1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static void igb_init_queue_configuration(struct igb_adapter *adapter);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_set_rx_mode(struct net_device *);
119 static void igb_update_phy_info(struct timer_list *);
120 static void igb_watchdog(struct timer_list *);
121 static void igb_watchdog_task(struct work_struct *);
122 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
123 static void igb_get_stats64(struct net_device *dev,
124 struct rtnl_link_stats64 *stats);
125 static int igb_change_mtu(struct net_device *, int);
126 static int igb_set_mac(struct net_device *, void *);
127 static void igb_set_uta(struct igb_adapter *adapter, bool set);
128 static irqreturn_t igb_intr(int irq, void *);
129 static irqreturn_t igb_intr_msi(int irq, void *);
130 static irqreturn_t igb_msix_other(int irq, void *);
131 static irqreturn_t igb_msix_ring(int irq, void *);
132 #ifdef CONFIG_IGB_DCA
133 static void igb_update_dca(struct igb_q_vector *);
134 static void igb_setup_dca(struct igb_adapter *);
135 #endif /* CONFIG_IGB_DCA */
136 static int igb_poll(struct napi_struct *, int);
137 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
138 static int igb_clean_rx_irq(struct igb_q_vector *, int);
139 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
140 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
141 static void igb_reset_task(struct work_struct *);
142 static void igb_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
145 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
146 static void igb_restore_vlan(struct igb_adapter *);
147 static void igb_rar_set_index(struct igb_adapter *, u32);
148 static void igb_ping_all_vfs(struct igb_adapter *);
149 static void igb_msg_task(struct igb_adapter *);
150 static void igb_vmm_control(struct igb_adapter *);
151 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
152 static void igb_flush_mac_table(struct igb_adapter *);
153 static int igb_available_rars(struct igb_adapter *, u8);
154 static void igb_set_default_mac_filter(struct igb_adapter *);
155 static int igb_uc_sync(struct net_device *, const unsigned char *);
156 static int igb_uc_unsync(struct net_device *, const unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
161 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
162 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
163 bool setting);
164 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
165 bool setting);
166 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
167 struct ifla_vf_info *ivi);
168 static void igb_check_vf_rate_limit(struct igb_adapter *);
169 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
170 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
171
172 #ifdef CONFIG_PCI_IOV
173 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
174 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
175 #endif
176
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180 .notifier_call = igb_notify_dca,
181 .next = NULL,
182 .priority = 0
183 };
184 #endif
185 #ifdef CONFIG_PCI_IOV
186 static unsigned int max_vfs;
187 module_param(max_vfs, uint, 0444);
188 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
189 #endif /* CONFIG_PCI_IOV */
190
191 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
192 pci_channel_state_t);
193 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
194 static void igb_io_resume(struct pci_dev *);
195
196 static const struct pci_error_handlers igb_err_handler = {
197 .error_detected = igb_io_error_detected,
198 .slot_reset = igb_io_slot_reset,
199 .resume = igb_io_resume,
200 };
201
202 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
203
204 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
205 MODULE_LICENSE("GPL v2");
206
207 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
208 static int debug = -1;
209 module_param(debug, int, 0);
210 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211
212 struct igb_reg_info {
213 u32 ofs;
214 char *name;
215 };
216
217 static const struct igb_reg_info igb_reg_info_tbl[] = {
218
219 /* General Registers */
220 {E1000_CTRL, "CTRL"},
221 {E1000_STATUS, "STATUS"},
222 {E1000_CTRL_EXT, "CTRL_EXT"},
223
224 /* Interrupt Registers */
225 {E1000_ICR, "ICR"},
226
227 /* RX Registers */
228 {E1000_RCTL, "RCTL"},
229 {E1000_RDLEN(0), "RDLEN"},
230 {E1000_RDH(0), "RDH"},
231 {E1000_RDT(0), "RDT"},
232 {E1000_RXDCTL(0), "RXDCTL"},
233 {E1000_RDBAL(0), "RDBAL"},
234 {E1000_RDBAH(0), "RDBAH"},
235
236 /* TX Registers */
237 {E1000_TCTL, "TCTL"},
238 {E1000_TDBAL(0), "TDBAL"},
239 {E1000_TDBAH(0), "TDBAH"},
240 {E1000_TDLEN(0), "TDLEN"},
241 {E1000_TDH(0), "TDH"},
242 {E1000_TDT(0), "TDT"},
243 {E1000_TXDCTL(0), "TXDCTL"},
244 {E1000_TDFH, "TDFH"},
245 {E1000_TDFT, "TDFT"},
246 {E1000_TDFHS, "TDFHS"},
247 {E1000_TDFPC, "TDFPC"},
248
249 /* List Terminator */
250 {}
251 };
252
253 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)254 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
255 {
256 int n = 0;
257 char rname[16];
258 u32 regs[8];
259
260 switch (reginfo->ofs) {
261 case E1000_RDLEN(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDLEN(n));
264 break;
265 case E1000_RDH(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDH(n));
268 break;
269 case E1000_RDT(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDT(n));
272 break;
273 case E1000_RXDCTL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RXDCTL(n));
276 break;
277 case E1000_RDBAL(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAL(n));
280 break;
281 case E1000_RDBAH(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAH(n));
284 break;
285 case E1000_TDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAL(n));
288 break;
289 case E1000_TDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDBAH(n));
292 break;
293 case E1000_TDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDLEN(n));
296 break;
297 case E1000_TDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDH(n));
300 break;
301 case E1000_TDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDT(n));
304 break;
305 case E1000_TXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TXDCTL(n));
308 break;
309 default:
310 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
311 return;
312 }
313
314 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
315 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
316 regs[2], regs[3]);
317 }
318
319 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)320 static void igb_dump(struct igb_adapter *adapter)
321 {
322 struct net_device *netdev = adapter->netdev;
323 struct e1000_hw *hw = &adapter->hw;
324 struct igb_reg_info *reginfo;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { __le64 a; __le64 b; } *u0;
328 struct igb_ring *rx_ring;
329 union e1000_adv_rx_desc *rx_desc;
330 u32 staterr;
331 u16 i, n;
332
333 if (!netif_msg_hw(adapter))
334 return;
335
336 /* Print netdevice Info */
337 if (netdev) {
338 dev_info(&adapter->pdev->dev, "Net device Info\n");
339 pr_info("Device Name state trans_start\n");
340 pr_info("%-15s %016lX %016lX\n", netdev->name,
341 netdev->state, dev_trans_start(netdev));
342 }
343
344 /* Print Registers */
345 dev_info(&adapter->pdev->dev, "Register Dump\n");
346 pr_info(" Register Name Value\n");
347 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
348 reginfo->name; reginfo++) {
349 igb_regdump(hw, reginfo);
350 }
351
352 /* Print TX Ring Summary */
353 if (!netdev || !netif_running(netdev))
354 goto exit;
355
356 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
357 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
358 for (n = 0; n < adapter->num_tx_queues; n++) {
359 struct igb_tx_buffer *buffer_info;
360 tx_ring = adapter->tx_ring[n];
361 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
362 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
363 n, tx_ring->next_to_use, tx_ring->next_to_clean,
364 (u64)dma_unmap_addr(buffer_info, dma),
365 dma_unmap_len(buffer_info, len),
366 buffer_info->next_to_watch,
367 (u64)buffer_info->time_stamp);
368 }
369
370 /* Print TX Rings */
371 if (!netif_msg_tx_done(adapter))
372 goto rx_ring_summary;
373
374 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
375
376 /* Transmit Descriptor Formats
377 *
378 * Advanced Transmit Descriptor
379 * +--------------------------------------------------------------+
380 * 0 | Buffer Address [63:0] |
381 * +--------------------------------------------------------------+
382 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
383 * +--------------------------------------------------------------+
384 * 63 46 45 40 39 38 36 35 32 31 24 15 0
385 */
386
387 for (n = 0; n < adapter->num_tx_queues; n++) {
388 tx_ring = adapter->tx_ring[n];
389 pr_info("------------------------------------\n");
390 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
391 pr_info("------------------------------------\n");
392 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
393
394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
395 const char *next_desc;
396 struct igb_tx_buffer *buffer_info;
397 tx_desc = IGB_TX_DESC(tx_ring, i);
398 buffer_info = &tx_ring->tx_buffer_info[i];
399 u0 = (struct my_u0 *)tx_desc;
400 if (i == tx_ring->next_to_use &&
401 i == tx_ring->next_to_clean)
402 next_desc = " NTC/U";
403 else if (i == tx_ring->next_to_use)
404 next_desc = " NTU";
405 else if (i == tx_ring->next_to_clean)
406 next_desc = " NTC";
407 else
408 next_desc = "";
409
410 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
411 i, le64_to_cpu(u0->a),
412 le64_to_cpu(u0->b),
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp,
417 buffer_info->skb, next_desc);
418
419 if (netif_msg_pktdata(adapter) && buffer_info->skb)
420 print_hex_dump(KERN_INFO, "",
421 DUMP_PREFIX_ADDRESS,
422 16, 1, buffer_info->skb->data,
423 dma_unmap_len(buffer_info, len),
424 true);
425 }
426 }
427
428 /* Print RX Rings Summary */
429 rx_ring_summary:
430 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
431 pr_info("Queue [NTU] [NTC]\n");
432 for (n = 0; n < adapter->num_rx_queues; n++) {
433 rx_ring = adapter->rx_ring[n];
434 pr_info(" %5d %5X %5X\n",
435 n, rx_ring->next_to_use, rx_ring->next_to_clean);
436 }
437
438 /* Print RX Rings */
439 if (!netif_msg_rx_status(adapter))
440 goto exit;
441
442 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
443
444 /* Advanced Receive Descriptor (Read) Format
445 * 63 1 0
446 * +-----------------------------------------------------+
447 * 0 | Packet Buffer Address [63:1] |A0/NSE|
448 * +----------------------------------------------+------+
449 * 8 | Header Buffer Address [63:1] | DD |
450 * +-----------------------------------------------------+
451 *
452 *
453 * Advanced Receive Descriptor (Write-Back) Format
454 *
455 * 63 48 47 32 31 30 21 20 17 16 4 3 0
456 * +------------------------------------------------------+
457 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
458 * | Checksum Ident | | | | Type | Type |
459 * +------------------------------------------------------+
460 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
461 * +------------------------------------------------------+
462 * 63 48 47 32 31 20 19 0
463 */
464
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info("------------------------------------\n");
468 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
469 pr_info("------------------------------------\n");
470 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
471 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
472
473 for (i = 0; i < rx_ring->count; i++) {
474 const char *next_desc;
475 dma_addr_t dma = (dma_addr_t)0;
476 struct igb_rx_buffer *buffer_info = NULL;
477 rx_desc = IGB_RX_DESC(rx_ring, i);
478 u0 = (struct my_u0 *)rx_desc;
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480
481 if (!rx_ring->xsk_pool) {
482 buffer_info = &rx_ring->rx_buffer_info[i];
483 dma = buffer_info->dma;
484 }
485
486 if (i == rx_ring->next_to_use)
487 next_desc = " NTU";
488 else if (i == rx_ring->next_to_clean)
489 next_desc = " NTC";
490 else
491 next_desc = "";
492
493 if (staterr & E1000_RXD_STAT_DD) {
494 /* Descriptor Done */
495 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
496 "RWB", i,
497 le64_to_cpu(u0->a),
498 le64_to_cpu(u0->b),
499 next_desc);
500 } else {
501 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
502 "R ", i,
503 le64_to_cpu(u0->a),
504 le64_to_cpu(u0->b),
505 (u64)dma,
506 next_desc);
507
508 if (netif_msg_pktdata(adapter) &&
509 buffer_info && dma && buffer_info->page) {
510 print_hex_dump(KERN_INFO, "",
511 DUMP_PREFIX_ADDRESS,
512 16, 1,
513 page_address(buffer_info->page) +
514 buffer_info->page_offset,
515 igb_rx_bufsz(rx_ring), true);
516 }
517 }
518 }
519 }
520
521 exit:
522 return;
523 }
524
525 /**
526 * igb_get_i2c_data - Reads the I2C SDA data bit
527 * @data: opaque pointer to adapter struct
528 *
529 * Returns the I2C data bit value
530 **/
igb_get_i2c_data(void * data)531 static int igb_get_i2c_data(void *data)
532 {
533 struct igb_adapter *adapter = (struct igb_adapter *)data;
534 struct e1000_hw *hw = &adapter->hw;
535 s32 i2cctl = rd32(E1000_I2CPARAMS);
536
537 return !!(i2cctl & E1000_I2C_DATA_IN);
538 }
539
540 /**
541 * igb_set_i2c_data - Sets the I2C data bit
542 * @data: pointer to hardware structure
543 * @state: I2C data value (0 or 1) to set
544 *
545 * Sets the I2C data bit
546 **/
igb_set_i2c_data(void * data,int state)547 static void igb_set_i2c_data(void *data, int state)
548 {
549 struct igb_adapter *adapter = (struct igb_adapter *)data;
550 struct e1000_hw *hw = &adapter->hw;
551 s32 i2cctl = rd32(E1000_I2CPARAMS);
552
553 if (state) {
554 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
555 } else {
556 i2cctl &= ~E1000_I2C_DATA_OE_N;
557 i2cctl &= ~E1000_I2C_DATA_OUT;
558 }
559
560 wr32(E1000_I2CPARAMS, i2cctl);
561 wrfl();
562 }
563
564 /**
565 * igb_set_i2c_clk - Sets the I2C SCL clock
566 * @data: pointer to hardware structure
567 * @state: state to set clock
568 *
569 * Sets the I2C clock line to state
570 **/
igb_set_i2c_clk(void * data,int state)571 static void igb_set_i2c_clk(void *data, int state)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 if (state) {
578 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
579 } else {
580 i2cctl &= ~E1000_I2C_CLK_OUT;
581 i2cctl &= ~E1000_I2C_CLK_OE_N;
582 }
583 wr32(E1000_I2CPARAMS, i2cctl);
584 wrfl();
585 }
586
587 /**
588 * igb_get_i2c_clk - Gets the I2C SCL clock state
589 * @data: pointer to hardware structure
590 *
591 * Gets the I2C clock state
592 **/
igb_get_i2c_clk(void * data)593 static int igb_get_i2c_clk(void *data)
594 {
595 struct igb_adapter *adapter = (struct igb_adapter *)data;
596 struct e1000_hw *hw = &adapter->hw;
597 s32 i2cctl = rd32(E1000_I2CPARAMS);
598
599 return !!(i2cctl & E1000_I2C_CLK_IN);
600 }
601
602 static const struct i2c_algo_bit_data igb_i2c_algo = {
603 .setsda = igb_set_i2c_data,
604 .setscl = igb_set_i2c_clk,
605 .getsda = igb_get_i2c_data,
606 .getscl = igb_get_i2c_clk,
607 .udelay = 5,
608 .timeout = 20,
609 };
610
611 /**
612 * igb_get_hw_dev - return device
613 * @hw: pointer to hardware structure
614 *
615 * used by hardware layer to print debugging information
616 **/
igb_get_hw_dev(struct e1000_hw * hw)617 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
618 {
619 struct igb_adapter *adapter = hw->back;
620 return adapter->netdev;
621 }
622
623 static struct pci_driver igb_driver;
624
625 /**
626 * igb_init_module - Driver Registration Routine
627 *
628 * igb_init_module is the first routine called when the driver is
629 * loaded. All it does is register with the PCI subsystem.
630 **/
igb_init_module(void)631 static int __init igb_init_module(void)
632 {
633 int ret;
634
635 pr_info("%s\n", igb_driver_string);
636 pr_info("%s\n", igb_copyright);
637
638 #ifdef CONFIG_IGB_DCA
639 dca_register_notify(&dca_notifier);
640 #endif
641 ret = pci_register_driver(&igb_driver);
642 #ifdef CONFIG_IGB_DCA
643 if (ret)
644 dca_unregister_notify(&dca_notifier);
645 #endif
646 return ret;
647 }
648
649 module_init(igb_init_module);
650
651 /**
652 * igb_exit_module - Driver Exit Cleanup Routine
653 *
654 * igb_exit_module is called just before the driver is removed
655 * from memory.
656 **/
igb_exit_module(void)657 static void __exit igb_exit_module(void)
658 {
659 #ifdef CONFIG_IGB_DCA
660 dca_unregister_notify(&dca_notifier);
661 #endif
662 pci_unregister_driver(&igb_driver);
663 }
664
665 module_exit(igb_exit_module);
666
667 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
668 /**
669 * igb_cache_ring_register - Descriptor ring to register mapping
670 * @adapter: board private structure to initialize
671 *
672 * Once we know the feature-set enabled for the device, we'll cache
673 * the register offset the descriptor ring is assigned to.
674 **/
igb_cache_ring_register(struct igb_adapter * adapter)675 static void igb_cache_ring_register(struct igb_adapter *adapter)
676 {
677 int i = 0, j = 0;
678 u32 rbase_offset = adapter->vfs_allocated_count;
679
680 switch (adapter->hw.mac.type) {
681 case e1000_82576:
682 /* The queues are allocated for virtualization such that VF 0
683 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
684 * In order to avoid collision we start at the first free queue
685 * and continue consuming queues in the same sequence
686 */
687 if (adapter->vfs_allocated_count) {
688 for (; i < adapter->rss_queues; i++)
689 adapter->rx_ring[i]->reg_idx = rbase_offset +
690 Q_IDX_82576(i);
691 }
692 fallthrough;
693 case e1000_82575:
694 case e1000_82580:
695 case e1000_i350:
696 case e1000_i354:
697 case e1000_i210:
698 case e1000_i211:
699 default:
700 for (; i < adapter->num_rx_queues; i++)
701 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
702 for (; j < adapter->num_tx_queues; j++)
703 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
704 break;
705 }
706 }
707
igb_rd32(struct e1000_hw * hw,u32 reg)708 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
709 {
710 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
711 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
712 u32 value = 0;
713
714 if (E1000_REMOVED(hw_addr))
715 return ~value;
716
717 value = readl(&hw_addr[reg]);
718
719 /* reads should not return all F's */
720 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
721 struct net_device *netdev = igb->netdev;
722 hw->hw_addr = NULL;
723 netdev_err(netdev, "PCIe link lost\n");
724 WARN(pci_device_is_present(igb->pdev),
725 "igb: Failed to read reg 0x%x!\n", reg);
726 }
727
728 return value;
729 }
730
731 /**
732 * igb_write_ivar - configure ivar for given MSI-X vector
733 * @hw: pointer to the HW structure
734 * @msix_vector: vector number we are allocating to a given ring
735 * @index: row index of IVAR register to write within IVAR table
736 * @offset: column offset of in IVAR, should be multiple of 8
737 *
738 * This function is intended to handle the writing of the IVAR register
739 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
740 * each containing an cause allocation for an Rx and Tx ring, and a
741 * variable number of rows depending on the number of queues supported.
742 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)743 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
744 int index, int offset)
745 {
746 u32 ivar = array_rd32(E1000_IVAR0, index);
747
748 /* clear any bits that are currently set */
749 ivar &= ~((u32)0xFF << offset);
750
751 /* write vector and valid bit */
752 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
753
754 array_wr32(E1000_IVAR0, index, ivar);
755 }
756
757 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)758 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
759 {
760 struct igb_adapter *adapter = q_vector->adapter;
761 struct e1000_hw *hw = &adapter->hw;
762 int rx_queue = IGB_N0_QUEUE;
763 int tx_queue = IGB_N0_QUEUE;
764 u32 msixbm = 0;
765
766 if (q_vector->rx.ring)
767 rx_queue = q_vector->rx.ring->reg_idx;
768 if (q_vector->tx.ring)
769 tx_queue = q_vector->tx.ring->reg_idx;
770
771 switch (hw->mac.type) {
772 case e1000_82575:
773 /* The 82575 assigns vectors using a bitmask, which matches the
774 * bitmask for the EICR/EIMS/EIMC registers. To assign one
775 * or more queues to a vector, we write the appropriate bits
776 * into the MSIXBM register for that vector.
777 */
778 if (rx_queue > IGB_N0_QUEUE)
779 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
780 if (tx_queue > IGB_N0_QUEUE)
781 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
782 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
783 msixbm |= E1000_EIMS_OTHER;
784 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
785 q_vector->eims_value = msixbm;
786 break;
787 case e1000_82576:
788 /* 82576 uses a table that essentially consists of 2 columns
789 * with 8 rows. The ordering is column-major so we use the
790 * lower 3 bits as the row index, and the 4th bit as the
791 * column offset.
792 */
793 if (rx_queue > IGB_N0_QUEUE)
794 igb_write_ivar(hw, msix_vector,
795 rx_queue & 0x7,
796 (rx_queue & 0x8) << 1);
797 if (tx_queue > IGB_N0_QUEUE)
798 igb_write_ivar(hw, msix_vector,
799 tx_queue & 0x7,
800 ((tx_queue & 0x8) << 1) + 8);
801 q_vector->eims_value = BIT(msix_vector);
802 break;
803 case e1000_82580:
804 case e1000_i350:
805 case e1000_i354:
806 case e1000_i210:
807 case e1000_i211:
808 /* On 82580 and newer adapters the scheme is similar to 82576
809 * however instead of ordering column-major we have things
810 * ordered row-major. So we traverse the table by using
811 * bit 0 as the column offset, and the remaining bits as the
812 * row index.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue >> 1,
817 (rx_queue & 0x1) << 4);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue >> 1,
821 ((tx_queue & 0x1) << 4) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 default:
825 BUG();
826 break;
827 }
828
829 /* add q_vector eims value to global eims_enable_mask */
830 adapter->eims_enable_mask |= q_vector->eims_value;
831
832 /* configure q_vector to set itr on first interrupt */
833 q_vector->set_itr = 1;
834 }
835
836 /**
837 * igb_configure_msix - Configure MSI-X hardware
838 * @adapter: board private structure to initialize
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
igb_configure_msix(struct igb_adapter * adapter)843 static void igb_configure_msix(struct igb_adapter *adapter)
844 {
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
850
851 /* set vector for other causes, i.e. link changes */
852 switch (hw->mac.type) {
853 case e1000_82575:
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
866 adapter->eims_other = E1000_EIMS_OTHER;
867
868 break;
869
870 case e1000_82576:
871 case e1000_82580:
872 case e1000_i350:
873 case e1000_i354:
874 case e1000_i210:
875 case e1000_i211:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug.
878 */
879 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
880 E1000_GPIE_PBA | E1000_GPIE_EIAME |
881 E1000_GPIE_NSICR);
882
883 /* enable msix_other interrupt */
884 adapter->eims_other = BIT(vector);
885 tmp = (vector++ | E1000_IVAR_VALID) << 8;
886
887 wr32(E1000_IVAR_MISC, tmp);
888 break;
889 default:
890 /* do nothing, since nothing else supports MSI-X */
891 break;
892 } /* switch (hw->mac.type) */
893
894 adapter->eims_enable_mask |= adapter->eims_other;
895
896 for (i = 0; i < adapter->num_q_vectors; i++)
897 igb_assign_vector(adapter->q_vector[i], vector++);
898
899 wrfl();
900 }
901
902 /**
903 * igb_request_msix - Initialize MSI-X interrupts
904 * @adapter: board private structure to initialize
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
igb_request_msix(struct igb_adapter * adapter)909 static int igb_request_msix(struct igb_adapter *adapter)
910 {
911 unsigned int num_q_vectors = adapter->num_q_vectors;
912 struct net_device *netdev = adapter->netdev;
913 int i, err = 0, vector = 0, free_vector = 0;
914
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
917 if (err)
918 goto err_out;
919
920 if (num_q_vectors > MAX_Q_VECTORS) {
921 num_q_vectors = MAX_Q_VECTORS;
922 dev_warn(&adapter->pdev->dev,
923 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
924 adapter->num_q_vectors, MAX_Q_VECTORS);
925 }
926 for (i = 0; i < num_q_vectors; i++) {
927 struct igb_q_vector *q_vector = adapter->q_vector[i];
928
929 vector++;
930
931 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
932
933 if (q_vector->rx.ring && q_vector->tx.ring)
934 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
935 q_vector->rx.ring->queue_index);
936 else if (q_vector->tx.ring)
937 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
938 q_vector->tx.ring->queue_index);
939 else if (q_vector->rx.ring)
940 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
941 q_vector->rx.ring->queue_index);
942 else
943 sprintf(q_vector->name, "%s-unused", netdev->name);
944
945 err = request_irq(adapter->msix_entries[vector].vector,
946 igb_msix_ring, 0, q_vector->name,
947 q_vector);
948 if (err)
949 goto err_free;
950
951 netif_napi_set_irq(&q_vector->napi,
952 adapter->msix_entries[vector].vector);
953 }
954
955 igb_configure_msix(adapter);
956 return 0;
957
958 err_free:
959 /* free already assigned IRQs */
960 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
961
962 vector--;
963 for (i = 0; i < vector; i++) {
964 free_irq(adapter->msix_entries[free_vector++].vector,
965 adapter->q_vector[i]);
966 }
967 err_out:
968 return err;
969 }
970
971 /**
972 * igb_free_q_vector - Free memory allocated for specific interrupt vector
973 * @adapter: board private structure to initialize
974 * @v_idx: Index of vector to be freed
975 *
976 * This function frees the memory allocated to the q_vector.
977 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)978 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
979 {
980 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
981
982 adapter->q_vector[v_idx] = NULL;
983
984 /* igb_get_stats64() might access the rings on this vector,
985 * we must wait a grace period before freeing it.
986 */
987 if (q_vector)
988 kfree_rcu(q_vector, rcu);
989 }
990
991 /**
992 * igb_reset_q_vector - Reset config for interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be reset
995 *
996 * If NAPI is enabled it will delete any references to the
997 * NAPI struct. This is preparation for igb_free_q_vector.
998 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)999 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002
1003 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1004 * allocated. So, q_vector is NULL so we should stop here.
1005 */
1006 if (!q_vector)
1007 return;
1008
1009 if (q_vector->tx.ring)
1010 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012 if (q_vector->rx.ring)
1013 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015 netif_napi_del(&q_vector->napi);
1016
1017 }
1018
igb_reset_interrupt_capability(struct igb_adapter * adapter)1019 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1020 {
1021 int v_idx = adapter->num_q_vectors;
1022
1023 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1024 pci_disable_msix(adapter->pdev);
1025 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1026 pci_disable_msi(adapter->pdev);
1027
1028 while (v_idx--)
1029 igb_reset_q_vector(adapter, v_idx);
1030 }
1031
1032 /**
1033 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1034 * @adapter: board private structure to initialize
1035 *
1036 * This function frees the memory allocated to the q_vectors. In addition if
1037 * NAPI is enabled it will delete any references to the NAPI struct prior
1038 * to freeing the q_vector.
1039 **/
igb_free_q_vectors(struct igb_adapter * adapter)1040 static void igb_free_q_vectors(struct igb_adapter *adapter)
1041 {
1042 int v_idx = adapter->num_q_vectors;
1043
1044 adapter->num_tx_queues = 0;
1045 adapter->num_rx_queues = 0;
1046 adapter->num_q_vectors = 0;
1047
1048 while (v_idx--) {
1049 igb_reset_q_vector(adapter, v_idx);
1050 igb_free_q_vector(adapter, v_idx);
1051 }
1052 }
1053
1054 /**
1055 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1056 * @adapter: board private structure to initialize
1057 *
1058 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1059 * MSI-X interrupts allocated.
1060 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1061 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1062 {
1063 igb_free_q_vectors(adapter);
1064 igb_reset_interrupt_capability(adapter);
1065 }
1066
1067 /**
1068 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1069 * @adapter: board private structure to initialize
1070 * @msix: boolean value of MSIX capability
1071 *
1072 * Attempt to configure interrupts using the best available
1073 * capabilities of the hardware and kernel.
1074 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1075 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1076 {
1077 int err;
1078 int numvecs, i;
1079
1080 if (!msix)
1081 goto msi_only;
1082 adapter->flags |= IGB_FLAG_HAS_MSIX;
1083
1084 /* Number of supported queues. */
1085 adapter->num_rx_queues = adapter->rss_queues;
1086 if (adapter->vfs_allocated_count)
1087 adapter->num_tx_queues = 1;
1088 else
1089 adapter->num_tx_queues = adapter->rss_queues;
1090
1091 /* start with one vector for every Rx queue */
1092 numvecs = adapter->num_rx_queues;
1093
1094 /* if Tx handler is separate add 1 for every Tx queue */
1095 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1096 numvecs += adapter->num_tx_queues;
1097
1098 /* store the number of vectors reserved for queues */
1099 adapter->num_q_vectors = numvecs;
1100
1101 /* add 1 vector for link status interrupts */
1102 numvecs++;
1103 for (i = 0; i < numvecs; i++)
1104 adapter->msix_entries[i].entry = i;
1105
1106 err = pci_enable_msix_range(adapter->pdev,
1107 adapter->msix_entries,
1108 numvecs,
1109 numvecs);
1110 if (err > 0)
1111 return;
1112
1113 igb_reset_interrupt_capability(adapter);
1114
1115 /* If we can't do MSI-X, try MSI */
1116 msi_only:
1117 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1118 #ifdef CONFIG_PCI_IOV
1119 /* disable SR-IOV for non MSI-X configurations */
1120 if (adapter->vf_data) {
1121 struct e1000_hw *hw = &adapter->hw;
1122 /* disable iov and allow time for transactions to clear */
1123 pci_disable_sriov(adapter->pdev);
1124 msleep(500);
1125
1126 kfree(adapter->vf_mac_list);
1127 adapter->vf_mac_list = NULL;
1128 kfree(adapter->vf_data);
1129 adapter->vf_data = NULL;
1130 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1131 wrfl();
1132 msleep(100);
1133 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1134 }
1135 #endif
1136 adapter->vfs_allocated_count = 0;
1137 adapter->rss_queues = 1;
1138 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1139 adapter->num_rx_queues = 1;
1140 adapter->num_tx_queues = 1;
1141 adapter->num_q_vectors = 1;
1142 if (!pci_enable_msi(adapter->pdev))
1143 adapter->flags |= IGB_FLAG_HAS_MSI;
1144 }
1145
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1146 static void igb_add_ring(struct igb_ring *ring,
1147 struct igb_ring_container *head)
1148 {
1149 head->ring = ring;
1150 head->count++;
1151 }
1152
1153 /**
1154 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1155 * @adapter: board private structure to initialize
1156 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1157 * @v_idx: index of vector in adapter struct
1158 * @txr_count: total number of Tx rings to allocate
1159 * @txr_idx: index of first Tx ring to allocate
1160 * @rxr_count: total number of Rx rings to allocate
1161 * @rxr_idx: index of first Rx ring to allocate
1162 *
1163 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1164 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1165 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1166 int v_count, int v_idx,
1167 int txr_count, int txr_idx,
1168 int rxr_count, int rxr_idx)
1169 {
1170 struct igb_q_vector *q_vector;
1171 struct igb_ring *ring;
1172 int ring_count;
1173 size_t size;
1174
1175 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1176 if (txr_count > 1 || rxr_count > 1)
1177 return -ENOMEM;
1178
1179 ring_count = txr_count + rxr_count;
1180 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1181
1182 /* allocate q_vector and rings */
1183 q_vector = adapter->q_vector[v_idx];
1184 if (!q_vector) {
1185 q_vector = kzalloc(size, GFP_KERNEL);
1186 } else if (size > ksize(q_vector)) {
1187 struct igb_q_vector *new_q_vector;
1188
1189 new_q_vector = kzalloc(size, GFP_KERNEL);
1190 if (new_q_vector)
1191 kfree_rcu(q_vector, rcu);
1192 q_vector = new_q_vector;
1193 } else {
1194 memset(q_vector, 0, size);
1195 }
1196 if (!q_vector)
1197 return -ENOMEM;
1198
1199 /* initialize NAPI */
1200 netif_napi_add_config(adapter->netdev, &q_vector->napi, igb_poll,
1201 v_idx);
1202
1203 /* tie q_vector and adapter together */
1204 adapter->q_vector[v_idx] = q_vector;
1205 q_vector->adapter = adapter;
1206
1207 /* initialize work limits */
1208 q_vector->tx.work_limit = adapter->tx_work_limit;
1209
1210 /* initialize ITR configuration */
1211 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1212 q_vector->itr_val = IGB_START_ITR;
1213
1214 /* initialize pointer to rings */
1215 ring = q_vector->ring;
1216
1217 /* initialize ITR */
1218 if (rxr_count) {
1219 /* rx or rx/tx vector */
1220 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1221 q_vector->itr_val = adapter->rx_itr_setting;
1222 } else {
1223 /* tx only vector */
1224 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1225 q_vector->itr_val = adapter->tx_itr_setting;
1226 }
1227
1228 if (txr_count) {
1229 /* assign generic ring traits */
1230 ring->dev = &adapter->pdev->dev;
1231 ring->netdev = adapter->netdev;
1232
1233 /* configure backlink on ring */
1234 ring->q_vector = q_vector;
1235
1236 /* update q_vector Tx values */
1237 igb_add_ring(ring, &q_vector->tx);
1238
1239 /* For 82575, context index must be unique per ring. */
1240 if (adapter->hw.mac.type == e1000_82575)
1241 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1242
1243 /* apply Tx specific ring traits */
1244 ring->count = adapter->tx_ring_count;
1245 ring->queue_index = txr_idx;
1246
1247 ring->cbs_enable = false;
1248 ring->idleslope = 0;
1249 ring->sendslope = 0;
1250 ring->hicredit = 0;
1251 ring->locredit = 0;
1252
1253 u64_stats_init(&ring->tx_syncp);
1254 u64_stats_init(&ring->tx_syncp2);
1255
1256 /* assign ring to adapter */
1257 adapter->tx_ring[txr_idx] = ring;
1258
1259 /* push pointer to next ring */
1260 ring++;
1261 }
1262
1263 if (rxr_count) {
1264 /* assign generic ring traits */
1265 ring->dev = &adapter->pdev->dev;
1266 ring->netdev = adapter->netdev;
1267
1268 /* configure backlink on ring */
1269 ring->q_vector = q_vector;
1270
1271 /* update q_vector Rx values */
1272 igb_add_ring(ring, &q_vector->rx);
1273
1274 /* set flag indicating ring supports SCTP checksum offload */
1275 if (adapter->hw.mac.type >= e1000_82576)
1276 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1277
1278 /* On i350, i354, i210, and i211, loopback VLAN packets
1279 * have the tag byte-swapped.
1280 */
1281 if (adapter->hw.mac.type >= e1000_i350)
1282 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1283
1284 /* apply Rx specific ring traits */
1285 ring->count = adapter->rx_ring_count;
1286 ring->queue_index = rxr_idx;
1287
1288 u64_stats_init(&ring->rx_syncp);
1289
1290 /* assign ring to adapter */
1291 adapter->rx_ring[rxr_idx] = ring;
1292 }
1293
1294 return 0;
1295 }
1296
1297
1298 /**
1299 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1300 * @adapter: board private structure to initialize
1301 *
1302 * We allocate one q_vector per queue interrupt. If allocation fails we
1303 * return -ENOMEM.
1304 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1305 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1306 {
1307 int q_vectors = adapter->num_q_vectors;
1308 int rxr_remaining = adapter->num_rx_queues;
1309 int txr_remaining = adapter->num_tx_queues;
1310 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1311 int err;
1312
1313 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1314 for (; rxr_remaining; v_idx++) {
1315 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1316 0, 0, 1, rxr_idx);
1317
1318 if (err)
1319 goto err_out;
1320
1321 /* update counts and index */
1322 rxr_remaining--;
1323 rxr_idx++;
1324 }
1325 }
1326
1327 for (; v_idx < q_vectors; v_idx++) {
1328 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1329 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1330
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 tqpv, txr_idx, rqpv, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining -= rqpv;
1339 txr_remaining -= tqpv;
1340 rxr_idx++;
1341 txr_idx++;
1342 }
1343
1344 return 0;
1345
1346 err_out:
1347 adapter->num_tx_queues = 0;
1348 adapter->num_rx_queues = 0;
1349 adapter->num_q_vectors = 0;
1350
1351 while (v_idx--)
1352 igb_free_q_vector(adapter, v_idx);
1353
1354 return -ENOMEM;
1355 }
1356
1357 /**
1358 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1359 * @adapter: board private structure to initialize
1360 * @msix: boolean value of MSIX capability
1361 *
1362 * This function initializes the interrupts and allocates all of the queues.
1363 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1364 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1365 {
1366 struct pci_dev *pdev = adapter->pdev;
1367 int err;
1368
1369 igb_set_interrupt_capability(adapter, msix);
1370
1371 err = igb_alloc_q_vectors(adapter);
1372 if (err) {
1373 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1374 goto err_alloc_q_vectors;
1375 }
1376
1377 igb_cache_ring_register(adapter);
1378
1379 return 0;
1380
1381 err_alloc_q_vectors:
1382 igb_reset_interrupt_capability(adapter);
1383 return err;
1384 }
1385
1386 /**
1387 * igb_request_irq - initialize interrupts
1388 * @adapter: board private structure to initialize
1389 *
1390 * Attempts to configure interrupts using the best available
1391 * capabilities of the hardware and kernel.
1392 **/
igb_request_irq(struct igb_adapter * adapter)1393 static int igb_request_irq(struct igb_adapter *adapter)
1394 {
1395 struct net_device *netdev = adapter->netdev;
1396 struct pci_dev *pdev = adapter->pdev;
1397 int err = 0;
1398
1399 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1400 err = igb_request_msix(adapter);
1401 if (!err)
1402 goto request_done;
1403 /* fall back to MSI */
1404 igb_free_all_tx_resources(adapter);
1405 igb_free_all_rx_resources(adapter);
1406
1407 igb_clear_interrupt_scheme(adapter);
1408 err = igb_init_interrupt_scheme(adapter, false);
1409 if (err)
1410 goto request_done;
1411
1412 igb_setup_all_tx_resources(adapter);
1413 igb_setup_all_rx_resources(adapter);
1414 igb_configure(adapter);
1415 }
1416
1417 igb_assign_vector(adapter->q_vector[0], 0);
1418
1419 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1420 err = request_irq(pdev->irq, igb_intr_msi, 0,
1421 netdev->name, adapter);
1422 if (!err)
1423 goto request_done;
1424
1425 /* fall back to legacy interrupts */
1426 igb_reset_interrupt_capability(adapter);
1427 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1428 }
1429
1430 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1431 netdev->name, adapter);
1432
1433 if (err)
1434 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1435 err);
1436
1437 request_done:
1438 return err;
1439 }
1440
igb_free_irq(struct igb_adapter * adapter)1441 static void igb_free_irq(struct igb_adapter *adapter)
1442 {
1443 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1444 int vector = 0, i;
1445
1446 free_irq(adapter->msix_entries[vector++].vector, adapter);
1447
1448 for (i = 0; i < adapter->num_q_vectors; i++)
1449 free_irq(adapter->msix_entries[vector++].vector,
1450 adapter->q_vector[i]);
1451 } else {
1452 free_irq(adapter->pdev->irq, adapter);
1453 }
1454 }
1455
1456 /**
1457 * igb_irq_disable - Mask off interrupt generation on the NIC
1458 * @adapter: board private structure
1459 **/
igb_irq_disable(struct igb_adapter * adapter)1460 static void igb_irq_disable(struct igb_adapter *adapter)
1461 {
1462 struct e1000_hw *hw = &adapter->hw;
1463
1464 /* we need to be careful when disabling interrupts. The VFs are also
1465 * mapped into these registers and so clearing the bits can cause
1466 * issues on the VF drivers so we only need to clear what we set
1467 */
1468 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1469 u32 regval = rd32(E1000_EIAM);
1470
1471 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1472 wr32(E1000_EIMC, adapter->eims_enable_mask);
1473 regval = rd32(E1000_EIAC);
1474 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1475 }
1476
1477 wr32(E1000_IAM, 0);
1478 wr32(E1000_IMC, ~0);
1479 wrfl();
1480 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1481 int i;
1482
1483 for (i = 0; i < adapter->num_q_vectors; i++)
1484 synchronize_irq(adapter->msix_entries[i].vector);
1485 } else {
1486 synchronize_irq(adapter->pdev->irq);
1487 }
1488 }
1489
1490 /**
1491 * igb_irq_enable - Enable default interrupt generation settings
1492 * @adapter: board private structure
1493 **/
igb_irq_enable(struct igb_adapter * adapter)1494 static void igb_irq_enable(struct igb_adapter *adapter)
1495 {
1496 struct e1000_hw *hw = &adapter->hw;
1497
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1500 u32 regval = rd32(E1000_EIAC);
1501
1502 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1503 regval = rd32(E1000_EIAM);
1504 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1505 wr32(E1000_EIMS, adapter->eims_enable_mask);
1506 if (adapter->vfs_allocated_count) {
1507 wr32(E1000_MBVFIMR, 0xFF);
1508 ims |= E1000_IMS_VMMB;
1509 }
1510 wr32(E1000_IMS, ims);
1511 } else {
1512 wr32(E1000_IMS, IMS_ENABLE_MASK |
1513 E1000_IMS_DRSTA);
1514 wr32(E1000_IAM, IMS_ENABLE_MASK |
1515 E1000_IMS_DRSTA);
1516 }
1517 }
1518
igb_update_mng_vlan(struct igb_adapter * adapter)1519 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1520 {
1521 struct e1000_hw *hw = &adapter->hw;
1522 u16 pf_id = adapter->vfs_allocated_count;
1523 u16 vid = adapter->hw.mng_cookie.vlan_id;
1524 u16 old_vid = adapter->mng_vlan_id;
1525
1526 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1527 /* add VID to filter table */
1528 igb_vfta_set(hw, vid, pf_id, true, true);
1529 adapter->mng_vlan_id = vid;
1530 } else {
1531 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1532 }
1533
1534 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1535 (vid != old_vid) &&
1536 !test_bit(old_vid, adapter->active_vlans)) {
1537 /* remove VID from filter table */
1538 igb_vfta_set(hw, vid, pf_id, false, true);
1539 }
1540 }
1541
1542 /**
1543 * igb_release_hw_control - release control of the h/w to f/w
1544 * @adapter: address of board private structure
1545 *
1546 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1547 * For ASF and Pass Through versions of f/w this means that the
1548 * driver is no longer loaded.
1549 **/
igb_release_hw_control(struct igb_adapter * adapter)1550 static void igb_release_hw_control(struct igb_adapter *adapter)
1551 {
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 ctrl_ext;
1554
1555 /* Let firmware take over control of h/w */
1556 ctrl_ext = rd32(E1000_CTRL_EXT);
1557 wr32(E1000_CTRL_EXT,
1558 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1559 }
1560
1561 /**
1562 * igb_get_hw_control - get control of the h/w from f/w
1563 * @adapter: address of board private structure
1564 *
1565 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1566 * For ASF and Pass Through versions of f/w this means that
1567 * the driver is loaded.
1568 **/
igb_get_hw_control(struct igb_adapter * adapter)1569 static void igb_get_hw_control(struct igb_adapter *adapter)
1570 {
1571 struct e1000_hw *hw = &adapter->hw;
1572 u32 ctrl_ext;
1573
1574 /* Let firmware know the driver has taken over */
1575 ctrl_ext = rd32(E1000_CTRL_EXT);
1576 wr32(E1000_CTRL_EXT,
1577 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1578 }
1579
enable_fqtss(struct igb_adapter * adapter,bool enable)1580 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1581 {
1582 struct net_device *netdev = adapter->netdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584
1585 WARN_ON(hw->mac.type != e1000_i210);
1586
1587 if (enable)
1588 adapter->flags |= IGB_FLAG_FQTSS;
1589 else
1590 adapter->flags &= ~IGB_FLAG_FQTSS;
1591
1592 if (netif_running(netdev))
1593 schedule_work(&adapter->reset_task);
1594 }
1595
is_fqtss_enabled(struct igb_adapter * adapter)1596 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1597 {
1598 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1599 }
1600
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1601 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1602 enum tx_queue_prio prio)
1603 {
1604 u32 val;
1605
1606 WARN_ON(hw->mac.type != e1000_i210);
1607 WARN_ON(queue < 0 || queue > 4);
1608
1609 val = rd32(E1000_I210_TXDCTL(queue));
1610
1611 if (prio == TX_QUEUE_PRIO_HIGH)
1612 val |= E1000_TXDCTL_PRIORITY;
1613 else
1614 val &= ~E1000_TXDCTL_PRIORITY;
1615
1616 wr32(E1000_I210_TXDCTL(queue), val);
1617 }
1618
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1619 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1620 {
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 1);
1625
1626 val = rd32(E1000_I210_TQAVCC(queue));
1627
1628 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1629 val |= E1000_TQAVCC_QUEUEMODE;
1630 else
1631 val &= ~E1000_TQAVCC_QUEUEMODE;
1632
1633 wr32(E1000_I210_TQAVCC(queue), val);
1634 }
1635
is_any_cbs_enabled(struct igb_adapter * adapter)1636 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1637 {
1638 int i;
1639
1640 for (i = 0; i < adapter->num_tx_queues; i++) {
1641 if (adapter->tx_ring[i]->cbs_enable)
1642 return true;
1643 }
1644
1645 return false;
1646 }
1647
is_any_txtime_enabled(struct igb_adapter * adapter)1648 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1649 {
1650 int i;
1651
1652 for (i = 0; i < adapter->num_tx_queues; i++) {
1653 if (adapter->tx_ring[i]->launchtime_enable)
1654 return true;
1655 }
1656
1657 return false;
1658 }
1659
1660 /**
1661 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1662 * @adapter: pointer to adapter struct
1663 * @queue: queue number
1664 *
1665 * Configure CBS and Launchtime for a given hardware queue.
1666 * Parameters are retrieved from the correct Tx ring, so
1667 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1668 * for setting those correctly prior to this function being called.
1669 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1670 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1671 {
1672 struct net_device *netdev = adapter->netdev;
1673 struct e1000_hw *hw = &adapter->hw;
1674 struct igb_ring *ring;
1675 u32 tqavcc, tqavctrl;
1676 u16 value;
1677
1678 WARN_ON(hw->mac.type != e1000_i210);
1679 WARN_ON(queue < 0 || queue > 1);
1680 ring = adapter->tx_ring[queue];
1681
1682 /* If any of the Qav features is enabled, configure queues as SR and
1683 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1684 * as SP.
1685 */
1686 if (ring->cbs_enable || ring->launchtime_enable) {
1687 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1688 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1689 } else {
1690 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1691 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1692 }
1693
1694 /* If CBS is enabled, set DataTranARB and config its parameters. */
1695 if (ring->cbs_enable || queue == 0) {
1696 /* i210 does not allow the queue 0 to be in the Strict
1697 * Priority mode while the Qav mode is enabled, so,
1698 * instead of disabling strict priority mode, we give
1699 * queue 0 the maximum of credits possible.
1700 *
1701 * See section 8.12.19 of the i210 datasheet, "Note:
1702 * Queue0 QueueMode must be set to 1b when
1703 * TransmitMode is set to Qav."
1704 */
1705 if (queue == 0 && !ring->cbs_enable) {
1706 /* max "linkspeed" idleslope in kbps */
1707 ring->idleslope = 1000000;
1708 ring->hicredit = ETH_FRAME_LEN;
1709 }
1710
1711 /* Always set data transfer arbitration to credit-based
1712 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1713 * the queues.
1714 */
1715 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1716 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1717 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1718
1719 /* According to i210 datasheet section 7.2.7.7, we should set
1720 * the 'idleSlope' field from TQAVCC register following the
1721 * equation:
1722 *
1723 * For 100 Mbps link speed:
1724 *
1725 * value = BW * 0x7735 * 0.2 (E1)
1726 *
1727 * For 1000Mbps link speed:
1728 *
1729 * value = BW * 0x7735 * 2 (E2)
1730 *
1731 * E1 and E2 can be merged into one equation as shown below.
1732 * Note that 'link-speed' is in Mbps.
1733 *
1734 * value = BW * 0x7735 * 2 * link-speed
1735 * -------------- (E3)
1736 * 1000
1737 *
1738 * 'BW' is the percentage bandwidth out of full link speed
1739 * which can be found with the following equation. Note that
1740 * idleSlope here is the parameter from this function which
1741 * is in kbps.
1742 *
1743 * BW = idleSlope
1744 * ----------------- (E4)
1745 * link-speed * 1000
1746 *
1747 * That said, we can come up with a generic equation to
1748 * calculate the value we should set it TQAVCC register by
1749 * replacing 'BW' in E3 by E4. The resulting equation is:
1750 *
1751 * value = idleSlope * 0x7735 * 2 * link-speed
1752 * ----------------- -------------- (E5)
1753 * link-speed * 1000 1000
1754 *
1755 * 'link-speed' is present in both sides of the fraction so
1756 * it is canceled out. The final equation is the following:
1757 *
1758 * value = idleSlope * 61034
1759 * ----------------- (E6)
1760 * 1000000
1761 *
1762 * NOTE: For i210, given the above, we can see that idleslope
1763 * is represented in 16.38431 kbps units by the value at
1764 * the TQAVCC register (1Gbps / 61034), which reduces
1765 * the granularity for idleslope increments.
1766 * For instance, if you want to configure a 2576kbps
1767 * idleslope, the value to be written on the register
1768 * would have to be 157.23. If rounded down, you end
1769 * up with less bandwidth available than originally
1770 * required (~2572 kbps). If rounded up, you end up
1771 * with a higher bandwidth (~2589 kbps). Below the
1772 * approach we take is to always round up the
1773 * calculated value, so the resulting bandwidth might
1774 * be slightly higher for some configurations.
1775 */
1776 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1777
1778 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1779 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1780 tqavcc |= value;
1781 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1782
1783 wr32(E1000_I210_TQAVHC(queue),
1784 0x80000000 + ring->hicredit * 0x7735);
1785 } else {
1786
1787 /* Set idleSlope to zero. */
1788 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1789 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1790 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1791
1792 /* Set hiCredit to zero. */
1793 wr32(E1000_I210_TQAVHC(queue), 0);
1794
1795 /* If CBS is not enabled for any queues anymore, then return to
1796 * the default state of Data Transmission Arbitration on
1797 * TQAVCTRL.
1798 */
1799 if (!is_any_cbs_enabled(adapter)) {
1800 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1801 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1802 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1803 }
1804 }
1805
1806 /* If LaunchTime is enabled, set DataTranTIM. */
1807 if (ring->launchtime_enable) {
1808 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1809 * for any of the SR queues, and configure fetchtime delta.
1810 * XXX NOTE:
1811 * - LaunchTime will be enabled for all SR queues.
1812 * - A fixed offset can be added relative to the launch
1813 * time of all packets if configured at reg LAUNCH_OS0.
1814 * We are keeping it as 0 for now (default value).
1815 */
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1818 E1000_TQAVCTRL_FETCHTIME_DELTA;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 } else {
1821 /* If Launchtime is not enabled for any SR queues anymore,
1822 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1823 * effectively disabling Launchtime.
1824 */
1825 if (!is_any_txtime_enabled(adapter)) {
1826 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1827 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1828 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1829 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1830 }
1831 }
1832
1833 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1834 * CBS are not configurable by software so we don't do any 'controller
1835 * configuration' in respect to these parameters.
1836 */
1837
1838 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1839 ring->cbs_enable ? "enabled" : "disabled",
1840 ring->launchtime_enable ? "enabled" : "disabled",
1841 queue,
1842 ring->idleslope, ring->sendslope,
1843 ring->hicredit, ring->locredit);
1844 }
1845
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1846 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1847 bool enable)
1848 {
1849 struct igb_ring *ring;
1850
1851 if (queue < 0 || queue > adapter->num_tx_queues)
1852 return -EINVAL;
1853
1854 ring = adapter->tx_ring[queue];
1855 ring->launchtime_enable = enable;
1856
1857 return 0;
1858 }
1859
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1860 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1861 bool enable, int idleslope, int sendslope,
1862 int hicredit, int locredit)
1863 {
1864 struct igb_ring *ring;
1865
1866 if (queue < 0 || queue > adapter->num_tx_queues)
1867 return -EINVAL;
1868
1869 ring = adapter->tx_ring[queue];
1870
1871 ring->cbs_enable = enable;
1872 ring->idleslope = idleslope;
1873 ring->sendslope = sendslope;
1874 ring->hicredit = hicredit;
1875 ring->locredit = locredit;
1876
1877 return 0;
1878 }
1879
1880 /**
1881 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1882 * @adapter: pointer to adapter struct
1883 *
1884 * Configure TQAVCTRL register switching the controller's Tx mode
1885 * if FQTSS mode is enabled or disabled. Additionally, will issue
1886 * a call to igb_config_tx_modes() per queue so any previously saved
1887 * Tx parameters are applied.
1888 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1889 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1890 {
1891 struct net_device *netdev = adapter->netdev;
1892 struct e1000_hw *hw = &adapter->hw;
1893 u32 val;
1894
1895 /* Only i210 controller supports changing the transmission mode. */
1896 if (hw->mac.type != e1000_i210)
1897 return;
1898
1899 if (is_fqtss_enabled(adapter)) {
1900 int i, max_queue;
1901
1902 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1903 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1904 * so SP queues wait for SR ones.
1905 */
1906 val = rd32(E1000_I210_TQAVCTRL);
1907 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1908 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1909 wr32(E1000_I210_TQAVCTRL, val);
1910
1911 /* Configure Tx and Rx packet buffers sizes as described in
1912 * i210 datasheet section 7.2.7.7.
1913 */
1914 val = rd32(E1000_TXPBS);
1915 val &= ~I210_TXPBSIZE_MASK;
1916 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1917 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1918 wr32(E1000_TXPBS, val);
1919
1920 val = rd32(E1000_RXPBS);
1921 val &= ~I210_RXPBSIZE_MASK;
1922 val |= I210_RXPBSIZE_PB_30KB;
1923 wr32(E1000_RXPBS, val);
1924
1925 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1926 * register should not exceed the buffer size programmed in
1927 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1928 * so according to the datasheet we should set MAX_TPKT_SIZE to
1929 * 4kB / 64.
1930 *
1931 * However, when we do so, no frame from queue 2 and 3 are
1932 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1933 * or _equal_ to the buffer size programmed in TXPBS. For this
1934 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1935 */
1936 val = (4096 - 1) / 64;
1937 wr32(E1000_I210_DTXMXPKTSZ, val);
1938
1939 /* Since FQTSS mode is enabled, apply any CBS configuration
1940 * previously set. If no previous CBS configuration has been
1941 * done, then the initial configuration is applied, which means
1942 * CBS is disabled.
1943 */
1944 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1945 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1946
1947 for (i = 0; i < max_queue; i++) {
1948 igb_config_tx_modes(adapter, i);
1949 }
1950 } else {
1951 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1952 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1953 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1954
1955 val = rd32(E1000_I210_TQAVCTRL);
1956 /* According to Section 8.12.21, the other flags we've set when
1957 * enabling FQTSS are not relevant when disabling FQTSS so we
1958 * don't set they here.
1959 */
1960 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1961 wr32(E1000_I210_TQAVCTRL, val);
1962 }
1963
1964 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1965 "enabled" : "disabled");
1966 }
1967
1968 /**
1969 * igb_configure - configure the hardware for RX and TX
1970 * @adapter: private board structure
1971 **/
igb_configure(struct igb_adapter * adapter)1972 static void igb_configure(struct igb_adapter *adapter)
1973 {
1974 struct net_device *netdev = adapter->netdev;
1975 int i;
1976
1977 igb_get_hw_control(adapter);
1978 igb_set_rx_mode(netdev);
1979 igb_setup_tx_mode(adapter);
1980
1981 igb_restore_vlan(adapter);
1982
1983 igb_setup_tctl(adapter);
1984 igb_setup_mrqc(adapter);
1985 igb_setup_rctl(adapter);
1986
1987 igb_nfc_filter_restore(adapter);
1988 igb_configure_tx(adapter);
1989 igb_configure_rx(adapter);
1990
1991 igb_rx_fifo_flush_82575(&adapter->hw);
1992
1993 /* call igb_desc_unused which always leaves
1994 * at least 1 descriptor unused to make sure
1995 * next_to_use != next_to_clean
1996 */
1997 for (i = 0; i < adapter->num_rx_queues; i++) {
1998 struct igb_ring *ring = adapter->rx_ring[i];
1999 if (ring->xsk_pool)
2000 igb_alloc_rx_buffers_zc(ring, ring->xsk_pool,
2001 igb_desc_unused(ring));
2002 else
2003 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2004 }
2005 }
2006
2007 /**
2008 * igb_power_up_link - Power up the phy/serdes link
2009 * @adapter: address of board private structure
2010 **/
igb_power_up_link(struct igb_adapter * adapter)2011 void igb_power_up_link(struct igb_adapter *adapter)
2012 {
2013 igb_reset_phy(&adapter->hw);
2014
2015 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2016 igb_power_up_phy_copper(&adapter->hw);
2017 else
2018 igb_power_up_serdes_link_82575(&adapter->hw);
2019
2020 igb_setup_link(&adapter->hw);
2021 }
2022
2023 /**
2024 * igb_power_down_link - Power down the phy/serdes link
2025 * @adapter: address of board private structure
2026 */
igb_power_down_link(struct igb_adapter * adapter)2027 static void igb_power_down_link(struct igb_adapter *adapter)
2028 {
2029 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2030 igb_power_down_phy_copper_82575(&adapter->hw);
2031 else
2032 igb_shutdown_serdes_link_82575(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2037 * @adapter: address of the board private structure
2038 **/
igb_check_swap_media(struct igb_adapter * adapter)2039 static void igb_check_swap_media(struct igb_adapter *adapter)
2040 {
2041 struct e1000_hw *hw = &adapter->hw;
2042 u32 ctrl_ext, connsw;
2043 bool swap_now = false;
2044
2045 ctrl_ext = rd32(E1000_CTRL_EXT);
2046 connsw = rd32(E1000_CONNSW);
2047
2048 /* need to live swap if current media is copper and we have fiber/serdes
2049 * to go to.
2050 */
2051
2052 if ((hw->phy.media_type == e1000_media_type_copper) &&
2053 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2054 swap_now = true;
2055 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2056 !(connsw & E1000_CONNSW_SERDESD)) {
2057 /* copper signal takes time to appear */
2058 if (adapter->copper_tries < 4) {
2059 adapter->copper_tries++;
2060 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2061 wr32(E1000_CONNSW, connsw);
2062 return;
2063 } else {
2064 adapter->copper_tries = 0;
2065 if ((connsw & E1000_CONNSW_PHYSD) &&
2066 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2067 swap_now = true;
2068 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2069 wr32(E1000_CONNSW, connsw);
2070 }
2071 }
2072 }
2073
2074 if (!swap_now)
2075 return;
2076
2077 switch (hw->phy.media_type) {
2078 case e1000_media_type_copper:
2079 netdev_info(adapter->netdev,
2080 "MAS: changing media to fiber/serdes\n");
2081 ctrl_ext |=
2082 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2083 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2084 adapter->copper_tries = 0;
2085 break;
2086 case e1000_media_type_internal_serdes:
2087 case e1000_media_type_fiber:
2088 netdev_info(adapter->netdev,
2089 "MAS: changing media to copper\n");
2090 ctrl_ext &=
2091 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2092 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2093 break;
2094 default:
2095 /* shouldn't get here during regular operation */
2096 netdev_err(adapter->netdev,
2097 "AMS: Invalid media type found, returning\n");
2098 break;
2099 }
2100 wr32(E1000_CTRL_EXT, ctrl_ext);
2101 }
2102
igb_set_queue_napi(struct igb_adapter * adapter,int vector,struct napi_struct * napi)2103 void igb_set_queue_napi(struct igb_adapter *adapter, int vector,
2104 struct napi_struct *napi)
2105 {
2106 struct igb_q_vector *q_vector = adapter->q_vector[vector];
2107
2108 if (q_vector->rx.ring)
2109 netif_queue_set_napi(adapter->netdev,
2110 q_vector->rx.ring->queue_index,
2111 NETDEV_QUEUE_TYPE_RX, napi);
2112
2113 if (q_vector->tx.ring)
2114 netif_queue_set_napi(adapter->netdev,
2115 q_vector->tx.ring->queue_index,
2116 NETDEV_QUEUE_TYPE_TX, napi);
2117 }
2118
2119 /**
2120 * igb_up - Open the interface and prepare it to handle traffic
2121 * @adapter: board private structure
2122 **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 struct e1000_hw *hw = &adapter->hw;
2126 struct napi_struct *napi;
2127 int i;
2128
2129 /* hardware has been reset, we need to reload some things */
2130 igb_configure(adapter);
2131
2132 clear_bit(__IGB_DOWN, &adapter->state);
2133
2134 for (i = 0; i < adapter->num_q_vectors; i++) {
2135 napi = &adapter->q_vector[i]->napi;
2136 napi_enable(napi);
2137 igb_set_queue_napi(adapter, i, napi);
2138 }
2139
2140 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2141 igb_configure_msix(adapter);
2142 else
2143 igb_assign_vector(adapter->q_vector[0], 0);
2144
2145 /* Clear any pending interrupts. */
2146 rd32(E1000_TSICR);
2147 rd32(E1000_ICR);
2148 igb_irq_enable(adapter);
2149
2150 /* notify VFs that reset has been completed */
2151 if (adapter->vfs_allocated_count) {
2152 u32 reg_data = rd32(E1000_CTRL_EXT);
2153
2154 reg_data |= E1000_CTRL_EXT_PFRSTD;
2155 wr32(E1000_CTRL_EXT, reg_data);
2156 }
2157
2158 netif_tx_start_all_queues(adapter->netdev);
2159
2160 /* start the watchdog. */
2161 hw->mac.get_link_status = 1;
2162 schedule_work(&adapter->watchdog_task);
2163
2164 if ((adapter->flags & IGB_FLAG_EEE) &&
2165 (!hw->dev_spec._82575.eee_disable))
2166 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2167
2168 return 0;
2169 }
2170
igb_down(struct igb_adapter * adapter)2171 void igb_down(struct igb_adapter *adapter)
2172 {
2173 struct net_device *netdev = adapter->netdev;
2174 struct e1000_hw *hw = &adapter->hw;
2175 u32 tctl, rctl;
2176 int i;
2177
2178 /* signal that we're down so the interrupt handler does not
2179 * reschedule our watchdog timer
2180 */
2181 set_bit(__IGB_DOWN, &adapter->state);
2182
2183 /* disable receives in the hardware */
2184 rctl = rd32(E1000_RCTL);
2185 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2186 /* flush and sleep below */
2187
2188 igb_nfc_filter_exit(adapter);
2189
2190 netif_carrier_off(netdev);
2191 netif_tx_stop_all_queues(netdev);
2192
2193 /* disable transmits in the hardware */
2194 tctl = rd32(E1000_TCTL);
2195 tctl &= ~E1000_TCTL_EN;
2196 wr32(E1000_TCTL, tctl);
2197 /* flush both disables and wait for them to finish */
2198 wrfl();
2199 usleep_range(10000, 11000);
2200
2201 igb_irq_disable(adapter);
2202
2203 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2204
2205 for (i = 0; i < adapter->num_q_vectors; i++) {
2206 if (adapter->q_vector[i]) {
2207 napi_synchronize(&adapter->q_vector[i]->napi);
2208 igb_set_queue_napi(adapter, i, NULL);
2209 napi_disable(&adapter->q_vector[i]->napi);
2210 }
2211 }
2212
2213 timer_delete_sync(&adapter->watchdog_timer);
2214 timer_delete_sync(&adapter->phy_info_timer);
2215
2216 /* record the stats before reset*/
2217 spin_lock(&adapter->stats64_lock);
2218 igb_update_stats(adapter);
2219 spin_unlock(&adapter->stats64_lock);
2220
2221 adapter->link_speed = 0;
2222 adapter->link_duplex = 0;
2223
2224 if (!pci_channel_offline(adapter->pdev))
2225 igb_reset(adapter);
2226
2227 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2228 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2229
2230 igb_clean_all_tx_rings(adapter);
2231 igb_clean_all_rx_rings(adapter);
2232 #ifdef CONFIG_IGB_DCA
2233
2234 /* since we reset the hardware DCA settings were cleared */
2235 igb_setup_dca(adapter);
2236 #endif
2237 }
2238
igb_reinit_locked(struct igb_adapter * adapter)2239 void igb_reinit_locked(struct igb_adapter *adapter)
2240 {
2241 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2242 usleep_range(1000, 2000);
2243 igb_down(adapter);
2244 igb_up(adapter);
2245 clear_bit(__IGB_RESETTING, &adapter->state);
2246 }
2247
2248 /** igb_enable_mas - Media Autosense re-enable after swap
2249 *
2250 * @adapter: adapter struct
2251 **/
igb_enable_mas(struct igb_adapter * adapter)2252 static void igb_enable_mas(struct igb_adapter *adapter)
2253 {
2254 struct e1000_hw *hw = &adapter->hw;
2255 u32 connsw = rd32(E1000_CONNSW);
2256
2257 /* configure for SerDes media detect */
2258 if ((hw->phy.media_type == e1000_media_type_copper) &&
2259 (!(connsw & E1000_CONNSW_SERDESD))) {
2260 connsw |= E1000_CONNSW_ENRGSRC;
2261 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2262 wr32(E1000_CONNSW, connsw);
2263 wrfl();
2264 }
2265 }
2266
2267 #ifdef CONFIG_IGB_HWMON
2268 /**
2269 * igb_set_i2c_bb - Init I2C interface
2270 * @hw: pointer to hardware structure
2271 **/
igb_set_i2c_bb(struct e1000_hw * hw)2272 static void igb_set_i2c_bb(struct e1000_hw *hw)
2273 {
2274 u32 ctrl_ext;
2275 s32 i2cctl;
2276
2277 ctrl_ext = rd32(E1000_CTRL_EXT);
2278 ctrl_ext |= E1000_CTRL_I2C_ENA;
2279 wr32(E1000_CTRL_EXT, ctrl_ext);
2280 wrfl();
2281
2282 i2cctl = rd32(E1000_I2CPARAMS);
2283 i2cctl |= E1000_I2CBB_EN
2284 | E1000_I2C_CLK_OE_N
2285 | E1000_I2C_DATA_OE_N;
2286 wr32(E1000_I2CPARAMS, i2cctl);
2287 wrfl();
2288 }
2289 #endif
2290
igb_reset(struct igb_adapter * adapter)2291 void igb_reset(struct igb_adapter *adapter)
2292 {
2293 struct pci_dev *pdev = adapter->pdev;
2294 struct e1000_hw *hw = &adapter->hw;
2295 struct e1000_mac_info *mac = &hw->mac;
2296 struct e1000_fc_info *fc = &hw->fc;
2297 u32 pba, hwm;
2298
2299 /* Repartition Pba for greater than 9k mtu
2300 * To take effect CTRL.RST is required.
2301 */
2302 switch (mac->type) {
2303 case e1000_i350:
2304 case e1000_i354:
2305 case e1000_82580:
2306 pba = rd32(E1000_RXPBS);
2307 pba = igb_rxpbs_adjust_82580(pba);
2308 break;
2309 case e1000_82576:
2310 pba = rd32(E1000_RXPBS);
2311 pba &= E1000_RXPBS_SIZE_MASK_82576;
2312 break;
2313 case e1000_82575:
2314 case e1000_i210:
2315 case e1000_i211:
2316 default:
2317 pba = E1000_PBA_34K;
2318 break;
2319 }
2320
2321 if (mac->type == e1000_82575) {
2322 u32 min_rx_space, min_tx_space, needed_tx_space;
2323
2324 /* write Rx PBA so that hardware can report correct Tx PBA */
2325 wr32(E1000_PBA, pba);
2326
2327 /* To maintain wire speed transmits, the Tx FIFO should be
2328 * large enough to accommodate two full transmit packets,
2329 * rounded up to the next 1KB and expressed in KB. Likewise,
2330 * the Rx FIFO should be large enough to accommodate at least
2331 * one full receive packet and is similarly rounded up and
2332 * expressed in KB.
2333 */
2334 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2335
2336 /* The Tx FIFO also stores 16 bytes of information about the Tx
2337 * but don't include Ethernet FCS because hardware appends it.
2338 * We only need to round down to the nearest 512 byte block
2339 * count since the value we care about is 2 frames, not 1.
2340 */
2341 min_tx_space = adapter->max_frame_size;
2342 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2343 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2344
2345 /* upper 16 bits has Tx packet buffer allocation size in KB */
2346 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2347
2348 /* If current Tx allocation is less than the min Tx FIFO size,
2349 * and the min Tx FIFO size is less than the current Rx FIFO
2350 * allocation, take space away from current Rx allocation.
2351 */
2352 if (needed_tx_space < pba) {
2353 pba -= needed_tx_space;
2354
2355 /* if short on Rx space, Rx wins and must trump Tx
2356 * adjustment
2357 */
2358 if (pba < min_rx_space)
2359 pba = min_rx_space;
2360 }
2361
2362 /* adjust PBA for jumbo frames */
2363 wr32(E1000_PBA, pba);
2364 }
2365
2366 /* flow control settings
2367 * The high water mark must be low enough to fit one full frame
2368 * after transmitting the pause frame. As such we must have enough
2369 * space to allow for us to complete our current transmit and then
2370 * receive the frame that is in progress from the link partner.
2371 * Set it to:
2372 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2373 */
2374 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2375
2376 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2377 fc->low_water = fc->high_water - 16;
2378 fc->pause_time = 0xFFFF;
2379 fc->send_xon = 1;
2380 fc->current_mode = fc->requested_mode;
2381
2382 /* disable receive for all VFs and wait one second */
2383 if (adapter->vfs_allocated_count) {
2384 int i;
2385
2386 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2387 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2388
2389 /* ping all the active vfs to let them know we are going down */
2390 igb_ping_all_vfs(adapter);
2391
2392 /* disable transmits and receives */
2393 wr32(E1000_VFRE, 0);
2394 wr32(E1000_VFTE, 0);
2395 }
2396
2397 /* Allow time for pending master requests to run */
2398 hw->mac.ops.reset_hw(hw);
2399 wr32(E1000_WUC, 0);
2400
2401 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2402 /* need to resetup here after media swap */
2403 adapter->ei.get_invariants(hw);
2404 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2405 }
2406 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2407 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2408 igb_enable_mas(adapter);
2409 }
2410 if (hw->mac.ops.init_hw(hw))
2411 dev_err(&pdev->dev, "Hardware Error\n");
2412
2413 /* RAR registers were cleared during init_hw, clear mac table */
2414 igb_flush_mac_table(adapter);
2415 __dev_uc_unsync(adapter->netdev, NULL);
2416
2417 /* Recover default RAR entry */
2418 igb_set_default_mac_filter(adapter);
2419
2420 /* Flow control settings reset on hardware reset, so guarantee flow
2421 * control is off when forcing speed.
2422 */
2423 if (!hw->mac.autoneg)
2424 igb_force_mac_fc(hw);
2425
2426 igb_init_dmac(adapter, pba);
2427 #ifdef CONFIG_IGB_HWMON
2428 /* Re-initialize the thermal sensor on i350 devices. */
2429 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2430 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2431 /* If present, re-initialize the external thermal sensor
2432 * interface.
2433 */
2434 if (adapter->ets)
2435 igb_set_i2c_bb(hw);
2436 mac->ops.init_thermal_sensor_thresh(hw);
2437 }
2438 }
2439 #endif
2440 /* Re-establish EEE setting */
2441 if (hw->phy.media_type == e1000_media_type_copper) {
2442 switch (mac->type) {
2443 case e1000_i350:
2444 case e1000_i210:
2445 case e1000_i211:
2446 igb_set_eee_i350(hw, true, true);
2447 break;
2448 case e1000_i354:
2449 igb_set_eee_i354(hw, true, true);
2450 break;
2451 default:
2452 break;
2453 }
2454 }
2455 if (!netif_running(adapter->netdev))
2456 igb_power_down_link(adapter);
2457
2458 igb_update_mng_vlan(adapter);
2459
2460 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2461 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2462
2463 /* Re-enable PTP, where applicable. */
2464 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2465 igb_ptp_reset(adapter);
2466
2467 igb_get_phy_info(hw);
2468 }
2469
igb_fix_features(struct net_device * netdev,netdev_features_t features)2470 static netdev_features_t igb_fix_features(struct net_device *netdev,
2471 netdev_features_t features)
2472 {
2473 /* Since there is no support for separate Rx/Tx vlan accel
2474 * enable/disable make sure Tx flag is always in same state as Rx.
2475 */
2476 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2477 features |= NETIF_F_HW_VLAN_CTAG_TX;
2478 else
2479 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2480
2481 return features;
2482 }
2483
igb_set_features(struct net_device * netdev,netdev_features_t features)2484 static int igb_set_features(struct net_device *netdev,
2485 netdev_features_t features)
2486 {
2487 netdev_features_t changed = netdev->features ^ features;
2488 struct igb_adapter *adapter = netdev_priv(netdev);
2489
2490 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2491 igb_vlan_mode(netdev, features);
2492
2493 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2494 return 0;
2495
2496 if (!(features & NETIF_F_NTUPLE)) {
2497 struct hlist_node *node2;
2498 struct igb_nfc_filter *rule;
2499
2500 spin_lock(&adapter->nfc_lock);
2501 hlist_for_each_entry_safe(rule, node2,
2502 &adapter->nfc_filter_list, nfc_node) {
2503 igb_erase_filter(adapter, rule);
2504 hlist_del(&rule->nfc_node);
2505 kfree(rule);
2506 }
2507 spin_unlock(&adapter->nfc_lock);
2508 adapter->nfc_filter_count = 0;
2509 }
2510
2511 netdev->features = features;
2512
2513 if (netif_running(netdev))
2514 igb_reinit_locked(adapter);
2515 else
2516 igb_reset(adapter);
2517
2518 return 1;
2519 }
2520
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)2521 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2522 struct net_device *dev,
2523 const unsigned char *addr, u16 vid,
2524 u16 flags, bool *notified,
2525 struct netlink_ext_ack *extack)
2526 {
2527 /* guarantee we can provide a unique filter for the unicast address */
2528 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2529 struct igb_adapter *adapter = netdev_priv(dev);
2530 int vfn = adapter->vfs_allocated_count;
2531
2532 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2533 return -ENOMEM;
2534 }
2535
2536 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2537 }
2538
2539 #define IGB_MAX_MAC_HDR_LEN 127
2540 #define IGB_MAX_NETWORK_HDR_LEN 511
2541
2542 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2543 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2544 netdev_features_t features)
2545 {
2546 unsigned int network_hdr_len, mac_hdr_len;
2547
2548 /* Make certain the headers can be described by a context descriptor */
2549 mac_hdr_len = skb_network_offset(skb);
2550 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2551 return features & ~(NETIF_F_HW_CSUM |
2552 NETIF_F_SCTP_CRC |
2553 NETIF_F_GSO_UDP_L4 |
2554 NETIF_F_HW_VLAN_CTAG_TX |
2555 NETIF_F_TSO |
2556 NETIF_F_TSO6);
2557
2558 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2559 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2560 return features & ~(NETIF_F_HW_CSUM |
2561 NETIF_F_SCTP_CRC |
2562 NETIF_F_GSO_UDP_L4 |
2563 NETIF_F_TSO |
2564 NETIF_F_TSO6);
2565
2566 /* We can only support IPV4 TSO in tunnels if we can mangle the
2567 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2568 */
2569 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2570 features &= ~NETIF_F_TSO;
2571
2572 return features;
2573 }
2574
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2575 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2576 {
2577 if (!is_fqtss_enabled(adapter)) {
2578 enable_fqtss(adapter, true);
2579 return;
2580 }
2581
2582 igb_config_tx_modes(adapter, queue);
2583
2584 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2585 enable_fqtss(adapter, false);
2586 }
2587
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2588 static int igb_offload_cbs(struct igb_adapter *adapter,
2589 struct tc_cbs_qopt_offload *qopt)
2590 {
2591 struct e1000_hw *hw = &adapter->hw;
2592 int err;
2593
2594 /* CBS offloading is only supported by i210 controller. */
2595 if (hw->mac.type != e1000_i210)
2596 return -EOPNOTSUPP;
2597
2598 /* CBS offloading is only supported by queue 0 and queue 1. */
2599 if (qopt->queue < 0 || qopt->queue > 1)
2600 return -EINVAL;
2601
2602 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2603 qopt->idleslope, qopt->sendslope,
2604 qopt->hicredit, qopt->locredit);
2605 if (err)
2606 return err;
2607
2608 igb_offload_apply(adapter, qopt->queue);
2609
2610 return 0;
2611 }
2612
2613 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2614 #define VLAN_PRIO_FULL_MASK (0x07)
2615
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2616 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2617 struct flow_cls_offload *f,
2618 int traffic_class,
2619 struct igb_nfc_filter *input)
2620 {
2621 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2622 struct flow_dissector *dissector = rule->match.dissector;
2623 struct netlink_ext_ack *extack = f->common.extack;
2624
2625 if (dissector->used_keys &
2626 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2627 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2628 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2629 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2630 NL_SET_ERR_MSG_MOD(extack,
2631 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2632 return -EOPNOTSUPP;
2633 }
2634
2635 if (flow_rule_match_has_control_flags(rule, extack))
2636 return -EOPNOTSUPP;
2637
2638 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2639 struct flow_match_eth_addrs match;
2640
2641 flow_rule_match_eth_addrs(rule, &match);
2642 if (!is_zero_ether_addr(match.mask->dst)) {
2643 if (!is_broadcast_ether_addr(match.mask->dst)) {
2644 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2645 return -EINVAL;
2646 }
2647
2648 input->filter.match_flags |=
2649 IGB_FILTER_FLAG_DST_MAC_ADDR;
2650 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2651 }
2652
2653 if (!is_zero_ether_addr(match.mask->src)) {
2654 if (!is_broadcast_ether_addr(match.mask->src)) {
2655 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2656 return -EINVAL;
2657 }
2658
2659 input->filter.match_flags |=
2660 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2661 ether_addr_copy(input->filter.src_addr, match.key->src);
2662 }
2663 }
2664
2665 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2666 struct flow_match_basic match;
2667
2668 flow_rule_match_basic(rule, &match);
2669 if (match.mask->n_proto) {
2670 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2671 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2672 return -EINVAL;
2673 }
2674
2675 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2676 input->filter.etype = match.key->n_proto;
2677 }
2678 }
2679
2680 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2681 struct flow_match_vlan match;
2682
2683 flow_rule_match_vlan(rule, &match);
2684 if (match.mask->vlan_priority) {
2685 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2686 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2687 return -EINVAL;
2688 }
2689
2690 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2691 input->filter.vlan_tci =
2692 (__force __be16)match.key->vlan_priority;
2693 }
2694 }
2695
2696 input->action = traffic_class;
2697 input->cookie = f->cookie;
2698
2699 return 0;
2700 }
2701
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2702 static int igb_configure_clsflower(struct igb_adapter *adapter,
2703 struct flow_cls_offload *cls_flower)
2704 {
2705 struct netlink_ext_ack *extack = cls_flower->common.extack;
2706 struct igb_nfc_filter *filter, *f;
2707 int err, tc;
2708
2709 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2710 if (tc < 0) {
2711 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2712 return -EINVAL;
2713 }
2714
2715 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2716 if (!filter)
2717 return -ENOMEM;
2718
2719 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2720 if (err < 0)
2721 goto err_parse;
2722
2723 spin_lock(&adapter->nfc_lock);
2724
2725 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2726 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2727 err = -EEXIST;
2728 NL_SET_ERR_MSG_MOD(extack,
2729 "This filter is already set in ethtool");
2730 goto err_locked;
2731 }
2732 }
2733
2734 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2735 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2736 err = -EEXIST;
2737 NL_SET_ERR_MSG_MOD(extack,
2738 "This filter is already set in cls_flower");
2739 goto err_locked;
2740 }
2741 }
2742
2743 err = igb_add_filter(adapter, filter);
2744 if (err < 0) {
2745 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2746 goto err_locked;
2747 }
2748
2749 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2750
2751 spin_unlock(&adapter->nfc_lock);
2752
2753 return 0;
2754
2755 err_locked:
2756 spin_unlock(&adapter->nfc_lock);
2757
2758 err_parse:
2759 kfree(filter);
2760
2761 return err;
2762 }
2763
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2764 static int igb_delete_clsflower(struct igb_adapter *adapter,
2765 struct flow_cls_offload *cls_flower)
2766 {
2767 struct igb_nfc_filter *filter;
2768 int err;
2769
2770 spin_lock(&adapter->nfc_lock);
2771
2772 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2773 if (filter->cookie == cls_flower->cookie)
2774 break;
2775
2776 if (!filter) {
2777 err = -ENOENT;
2778 goto out;
2779 }
2780
2781 err = igb_erase_filter(adapter, filter);
2782 if (err < 0)
2783 goto out;
2784
2785 hlist_del(&filter->nfc_node);
2786 kfree(filter);
2787
2788 out:
2789 spin_unlock(&adapter->nfc_lock);
2790
2791 return err;
2792 }
2793
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2794 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2795 struct flow_cls_offload *cls_flower)
2796 {
2797 switch (cls_flower->command) {
2798 case FLOW_CLS_REPLACE:
2799 return igb_configure_clsflower(adapter, cls_flower);
2800 case FLOW_CLS_DESTROY:
2801 return igb_delete_clsflower(adapter, cls_flower);
2802 case FLOW_CLS_STATS:
2803 return -EOPNOTSUPP;
2804 default:
2805 return -EOPNOTSUPP;
2806 }
2807 }
2808
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2809 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2810 void *cb_priv)
2811 {
2812 struct igb_adapter *adapter = cb_priv;
2813
2814 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2815 return -EOPNOTSUPP;
2816
2817 switch (type) {
2818 case TC_SETUP_CLSFLOWER:
2819 return igb_setup_tc_cls_flower(adapter, type_data);
2820
2821 default:
2822 return -EOPNOTSUPP;
2823 }
2824 }
2825
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2826 static int igb_offload_txtime(struct igb_adapter *adapter,
2827 struct tc_etf_qopt_offload *qopt)
2828 {
2829 struct e1000_hw *hw = &adapter->hw;
2830 int err;
2831
2832 /* Launchtime offloading is only supported by i210 controller. */
2833 if (hw->mac.type != e1000_i210)
2834 return -EOPNOTSUPP;
2835
2836 /* Launchtime offloading is only supported by queues 0 and 1. */
2837 if (qopt->queue < 0 || qopt->queue > 1)
2838 return -EINVAL;
2839
2840 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2841 if (err)
2842 return err;
2843
2844 igb_offload_apply(adapter, qopt->queue);
2845
2846 return 0;
2847 }
2848
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2849 static int igb_tc_query_caps(struct igb_adapter *adapter,
2850 struct tc_query_caps_base *base)
2851 {
2852 switch (base->type) {
2853 case TC_SETUP_QDISC_TAPRIO: {
2854 struct tc_taprio_caps *caps = base->caps;
2855
2856 caps->broken_mqprio = true;
2857
2858 return 0;
2859 }
2860 default:
2861 return -EOPNOTSUPP;
2862 }
2863 }
2864
2865 static LIST_HEAD(igb_block_cb_list);
2866
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2867 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2868 void *type_data)
2869 {
2870 struct igb_adapter *adapter = netdev_priv(dev);
2871
2872 switch (type) {
2873 case TC_QUERY_CAPS:
2874 return igb_tc_query_caps(adapter, type_data);
2875 case TC_SETUP_QDISC_CBS:
2876 return igb_offload_cbs(adapter, type_data);
2877 case TC_SETUP_BLOCK:
2878 return flow_block_cb_setup_simple(type_data,
2879 &igb_block_cb_list,
2880 igb_setup_tc_block_cb,
2881 adapter, adapter, true);
2882
2883 case TC_SETUP_QDISC_ETF:
2884 return igb_offload_txtime(adapter, type_data);
2885
2886 default:
2887 return -EOPNOTSUPP;
2888 }
2889 }
2890
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2891 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2892 {
2893 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2894 struct igb_adapter *adapter = netdev_priv(dev);
2895 struct bpf_prog *prog = bpf->prog, *old_prog;
2896 bool running = netif_running(dev);
2897 bool need_reset;
2898
2899 /* verify igb ring attributes are sufficient for XDP */
2900 for (i = 0; i < adapter->num_rx_queues; i++) {
2901 struct igb_ring *ring = adapter->rx_ring[i];
2902
2903 if (frame_size > igb_rx_bufsz(ring)) {
2904 NL_SET_ERR_MSG_MOD(bpf->extack,
2905 "The RX buffer size is too small for the frame size");
2906 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2907 igb_rx_bufsz(ring), frame_size);
2908 return -EINVAL;
2909 }
2910 }
2911
2912 old_prog = xchg(&adapter->xdp_prog, prog);
2913 need_reset = (!!prog != !!old_prog);
2914
2915 /* device is up and bpf is added/removed, must setup the RX queues */
2916 if (need_reset && running) {
2917 igb_close(dev);
2918 } else {
2919 for (i = 0; i < adapter->num_rx_queues; i++)
2920 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2921 adapter->xdp_prog);
2922 }
2923
2924 if (old_prog)
2925 bpf_prog_put(old_prog);
2926
2927 /* bpf is just replaced, RXQ and MTU are already setup */
2928 if (!need_reset) {
2929 return 0;
2930 } else {
2931 if (prog)
2932 xdp_features_set_redirect_target(dev, true);
2933 else
2934 xdp_features_clear_redirect_target(dev);
2935 }
2936
2937 if (running)
2938 igb_open(dev);
2939
2940 return 0;
2941 }
2942
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2943 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2944 {
2945 struct igb_adapter *adapter = netdev_priv(dev);
2946
2947 switch (xdp->command) {
2948 case XDP_SETUP_PROG:
2949 return igb_xdp_setup(dev, xdp);
2950 case XDP_SETUP_XSK_POOL:
2951 return igb_xsk_pool_setup(adapter, xdp->xsk.pool,
2952 xdp->xsk.queue_id);
2953 default:
2954 return -EINVAL;
2955 }
2956 }
2957
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2958 int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2959 {
2960 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2961 int cpu = smp_processor_id();
2962 struct igb_ring *tx_ring;
2963 struct netdev_queue *nq;
2964 u32 ret;
2965
2966 if (unlikely(!xdpf))
2967 return IGB_XDP_CONSUMED;
2968
2969 /* During program transitions its possible adapter->xdp_prog is assigned
2970 * but ring has not been configured yet. In this case simply abort xmit.
2971 */
2972 tx_ring = igb_xdp_is_enabled(adapter) ?
2973 igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 if (unlikely(!tx_ring))
2975 return IGB_XDP_CONSUMED;
2976
2977 nq = txring_txq(tx_ring);
2978 __netif_tx_lock(nq, cpu);
2979 /* Avoid transmit queue timeout since we share it with the slow path */
2980 txq_trans_cond_update(nq);
2981 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 __netif_tx_unlock(nq);
2983
2984 return ret;
2985 }
2986
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 struct xdp_frame **frames, u32 flags)
2989 {
2990 struct igb_adapter *adapter = netdev_priv(dev);
2991 int cpu = smp_processor_id();
2992 struct igb_ring *tx_ring;
2993 struct netdev_queue *nq;
2994 int nxmit = 0;
2995 int i;
2996
2997 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 return -ENETDOWN;
2999
3000 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 return -EINVAL;
3002
3003 /* During program transitions its possible adapter->xdp_prog is assigned
3004 * but ring has not been configured yet. In this case simply abort xmit.
3005 */
3006 tx_ring = igb_xdp_is_enabled(adapter) ?
3007 igb_xdp_tx_queue_mapping(adapter) : NULL;
3008 if (unlikely(!tx_ring))
3009 return -ENXIO;
3010
3011 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
3012 return -ENXIO;
3013
3014 nq = txring_txq(tx_ring);
3015 __netif_tx_lock(nq, cpu);
3016
3017 /* Avoid transmit queue timeout since we share it with the slow path */
3018 txq_trans_cond_update(nq);
3019
3020 for (i = 0; i < n; i++) {
3021 struct xdp_frame *xdpf = frames[i];
3022 int err;
3023
3024 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3025 if (err != IGB_XDP_TX)
3026 break;
3027 nxmit++;
3028 }
3029
3030 if (unlikely(flags & XDP_XMIT_FLUSH))
3031 igb_xdp_ring_update_tail(tx_ring);
3032
3033 __netif_tx_unlock(nq);
3034
3035 return nxmit;
3036 }
3037
3038 static const struct net_device_ops igb_netdev_ops = {
3039 .ndo_open = igb_open,
3040 .ndo_stop = igb_close,
3041 .ndo_start_xmit = igb_xmit_frame,
3042 .ndo_get_stats64 = igb_get_stats64,
3043 .ndo_set_rx_mode = igb_set_rx_mode,
3044 .ndo_set_mac_address = igb_set_mac,
3045 .ndo_change_mtu = igb_change_mtu,
3046 .ndo_eth_ioctl = igb_ioctl,
3047 .ndo_tx_timeout = igb_tx_timeout,
3048 .ndo_validate_addr = eth_validate_addr,
3049 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3050 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3051 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3052 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3053 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3054 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3055 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3056 .ndo_get_vf_config = igb_ndo_get_vf_config,
3057 .ndo_fix_features = igb_fix_features,
3058 .ndo_set_features = igb_set_features,
3059 .ndo_fdb_add = igb_ndo_fdb_add,
3060 .ndo_features_check = igb_features_check,
3061 .ndo_setup_tc = igb_setup_tc,
3062 .ndo_bpf = igb_xdp,
3063 .ndo_xdp_xmit = igb_xdp_xmit,
3064 .ndo_xsk_wakeup = igb_xsk_wakeup,
3065 };
3066
3067 /**
3068 * igb_set_fw_version - Configure version string for ethtool
3069 * @adapter: adapter struct
3070 **/
igb_set_fw_version(struct igb_adapter * adapter)3071 void igb_set_fw_version(struct igb_adapter *adapter)
3072 {
3073 struct e1000_hw *hw = &adapter->hw;
3074 struct e1000_fw_version fw;
3075
3076 igb_get_fw_version(hw, &fw);
3077
3078 switch (hw->mac.type) {
3079 case e1000_i210:
3080 case e1000_i211:
3081 if (!(igb_get_flash_presence_i210(hw))) {
3082 snprintf(adapter->fw_version,
3083 sizeof(adapter->fw_version),
3084 "%2d.%2d-%d",
3085 fw.invm_major, fw.invm_minor,
3086 fw.invm_img_type);
3087 break;
3088 }
3089 fallthrough;
3090 default:
3091 /* if option rom is valid, display its version too */
3092 if (fw.or_valid) {
3093 snprintf(adapter->fw_version,
3094 sizeof(adapter->fw_version),
3095 "%d.%d, 0x%08x, %d.%d.%d",
3096 fw.eep_major, fw.eep_minor, fw.etrack_id,
3097 fw.or_major, fw.or_build, fw.or_patch);
3098 /* no option rom */
3099 } else if (fw.etrack_id != 0X0000) {
3100 snprintf(adapter->fw_version,
3101 sizeof(adapter->fw_version),
3102 "%d.%d, 0x%08x",
3103 fw.eep_major, fw.eep_minor, fw.etrack_id);
3104 } else {
3105 snprintf(adapter->fw_version,
3106 sizeof(adapter->fw_version),
3107 "%d.%d.%d",
3108 fw.eep_major, fw.eep_minor, fw.eep_build);
3109 }
3110 break;
3111 }
3112 }
3113
3114 /**
3115 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3116 *
3117 * @adapter: adapter struct
3118 **/
igb_init_mas(struct igb_adapter * adapter)3119 static void igb_init_mas(struct igb_adapter *adapter)
3120 {
3121 struct e1000_hw *hw = &adapter->hw;
3122 u16 eeprom_data;
3123
3124 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3125 switch (hw->bus.func) {
3126 case E1000_FUNC_0:
3127 if (eeprom_data & IGB_MAS_ENABLE_0) {
3128 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3129 netdev_info(adapter->netdev,
3130 "MAS: Enabling Media Autosense for port %d\n",
3131 hw->bus.func);
3132 }
3133 break;
3134 case E1000_FUNC_1:
3135 if (eeprom_data & IGB_MAS_ENABLE_1) {
3136 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3137 netdev_info(adapter->netdev,
3138 "MAS: Enabling Media Autosense for port %d\n",
3139 hw->bus.func);
3140 }
3141 break;
3142 case E1000_FUNC_2:
3143 if (eeprom_data & IGB_MAS_ENABLE_2) {
3144 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3145 netdev_info(adapter->netdev,
3146 "MAS: Enabling Media Autosense for port %d\n",
3147 hw->bus.func);
3148 }
3149 break;
3150 case E1000_FUNC_3:
3151 if (eeprom_data & IGB_MAS_ENABLE_3) {
3152 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3153 netdev_info(adapter->netdev,
3154 "MAS: Enabling Media Autosense for port %d\n",
3155 hw->bus.func);
3156 }
3157 break;
3158 default:
3159 /* Shouldn't get here */
3160 netdev_err(adapter->netdev,
3161 "MAS: Invalid port configuration, returning\n");
3162 break;
3163 }
3164 }
3165
3166 /**
3167 * igb_init_i2c - Init I2C interface
3168 * @adapter: pointer to adapter structure
3169 **/
igb_init_i2c(struct igb_adapter * adapter)3170 static s32 igb_init_i2c(struct igb_adapter *adapter)
3171 {
3172 s32 status = 0;
3173
3174 /* I2C interface supported on i350 devices */
3175 if (adapter->hw.mac.type != e1000_i350)
3176 return 0;
3177
3178 /* Initialize the i2c bus which is controlled by the registers.
3179 * This bus will use the i2c_algo_bit structure that implements
3180 * the protocol through toggling of the 4 bits in the register.
3181 */
3182 adapter->i2c_adap.owner = THIS_MODULE;
3183 adapter->i2c_algo = igb_i2c_algo;
3184 adapter->i2c_algo.data = adapter;
3185 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3186 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3187 strscpy(adapter->i2c_adap.name, "igb BB",
3188 sizeof(adapter->i2c_adap.name));
3189 status = i2c_bit_add_bus(&adapter->i2c_adap);
3190 return status;
3191 }
3192
3193 /**
3194 * igb_probe - Device Initialization Routine
3195 * @pdev: PCI device information struct
3196 * @ent: entry in igb_pci_tbl
3197 *
3198 * Returns 0 on success, negative on failure
3199 *
3200 * igb_probe initializes an adapter identified by a pci_dev structure.
3201 * The OS initialization, configuring of the adapter private structure,
3202 * and a hardware reset occur.
3203 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3204 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3205 {
3206 struct net_device *netdev;
3207 struct igb_adapter *adapter;
3208 struct e1000_hw *hw;
3209 u16 eeprom_data = 0;
3210 s32 ret_val;
3211 static int global_quad_port_a; /* global quad port a indication */
3212 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3213 u8 part_str[E1000_PBANUM_LENGTH];
3214 int err;
3215
3216 /* Catch broken hardware that put the wrong VF device ID in
3217 * the PCIe SR-IOV capability.
3218 */
3219 if (pdev->is_virtfn) {
3220 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3221 pci_name(pdev), pdev->vendor, pdev->device);
3222 return -EINVAL;
3223 }
3224
3225 err = pci_enable_device_mem(pdev);
3226 if (err)
3227 return err;
3228
3229 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3230 if (err) {
3231 dev_err(&pdev->dev,
3232 "No usable DMA configuration, aborting\n");
3233 goto err_dma;
3234 }
3235
3236 err = pci_request_mem_regions(pdev, igb_driver_name);
3237 if (err)
3238 goto err_pci_reg;
3239
3240 pci_set_master(pdev);
3241 pci_save_state(pdev);
3242
3243 err = -ENOMEM;
3244 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3245 IGB_MAX_TX_QUEUES);
3246 if (!netdev)
3247 goto err_alloc_etherdev;
3248
3249 SET_NETDEV_DEV(netdev, &pdev->dev);
3250
3251 pci_set_drvdata(pdev, netdev);
3252 adapter = netdev_priv(netdev);
3253 adapter->netdev = netdev;
3254 adapter->pdev = pdev;
3255 hw = &adapter->hw;
3256 hw->back = adapter;
3257 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3258
3259 err = -EIO;
3260 adapter->io_addr = pci_iomap(pdev, 0, 0);
3261 if (!adapter->io_addr)
3262 goto err_ioremap;
3263 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3264 hw->hw_addr = adapter->io_addr;
3265
3266 netdev->netdev_ops = &igb_netdev_ops;
3267 igb_set_ethtool_ops(netdev);
3268 netdev->watchdog_timeo = 5 * HZ;
3269
3270 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3271
3272 netdev->mem_start = pci_resource_start(pdev, 0);
3273 netdev->mem_end = pci_resource_end(pdev, 0);
3274
3275 /* PCI config space info */
3276 hw->vendor_id = pdev->vendor;
3277 hw->device_id = pdev->device;
3278 hw->revision_id = pdev->revision;
3279 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3280 hw->subsystem_device_id = pdev->subsystem_device;
3281
3282 /* Copy the default MAC, PHY and NVM function pointers */
3283 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3284 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3285 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3286 /* Initialize skew-specific constants */
3287 err = ei->get_invariants(hw);
3288 if (err)
3289 goto err_sw_init;
3290
3291 /* setup the private structure */
3292 err = igb_sw_init(adapter);
3293 if (err)
3294 goto err_sw_init;
3295
3296 igb_get_bus_info_pcie(hw);
3297
3298 hw->phy.autoneg_wait_to_complete = false;
3299
3300 /* Copper options */
3301 if (hw->phy.media_type == e1000_media_type_copper) {
3302 hw->phy.mdix = AUTO_ALL_MODES;
3303 hw->phy.disable_polarity_correction = false;
3304 hw->phy.ms_type = e1000_ms_hw_default;
3305 }
3306
3307 if (igb_check_reset_block(hw))
3308 dev_info(&pdev->dev,
3309 "PHY reset is blocked due to SOL/IDER session.\n");
3310
3311 /* features is initialized to 0 in allocation, it might have bits
3312 * set by igb_sw_init so we should use an or instead of an
3313 * assignment.
3314 */
3315 netdev->features |= NETIF_F_SG |
3316 NETIF_F_TSO |
3317 NETIF_F_TSO6 |
3318 NETIF_F_RXHASH |
3319 NETIF_F_RXCSUM |
3320 NETIF_F_HW_CSUM;
3321
3322 if (hw->mac.type >= e1000_82576)
3323 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3324
3325 if (hw->mac.type >= e1000_i350)
3326 netdev->features |= NETIF_F_HW_TC;
3327
3328 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3329 NETIF_F_GSO_GRE_CSUM | \
3330 NETIF_F_GSO_IPXIP4 | \
3331 NETIF_F_GSO_IPXIP6 | \
3332 NETIF_F_GSO_UDP_TUNNEL | \
3333 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3334
3335 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3336 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3337
3338 /* copy netdev features into list of user selectable features */
3339 netdev->hw_features |= netdev->features |
3340 NETIF_F_HW_VLAN_CTAG_RX |
3341 NETIF_F_HW_VLAN_CTAG_TX |
3342 NETIF_F_RXALL;
3343
3344 if (hw->mac.type >= e1000_i350)
3345 netdev->hw_features |= NETIF_F_NTUPLE;
3346
3347 netdev->features |= NETIF_F_HIGHDMA;
3348
3349 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3350 netdev->mpls_features |= NETIF_F_HW_CSUM;
3351 netdev->hw_enc_features |= netdev->vlan_features;
3352
3353 /* set this bit last since it cannot be part of vlan_features */
3354 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3355 NETIF_F_HW_VLAN_CTAG_RX |
3356 NETIF_F_HW_VLAN_CTAG_TX;
3357
3358 netdev->priv_flags |= IFF_SUPP_NOFCS;
3359
3360 netdev->priv_flags |= IFF_UNICAST_FLT;
3361 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3362 NETDEV_XDP_ACT_XSK_ZEROCOPY;
3363
3364 /* MTU range: 68 - 9216 */
3365 netdev->min_mtu = ETH_MIN_MTU;
3366 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3367
3368 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3369
3370 /* before reading the NVM, reset the controller to put the device in a
3371 * known good starting state
3372 */
3373 hw->mac.ops.reset_hw(hw);
3374
3375 /* make sure the NVM is good , i211/i210 parts can have special NVM
3376 * that doesn't contain a checksum
3377 */
3378 switch (hw->mac.type) {
3379 case e1000_i210:
3380 case e1000_i211:
3381 if (igb_get_flash_presence_i210(hw)) {
3382 if (hw->nvm.ops.validate(hw) < 0) {
3383 dev_err(&pdev->dev,
3384 "The NVM Checksum Is Not Valid\n");
3385 err = -EIO;
3386 goto err_eeprom;
3387 }
3388 }
3389 break;
3390 default:
3391 if (hw->nvm.ops.validate(hw) < 0) {
3392 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3393 err = -EIO;
3394 goto err_eeprom;
3395 }
3396 break;
3397 }
3398
3399 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3400 /* copy the MAC address out of the NVM */
3401 if (hw->mac.ops.read_mac_addr(hw))
3402 dev_err(&pdev->dev, "NVM Read Error\n");
3403 }
3404
3405 eth_hw_addr_set(netdev, hw->mac.addr);
3406
3407 if (!is_valid_ether_addr(netdev->dev_addr)) {
3408 dev_err(&pdev->dev, "Invalid MAC Address\n");
3409 err = -EIO;
3410 goto err_eeprom;
3411 }
3412
3413 igb_set_default_mac_filter(adapter);
3414
3415 /* get firmware version for ethtool -i */
3416 igb_set_fw_version(adapter);
3417
3418 /* configure RXPBSIZE and TXPBSIZE */
3419 if (hw->mac.type == e1000_i210) {
3420 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3421 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3422 }
3423
3424 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3425 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3426
3427 INIT_WORK(&adapter->reset_task, igb_reset_task);
3428 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3429
3430 /* Initialize link properties that are user-changeable */
3431 adapter->fc_autoneg = true;
3432 hw->mac.autoneg = true;
3433 hw->phy.autoneg_advertised = 0x2f;
3434
3435 hw->fc.requested_mode = e1000_fc_default;
3436 hw->fc.current_mode = e1000_fc_default;
3437
3438 igb_validate_mdi_setting(hw);
3439
3440 /* By default, support wake on port A */
3441 if (hw->bus.func == 0)
3442 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3443
3444 /* Check the NVM for wake support on non-port A ports */
3445 if (hw->mac.type >= e1000_82580)
3446 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3447 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3448 &eeprom_data);
3449 else if (hw->bus.func == 1)
3450 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3451
3452 if (eeprom_data & IGB_EEPROM_APME)
3453 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3454
3455 /* now that we have the eeprom settings, apply the special cases where
3456 * the eeprom may be wrong or the board simply won't support wake on
3457 * lan on a particular port
3458 */
3459 switch (pdev->device) {
3460 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3461 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3462 break;
3463 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3464 case E1000_DEV_ID_82576_FIBER:
3465 case E1000_DEV_ID_82576_SERDES:
3466 /* Wake events only supported on port A for dual fiber
3467 * regardless of eeprom setting
3468 */
3469 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3470 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3471 break;
3472 case E1000_DEV_ID_82576_QUAD_COPPER:
3473 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3474 /* if quad port adapter, disable WoL on all but port A */
3475 if (global_quad_port_a != 0)
3476 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3477 else
3478 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3479 /* Reset for multiple quad port adapters */
3480 if (++global_quad_port_a == 4)
3481 global_quad_port_a = 0;
3482 break;
3483 default:
3484 /* If the device can't wake, don't set software support */
3485 if (!device_can_wakeup(&adapter->pdev->dev))
3486 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3487 }
3488
3489 /* initialize the wol settings based on the eeprom settings */
3490 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3491 adapter->wol |= E1000_WUFC_MAG;
3492
3493 /* Some vendors want WoL disabled by default, but still supported */
3494 if ((hw->mac.type == e1000_i350) &&
3495 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3496 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3497 adapter->wol = 0;
3498 }
3499
3500 /* Some vendors want the ability to Use the EEPROM setting as
3501 * enable/disable only, and not for capability
3502 */
3503 if (((hw->mac.type == e1000_i350) ||
3504 (hw->mac.type == e1000_i354)) &&
3505 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3506 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3507 adapter->wol = 0;
3508 }
3509 if (hw->mac.type == e1000_i350) {
3510 if (((pdev->subsystem_device == 0x5001) ||
3511 (pdev->subsystem_device == 0x5002)) &&
3512 (hw->bus.func == 0)) {
3513 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 adapter->wol = 0;
3515 }
3516 if (pdev->subsystem_device == 0x1F52)
3517 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3518 }
3519
3520 device_set_wakeup_enable(&adapter->pdev->dev,
3521 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3522
3523 /* reset the hardware with the new settings */
3524 igb_reset(adapter);
3525
3526 /* Init the I2C interface */
3527 err = igb_init_i2c(adapter);
3528 if (err) {
3529 dev_err(&pdev->dev, "failed to init i2c interface\n");
3530 goto err_eeprom;
3531 }
3532
3533 /* let the f/w know that the h/w is now under the control of the
3534 * driver.
3535 */
3536 igb_get_hw_control(adapter);
3537
3538 strcpy(netdev->name, "eth%d");
3539 err = register_netdev(netdev);
3540 if (err)
3541 goto err_register;
3542
3543 /* carrier off reporting is important to ethtool even BEFORE open */
3544 netif_carrier_off(netdev);
3545
3546 #ifdef CONFIG_IGB_DCA
3547 if (dca_add_requester(&pdev->dev) == 0) {
3548 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3549 dev_info(&pdev->dev, "DCA enabled\n");
3550 igb_setup_dca(adapter);
3551 }
3552
3553 #endif
3554 #ifdef CONFIG_IGB_HWMON
3555 /* Initialize the thermal sensor on i350 devices. */
3556 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3557 u16 ets_word;
3558
3559 /* Read the NVM to determine if this i350 device supports an
3560 * external thermal sensor.
3561 */
3562 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3563 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3564 adapter->ets = true;
3565 else
3566 adapter->ets = false;
3567 /* Only enable I2C bit banging if an external thermal
3568 * sensor is supported.
3569 */
3570 if (adapter->ets)
3571 igb_set_i2c_bb(hw);
3572 hw->mac.ops.init_thermal_sensor_thresh(hw);
3573 if (igb_sysfs_init(adapter))
3574 dev_err(&pdev->dev,
3575 "failed to allocate sysfs resources\n");
3576 } else {
3577 adapter->ets = false;
3578 }
3579 #endif
3580 /* Check if Media Autosense is enabled */
3581 adapter->ei = *ei;
3582 if (hw->dev_spec._82575.mas_capable)
3583 igb_init_mas(adapter);
3584
3585 /* do hw tstamp init after resetting */
3586 igb_ptp_init(adapter);
3587
3588 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3589 /* print bus type/speed/width info, not applicable to i354 */
3590 if (hw->mac.type != e1000_i354) {
3591 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3592 netdev->name,
3593 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3594 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3595 "unknown"),
3596 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3597 "Width x4" :
3598 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3599 "Width x2" :
3600 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3601 "Width x1" : "unknown"), netdev->dev_addr);
3602 }
3603
3604 if ((hw->mac.type == e1000_82576 &&
3605 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3606 (hw->mac.type >= e1000_i210 ||
3607 igb_get_flash_presence_i210(hw))) {
3608 ret_val = igb_read_part_string(hw, part_str,
3609 E1000_PBANUM_LENGTH);
3610 } else {
3611 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3612 }
3613
3614 if (ret_val)
3615 strcpy(part_str, "Unknown");
3616 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3617 dev_info(&pdev->dev,
3618 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3619 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3620 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3621 adapter->num_rx_queues, adapter->num_tx_queues);
3622 if (hw->phy.media_type == e1000_media_type_copper) {
3623 switch (hw->mac.type) {
3624 case e1000_i350:
3625 case e1000_i210:
3626 case e1000_i211:
3627 /* Enable EEE for internal copper PHY devices */
3628 err = igb_set_eee_i350(hw, true, true);
3629 if ((!err) &&
3630 (!hw->dev_spec._82575.eee_disable)) {
3631 adapter->eee_advert =
3632 MDIO_EEE_100TX | MDIO_EEE_1000T;
3633 adapter->flags |= IGB_FLAG_EEE;
3634 }
3635 break;
3636 case e1000_i354:
3637 if ((rd32(E1000_CTRL_EXT) &
3638 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3639 err = igb_set_eee_i354(hw, true, true);
3640 if ((!err) &&
3641 (!hw->dev_spec._82575.eee_disable)) {
3642 adapter->eee_advert =
3643 MDIO_EEE_100TX | MDIO_EEE_1000T;
3644 adapter->flags |= IGB_FLAG_EEE;
3645 }
3646 }
3647 break;
3648 default:
3649 break;
3650 }
3651 }
3652
3653 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3654
3655 pm_runtime_put_noidle(&pdev->dev);
3656 return 0;
3657
3658 err_register:
3659 igb_release_hw_control(adapter);
3660 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3661 err_eeprom:
3662 if (!igb_check_reset_block(hw))
3663 igb_reset_phy(hw);
3664
3665 if (hw->flash_address)
3666 iounmap(hw->flash_address);
3667 err_sw_init:
3668 kfree(adapter->mac_table);
3669 kfree(adapter->shadow_vfta);
3670 igb_clear_interrupt_scheme(adapter);
3671 #ifdef CONFIG_PCI_IOV
3672 igb_disable_sriov(pdev, false);
3673 #endif
3674 pci_iounmap(pdev, adapter->io_addr);
3675 err_ioremap:
3676 free_netdev(netdev);
3677 err_alloc_etherdev:
3678 pci_release_mem_regions(pdev);
3679 err_pci_reg:
3680 err_dma:
3681 pci_disable_device(pdev);
3682 return err;
3683 }
3684
3685 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3686 static int igb_sriov_reinit(struct pci_dev *dev)
3687 {
3688 struct net_device *netdev = pci_get_drvdata(dev);
3689 struct igb_adapter *adapter = netdev_priv(netdev);
3690 struct pci_dev *pdev = adapter->pdev;
3691
3692 rtnl_lock();
3693
3694 if (netif_running(netdev))
3695 igb_close(netdev);
3696 else
3697 igb_reset(adapter);
3698
3699 igb_clear_interrupt_scheme(adapter);
3700
3701 igb_init_queue_configuration(adapter);
3702
3703 if (igb_init_interrupt_scheme(adapter, true)) {
3704 rtnl_unlock();
3705 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3706 return -ENOMEM;
3707 }
3708
3709 if (netif_running(netdev))
3710 igb_open(netdev);
3711
3712 rtnl_unlock();
3713
3714 return 0;
3715 }
3716
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3717 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3718 {
3719 struct net_device *netdev = pci_get_drvdata(pdev);
3720 struct igb_adapter *adapter = netdev_priv(netdev);
3721 struct e1000_hw *hw = &adapter->hw;
3722 unsigned long flags;
3723
3724 /* reclaim resources allocated to VFs */
3725 if (adapter->vf_data) {
3726 /* disable iov and allow time for transactions to clear */
3727 if (pci_vfs_assigned(pdev)) {
3728 dev_warn(&pdev->dev,
3729 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3730 return -EPERM;
3731 } else {
3732 pci_disable_sriov(pdev);
3733 msleep(500);
3734 }
3735 spin_lock_irqsave(&adapter->vfs_lock, flags);
3736 kfree(adapter->vf_mac_list);
3737 adapter->vf_mac_list = NULL;
3738 kfree(adapter->vf_data);
3739 adapter->vf_data = NULL;
3740 adapter->vfs_allocated_count = 0;
3741 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3742 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3743 wrfl();
3744 msleep(100);
3745 dev_info(&pdev->dev, "IOV Disabled\n");
3746
3747 /* Re-enable DMA Coalescing flag since IOV is turned off */
3748 adapter->flags |= IGB_FLAG_DMAC;
3749 }
3750
3751 return reinit ? igb_sriov_reinit(pdev) : 0;
3752 }
3753
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3754 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3755 {
3756 struct net_device *netdev = pci_get_drvdata(pdev);
3757 struct igb_adapter *adapter = netdev_priv(netdev);
3758 int old_vfs = pci_num_vf(pdev);
3759 struct vf_mac_filter *mac_list;
3760 int err = 0;
3761 int num_vf_mac_filters, i;
3762
3763 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3764 err = -EPERM;
3765 goto out;
3766 }
3767 if (!num_vfs)
3768 goto out;
3769
3770 if (old_vfs) {
3771 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3772 old_vfs, max_vfs);
3773 adapter->vfs_allocated_count = old_vfs;
3774 } else
3775 adapter->vfs_allocated_count = num_vfs;
3776
3777 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3778 sizeof(struct vf_data_storage), GFP_KERNEL);
3779
3780 /* if allocation failed then we do not support SR-IOV */
3781 if (!adapter->vf_data) {
3782 adapter->vfs_allocated_count = 0;
3783 err = -ENOMEM;
3784 goto out;
3785 }
3786
3787 /* Due to the limited number of RAR entries calculate potential
3788 * number of MAC filters available for the VFs. Reserve entries
3789 * for PF default MAC, PF MAC filters and at least one RAR entry
3790 * for each VF for VF MAC.
3791 */
3792 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3793 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3794 adapter->vfs_allocated_count);
3795
3796 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3797 sizeof(struct vf_mac_filter),
3798 GFP_KERNEL);
3799
3800 mac_list = adapter->vf_mac_list;
3801 INIT_LIST_HEAD(&adapter->vf_macs.l);
3802
3803 if (adapter->vf_mac_list) {
3804 /* Initialize list of VF MAC filters */
3805 for (i = 0; i < num_vf_mac_filters; i++) {
3806 mac_list->vf = -1;
3807 mac_list->free = true;
3808 list_add(&mac_list->l, &adapter->vf_macs.l);
3809 mac_list++;
3810 }
3811 } else {
3812 /* If we could not allocate memory for the VF MAC filters
3813 * we can continue without this feature but warn user.
3814 */
3815 dev_err(&pdev->dev,
3816 "Unable to allocate memory for VF MAC filter list\n");
3817 }
3818
3819 dev_info(&pdev->dev, "%d VFs allocated\n",
3820 adapter->vfs_allocated_count);
3821 for (i = 0; i < adapter->vfs_allocated_count; i++)
3822 igb_vf_configure(adapter, i);
3823
3824 /* DMA Coalescing is not supported in IOV mode. */
3825 adapter->flags &= ~IGB_FLAG_DMAC;
3826
3827 if (reinit) {
3828 err = igb_sriov_reinit(pdev);
3829 if (err)
3830 goto err_out;
3831 }
3832
3833 /* only call pci_enable_sriov() if no VFs are allocated already */
3834 if (!old_vfs) {
3835 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3836 if (err)
3837 goto err_out;
3838 }
3839
3840 goto out;
3841
3842 err_out:
3843 kfree(adapter->vf_mac_list);
3844 adapter->vf_mac_list = NULL;
3845 kfree(adapter->vf_data);
3846 adapter->vf_data = NULL;
3847 adapter->vfs_allocated_count = 0;
3848 out:
3849 return err;
3850 }
3851
3852 #endif
3853 /**
3854 * igb_remove_i2c - Cleanup I2C interface
3855 * @adapter: pointer to adapter structure
3856 **/
igb_remove_i2c(struct igb_adapter * adapter)3857 static void igb_remove_i2c(struct igb_adapter *adapter)
3858 {
3859 /* free the adapter bus structure */
3860 i2c_del_adapter(&adapter->i2c_adap);
3861 }
3862
3863 /**
3864 * igb_remove - Device Removal Routine
3865 * @pdev: PCI device information struct
3866 *
3867 * igb_remove is called by the PCI subsystem to alert the driver
3868 * that it should release a PCI device. The could be caused by a
3869 * Hot-Plug event, or because the driver is going to be removed from
3870 * memory.
3871 **/
igb_remove(struct pci_dev * pdev)3872 static void igb_remove(struct pci_dev *pdev)
3873 {
3874 struct net_device *netdev = pci_get_drvdata(pdev);
3875 struct igb_adapter *adapter = netdev_priv(netdev);
3876 struct e1000_hw *hw = &adapter->hw;
3877
3878 pm_runtime_get_noresume(&pdev->dev);
3879 #ifdef CONFIG_IGB_HWMON
3880 igb_sysfs_exit(adapter);
3881 #endif
3882 igb_remove_i2c(adapter);
3883 igb_ptp_stop(adapter);
3884 /* The watchdog timer may be rescheduled, so explicitly
3885 * disable watchdog from being rescheduled.
3886 */
3887 set_bit(__IGB_DOWN, &adapter->state);
3888 timer_delete_sync(&adapter->watchdog_timer);
3889 timer_delete_sync(&adapter->phy_info_timer);
3890
3891 cancel_work_sync(&adapter->reset_task);
3892 cancel_work_sync(&adapter->watchdog_task);
3893
3894 #ifdef CONFIG_IGB_DCA
3895 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3896 dev_info(&pdev->dev, "DCA disabled\n");
3897 dca_remove_requester(&pdev->dev);
3898 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3899 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3900 }
3901 #endif
3902
3903 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3904 * would have already happened in close and is redundant.
3905 */
3906 igb_release_hw_control(adapter);
3907
3908 #ifdef CONFIG_PCI_IOV
3909 igb_disable_sriov(pdev, false);
3910 #endif
3911
3912 unregister_netdev(netdev);
3913
3914 igb_clear_interrupt_scheme(adapter);
3915
3916 pci_iounmap(pdev, adapter->io_addr);
3917 if (hw->flash_address)
3918 iounmap(hw->flash_address);
3919 pci_release_mem_regions(pdev);
3920
3921 kfree(adapter->mac_table);
3922 kfree(adapter->shadow_vfta);
3923 free_netdev(netdev);
3924
3925 pci_disable_device(pdev);
3926 }
3927
3928 /**
3929 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3930 * @adapter: board private structure to initialize
3931 *
3932 * This function initializes the vf specific data storage and then attempts to
3933 * allocate the VFs. The reason for ordering it this way is because it is much
3934 * more expensive time wise to disable SR-IOV than it is to allocate and free
3935 * the memory for the VFs.
3936 **/
igb_probe_vfs(struct igb_adapter * adapter)3937 static void igb_probe_vfs(struct igb_adapter *adapter)
3938 {
3939 #ifdef CONFIG_PCI_IOV
3940 struct pci_dev *pdev = adapter->pdev;
3941 struct e1000_hw *hw = &adapter->hw;
3942
3943 /* Virtualization features not supported on i210 and 82580 family. */
3944 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3945 (hw->mac.type == e1000_82580))
3946 return;
3947
3948 /* Of the below we really only want the effect of getting
3949 * IGB_FLAG_HAS_MSIX set (if available), without which
3950 * igb_enable_sriov() has no effect.
3951 */
3952 igb_set_interrupt_capability(adapter, true);
3953 igb_reset_interrupt_capability(adapter);
3954
3955 pci_sriov_set_totalvfs(pdev, 7);
3956 igb_enable_sriov(pdev, max_vfs, false);
3957
3958 #endif /* CONFIG_PCI_IOV */
3959 }
3960
igb_get_max_rss_queues(struct igb_adapter * adapter)3961 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3962 {
3963 struct e1000_hw *hw = &adapter->hw;
3964 unsigned int max_rss_queues;
3965
3966 /* Determine the maximum number of RSS queues supported. */
3967 switch (hw->mac.type) {
3968 case e1000_i211:
3969 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3970 break;
3971 case e1000_82575:
3972 case e1000_i210:
3973 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3974 break;
3975 case e1000_i350:
3976 /* I350 cannot do RSS and SR-IOV at the same time */
3977 if (!!adapter->vfs_allocated_count) {
3978 max_rss_queues = 1;
3979 break;
3980 }
3981 fallthrough;
3982 case e1000_82576:
3983 if (!!adapter->vfs_allocated_count) {
3984 max_rss_queues = 2;
3985 break;
3986 }
3987 fallthrough;
3988 case e1000_82580:
3989 case e1000_i354:
3990 default:
3991 max_rss_queues = IGB_MAX_RX_QUEUES;
3992 break;
3993 }
3994
3995 return max_rss_queues;
3996 }
3997
igb_init_queue_configuration(struct igb_adapter * adapter)3998 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3999 {
4000 u32 max_rss_queues;
4001
4002 max_rss_queues = igb_get_max_rss_queues(adapter);
4003 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4004
4005 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4006 }
4007
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)4008 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4009 const u32 max_rss_queues)
4010 {
4011 struct e1000_hw *hw = &adapter->hw;
4012
4013 /* Determine if we need to pair queues. */
4014 switch (hw->mac.type) {
4015 case e1000_82575:
4016 case e1000_i211:
4017 /* Device supports enough interrupts without queue pairing. */
4018 break;
4019 case e1000_82576:
4020 case e1000_82580:
4021 case e1000_i350:
4022 case e1000_i354:
4023 case e1000_i210:
4024 default:
4025 /* If rss_queues > half of max_rss_queues, pair the queues in
4026 * order to conserve interrupts due to limited supply.
4027 */
4028 if (adapter->rss_queues > (max_rss_queues / 2))
4029 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4030 else
4031 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4032 break;
4033 }
4034 }
4035
4036 /**
4037 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4038 * @adapter: board private structure to initialize
4039 *
4040 * igb_sw_init initializes the Adapter private data structure.
4041 * Fields are initialized based on PCI device information and
4042 * OS network device settings (MTU size).
4043 **/
igb_sw_init(struct igb_adapter * adapter)4044 static int igb_sw_init(struct igb_adapter *adapter)
4045 {
4046 struct e1000_hw *hw = &adapter->hw;
4047 struct net_device *netdev = adapter->netdev;
4048 struct pci_dev *pdev = adapter->pdev;
4049
4050 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4051
4052 /* set default ring sizes */
4053 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4054 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4055
4056 /* set default ITR values */
4057 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4058 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4059
4060 /* set default work limits */
4061 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4062
4063 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4064 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4065
4066 spin_lock_init(&adapter->nfc_lock);
4067 spin_lock_init(&adapter->stats64_lock);
4068
4069 /* init spinlock to avoid concurrency of VF resources */
4070 spin_lock_init(&adapter->vfs_lock);
4071 #ifdef CONFIG_PCI_IOV
4072 switch (hw->mac.type) {
4073 case e1000_82576:
4074 case e1000_i350:
4075 if (max_vfs > 7) {
4076 dev_warn(&pdev->dev,
4077 "Maximum of 7 VFs per PF, using max\n");
4078 max_vfs = adapter->vfs_allocated_count = 7;
4079 } else
4080 adapter->vfs_allocated_count = max_vfs;
4081 if (adapter->vfs_allocated_count)
4082 dev_warn(&pdev->dev,
4083 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4084 break;
4085 default:
4086 break;
4087 }
4088 #endif /* CONFIG_PCI_IOV */
4089
4090 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4091 adapter->flags |= IGB_FLAG_HAS_MSIX;
4092
4093 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4094 sizeof(struct igb_mac_addr),
4095 GFP_KERNEL);
4096 if (!adapter->mac_table)
4097 return -ENOMEM;
4098
4099 igb_probe_vfs(adapter);
4100
4101 igb_init_queue_configuration(adapter);
4102
4103 /* Setup and initialize a copy of the hw vlan table array */
4104 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4105 GFP_KERNEL);
4106 if (!adapter->shadow_vfta)
4107 return -ENOMEM;
4108
4109 /* This call may decrease the number of queues */
4110 if (igb_init_interrupt_scheme(adapter, true)) {
4111 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4112 return -ENOMEM;
4113 }
4114
4115 /* Explicitly disable IRQ since the NIC can be in any state. */
4116 igb_irq_disable(adapter);
4117
4118 if (hw->mac.type >= e1000_i350)
4119 adapter->flags &= ~IGB_FLAG_DMAC;
4120
4121 set_bit(__IGB_DOWN, &adapter->state);
4122 return 0;
4123 }
4124
4125 /**
4126 * __igb_open - Called when a network interface is made active
4127 * @netdev: network interface device structure
4128 * @resuming: indicates whether we are in a resume call
4129 *
4130 * Returns 0 on success, negative value on failure
4131 *
4132 * The open entry point is called when a network interface is made
4133 * active by the system (IFF_UP). At this point all resources needed
4134 * for transmit and receive operations are allocated, the interrupt
4135 * handler is registered with the OS, the watchdog timer is started,
4136 * and the stack is notified that the interface is ready.
4137 **/
__igb_open(struct net_device * netdev,bool resuming)4138 static int __igb_open(struct net_device *netdev, bool resuming)
4139 {
4140 struct igb_adapter *adapter = netdev_priv(netdev);
4141 struct pci_dev *pdev = adapter->pdev;
4142 struct e1000_hw *hw = &adapter->hw;
4143 struct napi_struct *napi;
4144 int err;
4145 int i;
4146
4147 /* disallow open during test */
4148 if (test_bit(__IGB_TESTING, &adapter->state)) {
4149 WARN_ON(resuming);
4150 return -EBUSY;
4151 }
4152
4153 if (!resuming)
4154 pm_runtime_get_sync(&pdev->dev);
4155
4156 netif_carrier_off(netdev);
4157
4158 /* allocate transmit descriptors */
4159 err = igb_setup_all_tx_resources(adapter);
4160 if (err)
4161 goto err_setup_tx;
4162
4163 /* allocate receive descriptors */
4164 err = igb_setup_all_rx_resources(adapter);
4165 if (err)
4166 goto err_setup_rx;
4167
4168 igb_power_up_link(adapter);
4169
4170 /* before we allocate an interrupt, we must be ready to handle it.
4171 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4172 * as soon as we call pci_request_irq, so we have to setup our
4173 * clean_rx handler before we do so.
4174 */
4175 igb_configure(adapter);
4176
4177 err = igb_request_irq(adapter);
4178 if (err)
4179 goto err_req_irq;
4180
4181 /* Notify the stack of the actual queue counts. */
4182 err = netif_set_real_num_tx_queues(adapter->netdev,
4183 adapter->num_tx_queues);
4184 if (err)
4185 goto err_set_queues;
4186
4187 err = netif_set_real_num_rx_queues(adapter->netdev,
4188 adapter->num_rx_queues);
4189 if (err)
4190 goto err_set_queues;
4191
4192 /* From here on the code is the same as igb_up() */
4193 clear_bit(__IGB_DOWN, &adapter->state);
4194
4195 for (i = 0; i < adapter->num_q_vectors; i++) {
4196 napi = &adapter->q_vector[i]->napi;
4197 napi_enable(napi);
4198 igb_set_queue_napi(adapter, i, napi);
4199 }
4200
4201 /* Clear any pending interrupts. */
4202 rd32(E1000_TSICR);
4203 rd32(E1000_ICR);
4204
4205 igb_irq_enable(adapter);
4206
4207 /* notify VFs that reset has been completed */
4208 if (adapter->vfs_allocated_count) {
4209 u32 reg_data = rd32(E1000_CTRL_EXT);
4210
4211 reg_data |= E1000_CTRL_EXT_PFRSTD;
4212 wr32(E1000_CTRL_EXT, reg_data);
4213 }
4214
4215 netif_tx_start_all_queues(netdev);
4216
4217 if (!resuming)
4218 pm_runtime_put(&pdev->dev);
4219
4220 /* start the watchdog. */
4221 hw->mac.get_link_status = 1;
4222 schedule_work(&adapter->watchdog_task);
4223
4224 return 0;
4225
4226 err_set_queues:
4227 igb_free_irq(adapter);
4228 err_req_irq:
4229 igb_release_hw_control(adapter);
4230 igb_power_down_link(adapter);
4231 igb_free_all_rx_resources(adapter);
4232 err_setup_rx:
4233 igb_free_all_tx_resources(adapter);
4234 err_setup_tx:
4235 igb_reset(adapter);
4236 if (!resuming)
4237 pm_runtime_put(&pdev->dev);
4238
4239 return err;
4240 }
4241
igb_open(struct net_device * netdev)4242 int igb_open(struct net_device *netdev)
4243 {
4244 return __igb_open(netdev, false);
4245 }
4246
4247 /**
4248 * __igb_close - Disables a network interface
4249 * @netdev: network interface device structure
4250 * @suspending: indicates we are in a suspend call
4251 *
4252 * Returns 0, this is not allowed to fail
4253 *
4254 * The close entry point is called when an interface is de-activated
4255 * by the OS. The hardware is still under the driver's control, but
4256 * needs to be disabled. A global MAC reset is issued to stop the
4257 * hardware, and all transmit and receive resources are freed.
4258 **/
__igb_close(struct net_device * netdev,bool suspending)4259 static int __igb_close(struct net_device *netdev, bool suspending)
4260 {
4261 struct igb_adapter *adapter = netdev_priv(netdev);
4262 struct pci_dev *pdev = adapter->pdev;
4263
4264 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4265
4266 if (!suspending)
4267 pm_runtime_get_sync(&pdev->dev);
4268
4269 igb_down(adapter);
4270 igb_free_irq(adapter);
4271
4272 igb_free_all_tx_resources(adapter);
4273 igb_free_all_rx_resources(adapter);
4274
4275 if (!suspending)
4276 pm_runtime_put_sync(&pdev->dev);
4277 return 0;
4278 }
4279
igb_close(struct net_device * netdev)4280 int igb_close(struct net_device *netdev)
4281 {
4282 if (netif_device_present(netdev) || netdev->dismantle)
4283 return __igb_close(netdev, false);
4284 return 0;
4285 }
4286
4287 /**
4288 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4289 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4290 *
4291 * Return 0 on success, negative on failure
4292 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4293 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4294 {
4295 struct device *dev = tx_ring->dev;
4296 int size;
4297
4298 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4299
4300 tx_ring->tx_buffer_info = vmalloc(size);
4301 if (!tx_ring->tx_buffer_info)
4302 goto err;
4303
4304 /* round up to nearest 4K */
4305 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4306 tx_ring->size = ALIGN(tx_ring->size, 4096);
4307
4308 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4309 &tx_ring->dma, GFP_KERNEL);
4310 if (!tx_ring->desc)
4311 goto err;
4312
4313 tx_ring->next_to_use = 0;
4314 tx_ring->next_to_clean = 0;
4315
4316 return 0;
4317
4318 err:
4319 vfree(tx_ring->tx_buffer_info);
4320 tx_ring->tx_buffer_info = NULL;
4321 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4322 return -ENOMEM;
4323 }
4324
4325 /**
4326 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4327 * (Descriptors) for all queues
4328 * @adapter: board private structure
4329 *
4330 * Return 0 on success, negative on failure
4331 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4332 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4333 {
4334 struct pci_dev *pdev = adapter->pdev;
4335 int i, err = 0;
4336
4337 for (i = 0; i < adapter->num_tx_queues; i++) {
4338 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4339 if (err) {
4340 dev_err(&pdev->dev,
4341 "Allocation for Tx Queue %u failed\n", i);
4342 for (i--; i >= 0; i--)
4343 igb_free_tx_resources(adapter->tx_ring[i]);
4344 break;
4345 }
4346 }
4347
4348 return err;
4349 }
4350
4351 /**
4352 * igb_setup_tctl - configure the transmit control registers
4353 * @adapter: Board private structure
4354 **/
igb_setup_tctl(struct igb_adapter * adapter)4355 void igb_setup_tctl(struct igb_adapter *adapter)
4356 {
4357 struct e1000_hw *hw = &adapter->hw;
4358 u32 tctl;
4359
4360 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4361 wr32(E1000_TXDCTL(0), 0);
4362
4363 /* Program the Transmit Control Register */
4364 tctl = rd32(E1000_TCTL);
4365 tctl &= ~E1000_TCTL_CT;
4366 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4367 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4368
4369 igb_config_collision_dist(hw);
4370
4371 /* Enable transmits */
4372 tctl |= E1000_TCTL_EN;
4373
4374 wr32(E1000_TCTL, tctl);
4375 }
4376
4377 /**
4378 * igb_configure_tx_ring - Configure transmit ring after Reset
4379 * @adapter: board private structure
4380 * @ring: tx ring to configure
4381 *
4382 * Configure a transmit ring after a reset.
4383 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4384 void igb_configure_tx_ring(struct igb_adapter *adapter,
4385 struct igb_ring *ring)
4386 {
4387 struct e1000_hw *hw = &adapter->hw;
4388 u32 txdctl = 0;
4389 u64 tdba = ring->dma;
4390 int reg_idx = ring->reg_idx;
4391
4392 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4393
4394 wr32(E1000_TDLEN(reg_idx),
4395 ring->count * sizeof(union e1000_adv_tx_desc));
4396 wr32(E1000_TDBAL(reg_idx),
4397 tdba & 0x00000000ffffffffULL);
4398 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4399
4400 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4401 wr32(E1000_TDH(reg_idx), 0);
4402 writel(0, ring->tail);
4403
4404 txdctl |= IGB_TX_PTHRESH;
4405 txdctl |= IGB_TX_HTHRESH << 8;
4406 txdctl |= IGB_TX_WTHRESH << 16;
4407
4408 /* reinitialize tx_buffer_info */
4409 memset(ring->tx_buffer_info, 0,
4410 sizeof(struct igb_tx_buffer) * ring->count);
4411
4412 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4413 wr32(E1000_TXDCTL(reg_idx), txdctl);
4414 }
4415
4416 /**
4417 * igb_configure_tx - Configure transmit Unit after Reset
4418 * @adapter: board private structure
4419 *
4420 * Configure the Tx unit of the MAC after a reset.
4421 **/
igb_configure_tx(struct igb_adapter * adapter)4422 static void igb_configure_tx(struct igb_adapter *adapter)
4423 {
4424 struct e1000_hw *hw = &adapter->hw;
4425 int i;
4426
4427 /* disable the queues */
4428 for (i = 0; i < adapter->num_tx_queues; i++)
4429 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4430
4431 wrfl();
4432 usleep_range(10000, 20000);
4433
4434 for (i = 0; i < adapter->num_tx_queues; i++)
4435 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4436 }
4437
4438 /**
4439 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4440 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4441 *
4442 * Returns 0 on success, negative on failure
4443 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4444 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4445 {
4446 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4447 struct device *dev = rx_ring->dev;
4448 int size, res;
4449
4450 /* XDP RX-queue info */
4451 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4452 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4453 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4454 rx_ring->queue_index,
4455 rx_ring->q_vector->napi.napi_id);
4456 if (res < 0) {
4457 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4458 rx_ring->queue_index);
4459 return res;
4460 }
4461
4462 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4463
4464 rx_ring->rx_buffer_info = vmalloc(size);
4465 if (!rx_ring->rx_buffer_info)
4466 goto err;
4467
4468 /* Round up to nearest 4K */
4469 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4470 rx_ring->size = ALIGN(rx_ring->size, 4096);
4471
4472 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4473 &rx_ring->dma, GFP_KERNEL);
4474 if (!rx_ring->desc)
4475 goto err;
4476
4477 rx_ring->next_to_alloc = 0;
4478 rx_ring->next_to_clean = 0;
4479 rx_ring->next_to_use = 0;
4480
4481 rx_ring->xdp_prog = adapter->xdp_prog;
4482
4483 return 0;
4484
4485 err:
4486 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4487 vfree(rx_ring->rx_buffer_info);
4488 rx_ring->rx_buffer_info = NULL;
4489 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4490 return -ENOMEM;
4491 }
4492
4493 /**
4494 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4495 * (Descriptors) for all queues
4496 * @adapter: board private structure
4497 *
4498 * Return 0 on success, negative on failure
4499 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4500 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4501 {
4502 struct pci_dev *pdev = adapter->pdev;
4503 int i, err = 0;
4504
4505 for (i = 0; i < adapter->num_rx_queues; i++) {
4506 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4507 if (err) {
4508 dev_err(&pdev->dev,
4509 "Allocation for Rx Queue %u failed\n", i);
4510 for (i--; i >= 0; i--)
4511 igb_free_rx_resources(adapter->rx_ring[i]);
4512 break;
4513 }
4514 }
4515
4516 return err;
4517 }
4518
4519 /**
4520 * igb_setup_mrqc - configure the multiple receive queue control registers
4521 * @adapter: Board private structure
4522 **/
igb_setup_mrqc(struct igb_adapter * adapter)4523 static void igb_setup_mrqc(struct igb_adapter *adapter)
4524 {
4525 struct e1000_hw *hw = &adapter->hw;
4526 u32 mrqc, rxcsum;
4527 u32 j, num_rx_queues;
4528 u32 rss_key[10];
4529
4530 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4531 for (j = 0; j < 10; j++)
4532 wr32(E1000_RSSRK(j), rss_key[j]);
4533
4534 num_rx_queues = adapter->rss_queues;
4535
4536 switch (hw->mac.type) {
4537 case e1000_82576:
4538 /* 82576 supports 2 RSS queues for SR-IOV */
4539 if (adapter->vfs_allocated_count)
4540 num_rx_queues = 2;
4541 break;
4542 default:
4543 break;
4544 }
4545
4546 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4547 for (j = 0; j < IGB_RETA_SIZE; j++)
4548 adapter->rss_indir_tbl[j] =
4549 (j * num_rx_queues) / IGB_RETA_SIZE;
4550 adapter->rss_indir_tbl_init = num_rx_queues;
4551 }
4552 igb_write_rss_indir_tbl(adapter);
4553
4554 /* Disable raw packet checksumming so that RSS hash is placed in
4555 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4556 * offloads as they are enabled by default
4557 */
4558 rxcsum = rd32(E1000_RXCSUM);
4559 rxcsum |= E1000_RXCSUM_PCSD;
4560
4561 if (adapter->hw.mac.type >= e1000_82576)
4562 /* Enable Receive Checksum Offload for SCTP */
4563 rxcsum |= E1000_RXCSUM_CRCOFL;
4564
4565 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4566 wr32(E1000_RXCSUM, rxcsum);
4567
4568 /* Generate RSS hash based on packet types, TCP/UDP
4569 * port numbers and/or IPv4/v6 src and dst addresses
4570 */
4571 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4572 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4573 E1000_MRQC_RSS_FIELD_IPV6 |
4574 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4575 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4576
4577 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4578 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4579 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4580 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4581
4582 /* If VMDq is enabled then we set the appropriate mode for that, else
4583 * we default to RSS so that an RSS hash is calculated per packet even
4584 * if we are only using one queue
4585 */
4586 if (adapter->vfs_allocated_count) {
4587 if (hw->mac.type > e1000_82575) {
4588 /* Set the default pool for the PF's first queue */
4589 u32 vtctl = rd32(E1000_VT_CTL);
4590
4591 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4592 E1000_VT_CTL_DISABLE_DEF_POOL);
4593 vtctl |= adapter->vfs_allocated_count <<
4594 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4595 wr32(E1000_VT_CTL, vtctl);
4596 }
4597 if (adapter->rss_queues > 1)
4598 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4599 else
4600 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4601 } else {
4602 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4603 }
4604 igb_vmm_control(adapter);
4605
4606 wr32(E1000_MRQC, mrqc);
4607 }
4608
4609 /**
4610 * igb_setup_rctl - configure the receive control registers
4611 * @adapter: Board private structure
4612 **/
igb_setup_rctl(struct igb_adapter * adapter)4613 void igb_setup_rctl(struct igb_adapter *adapter)
4614 {
4615 struct e1000_hw *hw = &adapter->hw;
4616 u32 rctl;
4617
4618 rctl = rd32(E1000_RCTL);
4619
4620 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4621 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4622
4623 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4624 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4625
4626 /* enable stripping of CRC. It's unlikely this will break BMC
4627 * redirection as it did with e1000. Newer features require
4628 * that the HW strips the CRC.
4629 */
4630 rctl |= E1000_RCTL_SECRC;
4631
4632 /* disable store bad packets and clear size bits. */
4633 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4634
4635 /* enable LPE to allow for reception of jumbo frames */
4636 rctl |= E1000_RCTL_LPE;
4637
4638 /* disable queue 0 to prevent tail write w/o re-config */
4639 wr32(E1000_RXDCTL(0), 0);
4640
4641 /* Attention!!! For SR-IOV PF driver operations you must enable
4642 * queue drop for all VF and PF queues to prevent head of line blocking
4643 * if an un-trusted VF does not provide descriptors to hardware.
4644 */
4645 if (adapter->vfs_allocated_count) {
4646 /* set all queue drop enable bits */
4647 wr32(E1000_QDE, ALL_QUEUES);
4648 }
4649
4650 /* This is useful for sniffing bad packets. */
4651 if (adapter->netdev->features & NETIF_F_RXALL) {
4652 /* UPE and MPE will be handled by normal PROMISC logic
4653 * in e1000e_set_rx_mode
4654 */
4655 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4656 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4657 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4658
4659 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4660 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4661 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4662 * and that breaks VLANs.
4663 */
4664 }
4665
4666 wr32(E1000_RCTL, rctl);
4667 }
4668
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4669 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4670 int vfn)
4671 {
4672 struct e1000_hw *hw = &adapter->hw;
4673 u32 vmolr;
4674
4675 if (size > MAX_JUMBO_FRAME_SIZE)
4676 size = MAX_JUMBO_FRAME_SIZE;
4677
4678 vmolr = rd32(E1000_VMOLR(vfn));
4679 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4680 vmolr |= size | E1000_VMOLR_LPE;
4681 wr32(E1000_VMOLR(vfn), vmolr);
4682
4683 return 0;
4684 }
4685
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4686 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4687 int vfn, bool enable)
4688 {
4689 struct e1000_hw *hw = &adapter->hw;
4690 u32 val, reg;
4691
4692 if (hw->mac.type < e1000_82576)
4693 return;
4694
4695 if (hw->mac.type == e1000_i350)
4696 reg = E1000_DVMOLR(vfn);
4697 else
4698 reg = E1000_VMOLR(vfn);
4699
4700 val = rd32(reg);
4701 if (enable)
4702 val |= E1000_VMOLR_STRVLAN;
4703 else
4704 val &= ~(E1000_VMOLR_STRVLAN);
4705 wr32(reg, val);
4706 }
4707
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4708 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4709 int vfn, bool aupe)
4710 {
4711 struct e1000_hw *hw = &adapter->hw;
4712 u32 vmolr;
4713
4714 /* This register exists only on 82576 and newer so if we are older then
4715 * we should exit and do nothing
4716 */
4717 if (hw->mac.type < e1000_82576)
4718 return;
4719
4720 vmolr = rd32(E1000_VMOLR(vfn));
4721 if (aupe)
4722 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4723 else
4724 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4725
4726 /* clear all bits that might not be set */
4727 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4728
4729 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4730 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4731 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4732 * multicast packets
4733 */
4734 if (vfn <= adapter->vfs_allocated_count)
4735 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4736
4737 wr32(E1000_VMOLR(vfn), vmolr);
4738 }
4739
4740 /**
4741 * igb_setup_srrctl - configure the split and replication receive control
4742 * registers
4743 * @adapter: Board private structure
4744 * @ring: receive ring to be configured
4745 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4746 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4747 {
4748 struct e1000_hw *hw = &adapter->hw;
4749 int reg_idx = ring->reg_idx;
4750 u32 srrctl = 0;
4751 u32 buf_size;
4752
4753 if (ring->xsk_pool)
4754 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
4755 else if (ring_uses_large_buffer(ring))
4756 buf_size = IGB_RXBUFFER_3072;
4757 else
4758 buf_size = IGB_RXBUFFER_2048;
4759
4760 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4761 srrctl |= buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4762 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4763 if (hw->mac.type >= e1000_82580)
4764 srrctl |= E1000_SRRCTL_TIMESTAMP;
4765 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4766 * queues and rx flow control is disabled
4767 */
4768 if (adapter->vfs_allocated_count ||
4769 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4770 adapter->num_rx_queues > 1))
4771 srrctl |= E1000_SRRCTL_DROP_EN;
4772
4773 wr32(E1000_SRRCTL(reg_idx), srrctl);
4774 }
4775
4776 /**
4777 * igb_configure_rx_ring - Configure a receive ring after Reset
4778 * @adapter: board private structure
4779 * @ring: receive ring to be configured
4780 *
4781 * Configure the Rx unit of the MAC after a reset.
4782 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4783 void igb_configure_rx_ring(struct igb_adapter *adapter,
4784 struct igb_ring *ring)
4785 {
4786 struct e1000_hw *hw = &adapter->hw;
4787 union e1000_adv_rx_desc *rx_desc;
4788 u64 rdba = ring->dma;
4789 int reg_idx = ring->reg_idx;
4790 u32 rxdctl = 0;
4791
4792 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4793 WRITE_ONCE(ring->xsk_pool, igb_xsk_pool(adapter, ring));
4794 if (ring->xsk_pool) {
4795 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4796 MEM_TYPE_XSK_BUFF_POOL,
4797 NULL));
4798 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
4799 } else {
4800 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4801 MEM_TYPE_PAGE_SHARED,
4802 NULL));
4803 }
4804
4805 /* disable the queue */
4806 wr32(E1000_RXDCTL(reg_idx), 0);
4807
4808 /* Set DMA base address registers */
4809 wr32(E1000_RDBAL(reg_idx),
4810 rdba & 0x00000000ffffffffULL);
4811 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4812 wr32(E1000_RDLEN(reg_idx),
4813 ring->count * sizeof(union e1000_adv_rx_desc));
4814
4815 /* initialize head and tail */
4816 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4817 wr32(E1000_RDH(reg_idx), 0);
4818 writel(0, ring->tail);
4819
4820 /* set descriptor configuration */
4821 igb_setup_srrctl(adapter, ring);
4822
4823 /* set filtering for VMDQ pools */
4824 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4825
4826 rxdctl |= IGB_RX_PTHRESH;
4827 rxdctl |= IGB_RX_HTHRESH << 8;
4828 rxdctl |= IGB_RX_WTHRESH << 16;
4829
4830 if (ring->xsk_pool)
4831 memset(ring->rx_buffer_info_zc, 0,
4832 sizeof(*ring->rx_buffer_info_zc) * ring->count);
4833 else
4834 memset(ring->rx_buffer_info, 0,
4835 sizeof(*ring->rx_buffer_info) * ring->count);
4836
4837 /* initialize Rx descriptor 0 */
4838 rx_desc = IGB_RX_DESC(ring, 0);
4839 rx_desc->wb.upper.length = 0;
4840
4841 /* enable receive descriptor fetching */
4842 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4843 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4844 }
4845
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4846 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4847 struct igb_ring *rx_ring)
4848 {
4849 #if (PAGE_SIZE < 8192)
4850 struct e1000_hw *hw = &adapter->hw;
4851 #endif
4852
4853 /* set build_skb and buffer size flags */
4854 clear_ring_build_skb_enabled(rx_ring);
4855 clear_ring_uses_large_buffer(rx_ring);
4856
4857 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4858 return;
4859
4860 set_ring_build_skb_enabled(rx_ring);
4861
4862 #if (PAGE_SIZE < 8192)
4863 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4864 IGB_2K_TOO_SMALL_WITH_PADDING ||
4865 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4866 set_ring_uses_large_buffer(rx_ring);
4867 #endif
4868 }
4869
4870 /**
4871 * igb_configure_rx - Configure receive Unit after Reset
4872 * @adapter: board private structure
4873 *
4874 * Configure the Rx unit of the MAC after a reset.
4875 **/
igb_configure_rx(struct igb_adapter * adapter)4876 static void igb_configure_rx(struct igb_adapter *adapter)
4877 {
4878 int i;
4879
4880 /* set the correct pool for the PF default MAC address in entry 0 */
4881 igb_set_default_mac_filter(adapter);
4882
4883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4884 * the Base and Length of the Rx Descriptor Ring
4885 */
4886 for (i = 0; i < adapter->num_rx_queues; i++) {
4887 struct igb_ring *rx_ring = adapter->rx_ring[i];
4888
4889 igb_set_rx_buffer_len(adapter, rx_ring);
4890 igb_configure_rx_ring(adapter, rx_ring);
4891 }
4892 }
4893
4894 /**
4895 * igb_free_tx_resources - Free Tx Resources per Queue
4896 * @tx_ring: Tx descriptor ring for a specific queue
4897 *
4898 * Free all transmit software resources
4899 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4900 void igb_free_tx_resources(struct igb_ring *tx_ring)
4901 {
4902 igb_clean_tx_ring(tx_ring);
4903
4904 vfree(tx_ring->tx_buffer_info);
4905 tx_ring->tx_buffer_info = NULL;
4906
4907 /* if not set, then don't free */
4908 if (!tx_ring->desc)
4909 return;
4910
4911 dma_free_coherent(tx_ring->dev, tx_ring->size,
4912 tx_ring->desc, tx_ring->dma);
4913
4914 tx_ring->desc = NULL;
4915 }
4916
4917 /**
4918 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4919 * @adapter: board private structure
4920 *
4921 * Free all transmit software resources
4922 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4923 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4924 {
4925 int i;
4926
4927 for (i = 0; i < adapter->num_tx_queues; i++)
4928 if (adapter->tx_ring[i])
4929 igb_free_tx_resources(adapter->tx_ring[i]);
4930 }
4931
4932 /**
4933 * igb_clean_tx_ring - Free Tx Buffers
4934 * @tx_ring: ring to be cleaned
4935 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4936 void igb_clean_tx_ring(struct igb_ring *tx_ring)
4937 {
4938 u16 i = tx_ring->next_to_clean;
4939 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4940 u32 xsk_frames = 0;
4941
4942 while (i != tx_ring->next_to_use) {
4943 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4944
4945 /* Free all the Tx ring sk_buffs or xdp frames */
4946 if (tx_buffer->type == IGB_TYPE_SKB) {
4947 dev_kfree_skb_any(tx_buffer->skb);
4948 } else if (tx_buffer->type == IGB_TYPE_XDP) {
4949 xdp_return_frame(tx_buffer->xdpf);
4950 } else if (tx_buffer->type == IGB_TYPE_XSK) {
4951 xsk_frames++;
4952 goto skip_for_xsk;
4953 }
4954
4955 /* unmap skb header data */
4956 dma_unmap_single(tx_ring->dev,
4957 dma_unmap_addr(tx_buffer, dma),
4958 dma_unmap_len(tx_buffer, len),
4959 DMA_TO_DEVICE);
4960
4961 /* check for eop_desc to determine the end of the packet */
4962 eop_desc = tx_buffer->next_to_watch;
4963 tx_desc = IGB_TX_DESC(tx_ring, i);
4964
4965 /* unmap remaining buffers */
4966 while (tx_desc != eop_desc) {
4967 tx_buffer++;
4968 tx_desc++;
4969 i++;
4970 if (unlikely(i == tx_ring->count)) {
4971 i = 0;
4972 tx_buffer = tx_ring->tx_buffer_info;
4973 tx_desc = IGB_TX_DESC(tx_ring, 0);
4974 }
4975
4976 /* unmap any remaining paged data */
4977 if (dma_unmap_len(tx_buffer, len))
4978 dma_unmap_page(tx_ring->dev,
4979 dma_unmap_addr(tx_buffer, dma),
4980 dma_unmap_len(tx_buffer, len),
4981 DMA_TO_DEVICE);
4982 }
4983
4984 skip_for_xsk:
4985 tx_buffer->next_to_watch = NULL;
4986
4987 /* move us one more past the eop_desc for start of next pkt */
4988 tx_buffer++;
4989 i++;
4990 if (unlikely(i == tx_ring->count)) {
4991 i = 0;
4992 tx_buffer = tx_ring->tx_buffer_info;
4993 }
4994 }
4995
4996 /* reset BQL for queue */
4997 netdev_tx_reset_queue(txring_txq(tx_ring));
4998
4999 if (tx_ring->xsk_pool && xsk_frames)
5000 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
5001
5002 /* reset next_to_use and next_to_clean */
5003 tx_ring->next_to_use = 0;
5004 tx_ring->next_to_clean = 0;
5005 }
5006
5007 /**
5008 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
5009 * @adapter: board private structure
5010 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)5011 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
5012 {
5013 int i;
5014
5015 for (i = 0; i < adapter->num_tx_queues; i++)
5016 if (adapter->tx_ring[i])
5017 igb_clean_tx_ring(adapter->tx_ring[i]);
5018 }
5019
5020 /**
5021 * igb_free_rx_resources - Free Rx Resources
5022 * @rx_ring: ring to clean the resources from
5023 *
5024 * Free all receive software resources
5025 **/
igb_free_rx_resources(struct igb_ring * rx_ring)5026 void igb_free_rx_resources(struct igb_ring *rx_ring)
5027 {
5028 igb_clean_rx_ring(rx_ring);
5029
5030 rx_ring->xdp_prog = NULL;
5031 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5032 if (rx_ring->xsk_pool) {
5033 vfree(rx_ring->rx_buffer_info_zc);
5034 rx_ring->rx_buffer_info_zc = NULL;
5035 } else {
5036 vfree(rx_ring->rx_buffer_info);
5037 rx_ring->rx_buffer_info = NULL;
5038 }
5039
5040 /* if not set, then don't free */
5041 if (!rx_ring->desc)
5042 return;
5043
5044 dma_free_coherent(rx_ring->dev, rx_ring->size,
5045 rx_ring->desc, rx_ring->dma);
5046
5047 rx_ring->desc = NULL;
5048 }
5049
5050 /**
5051 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5052 * @adapter: board private structure
5053 *
5054 * Free all receive software resources
5055 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5056 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5057 {
5058 int i;
5059
5060 for (i = 0; i < adapter->num_rx_queues; i++)
5061 if (adapter->rx_ring[i])
5062 igb_free_rx_resources(adapter->rx_ring[i]);
5063 }
5064
5065 /**
5066 * igb_clean_rx_ring - Free Rx Buffers per Queue
5067 * @rx_ring: ring to free buffers from
5068 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5069 void igb_clean_rx_ring(struct igb_ring *rx_ring)
5070 {
5071 u16 i = rx_ring->next_to_clean;
5072
5073 dev_kfree_skb(rx_ring->skb);
5074 rx_ring->skb = NULL;
5075
5076 if (rx_ring->xsk_pool) {
5077 igb_clean_rx_ring_zc(rx_ring);
5078 goto skip_for_xsk;
5079 }
5080
5081 /* Free all the Rx ring sk_buffs */
5082 while (i != rx_ring->next_to_alloc) {
5083 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5084
5085 /* Invalidate cache lines that may have been written to by
5086 * device so that we avoid corrupting memory.
5087 */
5088 dma_sync_single_range_for_cpu(rx_ring->dev,
5089 buffer_info->dma,
5090 buffer_info->page_offset,
5091 igb_rx_bufsz(rx_ring),
5092 DMA_FROM_DEVICE);
5093
5094 /* free resources associated with mapping */
5095 dma_unmap_page_attrs(rx_ring->dev,
5096 buffer_info->dma,
5097 igb_rx_pg_size(rx_ring),
5098 DMA_FROM_DEVICE,
5099 IGB_RX_DMA_ATTR);
5100 __page_frag_cache_drain(buffer_info->page,
5101 buffer_info->pagecnt_bias);
5102
5103 i++;
5104 if (i == rx_ring->count)
5105 i = 0;
5106 }
5107
5108 skip_for_xsk:
5109 rx_ring->next_to_alloc = 0;
5110 rx_ring->next_to_clean = 0;
5111 rx_ring->next_to_use = 0;
5112 }
5113
5114 /**
5115 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5116 * @adapter: board private structure
5117 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5118 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5119 {
5120 int i;
5121
5122 for (i = 0; i < adapter->num_rx_queues; i++)
5123 if (adapter->rx_ring[i])
5124 igb_clean_rx_ring(adapter->rx_ring[i]);
5125 }
5126
5127 /**
5128 * igb_set_mac - Change the Ethernet Address of the NIC
5129 * @netdev: network interface device structure
5130 * @p: pointer to an address structure
5131 *
5132 * Returns 0 on success, negative on failure
5133 **/
igb_set_mac(struct net_device * netdev,void * p)5134 static int igb_set_mac(struct net_device *netdev, void *p)
5135 {
5136 struct igb_adapter *adapter = netdev_priv(netdev);
5137 struct e1000_hw *hw = &adapter->hw;
5138 struct sockaddr *addr = p;
5139
5140 if (!is_valid_ether_addr(addr->sa_data))
5141 return -EADDRNOTAVAIL;
5142
5143 eth_hw_addr_set(netdev, addr->sa_data);
5144 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5145
5146 /* set the correct pool for the new PF MAC address in entry 0 */
5147 igb_set_default_mac_filter(adapter);
5148
5149 return 0;
5150 }
5151
5152 /**
5153 * igb_write_mc_addr_list - write multicast addresses to MTA
5154 * @netdev: network interface device structure
5155 *
5156 * Writes multicast address list to the MTA hash table.
5157 * Returns: -ENOMEM on failure
5158 * 0 on no addresses written
5159 * X on writing X addresses to MTA
5160 **/
igb_write_mc_addr_list(struct net_device * netdev)5161 static int igb_write_mc_addr_list(struct net_device *netdev)
5162 {
5163 struct igb_adapter *adapter = netdev_priv(netdev);
5164 struct e1000_hw *hw = &adapter->hw;
5165 struct netdev_hw_addr *ha;
5166 u8 *mta_list;
5167 int i;
5168
5169 if (netdev_mc_empty(netdev)) {
5170 /* nothing to program, so clear mc list */
5171 igb_update_mc_addr_list(hw, NULL, 0);
5172 igb_restore_vf_multicasts(adapter);
5173 return 0;
5174 }
5175
5176 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5177 if (!mta_list)
5178 return -ENOMEM;
5179
5180 /* The shared function expects a packed array of only addresses. */
5181 i = 0;
5182 netdev_for_each_mc_addr(ha, netdev)
5183 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5184
5185 igb_update_mc_addr_list(hw, mta_list, i);
5186 kfree(mta_list);
5187
5188 return netdev_mc_count(netdev);
5189 }
5190
igb_vlan_promisc_enable(struct igb_adapter * adapter)5191 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5192 {
5193 struct e1000_hw *hw = &adapter->hw;
5194 u32 i, pf_id;
5195
5196 switch (hw->mac.type) {
5197 case e1000_i210:
5198 case e1000_i211:
5199 case e1000_i350:
5200 /* VLAN filtering needed for VLAN prio filter */
5201 if (adapter->netdev->features & NETIF_F_NTUPLE)
5202 break;
5203 fallthrough;
5204 case e1000_82576:
5205 case e1000_82580:
5206 case e1000_i354:
5207 /* VLAN filtering needed for pool filtering */
5208 if (adapter->vfs_allocated_count)
5209 break;
5210 fallthrough;
5211 default:
5212 return 1;
5213 }
5214
5215 /* We are already in VLAN promisc, nothing to do */
5216 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5217 return 0;
5218
5219 if (!adapter->vfs_allocated_count)
5220 goto set_vfta;
5221
5222 /* Add PF to all active pools */
5223 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5224
5225 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5226 u32 vlvf = rd32(E1000_VLVF(i));
5227
5228 vlvf |= BIT(pf_id);
5229 wr32(E1000_VLVF(i), vlvf);
5230 }
5231
5232 set_vfta:
5233 /* Set all bits in the VLAN filter table array */
5234 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5235 hw->mac.ops.write_vfta(hw, i, ~0U);
5236
5237 /* Set flag so we don't redo unnecessary work */
5238 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5239
5240 return 0;
5241 }
5242
5243 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5244 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5245 {
5246 struct e1000_hw *hw = &adapter->hw;
5247 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5248 u32 vid_start = vfta_offset * 32;
5249 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5250 u32 i, vid, word, bits, pf_id;
5251
5252 /* guarantee that we don't scrub out management VLAN */
5253 vid = adapter->mng_vlan_id;
5254 if (vid >= vid_start && vid < vid_end)
5255 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5256
5257 if (!adapter->vfs_allocated_count)
5258 goto set_vfta;
5259
5260 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5261
5262 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5263 u32 vlvf = rd32(E1000_VLVF(i));
5264
5265 /* pull VLAN ID from VLVF */
5266 vid = vlvf & VLAN_VID_MASK;
5267
5268 /* only concern ourselves with a certain range */
5269 if (vid < vid_start || vid >= vid_end)
5270 continue;
5271
5272 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5273 /* record VLAN ID in VFTA */
5274 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5275
5276 /* if PF is part of this then continue */
5277 if (test_bit(vid, adapter->active_vlans))
5278 continue;
5279 }
5280
5281 /* remove PF from the pool */
5282 bits = ~BIT(pf_id);
5283 bits &= rd32(E1000_VLVF(i));
5284 wr32(E1000_VLVF(i), bits);
5285 }
5286
5287 set_vfta:
5288 /* extract values from active_vlans and write back to VFTA */
5289 for (i = VFTA_BLOCK_SIZE; i--;) {
5290 vid = (vfta_offset + i) * 32;
5291 word = vid / BITS_PER_LONG;
5292 bits = vid % BITS_PER_LONG;
5293
5294 vfta[i] |= adapter->active_vlans[word] >> bits;
5295
5296 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5297 }
5298 }
5299
igb_vlan_promisc_disable(struct igb_adapter * adapter)5300 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5301 {
5302 u32 i;
5303
5304 /* We are not in VLAN promisc, nothing to do */
5305 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5306 return;
5307
5308 /* Set flag so we don't redo unnecessary work */
5309 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5310
5311 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5312 igb_scrub_vfta(adapter, i);
5313 }
5314
5315 /**
5316 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5317 * @netdev: network interface device structure
5318 *
5319 * The set_rx_mode entry point is called whenever the unicast or multicast
5320 * address lists or the network interface flags are updated. This routine is
5321 * responsible for configuring the hardware for proper unicast, multicast,
5322 * promiscuous mode, and all-multi behavior.
5323 **/
igb_set_rx_mode(struct net_device * netdev)5324 static void igb_set_rx_mode(struct net_device *netdev)
5325 {
5326 struct igb_adapter *adapter = netdev_priv(netdev);
5327 struct e1000_hw *hw = &adapter->hw;
5328 unsigned int vfn = adapter->vfs_allocated_count;
5329 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5330 int count;
5331
5332 /* Check for Promiscuous and All Multicast modes */
5333 if (netdev->flags & IFF_PROMISC) {
5334 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5335 vmolr |= E1000_VMOLR_MPME;
5336
5337 /* enable use of UTA filter to force packets to default pool */
5338 if (hw->mac.type == e1000_82576)
5339 vmolr |= E1000_VMOLR_ROPE;
5340 } else {
5341 if (netdev->flags & IFF_ALLMULTI) {
5342 rctl |= E1000_RCTL_MPE;
5343 vmolr |= E1000_VMOLR_MPME;
5344 } else {
5345 /* Write addresses to the MTA, if the attempt fails
5346 * then we should just turn on promiscuous mode so
5347 * that we can at least receive multicast traffic
5348 */
5349 count = igb_write_mc_addr_list(netdev);
5350 if (count < 0) {
5351 rctl |= E1000_RCTL_MPE;
5352 vmolr |= E1000_VMOLR_MPME;
5353 } else if (count) {
5354 vmolr |= E1000_VMOLR_ROMPE;
5355 }
5356 }
5357 }
5358
5359 /* Write addresses to available RAR registers, if there is not
5360 * sufficient space to store all the addresses then enable
5361 * unicast promiscuous mode
5362 */
5363 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5364 rctl |= E1000_RCTL_UPE;
5365 vmolr |= E1000_VMOLR_ROPE;
5366 }
5367
5368 /* enable VLAN filtering by default */
5369 rctl |= E1000_RCTL_VFE;
5370
5371 /* disable VLAN filtering for modes that require it */
5372 if ((netdev->flags & IFF_PROMISC) ||
5373 (netdev->features & NETIF_F_RXALL)) {
5374 /* if we fail to set all rules then just clear VFE */
5375 if (igb_vlan_promisc_enable(adapter))
5376 rctl &= ~E1000_RCTL_VFE;
5377 } else {
5378 igb_vlan_promisc_disable(adapter);
5379 }
5380
5381 /* update state of unicast, multicast, and VLAN filtering modes */
5382 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5383 E1000_RCTL_VFE);
5384 wr32(E1000_RCTL, rctl);
5385
5386 #if (PAGE_SIZE < 8192)
5387 if (!adapter->vfs_allocated_count) {
5388 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5389 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5390 }
5391 #endif
5392 wr32(E1000_RLPML, rlpml);
5393
5394 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5395 * the VMOLR to enable the appropriate modes. Without this workaround
5396 * we will have issues with VLAN tag stripping not being done for frames
5397 * that are only arriving because we are the default pool
5398 */
5399 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5400 return;
5401
5402 /* set UTA to appropriate mode */
5403 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5404
5405 vmolr |= rd32(E1000_VMOLR(vfn)) &
5406 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5407
5408 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5409 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5410 #if (PAGE_SIZE < 8192)
5411 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5412 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5413 else
5414 #endif
5415 vmolr |= MAX_JUMBO_FRAME_SIZE;
5416 vmolr |= E1000_VMOLR_LPE;
5417
5418 wr32(E1000_VMOLR(vfn), vmolr);
5419
5420 igb_restore_vf_multicasts(adapter);
5421 }
5422
igb_check_wvbr(struct igb_adapter * adapter)5423 static void igb_check_wvbr(struct igb_adapter *adapter)
5424 {
5425 struct e1000_hw *hw = &adapter->hw;
5426 u32 wvbr = 0;
5427
5428 switch (hw->mac.type) {
5429 case e1000_82576:
5430 case e1000_i350:
5431 wvbr = rd32(E1000_WVBR);
5432 if (!wvbr)
5433 return;
5434 break;
5435 default:
5436 break;
5437 }
5438
5439 adapter->wvbr |= wvbr;
5440 }
5441
5442 #define IGB_STAGGERED_QUEUE_OFFSET 8
5443
igb_spoof_check(struct igb_adapter * adapter)5444 static void igb_spoof_check(struct igb_adapter *adapter)
5445 {
5446 int j;
5447
5448 if (!adapter->wvbr)
5449 return;
5450
5451 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5452 if (adapter->wvbr & BIT(j) ||
5453 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5454 dev_warn(&adapter->pdev->dev,
5455 "Spoof event(s) detected on VF %d\n", j);
5456 adapter->wvbr &=
5457 ~(BIT(j) |
5458 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5459 }
5460 }
5461 }
5462
5463 /* Need to wait a few seconds after link up to get diagnostic information from
5464 * the phy
5465 */
igb_update_phy_info(struct timer_list * t)5466 static void igb_update_phy_info(struct timer_list *t)
5467 {
5468 struct igb_adapter *adapter = timer_container_of(adapter, t,
5469 phy_info_timer);
5470 igb_get_phy_info(&adapter->hw);
5471 }
5472
5473 /**
5474 * igb_has_link - check shared code for link and determine up/down
5475 * @adapter: pointer to driver private info
5476 **/
igb_has_link(struct igb_adapter * adapter)5477 bool igb_has_link(struct igb_adapter *adapter)
5478 {
5479 struct e1000_hw *hw = &adapter->hw;
5480 bool link_active = false;
5481
5482 /* get_link_status is set on LSC (link status) interrupt or
5483 * rx sequence error interrupt. get_link_status will stay
5484 * false until the e1000_check_for_link establishes link
5485 * for copper adapters ONLY
5486 */
5487 switch (hw->phy.media_type) {
5488 case e1000_media_type_copper:
5489 if (!hw->mac.get_link_status)
5490 return true;
5491 fallthrough;
5492 case e1000_media_type_internal_serdes:
5493 hw->mac.ops.check_for_link(hw);
5494 link_active = !hw->mac.get_link_status;
5495 break;
5496 default:
5497 case e1000_media_type_unknown:
5498 break;
5499 }
5500
5501 if (((hw->mac.type == e1000_i210) ||
5502 (hw->mac.type == e1000_i211)) &&
5503 (hw->phy.id == I210_I_PHY_ID)) {
5504 if (!netif_carrier_ok(adapter->netdev)) {
5505 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5506 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5507 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5508 adapter->link_check_timeout = jiffies;
5509 }
5510 }
5511
5512 return link_active;
5513 }
5514
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5515 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5516 {
5517 bool ret = false;
5518 u32 ctrl_ext, thstat;
5519
5520 /* check for thermal sensor event on i350 copper only */
5521 if (hw->mac.type == e1000_i350) {
5522 thstat = rd32(E1000_THSTAT);
5523 ctrl_ext = rd32(E1000_CTRL_EXT);
5524
5525 if ((hw->phy.media_type == e1000_media_type_copper) &&
5526 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5527 ret = !!(thstat & event);
5528 }
5529
5530 return ret;
5531 }
5532
5533 /**
5534 * igb_check_lvmmc - check for malformed packets received
5535 * and indicated in LVMMC register
5536 * @adapter: pointer to adapter
5537 **/
igb_check_lvmmc(struct igb_adapter * adapter)5538 static void igb_check_lvmmc(struct igb_adapter *adapter)
5539 {
5540 struct e1000_hw *hw = &adapter->hw;
5541 u32 lvmmc;
5542
5543 lvmmc = rd32(E1000_LVMMC);
5544 if (lvmmc) {
5545 if (unlikely(net_ratelimit())) {
5546 netdev_warn(adapter->netdev,
5547 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5548 lvmmc);
5549 }
5550 }
5551 }
5552
5553 /**
5554 * igb_watchdog - Timer Call-back
5555 * @t: pointer to timer_list containing our private info pointer
5556 **/
igb_watchdog(struct timer_list * t)5557 static void igb_watchdog(struct timer_list *t)
5558 {
5559 struct igb_adapter *adapter = timer_container_of(adapter, t,
5560 watchdog_timer);
5561 /* Do the rest outside of interrupt context */
5562 schedule_work(&adapter->watchdog_task);
5563 }
5564
igb_watchdog_task(struct work_struct * work)5565 static void igb_watchdog_task(struct work_struct *work)
5566 {
5567 struct igb_adapter *adapter = container_of(work,
5568 struct igb_adapter,
5569 watchdog_task);
5570 struct e1000_hw *hw = &adapter->hw;
5571 struct e1000_phy_info *phy = &hw->phy;
5572 struct net_device *netdev = adapter->netdev;
5573 u32 link;
5574 int i;
5575 u32 connsw;
5576 u16 phy_data, retry_count = 20;
5577
5578 link = igb_has_link(adapter);
5579
5580 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5581 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5582 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5583 else
5584 link = false;
5585 }
5586
5587 /* Force link down if we have fiber to swap to */
5588 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5589 if (hw->phy.media_type == e1000_media_type_copper) {
5590 connsw = rd32(E1000_CONNSW);
5591 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5592 link = 0;
5593 }
5594 }
5595 if (link) {
5596 /* Perform a reset if the media type changed. */
5597 if (hw->dev_spec._82575.media_changed) {
5598 hw->dev_spec._82575.media_changed = false;
5599 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5600 igb_reset(adapter);
5601 }
5602 /* Cancel scheduled suspend requests. */
5603 pm_runtime_resume(netdev->dev.parent);
5604
5605 if (!netif_carrier_ok(netdev)) {
5606 u32 ctrl;
5607
5608 hw->mac.ops.get_speed_and_duplex(hw,
5609 &adapter->link_speed,
5610 &adapter->link_duplex);
5611
5612 ctrl = rd32(E1000_CTRL);
5613 /* Links status message must follow this format */
5614 netdev_info(netdev,
5615 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5616 netdev->name,
5617 adapter->link_speed,
5618 adapter->link_duplex == FULL_DUPLEX ?
5619 "Full" : "Half",
5620 (ctrl & E1000_CTRL_TFCE) &&
5621 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5622 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5623 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5624
5625 /* disable EEE if enabled */
5626 if ((adapter->flags & IGB_FLAG_EEE) &&
5627 (adapter->link_duplex == HALF_DUPLEX)) {
5628 dev_info(&adapter->pdev->dev,
5629 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5630 adapter->hw.dev_spec._82575.eee_disable = true;
5631 adapter->flags &= ~IGB_FLAG_EEE;
5632 }
5633
5634 /* check if SmartSpeed worked */
5635 igb_check_downshift(hw);
5636 if (phy->speed_downgraded)
5637 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5638
5639 /* check for thermal sensor event */
5640 if (igb_thermal_sensor_event(hw,
5641 E1000_THSTAT_LINK_THROTTLE))
5642 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5643
5644 /* adjust timeout factor according to speed/duplex */
5645 adapter->tx_timeout_factor = 1;
5646 switch (adapter->link_speed) {
5647 case SPEED_10:
5648 adapter->tx_timeout_factor = 14;
5649 break;
5650 case SPEED_100:
5651 /* maybe add some timeout factor ? */
5652 break;
5653 }
5654
5655 if (adapter->link_speed != SPEED_1000 ||
5656 !hw->phy.ops.read_reg)
5657 goto no_wait;
5658
5659 /* wait for Remote receiver status OK */
5660 retry_read_status:
5661 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5662 &phy_data)) {
5663 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5664 retry_count) {
5665 msleep(100);
5666 retry_count--;
5667 goto retry_read_status;
5668 } else if (!retry_count) {
5669 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5670 }
5671 } else {
5672 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5673 }
5674 no_wait:
5675 netif_carrier_on(netdev);
5676
5677 igb_ping_all_vfs(adapter);
5678 igb_check_vf_rate_limit(adapter);
5679
5680 /* link state has changed, schedule phy info update */
5681 if (!test_bit(__IGB_DOWN, &adapter->state))
5682 mod_timer(&adapter->phy_info_timer,
5683 round_jiffies(jiffies + 2 * HZ));
5684 }
5685 } else {
5686 if (netif_carrier_ok(netdev)) {
5687 adapter->link_speed = 0;
5688 adapter->link_duplex = 0;
5689
5690 /* check for thermal sensor event */
5691 if (igb_thermal_sensor_event(hw,
5692 E1000_THSTAT_PWR_DOWN)) {
5693 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5694 }
5695
5696 /* Links status message must follow this format */
5697 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5698 netdev->name);
5699 netif_carrier_off(netdev);
5700
5701 igb_ping_all_vfs(adapter);
5702
5703 /* link state has changed, schedule phy info update */
5704 if (!test_bit(__IGB_DOWN, &adapter->state))
5705 mod_timer(&adapter->phy_info_timer,
5706 round_jiffies(jiffies + 2 * HZ));
5707
5708 /* link is down, time to check for alternate media */
5709 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5710 igb_check_swap_media(adapter);
5711 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5712 schedule_work(&adapter->reset_task);
5713 /* return immediately */
5714 return;
5715 }
5716 }
5717 pm_schedule_suspend(netdev->dev.parent,
5718 MSEC_PER_SEC * 5);
5719
5720 /* also check for alternate media here */
5721 } else if (!netif_carrier_ok(netdev) &&
5722 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5723 igb_check_swap_media(adapter);
5724 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5725 schedule_work(&adapter->reset_task);
5726 /* return immediately */
5727 return;
5728 }
5729 }
5730 }
5731
5732 spin_lock(&adapter->stats64_lock);
5733 igb_update_stats(adapter);
5734 spin_unlock(&adapter->stats64_lock);
5735
5736 for (i = 0; i < adapter->num_tx_queues; i++) {
5737 struct igb_ring *tx_ring = adapter->tx_ring[i];
5738 if (!netif_carrier_ok(netdev)) {
5739 /* We've lost link, so the controller stops DMA,
5740 * but we've got queued Tx work that's never going
5741 * to get done, so reset controller to flush Tx.
5742 * (Do the reset outside of interrupt context).
5743 */
5744 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5745 adapter->tx_timeout_count++;
5746 schedule_work(&adapter->reset_task);
5747 /* return immediately since reset is imminent */
5748 return;
5749 }
5750 }
5751
5752 /* Force detection of hung controller every watchdog period */
5753 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5754 }
5755
5756 /* Cause software interrupt to ensure Rx ring is cleaned */
5757 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5758 u32 eics = 0;
5759
5760 for (i = 0; i < adapter->num_q_vectors; i++) {
5761 struct igb_q_vector *q_vector = adapter->q_vector[i];
5762 struct igb_ring *rx_ring;
5763
5764 if (!q_vector->rx.ring)
5765 continue;
5766
5767 rx_ring = adapter->rx_ring[q_vector->rx.ring->queue_index];
5768
5769 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5770 eics |= q_vector->eims_value;
5771 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5772 }
5773 }
5774 if (eics)
5775 wr32(E1000_EICS, eics);
5776 } else {
5777 struct igb_ring *rx_ring = adapter->rx_ring[0];
5778
5779 if (test_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags)) {
5780 clear_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
5781 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5782 }
5783 }
5784
5785 igb_spoof_check(adapter);
5786 igb_ptp_rx_hang(adapter);
5787 igb_ptp_tx_hang(adapter);
5788
5789 /* Check LVMMC register on i350/i354 only */
5790 if ((adapter->hw.mac.type == e1000_i350) ||
5791 (adapter->hw.mac.type == e1000_i354))
5792 igb_check_lvmmc(adapter);
5793
5794 /* Reset the timer */
5795 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5796 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5797 mod_timer(&adapter->watchdog_timer,
5798 round_jiffies(jiffies + HZ));
5799 else
5800 mod_timer(&adapter->watchdog_timer,
5801 round_jiffies(jiffies + 2 * HZ));
5802 }
5803 }
5804
5805 enum latency_range {
5806 lowest_latency = 0,
5807 low_latency = 1,
5808 bulk_latency = 2,
5809 latency_invalid = 255
5810 };
5811
5812 /**
5813 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5814 * @q_vector: pointer to q_vector
5815 *
5816 * Stores a new ITR value based on strictly on packet size. This
5817 * algorithm is less sophisticated than that used in igb_update_itr,
5818 * due to the difficulty of synchronizing statistics across multiple
5819 * receive rings. The divisors and thresholds used by this function
5820 * were determined based on theoretical maximum wire speed and testing
5821 * data, in order to minimize response time while increasing bulk
5822 * throughput.
5823 * This functionality is controlled by ethtool's coalescing settings.
5824 * NOTE: This function is called only when operating in a multiqueue
5825 * receive environment.
5826 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5827 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5828 {
5829 int new_val = q_vector->itr_val;
5830 int avg_wire_size = 0;
5831 struct igb_adapter *adapter = q_vector->adapter;
5832 unsigned int packets;
5833
5834 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5835 * ints/sec - ITR timer value of 120 ticks.
5836 */
5837 if (adapter->link_speed != SPEED_1000) {
5838 new_val = IGB_4K_ITR;
5839 goto set_itr_val;
5840 }
5841
5842 packets = q_vector->rx.total_packets;
5843 if (packets)
5844 avg_wire_size = q_vector->rx.total_bytes / packets;
5845
5846 packets = q_vector->tx.total_packets;
5847 if (packets)
5848 avg_wire_size = max_t(u32, avg_wire_size,
5849 q_vector->tx.total_bytes / packets);
5850
5851 /* if avg_wire_size isn't set no work was done */
5852 if (!avg_wire_size)
5853 goto clear_counts;
5854
5855 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5856 avg_wire_size += 24;
5857
5858 /* Don't starve jumbo frames */
5859 avg_wire_size = min(avg_wire_size, 3000);
5860
5861 /* Give a little boost to mid-size frames */
5862 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5863 new_val = avg_wire_size / 3;
5864 else
5865 new_val = avg_wire_size / 2;
5866
5867 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5868 if (new_val < IGB_20K_ITR &&
5869 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5870 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5871 new_val = IGB_20K_ITR;
5872
5873 set_itr_val:
5874 if (new_val != q_vector->itr_val) {
5875 q_vector->itr_val = new_val;
5876 q_vector->set_itr = 1;
5877 }
5878 clear_counts:
5879 q_vector->rx.total_bytes = 0;
5880 q_vector->rx.total_packets = 0;
5881 q_vector->tx.total_bytes = 0;
5882 q_vector->tx.total_packets = 0;
5883 }
5884
5885 /**
5886 * igb_update_itr - update the dynamic ITR value based on statistics
5887 * @q_vector: pointer to q_vector
5888 * @ring_container: ring info to update the itr for
5889 *
5890 * Stores a new ITR value based on packets and byte
5891 * counts during the last interrupt. The advantage of per interrupt
5892 * computation is faster updates and more accurate ITR for the current
5893 * traffic pattern. Constants in this function were computed
5894 * based on theoretical maximum wire speed and thresholds were set based
5895 * on testing data as well as attempting to minimize response time
5896 * while increasing bulk throughput.
5897 * This functionality is controlled by ethtool's coalescing settings.
5898 * NOTE: These calculations are only valid when operating in a single-
5899 * queue environment.
5900 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5901 static void igb_update_itr(struct igb_q_vector *q_vector,
5902 struct igb_ring_container *ring_container)
5903 {
5904 unsigned int packets = ring_container->total_packets;
5905 unsigned int bytes = ring_container->total_bytes;
5906 u8 itrval = ring_container->itr;
5907
5908 /* no packets, exit with status unchanged */
5909 if (packets == 0)
5910 return;
5911
5912 switch (itrval) {
5913 case lowest_latency:
5914 /* handle TSO and jumbo frames */
5915 if (bytes/packets > 8000)
5916 itrval = bulk_latency;
5917 else if ((packets < 5) && (bytes > 512))
5918 itrval = low_latency;
5919 break;
5920 case low_latency: /* 50 usec aka 20000 ints/s */
5921 if (bytes > 10000) {
5922 /* this if handles the TSO accounting */
5923 if (bytes/packets > 8000)
5924 itrval = bulk_latency;
5925 else if ((packets < 10) || ((bytes/packets) > 1200))
5926 itrval = bulk_latency;
5927 else if ((packets > 35))
5928 itrval = lowest_latency;
5929 } else if (bytes/packets > 2000) {
5930 itrval = bulk_latency;
5931 } else if (packets <= 2 && bytes < 512) {
5932 itrval = lowest_latency;
5933 }
5934 break;
5935 case bulk_latency: /* 250 usec aka 4000 ints/s */
5936 if (bytes > 25000) {
5937 if (packets > 35)
5938 itrval = low_latency;
5939 } else if (bytes < 1500) {
5940 itrval = low_latency;
5941 }
5942 break;
5943 }
5944
5945 /* clear work counters since we have the values we need */
5946 ring_container->total_bytes = 0;
5947 ring_container->total_packets = 0;
5948
5949 /* write updated itr to ring container */
5950 ring_container->itr = itrval;
5951 }
5952
igb_set_itr(struct igb_q_vector * q_vector)5953 static void igb_set_itr(struct igb_q_vector *q_vector)
5954 {
5955 struct igb_adapter *adapter = q_vector->adapter;
5956 u32 new_itr = q_vector->itr_val;
5957 u8 current_itr = 0;
5958
5959 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5960 if (adapter->link_speed != SPEED_1000) {
5961 current_itr = 0;
5962 new_itr = IGB_4K_ITR;
5963 goto set_itr_now;
5964 }
5965
5966 igb_update_itr(q_vector, &q_vector->tx);
5967 igb_update_itr(q_vector, &q_vector->rx);
5968
5969 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5970
5971 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5972 if (current_itr == lowest_latency &&
5973 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5974 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5975 current_itr = low_latency;
5976
5977 switch (current_itr) {
5978 /* counts and packets in update_itr are dependent on these numbers */
5979 case lowest_latency:
5980 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5981 break;
5982 case low_latency:
5983 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5984 break;
5985 case bulk_latency:
5986 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5987 break;
5988 default:
5989 break;
5990 }
5991
5992 set_itr_now:
5993 if (new_itr != q_vector->itr_val) {
5994 /* this attempts to bias the interrupt rate towards Bulk
5995 * by adding intermediate steps when interrupt rate is
5996 * increasing
5997 */
5998 new_itr = new_itr > q_vector->itr_val ?
5999 max((new_itr * q_vector->itr_val) /
6000 (new_itr + (q_vector->itr_val >> 2)),
6001 new_itr) : new_itr;
6002 /* Don't write the value here; it resets the adapter's
6003 * internal timer, and causes us to delay far longer than
6004 * we should between interrupts. Instead, we write the ITR
6005 * value at the beginning of the next interrupt so the timing
6006 * ends up being correct.
6007 */
6008 q_vector->itr_val = new_itr;
6009 q_vector->set_itr = 1;
6010 }
6011 }
6012
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)6013 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
6014 struct igb_tx_buffer *first,
6015 u32 vlan_macip_lens, u32 type_tucmd,
6016 u32 mss_l4len_idx)
6017 {
6018 struct e1000_adv_tx_context_desc *context_desc;
6019 u16 i = tx_ring->next_to_use;
6020 struct timespec64 ts;
6021
6022 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
6023
6024 i++;
6025 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
6026
6027 /* set bits to identify this as an advanced context descriptor */
6028 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
6029
6030 /* For 82575, context index must be unique per ring. */
6031 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6032 mss_l4len_idx |= tx_ring->reg_idx << 4;
6033
6034 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
6035 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
6036 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
6037
6038 /* We assume there is always a valid tx time available. Invalid times
6039 * should have been handled by the upper layers.
6040 */
6041 if (tx_ring->launchtime_enable) {
6042 ts = ktime_to_timespec64(first->skb->tstamp);
6043 skb_txtime_consumed(first->skb);
6044 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
6045 } else {
6046 context_desc->seqnum_seed = 0;
6047 }
6048 }
6049
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)6050 static int igb_tso(struct igb_ring *tx_ring,
6051 struct igb_tx_buffer *first,
6052 u8 *hdr_len)
6053 {
6054 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
6055 struct sk_buff *skb = first->skb;
6056 union {
6057 struct iphdr *v4;
6058 struct ipv6hdr *v6;
6059 unsigned char *hdr;
6060 } ip;
6061 union {
6062 struct tcphdr *tcp;
6063 struct udphdr *udp;
6064 unsigned char *hdr;
6065 } l4;
6066 u32 paylen, l4_offset;
6067 int err;
6068
6069 if (skb->ip_summed != CHECKSUM_PARTIAL)
6070 return 0;
6071
6072 if (!skb_is_gso(skb))
6073 return 0;
6074
6075 err = skb_cow_head(skb, 0);
6076 if (err < 0)
6077 return err;
6078
6079 ip.hdr = skb_network_header(skb);
6080 l4.hdr = skb_checksum_start(skb);
6081
6082 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6083 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6084 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6085
6086 /* initialize outer IP header fields */
6087 if (ip.v4->version == 4) {
6088 unsigned char *csum_start = skb_checksum_start(skb);
6089 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6090
6091 /* IP header will have to cancel out any data that
6092 * is not a part of the outer IP header
6093 */
6094 ip.v4->check = csum_fold(csum_partial(trans_start,
6095 csum_start - trans_start,
6096 0));
6097 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6098
6099 ip.v4->tot_len = 0;
6100 first->tx_flags |= IGB_TX_FLAGS_TSO |
6101 IGB_TX_FLAGS_CSUM |
6102 IGB_TX_FLAGS_IPV4;
6103 } else {
6104 ip.v6->payload_len = 0;
6105 first->tx_flags |= IGB_TX_FLAGS_TSO |
6106 IGB_TX_FLAGS_CSUM;
6107 }
6108
6109 /* determine offset of inner transport header */
6110 l4_offset = l4.hdr - skb->data;
6111
6112 /* remove payload length from inner checksum */
6113 paylen = skb->len - l4_offset;
6114 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6115 /* compute length of segmentation header */
6116 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6117 csum_replace_by_diff(&l4.tcp->check,
6118 (__force __wsum)htonl(paylen));
6119 } else {
6120 /* compute length of segmentation header */
6121 *hdr_len = sizeof(*l4.udp) + l4_offset;
6122 csum_replace_by_diff(&l4.udp->check,
6123 (__force __wsum)htonl(paylen));
6124 }
6125
6126 /* update gso size and bytecount with header size */
6127 first->gso_segs = skb_shinfo(skb)->gso_segs;
6128 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6129
6130 /* MSS L4LEN IDX */
6131 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6132 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6133
6134 /* VLAN MACLEN IPLEN */
6135 vlan_macip_lens = l4.hdr - ip.hdr;
6136 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6137 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6138
6139 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6140 type_tucmd, mss_l4len_idx);
6141
6142 return 1;
6143 }
6144
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6145 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6146 {
6147 struct sk_buff *skb = first->skb;
6148 u32 vlan_macip_lens = 0;
6149 u32 type_tucmd = 0;
6150
6151 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6152 csum_failed:
6153 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6154 !tx_ring->launchtime_enable)
6155 return;
6156 goto no_csum;
6157 }
6158
6159 switch (skb->csum_offset) {
6160 case offsetof(struct tcphdr, check):
6161 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6162 fallthrough;
6163 case offsetof(struct udphdr, check):
6164 break;
6165 case offsetof(struct sctphdr, checksum):
6166 /* validate that this is actually an SCTP request */
6167 if (skb_csum_is_sctp(skb)) {
6168 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6169 break;
6170 }
6171 fallthrough;
6172 default:
6173 skb_checksum_help(skb);
6174 goto csum_failed;
6175 }
6176
6177 /* update TX checksum flag */
6178 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6179 vlan_macip_lens = skb_checksum_start_offset(skb) -
6180 skb_network_offset(skb);
6181 no_csum:
6182 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6183 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6184
6185 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6186 }
6187
6188 #define IGB_SET_FLAG(_input, _flag, _result) \
6189 ((_flag <= _result) ? \
6190 ((u32)(_input & _flag) * (_result / _flag)) : \
6191 ((u32)(_input & _flag) / (_flag / _result)))
6192
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6193 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6194 {
6195 /* set type for advanced descriptor with frame checksum insertion */
6196 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6197 E1000_ADVTXD_DCMD_DEXT |
6198 E1000_ADVTXD_DCMD_IFCS;
6199
6200 /* set HW vlan bit if vlan is present */
6201 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6202 (E1000_ADVTXD_DCMD_VLE));
6203
6204 /* set segmentation bits for TSO */
6205 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6206 (E1000_ADVTXD_DCMD_TSE));
6207
6208 /* set timestamp bit if present */
6209 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6210 (E1000_ADVTXD_MAC_TSTAMP));
6211
6212 /* insert frame checksum */
6213 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6214
6215 return cmd_type;
6216 }
6217
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6218 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6219 union e1000_adv_tx_desc *tx_desc,
6220 u32 tx_flags, unsigned int paylen)
6221 {
6222 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6223
6224 /* 82575 requires a unique index per ring */
6225 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6226 olinfo_status |= tx_ring->reg_idx << 4;
6227
6228 /* insert L4 checksum */
6229 olinfo_status |= IGB_SET_FLAG(tx_flags,
6230 IGB_TX_FLAGS_CSUM,
6231 (E1000_TXD_POPTS_TXSM << 8));
6232
6233 /* insert IPv4 checksum */
6234 olinfo_status |= IGB_SET_FLAG(tx_flags,
6235 IGB_TX_FLAGS_IPV4,
6236 (E1000_TXD_POPTS_IXSM << 8));
6237
6238 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6239 }
6240
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6241 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6242 {
6243 struct net_device *netdev = tx_ring->netdev;
6244
6245 netif_stop_subqueue(netdev, tx_ring->queue_index);
6246
6247 /* Herbert's original patch had:
6248 * smp_mb__after_netif_stop_queue();
6249 * but since that doesn't exist yet, just open code it.
6250 */
6251 smp_mb();
6252
6253 /* We need to check again in a case another CPU has just
6254 * made room available.
6255 */
6256 if (igb_desc_unused(tx_ring) < size)
6257 return -EBUSY;
6258
6259 /* A reprieve! */
6260 netif_wake_subqueue(netdev, tx_ring->queue_index);
6261
6262 u64_stats_update_begin(&tx_ring->tx_syncp2);
6263 tx_ring->tx_stats.restart_queue2++;
6264 u64_stats_update_end(&tx_ring->tx_syncp2);
6265
6266 return 0;
6267 }
6268
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6269 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6270 {
6271 if (igb_desc_unused(tx_ring) >= size)
6272 return 0;
6273 return __igb_maybe_stop_tx(tx_ring, size);
6274 }
6275
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6276 static int igb_tx_map(struct igb_ring *tx_ring,
6277 struct igb_tx_buffer *first,
6278 const u8 hdr_len)
6279 {
6280 struct sk_buff *skb = first->skb;
6281 struct igb_tx_buffer *tx_buffer;
6282 union e1000_adv_tx_desc *tx_desc;
6283 skb_frag_t *frag;
6284 dma_addr_t dma;
6285 unsigned int data_len, size;
6286 u32 tx_flags = first->tx_flags;
6287 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6288 u16 i = tx_ring->next_to_use;
6289
6290 tx_desc = IGB_TX_DESC(tx_ring, i);
6291
6292 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6293
6294 size = skb_headlen(skb);
6295 data_len = skb->data_len;
6296
6297 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6298
6299 tx_buffer = first;
6300
6301 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6302 if (dma_mapping_error(tx_ring->dev, dma))
6303 goto dma_error;
6304
6305 /* record length, and DMA address */
6306 dma_unmap_len_set(tx_buffer, len, size);
6307 dma_unmap_addr_set(tx_buffer, dma, dma);
6308
6309 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6310
6311 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6312 tx_desc->read.cmd_type_len =
6313 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6314
6315 i++;
6316 tx_desc++;
6317 if (i == tx_ring->count) {
6318 tx_desc = IGB_TX_DESC(tx_ring, 0);
6319 i = 0;
6320 }
6321 tx_desc->read.olinfo_status = 0;
6322
6323 dma += IGB_MAX_DATA_PER_TXD;
6324 size -= IGB_MAX_DATA_PER_TXD;
6325
6326 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6327 }
6328
6329 if (likely(!data_len))
6330 break;
6331
6332 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6333
6334 i++;
6335 tx_desc++;
6336 if (i == tx_ring->count) {
6337 tx_desc = IGB_TX_DESC(tx_ring, 0);
6338 i = 0;
6339 }
6340 tx_desc->read.olinfo_status = 0;
6341
6342 size = skb_frag_size(frag);
6343 data_len -= size;
6344
6345 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6346 size, DMA_TO_DEVICE);
6347
6348 tx_buffer = &tx_ring->tx_buffer_info[i];
6349 }
6350
6351 /* write last descriptor with RS and EOP bits */
6352 cmd_type |= size | IGB_TXD_DCMD;
6353 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6354
6355 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6356
6357 /* set the timestamp */
6358 first->time_stamp = jiffies;
6359
6360 skb_tx_timestamp(skb);
6361
6362 /* Force memory writes to complete before letting h/w know there
6363 * are new descriptors to fetch. (Only applicable for weak-ordered
6364 * memory model archs, such as IA-64).
6365 *
6366 * We also need this memory barrier to make certain all of the
6367 * status bits have been updated before next_to_watch is written.
6368 */
6369 dma_wmb();
6370
6371 /* set next_to_watch value indicating a packet is present */
6372 first->next_to_watch = tx_desc;
6373
6374 i++;
6375 if (i == tx_ring->count)
6376 i = 0;
6377
6378 tx_ring->next_to_use = i;
6379
6380 /* Make sure there is space in the ring for the next send. */
6381 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6382
6383 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6384 writel(i, tx_ring->tail);
6385 }
6386 return 0;
6387
6388 dma_error:
6389 dev_err(tx_ring->dev, "TX DMA map failed\n");
6390 tx_buffer = &tx_ring->tx_buffer_info[i];
6391
6392 /* clear dma mappings for failed tx_buffer_info map */
6393 while (tx_buffer != first) {
6394 if (dma_unmap_len(tx_buffer, len))
6395 dma_unmap_page(tx_ring->dev,
6396 dma_unmap_addr(tx_buffer, dma),
6397 dma_unmap_len(tx_buffer, len),
6398 DMA_TO_DEVICE);
6399 dma_unmap_len_set(tx_buffer, len, 0);
6400
6401 if (i-- == 0)
6402 i += tx_ring->count;
6403 tx_buffer = &tx_ring->tx_buffer_info[i];
6404 }
6405
6406 if (dma_unmap_len(tx_buffer, len))
6407 dma_unmap_single(tx_ring->dev,
6408 dma_unmap_addr(tx_buffer, dma),
6409 dma_unmap_len(tx_buffer, len),
6410 DMA_TO_DEVICE);
6411 dma_unmap_len_set(tx_buffer, len, 0);
6412
6413 dev_kfree_skb_any(tx_buffer->skb);
6414 tx_buffer->skb = NULL;
6415
6416 tx_ring->next_to_use = i;
6417
6418 return -1;
6419 }
6420
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6421 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6422 struct igb_ring *tx_ring,
6423 struct xdp_frame *xdpf)
6424 {
6425 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6426 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6427 u16 count, i, index = tx_ring->next_to_use;
6428 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6429 struct igb_tx_buffer *tx_buffer = tx_head;
6430 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6431 u32 len = xdpf->len, cmd_type, olinfo_status;
6432 void *data = xdpf->data;
6433
6434 count = TXD_USE_COUNT(len);
6435 for (i = 0; i < nr_frags; i++)
6436 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6437
6438 if (igb_maybe_stop_tx(tx_ring, count + 3))
6439 return IGB_XDP_CONSUMED;
6440
6441 i = 0;
6442 /* record the location of the first descriptor for this packet */
6443 tx_head->bytecount = xdp_get_frame_len(xdpf);
6444 tx_head->type = IGB_TYPE_XDP;
6445 tx_head->gso_segs = 1;
6446 tx_head->xdpf = xdpf;
6447
6448 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6449 /* 82575 requires a unique index per ring */
6450 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6451 olinfo_status |= tx_ring->reg_idx << 4;
6452 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6453
6454 for (;;) {
6455 dma_addr_t dma;
6456
6457 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6458 if (dma_mapping_error(tx_ring->dev, dma))
6459 goto unmap;
6460
6461 /* record length, and DMA address */
6462 dma_unmap_len_set(tx_buffer, len, len);
6463 dma_unmap_addr_set(tx_buffer, dma, dma);
6464
6465 /* put descriptor type bits */
6466 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6467 E1000_ADVTXD_DCMD_IFCS | len;
6468
6469 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6470 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6471
6472 tx_buffer->protocol = 0;
6473
6474 if (++index == tx_ring->count)
6475 index = 0;
6476
6477 if (i == nr_frags)
6478 break;
6479
6480 tx_buffer = &tx_ring->tx_buffer_info[index];
6481 tx_desc = IGB_TX_DESC(tx_ring, index);
6482 tx_desc->read.olinfo_status = 0;
6483
6484 data = skb_frag_address(&sinfo->frags[i]);
6485 len = skb_frag_size(&sinfo->frags[i]);
6486 i++;
6487 }
6488 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6489
6490 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6491 /* set the timestamp */
6492 tx_head->time_stamp = jiffies;
6493
6494 /* Avoid any potential race with xdp_xmit and cleanup */
6495 smp_wmb();
6496
6497 /* set next_to_watch value indicating a packet is present */
6498 tx_head->next_to_watch = tx_desc;
6499 tx_ring->next_to_use = index;
6500
6501 /* Make sure there is space in the ring for the next send. */
6502 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6503
6504 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6505 writel(index, tx_ring->tail);
6506
6507 return IGB_XDP_TX;
6508
6509 unmap:
6510 for (;;) {
6511 tx_buffer = &tx_ring->tx_buffer_info[index];
6512 if (dma_unmap_len(tx_buffer, len))
6513 dma_unmap_page(tx_ring->dev,
6514 dma_unmap_addr(tx_buffer, dma),
6515 dma_unmap_len(tx_buffer, len),
6516 DMA_TO_DEVICE);
6517 dma_unmap_len_set(tx_buffer, len, 0);
6518 if (tx_buffer == tx_head)
6519 break;
6520
6521 if (!index)
6522 index += tx_ring->count;
6523 index--;
6524 }
6525
6526 return IGB_XDP_CONSUMED;
6527 }
6528
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6529 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6530 struct igb_ring *tx_ring)
6531 {
6532 struct igb_tx_buffer *first;
6533 int tso;
6534 u32 tx_flags = 0;
6535 unsigned short f;
6536 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6537 __be16 protocol = vlan_get_protocol(skb);
6538 u8 hdr_len = 0;
6539
6540 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6541 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6542 * + 2 desc gap to keep tail from touching head,
6543 * + 1 desc for context descriptor,
6544 * otherwise try next time
6545 */
6546 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6547 count += TXD_USE_COUNT(skb_frag_size(
6548 &skb_shinfo(skb)->frags[f]));
6549
6550 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6551 /* this is a hard error */
6552 return NETDEV_TX_BUSY;
6553 }
6554
6555 if (unlikely(test_bit(IGB_RING_FLAG_TX_DISABLED, &tx_ring->flags)))
6556 return NETDEV_TX_BUSY;
6557
6558 /* record the location of the first descriptor for this packet */
6559 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6560 first->type = IGB_TYPE_SKB;
6561 first->skb = skb;
6562 first->bytecount = skb->len;
6563 first->gso_segs = 1;
6564
6565 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6566 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6567
6568 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6569 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6570 &adapter->state)) {
6571 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6572 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6573
6574 adapter->ptp_tx_skb = skb_get(skb);
6575 adapter->ptp_tx_start = jiffies;
6576 if (adapter->hw.mac.type == e1000_82576)
6577 schedule_work(&adapter->ptp_tx_work);
6578 } else {
6579 adapter->tx_hwtstamp_skipped++;
6580 }
6581 }
6582
6583 if (skb_vlan_tag_present(skb)) {
6584 tx_flags |= IGB_TX_FLAGS_VLAN;
6585 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6586 }
6587
6588 /* record initial flags and protocol */
6589 first->tx_flags = tx_flags;
6590 first->protocol = protocol;
6591
6592 tso = igb_tso(tx_ring, first, &hdr_len);
6593 if (tso < 0)
6594 goto out_drop;
6595 else if (!tso)
6596 igb_tx_csum(tx_ring, first);
6597
6598 if (igb_tx_map(tx_ring, first, hdr_len))
6599 goto cleanup_tx_tstamp;
6600
6601 return NETDEV_TX_OK;
6602
6603 out_drop:
6604 dev_kfree_skb_any(first->skb);
6605 first->skb = NULL;
6606 cleanup_tx_tstamp:
6607 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6608 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6609
6610 dev_kfree_skb_any(adapter->ptp_tx_skb);
6611 adapter->ptp_tx_skb = NULL;
6612 if (adapter->hw.mac.type == e1000_82576)
6613 cancel_work_sync(&adapter->ptp_tx_work);
6614 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6615 }
6616
6617 return NETDEV_TX_OK;
6618 }
6619
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6620 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6621 struct sk_buff *skb)
6622 {
6623 unsigned int r_idx = skb->queue_mapping;
6624
6625 if (r_idx >= adapter->num_tx_queues)
6626 r_idx = r_idx % adapter->num_tx_queues;
6627
6628 return adapter->tx_ring[r_idx];
6629 }
6630
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6631 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6632 struct net_device *netdev)
6633 {
6634 struct igb_adapter *adapter = netdev_priv(netdev);
6635
6636 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6637 * in order to meet this minimum size requirement.
6638 */
6639 if (skb_put_padto(skb, 17))
6640 return NETDEV_TX_OK;
6641
6642 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6643 }
6644
6645 /**
6646 * igb_tx_timeout - Respond to a Tx Hang
6647 * @netdev: network interface device structure
6648 * @txqueue: number of the Tx queue that hung (unused)
6649 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6650 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6651 {
6652 struct igb_adapter *adapter = netdev_priv(netdev);
6653 struct e1000_hw *hw = &adapter->hw;
6654
6655 /* Do the reset outside of interrupt context */
6656 adapter->tx_timeout_count++;
6657
6658 if (hw->mac.type >= e1000_82580)
6659 hw->dev_spec._82575.global_device_reset = true;
6660
6661 schedule_work(&adapter->reset_task);
6662 wr32(E1000_EICS,
6663 (adapter->eims_enable_mask & ~adapter->eims_other));
6664 }
6665
igb_reset_task(struct work_struct * work)6666 static void igb_reset_task(struct work_struct *work)
6667 {
6668 struct igb_adapter *adapter;
6669 adapter = container_of(work, struct igb_adapter, reset_task);
6670
6671 rtnl_lock();
6672 /* If we're already down or resetting, just bail */
6673 if (test_bit(__IGB_DOWN, &adapter->state) ||
6674 test_bit(__IGB_RESETTING, &adapter->state)) {
6675 rtnl_unlock();
6676 return;
6677 }
6678
6679 igb_dump(adapter);
6680 netdev_err(adapter->netdev, "Reset adapter\n");
6681 igb_reinit_locked(adapter);
6682 rtnl_unlock();
6683 }
6684
6685 /**
6686 * igb_get_stats64 - Get System Network Statistics
6687 * @netdev: network interface device structure
6688 * @stats: rtnl_link_stats64 pointer
6689 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6690 static void igb_get_stats64(struct net_device *netdev,
6691 struct rtnl_link_stats64 *stats)
6692 {
6693 struct igb_adapter *adapter = netdev_priv(netdev);
6694
6695 spin_lock(&adapter->stats64_lock);
6696 igb_update_stats(adapter);
6697 memcpy(stats, &adapter->stats64, sizeof(*stats));
6698 spin_unlock(&adapter->stats64_lock);
6699 }
6700
6701 /**
6702 * igb_change_mtu - Change the Maximum Transfer Unit
6703 * @netdev: network interface device structure
6704 * @new_mtu: new value for maximum frame size
6705 *
6706 * Returns 0 on success, negative on failure
6707 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6708 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6709 {
6710 struct igb_adapter *adapter = netdev_priv(netdev);
6711 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6712
6713 if (igb_xdp_is_enabled(adapter)) {
6714 int i;
6715
6716 for (i = 0; i < adapter->num_rx_queues; i++) {
6717 struct igb_ring *ring = adapter->rx_ring[i];
6718
6719 if (max_frame > igb_rx_bufsz(ring)) {
6720 netdev_warn(adapter->netdev,
6721 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6722 max_frame);
6723 return -EINVAL;
6724 }
6725 }
6726 }
6727
6728 /* adjust max frame to be at least the size of a standard frame */
6729 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6730 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6731
6732 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6733 usleep_range(1000, 2000);
6734
6735 /* igb_down has a dependency on max_frame_size */
6736 adapter->max_frame_size = max_frame;
6737
6738 if (netif_running(netdev))
6739 igb_down(adapter);
6740
6741 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6742 netdev->mtu, new_mtu);
6743 WRITE_ONCE(netdev->mtu, new_mtu);
6744
6745 if (netif_running(netdev))
6746 igb_up(adapter);
6747 else
6748 igb_reset(adapter);
6749
6750 clear_bit(__IGB_RESETTING, &adapter->state);
6751
6752 return 0;
6753 }
6754
6755 /**
6756 * igb_update_stats - Update the board statistics counters
6757 * @adapter: board private structure
6758 **/
igb_update_stats(struct igb_adapter * adapter)6759 void igb_update_stats(struct igb_adapter *adapter)
6760 {
6761 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6762 struct e1000_hw *hw = &adapter->hw;
6763 struct pci_dev *pdev = adapter->pdev;
6764 u32 reg, mpc;
6765 int i;
6766 u64 bytes, packets;
6767 unsigned int start;
6768 u64 _bytes, _packets;
6769
6770 /* Prevent stats update while adapter is being reset, or if the pci
6771 * connection is down.
6772 */
6773 if (adapter->link_speed == 0)
6774 return;
6775 if (pci_channel_offline(pdev))
6776 return;
6777
6778 bytes = 0;
6779 packets = 0;
6780
6781 rcu_read_lock();
6782 for (i = 0; i < adapter->num_rx_queues; i++) {
6783 struct igb_ring *ring = adapter->rx_ring[i];
6784 u32 rqdpc = rd32(E1000_RQDPC(i));
6785 if (hw->mac.type >= e1000_i210)
6786 wr32(E1000_RQDPC(i), 0);
6787
6788 if (rqdpc) {
6789 ring->rx_stats.drops += rqdpc;
6790 net_stats->rx_fifo_errors += rqdpc;
6791 }
6792
6793 do {
6794 start = u64_stats_fetch_begin(&ring->rx_syncp);
6795 _bytes = ring->rx_stats.bytes;
6796 _packets = ring->rx_stats.packets;
6797 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6798 bytes += _bytes;
6799 packets += _packets;
6800 }
6801
6802 net_stats->rx_bytes = bytes;
6803 net_stats->rx_packets = packets;
6804
6805 bytes = 0;
6806 packets = 0;
6807 for (i = 0; i < adapter->num_tx_queues; i++) {
6808 struct igb_ring *ring = adapter->tx_ring[i];
6809 do {
6810 start = u64_stats_fetch_begin(&ring->tx_syncp);
6811 _bytes = ring->tx_stats.bytes;
6812 _packets = ring->tx_stats.packets;
6813 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6814 bytes += _bytes;
6815 packets += _packets;
6816 }
6817 net_stats->tx_bytes = bytes;
6818 net_stats->tx_packets = packets;
6819 rcu_read_unlock();
6820
6821 /* read stats registers */
6822 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6823 adapter->stats.gprc += rd32(E1000_GPRC);
6824 adapter->stats.gorc += rd32(E1000_GORCL);
6825 rd32(E1000_GORCH); /* clear GORCL */
6826 adapter->stats.bprc += rd32(E1000_BPRC);
6827 adapter->stats.mprc += rd32(E1000_MPRC);
6828 adapter->stats.roc += rd32(E1000_ROC);
6829
6830 adapter->stats.prc64 += rd32(E1000_PRC64);
6831 adapter->stats.prc127 += rd32(E1000_PRC127);
6832 adapter->stats.prc255 += rd32(E1000_PRC255);
6833 adapter->stats.prc511 += rd32(E1000_PRC511);
6834 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6835 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6836 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6837 adapter->stats.sec += rd32(E1000_SEC);
6838
6839 mpc = rd32(E1000_MPC);
6840 adapter->stats.mpc += mpc;
6841 net_stats->rx_fifo_errors += mpc;
6842 adapter->stats.scc += rd32(E1000_SCC);
6843 adapter->stats.ecol += rd32(E1000_ECOL);
6844 adapter->stats.mcc += rd32(E1000_MCC);
6845 adapter->stats.latecol += rd32(E1000_LATECOL);
6846 adapter->stats.dc += rd32(E1000_DC);
6847 adapter->stats.rlec += rd32(E1000_RLEC);
6848 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6849 adapter->stats.xontxc += rd32(E1000_XONTXC);
6850 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6851 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6852 adapter->stats.fcruc += rd32(E1000_FCRUC);
6853 adapter->stats.gptc += rd32(E1000_GPTC);
6854 adapter->stats.gotc += rd32(E1000_GOTCL);
6855 rd32(E1000_GOTCH); /* clear GOTCL */
6856 adapter->stats.rnbc += rd32(E1000_RNBC);
6857 adapter->stats.ruc += rd32(E1000_RUC);
6858 adapter->stats.rfc += rd32(E1000_RFC);
6859 adapter->stats.rjc += rd32(E1000_RJC);
6860 adapter->stats.tor += rd32(E1000_TORH);
6861 adapter->stats.tot += rd32(E1000_TOTH);
6862 adapter->stats.tpr += rd32(E1000_TPR);
6863
6864 adapter->stats.ptc64 += rd32(E1000_PTC64);
6865 adapter->stats.ptc127 += rd32(E1000_PTC127);
6866 adapter->stats.ptc255 += rd32(E1000_PTC255);
6867 adapter->stats.ptc511 += rd32(E1000_PTC511);
6868 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6869 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6870
6871 adapter->stats.mptc += rd32(E1000_MPTC);
6872 adapter->stats.bptc += rd32(E1000_BPTC);
6873
6874 adapter->stats.tpt += rd32(E1000_TPT);
6875 adapter->stats.colc += rd32(E1000_COLC);
6876
6877 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6878 /* read internal phy specific stats */
6879 reg = rd32(E1000_CTRL_EXT);
6880 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6881 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6882
6883 /* this stat has invalid values on i210/i211 */
6884 if ((hw->mac.type != e1000_i210) &&
6885 (hw->mac.type != e1000_i211))
6886 adapter->stats.tncrs += rd32(E1000_TNCRS);
6887 }
6888
6889 adapter->stats.tsctc += rd32(E1000_TSCTC);
6890 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6891
6892 adapter->stats.iac += rd32(E1000_IAC);
6893 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6894 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6895 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6896 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6897 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6898 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6899 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6900 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6901
6902 /* Fill out the OS statistics structure */
6903 net_stats->multicast = adapter->stats.mprc;
6904 net_stats->collisions = adapter->stats.colc;
6905
6906 /* Rx Errors */
6907
6908 /* RLEC on some newer hardware can be incorrect so build
6909 * our own version based on RUC and ROC
6910 */
6911 net_stats->rx_errors = adapter->stats.rxerrc +
6912 adapter->stats.crcerrs + adapter->stats.algnerrc +
6913 adapter->stats.ruc + adapter->stats.roc +
6914 adapter->stats.cexterr;
6915 net_stats->rx_length_errors = adapter->stats.ruc +
6916 adapter->stats.roc;
6917 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6918 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6919 net_stats->rx_missed_errors = adapter->stats.mpc;
6920
6921 /* Tx Errors */
6922 net_stats->tx_errors = adapter->stats.ecol +
6923 adapter->stats.latecol;
6924 net_stats->tx_aborted_errors = adapter->stats.ecol;
6925 net_stats->tx_window_errors = adapter->stats.latecol;
6926 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6927
6928 /* Tx Dropped needs to be maintained elsewhere */
6929
6930 /* Management Stats */
6931 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6932 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6933 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6934
6935 /* OS2BMC Stats */
6936 reg = rd32(E1000_MANC);
6937 if (reg & E1000_MANC_EN_BMC2OS) {
6938 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6939 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6940 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6941 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6942 }
6943 }
6944
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6945 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6946 {
6947 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6948 struct e1000_hw *hw = &adapter->hw;
6949 struct timespec64 ts;
6950 u32 tsauxc;
6951
6952 if (pin < 0 || pin >= IGB_N_SDP)
6953 return;
6954
6955 spin_lock(&adapter->tmreg_lock);
6956
6957 if (hw->mac.type == e1000_82580 ||
6958 hw->mac.type == e1000_i354 ||
6959 hw->mac.type == e1000_i350) {
6960 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6961 u32 systiml, systimh, level_mask, level, rem;
6962 u64 systim, now;
6963
6964 /* read systim registers in sequence */
6965 rd32(E1000_SYSTIMR);
6966 systiml = rd32(E1000_SYSTIML);
6967 systimh = rd32(E1000_SYSTIMH);
6968 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6969 now = timecounter_cyc2time(&adapter->tc, systim);
6970
6971 if (pin < 2) {
6972 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6973 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6974 } else {
6975 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6976 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6977 }
6978
6979 div_u64_rem(now, ns, &rem);
6980 systim = systim + (ns - rem);
6981
6982 /* synchronize pin level with rising/falling edges */
6983 div_u64_rem(now, ns << 1, &rem);
6984 if (rem < ns) {
6985 /* first half of period */
6986 if (level == 0) {
6987 /* output is already low, skip this period */
6988 systim += ns;
6989 pr_notice("igb: periodic output on %s missed falling edge\n",
6990 adapter->sdp_config[pin].name);
6991 }
6992 } else {
6993 /* second half of period */
6994 if (level == 1) {
6995 /* output is already high, skip this period */
6996 systim += ns;
6997 pr_notice("igb: periodic output on %s missed rising edge\n",
6998 adapter->sdp_config[pin].name);
6999 }
7000 }
7001
7002 /* for this chip family tv_sec is the upper part of the binary value,
7003 * so not seconds
7004 */
7005 ts.tv_nsec = (u32)systim;
7006 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
7007 } else {
7008 ts = timespec64_add(adapter->perout[tsintr_tt].start,
7009 adapter->perout[tsintr_tt].period);
7010 }
7011
7012 /* u32 conversion of tv_sec is safe until y2106 */
7013 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
7014 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
7015 tsauxc = rd32(E1000_TSAUXC);
7016 tsauxc |= TSAUXC_EN_TT0;
7017 wr32(E1000_TSAUXC, tsauxc);
7018 adapter->perout[tsintr_tt].start = ts;
7019
7020 spin_unlock(&adapter->tmreg_lock);
7021 }
7022
igb_extts(struct igb_adapter * adapter,int tsintr_tt)7023 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
7024 {
7025 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
7026 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
7027 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
7028 struct e1000_hw *hw = &adapter->hw;
7029 struct ptp_clock_event event;
7030 struct timespec64 ts;
7031 unsigned long flags;
7032
7033 if (pin < 0 || pin >= IGB_N_SDP)
7034 return;
7035
7036 if (hw->mac.type == e1000_82580 ||
7037 hw->mac.type == e1000_i354 ||
7038 hw->mac.type == e1000_i350) {
7039 u64 ns = rd32(auxstmpl);
7040
7041 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
7042 spin_lock_irqsave(&adapter->tmreg_lock, flags);
7043 ns = timecounter_cyc2time(&adapter->tc, ns);
7044 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
7045 ts = ns_to_timespec64(ns);
7046 } else {
7047 ts.tv_nsec = rd32(auxstmpl);
7048 ts.tv_sec = rd32(auxstmph);
7049 }
7050
7051 event.type = PTP_CLOCK_EXTTS;
7052 event.index = tsintr_tt;
7053 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
7054 ptp_clock_event(adapter->ptp_clock, &event);
7055 }
7056
igb_tsync_interrupt(struct igb_adapter * adapter)7057 static void igb_tsync_interrupt(struct igb_adapter *adapter)
7058 {
7059 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
7060 TSINTR_TT0 | TSINTR_TT1 |
7061 TSINTR_AUTT0 | TSINTR_AUTT1);
7062 struct e1000_hw *hw = &adapter->hw;
7063 u32 tsicr = rd32(E1000_TSICR);
7064 struct ptp_clock_event event;
7065
7066 if (hw->mac.type == e1000_82580) {
7067 /* 82580 has a hardware bug that requires an explicit
7068 * write to clear the TimeSync interrupt cause.
7069 */
7070 wr32(E1000_TSICR, tsicr & mask);
7071 }
7072
7073 if (tsicr & TSINTR_SYS_WRAP) {
7074 event.type = PTP_CLOCK_PPS;
7075 if (adapter->ptp_caps.pps)
7076 ptp_clock_event(adapter->ptp_clock, &event);
7077 }
7078
7079 if (tsicr & E1000_TSICR_TXTS) {
7080 /* retrieve hardware timestamp */
7081 schedule_work(&adapter->ptp_tx_work);
7082 }
7083
7084 if (tsicr & TSINTR_TT0)
7085 igb_perout(adapter, 0);
7086
7087 if (tsicr & TSINTR_TT1)
7088 igb_perout(adapter, 1);
7089
7090 if (tsicr & TSINTR_AUTT0)
7091 igb_extts(adapter, 0);
7092
7093 if (tsicr & TSINTR_AUTT1)
7094 igb_extts(adapter, 1);
7095 }
7096
igb_msix_other(int irq,void * data)7097 static irqreturn_t igb_msix_other(int irq, void *data)
7098 {
7099 struct igb_adapter *adapter = data;
7100 struct e1000_hw *hw = &adapter->hw;
7101 u32 icr = rd32(E1000_ICR);
7102 /* reading ICR causes bit 31 of EICR to be cleared */
7103
7104 if (icr & E1000_ICR_DRSTA)
7105 schedule_work(&adapter->reset_task);
7106
7107 if (icr & E1000_ICR_DOUTSYNC) {
7108 /* HW is reporting DMA is out of sync */
7109 adapter->stats.doosync++;
7110 /* The DMA Out of Sync is also indication of a spoof event
7111 * in IOV mode. Check the Wrong VM Behavior register to
7112 * see if it is really a spoof event.
7113 */
7114 igb_check_wvbr(adapter);
7115 }
7116
7117 /* Check for a mailbox event */
7118 if (icr & E1000_ICR_VMMB)
7119 igb_msg_task(adapter);
7120
7121 if (icr & E1000_ICR_LSC) {
7122 hw->mac.get_link_status = 1;
7123 /* guard against interrupt when we're going down */
7124 if (!test_bit(__IGB_DOWN, &adapter->state))
7125 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7126 }
7127
7128 if (icr & E1000_ICR_TS)
7129 igb_tsync_interrupt(adapter);
7130
7131 wr32(E1000_EIMS, adapter->eims_other);
7132
7133 return IRQ_HANDLED;
7134 }
7135
igb_write_itr(struct igb_q_vector * q_vector)7136 static void igb_write_itr(struct igb_q_vector *q_vector)
7137 {
7138 struct igb_adapter *adapter = q_vector->adapter;
7139 u32 itr_val = q_vector->itr_val & 0x7FFC;
7140
7141 if (!q_vector->set_itr)
7142 return;
7143
7144 if (!itr_val)
7145 itr_val = 0x4;
7146
7147 if (adapter->hw.mac.type == e1000_82575)
7148 itr_val |= itr_val << 16;
7149 else
7150 itr_val |= E1000_EITR_CNT_IGNR;
7151
7152 writel(itr_val, q_vector->itr_register);
7153 q_vector->set_itr = 0;
7154 }
7155
igb_msix_ring(int irq,void * data)7156 static irqreturn_t igb_msix_ring(int irq, void *data)
7157 {
7158 struct igb_q_vector *q_vector = data;
7159
7160 /* Write the ITR value calculated from the previous interrupt. */
7161 igb_write_itr(q_vector);
7162
7163 napi_schedule(&q_vector->napi);
7164
7165 return IRQ_HANDLED;
7166 }
7167
7168 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7169 static void igb_update_tx_dca(struct igb_adapter *adapter,
7170 struct igb_ring *tx_ring,
7171 int cpu)
7172 {
7173 struct e1000_hw *hw = &adapter->hw;
7174 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7175
7176 if (hw->mac.type != e1000_82575)
7177 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7178
7179 /* We can enable relaxed ordering for reads, but not writes when
7180 * DCA is enabled. This is due to a known issue in some chipsets
7181 * which will cause the DCA tag to be cleared.
7182 */
7183 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7184 E1000_DCA_TXCTRL_DATA_RRO_EN |
7185 E1000_DCA_TXCTRL_DESC_DCA_EN;
7186
7187 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7188 }
7189
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7190 static void igb_update_rx_dca(struct igb_adapter *adapter,
7191 struct igb_ring *rx_ring,
7192 int cpu)
7193 {
7194 struct e1000_hw *hw = &adapter->hw;
7195 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7196
7197 if (hw->mac.type != e1000_82575)
7198 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7199
7200 /* We can enable relaxed ordering for reads, but not writes when
7201 * DCA is enabled. This is due to a known issue in some chipsets
7202 * which will cause the DCA tag to be cleared.
7203 */
7204 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7205 E1000_DCA_RXCTRL_DESC_DCA_EN;
7206
7207 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7208 }
7209
igb_update_dca(struct igb_q_vector * q_vector)7210 static void igb_update_dca(struct igb_q_vector *q_vector)
7211 {
7212 struct igb_adapter *adapter = q_vector->adapter;
7213 int cpu = get_cpu();
7214
7215 if (q_vector->cpu == cpu)
7216 goto out_no_update;
7217
7218 if (q_vector->tx.ring)
7219 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7220
7221 if (q_vector->rx.ring)
7222 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7223
7224 q_vector->cpu = cpu;
7225 out_no_update:
7226 put_cpu();
7227 }
7228
igb_setup_dca(struct igb_adapter * adapter)7229 static void igb_setup_dca(struct igb_adapter *adapter)
7230 {
7231 struct e1000_hw *hw = &adapter->hw;
7232 int i;
7233
7234 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7235 return;
7236
7237 /* Always use CB2 mode, difference is masked in the CB driver. */
7238 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7239
7240 for (i = 0; i < adapter->num_q_vectors; i++) {
7241 adapter->q_vector[i]->cpu = -1;
7242 igb_update_dca(adapter->q_vector[i]);
7243 }
7244 }
7245
__igb_notify_dca(struct device * dev,void * data)7246 static int __igb_notify_dca(struct device *dev, void *data)
7247 {
7248 struct net_device *netdev = dev_get_drvdata(dev);
7249 struct igb_adapter *adapter = netdev_priv(netdev);
7250 struct pci_dev *pdev = adapter->pdev;
7251 struct e1000_hw *hw = &adapter->hw;
7252 unsigned long event = *(unsigned long *)data;
7253
7254 switch (event) {
7255 case DCA_PROVIDER_ADD:
7256 /* if already enabled, don't do it again */
7257 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7258 break;
7259 if (dca_add_requester(dev) == 0) {
7260 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7261 dev_info(&pdev->dev, "DCA enabled\n");
7262 igb_setup_dca(adapter);
7263 break;
7264 }
7265 fallthrough; /* since DCA is disabled. */
7266 case DCA_PROVIDER_REMOVE:
7267 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7268 /* without this a class_device is left
7269 * hanging around in the sysfs model
7270 */
7271 dca_remove_requester(dev);
7272 dev_info(&pdev->dev, "DCA disabled\n");
7273 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7274 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7275 }
7276 break;
7277 }
7278
7279 return 0;
7280 }
7281
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7282 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7283 void *p)
7284 {
7285 int ret_val;
7286
7287 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7288 __igb_notify_dca);
7289
7290 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7291 }
7292 #endif /* CONFIG_IGB_DCA */
7293
7294 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7295 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7296 {
7297 unsigned char mac_addr[ETH_ALEN];
7298
7299 eth_zero_addr(mac_addr);
7300 igb_set_vf_mac(adapter, vf, mac_addr);
7301
7302 /* By default spoof check is enabled for all VFs */
7303 adapter->vf_data[vf].spoofchk_enabled = true;
7304
7305 /* By default VFs are not trusted */
7306 adapter->vf_data[vf].trusted = false;
7307
7308 return 0;
7309 }
7310
7311 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7312 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7313 {
7314 struct e1000_hw *hw = &adapter->hw;
7315 u32 ping;
7316 int i;
7317
7318 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7319 ping = E1000_PF_CONTROL_MSG;
7320 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7321 ping |= E1000_VT_MSGTYPE_CTS;
7322 igb_write_mbx(hw, &ping, 1, i);
7323 }
7324 }
7325
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7326 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7327 {
7328 struct e1000_hw *hw = &adapter->hw;
7329 u32 vmolr = rd32(E1000_VMOLR(vf));
7330 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7331
7332 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7333 IGB_VF_FLAG_MULTI_PROMISC);
7334 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7335
7336 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7337 vmolr |= E1000_VMOLR_MPME;
7338 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7339 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7340 } else {
7341 /* if we have hashes and we are clearing a multicast promisc
7342 * flag we need to write the hashes to the MTA as this step
7343 * was previously skipped
7344 */
7345 if (vf_data->num_vf_mc_hashes > 30) {
7346 vmolr |= E1000_VMOLR_MPME;
7347 } else if (vf_data->num_vf_mc_hashes) {
7348 int j;
7349
7350 vmolr |= E1000_VMOLR_ROMPE;
7351 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7352 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7353 }
7354 }
7355
7356 wr32(E1000_VMOLR(vf), vmolr);
7357
7358 /* there are flags left unprocessed, likely not supported */
7359 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7360 return -EINVAL;
7361
7362 return 0;
7363 }
7364
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7365 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7366 u32 *msgbuf, u32 vf)
7367 {
7368 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7369 u16 *hash_list = (u16 *)&msgbuf[1];
7370 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7371 int i;
7372
7373 /* salt away the number of multicast addresses assigned
7374 * to this VF for later use to restore when the PF multi cast
7375 * list changes
7376 */
7377 vf_data->num_vf_mc_hashes = n;
7378
7379 /* only up to 30 hash values supported */
7380 if (n > 30)
7381 n = 30;
7382
7383 /* store the hashes for later use */
7384 for (i = 0; i < n; i++)
7385 vf_data->vf_mc_hashes[i] = hash_list[i];
7386
7387 /* Flush and reset the mta with the new values */
7388 igb_set_rx_mode(adapter->netdev);
7389
7390 return 0;
7391 }
7392
igb_restore_vf_multicasts(struct igb_adapter * adapter)7393 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7394 {
7395 struct e1000_hw *hw = &adapter->hw;
7396 struct vf_data_storage *vf_data;
7397 int i, j;
7398
7399 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7400 u32 vmolr = rd32(E1000_VMOLR(i));
7401
7402 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7403
7404 vf_data = &adapter->vf_data[i];
7405
7406 if ((vf_data->num_vf_mc_hashes > 30) ||
7407 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7408 vmolr |= E1000_VMOLR_MPME;
7409 } else if (vf_data->num_vf_mc_hashes) {
7410 vmolr |= E1000_VMOLR_ROMPE;
7411 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7412 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7413 }
7414 wr32(E1000_VMOLR(i), vmolr);
7415 }
7416 }
7417
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7418 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7419 {
7420 struct e1000_hw *hw = &adapter->hw;
7421 u32 pool_mask, vlvf_mask, i;
7422
7423 /* create mask for VF and other pools */
7424 pool_mask = E1000_VLVF_POOLSEL_MASK;
7425 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7426
7427 /* drop PF from pool bits */
7428 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7429 adapter->vfs_allocated_count);
7430
7431 /* Find the vlan filter for this id */
7432 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7433 u32 vlvf = rd32(E1000_VLVF(i));
7434 u32 vfta_mask, vid, vfta;
7435
7436 /* remove the vf from the pool */
7437 if (!(vlvf & vlvf_mask))
7438 continue;
7439
7440 /* clear out bit from VLVF */
7441 vlvf ^= vlvf_mask;
7442
7443 /* if other pools are present, just remove ourselves */
7444 if (vlvf & pool_mask)
7445 goto update_vlvfb;
7446
7447 /* if PF is present, leave VFTA */
7448 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7449 goto update_vlvf;
7450
7451 vid = vlvf & E1000_VLVF_VLANID_MASK;
7452 vfta_mask = BIT(vid % 32);
7453
7454 /* clear bit from VFTA */
7455 vfta = adapter->shadow_vfta[vid / 32];
7456 if (vfta & vfta_mask)
7457 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7458 update_vlvf:
7459 /* clear pool selection enable */
7460 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7461 vlvf &= E1000_VLVF_POOLSEL_MASK;
7462 else
7463 vlvf = 0;
7464 update_vlvfb:
7465 /* clear pool bits */
7466 wr32(E1000_VLVF(i), vlvf);
7467 }
7468 }
7469
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7470 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7471 {
7472 u32 vlvf;
7473 int idx;
7474
7475 /* short cut the special case */
7476 if (vlan == 0)
7477 return 0;
7478
7479 /* Search for the VLAN id in the VLVF entries */
7480 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7481 vlvf = rd32(E1000_VLVF(idx));
7482 if ((vlvf & VLAN_VID_MASK) == vlan)
7483 break;
7484 }
7485
7486 return idx;
7487 }
7488
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7489 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7490 {
7491 struct e1000_hw *hw = &adapter->hw;
7492 u32 bits, pf_id;
7493 int idx;
7494
7495 idx = igb_find_vlvf_entry(hw, vid);
7496 if (!idx)
7497 return;
7498
7499 /* See if any other pools are set for this VLAN filter
7500 * entry other than the PF.
7501 */
7502 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7503 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7504 bits &= rd32(E1000_VLVF(idx));
7505
7506 /* Disable the filter so this falls into the default pool. */
7507 if (!bits) {
7508 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7509 wr32(E1000_VLVF(idx), BIT(pf_id));
7510 else
7511 wr32(E1000_VLVF(idx), 0);
7512 }
7513 }
7514
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7515 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7516 bool add, u32 vf)
7517 {
7518 int pf_id = adapter->vfs_allocated_count;
7519 struct e1000_hw *hw = &adapter->hw;
7520 int err;
7521
7522 /* If VLAN overlaps with one the PF is currently monitoring make
7523 * sure that we are able to allocate a VLVF entry. This may be
7524 * redundant but it guarantees PF will maintain visibility to
7525 * the VLAN.
7526 */
7527 if (add && test_bit(vid, adapter->active_vlans)) {
7528 err = igb_vfta_set(hw, vid, pf_id, true, false);
7529 if (err)
7530 return err;
7531 }
7532
7533 err = igb_vfta_set(hw, vid, vf, add, false);
7534
7535 if (add && !err)
7536 return err;
7537
7538 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7539 * we may need to drop the PF pool bit in order to allow us to free
7540 * up the VLVF resources.
7541 */
7542 if (test_bit(vid, adapter->active_vlans) ||
7543 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7544 igb_update_pf_vlvf(adapter, vid);
7545
7546 return err;
7547 }
7548
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7549 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7550 {
7551 struct e1000_hw *hw = &adapter->hw;
7552
7553 if (vid)
7554 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7555 else
7556 wr32(E1000_VMVIR(vf), 0);
7557 }
7558
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7559 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7560 u16 vlan, u8 qos)
7561 {
7562 int err;
7563
7564 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7565 if (err)
7566 return err;
7567
7568 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7569 igb_set_vmolr(adapter, vf, !vlan);
7570
7571 /* revoke access to previous VLAN */
7572 if (vlan != adapter->vf_data[vf].pf_vlan)
7573 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7574 false, vf);
7575
7576 adapter->vf_data[vf].pf_vlan = vlan;
7577 adapter->vf_data[vf].pf_qos = qos;
7578 igb_set_vf_vlan_strip(adapter, vf, true);
7579 dev_info(&adapter->pdev->dev,
7580 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7581 if (test_bit(__IGB_DOWN, &adapter->state)) {
7582 dev_warn(&adapter->pdev->dev,
7583 "The VF VLAN has been set, but the PF device is not up.\n");
7584 dev_warn(&adapter->pdev->dev,
7585 "Bring the PF device up before attempting to use the VF device.\n");
7586 }
7587
7588 return err;
7589 }
7590
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7591 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7592 {
7593 /* Restore tagless access via VLAN 0 */
7594 igb_set_vf_vlan(adapter, 0, true, vf);
7595
7596 igb_set_vmvir(adapter, 0, vf);
7597 igb_set_vmolr(adapter, vf, true);
7598
7599 /* Remove any PF assigned VLAN */
7600 if (adapter->vf_data[vf].pf_vlan)
7601 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7602 false, vf);
7603
7604 adapter->vf_data[vf].pf_vlan = 0;
7605 adapter->vf_data[vf].pf_qos = 0;
7606 igb_set_vf_vlan_strip(adapter, vf, false);
7607
7608 return 0;
7609 }
7610
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7611 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7612 u16 vlan, u8 qos, __be16 vlan_proto)
7613 {
7614 struct igb_adapter *adapter = netdev_priv(netdev);
7615
7616 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7617 return -EINVAL;
7618
7619 if (vlan_proto != htons(ETH_P_8021Q))
7620 return -EPROTONOSUPPORT;
7621
7622 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7623 igb_disable_port_vlan(adapter, vf);
7624 }
7625
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7626 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7627 {
7628 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7629 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7630 int ret;
7631
7632 if (adapter->vf_data[vf].pf_vlan)
7633 return -1;
7634
7635 /* VLAN 0 is a special case, don't allow it to be removed */
7636 if (!vid && !add)
7637 return 0;
7638
7639 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7640 if (!ret)
7641 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7642 return ret;
7643 }
7644
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7645 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7646 {
7647 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7648
7649 /* clear flags - except flag that indicates PF has set the MAC */
7650 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7651 vf_data->last_nack = jiffies;
7652
7653 /* reset vlans for device */
7654 igb_clear_vf_vfta(adapter, vf);
7655 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7656 igb_set_vmvir(adapter, vf_data->pf_vlan |
7657 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7658 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7659 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7660
7661 /* reset multicast table array for vf */
7662 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7663
7664 /* Flush and reset the mta with the new values */
7665 igb_set_rx_mode(adapter->netdev);
7666 }
7667
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7668 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7669 {
7670 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7671
7672 /* clear mac address as we were hotplug removed/added */
7673 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7674 eth_zero_addr(vf_mac);
7675
7676 /* process remaining reset events */
7677 igb_vf_reset(adapter, vf);
7678 }
7679
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7680 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7681 {
7682 struct e1000_hw *hw = &adapter->hw;
7683 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7684 u32 reg, msgbuf[3] = {};
7685 u8 *addr = (u8 *)(&msgbuf[1]);
7686
7687 /* process all the same items cleared in a function level reset */
7688 igb_vf_reset(adapter, vf);
7689
7690 /* set vf mac address */
7691 igb_set_vf_mac(adapter, vf, vf_mac);
7692
7693 /* enable transmit and receive for vf */
7694 reg = rd32(E1000_VFTE);
7695 wr32(E1000_VFTE, reg | BIT(vf));
7696 reg = rd32(E1000_VFRE);
7697 wr32(E1000_VFRE, reg | BIT(vf));
7698
7699 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7700
7701 /* reply to reset with ack and vf mac address */
7702 if (!is_zero_ether_addr(vf_mac)) {
7703 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7704 memcpy(addr, vf_mac, ETH_ALEN);
7705 } else {
7706 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7707 }
7708 igb_write_mbx(hw, msgbuf, 3, vf);
7709 }
7710
igb_flush_mac_table(struct igb_adapter * adapter)7711 static void igb_flush_mac_table(struct igb_adapter *adapter)
7712 {
7713 struct e1000_hw *hw = &adapter->hw;
7714 int i;
7715
7716 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7717 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7718 eth_zero_addr(adapter->mac_table[i].addr);
7719 adapter->mac_table[i].queue = 0;
7720 igb_rar_set_index(adapter, i);
7721 }
7722 }
7723
igb_available_rars(struct igb_adapter * adapter,u8 queue)7724 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7725 {
7726 struct e1000_hw *hw = &adapter->hw;
7727 /* do not count rar entries reserved for VFs MAC addresses */
7728 int rar_entries = hw->mac.rar_entry_count -
7729 adapter->vfs_allocated_count;
7730 int i, count = 0;
7731
7732 for (i = 0; i < rar_entries; i++) {
7733 /* do not count default entries */
7734 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7735 continue;
7736
7737 /* do not count "in use" entries for different queues */
7738 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7739 (adapter->mac_table[i].queue != queue))
7740 continue;
7741
7742 count++;
7743 }
7744
7745 return count;
7746 }
7747
7748 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7749 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7750 {
7751 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7752
7753 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7754 mac_table->queue = adapter->vfs_allocated_count;
7755 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7756
7757 igb_rar_set_index(adapter, 0);
7758 }
7759
7760 /* If the filter to be added and an already existing filter express
7761 * the same address and address type, it should be possible to only
7762 * override the other configurations, for example the queue to steer
7763 * traffic.
7764 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7765 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7766 const u8 *addr, const u8 flags)
7767 {
7768 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7769 return true;
7770
7771 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7772 (flags & IGB_MAC_STATE_SRC_ADDR))
7773 return false;
7774
7775 if (!ether_addr_equal(addr, entry->addr))
7776 return false;
7777
7778 return true;
7779 }
7780
7781 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7782 * 'flags' is used to indicate what kind of match is made, match is by
7783 * default for the destination address, if matching by source address
7784 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7785 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7786 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7787 const u8 *addr, const u8 queue,
7788 const u8 flags)
7789 {
7790 struct e1000_hw *hw = &adapter->hw;
7791 int rar_entries = hw->mac.rar_entry_count -
7792 adapter->vfs_allocated_count;
7793 int i;
7794
7795 if (is_zero_ether_addr(addr))
7796 return -EINVAL;
7797
7798 /* Search for the first empty entry in the MAC table.
7799 * Do not touch entries at the end of the table reserved for the VF MAC
7800 * addresses.
7801 */
7802 for (i = 0; i < rar_entries; i++) {
7803 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7804 addr, flags))
7805 continue;
7806
7807 ether_addr_copy(adapter->mac_table[i].addr, addr);
7808 adapter->mac_table[i].queue = queue;
7809 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7810
7811 igb_rar_set_index(adapter, i);
7812 return i;
7813 }
7814
7815 return -ENOSPC;
7816 }
7817
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7818 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7819 const u8 queue)
7820 {
7821 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7822 }
7823
7824 /* Remove a MAC filter for 'addr' directing matching traffic to
7825 * 'queue', 'flags' is used to indicate what kind of match need to be
7826 * removed, match is by default for the destination address, if
7827 * matching by source address is to be removed the flag
7828 * IGB_MAC_STATE_SRC_ADDR can be used.
7829 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7830 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7831 const u8 *addr, const u8 queue,
7832 const u8 flags)
7833 {
7834 struct e1000_hw *hw = &adapter->hw;
7835 int rar_entries = hw->mac.rar_entry_count -
7836 adapter->vfs_allocated_count;
7837 int i;
7838
7839 if (is_zero_ether_addr(addr))
7840 return -EINVAL;
7841
7842 /* Search for matching entry in the MAC table based on given address
7843 * and queue. Do not touch entries at the end of the table reserved
7844 * for the VF MAC addresses.
7845 */
7846 for (i = 0; i < rar_entries; i++) {
7847 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7848 continue;
7849 if ((adapter->mac_table[i].state & flags) != flags)
7850 continue;
7851 if (adapter->mac_table[i].queue != queue)
7852 continue;
7853 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7854 continue;
7855
7856 /* When a filter for the default address is "deleted",
7857 * we return it to its initial configuration
7858 */
7859 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7860 adapter->mac_table[i].state =
7861 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7862 adapter->mac_table[i].queue =
7863 adapter->vfs_allocated_count;
7864 } else {
7865 adapter->mac_table[i].state = 0;
7866 adapter->mac_table[i].queue = 0;
7867 eth_zero_addr(adapter->mac_table[i].addr);
7868 }
7869
7870 igb_rar_set_index(adapter, i);
7871 return 0;
7872 }
7873
7874 return -ENOENT;
7875 }
7876
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7877 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7878 const u8 queue)
7879 {
7880 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7881 }
7882
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7883 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7884 const u8 *addr, u8 queue, u8 flags)
7885 {
7886 struct e1000_hw *hw = &adapter->hw;
7887
7888 /* In theory, this should be supported on 82575 as well, but
7889 * that part wasn't easily accessible during development.
7890 */
7891 if (hw->mac.type != e1000_i210)
7892 return -EOPNOTSUPP;
7893
7894 return igb_add_mac_filter_flags(adapter, addr, queue,
7895 IGB_MAC_STATE_QUEUE_STEERING | flags);
7896 }
7897
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7898 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7899 const u8 *addr, u8 queue, u8 flags)
7900 {
7901 return igb_del_mac_filter_flags(adapter, addr, queue,
7902 IGB_MAC_STATE_QUEUE_STEERING | flags);
7903 }
7904
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7905 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7906 {
7907 struct igb_adapter *adapter = netdev_priv(netdev);
7908 int ret;
7909
7910 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7911
7912 return min_t(int, ret, 0);
7913 }
7914
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7915 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7916 {
7917 struct igb_adapter *adapter = netdev_priv(netdev);
7918
7919 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7920
7921 return 0;
7922 }
7923
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7924 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7925 const u32 info, const u8 *addr)
7926 {
7927 struct pci_dev *pdev = adapter->pdev;
7928 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7929 struct vf_mac_filter *entry;
7930 bool found = false;
7931 int ret = 0;
7932
7933 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7934 !vf_data->trusted) {
7935 dev_warn(&pdev->dev,
7936 "VF %d requested MAC filter but is administratively denied\n",
7937 vf);
7938 return -EINVAL;
7939 }
7940 if (!is_valid_ether_addr(addr)) {
7941 dev_warn(&pdev->dev,
7942 "VF %d attempted to set invalid MAC filter\n",
7943 vf);
7944 return -EINVAL;
7945 }
7946
7947 switch (info) {
7948 case E1000_VF_MAC_FILTER_CLR:
7949 /* remove all unicast MAC filters related to the current VF */
7950 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7951 if (entry->vf == vf) {
7952 entry->vf = -1;
7953 entry->free = true;
7954 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7955 }
7956 }
7957 break;
7958 case E1000_VF_MAC_FILTER_ADD:
7959 /* try to find empty slot in the list */
7960 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7961 if (entry->free) {
7962 found = true;
7963 break;
7964 }
7965 }
7966
7967 if (found) {
7968 entry->free = false;
7969 entry->vf = vf;
7970 ether_addr_copy(entry->vf_mac, addr);
7971
7972 ret = igb_add_mac_filter(adapter, addr, vf);
7973 ret = min_t(int, ret, 0);
7974 } else {
7975 ret = -ENOSPC;
7976 }
7977
7978 if (ret == -ENOSPC)
7979 dev_warn(&pdev->dev,
7980 "VF %d has requested MAC filter but there is no space for it\n",
7981 vf);
7982 break;
7983 default:
7984 ret = -EINVAL;
7985 break;
7986 }
7987
7988 return ret;
7989 }
7990
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7991 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7992 {
7993 struct pci_dev *pdev = adapter->pdev;
7994 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7995 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7996
7997 /* The VF MAC Address is stored in a packed array of bytes
7998 * starting at the second 32 bit word of the msg array
7999 */
8000 unsigned char *addr = (unsigned char *)&msg[1];
8001 int ret = 0;
8002
8003 if (!info) {
8004 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
8005 !vf_data->trusted) {
8006 dev_warn(&pdev->dev,
8007 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
8008 vf);
8009 return -EINVAL;
8010 }
8011
8012 if (!is_valid_ether_addr(addr)) {
8013 dev_warn(&pdev->dev,
8014 "VF %d attempted to set invalid MAC\n",
8015 vf);
8016 return -EINVAL;
8017 }
8018
8019 ret = igb_set_vf_mac(adapter, vf, addr);
8020 } else {
8021 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
8022 }
8023
8024 return ret;
8025 }
8026
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)8027 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
8028 {
8029 struct e1000_hw *hw = &adapter->hw;
8030 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8031 u32 msg = E1000_VT_MSGTYPE_NACK;
8032
8033 /* if device isn't clear to send it shouldn't be reading either */
8034 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
8035 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
8036 igb_write_mbx(hw, &msg, 1, vf);
8037 vf_data->last_nack = jiffies;
8038 }
8039 }
8040
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)8041 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
8042 {
8043 struct pci_dev *pdev = adapter->pdev;
8044 u32 msgbuf[E1000_VFMAILBOX_SIZE];
8045 struct e1000_hw *hw = &adapter->hw;
8046 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
8047 s32 retval;
8048
8049 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
8050
8051 if (retval) {
8052 /* if receive failed revoke VF CTS stats and restart init */
8053 dev_err(&pdev->dev, "Error receiving message from VF\n");
8054 vf_data->flags &= ~IGB_VF_FLAG_CTS;
8055 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8056 goto unlock;
8057 goto out;
8058 }
8059
8060 /* this is a message we already processed, do nothing */
8061 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
8062 goto unlock;
8063
8064 /* until the vf completes a reset it should not be
8065 * allowed to start any configuration.
8066 */
8067 if (msgbuf[0] == E1000_VF_RESET) {
8068 /* unlocks mailbox */
8069 igb_vf_reset_msg(adapter, vf);
8070 return;
8071 }
8072
8073 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8074 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8075 goto unlock;
8076 retval = -1;
8077 goto out;
8078 }
8079
8080 switch ((msgbuf[0] & 0xFFFF)) {
8081 case E1000_VF_SET_MAC_ADDR:
8082 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8083 break;
8084 case E1000_VF_SET_PROMISC:
8085 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8086 break;
8087 case E1000_VF_SET_MULTICAST:
8088 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8089 break;
8090 case E1000_VF_SET_LPE:
8091 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8092 break;
8093 case E1000_VF_SET_VLAN:
8094 retval = -1;
8095 if (vf_data->pf_vlan)
8096 dev_warn(&pdev->dev,
8097 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8098 vf);
8099 else
8100 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8101 break;
8102 default:
8103 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8104 retval = -1;
8105 break;
8106 }
8107
8108 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8109 out:
8110 /* notify the VF of the results of what it sent us */
8111 if (retval)
8112 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8113 else
8114 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8115
8116 /* unlocks mailbox */
8117 igb_write_mbx(hw, msgbuf, 1, vf);
8118 return;
8119
8120 unlock:
8121 igb_unlock_mbx(hw, vf);
8122 }
8123
igb_msg_task(struct igb_adapter * adapter)8124 static void igb_msg_task(struct igb_adapter *adapter)
8125 {
8126 struct e1000_hw *hw = &adapter->hw;
8127 unsigned long flags;
8128 u32 vf;
8129
8130 spin_lock_irqsave(&adapter->vfs_lock, flags);
8131 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8132 /* process any reset requests */
8133 if (!igb_check_for_rst(hw, vf))
8134 igb_vf_reset_event(adapter, vf);
8135
8136 /* process any messages pending */
8137 if (!igb_check_for_msg(hw, vf))
8138 igb_rcv_msg_from_vf(adapter, vf);
8139
8140 /* process any acks */
8141 if (!igb_check_for_ack(hw, vf))
8142 igb_rcv_ack_from_vf(adapter, vf);
8143 }
8144 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8145 }
8146
8147 /**
8148 * igb_set_uta - Set unicast filter table address
8149 * @adapter: board private structure
8150 * @set: boolean indicating if we are setting or clearing bits
8151 *
8152 * The unicast table address is a register array of 32-bit registers.
8153 * The table is meant to be used in a way similar to how the MTA is used
8154 * however due to certain limitations in the hardware it is necessary to
8155 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8156 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8157 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8158 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8159 {
8160 struct e1000_hw *hw = &adapter->hw;
8161 u32 uta = set ? ~0 : 0;
8162 int i;
8163
8164 /* we only need to do this if VMDq is enabled */
8165 if (!adapter->vfs_allocated_count)
8166 return;
8167
8168 for (i = hw->mac.uta_reg_count; i--;)
8169 array_wr32(E1000_UTA, i, uta);
8170 }
8171
8172 /**
8173 * igb_intr_msi - Interrupt Handler
8174 * @irq: interrupt number
8175 * @data: pointer to a network interface device structure
8176 **/
igb_intr_msi(int irq,void * data)8177 static irqreturn_t igb_intr_msi(int irq, void *data)
8178 {
8179 struct igb_adapter *adapter = data;
8180 struct igb_q_vector *q_vector = adapter->q_vector[0];
8181 struct e1000_hw *hw = &adapter->hw;
8182 /* read ICR disables interrupts using IAM */
8183 u32 icr = rd32(E1000_ICR);
8184
8185 igb_write_itr(q_vector);
8186
8187 if (icr & E1000_ICR_DRSTA)
8188 schedule_work(&adapter->reset_task);
8189
8190 if (icr & E1000_ICR_DOUTSYNC) {
8191 /* HW is reporting DMA is out of sync */
8192 adapter->stats.doosync++;
8193 }
8194
8195 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8196 hw->mac.get_link_status = 1;
8197 if (!test_bit(__IGB_DOWN, &adapter->state))
8198 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8199 }
8200
8201 if (icr & E1000_ICR_TS)
8202 igb_tsync_interrupt(adapter);
8203
8204 napi_schedule(&q_vector->napi);
8205
8206 return IRQ_HANDLED;
8207 }
8208
8209 /**
8210 * igb_intr - Legacy Interrupt Handler
8211 * @irq: interrupt number
8212 * @data: pointer to a network interface device structure
8213 **/
igb_intr(int irq,void * data)8214 static irqreturn_t igb_intr(int irq, void *data)
8215 {
8216 struct igb_adapter *adapter = data;
8217 struct igb_q_vector *q_vector = adapter->q_vector[0];
8218 struct e1000_hw *hw = &adapter->hw;
8219 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8220 * need for the IMC write
8221 */
8222 u32 icr = rd32(E1000_ICR);
8223
8224 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8225 * not set, then the adapter didn't send an interrupt
8226 */
8227 if (!(icr & E1000_ICR_INT_ASSERTED))
8228 return IRQ_NONE;
8229
8230 igb_write_itr(q_vector);
8231
8232 if (icr & E1000_ICR_DRSTA)
8233 schedule_work(&adapter->reset_task);
8234
8235 if (icr & E1000_ICR_DOUTSYNC) {
8236 /* HW is reporting DMA is out of sync */
8237 adapter->stats.doosync++;
8238 }
8239
8240 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8241 hw->mac.get_link_status = 1;
8242 /* guard against interrupt when we're going down */
8243 if (!test_bit(__IGB_DOWN, &adapter->state))
8244 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8245 }
8246
8247 if (icr & E1000_ICR_TS)
8248 igb_tsync_interrupt(adapter);
8249
8250 napi_schedule(&q_vector->napi);
8251
8252 return IRQ_HANDLED;
8253 }
8254
igb_ring_irq_enable(struct igb_q_vector * q_vector)8255 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8256 {
8257 struct igb_adapter *adapter = q_vector->adapter;
8258 struct e1000_hw *hw = &adapter->hw;
8259
8260 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8261 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8262 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8263 igb_set_itr(q_vector);
8264 else
8265 igb_update_ring_itr(q_vector);
8266 }
8267
8268 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8269 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8270 wr32(E1000_EIMS, q_vector->eims_value);
8271 else
8272 igb_irq_enable(adapter);
8273 }
8274 }
8275
8276 /**
8277 * igb_poll - NAPI Rx polling callback
8278 * @napi: napi polling structure
8279 * @budget: count of how many packets we should handle
8280 **/
igb_poll(struct napi_struct * napi,int budget)8281 static int igb_poll(struct napi_struct *napi, int budget)
8282 {
8283 struct igb_q_vector *q_vector = container_of(napi,
8284 struct igb_q_vector,
8285 napi);
8286 struct xsk_buff_pool *xsk_pool;
8287 bool clean_complete = true;
8288 int work_done = 0;
8289
8290 #ifdef CONFIG_IGB_DCA
8291 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8292 igb_update_dca(q_vector);
8293 #endif
8294 if (q_vector->tx.ring)
8295 clean_complete = igb_clean_tx_irq(q_vector, budget);
8296
8297 if (q_vector->rx.ring) {
8298 int cleaned;
8299
8300 xsk_pool = READ_ONCE(q_vector->rx.ring->xsk_pool);
8301 cleaned = xsk_pool ?
8302 igb_clean_rx_irq_zc(q_vector, xsk_pool, budget) :
8303 igb_clean_rx_irq(q_vector, budget);
8304
8305 work_done += cleaned;
8306 if (cleaned >= budget)
8307 clean_complete = false;
8308 }
8309
8310 /* If all work not completed, return budget and keep polling */
8311 if (!clean_complete)
8312 return budget;
8313
8314 /* Exit the polling mode, but don't re-enable interrupts if stack might
8315 * poll us due to busy-polling
8316 */
8317 if (likely(napi_complete_done(napi, work_done)))
8318 igb_ring_irq_enable(q_vector);
8319
8320 return work_done;
8321 }
8322
8323 /**
8324 * igb_clean_tx_irq - Reclaim resources after transmit completes
8325 * @q_vector: pointer to q_vector containing needed info
8326 * @napi_budget: Used to determine if we are in netpoll
8327 *
8328 * returns true if ring is completely cleaned
8329 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8330 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8331 {
8332 unsigned int total_bytes = 0, total_packets = 0;
8333 struct igb_adapter *adapter = q_vector->adapter;
8334 unsigned int budget = q_vector->tx.work_limit;
8335 struct igb_ring *tx_ring = q_vector->tx.ring;
8336 unsigned int i = tx_ring->next_to_clean;
8337 union e1000_adv_tx_desc *tx_desc;
8338 struct igb_tx_buffer *tx_buffer;
8339 struct xsk_buff_pool *xsk_pool;
8340 int cpu = smp_processor_id();
8341 bool xsk_xmit_done = true;
8342 struct netdev_queue *nq;
8343 u32 xsk_frames = 0;
8344
8345 if (test_bit(__IGB_DOWN, &adapter->state))
8346 return true;
8347
8348 tx_buffer = &tx_ring->tx_buffer_info[i];
8349 tx_desc = IGB_TX_DESC(tx_ring, i);
8350 i -= tx_ring->count;
8351
8352 do {
8353 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8354
8355 /* if next_to_watch is not set then there is no work pending */
8356 if (!eop_desc)
8357 break;
8358
8359 /* prevent any other reads prior to eop_desc */
8360 smp_rmb();
8361
8362 /* if DD is not set pending work has not been completed */
8363 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8364 break;
8365
8366 /* clear next_to_watch to prevent false hangs */
8367 tx_buffer->next_to_watch = NULL;
8368
8369 /* update the statistics for this packet */
8370 total_bytes += tx_buffer->bytecount;
8371 total_packets += tx_buffer->gso_segs;
8372
8373 /* free the skb */
8374 if (tx_buffer->type == IGB_TYPE_SKB) {
8375 napi_consume_skb(tx_buffer->skb, napi_budget);
8376 } else if (tx_buffer->type == IGB_TYPE_XDP) {
8377 xdp_return_frame(tx_buffer->xdpf);
8378 } else if (tx_buffer->type == IGB_TYPE_XSK) {
8379 xsk_frames++;
8380 goto skip_for_xsk;
8381 }
8382
8383 /* unmap skb header data */
8384 dma_unmap_single(tx_ring->dev,
8385 dma_unmap_addr(tx_buffer, dma),
8386 dma_unmap_len(tx_buffer, len),
8387 DMA_TO_DEVICE);
8388
8389 /* clear tx_buffer data */
8390 dma_unmap_len_set(tx_buffer, len, 0);
8391
8392 /* clear last DMA location and unmap remaining buffers */
8393 while (tx_desc != eop_desc) {
8394 tx_buffer++;
8395 tx_desc++;
8396 i++;
8397 if (unlikely(!i)) {
8398 i -= tx_ring->count;
8399 tx_buffer = tx_ring->tx_buffer_info;
8400 tx_desc = IGB_TX_DESC(tx_ring, 0);
8401 }
8402
8403 /* unmap any remaining paged data */
8404 if (dma_unmap_len(tx_buffer, len)) {
8405 dma_unmap_page(tx_ring->dev,
8406 dma_unmap_addr(tx_buffer, dma),
8407 dma_unmap_len(tx_buffer, len),
8408 DMA_TO_DEVICE);
8409 dma_unmap_len_set(tx_buffer, len, 0);
8410 }
8411 }
8412
8413 skip_for_xsk:
8414 /* move us one more past the eop_desc for start of next pkt */
8415 tx_buffer++;
8416 tx_desc++;
8417 i++;
8418 if (unlikely(!i)) {
8419 i -= tx_ring->count;
8420 tx_buffer = tx_ring->tx_buffer_info;
8421 tx_desc = IGB_TX_DESC(tx_ring, 0);
8422 }
8423
8424 /* issue prefetch for next Tx descriptor */
8425 prefetch(tx_desc);
8426
8427 /* update budget accounting */
8428 budget--;
8429 } while (likely(budget));
8430
8431 netdev_tx_completed_queue(txring_txq(tx_ring),
8432 total_packets, total_bytes);
8433 i += tx_ring->count;
8434 tx_ring->next_to_clean = i;
8435 u64_stats_update_begin(&tx_ring->tx_syncp);
8436 tx_ring->tx_stats.bytes += total_bytes;
8437 tx_ring->tx_stats.packets += total_packets;
8438 u64_stats_update_end(&tx_ring->tx_syncp);
8439 q_vector->tx.total_bytes += total_bytes;
8440 q_vector->tx.total_packets += total_packets;
8441
8442 xsk_pool = READ_ONCE(tx_ring->xsk_pool);
8443 if (xsk_pool) {
8444 if (xsk_frames)
8445 xsk_tx_completed(xsk_pool, xsk_frames);
8446 if (xsk_uses_need_wakeup(xsk_pool))
8447 xsk_set_tx_need_wakeup(xsk_pool);
8448
8449 nq = txring_txq(tx_ring);
8450 __netif_tx_lock(nq, cpu);
8451 /* Avoid transmit queue timeout since we share it with the slow path */
8452 txq_trans_cond_update(nq);
8453 xsk_xmit_done = igb_xmit_zc(tx_ring, xsk_pool);
8454 __netif_tx_unlock(nq);
8455 }
8456
8457 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8458 struct e1000_hw *hw = &adapter->hw;
8459
8460 /* Detect a transmit hang in hardware, this serializes the
8461 * check with the clearing of time_stamp and movement of i
8462 */
8463 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8464 if (tx_buffer->next_to_watch &&
8465 time_after(jiffies, tx_buffer->time_stamp +
8466 (adapter->tx_timeout_factor * HZ)) &&
8467 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8468
8469 /* detected Tx unit hang */
8470 dev_err(tx_ring->dev,
8471 "Detected Tx Unit Hang\n"
8472 " Tx Queue <%d>\n"
8473 " TDH <%x>\n"
8474 " TDT <%x>\n"
8475 " next_to_use <%x>\n"
8476 " next_to_clean <%x>\n"
8477 "buffer_info[next_to_clean]\n"
8478 " time_stamp <%lx>\n"
8479 " next_to_watch <%p>\n"
8480 " jiffies <%lx>\n"
8481 " desc.status <%x>\n",
8482 tx_ring->queue_index,
8483 rd32(E1000_TDH(tx_ring->reg_idx)),
8484 readl(tx_ring->tail),
8485 tx_ring->next_to_use,
8486 tx_ring->next_to_clean,
8487 tx_buffer->time_stamp,
8488 tx_buffer->next_to_watch,
8489 jiffies,
8490 tx_buffer->next_to_watch->wb.status);
8491 netif_stop_subqueue(tx_ring->netdev,
8492 tx_ring->queue_index);
8493
8494 /* we are about to reset, no point in enabling stuff */
8495 return true;
8496 }
8497 }
8498
8499 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8500 if (unlikely(total_packets &&
8501 netif_carrier_ok(tx_ring->netdev) &&
8502 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8503 /* Make sure that anybody stopping the queue after this
8504 * sees the new next_to_clean.
8505 */
8506 smp_mb();
8507 if (__netif_subqueue_stopped(tx_ring->netdev,
8508 tx_ring->queue_index) &&
8509 !(test_bit(__IGB_DOWN, &adapter->state))) {
8510 netif_wake_subqueue(tx_ring->netdev,
8511 tx_ring->queue_index);
8512
8513 u64_stats_update_begin(&tx_ring->tx_syncp);
8514 tx_ring->tx_stats.restart_queue++;
8515 u64_stats_update_end(&tx_ring->tx_syncp);
8516 }
8517 }
8518
8519 return !!budget && xsk_xmit_done;
8520 }
8521
8522 /**
8523 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8524 * @rx_ring: rx descriptor ring to store buffers on
8525 * @old_buff: donor buffer to have page reused
8526 *
8527 * Synchronizes page for reuse by the adapter
8528 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8529 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8530 struct igb_rx_buffer *old_buff)
8531 {
8532 struct igb_rx_buffer *new_buff;
8533 u16 nta = rx_ring->next_to_alloc;
8534
8535 new_buff = &rx_ring->rx_buffer_info[nta];
8536
8537 /* update, and store next to alloc */
8538 nta++;
8539 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8540
8541 /* Transfer page from old buffer to new buffer.
8542 * Move each member individually to avoid possible store
8543 * forwarding stalls.
8544 */
8545 new_buff->dma = old_buff->dma;
8546 new_buff->page = old_buff->page;
8547 new_buff->page_offset = old_buff->page_offset;
8548 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8549 }
8550
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8551 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8552 int rx_buf_pgcnt)
8553 {
8554 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8555 struct page *page = rx_buffer->page;
8556
8557 /* avoid re-using remote and pfmemalloc pages */
8558 if (!dev_page_is_reusable(page))
8559 return false;
8560
8561 #if (PAGE_SIZE < 8192)
8562 /* if we are only owner of page we can reuse it */
8563 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8564 return false;
8565 #else
8566 #define IGB_LAST_OFFSET \
8567 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8568
8569 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8570 return false;
8571 #endif
8572
8573 /* If we have drained the page fragment pool we need to update
8574 * the pagecnt_bias and page count so that we fully restock the
8575 * number of references the driver holds.
8576 */
8577 if (unlikely(pagecnt_bias == 1)) {
8578 page_ref_add(page, USHRT_MAX - 1);
8579 rx_buffer->pagecnt_bias = USHRT_MAX;
8580 }
8581
8582 return true;
8583 }
8584
8585 /**
8586 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8587 * @rx_ring: rx descriptor ring to transact packets on
8588 * @rx_buffer: buffer containing page to add
8589 * @skb: sk_buff to place the data into
8590 * @size: size of buffer to be added
8591 *
8592 * This function will add the data contained in rx_buffer->page to the skb.
8593 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8594 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8595 struct igb_rx_buffer *rx_buffer,
8596 struct sk_buff *skb,
8597 unsigned int size)
8598 {
8599 #if (PAGE_SIZE < 8192)
8600 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8601 #else
8602 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8603 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8604 SKB_DATA_ALIGN(size);
8605 #endif
8606 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8607 rx_buffer->page_offset, size, truesize);
8608 #if (PAGE_SIZE < 8192)
8609 rx_buffer->page_offset ^= truesize;
8610 #else
8611 rx_buffer->page_offset += truesize;
8612 #endif
8613 }
8614
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8615 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8616 struct igb_rx_buffer *rx_buffer,
8617 struct xdp_buff *xdp,
8618 ktime_t timestamp)
8619 {
8620 #if (PAGE_SIZE < 8192)
8621 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8622 #else
8623 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8624 xdp->data_hard_start);
8625 #endif
8626 unsigned int size = xdp->data_end - xdp->data;
8627 unsigned int headlen;
8628 struct sk_buff *skb;
8629
8630 /* prefetch first cache line of first page */
8631 net_prefetch(xdp->data);
8632
8633 /* allocate a skb to store the frags */
8634 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8635 if (unlikely(!skb))
8636 return NULL;
8637
8638 if (timestamp)
8639 skb_hwtstamps(skb)->hwtstamp = timestamp;
8640
8641 /* Determine available headroom for copy */
8642 headlen = size;
8643 if (headlen > IGB_RX_HDR_LEN)
8644 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8645
8646 /* align pull length to size of long to optimize memcpy performance */
8647 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8648
8649 /* update all of the pointers */
8650 size -= headlen;
8651 if (size) {
8652 skb_add_rx_frag(skb, 0, rx_buffer->page,
8653 (xdp->data + headlen) - page_address(rx_buffer->page),
8654 size, truesize);
8655 #if (PAGE_SIZE < 8192)
8656 rx_buffer->page_offset ^= truesize;
8657 #else
8658 rx_buffer->page_offset += truesize;
8659 #endif
8660 } else {
8661 rx_buffer->pagecnt_bias++;
8662 }
8663
8664 return skb;
8665 }
8666
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8667 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8668 struct igb_rx_buffer *rx_buffer,
8669 struct xdp_buff *xdp,
8670 ktime_t timestamp)
8671 {
8672 #if (PAGE_SIZE < 8192)
8673 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8674 #else
8675 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8676 SKB_DATA_ALIGN(xdp->data_end -
8677 xdp->data_hard_start);
8678 #endif
8679 unsigned int metasize = xdp->data - xdp->data_meta;
8680 struct sk_buff *skb;
8681
8682 /* prefetch first cache line of first page */
8683 net_prefetch(xdp->data_meta);
8684
8685 /* build an skb around the page buffer */
8686 skb = napi_build_skb(xdp->data_hard_start, truesize);
8687 if (unlikely(!skb))
8688 return NULL;
8689
8690 /* update pointers within the skb to store the data */
8691 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8692 __skb_put(skb, xdp->data_end - xdp->data);
8693
8694 if (metasize)
8695 skb_metadata_set(skb, metasize);
8696
8697 if (timestamp)
8698 skb_hwtstamps(skb)->hwtstamp = timestamp;
8699
8700 /* update buffer offset */
8701 #if (PAGE_SIZE < 8192)
8702 rx_buffer->page_offset ^= truesize;
8703 #else
8704 rx_buffer->page_offset += truesize;
8705 #endif
8706
8707 return skb;
8708 }
8709
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8710 static int igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring,
8711 struct xdp_buff *xdp)
8712 {
8713 int err, result = IGB_XDP_PASS;
8714 struct bpf_prog *xdp_prog;
8715 u32 act;
8716
8717 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8718
8719 if (!xdp_prog)
8720 goto xdp_out;
8721
8722 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8723
8724 act = bpf_prog_run_xdp(xdp_prog, xdp);
8725 switch (act) {
8726 case XDP_PASS:
8727 break;
8728 case XDP_TX:
8729 result = igb_xdp_xmit_back(adapter, xdp);
8730 if (result == IGB_XDP_CONSUMED)
8731 goto out_failure;
8732 break;
8733 case XDP_REDIRECT:
8734 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8735 if (err)
8736 goto out_failure;
8737 result = IGB_XDP_REDIR;
8738 break;
8739 default:
8740 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8741 fallthrough;
8742 case XDP_ABORTED:
8743 out_failure:
8744 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8745 fallthrough;
8746 case XDP_DROP:
8747 result = IGB_XDP_CONSUMED;
8748 break;
8749 }
8750 xdp_out:
8751 return result;
8752 }
8753
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8754 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8755 unsigned int size)
8756 {
8757 unsigned int truesize;
8758
8759 #if (PAGE_SIZE < 8192)
8760 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8761 #else
8762 truesize = ring_uses_build_skb(rx_ring) ?
8763 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8764 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8765 SKB_DATA_ALIGN(size);
8766 #endif
8767 return truesize;
8768 }
8769
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8770 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8771 struct igb_rx_buffer *rx_buffer,
8772 unsigned int size)
8773 {
8774 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8775 #if (PAGE_SIZE < 8192)
8776 rx_buffer->page_offset ^= truesize;
8777 #else
8778 rx_buffer->page_offset += truesize;
8779 #endif
8780 }
8781
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8782 static inline void igb_rx_checksum(struct igb_ring *ring,
8783 union e1000_adv_rx_desc *rx_desc,
8784 struct sk_buff *skb)
8785 {
8786 skb_checksum_none_assert(skb);
8787
8788 /* Ignore Checksum bit is set */
8789 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8790 return;
8791
8792 /* Rx checksum disabled via ethtool */
8793 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8794 return;
8795
8796 /* TCP/UDP checksum error bit is set */
8797 if (igb_test_staterr(rx_desc,
8798 E1000_RXDEXT_STATERR_TCPE |
8799 E1000_RXDEXT_STATERR_IPE)) {
8800 /* work around errata with sctp packets where the TCPE aka
8801 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8802 * packets, (aka let the stack check the crc32c)
8803 */
8804 if (!((skb->len == 60) &&
8805 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8806 u64_stats_update_begin(&ring->rx_syncp);
8807 ring->rx_stats.csum_err++;
8808 u64_stats_update_end(&ring->rx_syncp);
8809 }
8810 /* let the stack verify checksum errors */
8811 return;
8812 }
8813 /* It must be a TCP or UDP packet with a valid checksum */
8814 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8815 E1000_RXD_STAT_UDPCS))
8816 skb->ip_summed = CHECKSUM_UNNECESSARY;
8817
8818 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8819 le32_to_cpu(rx_desc->wb.upper.status_error));
8820 }
8821
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8822 static inline void igb_rx_hash(struct igb_ring *ring,
8823 union e1000_adv_rx_desc *rx_desc,
8824 struct sk_buff *skb)
8825 {
8826 if (ring->netdev->features & NETIF_F_RXHASH)
8827 skb_set_hash(skb,
8828 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8829 PKT_HASH_TYPE_L3);
8830 }
8831
8832 /**
8833 * igb_is_non_eop - process handling of non-EOP buffers
8834 * @rx_ring: Rx ring being processed
8835 * @rx_desc: Rx descriptor for current buffer
8836 *
8837 * This function updates next to clean. If the buffer is an EOP buffer
8838 * this function exits returning false, otherwise it will place the
8839 * sk_buff in the next buffer to be chained and return true indicating
8840 * that this is in fact a non-EOP buffer.
8841 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8842 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8843 union e1000_adv_rx_desc *rx_desc)
8844 {
8845 u32 ntc = rx_ring->next_to_clean + 1;
8846
8847 /* fetch, update, and store next to clean */
8848 ntc = (ntc < rx_ring->count) ? ntc : 0;
8849 rx_ring->next_to_clean = ntc;
8850
8851 prefetch(IGB_RX_DESC(rx_ring, ntc));
8852
8853 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8854 return false;
8855
8856 return true;
8857 }
8858
8859 /**
8860 * igb_cleanup_headers - Correct corrupted or empty headers
8861 * @rx_ring: rx descriptor ring packet is being transacted on
8862 * @rx_desc: pointer to the EOP Rx descriptor
8863 * @skb: pointer to current skb being fixed
8864 *
8865 * Address the case where we are pulling data in on pages only
8866 * and as such no data is present in the skb header.
8867 *
8868 * In addition if skb is not at least 60 bytes we need to pad it so that
8869 * it is large enough to qualify as a valid Ethernet frame.
8870 *
8871 * Returns true if an error was encountered and skb was freed.
8872 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8873 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8874 union e1000_adv_rx_desc *rx_desc,
8875 struct sk_buff *skb)
8876 {
8877 if (unlikely((igb_test_staterr(rx_desc,
8878 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8879 struct net_device *netdev = rx_ring->netdev;
8880 if (!(netdev->features & NETIF_F_RXALL)) {
8881 dev_kfree_skb_any(skb);
8882 return true;
8883 }
8884 }
8885
8886 /* if eth_skb_pad returns an error the skb was freed */
8887 if (eth_skb_pad(skb))
8888 return true;
8889
8890 return false;
8891 }
8892
8893 /**
8894 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8895 * @rx_ring: rx descriptor ring packet is being transacted on
8896 * @rx_desc: pointer to the EOP Rx descriptor
8897 * @skb: pointer to current skb being populated
8898 *
8899 * This function checks the ring, descriptor, and packet information in
8900 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8901 * other fields within the skb.
8902 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8903 void igb_process_skb_fields(struct igb_ring *rx_ring,
8904 union e1000_adv_rx_desc *rx_desc,
8905 struct sk_buff *skb)
8906 {
8907 struct net_device *dev = rx_ring->netdev;
8908
8909 igb_rx_hash(rx_ring, rx_desc, skb);
8910
8911 igb_rx_checksum(rx_ring, rx_desc, skb);
8912
8913 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8914 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8915 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8916
8917 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8918 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8919 u16 vid;
8920
8921 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8922 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8923 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8924 else
8925 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8926
8927 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8928 }
8929
8930 skb_record_rx_queue(skb, rx_ring->queue_index);
8931
8932 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8933 }
8934
igb_rx_offset(struct igb_ring * rx_ring)8935 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8936 {
8937 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8938 }
8939
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8940 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8941 const unsigned int size, int *rx_buf_pgcnt)
8942 {
8943 struct igb_rx_buffer *rx_buffer;
8944
8945 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8946 *rx_buf_pgcnt =
8947 #if (PAGE_SIZE < 8192)
8948 page_count(rx_buffer->page);
8949 #else
8950 0;
8951 #endif
8952 prefetchw(rx_buffer->page);
8953
8954 /* we are reusing so sync this buffer for CPU use */
8955 dma_sync_single_range_for_cpu(rx_ring->dev,
8956 rx_buffer->dma,
8957 rx_buffer->page_offset,
8958 size,
8959 DMA_FROM_DEVICE);
8960
8961 rx_buffer->pagecnt_bias--;
8962
8963 return rx_buffer;
8964 }
8965
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8966 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8967 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8968 {
8969 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8970 /* hand second half of page back to the ring */
8971 igb_reuse_rx_page(rx_ring, rx_buffer);
8972 } else {
8973 /* We are not reusing the buffer so unmap it and free
8974 * any references we are holding to it
8975 */
8976 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8977 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8978 IGB_RX_DMA_ATTR);
8979 __page_frag_cache_drain(rx_buffer->page,
8980 rx_buffer->pagecnt_bias);
8981 }
8982
8983 /* clear contents of rx_buffer */
8984 rx_buffer->page = NULL;
8985 }
8986
igb_finalize_xdp(struct igb_adapter * adapter,unsigned int status)8987 void igb_finalize_xdp(struct igb_adapter *adapter, unsigned int status)
8988 {
8989 int cpu = smp_processor_id();
8990 struct netdev_queue *nq;
8991
8992 if (status & IGB_XDP_REDIR)
8993 xdp_do_flush();
8994
8995 if (status & IGB_XDP_TX) {
8996 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8997
8998 nq = txring_txq(tx_ring);
8999 __netif_tx_lock(nq, cpu);
9000 igb_xdp_ring_update_tail(tx_ring);
9001 __netif_tx_unlock(nq);
9002 }
9003 }
9004
igb_update_rx_stats(struct igb_q_vector * q_vector,unsigned int packets,unsigned int bytes)9005 void igb_update_rx_stats(struct igb_q_vector *q_vector, unsigned int packets,
9006 unsigned int bytes)
9007 {
9008 struct igb_ring *ring = q_vector->rx.ring;
9009
9010 u64_stats_update_begin(&ring->rx_syncp);
9011 ring->rx_stats.packets += packets;
9012 ring->rx_stats.bytes += bytes;
9013 u64_stats_update_end(&ring->rx_syncp);
9014
9015 q_vector->rx.total_packets += packets;
9016 q_vector->rx.total_bytes += bytes;
9017 }
9018
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)9019 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9020 {
9021 unsigned int total_bytes = 0, total_packets = 0;
9022 struct igb_adapter *adapter = q_vector->adapter;
9023 struct igb_ring *rx_ring = q_vector->rx.ring;
9024 u16 cleaned_count = igb_desc_unused(rx_ring);
9025 struct sk_buff *skb = rx_ring->skb;
9026 unsigned int xdp_xmit = 0;
9027 struct xdp_buff xdp;
9028 u32 frame_sz = 0;
9029 int rx_buf_pgcnt;
9030 int xdp_res = 0;
9031
9032 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
9033 #if (PAGE_SIZE < 8192)
9034 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
9035 #endif
9036 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
9037
9038 while (likely(total_packets < budget)) {
9039 union e1000_adv_rx_desc *rx_desc;
9040 struct igb_rx_buffer *rx_buffer;
9041 ktime_t timestamp = 0;
9042 int pkt_offset = 0;
9043 unsigned int size;
9044 void *pktbuf;
9045
9046 /* return some buffers to hardware, one at a time is too slow */
9047 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
9048 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9049 cleaned_count = 0;
9050 }
9051
9052 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
9053 size = le16_to_cpu(rx_desc->wb.upper.length);
9054 if (!size)
9055 break;
9056
9057 /* This memory barrier is needed to keep us from reading
9058 * any other fields out of the rx_desc until we know the
9059 * descriptor has been written back
9060 */
9061 dma_rmb();
9062
9063 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
9064 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
9065
9066 /* pull rx packet timestamp if available and valid */
9067 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
9068 int ts_hdr_len;
9069
9070 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
9071 pktbuf, ×tamp);
9072
9073 pkt_offset += ts_hdr_len;
9074 size -= ts_hdr_len;
9075 }
9076
9077 /* retrieve a buffer from the ring */
9078 if (!skb) {
9079 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
9080 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
9081
9082 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
9083 xdp_buff_clear_frags_flag(&xdp);
9084 #if (PAGE_SIZE > 4096)
9085 /* At larger PAGE_SIZE, frame_sz depend on len size */
9086 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
9087 #endif
9088 xdp_res = igb_run_xdp(adapter, rx_ring, &xdp);
9089 }
9090
9091 if (xdp_res) {
9092 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
9093 xdp_xmit |= xdp_res;
9094 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
9095 } else {
9096 rx_buffer->pagecnt_bias++;
9097 }
9098 total_packets++;
9099 total_bytes += size;
9100 } else if (skb)
9101 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
9102 else if (ring_uses_build_skb(rx_ring))
9103 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
9104 timestamp);
9105 else
9106 skb = igb_construct_skb(rx_ring, rx_buffer,
9107 &xdp, timestamp);
9108
9109 /* exit if we failed to retrieve a buffer */
9110 if (!xdp_res && !skb) {
9111 rx_ring->rx_stats.alloc_failed++;
9112 rx_buffer->pagecnt_bias++;
9113 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9114 break;
9115 }
9116
9117 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
9118 cleaned_count++;
9119
9120 /* fetch next buffer in frame if non-eop */
9121 if (igb_is_non_eop(rx_ring, rx_desc))
9122 continue;
9123
9124 /* verify the packet layout is correct */
9125 if (xdp_res || igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9126 skb = NULL;
9127 continue;
9128 }
9129
9130 /* probably a little skewed due to removing CRC */
9131 total_bytes += skb->len;
9132
9133 /* populate checksum, timestamp, VLAN, and protocol */
9134 igb_process_skb_fields(rx_ring, rx_desc, skb);
9135
9136 napi_gro_receive(&q_vector->napi, skb);
9137
9138 /* reset skb pointer */
9139 skb = NULL;
9140
9141 /* update budget accounting */
9142 total_packets++;
9143 }
9144
9145 /* place incomplete frames back on ring for completion */
9146 rx_ring->skb = skb;
9147
9148 if (xdp_xmit)
9149 igb_finalize_xdp(adapter, xdp_xmit);
9150
9151 igb_update_rx_stats(q_vector, total_packets, total_bytes);
9152
9153 if (cleaned_count)
9154 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9155
9156 return total_packets;
9157 }
9158
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9159 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9160 struct igb_rx_buffer *bi)
9161 {
9162 struct page *page = bi->page;
9163 dma_addr_t dma;
9164
9165 /* since we are recycling buffers we should seldom need to alloc */
9166 if (likely(page))
9167 return true;
9168
9169 /* alloc new page for storage */
9170 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9171 if (unlikely(!page)) {
9172 rx_ring->rx_stats.alloc_failed++;
9173 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9174 return false;
9175 }
9176
9177 /* map page for use */
9178 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9179 igb_rx_pg_size(rx_ring),
9180 DMA_FROM_DEVICE,
9181 IGB_RX_DMA_ATTR);
9182
9183 /* if mapping failed free memory back to system since
9184 * there isn't much point in holding memory we can't use
9185 */
9186 if (dma_mapping_error(rx_ring->dev, dma)) {
9187 __free_pages(page, igb_rx_pg_order(rx_ring));
9188
9189 rx_ring->rx_stats.alloc_failed++;
9190 set_bit(IGB_RING_FLAG_RX_ALLOC_FAILED, &rx_ring->flags);
9191 return false;
9192 }
9193
9194 bi->dma = dma;
9195 bi->page = page;
9196 bi->page_offset = igb_rx_offset(rx_ring);
9197 page_ref_add(page, USHRT_MAX - 1);
9198 bi->pagecnt_bias = USHRT_MAX;
9199
9200 return true;
9201 }
9202
9203 /**
9204 * igb_alloc_rx_buffers - Replace used receive buffers
9205 * @rx_ring: rx descriptor ring to allocate new receive buffers
9206 * @cleaned_count: count of buffers to allocate
9207 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9208 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9209 {
9210 union e1000_adv_rx_desc *rx_desc;
9211 struct igb_rx_buffer *bi;
9212 u16 i = rx_ring->next_to_use;
9213 u16 bufsz;
9214
9215 /* nothing to do */
9216 if (!cleaned_count)
9217 return;
9218
9219 rx_desc = IGB_RX_DESC(rx_ring, i);
9220 bi = &rx_ring->rx_buffer_info[i];
9221 i -= rx_ring->count;
9222
9223 bufsz = igb_rx_bufsz(rx_ring);
9224
9225 do {
9226 if (!igb_alloc_mapped_page(rx_ring, bi))
9227 break;
9228
9229 /* sync the buffer for use by the device */
9230 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9231 bi->page_offset, bufsz,
9232 DMA_FROM_DEVICE);
9233
9234 /* Refresh the desc even if buffer_addrs didn't change
9235 * because each write-back erases this info.
9236 */
9237 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9238
9239 rx_desc++;
9240 bi++;
9241 i++;
9242 if (unlikely(!i)) {
9243 rx_desc = IGB_RX_DESC(rx_ring, 0);
9244 bi = rx_ring->rx_buffer_info;
9245 i -= rx_ring->count;
9246 }
9247
9248 /* clear the length for the next_to_use descriptor */
9249 rx_desc->wb.upper.length = 0;
9250
9251 cleaned_count--;
9252 } while (cleaned_count);
9253
9254 i += rx_ring->count;
9255
9256 if (rx_ring->next_to_use != i) {
9257 /* record the next descriptor to use */
9258 rx_ring->next_to_use = i;
9259
9260 /* update next to alloc since we have filled the ring */
9261 rx_ring->next_to_alloc = i;
9262
9263 /* Force memory writes to complete before letting h/w
9264 * know there are new descriptors to fetch. (Only
9265 * applicable for weak-ordered memory model archs,
9266 * such as IA-64).
9267 */
9268 dma_wmb();
9269 writel(i, rx_ring->tail);
9270 }
9271 }
9272
9273 /**
9274 * igb_mii_ioctl -
9275 * @netdev: pointer to netdev struct
9276 * @ifr: interface structure
9277 * @cmd: ioctl command to execute
9278 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9279 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9280 {
9281 struct igb_adapter *adapter = netdev_priv(netdev);
9282 struct mii_ioctl_data *data = if_mii(ifr);
9283
9284 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9285 return -EOPNOTSUPP;
9286
9287 switch (cmd) {
9288 case SIOCGMIIPHY:
9289 data->phy_id = adapter->hw.phy.addr;
9290 break;
9291 case SIOCGMIIREG:
9292 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9293 &data->val_out))
9294 return -EIO;
9295 break;
9296 case SIOCSMIIREG:
9297 if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9298 data->val_in))
9299 return -EIO;
9300 break;
9301 default:
9302 return -EOPNOTSUPP;
9303 }
9304 return 0;
9305 }
9306
9307 /**
9308 * igb_ioctl -
9309 * @netdev: pointer to netdev struct
9310 * @ifr: interface structure
9311 * @cmd: ioctl command to execute
9312 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9313 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9314 {
9315 switch (cmd) {
9316 case SIOCGMIIPHY:
9317 case SIOCGMIIREG:
9318 case SIOCSMIIREG:
9319 return igb_mii_ioctl(netdev, ifr, cmd);
9320 case SIOCGHWTSTAMP:
9321 return igb_ptp_get_ts_config(netdev, ifr);
9322 case SIOCSHWTSTAMP:
9323 return igb_ptp_set_ts_config(netdev, ifr);
9324 default:
9325 return -EOPNOTSUPP;
9326 }
9327 }
9328
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9329 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9330 {
9331 struct igb_adapter *adapter = hw->back;
9332
9333 pci_read_config_word(adapter->pdev, reg, value);
9334 }
9335
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9336 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9337 {
9338 struct igb_adapter *adapter = hw->back;
9339
9340 pci_write_config_word(adapter->pdev, reg, *value);
9341 }
9342
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9343 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9344 {
9345 struct igb_adapter *adapter = hw->back;
9346
9347 if (pcie_capability_read_word(adapter->pdev, reg, value))
9348 return -E1000_ERR_CONFIG;
9349
9350 return 0;
9351 }
9352
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9353 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9354 {
9355 struct igb_adapter *adapter = hw->back;
9356
9357 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9358 return -E1000_ERR_CONFIG;
9359
9360 return 0;
9361 }
9362
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9363 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9364 {
9365 struct igb_adapter *adapter = netdev_priv(netdev);
9366 struct e1000_hw *hw = &adapter->hw;
9367 u32 ctrl, rctl;
9368 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9369
9370 if (enable) {
9371 /* enable VLAN tag insert/strip */
9372 ctrl = rd32(E1000_CTRL);
9373 ctrl |= E1000_CTRL_VME;
9374 wr32(E1000_CTRL, ctrl);
9375
9376 /* Disable CFI check */
9377 rctl = rd32(E1000_RCTL);
9378 rctl &= ~E1000_RCTL_CFIEN;
9379 wr32(E1000_RCTL, rctl);
9380 } else {
9381 /* disable VLAN tag insert/strip */
9382 ctrl = rd32(E1000_CTRL);
9383 ctrl &= ~E1000_CTRL_VME;
9384 wr32(E1000_CTRL, ctrl);
9385 }
9386
9387 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9388 }
9389
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9390 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9391 __be16 proto, u16 vid)
9392 {
9393 struct igb_adapter *adapter = netdev_priv(netdev);
9394 struct e1000_hw *hw = &adapter->hw;
9395 int pf_id = adapter->vfs_allocated_count;
9396
9397 /* add the filter since PF can receive vlans w/o entry in vlvf */
9398 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9399 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9400
9401 set_bit(vid, adapter->active_vlans);
9402
9403 return 0;
9404 }
9405
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9406 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9407 __be16 proto, u16 vid)
9408 {
9409 struct igb_adapter *adapter = netdev_priv(netdev);
9410 int pf_id = adapter->vfs_allocated_count;
9411 struct e1000_hw *hw = &adapter->hw;
9412
9413 /* remove VID from filter table */
9414 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9415 igb_vfta_set(hw, vid, pf_id, false, true);
9416
9417 clear_bit(vid, adapter->active_vlans);
9418
9419 return 0;
9420 }
9421
igb_restore_vlan(struct igb_adapter * adapter)9422 static void igb_restore_vlan(struct igb_adapter *adapter)
9423 {
9424 u16 vid = 1;
9425
9426 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9427 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9428
9429 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9430 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9431 }
9432
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9433 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9434 {
9435 struct pci_dev *pdev = adapter->pdev;
9436 struct e1000_mac_info *mac = &adapter->hw.mac;
9437
9438 mac->autoneg = 0;
9439
9440 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9441 * for the switch() below to work
9442 */
9443 if ((spd & 1) || (dplx & ~1))
9444 goto err_inval;
9445
9446 /* Fiber NIC's only allow 1000 gbps Full duplex
9447 * and 100Mbps Full duplex for 100baseFx sfp
9448 */
9449 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9450 switch (spd + dplx) {
9451 case SPEED_10 + DUPLEX_HALF:
9452 case SPEED_10 + DUPLEX_FULL:
9453 case SPEED_100 + DUPLEX_HALF:
9454 goto err_inval;
9455 default:
9456 break;
9457 }
9458 }
9459
9460 switch (spd + dplx) {
9461 case SPEED_10 + DUPLEX_HALF:
9462 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9463 break;
9464 case SPEED_10 + DUPLEX_FULL:
9465 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9466 break;
9467 case SPEED_100 + DUPLEX_HALF:
9468 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9469 break;
9470 case SPEED_100 + DUPLEX_FULL:
9471 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9472 break;
9473 case SPEED_1000 + DUPLEX_FULL:
9474 mac->autoneg = 1;
9475 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9476 break;
9477 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9478 default:
9479 goto err_inval;
9480 }
9481
9482 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9483 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9484
9485 return 0;
9486
9487 err_inval:
9488 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9489 return -EINVAL;
9490 }
9491
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9492 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9493 bool runtime)
9494 {
9495 struct net_device *netdev = pci_get_drvdata(pdev);
9496 struct igb_adapter *adapter = netdev_priv(netdev);
9497 struct e1000_hw *hw = &adapter->hw;
9498 u32 ctrl, rctl, status;
9499 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9500 bool wake;
9501
9502 rtnl_lock();
9503 netif_device_detach(netdev);
9504
9505 if (netif_running(netdev))
9506 __igb_close(netdev, true);
9507
9508 igb_ptp_suspend(adapter);
9509
9510 igb_clear_interrupt_scheme(adapter);
9511 rtnl_unlock();
9512
9513 status = rd32(E1000_STATUS);
9514 if (status & E1000_STATUS_LU)
9515 wufc &= ~E1000_WUFC_LNKC;
9516
9517 if (wufc) {
9518 igb_setup_rctl(adapter);
9519 igb_set_rx_mode(netdev);
9520
9521 /* turn on all-multi mode if wake on multicast is enabled */
9522 if (wufc & E1000_WUFC_MC) {
9523 rctl = rd32(E1000_RCTL);
9524 rctl |= E1000_RCTL_MPE;
9525 wr32(E1000_RCTL, rctl);
9526 }
9527
9528 ctrl = rd32(E1000_CTRL);
9529 ctrl |= E1000_CTRL_ADVD3WUC;
9530 wr32(E1000_CTRL, ctrl);
9531
9532 /* Allow time for pending master requests to run */
9533 igb_disable_pcie_master(hw);
9534
9535 wr32(E1000_WUC, E1000_WUC_PME_EN);
9536 wr32(E1000_WUFC, wufc);
9537 } else {
9538 wr32(E1000_WUC, 0);
9539 wr32(E1000_WUFC, 0);
9540 }
9541
9542 wake = wufc || adapter->en_mng_pt;
9543 if (!wake)
9544 igb_power_down_link(adapter);
9545 else
9546 igb_power_up_link(adapter);
9547
9548 if (enable_wake)
9549 *enable_wake = wake;
9550
9551 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9552 * would have already happened in close and is redundant.
9553 */
9554 igb_release_hw_control(adapter);
9555
9556 pci_disable_device(pdev);
9557
9558 return 0;
9559 }
9560
igb_deliver_wake_packet(struct net_device * netdev)9561 static void igb_deliver_wake_packet(struct net_device *netdev)
9562 {
9563 struct igb_adapter *adapter = netdev_priv(netdev);
9564 struct e1000_hw *hw = &adapter->hw;
9565 struct sk_buff *skb;
9566 u32 wupl;
9567
9568 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9569
9570 /* WUPM stores only the first 128 bytes of the wake packet.
9571 * Read the packet only if we have the whole thing.
9572 */
9573 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9574 return;
9575
9576 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9577 if (!skb)
9578 return;
9579
9580 skb_put(skb, wupl);
9581
9582 /* Ensure reads are 32-bit aligned */
9583 wupl = roundup(wupl, 4);
9584
9585 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9586
9587 skb->protocol = eth_type_trans(skb, netdev);
9588 netif_rx(skb);
9589 }
9590
igb_suspend(struct device * dev)9591 static int igb_suspend(struct device *dev)
9592 {
9593 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9594 }
9595
__igb_resume(struct device * dev,bool rpm)9596 static int __igb_resume(struct device *dev, bool rpm)
9597 {
9598 struct pci_dev *pdev = to_pci_dev(dev);
9599 struct net_device *netdev = pci_get_drvdata(pdev);
9600 struct igb_adapter *adapter = netdev_priv(netdev);
9601 struct e1000_hw *hw = &adapter->hw;
9602 u32 err, val;
9603
9604 pci_set_power_state(pdev, PCI_D0);
9605 pci_restore_state(pdev);
9606 pci_save_state(pdev);
9607
9608 if (!pci_device_is_present(pdev))
9609 return -ENODEV;
9610 err = pci_enable_device_mem(pdev);
9611 if (err) {
9612 dev_err(&pdev->dev,
9613 "igb: Cannot enable PCI device from suspend\n");
9614 return err;
9615 }
9616 pci_set_master(pdev);
9617
9618 pci_enable_wake(pdev, PCI_D3hot, 0);
9619 pci_enable_wake(pdev, PCI_D3cold, 0);
9620
9621 if (igb_init_interrupt_scheme(adapter, true)) {
9622 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9623 return -ENOMEM;
9624 }
9625
9626 igb_reset(adapter);
9627
9628 /* let the f/w know that the h/w is now under the control of the
9629 * driver.
9630 */
9631 igb_get_hw_control(adapter);
9632
9633 val = rd32(E1000_WUS);
9634 if (val & WAKE_PKT_WUS)
9635 igb_deliver_wake_packet(netdev);
9636
9637 wr32(E1000_WUS, ~0);
9638
9639 if (!rpm)
9640 rtnl_lock();
9641 if (!err && netif_running(netdev))
9642 err = __igb_open(netdev, true);
9643
9644 if (!err)
9645 netif_device_attach(netdev);
9646 if (!rpm)
9647 rtnl_unlock();
9648
9649 return err;
9650 }
9651
igb_resume(struct device * dev)9652 static int igb_resume(struct device *dev)
9653 {
9654 return __igb_resume(dev, false);
9655 }
9656
igb_runtime_idle(struct device * dev)9657 static int igb_runtime_idle(struct device *dev)
9658 {
9659 struct net_device *netdev = dev_get_drvdata(dev);
9660 struct igb_adapter *adapter = netdev_priv(netdev);
9661
9662 if (!igb_has_link(adapter))
9663 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9664
9665 return -EBUSY;
9666 }
9667
igb_runtime_suspend(struct device * dev)9668 static int igb_runtime_suspend(struct device *dev)
9669 {
9670 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9671 }
9672
igb_runtime_resume(struct device * dev)9673 static int igb_runtime_resume(struct device *dev)
9674 {
9675 return __igb_resume(dev, true);
9676 }
9677
igb_shutdown(struct pci_dev * pdev)9678 static void igb_shutdown(struct pci_dev *pdev)
9679 {
9680 bool wake;
9681
9682 __igb_shutdown(pdev, &wake, 0);
9683
9684 if (system_state == SYSTEM_POWER_OFF) {
9685 pci_wake_from_d3(pdev, wake);
9686 pci_set_power_state(pdev, PCI_D3hot);
9687 }
9688 }
9689
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9690 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9691 {
9692 #ifdef CONFIG_PCI_IOV
9693 int err;
9694
9695 if (num_vfs == 0) {
9696 return igb_disable_sriov(dev, true);
9697 } else {
9698 err = igb_enable_sriov(dev, num_vfs, true);
9699 return err ? err : num_vfs;
9700 }
9701 #endif
9702 return 0;
9703 }
9704
9705 /**
9706 * igb_io_error_detected - called when PCI error is detected
9707 * @pdev: Pointer to PCI device
9708 * @state: The current pci connection state
9709 *
9710 * This function is called after a PCI bus error affecting
9711 * this device has been detected.
9712 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9713 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9714 pci_channel_state_t state)
9715 {
9716 struct net_device *netdev = pci_get_drvdata(pdev);
9717 struct igb_adapter *adapter = netdev_priv(netdev);
9718
9719 if (state == pci_channel_io_normal) {
9720 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9721 return PCI_ERS_RESULT_CAN_RECOVER;
9722 }
9723
9724 netif_device_detach(netdev);
9725
9726 if (state == pci_channel_io_perm_failure)
9727 return PCI_ERS_RESULT_DISCONNECT;
9728
9729 rtnl_lock();
9730 if (netif_running(netdev))
9731 igb_down(adapter);
9732 rtnl_unlock();
9733
9734 pci_disable_device(pdev);
9735
9736 /* Request a slot reset. */
9737 return PCI_ERS_RESULT_NEED_RESET;
9738 }
9739
9740 /**
9741 * igb_io_slot_reset - called after the pci bus has been reset.
9742 * @pdev: Pointer to PCI device
9743 *
9744 * Restart the card from scratch, as if from a cold-boot. Implementation
9745 * resembles the first-half of the __igb_resume routine.
9746 **/
igb_io_slot_reset(struct pci_dev * pdev)9747 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9748 {
9749 struct net_device *netdev = pci_get_drvdata(pdev);
9750 struct igb_adapter *adapter = netdev_priv(netdev);
9751 struct e1000_hw *hw = &adapter->hw;
9752 pci_ers_result_t result;
9753
9754 if (pci_enable_device_mem(pdev)) {
9755 dev_err(&pdev->dev,
9756 "Cannot re-enable PCI device after reset.\n");
9757 result = PCI_ERS_RESULT_DISCONNECT;
9758 } else {
9759 pci_set_master(pdev);
9760 pci_restore_state(pdev);
9761 pci_save_state(pdev);
9762
9763 pci_enable_wake(pdev, PCI_D3hot, 0);
9764 pci_enable_wake(pdev, PCI_D3cold, 0);
9765
9766 /* In case of PCI error, adapter lose its HW address
9767 * so we should re-assign it here.
9768 */
9769 hw->hw_addr = adapter->io_addr;
9770
9771 igb_reset(adapter);
9772 wr32(E1000_WUS, ~0);
9773 result = PCI_ERS_RESULT_RECOVERED;
9774 }
9775
9776 return result;
9777 }
9778
9779 /**
9780 * igb_io_resume - called when traffic can start flowing again.
9781 * @pdev: Pointer to PCI device
9782 *
9783 * This callback is called when the error recovery driver tells us that
9784 * its OK to resume normal operation. Implementation resembles the
9785 * second-half of the __igb_resume routine.
9786 */
igb_io_resume(struct pci_dev * pdev)9787 static void igb_io_resume(struct pci_dev *pdev)
9788 {
9789 struct net_device *netdev = pci_get_drvdata(pdev);
9790 struct igb_adapter *adapter = netdev_priv(netdev);
9791
9792 rtnl_lock();
9793 if (netif_running(netdev)) {
9794 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9795 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9796 rtnl_unlock();
9797 return;
9798 }
9799
9800 if (igb_up(adapter)) {
9801 dev_err(&pdev->dev, "igb_up failed after reset\n");
9802 rtnl_unlock();
9803 return;
9804 }
9805 }
9806 rtnl_unlock();
9807
9808 netif_device_attach(netdev);
9809
9810 /* let the f/w know that the h/w is now under the control of the
9811 * driver.
9812 */
9813 igb_get_hw_control(adapter);
9814 }
9815
9816 /**
9817 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9818 * @adapter: Pointer to adapter structure
9819 * @index: Index of the RAR entry which need to be synced with MAC table
9820 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9821 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9822 {
9823 struct e1000_hw *hw = &adapter->hw;
9824 u32 rar_low, rar_high;
9825 u8 *addr = adapter->mac_table[index].addr;
9826
9827 /* HW expects these to be in network order when they are plugged
9828 * into the registers which are little endian. In order to guarantee
9829 * that ordering we need to do an leXX_to_cpup here in order to be
9830 * ready for the byteswap that occurs with writel
9831 */
9832 rar_low = le32_to_cpup((__le32 *)(addr));
9833 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9834
9835 /* Indicate to hardware the Address is Valid. */
9836 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9837 if (is_valid_ether_addr(addr))
9838 rar_high |= E1000_RAH_AV;
9839
9840 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9841 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9842
9843 switch (hw->mac.type) {
9844 case e1000_82575:
9845 case e1000_i210:
9846 if (adapter->mac_table[index].state &
9847 IGB_MAC_STATE_QUEUE_STEERING)
9848 rar_high |= E1000_RAH_QSEL_ENABLE;
9849
9850 rar_high |= E1000_RAH_POOL_1 *
9851 adapter->mac_table[index].queue;
9852 break;
9853 default:
9854 rar_high |= E1000_RAH_POOL_1 <<
9855 adapter->mac_table[index].queue;
9856 break;
9857 }
9858 }
9859
9860 wr32(E1000_RAL(index), rar_low);
9861 wrfl();
9862 wr32(E1000_RAH(index), rar_high);
9863 wrfl();
9864 }
9865
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9866 static int igb_set_vf_mac(struct igb_adapter *adapter,
9867 int vf, unsigned char *mac_addr)
9868 {
9869 struct e1000_hw *hw = &adapter->hw;
9870 /* VF MAC addresses start at end of receive addresses and moves
9871 * towards the first, as a result a collision should not be possible
9872 */
9873 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9874 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9875
9876 ether_addr_copy(vf_mac_addr, mac_addr);
9877 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9878 adapter->mac_table[rar_entry].queue = vf;
9879 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9880 igb_rar_set_index(adapter, rar_entry);
9881
9882 return 0;
9883 }
9884
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9885 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9886 {
9887 struct igb_adapter *adapter = netdev_priv(netdev);
9888
9889 if (vf >= adapter->vfs_allocated_count)
9890 return -EINVAL;
9891
9892 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9893 * flag and allows to overwrite the MAC via VF netdev. This
9894 * is necessary to allow libvirt a way to restore the original
9895 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9896 * down a VM.
9897 */
9898 if (is_zero_ether_addr(mac)) {
9899 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9900 dev_info(&adapter->pdev->dev,
9901 "remove administratively set MAC on VF %d\n",
9902 vf);
9903 } else if (is_valid_ether_addr(mac)) {
9904 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9905 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9906 mac, vf);
9907 dev_info(&adapter->pdev->dev,
9908 "Reload the VF driver to make this change effective.");
9909 /* Generate additional warning if PF is down */
9910 if (test_bit(__IGB_DOWN, &adapter->state)) {
9911 dev_warn(&adapter->pdev->dev,
9912 "The VF MAC address has been set, but the PF device is not up.\n");
9913 dev_warn(&adapter->pdev->dev,
9914 "Bring the PF device up before attempting to use the VF device.\n");
9915 }
9916 } else {
9917 return -EINVAL;
9918 }
9919 return igb_set_vf_mac(adapter, vf, mac);
9920 }
9921
igb_link_mbps(int internal_link_speed)9922 static int igb_link_mbps(int internal_link_speed)
9923 {
9924 switch (internal_link_speed) {
9925 case SPEED_100:
9926 return 100;
9927 case SPEED_1000:
9928 return 1000;
9929 default:
9930 return 0;
9931 }
9932 }
9933
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9934 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9935 int link_speed)
9936 {
9937 int rf_dec, rf_int;
9938 u32 bcnrc_val;
9939
9940 if (tx_rate != 0) {
9941 /* Calculate the rate factor values to set */
9942 rf_int = link_speed / tx_rate;
9943 rf_dec = (link_speed - (rf_int * tx_rate));
9944 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9945 tx_rate;
9946
9947 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9948 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9949 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9950 } else {
9951 bcnrc_val = 0;
9952 }
9953
9954 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9955 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9956 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9957 */
9958 wr32(E1000_RTTBCNRM, 0x14);
9959 wr32(E1000_RTTBCNRC, bcnrc_val);
9960 }
9961
igb_check_vf_rate_limit(struct igb_adapter * adapter)9962 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9963 {
9964 int actual_link_speed, i;
9965 bool reset_rate = false;
9966
9967 /* VF TX rate limit was not set or not supported */
9968 if ((adapter->vf_rate_link_speed == 0) ||
9969 (adapter->hw.mac.type != e1000_82576))
9970 return;
9971
9972 actual_link_speed = igb_link_mbps(adapter->link_speed);
9973 if (actual_link_speed != adapter->vf_rate_link_speed) {
9974 reset_rate = true;
9975 adapter->vf_rate_link_speed = 0;
9976 dev_info(&adapter->pdev->dev,
9977 "Link speed has been changed. VF Transmit rate is disabled\n");
9978 }
9979
9980 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9981 if (reset_rate)
9982 adapter->vf_data[i].tx_rate = 0;
9983
9984 igb_set_vf_rate_limit(&adapter->hw, i,
9985 adapter->vf_data[i].tx_rate,
9986 actual_link_speed);
9987 }
9988 }
9989
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9990 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9991 int min_tx_rate, int max_tx_rate)
9992 {
9993 struct igb_adapter *adapter = netdev_priv(netdev);
9994 struct e1000_hw *hw = &adapter->hw;
9995 int actual_link_speed;
9996
9997 if (hw->mac.type != e1000_82576)
9998 return -EOPNOTSUPP;
9999
10000 if (min_tx_rate)
10001 return -EINVAL;
10002
10003 actual_link_speed = igb_link_mbps(adapter->link_speed);
10004 if ((vf >= adapter->vfs_allocated_count) ||
10005 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
10006 (max_tx_rate < 0) ||
10007 (max_tx_rate > actual_link_speed))
10008 return -EINVAL;
10009
10010 adapter->vf_rate_link_speed = actual_link_speed;
10011 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
10012 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
10013
10014 return 0;
10015 }
10016
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)10017 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
10018 bool setting)
10019 {
10020 struct igb_adapter *adapter = netdev_priv(netdev);
10021 struct e1000_hw *hw = &adapter->hw;
10022 u32 reg_val, reg_offset;
10023
10024 if (!adapter->vfs_allocated_count)
10025 return -EOPNOTSUPP;
10026
10027 if (vf >= adapter->vfs_allocated_count)
10028 return -EINVAL;
10029
10030 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
10031 reg_val = rd32(reg_offset);
10032 if (setting)
10033 reg_val |= (BIT(vf) |
10034 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10035 else
10036 reg_val &= ~(BIT(vf) |
10037 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
10038 wr32(reg_offset, reg_val);
10039
10040 adapter->vf_data[vf].spoofchk_enabled = setting;
10041 return 0;
10042 }
10043
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)10044 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
10045 {
10046 struct igb_adapter *adapter = netdev_priv(netdev);
10047
10048 if (vf >= adapter->vfs_allocated_count)
10049 return -EINVAL;
10050 if (adapter->vf_data[vf].trusted == setting)
10051 return 0;
10052
10053 adapter->vf_data[vf].trusted = setting;
10054
10055 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
10056 vf, setting ? "" : "not ");
10057 return 0;
10058 }
10059
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)10060 static int igb_ndo_get_vf_config(struct net_device *netdev,
10061 int vf, struct ifla_vf_info *ivi)
10062 {
10063 struct igb_adapter *adapter = netdev_priv(netdev);
10064 if (vf >= adapter->vfs_allocated_count)
10065 return -EINVAL;
10066 ivi->vf = vf;
10067 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
10068 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
10069 ivi->min_tx_rate = 0;
10070 ivi->vlan = adapter->vf_data[vf].pf_vlan;
10071 ivi->qos = adapter->vf_data[vf].pf_qos;
10072 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
10073 ivi->trusted = adapter->vf_data[vf].trusted;
10074 return 0;
10075 }
10076
igb_vmm_control(struct igb_adapter * adapter)10077 static void igb_vmm_control(struct igb_adapter *adapter)
10078 {
10079 struct e1000_hw *hw = &adapter->hw;
10080 u32 reg;
10081
10082 switch (hw->mac.type) {
10083 case e1000_82575:
10084 case e1000_i210:
10085 case e1000_i211:
10086 case e1000_i354:
10087 default:
10088 /* replication is not supported for 82575 */
10089 return;
10090 case e1000_82576:
10091 /* notify HW that the MAC is adding vlan tags */
10092 reg = rd32(E1000_DTXCTL);
10093 reg |= E1000_DTXCTL_VLAN_ADDED;
10094 wr32(E1000_DTXCTL, reg);
10095 fallthrough;
10096 case e1000_82580:
10097 /* enable replication vlan tag stripping */
10098 reg = rd32(E1000_RPLOLR);
10099 reg |= E1000_RPLOLR_STRVLAN;
10100 wr32(E1000_RPLOLR, reg);
10101 fallthrough;
10102 case e1000_i350:
10103 /* none of the above registers are supported by i350 */
10104 break;
10105 }
10106
10107 if (adapter->vfs_allocated_count) {
10108 igb_vmdq_set_loopback_pf(hw, true);
10109 igb_vmdq_set_replication_pf(hw, true);
10110 igb_vmdq_set_anti_spoofing_pf(hw, true,
10111 adapter->vfs_allocated_count);
10112 } else {
10113 igb_vmdq_set_loopback_pf(hw, false);
10114 igb_vmdq_set_replication_pf(hw, false);
10115 }
10116 }
10117
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10118 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10119 {
10120 struct e1000_hw *hw = &adapter->hw;
10121 u32 dmac_thr;
10122 u16 hwm;
10123 u32 reg;
10124
10125 if (hw->mac.type > e1000_82580) {
10126 if (adapter->flags & IGB_FLAG_DMAC) {
10127 /* force threshold to 0. */
10128 wr32(E1000_DMCTXTH, 0);
10129
10130 /* DMA Coalescing high water mark needs to be greater
10131 * than the Rx threshold. Set hwm to PBA - max frame
10132 * size in 16B units, capping it at PBA - 6KB.
10133 */
10134 hwm = 64 * (pba - 6);
10135 reg = rd32(E1000_FCRTC);
10136 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10137 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
10138 wr32(E1000_FCRTC, reg);
10139
10140 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10141 * frame size, capping it at PBA - 10KB.
10142 */
10143 dmac_thr = pba - 10;
10144 reg = rd32(E1000_DMACR);
10145 reg &= ~E1000_DMACR_DMACTHR_MASK;
10146 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10147
10148 /* transition to L0x or L1 if available..*/
10149 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10150
10151 /* watchdog timer= +-1000 usec in 32usec intervals */
10152 reg |= (1000 >> 5);
10153
10154 /* Disable BMC-to-OS Watchdog Enable */
10155 if (hw->mac.type != e1000_i354)
10156 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10157 wr32(E1000_DMACR, reg);
10158
10159 /* no lower threshold to disable
10160 * coalescing(smart fifb)-UTRESH=0
10161 */
10162 wr32(E1000_DMCRTRH, 0);
10163
10164 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10165
10166 wr32(E1000_DMCTLX, reg);
10167
10168 /* free space in tx packet buffer to wake from
10169 * DMA coal
10170 */
10171 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10172 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10173 }
10174
10175 if (hw->mac.type >= e1000_i210 ||
10176 (adapter->flags & IGB_FLAG_DMAC)) {
10177 reg = rd32(E1000_PCIEMISC);
10178 reg |= E1000_PCIEMISC_LX_DECISION;
10179 wr32(E1000_PCIEMISC, reg);
10180 } /* endif adapter->dmac is not disabled */
10181 } else if (hw->mac.type == e1000_82580) {
10182 u32 reg = rd32(E1000_PCIEMISC);
10183
10184 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10185 wr32(E1000_DMACR, 0);
10186 }
10187 }
10188
10189 /**
10190 * igb_read_i2c_byte - Reads 8 bit word over I2C
10191 * @hw: pointer to hardware structure
10192 * @byte_offset: byte offset to read
10193 * @dev_addr: device address
10194 * @data: value read
10195 *
10196 * Performs byte read operation over I2C interface at
10197 * a specified device address.
10198 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10199 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10200 u8 dev_addr, u8 *data)
10201 {
10202 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10203 struct i2c_client *this_client = adapter->i2c_client;
10204 s32 status;
10205 u16 swfw_mask = 0;
10206
10207 if (!this_client)
10208 return E1000_ERR_I2C;
10209
10210 swfw_mask = E1000_SWFW_PHY0_SM;
10211
10212 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10213 return E1000_ERR_SWFW_SYNC;
10214
10215 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10216 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10217
10218 if (status < 0)
10219 return E1000_ERR_I2C;
10220 else {
10221 *data = status;
10222 return 0;
10223 }
10224 }
10225
10226 /**
10227 * igb_write_i2c_byte - Writes 8 bit word over I2C
10228 * @hw: pointer to hardware structure
10229 * @byte_offset: byte offset to write
10230 * @dev_addr: device address
10231 * @data: value to write
10232 *
10233 * Performs byte write operation over I2C interface at
10234 * a specified device address.
10235 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10236 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10237 u8 dev_addr, u8 data)
10238 {
10239 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10240 struct i2c_client *this_client = adapter->i2c_client;
10241 s32 status;
10242 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10243
10244 if (!this_client)
10245 return E1000_ERR_I2C;
10246
10247 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10248 return E1000_ERR_SWFW_SYNC;
10249 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10250 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10251
10252 if (status)
10253 return E1000_ERR_I2C;
10254 else
10255 return 0;
10256
10257 }
10258
igb_reinit_queues(struct igb_adapter * adapter)10259 int igb_reinit_queues(struct igb_adapter *adapter)
10260 {
10261 struct net_device *netdev = adapter->netdev;
10262 struct pci_dev *pdev = adapter->pdev;
10263 int err = 0;
10264
10265 if (netif_running(netdev))
10266 igb_close(netdev);
10267
10268 igb_reset_interrupt_capability(adapter);
10269
10270 if (igb_init_interrupt_scheme(adapter, true)) {
10271 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10272 return -ENOMEM;
10273 }
10274
10275 if (netif_running(netdev))
10276 err = igb_open(netdev);
10277
10278 return err;
10279 }
10280
igb_nfc_filter_exit(struct igb_adapter * adapter)10281 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10282 {
10283 struct igb_nfc_filter *rule;
10284
10285 spin_lock(&adapter->nfc_lock);
10286
10287 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10288 igb_erase_filter(adapter, rule);
10289
10290 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10291 igb_erase_filter(adapter, rule);
10292
10293 spin_unlock(&adapter->nfc_lock);
10294 }
10295
igb_nfc_filter_restore(struct igb_adapter * adapter)10296 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10297 {
10298 struct igb_nfc_filter *rule;
10299
10300 spin_lock(&adapter->nfc_lock);
10301
10302 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10303 igb_add_filter(adapter, rule);
10304
10305 spin_unlock(&adapter->nfc_lock);
10306 }
10307
10308 static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10309 igb_runtime_suspend, igb_runtime_resume,
10310 igb_runtime_idle);
10311
10312 static struct pci_driver igb_driver = {
10313 .name = igb_driver_name,
10314 .id_table = igb_pci_tbl,
10315 .probe = igb_probe,
10316 .remove = igb_remove,
10317 .driver.pm = pm_ptr(&igb_pm_ops),
10318 .shutdown = igb_shutdown,
10319 .sriov_configure = igb_pci_sriov_configure,
10320 .err_handler = &igb_err_handler
10321 };
10322
10323 /* igb_main.c */
10324