffer->xsk_pending_ts)
3165 			break;
3166 
3167 		/* clear next_to_watch to prevent false hangs */
3168 		tx_buffer->next_to_watch = NULL;
3169 
3170 		/* update the statistics for this packet */
3171 		total_bytes += tx_buffer->bytecount;
3172 		total_packets += tx_buffer->gso_segs;
3173 
3174 		switch (tx_buffer->type) {
3175 		case IGC_TX_BUFFER_TYPE_XSK:
3176 			xsk_frames++;
3177 			break;
3178 		case IGC_TX_BUFFER_TYPE_XDP:
3179 			xdp_return_frame(tx_buffer->xdpf);
3180 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3181 			break;
3182 		case IGC_TX_BUFFER_TYPE_SKB:
3183 			napi_consume_skb(tx_buffer->skb, napi_budget);
3184 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3185 			break;
3186 		default:
3187 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3188 			break;
3189 		}
3190 
3191 		/* clear last DMA location and unmap remaining buffers */
3192 		while (tx_desc != eop_desc) {
3193 			tx_buffer++;
3194 			tx_desc++;
3195 			i++;
3196 			if (unlikely(!i)) {
3197 				i -= tx_ring->count;
3198 				tx_buffer = tx_ring->tx_buffer_info;
3199 				tx_desc = IGC_TX_DESC(tx_ring, 0);
3200 			}
3201 
3202 			/* unmap any remaining paged data */
3203 			if (dma_unmap_len(tx_buffer, len))
3204 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3205 		}
3206 
3207 		/* move us one more past the eop_desc for start of next pkt */
3208 		tx_buffer++;
3209 		tx_desc++;
3210 		i++;
3211 		if (unlikely(!i)) {
3212 			i -= tx_ring->count;
3213 			tx_buffer = tx_ring->tx_buffer_info;
3214 			tx_desc = IGC_TX_DESC(tx_ring, 0);
3215 		}
3216 
3217 		/* issue prefetch for next Tx descriptor */
3218 		prefetch(tx_desc);
3219 
3220 		/* update budget accounting */
3221 		budget--;
3222 	} while (likely(budget));
3223 
3224 	netdev_tx_completed_queue(txring_txq(tx_ring),
3225 				  total_packets, total_bytes);
3226 
3227 	i += tx_ring->count;
3228 	tx_ring->next_to_clean = i;
3229 
3230 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3231 
3232 	if (tx_ring->xsk_pool) {
3233 		if (xsk_frames)
3234 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3235 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3236 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3237 		igc_xdp_xmit_zc(tx_ring);
3238 	}
3239 
3240 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3241 		struct igc_hw *hw = &adapter->hw;
3242 
3243 		/* Detect a transmit hang in hardware, this serializes the
3244 		 * check with the clearing of time_stamp and movement of i
3245 		 */
3246 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3247 		if (tx_buffer->next_to_watch &&
3248 		    time_after(jiffies, tx_buffer->time_stamp +
3249 		    (adapter->tx_timeout_factor * HZ)) &&
3250 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3251 		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3252 		    !tx_ring->oper_gate_closed) {
3253 			/* detected Tx unit hang */
3254 			netdev_err(tx_ring->netdev,
3255 				   "Detected Tx Unit Hang\n"
3256 				   "  Tx Queue             <%d>\n"
3257 				   "  TDH                  <%x>\n"
3258 				   "  TDT                  <%x>\n"
3259 				   "  next_to_use          <%x>\n"
3260 				   "  next_to_clean        <%x>\n"
3261 				   "buffer_info[next_to_clean]\n"
3262 				   "  time_stamp           <%lx>\n"
3263 				   "  next_to_watch        <%p>\n"
3264 				   "  jiffies              <%lx>\n"
3265 				   "  desc.status          <%x>\n",
3266 				   tx_ring->queue_index,
3267 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3268 				   readl(tx_ring->tail),
3269 				   tx_ring->next_to_use,
3270 				   tx_ring->next_to_clean,
3271 				   tx_buffer->time_stamp,
3272 				   tx_buffer->next_to_watch,
3273 				   jiffies,
3274 				   tx_buffer->next_to_watch->wb.status);
3275 			netif_stop_subqueue(tx_ring->netdev,
3276 					    tx_ring->queue_index);
3277 
3278 			/* we are about to reset, no point in enabling stuff */
3279 			return true;
3280 		}
3281 	}
3282 
3283 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3284 	if (unlikely(total_packets &&
3285 		     netif_carrier_ok(tx_ring->netdev) &&
3286 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3287 		/* Make sure that anybody stopping the queue after this
3288 		 * sees the new next_to_clean.
3289 		 */
3290 		smp_mb();
3291 		if (__netif_subqueue_stopped(tx_ring->netdev,
3292 					     tx_ring->queue_index) &&
3293 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3294 			netif_wake_subqueue(tx_ring->netdev,
3295 					    tx_ring->queue_index);
3296 
3297 			u64_stats_update_begin(&tx_ring->tx_syncp);
3298 			tx_ring->tx_stats.restart_queue++;
3299 			u64_stats_update_end(&tx_ring->tx_syncp);
3300 		}
3301 	}
3302 
3303 	return !!budget;
3304 }
3305 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3306 static int igc_find_mac_filter(struct igc_adapter *adapter,
3307 			       enum igc_mac_filter_type type, const u8 *addr)
3308 {
3309 	struct igc_hw *hw = &adapter->hw;
3310 	int max_entries = hw->mac.rar_entry_count;
3311 	u32 ral, rah;
3312 	int i;
3313 
3314 	for (i = 0; i < max_entries; i++) {
3315 		ral = rd32(IGC_RAL(i));
3316 		rah = rd32(IGC_RAH(i));
3317 
3318 		if (!(rah & IGC_RAH_AV))
3319 			continue;
3320 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3321 			continue;
3322 		if ((rah & IGC_RAH_RAH_MASK) !=
3323 		    le16_to_cpup((__le16 *)(addr + 4)))
3324 			continue;
3325 		if (ral != le32_to_cpup((__le32 *)(addr)))
3326 			continue;
3327 
3328 		return i;
3329 	}
3330 
3331 	return -1;
3332 }
3333 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3334 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3335 {
3336 	struct igc_hw *hw = &adapter->hw;
3337 	int max_entries = hw->mac.rar_entry_count;
3338 	u32 rah;
3339 	int i;
3340 
3341 	for (i = 0; i < max_entries; i++) {
3342 		rah = rd32(IGC_RAH(i));
3343 
3344 		if (!(rah & IGC_RAH_AV))
3345 			return i;
3346 	}
3347 
3348 	return -1;
3349 }
3350 
3351 /**
3352  * igc_add_mac_filter() - Add MAC address filter
3353  * @adapter: Pointer to adapter where the filter should be added
3354  * @type: MAC address filter type (source or destination)
3355  * @addr: MAC address
3356  * @queue: If non-negative, queue assignment feature is enabled and frames
3357  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3358  *         assignment is disabled.
3359  *
3360  * Return: 0 in case of success, negative errno code otherwise.
3361  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3362 static int igc_add_mac_filter(struct igc_adapter *adapter,
3363 			      enum igc_mac_filter_type type, const u8 *addr,
3364 			      int queue)
3365 {
3366 	struct net_device *dev = adapter->netdev;
3367 	int index;
3368 
3369 	index = igc_find_mac_filter(adapter, type, addr);
3370 	if (index >= 0)
3371 		goto update_filter;
3372 
3373 	index = igc_get_avail_mac_filter_slot(adapter);
3374 	if (index < 0)
3375 		return -ENOSPC;
3376 
3377 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3378 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3379 		   addr, queue);
3380 
3381 update_filter:
3382 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3383 	return 0;
3384 }
3385 
3386 /**
3387  * igc_del_mac_filter() - Delete MAC address filter
3388  * @adapter: Pointer to adapter where the filter should be deleted from
3389  * @type: MAC address filter type (source or destination)
3390  * @addr: MAC address
3391  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3392 static void igc_del_mac_filter(struct igc_adapter *adapter,
3393 			       enum igc_mac_filter_type type, const u8 *addr)
3394 {
3395 	struct net_device *dev = adapter->netdev;
3396 	int index;
3397 
3398 	index = igc_find_mac_filter(adapter, type, addr);
3399 	if (index < 0)
3400 		return;
3401 
3402 	if (index == 0) {
3403 		/* If this is the default filter, we don't actually delete it.
3404 		 * We just reset to its default value i.e. disable queue
3405 		 * assignment.
3406 		 */
3407 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3408 
3409 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3410 	} else {
3411 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3412 			   index,
3413 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3414 			   addr);
3415 
3416 		igc_clear_mac_filter_hw(adapter, index);
3417 	}
3418 }
3419 
3420 /**
3421  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3422  * @adapter: Pointer to adapter where the filter should be added
3423  * @prio: VLAN priority value
3424  * @queue: Queue number which matching frames are assigned to
3425  *
3426  * Return: 0 in case of success, negative errno code otherwise.
3427  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3428 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3429 				    int queue)
3430 {
3431 	struct net_device *dev = adapter->netdev;
3432 	struct igc_hw *hw = &adapter->hw;
3433 	u32 vlanpqf;
3434 
3435 	vlanpqf = rd32(IGC_VLANPQF);
3436 
3437 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3438 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3439 		return -EEXIST;
3440 	}
3441 
3442 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3443 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3444 
3445 	wr32(IGC_VLANPQF, vlanpqf);
3446 
3447 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3448 		   prio, queue);
3449 	return 0;
3450 }
3451 
3452 /**
3453  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3454  * @adapter: Pointer to adapter where the filter should be deleted from
3455  * @prio: VLAN priority value
3456  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3457 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3458 {
3459 	struct igc_hw *hw = &adapter->hw;
3460 	u32 vlanpqf;
3461 
3462 	vlanpqf = rd32(IGC_VLANPQF);
3463 
3464 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3465 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3466 
3467 	wr32(IGC_VLANPQF, vlanpqf);
3468 
3469 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3470 		   prio);
3471 }
3472 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3473 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3474 {
3475 	struct igc_hw *hw = &adapter->hw;
3476 	int i;
3477 
3478 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3479 		u32 etqf = rd32(IGC_ETQF(i));
3480 
3481 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3482 			return i;
3483 	}
3484 
3485 	return -1;
3486 }
3487 
3488 /**
3489  * igc_add_etype_filter() - Add ethertype filter
3490  * @adapter: Pointer to adapter where the filter should be added
3491  * @etype: Ethertype value
3492  * @queue: If non-negative, queue assignment feature is enabled and frames
3493  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3494  *         assignment is disabled.
3495  *
3496  * Return: 0 in case of success, negative errno code otherwise.
3497  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3498 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3499 				int queue)
3500 {
3501 	struct igc_hw *hw = &adapter->hw;
3502 	int index;
3503 	u32 etqf;
3504 
3505 	index = igc_get_avail_etype_filter_slot(adapter);
3506 	if (index < 0)
3507 		return -ENOSPC;
3508 
3509 	etqf = rd32(IGC_ETQF(index));
3510 
3511 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3512 	etqf |= etype;
3513 
3514 	if (queue >= 0) {
3515 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3516 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3517 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3518 	}
3519 
3520 	etqf |= IGC_ETQF_FILTER_ENABLE;
3521 
3522 	wr32(IGC_ETQF(index), etqf);
3523 
3524 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3525 		   etype, queue);
3526 	return 0;
3527 }
3528 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3529 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3530 {
3531 	struct igc_hw *hw = &adapter->hw;
3532 	int i;
3533 
3534 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3535 		u32 etqf = rd32(IGC_ETQF(i));
3536 
3537 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3538 			return i;
3539 	}
3540 
3541 	return -1;
3542 }
3543 
3544 /**
3545  * igc_del_etype_filter() - Delete ethertype filter
3546  * @adapter: Pointer to adapter where the filter should be deleted from
3547  * @etype: Ethertype value
3548  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3549 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3550 {
3551 	struct igc_hw *hw = &adapter->hw;
3552 	int index;
3553 
3554 	index = igc_find_etype_filter(adapter, etype);
3555 	if (index < 0)
3556 		return;
3557 
3558 	wr32(IGC_ETQF(index), 0);
3559 
3560 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3561 		   etype);
3562 }
3563 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3564 static int igc_flex_filter_select(struct igc_adapter *adapter,
3565 				  struct igc_flex_filter *input,
3566 				  u32 *fhft)
3567 {
3568 	struct igc_hw *hw = &adapter->hw;
3569 	u8 fhft_index;
3570 	u32 fhftsl;
3571 
3572 	if (input->index >= MAX_FLEX_FILTER) {
3573 		netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3574 		return -EINVAL;
3575 	}
3576 
3577 	/* Indirect table select register */
3578 	fhftsl = rd32(IGC_FHFTSL);
3579 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3580 	switch (input->index) {
3581 	case 0 ... 7:
3582 		fhftsl |= 0x00;
3583 		break;
3584 	case 8 ... 15:
3585 		fhftsl |= 0x01;
3586 		break;
3587 	case 16 ... 23:
3588 		fhftsl |= 0x02;
3589 		break;
3590 	case 24 ... 31:
3591 		fhftsl |= 0x03;
3592 		break;
3593 	}
3594 	wr32(IGC_FHFTSL, fhftsl);
3595 
3596 	/* Normalize index down to host table register */
3597 	fhft_index = input->index % 8;
3598 
3599 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3600 		IGC_FHFT_EXT(fhft_index - 4);
3601 
3602 	return 0;
3603 }
3604 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3605 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3606 				    struct igc_flex_filter *input)
3607 {
3608 	struct igc_hw *hw = &adapter->hw;
3609 	u8 *data = input->data;
3610 	u8 *mask = input->mask;
3611 	u32 queuing;
3612 	u32 fhft;
3613 	u32 wufc;
3614 	int ret;
3615 	int i;
3616 
3617 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3618 	 * out early to avoid surprises later.
3619 	 */
3620 	if (input->length % 8 != 0) {
3621 		netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3622 		return -EINVAL;
3623 	}
3624 
3625 	/* Select corresponding flex filter register and get base for host table. */
3626 	ret = igc_flex_filter_select(adapter, input, &fhft);
3627 	if (ret)
3628 		return ret;
3629 
3630 	/* When adding a filter globally disable flex filter feature. That is
3631 	 * recommended within the datasheet.
3632 	 */
3633 	wufc = rd32(IGC_WUFC);
3634 	wufc &= ~IGC_WUFC_FLEX_HQ;
3635 	wr32(IGC_WUFC, wufc);
3636 
3637 	/* Configure filter */
3638 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3639 	queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3640 	queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3641 
3642 	if (input->immediate_irq)
3643 		queuing |= IGC_FHFT_IMM_INT;
3644 
3645 	if (input->drop)
3646 		queuing |= IGC_FHFT_DROP;
3647 
3648 	wr32(fhft + 0xFC, queuing);
3649 
3650 	/* Write data (128 byte) and mask (128 bit) */
3651 	for (i = 0; i < 16; ++i) {
3652 		const size_t data_idx = i * 8;
3653 		const size_t row_idx = i * 16;
3654 		u32 dw0 =
3655 			(data[data_idx + 0] << 0) |
3656 			(data[data_idx + 1] << 8) |
3657 			(data[data_idx + 2] << 16) |
3658 			(data[data_idx + 3] << 24);
3659 		u32 dw1 =
3660 			(data[data_idx + 4] << 0) |
3661 			(data[data_idx + 5] << 8) |
3662 			(data[data_idx + 6] << 16) |
3663 			(data[data_idx + 7] << 24);
3664 		u32 tmp;
3665 
3666 		/* Write row: dw0, dw1 and mask */
3667 		wr32(fhft + row_idx, dw0);
3668 		wr32(fhft + row_idx + 4, dw1);
3669 
3670 		/* mask is only valid for MASK(7, 0) */
3671 		tmp = rd32(fhft + row_idx + 8);
3672 		tmp &= ~GENMASK(7, 0);
3673 		tmp |= mask[i];
3674 		wr32(fhft + row_idx + 8, tmp);
3675 	}
3676 
3677 	/* Enable filter. */
3678 	wufc |= IGC_WUFC_FLEX_HQ;
3679 	if (input->index > 8) {
3680 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3681 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3682 
3683 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3684 
3685 		wr32(IGC_WUFC_EXT, wufc_ext);
3686 	} else {
3687 		wufc |= (IGC_WUFC_FLX0 << input->index);
3688 	}
3689 	wr32(IGC_WUFC, wufc);
3690 
3691 	netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3692 		   input->index);
3693 
3694 	return 0;
3695 }
3696 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3697 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3698 				      const void *src, unsigned int offset,
3699 				      size_t len, const void *mask)
3700 {
3701 	int i;
3702 
3703 	/* data */
3704 	memcpy(&flex->data[offset], src, len);
3705 
3706 	/* mask */
3707 	for (i = 0; i < len; ++i) {
3708 		const unsigned int idx = i + offset;
3709 		const u8 *ptr = mask;
3710 
3711 		if (mask) {
3712 			if (ptr[i] & 0xff)
3713 				flex->mask[idx / 8] |= BIT(idx % 8);
3714 
3715 			continue;
3716 		}
3717 
3718 		flex->mask[idx / 8] |= BIT(idx % 8);
3719 	}
3720 }
3721 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3722 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3723 {
3724 	struct igc_hw *hw = &adapter->hw;
3725 	u32 wufc, wufc_ext;
3726 	int i;
3727 
3728 	wufc = rd32(IGC_WUFC);
3729 	wufc_ext = rd32(IGC_WUFC_EXT);
3730 
3731 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3732 		if (i < 8) {
3733 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3734 				return i;
3735 		} else {
3736 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3737 				return i;
3738 		}
3739 	}
3740 
3741 	return -ENOSPC;
3742 }
3743 
igc_flex_filter_in_use(struct igc_adapter * adapter)3744 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3745 {
3746 	struct igc_hw *hw = &adapter->hw;
3747 	u32 wufc, wufc_ext;
3748 
3749 	wufc = rd32(IGC_WUFC);
3750 	wufc_ext = rd32(IGC_WUFC_EXT);
3751 
3752 	if (wufc & IGC_WUFC_FILTER_MASK)
3753 		return true;
3754 
3755 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3756 		return true;
3757 
3758 	return false;
3759 }
3760 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3761 static int igc_add_flex_filter(struct igc_adapter *adapter,
3762 			       struct igc_nfc_rule *rule)
3763 {
3764 	struct igc_nfc_filter *filter = &rule->filter;
3765 	unsigned int eth_offset, user_offset;
3766 	struct igc_flex_filter flex = { };
3767 	int ret, index;
3768 	bool vlan;
3769 
3770 	index = igc_find_avail_flex_filter_slot(adapter);
3771 	if (index < 0)
3772 		return -ENOSPC;
3773 
3774 	/* Construct the flex filter:
3775 	 *  -> dest_mac [6]
3776 	 *  -> src_mac [6]
3777 	 *  -> tpid [2]
3778 	 *  -> vlan tci [2]
3779 	 *  -> ether type [2]
3780 	 *  -> user data [8]
3781 	 *  -> = 26 bytes => 32 length
3782 	 */
3783 	flex.index    = index;
3784 	flex.length   = 32;
3785 	flex.rx_queue = rule->action;
3786 
3787 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3788 	eth_offset = vlan ? 16 : 12;
3789 	user_offset = vlan ? 18 : 14;
3790 
3791 	/* Add destination MAC  */
3792 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3793 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3794 					  ETH_ALEN, NULL);
3795 
3796 	/* Add source MAC */
3797 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3798 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3799 					  ETH_ALEN, NULL);
3800 
3801 	/* Add VLAN etype */
3802 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3803 		__be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3804 
3805 		igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3806 					  sizeof(vlan_etype), NULL);
3807 	}
3808 
3809 	/* Add VLAN TCI */
3810 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3811 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3812 					  sizeof(filter->vlan_tci), NULL);
3813 
3814 	/* Add Ether type */
3815 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3816 		__be16 etype = cpu_to_be16(filter->etype);
3817 
3818 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3819 					  sizeof(etype), NULL);
3820 	}
3821 
3822 	/* Add user data */
3823 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3824 		igc_flex_filter_add_field(&flex, &filter->user_data,
3825 					  user_offset,
3826 					  sizeof(filter->user_data),
3827 					  filter->user_mask);
3828 
3829 	/* Add it down to the hardware and enable it. */
3830 	ret = igc_write_flex_filter_ll(adapter, &flex);
3831 	if (ret)
3832 		return ret;
3833 
3834 	filter->flex_index = index;
3835 
3836 	return 0;
3837 }
3838 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3839 static void igc_del_flex_filter(struct igc_adapter *adapter,
3840 				u16 reg_index)
3841 {
3842 	struct igc_hw *hw = &adapter->hw;
3843 	u32 wufc;
3844 
3845 	/* Just disable the filter. The filter table itself is kept
3846 	 * intact. Another flex_filter_add() should override the "old" data
3847 	 * then.
3848 	 */
3849 	if (reg_index > 8) {
3850 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3851 
3852 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3853 		wr32(IGC_WUFC_EXT, wufc_ext);
3854 	} else {
3855 		wufc = rd32(IGC_WUFC);
3856 
3857 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3858 		wr32(IGC_WUFC, wufc);
3859 	}
3860 
3861 	if (igc_flex_filter_in_use(adapter))
3862 		return;
3863 
3864 	/* No filters are in use, we may disable flex filters */
3865 	wufc = rd32(IGC_WUFC);
3866 	wufc &= ~IGC_WUFC_FLEX_HQ;
3867 	wr32(IGC_WUFC, wufc);
3868 }
3869 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3870 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3871 			       struct igc_nfc_rule *rule)
3872 {
3873 	int err;
3874 
3875 	if (rule->flex) {
3876 		return igc_add_flex_filter(adapter, rule);
3877 	}
3878 
3879 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3880 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3881 					   rule->action);
3882 		if (err)
3883 			return err;
3884 	}
3885 
3886 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3887 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3888 					 rule->filter.src_addr, rule->action);
3889 		if (err)
3890 			return err;
3891 	}
3892 
3893 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3894 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3895 					 rule->filter.dst_addr, rule->action);
3896 		if (err)
3897 			return err;
3898 	}
3899 
3900 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3901 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3902 
3903 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3904 		if (err)
3905 			return err;
3906 	}
3907 
3908 	return 0;
3909 }
3910 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3911 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3912 				 const struct igc_nfc_rule *rule)
3913 {
3914 	if (rule->flex) {
3915 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3916 		return;
3917 	}
3918 
3919 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3920 		igc_del_etype_filter(adapter, rule->filter.etype);
3921 
3922 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3923 		int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3924 
3925 		igc_del_vlan_prio_filter(adapter, prio);
3926 	}
3927 
3928 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3929 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3930 				   rule->filter.src_addr);
3931 
3932 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3933 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3934 				   rule->filter.dst_addr);
3935 }
3936 
3937 /**
3938  * igc_get_nfc_rule() - Get NFC rule
3939  * @adapter: Pointer to adapter
3940  * @location: Rule location
3941  *
3942  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3943  *
3944  * Return: Pointer to NFC rule at @location. If not found, NULL.
3945  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3946 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3947 				      u32 location)
3948 {
3949 	struct igc_nfc_rule *rule;
3950 
3951 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3952 		if (rule->location == location)
3953 			return rule;
3954 		if (rule->location > location)
3955 			break;
3956 	}
3957 
3958 	return NULL;
3959 }
3960 
3961 /**
3962  * igc_del_nfc_rule() - Delete NFC rule
3963  * @adapter: Pointer to adapter
3964  * @rule: Pointer to rule to be deleted
3965  *
3966  * Disable NFC rule in hardware and delete it from adapter.
3967  *
3968  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3969  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3970 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3971 {
3972 	igc_disable_nfc_rule(adapter, rule);
3973 
3974 	list_del(&rule->list);
3975 	adapter->nfc_rule_count--;
3976 
3977 	kfree(rule);
3978 }
3979 
igc_flush_nfc_rules(struct igc_adapter * adapter)3980 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3981 {
3982 	struct igc_nfc_rule *rule, *tmp;
3983 
3984 	mutex_lock(&adapter->nfc_rule_lock);
3985 
3986 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3987 		igc_del_nfc_rule(adapter, rule);
3988 
3989 	mutex_unlock(&adapter->nfc_rule_lock);
3990 }
3991 
3992 /**
3993  * igc_add_nfc_rule() - Add NFC rule
3994  * @adapter: Pointer to adapter
3995  * @rule: Pointer to rule to be added
3996  *
3997  * Enable NFC rule in hardware and add it to adapter.
3998  *
3999  * Context: Expects adapter->nfc_rule_lock to be held by caller.
4000  *
4001  * Return: 0 on success, negative errno on failure.
4002  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)4003 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
4004 {
4005 	struct igc_nfc_rule *pred, *cur;
4006 	int err;
4007 
4008 	err = igc_enable_nfc_rule(adapter, rule);
4009 	if (err)
4010 		return err;
4011 
4012 	pred = NULL;
4013 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
4014 		if (cur->location >= rule->location)
4015 			break;
4016 		pred = cur;
4017 	}
4018 
4019 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
4020 	adapter->nfc_rule_count++;
4021 	return 0;
4022 }
4023 
igc_restore_nfc_rules(struct igc_adapter * adapter)4024 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
4025 {
4026 	struct igc_nfc_rule *rule;
4027 
4028 	mutex_lock(&adapter->nfc_rule_lock);
4029 
4030 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
4031 		igc_enable_nfc_rule(adapter, rule);
4032 
4033 	mutex_unlock(&adapter->nfc_rule_lock);
4034 }
4035 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)4036 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
4037 {
4038 	struct igc_adapter *adapter = netdev_priv(netdev);
4039 
4040 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
4041 }
4042 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)4043 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
4044 {
4045 	struct igc_adapter *adapter = netdev_priv(netdev);
4046 
4047 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
4048 	return 0;
4049 }
4050 
4051 /**
4052  * igc_enable_empty_addr_recv - Enable Rx of packets with all-zeroes MAC address
4053  * @adapter: Pointer to the igc_adapter structure.
4054  *
4055  * Frame preemption verification requires that packets with the all-zeroes
4056  * MAC address are allowed to be received by the driver. This function adds the
4057  * all-zeroes destination address to the list of acceptable addresses.
4058  *
4059  * Return: 0 on success, negative value otherwise.
4060  */
igc_enable_empty_addr_recv(struct igc_adapter * adapter)4061 int igc_enable_empty_addr_recv(struct igc_adapter *adapter)
4062 {
4063 	u8 empty[ETH_ALEN] = {};
4064 
4065 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty, -1);
4066 }
4067 
igc_disable_empty_addr_recv(struct igc_adapter * adapter)4068 void igc_disable_empty_addr_recv(struct igc_adapter *adapter)
4069 {
4070 	u8 empty[ETH_ALEN] = {};
4071 
4072 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, empty);
4073 }
4074 
4075 /**
4076  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4077  * @netdev: network interface device structure
4078  *
4079  * The set_rx_mode entry point is called whenever the unicast or multicast
4080  * address lists or the network interface flags are updated.  This routine is
4081  * responsible for configuring the hardware for proper unicast, multicast,
4082  * promiscuous mode, and all-multi behavior.
4083  */
igc_set_rx_mode(struct net_device * netdev)4084 static void igc_set_rx_mode(struct net_device *netdev)
4085 {
4086 	struct igc_adapter *adapter = netdev_priv(netdev);
4087 	struct igc_hw *hw = &adapter->hw;
4088 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4089 	int count;
4090 
4091 	/* Check for Promiscuous and All Multicast modes */
4092 	if (netdev->flags & IFF_PROMISC) {
4093 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
4094 	} else {
4095 		if (netdev->flags & IFF_ALLMULTI) {
4096 			rctl |= IGC_RCTL_MPE;
4097 		} else {
4098 			/* Write addresses to the MTA, if the attempt fails
4099 			 * then we should just turn on promiscuous mode so
4100 			 * that we can at least receive multicast traffic
4101 			 */
4102 			count = igc_write_mc_addr_list(netdev);
4103 			if (count < 0)
4104 				rctl |= IGC_RCTL_MPE;
4105 		}
4106 	}
4107 
4108 	/* Write addresses to available RAR registers, if there is not
4109 	 * sufficient space to store all the addresses then enable
4110 	 * unicast promiscuous mode
4111 	 */
4112 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
4113 		rctl |= IGC_RCTL_UPE;
4114 
4115 	/* update state of unicast and multicast */
4116 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
4117 	wr32(IGC_RCTL, rctl);
4118 
4119 #if (PAGE_SIZE < 8192)
4120 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
4121 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
4122 #endif
4123 	wr32(IGC_RLPML, rlpml);
4124 }
4125 
4126 /**
4127  * igc_configure - configure the hardware for RX and TX
4128  * @adapter: private board structure
4129  */
igc_configure(struct igc_adapter * adapter)4130 static void igc_configure(struct igc_adapter *adapter)
4131 {
4132 	struct net_device *netdev = adapter->netdev;
4133 	int i = 0;
4134 
4135 	igc_get_hw_control(adapter);
4136 	igc_set_rx_mode(netdev);
4137 
4138 	igc_restore_vlan(adapter);
4139 
4140 	igc_setup_tctl(adapter);
4141 	igc_setup_mrqc(adapter);
4142 	igc_setup_rctl(adapter);
4143 
4144 	igc_set_default_mac_filter(adapter);
4145 	igc_restore_nfc_rules(adapter);
4146 
4147 	igc_configure_tx(adapter);
4148 	igc_configure_rx(adapter);
4149 
4150 	igc_rx_fifo_flush_base(&adapter->hw);
4151 
4152 	/* call igc_desc_unused which always leaves
4153 	 * at least 1 descriptor unused to make sure
4154 	 * next_to_use != next_to_clean
4155 	 */
4156 	for (i = 0; i < adapter->num_rx_queues; i++) {
4157 		struct igc_ring *ring = adapter->rx_ring[i];
4158 
4159 		if (ring->xsk_pool)
4160 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
4161 		else
4162 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
4163 	}
4164 }
4165 
4166 /**
4167  * igc_write_ivar - configure ivar for given MSI-X vector
4168  * @hw: pointer to the HW structure
4169  * @msix_vector: vector number we are allocating to a given ring
4170  * @index: row index of IVAR register to write within IVAR table
4171  * @offset: column offset of in IVAR, should be multiple of 8
4172  *
4173  * The IVAR table consists of 2 columns,
4174  * each containing an cause allocation for an Rx and Tx ring, and a
4175  * variable number of rows depending on the number of queues supported.
4176  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)4177 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
4178 			   int index, int offset)
4179 {
4180 	u32 ivar = array_rd32(IGC_IVAR0, index);
4181 
4182 	/* clear any bits that are currently set */
4183 	ivar &= ~((u32)0xFF << offset);
4184 
4185 	/* write vector and valid bit */
4186 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
4187 
4188 	array_wr32(IGC_IVAR0, index, ivar);
4189 }
4190 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)4191 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
4192 {
4193 	struct igc_adapter *adapter = q_vector->adapter;
4194 	struct igc_hw *hw = &adapter->hw;
4195 	int rx_queue = IGC_N0_QUEUE;
4196 	int tx_queue = IGC_N0_QUEUE;
4197 
4198 	if (q_vector->rx.ring)
4199 		rx_queue = q_vector->rx.ring->reg_idx;
4200 	if (q_vector->tx.ring)
4201 		tx_queue = q_vector->tx.ring->reg_idx;
4202 
4203 	switch (hw->mac.type) {
4204 	case igc_i225:
4205 		if (rx_queue > IGC_N0_QUEUE)
4206 			igc_write_ivar(hw, msix_vector,
4207 				       rx_queue >> 1,
4208 				       (rx_queue & 0x1) << 4);
4209 		if (tx_queue > IGC_N0_QUEUE)
4210 			igc_write_ivar(hw, msix_vector,
4211 				       tx_queue >> 1,
4212 				       ((tx_queue & 0x1) << 4) + 8);
4213 		q_vector->eims_value = BIT(msix_vector);
4214 		break;
4215 	default:
4216 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4217 		break;
4218 	}
4219 
4220 	/* add q_vector eims value to global eims_enable_mask */
4221 	adapter->eims_enable_mask |= q_vector->eims_value;
4222 
4223 	/* configure q_vector to set itr on first interrupt */
4224 	q_vector->set_itr = 1;
4225 }
4226 
4227 /**
4228  * igc_configure_msix - Configure MSI-X hardware
4229  * @adapter: Pointer to adapter structure
4230  *
4231  * igc_configure_msix sets up the hardware to properly
4232  * generate MSI-X interrupts.
4233  */
igc_configure_msix(struct igc_adapter * adapter)4234 static void igc_configure_msix(struct igc_adapter *adapter)
4235 {
4236 	struct igc_hw *hw = &adapter->hw;
4237 	int i, vector = 0;
4238 	u32 tmp;
4239 
4240 	adapter->eims_enable_mask = 0;
4241 
4242 	/* set vector for other causes, i.e. link changes */
4243 	switch (hw->mac.type) {
4244 	case igc_i225:
4245 		/* Turn on MSI-X capability first, or our settings
4246 		 * won't stick.  And it will take days to debug.
4247 		 */
4248 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4249 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4250 		     IGC_GPIE_NSICR);
4251 
4252 		/* enable msix_other interrupt */
4253 		adapter->eims_other = BIT(vector);
4254 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4255 
4256 		wr32(IGC_IVAR_MISC, tmp);
4257 		break;
4258 	default:
4259 		/* do nothing, since nothing else supports MSI-X */
4260 		break;
4261 	} /* switch (hw->mac.type) */
4262 
4263 	adapter->eims_enable_mask |= adapter->eims_other;
4264 
4265 	for (i = 0; i < adapter->num_q_vectors; i++)
4266 		igc_assign_vector(adapter->q_vector[i], vector++);
4267 
4268 	wrfl();
4269 }
4270 
4271 /**
4272  * igc_irq_enable - Enable default interrupt generation settings
4273  * @adapter: board private structure
4274  */
igc_irq_enable(struct igc_adapter * adapter)4275 static void igc_irq_enable(struct igc_adapter *adapter)
4276 {
4277 	struct igc_hw *hw = &adapter->hw;
4278 
4279 	if (adapter->msix_entries) {
4280 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4281 		u32 regval = rd32(IGC_EIAC);
4282 
4283 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4284 		regval = rd32(IGC_EIAM);
4285 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4286 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4287 		wr32(IGC_IMS, ims);
4288 	} else {
4289 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4290 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4291 	}
4292 }
4293 
4294 /**
4295  * igc_irq_disable - Mask off interrupt generation on the NIC
4296  * @adapter: board private structure
4297  */
igc_irq_disable(struct igc_adapter * adapter)4298 static void igc_irq_disable(struct igc_adapter *adapter)
4299 {
4300 	struct igc_hw *hw = &adapter->hw;
4301 
4302 	if (adapter->msix_entries) {
4303 		u32 regval = rd32(IGC_EIAM);
4304 
4305 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4306 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4307 		regval = rd32(IGC_EIAC);
4308 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4309 	}
4310 
4311 	wr32(IGC_IAM, 0);
4312 	wr32(IGC_IMC, ~0);
4313 	wrfl();
4314 
4315 	if (adapter->msix_entries) {
4316 		int vector = 0, i;
4317 
4318 		synchronize_irq(adapter->msix_entries[vector++].vector);
4319 
4320 		for (i = 0; i < adapter->num_q_vectors; i++)
4321 			synchronize_irq(adapter->msix_entries[vector++].vector);
4322 	} else {
4323 		synchronize_irq(adapter->pdev->irq);
4324 	}
4325 }
4326 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4327 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4328 			      const u32 max_rss_queues)
4329 {
4330 	/* Determine if we need to pair queues. */
4331 	/* If rss_queues > half of max_rss_queues, pair the queues in
4332 	 * order to conserve interrupts due to limited supply.
4333 	 */
4334 	if (adapter->rss_queues > (max_rss_queues / 2))
4335 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4336 	else
4337 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4338 }
4339 
igc_get_max_rss_queues(struct igc_adapter * adapter)4340 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4341 {
4342 	return IGC_MAX_RX_QUEUES;
4343 }
4344 
igc_init_queue_configuration(struct igc_adapter * adapter)4345 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4346 {
4347 	u32 max_rss_queues;
4348 
4349 	max_rss_queues = igc_get_max_rss_queues(adapter);
4350 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4351 
4352 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4353 }
4354 
4355 /**
4356  * igc_reset_q_vector - Reset config for interrupt vector
4357  * @adapter: board private structure to initialize
4358  * @v_idx: Index of vector to be reset
4359  *
4360  * If NAPI is enabled it will delete any references to the
4361  * NAPI struct. This is preparation for igc_free_q_vector.
4362  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4363 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4364 {
4365 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4366 
4367 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4368 	 * not yet allocated
4369 	 */
4370 	if (!q_vector)
4371 		return;
4372 
4373 	if (q_vector->tx.ring)
4374 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4375 
4376 	if (q_vector->rx.ring)
4377 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4378 
4379 	netif_napi_del(&q_vector->napi);
4380 }
4381 
4382 /**
4383  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4384  * @adapter: board private structure to initialize
4385  * @v_idx: Index of vector to be freed
4386  *
4387  * This function frees the memory allocated to the q_vector.
4388  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4389 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4390 {
4391 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4392 
4393 	adapter->q_vector[v_idx] = NULL;
4394 
4395 	/* igc_get_stats64() might access the rings on this vector,
4396 	 * we must wait a grace period before freeing it.
4397 	 */
4398 	if (q_vector)
4399 		kfree_rcu(q_vector, rcu);
4400 }
4401 
4402 /**
4403  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4404  * @adapter: board private structure to initialize
4405  *
4406  * This function frees the memory allocated to the q_vectors.  In addition if
4407  * NAPI is enabled it will delete any references to the NAPI struct prior
4408  * to freeing the q_vector.
4409  */
igc_free_q_vectors(struct igc_adapter * adapter)4410 static void igc_free_q_vectors(struct igc_adapter *adapter)
4411 {
4412 	int v_idx = adapter->num_q_vectors;
4413 
4414 	adapter->num_tx_queues = 0;
4415 	adapter->num_rx_queues = 0;
4416 	adapter->num_q_vectors = 0;
4417 
4418 	while (v_idx--) {
4419 		igc_reset_q_vector(adapter, v_idx);
4420 		igc_free_q_vector(adapter, v_idx);
4421 	}
4422 }
4423 
4424 /**
4425  * igc_update_itr - update the dynamic ITR value based on statistics
4426  * @q_vector: pointer to q_vector
4427  * @ring_container: ring info to update the itr for
4428  *
4429  * Stores a new ITR value based on packets and byte
4430  * counts during the last interrupt.  The advantage of per interrupt
4431  * computation is faster updates and more accurate ITR for the current
4432  * traffic pattern.  Constants in this function were computed
4433  * based on theoretical maximum wire speed and thresholds were set based
4434  * on testing data as well as attempting to minimize response time
4435  * while increasing bulk throughput.
4436  * NOTE: These calculations are only valid when operating in a single-
4437  * queue environment.
4438  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4439 static void igc_update_itr(struct igc_q_vector *q_vector,
4440 			   struct igc_ring_container *ring_container)
4441 {
4442 	unsigned int packets = ring_container->total_packets;
4443 	unsigned int bytes = ring_container->total_bytes;
4444 	u8 itrval = ring_container->itr;
4445 
4446 	/* no packets, exit with status unchanged */
4447 	if (packets == 0)
4448 		return;
4449 
4450 	switch (itrval) {
4451 	case lowest_latency:
4452 		/* handle TSO and jumbo frames */
4453 		if (bytes / packets > 8000)
4454 			itrval = bulk_latency;
4455 		else if ((packets < 5) && (bytes > 512))
4456 			itrval = low_latency;
4457 		break;
4458 	case low_latency:  /* 50 usec aka 20000 ints/s */
4459 		if (bytes > 10000) {
4460 			/* this if handles the TSO accounting */
4461 			if (bytes / packets > 8000)
4462 				itrval = bulk_latency;
4463 			else if ((packets < 10) || ((bytes / packets) > 1200))
4464 				itrval = bulk_latency;
4465 			else if ((packets > 35))
4466 				itrval = lowest_latency;
4467 		} else if (bytes / packets > 2000) {
4468 			itrval = bulk_latency;
4469 		} else if (packets <= 2 && bytes < 512) {
4470 			itrval = lowest_latency;
4471 		}
4472 		break;
4473 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4474 		if (bytes > 25000) {
4475 			if (packets > 35)
4476 				itrval = low_latency;
4477 		} else if (bytes < 1500) {
4478 			itrval = low_latency;
4479 		}
4480 		break;
4481 	}
4482 
4483 	/* clear work counters since we have the values we need */
4484 	ring_container->total_bytes = 0;
4485 	ring_container->total_packets = 0;
4486 
4487 	/* write updated itr to ring container */
4488 	ring_container->itr = itrval;
4489 }
4490 
igc_set_itr(struct igc_q_vector * q_vector)4491 static void igc_set_itr(struct igc_q_vector *q_vector)
4492 {
4493 	struct igc_adapter *adapter = q_vector->adapter;
4494 	u32 new_itr = q_vector->itr_val;
4495 	u8 current_itr = 0;
4496 
4497 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4498 	switch (adapter->link_speed) {
4499 	case SPEED_10:
4500 	case SPEED_100:
4501 		current_itr = 0;
4502 		new_itr = IGC_4K_ITR;
4503 		goto set_itr_now;
4504 	default:
4505 		break;
4506 	}
4507 
4508 	igc_update_itr(q_vector, &q_vector->tx);
4509 	igc_update_itr(q_vector, &q_vector->rx);
4510 
4511 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4512 
4513 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4514 	if (current_itr == lowest_latency &&
4515 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4516 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4517 		current_itr = low_latency;
4518 
4519 	switch (current_itr) {
4520 	/* counts and packets in update_itr are dependent on these numbers */
4521 	case lowest_latency:
4522 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4523 		break;
4524 	case low_latency:
4525 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4526 		break;
4527 	case bulk_latency:
4528 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4529 		break;
4530 	default:
4531 		break;
4532 	}
4533 
4534 set_itr_now:
4535 	if (new_itr != q_vector->itr_val) {
4536 		/* this attempts to bias the interrupt rate towards Bulk
4537 		 * by adding intermediate steps when interrupt rate is
4538 		 * increasing
4539 		 */
4540 		new_itr = new_itr > q_vector->itr_val ?
4541 			  max((new_itr * q_vector->itr_val) /
4542 			  (new_itr + (q_vector->itr_val >> 2)),
4543 			  new_itr) : new_itr;
4544 		/* Don't write the value here; it resets the adapter's
4545 		 * internal timer, and causes us to delay far longer than
4546 		 * we should between interrupts.  Instead, we write the ITR
4547 		 * value at the beginning of the next interrupt so the timing
4548 		 * ends up being correct.
4549 		 */
4550 		q_vector->itr_val = new_itr;
4551 		q_vector->set_itr = 1;
4552 	}
4553 }
4554 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4555 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4556 {
4557 	int v_idx = adapter->num_q_vectors;
4558 
4559 	if (adapter->msix_entries) {
4560 		pci_disable_msix(adapter->pdev);
4561 		kfree(adapter->msix_entries);
4562 		adapter->msix_entries = NULL;
4563 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4564 		pci_disable_msi(adapter->pdev);
4565 	}
4566 
4567 	while (v_idx--)
4568 		igc_reset_q_vector(adapter, v_idx);
4569 }
4570 
4571 /**
4572  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4573  * @adapter: Pointer to adapter structure
4574  * @msix: boolean value for MSI-X capability
4575  *
4576  * Attempt to configure interrupts using the best available
4577  * capabilities of the hardware and kernel.
4578  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4579 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4580 					 bool msix)
4581 {
4582 	int numvecs, i;
4583 	int err;
4584 
4585 	if (!msix)
4586 		goto msi_only;
4587 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4588 
4589 	/* Number of supported queues. */
4590 	adapter->num_rx_queues = adapter->rss_queues;
4591 
4592 	adapter->num_tx_queues = adapter->rss_queues;
4593 
4594 	/* start with one vector for every Rx queue */
4595 	numvecs = adapter->num_rx_queues;
4596 
4597 	/* if Tx handler is separate add 1 for every Tx queue */
4598 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4599 		numvecs += adapter->num_tx_queues;
4600 
4601 	/* store the number of vectors reserved for queues */
4602 	adapter->num_q_vectors = numvecs;
4603 
4604 	/* add 1 vector for link status interrupts */
4605 	numvecs++;
4606 
4607 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4608 					GFP_KERNEL);
4609 
4610 	if (!adapter->msix_entries)
4611 		return;
4612 
4613 	/* populate entry values */
4614 	for (i = 0; i < numvecs; i++)
4615 		adapter->msix_entries[i].entry = i;
4616 
4617 	err = pci_enable_msix_range(adapter->pdev,
4618 				    adapter->msix_entries,
4619 				    numvecs,
4620 				    numvecs);
4621 	if (err > 0)
4622 		return;
4623 
4624 	kfree(adapter->msix_entries);
4625 	adapter->msix_entries = NULL;
4626 
4627 	igc_reset_interrupt_capability(adapter);
4628 
4629 msi_only:
4630 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4631 
4632 	adapter->rss_queues = 1;
4633 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4634 	adapter->num_rx_queues = 1;
4635 	adapter->num_tx_queues = 1;
4636 	adapter->num_q_vectors = 1;
4637 	if (!pci_enable_msi(adapter->pdev))
4638 		adapter->flags |= IGC_FLAG_HAS_MSI;
4639 }
4640 
4641 /**
4642  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4643  * @q_vector: pointer to q_vector
4644  *
4645  * Stores a new ITR value based on strictly on packet size.  This
4646  * algorithm is less sophisticated than that used in igc_update_itr,
4647  * due to the difficulty of synchronizing statistics across multiple
4648  * receive rings.  The divisors and thresholds used by this function
4649  * were determined based on theoretical maximum wire speed and testing
4650  * data, in order to minimize response time while increasing bulk
4651  * throughput.
4652  * NOTE: This function is called only when operating in a multiqueue
4653  * receive environment.
4654  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4655 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4656 {
4657 	struct igc_adapter *adapter = q_vector->adapter;
4658 	int new_val = q_vector->itr_val;
4659 	int avg_wire_size = 0;
4660 	unsigned int packets;
4661 
4662 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4663 	 * ints/sec - ITR timer value of 120 ticks.
4664 	 */
4665 	switch (adapter->link_speed) {
4666 	case SPEED_10:
4667 	case SPEED_100:
4668 		new_val = IGC_4K_ITR;
4669 		goto set_itr_val;
4670 	default:
4671 		break;
4672 	}
4673 
4674 	packets = q_vector->rx.total_packets;
4675 	if (packets)
4676 		avg_wire_size = q_vector->rx.total_bytes / packets;
4677 
4678 	packets = q_vector->tx.total_packets;
4679 	if (packets)
4680 		avg_wire_size = max_t(u32, avg_wire_size,
4681 				      q_vector->tx.total_bytes / packets);
4682 
4683 	/* if avg_wire_size isn't set no work was done */
4684 	if (!avg_wire_size)
4685 		goto clear_counts;
4686 
4687 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4688 	avg_wire_size += 24;
4689 
4690 	/* Don't starve jumbo frames */
4691 	avg_wire_size = min(avg_wire_size, 3000);
4692 
4693 	/* Give a little boost to mid-size frames */
4694 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4695 		new_val = avg_wire_size / 3;
4696 	else
4697 		new_val = avg_wire_size / 2;
4698 
4699 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4700 	if (new_val < IGC_20K_ITR &&
4701 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4702 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4703 		new_val = IGC_20K_ITR;
4704 
4705 set_itr_val:
4706 	if (new_val != q_vector->itr_val) {
4707 		q_vector->itr_val = new_val;
4708 		q_vector->set_itr = 1;
4709 	}
4710 clear_counts:
4711 	q_vector->rx.total_bytes = 0;
4712 	q_vector->rx.total_packets = 0;
4713 	q_vector->tx.total_bytes = 0;
4714 	q_vector->tx.total_packets = 0;
4715 }
4716 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4717 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4718 {
4719 	struct igc_adapter *adapter = q_vector->adapter;
4720 	struct igc_hw *hw = &adapter->hw;
4721 
4722 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4723 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4724 		if (adapter->num_q_vectors == 1)
4725 			igc_set_itr(q_vector);
4726 		else
4727 			igc_update_ring_itr(q_vector);
4728 	}
4729 
4730 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4731 		if (adapter->msix_entries)
4732 			wr32(IGC_EIMS, q_vector->eims_value);
4733 		else
4734 			igc_irq_enable(adapter);
4735 	}
4736 }
4737 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4738 static void igc_add_ring(struct igc_ring *ring,
4739 			 struct igc_ring_container *head)
4740 {
4741 	head->ring = ring;
4742 	head->count++;
4743 }
4744 
4745 /**
4746  * igc_cache_ring_register - Descriptor ring to register mapping
4747  * @adapter: board private structure to initialize
4748  *
4749  * Once we know the feature-set enabled for the device, we'll cache
4750  * the register offset the descriptor ring is assigned to.
4751  */
igc_cache_ring_register(struct igc_adapter * adapter)4752 static void igc_cache_ring_register(struct igc_adapter *adapter)
4753 {
4754 	int i = 0, j = 0;
4755 
4756 	switch (adapter->hw.mac.type) {
4757 	case igc_i225:
4758 	default:
4759 		for (; i < adapter->num_rx_queues; i++)
4760 			adapter->rx_ring[i]->reg_idx = i;
4761 		for (; j < adapter->num_tx_queues; j++)
4762 			adapter->tx_ring[j]->reg_idx = j;
4763 		break;
4764 	}
4765 }
4766 
4767 /**
4768  * igc_poll - NAPI Rx polling callback
4769  * @napi: napi polling structure
4770  * @budget: count of how many packets we should handle
4771  */
igc_poll(struct napi_struct * napi,int budget)4772 static int igc_poll(struct napi_struct *napi, int budget)
4773 {
4774 	struct igc_q_vector *q_vector = container_of(napi,
4775 						     struct igc_q_vector,
4776 						     napi);
4777 	struct igc_ring *rx_ring = q_vector->rx.ring;
4778 	bool clean_complete = true;
4779 	int work_done = 0;
4780 
4781 	if (q_vector->tx.ring)
4782 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4783 
4784 	if (rx_ring) {
4785 		int cleaned = rx_ring->xsk_pool ?
4786 			      igc_clean_rx_irq_zc(q_vector, budget) :
4787 			      igc_clean_rx_irq(q_vector, budget);
4788 
4789 		work_done += cleaned;
4790 		if (cleaned >= budget)
4791 			clean_complete = false;
4792 	}
4793 
4794 	/* If all work not completed, return budget and keep polling */
4795 	if (!clean_complete)
4796 		return budget;
4797 
4798 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4799 	 * poll us due to busy-polling
4800 	 */
4801 	if (likely(napi_complete_done(napi, work_done)))
4802 		igc_ring_irq_enable(q_vector);
4803 
4804 	return min(work_done, budget - 1);
4805 }
4806 
4807 /**
4808  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4809  * @adapter: board private structure to initialize
4810  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4811  * @v_idx: index of vector in adapter struct
4812  * @txr_count: total number of Tx rings to allocate
4813  * @txr_idx: index of first Tx ring to allocate
4814  * @rxr_count: total number of Rx rings to allocate
4815  * @rxr_idx: index of first Rx ring to allocate
4816  *
4817  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4818  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4819 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4820 			      unsigned int v_count, unsigned int v_idx,
4821 			      unsigned int txr_count, unsigned int txr_idx,
4822 			      unsigned int rxr_count, unsigned int rxr_idx)
4823 {
4824 	struct igc_q_vector *q_vector;
4825 	struct igc_ring *ring;
4826 	int ring_count;
4827 
4828 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4829 	if (txr_count > 1 || rxr_count > 1)
4830 		return -ENOMEM;
4831 
4832 	ring_count = txr_count + rxr_count;
4833 
4834 	/* allocate q_vector and rings */
4835 	q_vector = adapter->q_vector[v_idx];
4836 	if (!q_vector)
4837 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4838 				   GFP_KERNEL);
4839 	else
4840 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4841 	if (!q_vector)
4842 		return -ENOMEM;
4843 
4844 	/* initialize NAPI */
4845 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4846 
4847 	/* tie q_vector and adapter together */
4848 	adapter->q_vector[v_idx] = q_vector;
4849 	q_vector->adapter = adapter;
4850 
4851 	/* initialize work limits */
4852 	q_vector->tx.work_limit = adapter->tx_work_limit;
4853 
4854 	/* initialize ITR configuration */
4855 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4856 	q_vector->itr_val = IGC_START_ITR;
4857 
4858 	/* initialize pointer to rings */
4859 	ring = q_vector->ring;
4860 
4861 	/* initialize ITR */
4862 	if (rxr_count) {
4863 		/* rx or rx/tx vector */
4864 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4865 			q_vector->itr_val = adapter->rx_itr_setting;
4866 	} else {
4867 		/* tx only vector */
4868 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4869 			q_vector->itr_val = adapter->tx_itr_setting;
4870 	}
4871 
4872 	if (txr_count) {
4873 		/* assign generic ring traits */
4874 		ring->dev = &adapter->pdev->dev;
4875 		ring->netdev = adapter->netdev;
4876 
4877 		/* configure backlink on ring */
4878 		ring->q_vector = q_vector;
4879 
4880 		/* update q_vector Tx values */
4881 		igc_add_ring(ring, &q_vector->tx);
4882 
4883 		/* apply Tx specific ring traits */
4884 		ring->count = adapter->tx_ring_count;
4885 		ring->queue_index = txr_idx;
4886 
4887 		/* assign ring to adapter */
4888 		adapter->tx_ring[txr_idx] = ring;
4889 
4890 		/* push pointer to next ring */
4891 		ring++;
4892 	}
4893 
4894 	if (rxr_count) {
4895 		/* assign generic ring traits */
4896 		ring->dev = &adapter->pdev->dev;
4897 		ring->netdev = adapter->netdev;
4898 
4899 		/* configure backlink on ring */
4900 		ring->q_vector = q_vector;
4901 
4902 		/* update q_vector Rx values */
4903 		igc_add_ring(ring, &q_vector->rx);
4904 
4905 		/* apply Rx specific ring traits */
4906 		ring->count = adapter->rx_ring_count;
4907 		ring->queue_index = rxr_idx;
4908 
4909 		/* assign ring to adapter */
4910 		adapter->rx_ring[rxr_idx] = ring;
4911 	}
4912 
4913 	return 0;
4914 }
4915 
4916 /**
4917  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4918  * @adapter: board private structure to initialize
4919  *
4920  * We allocate one q_vector per queue interrupt.  If allocation fails we
4921  * return -ENOMEM.
4922  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4923 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4924 {
4925 	int rxr_remaining = adapter->num_rx_queues;
4926 	int txr_remaining = adapter->num_tx_queues;
4927 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4928 	int q_vectors = adapter->num_q_vectors;
4929 	int err;
4930 
4931 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4932 		for (; rxr_remaining; v_idx++) {
4933 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4934 						 0, 0, 1, rxr_idx);
4935 
4936 			if (err)
4937 				goto err_out;
4938 
4939 			/* update counts and index */
4940 			rxr_remaining--;
4941 			rxr_idx++;
4942 		}
4943 	}
4944 
4945 	for (; v_idx < q_vectors; v_idx++) {
4946 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4947 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4948 
4949 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4950 					 tqpv, txr_idx, rqpv, rxr_idx);
4951 
4952 		if (err)
4953 			goto err_out;
4954 
4955 		/* update counts and index */
4956 		rxr_remaining -= rqpv;
4957 		txr_remaining -= tqpv;
4958 		rxr_idx++;
4959 		txr_idx++;
4960 	}
4961 
4962 	return 0;
4963 
4964 err_out:
4965 	adapter->num_tx_queues = 0;
4966 	adapter->num_rx_queues = 0;
4967 	adapter->num_q_vectors = 0;
4968 
4969 	while (v_idx--)
4970 		igc_free_q_vector(adapter, v_idx);
4971 
4972 	return -ENOMEM;
4973 }
4974 
4975 /**
4976  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4977  * @adapter: Pointer to adapter structure
4978  * @msix: boolean for MSI-X capability
4979  *
4980  * This function initializes the interrupts and allocates all of the queues.
4981  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4982 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4983 {
4984 	struct net_device *dev = adapter->netdev;
4985 	int err = 0;
4986 
4987 	igc_set_interrupt_capability(adapter, msix);
4988 
4989 	err = igc_alloc_q_vectors(adapter);
4990 	if (err) {
4991 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4992 		goto err_alloc_q_vectors;
4993 	}
4994 
4995 	igc_cache_ring_register(adapter);
4996 
4997 	return 0;
4998 
4999 err_alloc_q_vectors:
5000 	igc_reset_interrupt_capability(adapter);
5001 	return err;
5002 }
5003 
5004 /**
5005  * igc_sw_init - Initialize general software structures (struct igc_adapter)
5006  * @adapter: board private structure to initialize
5007  *
5008  * igc_sw_init initializes the Adapter private data structure.
5009  * Fields are initialized based on PCI device information and
5010  * OS network device settings (MTU size).
5011  */
igc_sw_init(struct igc_adapter * adapter)5012 static int igc_sw_init(struct igc_adapter *adapter)
5013 {
5014 	struct net_device *netdev = adapter->netdev;
5015 	struct pci_dev *pdev = adapter->pdev;
5016 	struct igc_hw *hw = &adapter->hw;
5017 
5018 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
5019 
5020 	/* set default ring sizes */
5021 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
5022 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
5023 
5024 	/* set default ITR values */
5025 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
5026 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
5027 
5028 	/* set default work limits */
5029 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
5030 
5031 	/* adjust max frame to be at least the size of a standard frame */
5032 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
5033 				VLAN_HLEN;
5034 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
5035 
5036 	mutex_init(&adapter->nfc_rule_lock);
5037 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
5038 	adapter->nfc_rule_count = 0;
5039 
5040 	spin_lock_init(&adapter->stats64_lock);
5041 	spin_lock_init(&adapter->qbv_tx_lock);
5042 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
5043 	adapter->flags |= IGC_FLAG_HAS_MSIX;
5044 
5045 	igc_init_queue_configuration(adapter);
5046 
5047 	/* This call may decrease the number of queues */
5048 	if (igc_init_interrupt_scheme(adapter, true)) {
5049 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5050 		return -ENOMEM;
5051 	}
5052 
5053 	/* Explicitly disable IRQ since the NIC can be in any state. */
5054 	igc_irq_disable(adapter);
5055 
5056 	set_bit(__IGC_DOWN, &adapter->state);
5057 
5058 	return 0;
5059 }
5060 
igc_set_queue_napi(struct igc_adapter * adapter,int vector,struct napi_struct * napi)5061 static void igc_set_queue_napi(struct igc_adapter *adapter, int vector,
5062 			       struct napi_struct *napi)
5063 {
5064 	struct igc_q_vector *q_vector = adapter->q_vector[vector];
5065 
5066 	if (q_vector->rx.ring)
5067 		netif_queue_set_napi(adapter->netdev,
5068 				     q_vector->rx.ring->queue_index,
5069 				     NETDEV_QUEUE_TYPE_RX, napi);
5070 
5071 	if (q_vector->tx.ring)
5072 		netif_queue_set_napi(adapter->netdev,
5073 				     q_vector->tx.ring->queue_index,
5074 				     NETDEV_QUEUE_TYPE_TX, napi);
5075 }
5076 
5077 /**
5078  * igc_up - Open the interface and prepare it to handle traffic
5079  * @adapter: board private structure
5080  */
igc_up(struct igc_adapter * adapter)5081 void igc_up(struct igc_adapter *adapter)
5082 {
5083 	struct igc_hw *hw = &adapter->hw;
5084 	struct napi_struct *napi;
5085 	int i = 0;
5086 
5087 	/* hardware has been reset, we need to reload some things */
5088 	igc_configure(adapter);
5089 
5090 	clear_bit(__IGC_DOWN, &adapter->state);
5091 
5092 	for (i = 0; i < adapter->num_q_vectors; i++) {
5093 		napi = &adapter->q_vector[i]->napi;
5094 		napi_enable(napi);
5095 		igc_set_queue_napi(adapter, i, napi);
5096 	}
5097 
5098 	if (adapter->msix_entries)
5099 		igc_configure_msix(adapter);
5100 	else
5101 		igc_assign_vector(adapter->q_vector[0], 0);
5102 
5103 	/* Clear any pending interrupts. */
5104 	rd32(IGC_ICR);
5105 	igc_irq_enable(adapter);
5106 
5107 	netif_tx_start_all_queues(adapter->netdev);
5108 
5109 	/* start the watchdog. */
5110 	hw->mac.get_link_status = true;
5111 	schedule_work(&adapter->watchdog_task);
5112 }
5113 
5114 /**
5115  * igc_update_stats - Update the board statistics counters
5116  * @adapter: board private structure
5117  */
igc_update_stats(struct igc_adapter * adapter)5118 void igc_update_stats(struct igc_adapter *adapter)
5119 {
5120 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5121 	struct pci_dev *pdev = adapter->pdev;
5122 	struct igc_hw *hw = &adapter->hw;
5123 	u64 _bytes, _packets;
5124 	u64 bytes, packets;
5125 	unsigned int start;
5126 	u32 mpc;
5127 	int i;
5128 
5129 	/* Prevent stats update while adapter is being reset, or if the pci
5130 	 * connection is down.
5131 	 */
5132 	if (adapter->link_speed == 0)
5133 		return;
5134 	if (pci_channel_offline(pdev))
5135 		return;
5136 
5137 	packets = 0;
5138 	bytes = 0;
5139 
5140 	rcu_read_lock();
5141 	for (i = 0; i < adapter->num_rx_queues; i++) {
5142 		struct igc_ring *ring = adapter->rx_ring[i];
5143 		u32 rqdpc = rd32(IGC_RQDPC(i));
5144 
5145 		if (hw->mac.type >= igc_i225)
5146 			wr32(IGC_RQDPC(i), 0);
5147 
5148 		if (rqdpc) {
5149 			ring->rx_stats.drops += rqdpc;
5150 			net_stats->rx_fifo_errors += rqdpc;
5151 		}
5152 
5153 		do {
5154 			start = u64_stats_fetch_begin(&ring->rx_syncp);
5155 			_bytes = ring->rx_stats.bytes;
5156 			_packets = ring->rx_stats.packets;
5157 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
5158 		bytes += _bytes;
5159 		packets += _packets;
5160 	}
5161 
5162 	net_stats->rx_bytes = bytes;
5163 	net_stats->rx_packets = packets;
5164 
5165 	packets = 0;
5166 	bytes = 0;
5167 	for (i = 0; i < adapter->num_tx_queues; i++) {
5168 		struct igc_ring *ring = adapter->tx_ring[i];
5169 
5170 		do {
5171 			start = u64_stats_fetch_begin(&ring->tx_syncp);
5172 			_bytes = ring->tx_stats.bytes;
5173 			_packets = ring->tx_stats.packets;
5174 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
5175 		bytes += _bytes;
5176 		packets += _packets;
5177 	}
5178 	net_stats->tx_bytes = bytes;
5179 	net_stats->tx_packets = packets;
5180 	rcu_read_unlock();
5181 
5182 	/* read stats registers */
5183 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
5184 	adapter->stats.gprc += rd32(IGC_GPRC);
5185 	adapter->stats.gorc += rd32(IGC_GORCL);
5186 	rd32(IGC_GORCH); /* clear GORCL */
5187 	adapter->stats.bprc += rd32(IGC_BPRC);
5188 	adapter->stats.mprc += rd32(IGC_MPRC);
5189 	adapter->stats.roc += rd32(IGC_ROC);
5190 
5191 	adapter->stats.prc64 += rd32(IGC_PRC64);
5192 	adapter->stats.prc127 += rd32(IGC_PRC127);
5193 	adapter->stats.prc255 += rd32(IGC_PRC255);
5194 	adapter->stats.prc511 += rd32(IGC_PRC511);
5195 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
5196 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
5197 	adapter->stats.tlpic += rd32(IGC_TLPIC);
5198 	adapter->stats.rlpic += rd32(IGC_RLPIC);
5199 	adapter->stats.hgptc += rd32(IGC_HGPTC);
5200 
5201 	mpc = rd32(IGC_MPC);
5202 	adapter->stats.mpc += mpc;
5203 	net_stats->rx_fifo_errors += mpc;
5204 	adapter->stats.scc += rd32(IGC_SCC);
5205 	adapter->stats.ecol += rd32(IGC_ECOL);
5206 	adapter->stats.mcc += rd32(IGC_MCC);
5207 	adapter->stats.latecol += rd32(IGC_LATECOL);
5208 	adapter->stats.dc += rd32(IGC_DC);
5209 	adapter->stats.rlec += rd32(IGC_RLEC);
5210 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
5211 	adapter->stats.xontxc += rd32(IGC_XONTXC);
5212 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
5213 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
5214 	adapter->stats.fcruc += rd32(IGC_FCRUC);
5215 	adapter->stats.gptc += rd32(IGC_GPTC);
5216 	adapter->stats.gotc += rd32(IGC_GOTCL);
5217 	rd32(IGC_GOTCH); /* clear GOTCL */
5218 	adapter->stats.rnbc += rd32(IGC_RNBC);
5219 	adapter->stats.ruc += rd32(IGC_RUC);
5220 	adapter->stats.rfc += rd32(IGC_RFC);
5221 	adapter->stats.rjc += rd32(IGC_RJC);
5222 	adapter->stats.tor += rd32(IGC_TORH);
5223 	adapter->stats.tot += rd32(IGC_TOTH);
5224 	adapter->stats.tpr += rd32(IGC_TPR);
5225 
5226 	adapter->stats.ptc64 += rd32(IGC_PTC64);
5227 	adapter->stats.ptc127 += rd32(IGC_PTC127);
5228 	adapter->stats.ptc255 += rd32(IGC_PTC255);
5229 	adapter->stats.ptc511 += rd32(IGC_PTC511);
5230 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5231 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5232 
5233 	adapter->stats.mptc += rd32(IGC_MPTC);
5234 	adapter->stats.bptc += rd32(IGC_BPTC);
5235 
5236 	adapter->stats.tpt += rd32(IGC_TPT);
5237 	adapter->stats.colc += rd32(IGC_COLC);
5238 	adapter->stats.colc += rd32(IGC_RERC);
5239 
5240 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5241 
5242 	adapter->stats.tsctc += rd32(IGC_TSCTC);
5243 
5244 	adapter->stats.iac += rd32(IGC_IAC);
5245 
5246 	/* Fill out the OS statistics structure */
5247 	net_stats->multicast = adapter->stats.mprc;
5248 	net_stats->collisions = adapter->stats.colc;
5249 
5250 	/* Rx Errors */
5251 
5252 	/* RLEC on some newer hardware can be incorrect so build
5253 	 * our own version based on RUC and ROC
5254 	 */
5255 	net_stats->rx_errors = adapter->stats.rxerrc +
5256 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5257 		adapter->stats.ruc + adapter->stats.roc +
5258 		adapter->stats.cexterr;
5259 	net_stats->rx_length_errors = adapter->stats.ruc +
5260 				      adapter->stats.roc;
5261 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5262 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5263 	net_stats->rx_missed_errors = adapter->stats.mpc;
5264 
5265 	/* Tx Errors */
5266 	net_stats->tx_errors = adapter->stats.ecol +
5267 			       adapter->stats.latecol;
5268 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5269 	net_stats->tx_window_errors = adapter->stats.latecol;
5270 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5271 
5272 	/* Tx Dropped */
5273 	net_stats->tx_dropped = adapter->stats.txdrop;
5274 
5275 	/* Management Stats */
5276 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5277 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5278 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5279 }
5280 
5281 /**
5282  * igc_down - Close the interface
5283  * @adapter: board private structure
5284  */
igc_down(struct igc_adapter * adapter)5285 void igc_down(struct igc_adapter *adapter)
5286 {
5287 	struct net_device *netdev = adapter->netdev;
5288 	struct igc_hw *hw = &adapter->hw;
5289 	u32 tctl, rctl;
5290 	int i = 0;
5291 
5292 	set_bit(__IGC_DOWN, &adapter->state);
5293 
5294 	igc_ptp_suspend(adapter);
5295 
5296 	if (pci_device_is_present(adapter->pdev)) {
5297 		/* disable receives in the hardware */
5298 		rctl = rd32(IGC_RCTL);
5299 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5300 		/* flush and sleep below */
5301 	}
5302 	/* set trans_start so we don't get spurious watchdogs during reset */
5303 	netif_trans_update(netdev);
5304 
5305 	netif_carrier_off(netdev);
5306 	netif_tx_stop_all_queues(netdev);
5307 
5308 	if (pci_device_is_present(adapter->pdev)) {
5309 		/* disable transmits in the hardware */
5310 		tctl = rd32(IGC_TCTL);
5311 		tctl &= ~IGC_TCTL_EN;
5312 		wr32(IGC_TCTL, tctl);
5313 		/* flush both disables and wait for them to finish */
5314 		wrfl();
5315 		usleep_range(10000, 20000);
5316 
5317 		igc_irq_disable(adapter);
5318 	}
5319 
5320 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5321 
5322 	for (i = 0; i < adapter->num_q_vectors; i++) {
5323 		if (adapter->q_vector[i]) {
5324 			napi_synchronize(&adapter->q_vector[i]->napi);
5325 			igc_set_queue_napi(adapter, i, NULL);
5326 			napi_disable(&adapter->q_vector[i]->napi);
5327 		}
5328 	}
5329 
5330 	timer_delete_sync(&adapter->watchdog_timer);
5331 	timer_delete_sync(&adapter->phy_info_timer);
5332 
5333 	/* record the stats before reset*/
5334 	spin_lock(&adapter->stats64_lock);
5335 	igc_update_stats(adapter);
5336 	spin_unlock(&adapter->stats64_lock);
5337 
5338 	adapter->link_speed = 0;
5339 	adapter->link_duplex = 0;
5340 
5341 	if (!pci_channel_offline(adapter->pdev))
5342 		igc_reset(adapter);
5343 
5344 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5345 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5346 
5347 	igc_disable_all_tx_rings_hw(adapter);
5348 	igc_clean_all_tx_rings(adapter);
5349 	igc_clean_all_rx_rings(adapter);
5350 
5351 	if (adapter->fpe.mmsv.pmac_enabled)
5352 		ethtool_mmsv_stop(&adapter->fpe.mmsv);
5353 }
5354 
igc_reinit_locked(struct igc_adapter * adapter)5355 void igc_reinit_locked(struct igc_adapter *adapter)
5356 {
5357 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5358 		usleep_range(1000, 2000);
5359 	igc_down(adapter);
5360 	igc_up(adapter);
5361 	clear_bit(__IGC_RESETTING, &adapter->state);
5362 }
5363 
igc_reset_task(struct work_struct * work)5364 static void igc_reset_task(struct work_struct *work)
5365 {
5366 	struct igc_adapter *adapter;
5367 
5368 	adapter = container_of(work, struct igc_adapter, reset_task);
5369 
5370 	rtnl_lock();
5371 	/* If we're already down or resetting, just bail */
5372 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5373 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5374 		rtnl_unlock();
5375 		return;
5376 	}
5377 
5378 	igc_rings_dump(adapter);
5379 	igc_regs_dump(adapter);
5380 	netdev_err(adapter->netdev, "Reset adapter\n");
5381 	igc_reinit_locked(adapter);
5382 	rtnl_unlock();
5383 }
5384 
5385 /**
5386  * igc_change_mtu - Change the Maximum Transfer Unit
5387  * @netdev: network interface device structure
5388  * @new_mtu: new value for maximum frame size
5389  *
5390  * Returns 0 on success, negative on failure
5391  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5392 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5393 {
5394 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5395 	struct igc_adapter *adapter = netdev_priv(netdev);
5396 
5397 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5398 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5399 		return -EINVAL;
5400 	}
5401 
5402 	/* adjust max frame to be at least the size of a standard frame */
5403 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5404 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5405 
5406 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5407 		usleep_range(1000, 2000);
5408 
5409 	/* igc_down has a dependency on max_frame_size */
5410 	adapter->max_frame_size = max_frame;
5411 
5412 	if (netif_running(netdev))
5413 		igc_down(adapter);
5414 
5415 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5416 	WRITE_ONCE(netdev->mtu, new_mtu);
5417 
5418 	if (netif_running(netdev))
5419 		igc_up(adapter);
5420 	else
5421 		igc_reset(adapter);
5422 
5423 	clear_bit(__IGC_RESETTING, &adapter->state);
5424 
5425 	return 0;
5426 }
5427 
5428 /**
5429  * igc_tx_timeout - Respond to a Tx Hang
5430  * @netdev: network interface device structure
5431  * @txqueue: queue number that timed out
5432  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5433 static void igc_tx_timeout(struct net_device *netdev,
5434 			   unsigned int __always_unused txqueue)
5435 {
5436 	struct igc_adapter *adapter = netdev_priv(netdev);
5437 	struct igc_hw *hw = &adapter->hw;
5438 
5439 	/* Do the reset outside of interrupt context */
5440 	adapter->tx_timeout_count++;
5441 	schedule_work(&adapter->reset_task);
5442 	wr32(IGC_EICS,
5443 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5444 }
5445 
5446 /**
5447  * igc_get_stats64 - Get System Network Statistics
5448  * @netdev: network interface device structure
5449  * @stats: rtnl_link_stats64 pointer
5450  *
5451  * Returns the address of the device statistics structure.
5452  * The statistics are updated here and also from the timer callback.
5453  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5454 static void igc_get_stats64(struct net_device *netdev,
5455 			    struct rtnl_link_stats64 *stats)
5456 {
5457 	struct igc_adapter *adapter = netdev_priv(netdev);
5458 
5459 	spin_lock(&adapter->stats64_lock);
5460 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5461 		igc_update_stats(adapter);
5462 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5463 	spin_unlock(&adapter->stats64_lock);
5464 }
5465 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5466 static netdev_features_t igc_fix_features(struct net_device *netdev,
5467 					  netdev_features_t features)
5468 {
5469 	/* Since there is no support for separate Rx/Tx vlan accel
5470 	 * enable/disable make sure Tx flag is always in same state as Rx.
5471 	 */
5472 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5473 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5474 	else
5475 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5476 
5477 	return features;
5478 }
5479 
igc_set_features(struct net_device * netdev,netdev_features_t features)5480 static int igc_set_features(struct net_device *netdev,
5481 			    netdev_features_t features)
5482 {
5483 	netdev_features_t changed = netdev->features ^ features;
5484 	struct igc_adapter *adapter = netdev_priv(netdev);
5485 
5486 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5487 		igc_vlan_mode(netdev, features);
5488 
5489 	/* Add VLAN support */
5490 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5491 		return 0;
5492 
5493 	if (!(features & NETIF_F_NTUPLE))
5494 		igc_flush_nfc_rules(adapter);
5495 
5496 	netdev->features = features;
5497 
5498 	if (netif_running(netdev))
5499 		igc_reinit_locked(adapter);
5500 	else
5501 		igc_reset(adapter);
5502 
5503 	return 1;
5504 }
5505 
5506 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5507 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5508 		   netdev_features_t features)
5509 {
5510 	unsigned int network_hdr_len, mac_hdr_len;
5511 
5512 	/* Make certain the headers can be described by a context descriptor */
5513 	mac_hdr_len = skb_network_offset(skb);
5514 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5515 		return features & ~(NETIF_F_HW_CSUM |
5516 				    NETIF_F_SCTP_CRC |
5517 				    NETIF_F_HW_VLAN_CTAG_TX |
5518 				    NETIF_F_TSO |
5519 				    NETIF_F_TSO6);
5520 
5521 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5522 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5523 		return features & ~(NETIF_F_HW_CSUM |
5524 				    NETIF_F_SCTP_CRC |
5525 				    NETIF_F_TSO |
5526 				    NETIF_F_TSO6);
5527 
5528 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5529 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5530 	 */
5531 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5532 		features &= ~NETIF_F_TSO;
5533 
5534 	return features;
5535 }
5536 
igc_tsync_interrupt(struct igc_adapter * adapter)5537 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5538 {
5539 	struct igc_hw *hw = &adapter->hw;
5540 	u32 tsauxc, sec, nsec, tsicr;
5541 	struct ptp_clock_event event;
5542 	struct timespec64 ts;
5543 
5544 	tsicr = rd32(IGC_TSICR);
5545 
5546 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5547 		event.type = PTP_CLOCK_PPS;
5548 		if (adapter->ptp_caps.pps)
5549 			ptp_clock_event(adapter->ptp_clock, &event);
5550 	}
5551 
5552 	if (tsicr & IGC_TSICR_TXTS) {
5553 		/* retrieve hardware timestamp */
5554 		igc_ptp_tx_tstamp_event(adapter);
5555 	}
5556 
5557 	if (tsicr & IGC_TSICR_TT0) {
5558 		spin_lock(&adapter->tmreg_lock);
5559 		ts = timespec64_add(adapter->perout[0].start,
5560 				    adapter->perout[0].period);
5561 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5562 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5563 		tsauxc = rd32(IGC_TSAUXC);
5564 		tsauxc |= IGC_TSAUXC_EN_TT0;
5565 		wr32(IGC_TSAUXC, tsauxc);
5566 		adapter->perout[0].start = ts;
5567 		spin_unlock(&adapter->tmreg_lock);
5568 	}
5569 
5570 	if (tsicr & IGC_TSICR_TT1) {
5571 		spin_lock(&adapter->tmreg_lock);
5572 		ts = timespec64_add(adapter->perout[1].start,
5573 				    adapter->perout[1].period);
5574 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5575 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5576 		tsauxc = rd32(IGC_TSAUXC);
5577 		tsauxc |= IGC_TSAUXC_EN_TT1;
5578 		wr32(IGC_TSAUXC, tsauxc);
5579 		adapter->perout[1].start = ts;
5580 		spin_unlock(&adapter->tmreg_lock);
5581 	}
5582 
5583 	if (tsicr & IGC_TSICR_AUTT0) {
5584 		nsec = rd32(IGC_AUXSTMPL0);
5585 		sec  = rd32(IGC_AUXSTMPH0);
5586 		event.type = PTP_CLOCK_EXTTS;
5587 		event.index = 0;
5588 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5589 		ptp_clock_event(adapter->ptp_clock, &event);
5590 	}
5591 
5592 	if (tsicr & IGC_TSICR_AUTT1) {
5593 		nsec = rd32(IGC_AUXSTMPL1);
5594 		sec  = rd32(IGC_AUXSTMPH1);
5595 		event.type = PTP_CLOCK_EXTTS;
5596 		event.index = 1;
5597 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5598 		ptp_clock_event(adapter->ptp_clock, &event);
5599 	}
5600 }
5601 
5602 /**
5603  * igc_msix_other - msix other interrupt handler
5604  * @irq: interrupt number
5605  * @data: pointer to a q_vector
5606  */
igc_msix_other(int irq,void * data)5607 static irqreturn_t igc_msix_other(int irq, void *data)
5608 {
5609 	struct igc_adapter *adapter = data;
5610 	struct igc_hw *hw = &adapter->hw;
5611 	u32 icr = rd32(IGC_ICR);
5612 
5613 	/* reading ICR causes bit 31 of EICR to be cleared */
5614 	if (icr & IGC_ICR_DRSTA)
5615 		schedule_work(&adapter->reset_task);
5616 
5617 	if (icr & IGC_ICR_DOUTSYNC) {
5618 		/* HW is reporting DMA is out of sync */
5619 		adapter->stats.doosync++;
5620 	}
5621 
5622 	if (icr & IGC_ICR_LSC) {
5623 		hw->mac.get_link_status = true;
5624 		/* guard against interrupt when we're going down */
5625 		if (!test_bit(__IGC_DOWN, &adapter->state))
5626 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5627 	}
5628 
5629 	if (icr & IGC_ICR_TS)
5630 		igc_tsync_interrupt(adapter);
5631 
5632 	wr32(IGC_EIMS, adapter->eims_other);
5633 
5634 	return IRQ_HANDLED;
5635 }
5636 
igc_write_itr(struct igc_q_vector * q_vector)5637 static void igc_write_itr(struct igc_q_vector *q_vector)
5638 {
5639 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5640 
5641 	if (!q_vector->set_itr)
5642 		return;
5643 
5644 	if (!itr_val)
5645 		itr_val = IGC_ITR_VAL_MASK;
5646 
5647 	itr_val |= IGC_EITR_CNT_IGNR;
5648 
5649 	writel(itr_val, q_vector->itr_register);
5650 	q_vector->set_itr = 0;
5651 }
5652 
igc_msix_ring(int irq,void * data)5653 static irqreturn_t igc_msix_ring(int irq, void *data)
5654 {
5655 	struct igc_q_vector *q_vector = data;
5656 
5657 	/* Write the ITR value calculated from the previous interrupt. */
5658 	igc_write_itr(q_vector);
5659 
5660 	napi_schedule(&q_vector->napi);
5661 
5662 	return IRQ_HANDLED;
5663 }
5664 
5665 /**
5666  * igc_request_msix - Initialize MSI-X interrupts
5667  * @adapter: Pointer to adapter structure
5668  *
5669  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5670  * kernel.
5671  */
igc_request_msix(struct igc_adapter * adapter)5672 static int igc_request_msix(struct igc_adapter *adapter)
5673 {
5674 	unsigned int num_q_vectors = adapter->num_q_vectors;
5675 	int i = 0, err = 0, vector = 0, free_vector = 0;
5676 	struct net_device *netdev = adapter->netdev;
5677 
5678 	err = request_irq(adapter->msix_entries[vector].vector,
5679 			  &igc_msix_other, 0, netdev->name, adapter);
5680 	if (err)
5681 		goto err_out;
5682 
5683 	if (num_q_vectors > MAX_Q_VECTORS) {
5684 		num_q_vectors = MAX_Q_VECTORS;
5685 		dev_warn(&adapter->pdev->dev,
5686 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5687 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5688 	}
5689 	for (i = 0; i < num_q_vectors; i++) {
5690 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5691 
5692 		vector++;
5693 
5694 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5695 
5696 		if (q_vector->rx.ring && q_vector->tx.ring)
5697 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5698 				q_vector->rx.ring->queue_index);
5699 		else if (q_vector->tx.ring)
5700 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5701 				q_vector->tx.ring->queue_index);
5702 		else if (q_vector->rx.ring)
5703 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5704 				q_vector->rx.ring->queue_index);
5705 		else
5706 			sprintf(q_vector->name, "%s-unused", netdev->name);
5707 
5708 		err = request_irq(adapter->msix_entries[vector].vector,
5709 				  igc_msix_ring, 0, q_vector->name,
5710 				  q_vector);
5711 		if (err)
5712 			goto err_free;
5713 
5714 		netif_napi_set_irq(&q_vector->napi,
5715 				   adapter->msix_entries[vector].vector);
5716 	}
5717 
5718 	igc_configure_msix(adapter);
5719 	return 0;
5720 
5721 err_free:
5722 	/* free already assigned IRQs */
5723 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5724 
5725 	vector--;
5726 	for (i = 0; i < vector; i++) {
5727 		free_irq(adapter->msix_entries[free_vector++].vector,
5728 			 adapter->q_vector[i]);
5729 	}
5730 err_out:
5731 	return err;
5732 }
5733 
5734 /**
5735  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5736  * @adapter: Pointer to adapter structure
5737  *
5738  * This function resets the device so that it has 0 rx queues, tx queues, and
5739  * MSI-X interrupts allocated.
5740  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5741 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5742 {
5743 	igc_free_q_vectors(adapter);
5744 	igc_reset_interrupt_capability(adapter);
5745 }
5746 
5747 /* Need to wait a few seconds after link up to get diagnostic information from
5748  * the phy
5749  */
igc_update_phy_info(struct timer_list * t)5750 static void igc_update_phy_info(struct timer_list *t)
5751 {
5752 	struct igc_adapter *adapter = timer_container_of(adapter, t,
5753 							 phy_info_timer);
5754 
5755 	igc_get_phy_info(&adapter->hw);
5756 }
5757 
5758 /**
5759  * igc_has_link - check shared code for link and determine up/down
5760  * @adapter: pointer to driver private info
5761  */
igc_has_link(struct igc_adapter * adapter)5762 bool igc_has_link(struct igc_adapter *adapter)
5763 {
5764 	struct igc_hw *hw = &adapter->hw;
5765 	bool link_active = false;
5766 
5767 	/* get_link_status is set on LSC (link status) interrupt or
5768 	 * rx sequence error interrupt.  get_link_status will stay
5769 	 * false until the igc_check_for_link establishes link
5770 	 * for copper adapters ONLY
5771 	 */
5772 	if (!hw->mac.get_link_status)
5773 		return true;
5774 	hw->mac.ops.check_for_link(hw);
5775 	link_active = !hw->mac.get_link_status;
5776 
5777 	if (hw->mac.type == igc_i225) {
5778 		if (!netif_carrier_ok(adapter->netdev)) {
5779 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5780 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5781 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5782 			adapter->link_check_timeout = jiffies;
5783 		}
5784 	}
5785 
5786 	return link_active;
5787 }
5788 
5789 /**
5790  * igc_watchdog - Timer Call-back
5791  * @t: timer for the watchdog
5792  */
igc_watchdog(struct timer_list * t)5793 static void igc_watchdog(struct timer_list *t)
5794 {
5795 	struct igc_adapter *adapter = timer_container_of(adapter, t,
5796 							 watchdog_timer);
5797 	/* Do the rest outside of interrupt context */
5798 	schedule_work(&adapter->watchdog_task);
5799 }
5800 
igc_watchdog_task(struct work_struct * work)5801 static void igc_watchdog_task(struct work_struct *work)
5802 {
5803 	struct igc_adapter *adapter = container_of(work,
5804 						   struct igc_adapter,
5805 						   watchdog_task);
5806 	struct net_device *netdev = adapter->netdev;
5807 	struct igc_hw *hw = &adapter->hw;
5808 	struct igc_phy_info *phy = &hw->phy;
5809 	u16 phy_data, retry_count = 20;
5810 	u32 link;
5811 	int i;
5812 
5813 	link = igc_has_link(adapter);
5814 
5815 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5816 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5817 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5818 		else
5819 			link = false;
5820 	}
5821 
5822 	if (link) {
5823 		/* Cancel scheduled suspend requests. */
5824 		pm_runtime_resume(netdev->dev.parent);
5825 
5826 		if (!netif_carrier_ok(netdev)) {
5827 			u32 ctrl;
5828 
5829 			hw->mac.ops.get_speed_and_duplex(hw,
5830 							 &adapter->link_speed,
5831 							 &adapter->link_duplex);
5832 
5833 			ctrl = rd32(IGC_CTRL);
5834 			/* Link status message must follow this format */
5835 			netdev_info(netdev,
5836 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5837 				    adapter->link_speed,
5838 				    adapter->link_duplex == FULL_DUPLEX ?
5839 				    "Full" : "Half",
5840 				    (ctrl & IGC_CTRL_TFCE) &&
5841 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5842 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5843 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5844 
5845 			/* disable EEE if enabled */
5846 			if ((adapter->flags & IGC_FLAG_EEE) &&
5847 			    adapter->link_duplex == HALF_DUPLEX) {
5848 				netdev_info(netdev,
5849 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5850 				adapter->hw.dev_spec._base.eee_enable = false;
5851 				adapter->flags &= ~IGC_FLAG_EEE;
5852 			}
5853 
5854 			/* check if SmartSpeed worked */
5855 			igc_check_downshift(hw);
5856 			if (phy->speed_downgraded)
5857 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5858 
5859 			/* adjust timeout factor according to speed/duplex */
5860 			adapter->tx_timeout_factor = 1;
5861 			switch (adapter->link_speed) {
5862 			case SPEED_10:
5863 				adapter->tx_timeout_factor = 14;
5864 				break;
5865 			case SPEED_100:
5866 			case SPEED_1000:
5867 			case SPEED_2500:
5868 				adapter->tx_timeout_factor = 1;
5869 				break;
5870 			}
5871 
5872 			/* Once the launch time has been set on the wire, there
5873 			 * is a delay before the link speed can be determined
5874 			 * based on link-up activity. Write into the register
5875 			 * as soon as we know the correct link speed.
5876 			 */
5877 			igc_tsn_adjust_txtime_offset(adapter);
5878 
5879 			if (adapter->fpe.mmsv.pmac_enabled)
5880 				ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5881 							       true);
5882 
5883 			if (adapter->link_speed != SPEED_1000)
5884 				goto no_wait;
5885 
5886 			/* wait for Remote receiver status OK */
5887 retry_read_status:
5888 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5889 					      &phy_data)) {
5890 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5891 				    retry_count) {
5892 					msleep(100);
5893 					retry_count--;
5894 					goto retry_read_status;
5895 				} else if (!retry_count) {
5896 					netdev_err(netdev, "exceed max 2 second\n");
5897 				}
5898 			} else {
5899 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5900 			}
5901 no_wait:
5902 			netif_carrier_on(netdev);
5903 
5904 			/* link state has changed, schedule phy info update */
5905 			if (!test_bit(__IGC_DOWN, &adapter->state))
5906 				mod_timer(&adapter->phy_info_timer,
5907 					  round_jiffies(jiffies + 2 * HZ));
5908 		}
5909 	} else {
5910 		if (netif_carrier_ok(netdev)) {
5911 			adapter->link_speed = 0;
5912 			adapter->link_duplex = 0;
5913 
5914 			/* Links status message must follow this format */
5915 			netdev_info(netdev, "NIC Link is Down\n");
5916 			netif_carrier_off(netdev);
5917 
5918 			if (adapter->fpe.mmsv.pmac_enabled)
5919 				ethtool_mmsv_link_state_handle(&adapter->fpe.mmsv,
5920 							       false);
5921 
5922 			/* link state has changed, schedule phy info update */
5923 			if (!test_bit(__IGC_DOWN, &adapter->state))
5924 				mod_timer(&adapter->phy_info_timer,
5925 					  round_jiffies(jiffies + 2 * HZ));
5926 
5927 			pm_schedule_suspend(netdev->dev.parent,
5928 					    MSEC_PER_SEC * 5);
5929 		}
5930 	}
5931 
5932 	spin_lock(&adapter->stats64_lock);
5933 	igc_update_stats(adapter);
5934 	spin_unlock(&adapter->stats64_lock);
5935 
5936 	for (i = 0; i < adapter->num_tx_queues; i++) {
5937 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5938 
5939 		if (!netif_carrier_ok(netdev)) {
5940 			/* We've lost link, so the controller stops DMA,
5941 			 * but we've got queued Tx work that's never going
5942 			 * to get done, so reset controller to flush Tx.
5943 			 * (Do the reset outside of interrupt context).
5944 			 */
5945 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5946 				adapter->tx_timeout_count++;
5947 				schedule_work(&adapter->reset_task);
5948 				/* return immediately since reset is imminent */
5949 				return;
5950 			}
5951 		}
5952 
5953 		/* Force detection of hung controller every watchdog period */
5954 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5955 	}
5956 
5957 	/* Cause software interrupt to ensure Rx ring is cleaned */
5958 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5959 		u32 eics = 0;
5960 
5961 		for (i = 0; i < adapter->num_q_vectors; i++) {
5962 			struct igc_q_vector *q_vector = adapter->q_vector[i];
5963 			struct igc_ring *rx_ring;
5964 
5965 			if (!q_vector->rx.ring)
5966 				continue;
5967 
5968 			rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5969 
5970 			if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5971 				eics |= q_vector->eims_value;
5972 				clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5973 			}
5974 		}
5975 		if (eics)
5976 			wr32(IGC_EICS, eics);
5977 	} else {
5978 		struct igc_ring *rx_ring = adapter->rx_ring[0];
5979 
5980 		if (test_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5981 			clear_bit(IGC_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5982 			wr32(IGC_ICS, IGC_ICS_RXDMT0);
5983 		}
5984 	}
5985 
5986 	igc_ptp_tx_hang(adapter);
5987 
5988 	/* Reset the timer */
5989 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5990 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5991 			mod_timer(&adapter->watchdog_timer,
5992 				  round_jiffies(jiffies +  HZ));
5993 		else
5994 			mod_timer(&adapter->watchdog_timer,
5995 				  round_jiffies(jiffies + 2 * HZ));
5996 	}
5997 }
5998 
5999 /**
6000  * igc_intr_msi - Interrupt Handler
6001  * @irq: interrupt number
6002  * @data: pointer to a network interface device structure
6003  */
igc_intr_msi(int irq,void * data)6004 static irqreturn_t igc_intr_msi(int irq, void *data)
6005 {
6006 	struct igc_adapter *adapter = data;
6007 	struct igc_q_vector *q_vector = adapter->q_vector[0];
6008 	struct igc_hw *hw = &adapter->hw;
6009 	/* read ICR disables interrupts using IAM */
6010 	u32 icr = rd32(IGC_ICR);
6011 
6012 	igc_write_itr(q_vector);
6013 
6014 	if (icr & IGC_ICR_DRSTA)
6015 		schedule_work(&adapter->reset_task);
6016 
6017 	if (icr & IGC_ICR_DOUTSYNC) {
6018 		/* HW is reporting DMA is out of sync */
6019 		adapter->stats.doosync++;
6020 	}
6021 
6022 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6023 		hw->mac.get_link_status = true;
6024 		if (!test_bit(__IGC_DOWN, &adapter->state))
6025 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6026 	}
6027 
6028 	if (icr & IGC_ICR_TS)
6029 		igc_tsync_interrupt(adapter);
6030 
6031 	napi_schedule(&q_vector->napi);
6032 
6033 	return IRQ_HANDLED;
6034 }
6035 
6036 /**
6037  * igc_intr - Legacy Interrupt Handler
6038  * @irq: interrupt number
6039  * @data: pointer to a network interface device structure
6040  */
igc_intr(int irq,void * data)6041 static irqreturn_t igc_intr(int irq, void *data)
6042 {
6043 	struct igc_adapter *adapter = data;
6044 	struct igc_q_vector *q_vector = adapter->q_vector[0];
6045 	struct igc_hw *hw = &adapter->hw;
6046 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6047 	 * need for the IMC write
6048 	 */
6049 	u32 icr = rd32(IGC_ICR);
6050 
6051 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6052 	 * not set, then the adapter didn't send an interrupt
6053 	 */
6054 	if (!(icr & IGC_ICR_INT_ASSERTED))
6055 		return IRQ_NONE;
6056 
6057 	igc_write_itr(q_vector);
6058 
6059 	if (icr & IGC_ICR_DRSTA)
6060 		schedule_work(&adapter->reset_task);
6061 
6062 	if (icr & IGC_ICR_DOUTSYNC) {
6063 		/* HW is reporting DMA is out of sync */
6064 		adapter->stats.doosync++;
6065 	}
6066 
6067 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
6068 		hw->mac.get_link_status = true;
6069 		/* guard against interrupt when we're going down */
6070 		if (!test_bit(__IGC_DOWN, &adapter->state))
6071 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6072 	}
6073 
6074 	if (icr & IGC_ICR_TS)
6075 		igc_tsync_interrupt(adapter);
6076 
6077 	napi_schedule(&q_vector->napi);
6078 
6079 	return IRQ_HANDLED;
6080 }
6081 
igc_free_irq(struct igc_adapter * adapter)6082 static void igc_free_irq(struct igc_adapter *adapter)
6083 {
6084 	if (adapter->msix_entries) {
6085 		int vector = 0, i;
6086 
6087 		free_irq(adapter->msix_entries[vector++].vector, adapter);
6088 
6089 		for (i = 0; i < adapter->num_q_vectors; i++)
6090 			free_irq(adapter->msix_entries[vector++].vector,
6091 				 adapter->q_vector[i]);
6092 	} else {
6093 		free_irq(adapter->pdev->irq, adapter);
6094 	}
6095 }
6096 
6097 /**
6098  * igc_request_irq - initialize interrupts
6099  * @adapter: Pointer to adapter structure
6100  *
6101  * Attempts to configure interrupts using the best available
6102  * capabilities of the hardware and kernel.
6103  */
igc_request_irq(struct igc_adapter * adapter)6104 static int igc_request_irq(struct igc_adapter *adapter)
6105 {
6106 	struct net_device *netdev = adapter->netdev;
6107 	struct pci_dev *pdev = adapter->pdev;
6108 	int err = 0;
6109 
6110 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
6111 		err = igc_request_msix(adapter);
6112 		if (!err)
6113 			goto request_done;
6114 		/* fall back to MSI */
6115 		igc_free_all_tx_resources(adapter);
6116 		igc_free_all_rx_resources(adapter);
6117 
6118 		igc_clear_interrupt_scheme(adapter);
6119 		err = igc_init_interrupt_scheme(adapter, false);
6120 		if (err)
6121 			goto request_done;
6122 		igc_setup_all_tx_resources(adapter);
6123 		igc_setup_all_rx_resources(adapter);
6124 		igc_configure(adapter);
6125 	}
6126 
6127 	igc_assign_vector(adapter->q_vector[0], 0);
6128 
6129 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
6130 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
6131 				  netdev->name, adapter);
6132 		if (!err)
6133 			goto request_done;
6134 
6135 		/* fall back to legacy interrupts */
6136 		igc_reset_interrupt_capability(adapter);
6137 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
6138 	}
6139 
6140 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
6141 			  netdev->name, adapter);
6142 
6143 	if (err)
6144 		netdev_err(netdev, "Error %d getting interrupt\n", err);
6145 
6146 request_done:
6147 	return err;
6148 }
6149 
6150 /**
6151  * __igc_open - Called when a network interface is made active
6152  * @netdev: network interface device structure
6153  * @resuming: boolean indicating if the device is resuming
6154  *
6155  * Returns 0 on success, negative value on failure
6156  *
6157  * The open entry point is called when a network interface is made
6158  * active by the system (IFF_UP).  At this point all resources needed
6159  * for transmit and receive operations are allocated, the interrupt
6160  * handler is registered with the OS, the watchdog timer is started,
6161  * and the stack is notified that the interface is ready.
6162  */
__igc_open(struct net_device * netdev,bool resuming)6163 static int __igc_open(struct net_device *netdev, bool resuming)
6164 {
6165 	struct igc_adapter *adapter = netdev_priv(netdev);
6166 	struct pci_dev *pdev = adapter->pdev;
6167 	struct igc_hw *hw = &adapter->hw;
6168 	struct napi_struct *napi;
6169 	int err = 0;
6170 	int i = 0;
6171 
6172 	/* disallow open during test */
6173 
6174 	if (test_bit(__IGC_TESTING, &adapter->state)) {
6175 		WARN_ON(resuming);
6176 		return -EBUSY;
6177 	}
6178 
6179 	if (!resuming)
6180 		pm_runtime_get_sync(&pdev->dev);
6181 
6182 	netif_carrier_off(netdev);
6183 
6184 	/* allocate transmit descriptors */
6185 	err = igc_setup_all_tx_resources(adapter);
6186 	if (err)
6187 		goto err_setup_tx;
6188 
6189 	/* allocate receive descriptors */
6190 	err = igc_setup_all_rx_resources(adapter);
6191 	if (err)
6192 		goto err_setup_rx;
6193 
6194 	igc_power_up_link(adapter);
6195 
6196 	igc_configure(adapter);
6197 
6198 	err = igc_request_irq(adapter);
6199 	if (err)
6200 		goto err_req_irq;
6201 
6202 	clear_bit(__IGC_DOWN, &adapter->state);
6203 
6204 	for (i = 0; i < adapter->num_q_vectors; i++) {
6205 		napi = &adapter->q_vector[i]->napi;
6206 		napi_enable(napi);
6207 		igc_set_queue_napi(adapter, i, napi);
6208 	}
6209 
6210 	/* Clear any pending interrupts. */
6211 	rd32(IGC_ICR);
6212 	igc_irq_enable(adapter);
6213 
6214 	if (!resuming)
6215 		pm_runtime_put(&pdev->dev);
6216 
6217 	netif_tx_start_all_queues(netdev);
6218 
6219 	/* start the watchdog. */
6220 	hw->mac.get_link_status = true;
6221 	schedule_work(&adapter->watchdog_task);
6222 
6223 	return IGC_SUCCESS;
6224 
6225 err_req_irq:
6226 	igc_release_hw_control(adapter);
6227 	igc_power_down_phy_copper_base(&adapter->hw);
6228 	igc_free_all_rx_resources(adapter);
6229 err_setup_rx:
6230 	igc_free_all_tx_resources(adapter);
6231 err_setup_tx:
6232 	igc_reset(adapter);
6233 	if (!resuming)
6234 		pm_runtime_put(&pdev->dev);
6235 
6236 	return err;
6237 }
6238 
igc_open(struct net_device * netdev)6239 int igc_open(struct net_device *netdev)
6240 {
6241 	struct igc_adapter *adapter = netdev_priv(netdev);
6242 	int err;
6243 
6244 	/* Notify the stack of the actual queue counts. */
6245 	err = netif_set_real_num_queues(netdev, adapter->num_tx_queues,
6246 					adapter->num_rx_queues);
6247 	if (err) {
6248 		netdev_err(netdev, "error setting real queue count\n");
6249 		return err;
6250 	}
6251 
6252 	return __igc_open(netdev, false);
6253 }
6254 
6255 /**
6256  * __igc_close - Disables a network interface
6257  * @netdev: network interface device structure
6258  * @suspending: boolean indicating the device is suspending
6259  *
6260  * Returns 0, this is not allowed to fail
6261  *
6262  * The close entry point is called when an interface is de-activated
6263  * by the OS.  The hardware is still under the driver's control, but
6264  * needs to be disabled.  A global MAC reset is issued to stop the
6265  * hardware, and all transmit and receive resources are freed.
6266  */
__igc_close(struct net_device * netdev,bool suspending)6267 static int __igc_close(struct net_device *netdev, bool suspending)
6268 {
6269 	struct igc_adapter *adapter = netdev_priv(netdev);
6270 	struct pci_dev *pdev = adapter->pdev;
6271 
6272 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6273 
6274 	if (!suspending)
6275 		pm_runtime_get_sync(&pdev->dev);
6276 
6277 	igc_down(adapter);
6278 
6279 	igc_release_hw_control(adapter);
6280 
6281 	igc_free_irq(adapter);
6282 
6283 	igc_free_all_tx_resources(adapter);
6284 	igc_free_all_rx_resources(adapter);
6285 
6286 	if (!suspending)
6287 		pm_runtime_put_sync(&pdev->dev);
6288 
6289 	return 0;
6290 }
6291 
igc_close(struct net_device * netdev)6292 int igc_close(struct net_device *netdev)
6293 {
6294 	if (netif_device_present(netdev) || netdev->dismantle)
6295 		return __igc_close(netdev, false);
6296 	return 0;
6297 }
6298 
6299 /**
6300  * igc_ioctl - Access the hwtstamp interface
6301  * @netdev: network interface device structure
6302  * @ifr: interface request data
6303  * @cmd: ioctl command
6304  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6305 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6306 {
6307 	switch (cmd) {
6308 	case SIOCGHWTSTAMP:
6309 		return igc_ptp_get_ts_config(netdev, ifr);
6310 	case SIOCSHWTSTAMP:
6311 		return igc_ptp_set_ts_config(netdev, ifr);
6312 	default:
6313 		return -EOPNOTSUPP;
6314 	}
6315 }
6316 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6317 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6318 				      bool enable)
6319 {
6320 	struct igc_ring *ring;
6321 
6322 	if (queue < 0 || queue >= adapter->num_tx_queues)
6323 		return -EINVAL;
6324 
6325 	ring = adapter->tx_ring[queue];
6326 	ring->launchtime_enable = enable;
6327 
6328 	return 0;
6329 }
6330 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6331 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6332 {
6333 	struct timespec64 b;
6334 
6335 	b = ktime_to_timespec64(base_time);
6336 
6337 	return timespec64_compare(now, &b) > 0;
6338 }
6339 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6340 static bool validate_schedule(struct igc_adapter *adapter,
6341 			      const struct tc_taprio_qopt_offload *qopt)
6342 {
6343 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6344 	struct igc_hw *hw = &adapter->hw;
6345 	struct timespec64 now;
6346 	size_t n;
6347 
6348 	if (qopt->cycle_time_extension)
6349 		return false;
6350 
6351 	igc_ptp_read(adapter, &now);
6352 
6353 	/* If we program the controller's BASET registers with a time
6354 	 * in the future, it will hold all the packets until that
6355 	 * time, causing a lot of TX Hangs, so to avoid that, we
6356 	 * reject schedules that would start in the future.
6357 	 * Note: Limitation above is no longer in i226.
6358 	 */
6359 	if (!is_base_time_past(qopt->base_time, &now) &&
6360 	    igc_is_device_id_i225(hw))
6361 		return false;
6362 
6363 	for (n = 0; n < qopt->num_entries; n++) {
6364 		const struct tc_taprio_sched_entry *e, *prev;
6365 		int i;
6366 
6367 		prev = n ? &qopt->entries[n - 1] : NULL;
6368 		e = &qopt->entries[n];
6369 
6370 		/* i225 only supports "global" frame preemption
6371 		 * settings.
6372 		 */
6373 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6374 			return false;
6375 
6376 		for (i = 0; i < adapter->num_tx_queues; i++)
6377 			if (e->gate_mask & BIT(i)) {
6378 				queue_uses[i]++;
6379 
6380 				/* There are limitations: A single queue cannot
6381 				 * be opened and closed multiple times per cycle
6382 				 * unless the gate stays open. Check for it.
6383 				 */
6384 				if (queue_uses[i] > 1 &&
6385 				    !(prev->gate_mask & BIT(i)))
6386 					return false;
6387 			}
6388 	}
6389 
6390 	return true;
6391 }
6392 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6393 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6394 				     struct tc_etf_qopt_offload *qopt)
6395 {
6396 	struct igc_hw *hw = &adapter->hw;
6397 	int err;
6398 
6399 	if (hw->mac.type != igc_i225)
6400 		return -EOPNOTSUPP;
6401 
6402 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6403 	if (err)
6404 		return err;
6405 
6406 	return igc_tsn_offload_apply(adapter);
6407 }
6408 
igc_qbv_clear_schedule(struct igc_adapter * adapter)6409 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6410 {
6411 	unsigned long flags;
6412 	int i;
6413 
6414 	adapter->base_time = 0;
6415 	adapter->cycle_time = NSEC_PER_SEC;
6416 	adapter->taprio_offload_enable = false;
6417 	adapter->qbv_config_change_errors = 0;
6418 	adapter->qbv_count = 0;
6419 
6420 	for (i = 0; i < adapter->num_tx_queues; i++) {
6421 		struct igc_ring *ring = adapter->tx_ring[i];
6422 
6423 		ring->start_time = 0;
6424 		ring->end_time = NSEC_PER_SEC;
6425 		ring->max_sdu = 0;
6426 	}
6427 
6428 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6429 
6430 	adapter->qbv_transition = false;
6431 
6432 	for (i = 0; i < adapter->num_tx_queues; i++) {
6433 		struct igc_ring *ring = adapter->tx_ring[i];
6434 
6435 		ring->oper_gate_closed = false;
6436 		ring->admin_gate_closed = false;
6437 	}
6438 
6439 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6440 
6441 	return 0;
6442 }
6443 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6444 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6445 {
6446 	igc_qbv_clear_schedule(adapter);
6447 
6448 	return 0;
6449 }
6450 
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6451 static void igc_taprio_stats(struct net_device *dev,
6452 			     struct tc_taprio_qopt_stats *stats)
6453 {
6454 	/* When Strict_End is enabled, the tx_overruns counter
6455 	 * will always be zero.
6456 	 */
6457 	stats->tx_overruns = 0;
6458 }
6459 
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6460 static void igc_taprio_queue_stats(struct net_device *dev,
6461 				   struct tc_taprio_qopt_queue_stats *queue_stats)
6462 {
6463 	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6464 
6465 	/* When Strict_End is enabled, the tx_overruns counter
6466 	 * will always be zero.
6467 	 */
6468 	stats->tx_overruns = 0;
6469 }
6470 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6471 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6472 				 struct tc_taprio_qopt_offload *qopt)
6473 {
6474 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6475 	struct igc_hw *hw = &adapter->hw;
6476 	u32 start_time = 0, end_time = 0;
6477 	struct timespec64 now;
6478 	unsigned long flags;
6479 	size_t n;
6480 	int i;
6481 
6482 	if (qopt->base_time < 0)
6483 		return -ERANGE;
6484 
6485 	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6486 		return -EALREADY;
6487 
6488 	if (!validate_schedule(adapter, qopt))
6489 		return -EINVAL;
6490 
6491 	/* preemptible isn't supported yet */
6492 	if (qopt->mqprio.preemptible_tcs)
6493 		return -EOPNOTSUPP;
6494 
6495 	igc_ptp_read(adapter, &now);
6496 
6497 	if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6498 	    is_base_time_past(qopt->base_time, &now))
6499 		adapter->qbv_config_change_errors++;
6500 
6501 	adapter->cycle_time = qopt->cycle_time;
6502 	adapter->base_time = qopt->base_time;
6503 	adapter->taprio_offload_enable = true;
6504 
6505 	for (n = 0; n < qopt->num_entries; n++) {
6506 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6507 
6508 		end_time += e->interval;
6509 
6510 		/* If any of the conditions below are true, we need to manually
6511 		 * control the end time of the cycle.
6512 		 * 1. Qbv users can specify a cycle time that is not equal
6513 		 * to the total GCL intervals. Hence, recalculation is
6514 		 * necessary here to exclude the time interval that
6515 		 * exceeds the cycle time.
6516 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6517 		 * once the end of the list is reached, it will switch
6518 		 * to the END_OF_CYCLE state and leave the gates in the
6519 		 * same state until the next cycle is started.
6520 		 */
6521 		if (end_time > adapter->cycle_time ||
6522 		    n + 1 == qopt->num_entries)
6523 			end_time = adapter->cycle_time;
6524 
6525 		for (i = 0; i < adapter->num_tx_queues; i++) {
6526 			struct igc_ring *ring = adapter->tx_ring[i];
6527 
6528 			if (!(e->gate_mask & BIT(i)))
6529 				continue;
6530 
6531 			/* Check whether a queue stays open for more than one
6532 			 * entry. If so, keep the start and advance the end
6533 			 * time.
6534 			 */
6535 			if (!queue_configured[i])
6536 				ring->start_time = start_time;
6537 			ring->end_time = end_time;
6538 
6539 			if (ring->start_time >= adapter->cycle_time)
6540 				queue_configured[i] = false;
6541 			else
6542 				queue_configured[i] = true;
6543 		}
6544 
6545 		start_time += e->interval;
6546 	}
6547 
6548 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6549 
6550 	/* Check whether a queue gets configured.
6551 	 * If not, set the start and end time to be end time.
6552 	 */
6553 	for (i = 0; i < adapter->num_tx_queues; i++) {
6554 		struct igc_ring *ring = adapter->tx_ring[i];
6555 
6556 		if (!is_base_time_past(qopt->base_time, &now)) {
6557 			ring->admin_gate_closed = false;
6558 		} else {
6559 			ring->oper_gate_closed = false;
6560 			ring->admin_gate_closed = false;
6561 		}
6562 
6563 		if (!queue_configured[i]) {
6564 			if (!is_base_time_past(qopt->base_time, &now))
6565 				ring->admin_gate_closed = true;
6566 			else
6567 				ring->oper_gate_closed = true;
6568 
6569 			ring->start_time = end_time;
6570 			ring->end_time = end_time;
6571 		}
6572 	}
6573 
6574 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6575 
6576 	for (i = 0; i < adapter->num_tx_queues; i++) {
6577 		struct igc_ring *ring = adapter->tx_ring[i];
6578 		struct net_device *dev = adapter->netdev;
6579 
6580 		if (qopt->max_sdu[i])
6581 			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6582 		else
6583 			ring->max_sdu = 0;
6584 	}
6585 
6586 	return 0;
6587 }
6588 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6589 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6590 					 struct tc_taprio_qopt_offload *qopt)
6591 {
6592 	struct igc_hw *hw = &adapter->hw;
6593 	int err;
6594 
6595 	if (hw->mac.type != igc_i225)
6596 		return -EOPNOTSUPP;
6597 
6598 	switch (qopt->cmd) {
6599 	case TAPRIO_CMD_REPLACE:
6600 		err = igc_save_qbv_schedule(adapter, qopt);
6601 		break;
6602 	case TAPRIO_CMD_DESTROY:
6603 		err = igc_tsn_clear_schedule(adapter);
6604 		break;
6605 	case TAPRIO_CMD_STATS:
6606 		igc_taprio_stats(adapter->netdev, &qopt->stats);
6607 		return 0;
6608 	case TAPRIO_CMD_QUEUE_STATS:
6609 		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6610 		return 0;
6611 	default:
6612 		return -EOPNOTSUPP;
6613 	}
6614 
6615 	if (err)
6616 		return err;
6617 
6618 	return igc_tsn_offload_apply(adapter);
6619 }
6620 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6621 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6622 			       bool enable, int idleslope, int sendslope,
6623 			       int hicredit, int locredit)
6624 {
6625 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6626 	struct net_device *netdev = adapter->netdev;
6627 	struct igc_ring *ring;
6628 	int i;
6629 
6630 	/* i225 has two sets of credit-based shaper logic.
6631 	 * Supporting it only on the top two priority queues
6632 	 */
6633 	if (queue < 0 || queue > 1)
6634 		return -EINVAL;
6635 
6636 	ring = adapter->tx_ring[queue];
6637 
6638 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6639 		if (adapter->tx_ring[i])
6640 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6641 
6642 	/* CBS should be enabled on the highest priority queue first in order
6643 	 * for the CBS algorithm to operate as intended.
6644 	 */
6645 	if (enable) {
6646 		if (queue == 1 && !cbs_status[0]) {
6647 			netdev_err(netdev,
6648 				   "Enabling CBS on queue1 before queue0\n");
6649 			return -EINVAL;
6650 		}
6651 	} else {
6652 		if (queue == 0 && cbs_status[1]) {
6653 			netdev_err(netdev,
6654 				   "Disabling CBS on queue0 before queue1\n");
6655 			return -EINVAL;
6656 		}
6657 	}
6658 
6659 	ring->cbs_enable = enable;
6660 	ring->idleslope = idleslope;
6661 	ring->sendslope = sendslope;
6662 	ring->hicredit = hicredit;
6663 	ring->locredit = locredit;
6664 
6665 	return 0;
6666 }
6667 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6668 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6669 			      struct tc_cbs_qopt_offload *qopt)
6670 {
6671 	struct igc_hw *hw = &adapter->hw;
6672 	int err;
6673 
6674 	if (hw->mac.type != igc_i225)
6675 		return -EOPNOTSUPP;
6676 
6677 	if (qopt->queue < 0 || qopt->queue > 1)
6678 		return -EINVAL;
6679 
6680 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6681 				  qopt->idleslope, qopt->sendslope,
6682 				  qopt->hicredit, qopt->locredit);
6683 	if (err)
6684 		return err;
6685 
6686 	return igc_tsn_offload_apply(adapter);
6687 }
6688 
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6689 static int igc_tc_query_caps(struct igc_adapter *adapter,
6690 			     struct tc_query_caps_base *base)
6691 {
6692 	struct igc_hw *hw = &adapter->hw;
6693 
6694 	switch (base->type) {
6695 	case TC_SETUP_QDISC_MQPRIO: {
6696 		struct tc_mqprio_caps *caps = base->caps;
6697 
6698 		caps->validate_queue_counts = true;
6699 
6700 		return 0;
6701 	}
6702 	case TC_SETUP_QDISC_TAPRIO: {
6703 		struct tc_taprio_caps *caps = base->caps;
6704 
6705 		caps->broken_mqprio = true;
6706 
6707 		if (hw->mac.type == igc_i225) {
6708 			caps->supports_queue_max_sdu = true;
6709 			caps->gate_mask_per_txq = true;
6710 		}
6711 
6712 		return 0;
6713 	}
6714 	default:
6715 		return -EOPNOTSUPP;
6716 	}
6717 }
6718 
igc_save_mqprio_params(struct igc_adapter * adapter,u8 num_tc,u16 * offset)6719 static void igc_save_mqprio_params(struct igc_adapter *adapter, u8 num_tc,
6720 				   u16 *offset)
6721 {
6722 	int i;
6723 
6724 	adapter->strict_priority_enable = true;
6725 	adapter->num_tc = num_tc;
6726 
6727 	for (i = 0; i < num_tc; i++)
6728 		adapter->queue_per_tc[i] = offset[i];
6729 }
6730 
igc_tsn_enable_mqprio(struct igc_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio)6731 static int igc_tsn_enable_mqprio(struct igc_adapter *adapter,
6732 				 struct tc_mqprio_qopt_offload *mqprio)
6733 {
6734 	struct igc_hw *hw = &adapter->hw;
6735 	int err, i;
6736 
6737 	if (hw->mac.type != igc_i225)
6738 		return -EOPNOTSUPP;
6739 
6740 	if (!mqprio->qopt.num_tc) {
6741 		adapter->strict_priority_enable = false;
6742 		netdev_reset_tc(adapter->netdev);
6743 		goto apply;
6744 	}
6745 
6746 	/* There are as many TCs as Tx queues. */
6747 	if (mqprio->qopt.num_tc != adapter->num_tx_queues) {
6748 		NL_SET_ERR_MSG_FMT_MOD(mqprio->extack,
6749 				       "Only %d traffic classes supported",
6750 				       adapter->num_tx_queues);
6751 		return -EOPNOTSUPP;
6752 	}
6753 
6754 	/* Only one queue per TC is supported. */
6755 	for (i = 0; i < mqprio->qopt.num_tc; i++) {
6756 		if (mqprio->qopt.count[i] != 1) {
6757 			NL_SET_ERR_MSG_MOD(mqprio->extack,
6758 					   "Only one queue per TC supported");
6759 			return -EOPNOTSUPP;
6760 		}
6761 	}
6762 
6763 	/* Preemption is not supported yet. */
6764 	if (mqprio->preemptible_tcs) {
6765 		NL_SET_ERR_MSG_MOD(mqprio->extack,
6766 				   "Preemption is not supported yet");
6767 		return -EOPNOTSUPP;
6768 	}
6769 
6770 	igc_save_mqprio_params(adapter, mqprio->qopt.num_tc,
6771 			       mqprio->qopt.offset);
6772 
6773 	err = netdev_set_num_tc(adapter->netdev, adapter->num_tc);
6774 	if (err)
6775 		return err;
6776 
6777 	for (i = 0; i < adapter->num_tc; i++) {
6778 		err = netdev_set_tc_queue(adapter->netdev, i, 1,
6779 					  adapter->queue_per_tc[i]);
6780 		if (err)
6781 			return err;
6782 	}
6783 
6784 	/* In case the card is configured with less than four queues. */
6785 	for (; i < IGC_MAX_TX_QUEUES; i++)
6786 		adapter->queue_per_tc[i] = i;
6787 
6788 	mqprio->qopt.hw = TC_MQPRIO_HW_OFFLOAD_TCS;
6789 
6790 apply:
6791 	return igc_tsn_offload_apply(adapter);
6792 }
6793 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6794 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6795 			void *type_data)
6796 {
6797 	struct igc_adapter *adapter = netdev_priv(dev);
6798 
6799 	adapter->tc_setup_type = type;
6800 
6801 	switch (type) {
6802 	case TC_QUERY_CAPS:
6803 		return igc_tc_query_caps(adapter, type_data);
6804 	case TC_SETUP_QDISC_TAPRIO:
6805 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6806 
6807 	case TC_SETUP_QDISC_ETF:
6808 		return igc_tsn_enable_launchtime(adapter, type_data);
6809 
6810 	case TC_SETUP_QDISC_CBS:
6811 		return igc_tsn_enable_cbs(adapter, type_data);
6812 
6813 	case TC_SETUP_QDISC_MQPRIO:
6814 		return igc_tsn_enable_mqprio(adapter, type_data);
6815 
6816 	default:
6817 		return -EOPNOTSUPP;
6818 	}
6819 }
6820 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6821 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6822 {
6823 	struct igc_adapter *adapter = netdev_priv(dev);
6824 
6825 	switch (bpf->command) {
6826 	case XDP_SETUP_PROG:
6827 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6828 	case XDP_SETUP_XSK_POOL:
6829 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6830 					  bpf->xsk.queue_id);
6831 	default:
6832 		return -EOPNOTSUPP;
6833 	}
6834 }
6835 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6836 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6837 			struct xdp_frame **frames, u32 flags)
6838 {
6839 	struct igc_adapter *adapter = netdev_priv(dev);
6840 	int cpu = smp_processor_id();
6841 	struct netdev_queue *nq;
6842 	struct igc_ring *ring;
6843 	int i, nxmit;
6844 
6845 	if (unlikely(!netif_carrier_ok(dev)))
6846 		return -ENETDOWN;
6847 
6848 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6849 		return -EINVAL;
6850 
6851 	ring = igc_get_tx_ring(adapter, cpu);
6852 	nq = txring_txq(ring);
6853 
6854 	__netif_tx_lock(nq, cpu);
6855 
6856 	/* Avoid transmit queue timeout since we share it with the slow path */
6857 	txq_trans_cond_update(nq);
6858 
6859 	nxmit = 0;
6860 	for (i = 0; i < num_frames; i++) {
6861 		int err;
6862 		struct xdp_frame *xdpf = frames[i];
6863 
6864 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6865 		if (err)
6866 			break;
6867 		nxmit++;
6868 	}
6869 
6870 	if (flags & XDP_XMIT_FLUSH)
6871 		igc_flush_tx_descriptors(ring);
6872 
6873 	__netif_tx_unlock(nq);
6874 
6875 	return nxmit;
6876 }
6877 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6878 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6879 					struct igc_q_vector *q_vector)
6880 {
6881 	struct igc_hw *hw = &adapter->hw;
6882 	u32 eics = 0;
6883 
6884 	eics |= q_vector->eims_value;
6885 	wr32(IGC_EICS, eics);
6886 }
6887 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6888 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6889 {
6890 	struct igc_adapter *adapter = netdev_priv(dev);
6891 	struct igc_q_vector *q_vector;
6892 	struct igc_ring *ring;
6893 
6894 	if (test_bit(__IGC_DOWN, &adapter->state))
6895 		return -ENETDOWN;
6896 
6897 	if (!igc_xdp_is_enabled(adapter))
6898 		return -ENXIO;
6899 
6900 	if (queue_id >= adapter->num_rx_queues)
6901 		return -EINVAL;
6902 
6903 	ring = adapter->rx_ring[queue_id];
6904 
6905 	if (!ring->xsk_pool)
6906 		return -ENXIO;
6907 
6908 	q_vector = adapter->q_vector[queue_id];
6909 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6910 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6911 
6912 	return 0;
6913 }
6914 
igc_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)6915 static ktime_t igc_get_tstamp(struct net_device *dev,
6916 			      const struct skb_shared_hwtstamps *hwtstamps,
6917 			      bool cycles)
6918 {
6919 	struct igc_adapter *adapter = netdev_priv(dev);
6920 	struct igc_inline_rx_tstamps *tstamp;
6921 	ktime_t timestamp;
6922 
6923 	tstamp = hwtstamps->netdev_data;
6924 
6925 	if (cycles)
6926 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6927 	else
6928 		timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6929 
6930 	return timestamp;
6931 }
6932 
6933 static const struct net_device_ops igc_netdev_ops = {
6934 	.ndo_open		= igc_open,
6935 	.ndo_stop		= igc_close,
6936 	.ndo_start_xmit		= igc_xmit_frame,
6937 	.ndo_set_rx_mode	= igc_set_rx_mode,
6938 	.ndo_set_mac_address	= igc_set_mac,
6939 	.ndo_change_mtu		= igc_change_mtu,
6940 	.ndo_tx_timeout		= igc_tx_timeout,
6941 	.ndo_get_stats64	= igc_get_stats64,
6942 	.ndo_fix_features	= igc_fix_features,
6943 	.ndo_set_features	= igc_set_features,
6944 	.ndo_features_check	= igc_features_check,
6945 	.ndo_eth_ioctl		= igc_ioctl,
6946 	.ndo_setup_tc		= igc_setup_tc,
6947 	.ndo_bpf		= igc_bpf,
6948 	.ndo_xdp_xmit		= igc_xdp_xmit,
6949 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6950 	.ndo_get_tstamp		= igc_get_tstamp,
6951 };
6952 
igc_rd32(struct igc_hw * hw,u32 reg)6953 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6954 {
6955 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6956 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6957 	u32 value = 0;
6958 
6959 	if (IGC_REMOVED(hw_addr))
6960 		return ~value;
6961 
6962 	value = readl(&hw_addr[reg]);
6963 
6964 	/* reads should not return all F's */
6965 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6966 		struct net_device *netdev = igc->netdev;
6967 
6968 		hw->hw_addr = NULL;
6969 		netif_device_detach(netdev);
6970 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6971 		WARN(pci_device_is_present(igc->pdev),
6972 		     "igc: Failed to read reg 0x%x!\n", reg);
6973 	}
6974 
6975 	return value;
6976 }
6977 
6978 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6979 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6980 	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6981 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6982 	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6983 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6984 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6985 	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6986 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6987 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6988 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6989 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6990 	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6991 	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6992 	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6993 	[13] = XDP_RSS_TYPE_NONE,
6994 	[14] = XDP_RSS_TYPE_NONE,
6995 	[15] = XDP_RSS_TYPE_NONE,
6996 };
6997 
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6998 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6999 			   enum xdp_rss_hash_type *rss_type)
7000 {
7001 	const struct igc_xdp_buff *ctx = (void *)_ctx;
7002 
7003 	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
7004 		return -ENODATA;
7005 
7006 	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
7007 	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
7008 
7009 	return 0;
7010 }
7011 
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)7012 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7013 {
7014 	const struct igc_xdp_buff *ctx = (void *)_ctx;
7015 	struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
7016 	struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
7017 
7018 	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
7019 		*timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
7020 
7021 		return 0;
7022 	}
7023 
7024 	return -ENODATA;
7025 }
7026 
7027 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
7028 	.xmo_rx_hash			= igc_xdp_rx_hash,
7029 	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
7030 };
7031 
igc_qbv_scheduling_timer(struct hrtimer * timer)7032 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
7033 {
7034 	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
7035 						   hrtimer);
7036 	unsigned long flags;
7037 	unsigned int i;
7038 
7039 	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
7040 
7041 	adapter->qbv_transition = true;
7042 	for (i = 0; i < adapter->num_tx_queues; i++) {
7043 		struct igc_ring *tx_ring = adapter->tx_ring[i];
7044 
7045 		if (tx_ring->admin_gate_closed) {
7046 			tx_ring->admin_gate_closed = false;
7047 			tx_ring->oper_gate_closed = true;
7048 		} else {
7049 			tx_ring->oper_gate_closed = false;
7050 		}
7051 	}
7052 	adapter->qbv_transition = false;
7053 
7054 	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
7055 
7056 	return HRTIMER_NORESTART;
7057 }
7058 
7059 /**
7060  * igc_probe - Device Initialization Routine
7061  * @pdev: PCI device information struct
7062  * @ent: entry in igc_pci_tbl
7063  *
7064  * Returns 0 on success, negative on failure
7065  *
7066  * igc_probe initializes an adapter identified by a pci_dev structure.
7067  * The OS initialization, configuring the adapter private structure,
7068  * and a hardware reset occur.
7069  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7070 static int igc_probe(struct pci_dev *pdev,
7071 		     const struct pci_device_id *ent)
7072 {
7073 	struct igc_adapter *adapter;
7074 	struct net_device *netdev;
7075 	struct igc_hw *hw;
7076 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
7077 	int err;
7078 
7079 	err = pci_enable_device_mem(pdev);
7080 	if (err)
7081 		return err;
7082 
7083 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7084 	if (err) {
7085 		dev_err(&pdev->dev,
7086 			"No usable DMA configuration, aborting\n");
7087 		goto err_dma;
7088 	}
7089 
7090 	err = pci_request_mem_regions(pdev, igc_driver_name);
7091 	if (err)
7092 		goto err_pci_reg;
7093 
7094 	err = pci_enable_ptm(pdev, NULL);
7095 	if (err < 0)
7096 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
7097 
7098 	pci_set_master(pdev);
7099 
7100 	err = -ENOMEM;
7101 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
7102 				   IGC_MAX_TX_QUEUES);
7103 
7104 	if (!netdev)
7105 		goto err_alloc_etherdev;
7106 
7107 	SET_NETDEV_DEV(netdev, &pdev->dev);
7108 
7109 	pci_set_drvdata(pdev, netdev);
7110 	adapter = netdev_priv(netdev);
7111 	adapter->netdev = netdev;
7112 	adapter->pdev = pdev;
7113 	hw = &adapter->hw;
7114 	hw->back = adapter;
7115 	adapter->port_num = hw->bus.func;
7116 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7117 
7118 	err = pci_save_state(pdev);
7119 	if (err)
7120 		goto err_ioremap;
7121 
7122 	err = -EIO;
7123 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
7124 				   pci_resource_len(pdev, 0));
7125 	if (!adapter->io_addr)
7126 		goto err_ioremap;
7127 
7128 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
7129 	hw->hw_addr = adapter->io_addr;
7130 
7131 	netdev->netdev_ops = &igc_netdev_ops;
7132 	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
7133 	netdev->xsk_tx_metadata_ops = &igc_xsk_tx_metadata_ops;
7134 	igc_ethtool_set_ops(netdev);
7135 	netdev->watchdog_timeo = 5 * HZ;
7136 
7137 	netdev->mem_start = pci_resource_start(pdev, 0);
7138 	netdev->mem_end = pci_resource_end(pdev, 0);
7139 
7140 	/* PCI config space info */
7141 	hw->vendor_id = pdev->vendor;
7142 	hw->device_id = pdev->device;
7143 	hw->revision_id = pdev->revision;
7144 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
7145 	hw->subsystem_device_id = pdev->subsystem_device;
7146 
7147 	/* Copy the default MAC and PHY function pointers */
7148 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7149 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7150 
7151 	/* Initialize skew-specific constants */
7152 	err = ei->get_invariants(hw);
7153 	if (err)
7154 		goto err_sw_init;
7155 
7156 	/* Add supported features to the features list*/
7157 	netdev->features |= NETIF_F_SG;
7158 	netdev->features |= NETIF_F_TSO;
7159 	netdev->features |= NETIF_F_TSO6;
7160 	netdev->features |= NETIF_F_TSO_ECN;
7161 	netdev->features |= NETIF_F_RXHASH;
7162 	netdev->features |= NETIF_F_RXCSUM;
7163 	netdev->features |= NETIF_F_HW_CSUM;
7164 	netdev->features |= NETIF_F_SCTP_CRC;
7165 	netdev->features |= NETIF_F_HW_TC;
7166 
7167 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
7168 				  NETIF_F_GSO_GRE_CSUM | \
7169 				  NETIF_F_GSO_IPXIP4 | \
7170 				  NETIF_F_GSO_IPXIP6 | \
7171 				  NETIF_F_GSO_UDP_TUNNEL | \
7172 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
7173 
7174 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
7175 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
7176 
7177 	/* setup the private structure */
7178 	err = igc_sw_init(adapter);
7179 	if (err)
7180 		goto err_sw_init;
7181 
7182 	/* copy netdev features into list of user selectable features */
7183 	netdev->hw_features |= NETIF_F_NTUPLE;
7184 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
7185 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
7186 	netdev->hw_features |= netdev->features;
7187 
7188 	netdev->features |= NETIF_F_HIGHDMA;
7189 
7190 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
7191 	netdev->mpls_features |= NETIF_F_HW_CSUM;
7192 	netdev->hw_enc_features |= netdev->vlan_features;
7193 
7194 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7195 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
7196 
7197 	/* enable HW vlan tag insertion/stripping by default */
7198 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7199 
7200 	/* MTU range: 68 - 9216 */
7201 	netdev->min_mtu = ETH_MIN_MTU;
7202 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
7203 
7204 	/* before reading the NVM, reset the controller to put the device in a
7205 	 * known good starting state
7206 	 */
7207 	hw->mac.ops.reset_hw(hw);
7208 
7209 	if (igc_get_flash_presence_i225(hw)) {
7210 		if (hw->nvm.ops.validate(hw) < 0) {
7211 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7212 			err = -EIO;
7213 			goto err_eeprom;
7214 		}
7215 	}
7216 
7217 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
7218 		/* copy the MAC address out of the NVM */
7219 		if (hw->mac.ops.read_mac_addr(hw))
7220 			dev_err(&pdev->dev, "NVM Read Error\n");
7221 	}
7222 
7223 	eth_hw_addr_set(netdev, hw->mac.addr);
7224 
7225 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7226 		dev_err(&pdev->dev, "Invalid MAC Address\n");
7227 		err = -EIO;
7228 		goto err_eeprom;
7229 	}
7230 
7231 	/* configure RXPBSIZE and TXPBSIZE */
7232 	wr32(IGC_RXPBS, IGC_RXPBSIZE_EXP_BMC_DEFAULT);
7233 	wr32(IGC_TXPBS, IGC_TXPBSIZE_DEFAULT);
7234 
7235 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
7236 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
7237 
7238 	INIT_WORK(&adapter->reset_task, igc_reset_task);
7239 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
7240 
7241 	hrtimer_setup(&adapter->hrtimer, &igc_qbv_scheduling_timer, CLOCK_MONOTONIC,
7242 		      HRTIMER_MODE_REL);
7243 
7244 	/* Initialize link properties that are user-changeable */
7245 	adapter->fc_autoneg = true;
7246 	hw->phy.autoneg_advertised = 0xaf;
7247 
7248 	hw->fc.requested_mode = igc_fc_default;
7249 	hw->fc.current_mode = igc_fc_default;
7250 
7251 	/* By default, support wake on port A */
7252 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
7253 
7254 	/* initialize the wol settings based on the eeprom settings */
7255 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
7256 		adapter->wol |= IGC_WUFC_MAG;
7257 
7258 	device_set_wakeup_enable(&adapter->pdev->dev,
7259 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
7260 
7261 	igc_ptp_init(adapter);
7262 
7263 	igc_tsn_clear_schedule(adapter);
7264 
7265 	igc_fpe_init(adapter);
7266 
7267 	/* reset the hardware with the new settings */
7268 	igc_reset(adapter);
7269 
7270 	/* let the f/w know that the h/w is now under the control of the
7271 	 * driver.
7272 	 */
7273 	igc_get_hw_control(adapter);
7274 
7275 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7276 	err = register_netdev(netdev);
7277 	if (err)
7278 		goto err_register;
7279 
7280 	 /* carrier off reporting is important to ethtool even BEFORE open */
7281 	netif_carrier_off(netdev);
7282 
7283 	/* Check if Media Autosense is enabled */
7284 	adapter->ei = *ei;
7285 
7286 	/* print pcie link status and MAC address */
7287 	pcie_print_link_status(pdev);
7288 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
7289 
7290 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7291 	/* Disable EEE for internal PHY devices */
7292 	hw->dev_spec._base.eee_enable = false;
7293 	adapter->flags &= ~IGC_FLAG_EEE;
7294 	igc_set_eee_i225(hw, false, false, false);
7295 
7296 	pm_runtime_put_noidle(&pdev->dev);
7297 
7298 	if (IS_ENABLED(CONFIG_IGC_LEDS)) {
7299 		err = igc_led_setup(adapter);
7300 		if (err)
7301 			goto err_register;
7302 	}
7303 
7304 	return 0;
7305 
7306 err_register:
7307 	igc_release_hw_control(adapter);
7308 	igc_ptp_stop(adapter);
7309 err_eeprom:
7310 	if (!igc_check_reset_block(hw))
7311 		igc_reset_phy(hw);
7312 err_sw_init:
7313 	igc_clear_interrupt_scheme(adapter);
7314 	iounmap(adapter->io_addr);
7315 err_ioremap:
7316 	free_netdev(netdev);
7317 err_alloc_etherdev:
7318 	pci_release_mem_regions(pdev);
7319 err_pci_reg:
7320 err_dma:
7321 	pci_disable_device(pdev);
7322 	return err;
7323 }
7324 
7325 /**
7326  * igc_remove - Device Removal Routine
7327  * @pdev: PCI device information struct
7328  *
7329  * igc_remove is called by the PCI subsystem to alert the driver
7330  * that it should release a PCI device.  This could be caused by a
7331  * Hot-Plug event, or because the driver is going to be removed from
7332  * memory.
7333  */
igc_remove(struct pci_dev * pdev)7334 static void igc_remove(struct pci_dev *pdev)
7335 {
7336 	struct net_device *netdev = pci_get_drvdata(pdev);
7337 	struct igc_adapter *adapter = netdev_priv(netdev);
7338 
7339 	pm_runtime_get_noresume(&pdev->dev);
7340 
7341 	igc_flush_nfc_rules(adapter);
7342 
7343 	igc_ptp_stop(adapter);
7344 
7345 	pci_disable_ptm(pdev);
7346 	pci_clear_master(pdev);
7347 
7348 	set_bit(__IGC_DOWN, &adapter->state);
7349 
7350 	timer_delete_sync(&adapter->watchdog_timer);
7351 	timer_delete_sync(&adapter->phy_info_timer);
7352 
7353 	cancel_work_sync(&adapter->reset_task);
7354 	cancel_work_sync(&adapter->watchdog_task);
7355 	hrtimer_cancel(&adapter->hrtimer);
7356 
7357 	if (IS_ENABLED(CONFIG_IGC_LEDS))
7358 		igc_led_free(adapter);
7359 
7360 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7361 	 * would have already happened in close and is redundant.
7362 	 */
7363 	igc_release_hw_control(adapter);
7364 	unregister_netdev(netdev);
7365 
7366 	igc_clear_interrupt_scheme(adapter);
7367 	pci_iounmap(pdev, adapter->io_addr);
7368 	pci_release_mem_regions(pdev);
7369 
7370 	free_netdev(netdev);
7371 
7372 	pci_disable_device(pdev);
7373 }
7374 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7375 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7376 			  bool runtime)
7377 {
7378 	struct net_device *netdev = pci_get_drvdata(pdev);
7379 	struct igc_adapter *adapter = netdev_priv(netdev);
7380 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7381 	struct igc_hw *hw = &adapter->hw;
7382 	u32 ctrl, rctl, status;
7383 	bool wake;
7384 
7385 	rtnl_lock();
7386 	netif_device_detach(netdev);
7387 
7388 	if (netif_running(netdev))
7389 		__igc_close(netdev, true);
7390 
7391 	igc_ptp_suspend(adapter);
7392 
7393 	igc_clear_interrupt_scheme(adapter);
7394 	rtnl_unlock();
7395 
7396 	status = rd32(IGC_STATUS);
7397 	if (status & IGC_STATUS_LU)
7398 		wufc &= ~IGC_WUFC_LNKC;
7399 
7400 	if (wufc) {
7401 		igc_setup_rctl(adapter);
7402 		igc_set_rx_mode(netdev);
7403 
7404 		/* turn on all-multi mode if wake on multicast is enabled */
7405 		if (wufc & IGC_WUFC_MC) {
7406 			rctl = rd32(IGC_RCTL);
7407 			rctl |= IGC_RCTL_MPE;
7408 			wr32(IGC_RCTL, rctl);
7409 		}
7410 
7411 		ctrl = rd32(IGC_CTRL);
7412 		ctrl |= IGC_CTRL_ADVD3WUC;
7413 		wr32(IGC_CTRL, ctrl);
7414 
7415 		/* Allow time for pending master requests to run */
7416 		igc_disable_pcie_master(hw);
7417 
7418 		wr32(IGC_WUC, IGC_WUC_PME_EN);
7419 		wr32(IGC_WUFC, wufc);
7420 	} else {
7421 		wr32(IGC_WUC, 0);
7422 		wr32(IGC_WUFC, 0);
7423 	}
7424 
7425 	wake = wufc || adapter->en_mng_pt;
7426 	if (!wake)
7427 		igc_power_down_phy_copper_base(&adapter->hw);
7428 	else
7429 		igc_power_up_link(adapter);
7430 
7431 	if (enable_wake)
7432 		*enable_wake = wake;
7433 
7434 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7435 	 * would have already happened in close and is redundant.
7436 	 */
7437 	igc_release_hw_control(adapter);
7438 
7439 	pci_disable_device(pdev);
7440 
7441 	return 0;
7442 }
7443 
igc_runtime_suspend(struct device * dev)7444 static int igc_runtime_suspend(struct device *dev)
7445 {
7446 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7447 }
7448 
igc_deliver_wake_packet(struct net_device * netdev)7449 static void igc_deliver_wake_packet(struct net_device *netdev)
7450 {
7451 	struct igc_adapter *adapter = netdev_priv(netdev);
7452 	struct igc_hw *hw = &adapter->hw;
7453 	struct sk_buff *skb;
7454 	u32 wupl;
7455 
7456 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7457 
7458 	/* WUPM stores only the first 128 bytes of the wake packet.
7459 	 * Read the packet only if we have the whole thing.
7460 	 */
7461 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7462 		return;
7463 
7464 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7465 	if (!skb)
7466 		return;
7467 
7468 	skb_put(skb, wupl);
7469 
7470 	/* Ensure reads are 32-bit aligned */
7471 	wupl = roundup(wupl, 4);
7472 
7473 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7474 
7475 	skb->protocol = eth_type_trans(skb, netdev);
7476 	netif_rx(skb);
7477 }
7478 
__igc_resume(struct device * dev,bool rpm)7479 static int __igc_resume(struct device *dev, bool rpm)
7480 {
7481 	struct pci_dev *pdev = to_pci_dev(dev);
7482 	struct net_device *netdev = pci_get_drvdata(pdev);
7483 	struct igc_adapter *adapter = netdev_priv(netdev);
7484 	struct igc_hw *hw = &adapter->hw;
7485 	u32 err, val;
7486 
7487 	pci_set_power_state(pdev, PCI_D0);
7488 	pci_restore_state(pdev);
7489 	pci_save_state(pdev);
7490 
7491 	if (!pci_device_is_present(pdev))
7492 		return -ENODEV;
7493 	err = pci_enable_device_mem(pdev);
7494 	if (err) {
7495 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7496 		return err;
7497 	}
7498 	pci_set_master(pdev);
7499 
7500 	pci_enable_wake(pdev, PCI_D3hot, 0);
7501 	pci_enable_wake(pdev, PCI_D3cold, 0);
7502 
7503 	if (igc_init_interrupt_scheme(adapter, true)) {
7504 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7505 		return -ENOMEM;
7506 	}
7507 
7508 	igc_reset(adapter);
7509 
7510 	/* let the f/w know that the h/w is now under the control of the
7511 	 * driver.
7512 	 */
7513 	igc_get_hw_control(adapter);
7514 
7515 	val = rd32(IGC_WUS);
7516 	if (val & WAKE_PKT_WUS)
7517 		igc_deliver_wake_packet(netdev);
7518 
7519 	wr32(IGC_WUS, ~0);
7520 
7521 	if (netif_running(netdev)) {
7522 		if (!rpm)
7523 			rtnl_lock();
7524 		err = __igc_open(netdev, true);
7525 		if (!rpm)
7526 			rtnl_unlock();
7527 		if (!err)
7528 			netif_device_attach(netdev);
7529 	}
7530 
7531 	return err;
7532 }
7533 
igc_resume(struct device * dev)7534 static int igc_resume(struct device *dev)
7535 {
7536 	return __igc_resume(dev, false);
7537 }
7538 
igc_runtime_resume(struct device * dev)7539 static int igc_runtime_resume(struct device *dev)
7540 {
7541 	return __igc_resume(dev, true);
7542 }
7543 
igc_suspend(struct device * dev)7544 static int igc_suspend(struct device *dev)
7545 {
7546 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7547 }
7548 
igc_runtime_idle(struct device * dev)7549 static int __maybe_unused igc_runtime_idle(struct device *dev)
7550 {
7551 	struct net_device *netdev = dev_get_drvdata(dev);
7552 	struct igc_adapter *adapter = netdev_priv(netdev);
7553 
7554 	if (!igc_has_link(adapter))
7555 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7556 
7557 	return -EBUSY;
7558 }
7559 
igc_shutdown(struct pci_dev * pdev)7560 static void igc_shutdown(struct pci_dev *pdev)
7561 {
7562 	bool wake;
7563 
7564 	__igc_shutdown(pdev, &wake, 0);
7565 
7566 	if (system_state == SYSTEM_POWER_OFF) {
7567 		pci_wake_from_d3(pdev, wake);
7568 		pci_set_power_state(pdev, PCI_D3hot);
7569 	}
7570 }
7571 
7572 /**
7573  *  igc_io_error_detected - called when PCI error is detected
7574  *  @pdev: Pointer to PCI device
7575  *  @state: The current PCI connection state
7576  *
7577  *  This function is called after a PCI bus error affecting
7578  *  this device has been detected.
7579  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7580 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7581 					      pci_channel_state_t state)
7582 {
7583 	struct net_device *netdev = pci_get_drvdata(pdev);
7584 	struct igc_adapter *adapter = netdev_priv(netdev);
7585 
7586 	rtnl_lock();
7587 	netif_device_detach(netdev);
7588 
7589 	if (state == pci_channel_io_perm_failure) {
7590 		rtnl_unlock();
7591 		return PCI_ERS_RESULT_DISCONNECT;
7592 	}
7593 
7594 	if (netif_running(netdev))
7595 		igc_down(adapter);
7596 	pci_disable_device(pdev);
7597 	rtnl_unlock();
7598 
7599 	/* Request a slot reset. */
7600 	return PCI_ERS_RESULT_NEED_RESET;
7601 }
7602 
7603 /**
7604  *  igc_io_slot_reset - called after the PCI bus has been reset.
7605  *  @pdev: Pointer to PCI device
7606  *
7607  *  Restart the card from scratch, as if from a cold-boot. Implementation
7608  *  resembles the first-half of the __igc_resume routine.
7609  **/
igc_io_slot_reset(struct pci_dev * pdev)7610 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7611 {
7612 	struct net_device *netdev = pci_get_drvdata(pdev);
7613 	struct igc_adapter *adapter = netdev_priv(netdev);
7614 	struct igc_hw *hw = &adapter->hw;
7615 	pci_ers_result_t result;
7616 
7617 	if (pci_enable_device_mem(pdev)) {
7618 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7619 		result = PCI_ERS_RESULT_DISCONNECT;
7620 	} else {
7621 		pci_set_master(pdev);
7622 		pci_restore_state(pdev);
7623 		pci_save_state(pdev);
7624 
7625 		pci_enable_wake(pdev, PCI_D3hot, 0);
7626 		pci_enable_wake(pdev, PCI_D3cold, 0);
7627 
7628 		/* In case of PCI error, adapter loses its HW address
7629 		 * so we should re-assign it here.
7630 		 */
7631 		hw->hw_addr = adapter->io_addr;
7632 
7633 		igc_reset(adapter);
7634 		wr32(IGC_WUS, ~0);
7635 		result = PCI_ERS_RESULT_RECOVERED;
7636 	}
7637 
7638 	return result;
7639 }
7640 
7641 /**
7642  *  igc_io_resume - called when traffic can start to flow again.
7643  *  @pdev: Pointer to PCI device
7644  *
7645  *  This callback is called when the error recovery driver tells us that
7646  *  its OK to resume normal operation. Implementation resembles the
7647  *  second-half of the __igc_resume routine.
7648  */
igc_io_resume(struct pci_dev * pdev)7649 static void igc_io_resume(struct pci_dev *pdev)
7650 {
7651 	struct net_device *netdev = pci_get_drvdata(pdev);
7652 	struct igc_adapter *adapter = netdev_priv(netdev);
7653 
7654 	rtnl_lock();
7655 	if (netif_running(netdev)) {
7656 		if (igc_open(netdev)) {
7657 			rtnl_unlock();
7658 			netdev_err(netdev, "igc_open failed after reset\n");
7659 			return;
7660 		}
7661 	}
7662 
7663 	netif_device_attach(netdev);
7664 
7665 	/* let the f/w know that the h/w is now under the control of the
7666 	 * driver.
7667 	 */
7668 	igc_get_hw_control(adapter);
7669 	rtnl_unlock();
7670 }
7671 
7672 static const struct pci_error_handlers igc_err_handler = {
7673 	.error_detected = igc_io_error_detected,
7674 	.slot_reset = igc_io_slot_reset,
7675 	.resume = igc_io_resume,
7676 };
7677 
7678 static _DEFINE_DEV_PM_OPS(igc_pm_ops, igc_suspend, igc_resume,
7679 			  igc_runtime_suspend, igc_runtime_resume,
7680 			  igc_runtime_idle);
7681 
7682 static struct pci_driver igc_driver = {
7683 	.name     = igc_driver_name,
7684 	.id_table = igc_pci_tbl,
7685 	.probe    = igc_probe,
7686 	.remove   = igc_remove,
7687 	.driver.pm = pm_ptr(&igc_pm_ops),
7688 	.shutdown = igc_shutdown,
7689 	.err_handler = &igc_err_handler,
7690 };
7691 
7692 /**
7693  * igc_reinit_queues - return error
7694  * @adapter: pointer to adapter structure
7695  */
igc_reinit_queues(struct igc_adapter * adapter)7696 int igc_reinit_queues(struct igc_adapter *adapter)
7697 {
7698 	struct net_device *netdev = adapter->netdev;
7699 	int err = 0;
7700 
7701 	if (netif_running(netdev))
7702 		igc_close(netdev);
7703 
7704 	igc_reset_interrupt_capability(adapter);
7705 
7706 	if (igc_init_interrupt_scheme(adapter, true)) {
7707 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7708 		return -ENOMEM;
7709 	}
7710 
7711 	if (netif_running(netdev))
7712 		err = igc_open(netdev);
7713 
7714 	return err;
7715 }
7716 
7717 /**
7718  * igc_get_hw_dev - return device
7719  * @hw: pointer to hardware structure
7720  *
7721  * used by hardware layer to print debugging information
7722  */
igc_get_hw_dev(struct igc_hw * hw)7723 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7724 {
7725 	struct igc_adapter *adapter = hw->back;
7726 
7727 	return adapter->netdev;
7728 }
7729 
igc_disable_rx_ring_hw(struct igc_ring * ring)7730 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7731 {
7732 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7733 	u8 idx = ring->reg_idx;
7734 	u32 rxdctl;
7735 
7736 	rxdctl = rd32(IGC_RXDCTL(idx));
7737 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7738 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7739 	wr32(IGC_RXDCTL(idx), rxdctl);
7740 }
7741 
igc_disable_rx_ring(struct igc_ring * ring)7742 void igc_disable_rx_ring(struct igc_ring *ring)
7743 {
7744 	igc_disable_rx_ring_hw(ring);
7745 	igc_clean_rx_ring(ring);
7746 }
7747 
igc_enable_rx_ring(struct igc_ring * ring)7748 void igc_enable_rx_ring(struct igc_ring *ring)
7749 {
7750 	struct igc_adapter *adapter = ring->q_vector->adapter;
7751 
7752 	igc_configure_rx_ring(adapter, ring);
7753 
7754 	if (ring->xsk_pool)
7755 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7756 	else
7757 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7758 }
7759 
igc_disable_tx_ring(struct igc_ring * ring)7760 void igc_disable_tx_ring(struct igc_ring *ring)
7761 {
7762 	igc_disable_tx_ring_hw(ring);
7763 	igc_clean_tx_ring(ring);
7764 }
7765 
igc_enable_tx_ring(struct igc_ring * ring)7766 void igc_enable_tx_ring(struct igc_ring *ring)
7767 {
7768 	struct igc_adapter *adapter = ring->q_vector->adapter;
7769 
7770 	igc_configure_tx_ring(adapter, ring);
7771 }
7772 
7773 /**
7774  * igc_init_module - Driver Registration Routine
7775  *
7776  * igc_init_module is the first routine called when the driver is
7777  * loaded. All it does is register with the PCI subsystem.
7778  */
igc_init_module(void)7779 static int __init igc_init_module(void)
7780 {
7781 	int ret;
7782 
7783 	pr_info("%s\n", igc_driver_string);
7784 	pr_info("%s\n", igc_copyright);
7785 
7786 	ret = pci_register_driver(&igc_driver);
7787 	return ret;
7788 }
7789 
7790 module_init(igc_init_module);
7791 
7792 /**
7793  * igc_exit_module - Driver Exit Cleanup Routine
7794  *
7795  * igc_exit_module is called just before the driver is removed
7796  * from memory.
7797  */
igc_exit_module(void)7798 static void __exit igc_exit_module(void)
7799 {
7800 	pci_unregister_driver(&igc_driver);
7801 }
7802 
7803 module_exit(igc_exit_module);
7804 /* igc_main.c */
7805